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Abstract 

High relative humidity (RH) perturbs plant growth, stomatal functioning and ABA homeostasis, but the 

role of ABA in this physiological regulation is equivocal. To determine the role(s) of ABA in plant 

responses to high RH, wild-type (WT) tomato and barley plants and their respective ABA-deficient 

mutants flacca and Az34 (which are mutated in the same locus of the ABA biosynthesis pathway) were 

grown in contrasting RHs (60 and 90%) to measure biomass partitioning, stomatal traits and water 

relations. Surprisingly, growth RH did not affect foliar ABA levels in either species. While Az34 

showed similar stomatal size and density as WT plants, flacca had larger and more abundant stomata. 

High RH increased stomatal size in tomato, but decreased it in barley, and decreased stomatal density 

in tomato, but not in barley. Altered stomatal responses in ABA-deficient plants to high RH had little 

effect on tomato photosynthesis, but Az34 barley showed lower photosynthesis. ABA deficiency 

decreased shoot relative growth rate (RGRSHOOT) in both species, yet this was counteracted by high RH 

increasing leaf water status in tomato, but not in barley. High RH increased RGRSHOOT in flacca, but 

not in WT tomatoes, while having no effect on RGRSHOOT in barley, but affecting barley NAR, LAR 

and SLA in an ABA-dependent manner. ABA-RH interaction affected leaf development in tomato only. 

Thus, different crop species show variable responses to both high RH and ABA deficiency, making it 

difficult to generalise on the role of ABA in growth regulation at contrasting RHs.  
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Introduction 

Plant responses to low relative air humidity (RH, corresponding to high vapour pressure deficit, VPD, 

provided no change in temperature) are important to prevent excessive water loss, yet responses to high 

RH (> 85%) (Torre et al. 2003) are arguably as important. In protected plant production systems at high 
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latitudes, a trade-off between ventilation and energy-saving often leads to a high RH environment 

during growth, affecting not only plant morphology and water relations, but also post-harvest keeping 

quality (Mortensen 2000, Torre et al. 2003, Fanourakis et al. 2016, Innes et al. 2018, Innes et al. 2019). 

High relative humidity increased biomass, leaf area and the number of leaves of several species (Innes 

et al. 2019, Oksanen et al. 2019) by increasing the leaf water status (Mortensen 2000, Leuschner 2002, 

Lihavainen et al. 2016). However, decreased leaf area has also been found in several species, including 

tomato, grown in high (> 90%) RH (Mortensen 2000, Oksanen et al. 2019). In tomato, this was 

attributed to low leaf calcium concentrations, in agreement with Leuschner (2002) and Oksanen et al. 

(2019), who reported nutrient dilution in temperate woodland herbs and northern forest trees grown in 

high (> 90%) RH, respectively. Growth in high RH also affects morphological characteristics, such as 

increasing both the number and size of stomata, as well as a decreasing stomatal functionality in 

response to closing signals (Torre et al. 2003, Nejad and Van Meeteren 2005, Fanourakis et al. 2011, 

Arve et al. 2014, Fanourakis et al. 2016). However, lower stomatal frequency has also been reported as 

a result of increased leaf expansion due to high RH (Leuschner 2002). Further investigations into 

morphological and hydraulic responses to growth in high RH are needed as responses are inconsistent, 

and the regulatory mechanisms not always elucidated. 

 

As abscisic acid (ABA) is strongly implicated in plant responses to both low and high RH (Nejad and 

Van Meeteren 2005, Okamoto et al. 2009, Aliniaeifard and van Meeteren 2013, Arve et al. 2013, Bauer 

et al. 2013, Arve et al. 2014, Arve et al. 2015, McAdam et al. 2015, McAdam and Brodribb 2016, 

Merilo et al. 2018), and different genotypes vary in their responses to increased air humidity (or 

decreased VPD) (Mortensen and Gislerød 1990, Oksanen et al. 2019), it is important to understand the 

ABA-RH interactions and their effects on different species. The availability of many ABA-deficient 

mutants (summarised by McAdam et al. (2015), including their lesions in the ABA biosynthesis 

pathway) has allowed many investigations regarding their growth and physiology. ABA-deficient 

mutants have characteristically smaller leaves than their WT counterparts (Sharp et al. 2000), and 

considerably higher transpiration rates, often with impaired stomatal closure in response to darkness or 

desiccation (Tal 1966, Walker-Simmons et al. 1989, Sagi et al. 2002). Tomato flacca and barley Az34 

mutants both carry mutations in the molybdenum cofactor (see Table 1). The molybdenum cofactor is 

found at the catalytic sites in several molybdoenzymes present in higher plants: Nitrate reductase (NR), 

xanthine dehydrogenase (XDH) and aldehyde oxidase (AO) (Zdunek-Zastocka and Lips 2003). 

However, while Az34 lacks activity of all three enzymes, flacca only lacks XDH and AO activity (Sagi 

et al. 1999). Using two important crops comprising both eudicot and monocot species, these contrasting 

mutations allow the effects of ABA-deficiency to be investigated and compared.  

 



While formal growth analyses, as described by Poorter (2002), have been widely used to determine 

growth regulation in response to different environmental factors, the relative importance of the 

components affecting Relative Growth Rate (RGR) varies. 

Relative growth rate (RGR) is defined as:  

 

(1) RGR = NAR × (SLA × LMR) 

 

Where NAR = net assimilation rate: the rate of mass increase per unit leaf area, 

SLA = specific leaf area: the ratio of leaf area to leaf mass, 

LMR = leaf mass ratio: the ratio of leaf mass to total plant mass and 

LAR = SLA × LMR 

 

Few formal growth analyses have partitioned the relative importance of the components of RGR in 

ABA-deficient mutants. Decreased RGR of the ABA-deficient tomato mutant sitiens (compared to WT 

plants) resulted from lower SLA, while NAR and LMR were unaffected (Nagel et al. 1994, Mäkelä et 

al. 2003). In contrast, decreased RGR of flacca tomatoes was attributed to decreased NAR, as LAR was 

significantly higher than in WT plants, and SLA was unaffected (Coleman and Schneider 1996). In 

barley, Mulholland et al. (1996b) reported a higher SLA in ABA-deficient plants than cv. Steptoe WT, 

though RGR was not measured. There are few, often incomplete, comparative analyses of the effects 

of ABA-deficiency on growth of different species, often with contrasting results.   

 

Understanding the physiological mechanisms regulating the growth of ABA-deficient mutants is 

complicated by their poor stomatal regulation, causing low leaf turgor and relative water content (Tal 

1966, Bradford 1983, Walker-Simmons et al. 1989, Sharp et al. 2000). To compensate for the high rates 

of water loss in the mutants, the ABA-deficient and the WT plants can be grown at different RHs to 

ensure the effects of ABA-deficiency are compared between leaves of the same relative water content 

and/or leaf water potential (Sharp et al. 2000, Mäkelä et al. 2003, Okamoto et al. 2009, Yaaran et al. 

2019).  

 

Since growth in high RH affects plant morphology and water relations (Torre et al. 2003, Fanourakis et 

al. 2016, Innes et al. 2018, Innes et al. 2019), and high RH decreases ABA concentration (Okamoto et 

al. 2009, Fanourakis et al. 2011, Arve et al. 2013, Aliniaeifard et al. 2014), separating the effects of 

these two main factors is important but has not been previously investigated. For example, Mulholland 

et al. (1996b) grew plants at a single, high RH (100%) to minimise the effects of leaf water deficit on 

growth, while Sharp et al. (2000) grew WT and ABA-deficient mutants at two different RH levels to 

minimise differences in leaf water status between WT and ABA-deficient mutants. Neither of these 



experiments were factorial for RH and ABA status, thus our factorial experiments allowed us to separate 

the RH and ABA effects in order to investigate whether RH modulates growth and hydraulic responses 

to ABA-deficiency. We hypothesised that high RH would promote growth and water status of ABA-

deficient mutants. To determine if these responses are conserved across species, we grew ABA-

deficient mutants and their corresponding wild-types of two important crop species (both eudicot and 

monocot origin) at two different relative humidities.  

 

Materials and methods 

Plant material 

In this investigation, one eudicot species, Solanum lycopersicum cv. ‘Ailsa Craig’ (tomato) and one 

monocot species, Hordeum vulgare cv. ‘Steptoe’ (barley) were used. ABA deficient mutants (described 

in Table 1) of tomato (flacca) and barley (Az34) were used to investigate the relationship between ABA 

and growth in continuous high RH. The tomato flacca mutant is deficient in the synthesis of a 

molybdenum cofactor necessary for activating abscisic aldehyde oxidase (AAO). The barley mutant, 

Az34 (nar2a), was initially characterised as a nitrate reductase (NR)-deficient mutant, but the nar2 

locus codes for the same molybdenum cofactor of the molybdoenzyme aldehyde oxidase (Walker-

Simmons et al. 1989), indicating that both flacca and Az34 are deficient in the enzyme which catalyses 

the conversion of abscisic aldehyde to ABA in the final step of ABA biosynthesis (Sagi et al. 2002, 

Bauer et al. 2013, McAdam et al. 2015). These mutations decrease leaf ABA concentrations by up to 

60% in flacca (Netting et al. 2012) and 25-53% in Az34 (Mulholland et al. 1996b).  

 

Growth conditions 

The experiments were performed at the Norwegian University of Life Sciences (NMBU), Ås (59.7°N), 

Norway in the winter of 2017/2018 and the summer of 2019. The seeds were germinated in Sphagnum 

peat growth medium, 6% ash, pH 5.0-6.0 (Degernes Torvstrøfabrikk AS) in 17 cm diameter, 2-L 

(tomato) or 12 cm diameter, 1.5-L pots (barley). The plants were grown in a single greenhouse 

compartment at a constant 20 ± 1°C and 70 ± 5% RH controlled by a PRIVA system (Priva, De Lier). 

During the experiments, natural daylight ranged from 6-10 h (timeanddate.com 2018), so 100 µmol m-

2 s-1 of supplementary light was supplied by high pressure sodium lamps (HPS, Osram NAVT- 400W) 

to extend the photoperiod to 20 h. The plants were watered daily to drip point and were kept in the 

greenhouse for 14 days. 

 

Following germination, the plants were moved to controlled environment growth chambers at the two-

leaf stage for growth treatments. Four growth chambers were used. All chambers were maintained at 

22 ± 1°C using a PRIVA system. Two of the chambers were maintained at moderate (60%) RH, while 

the other two had high (90%) RH, corresponding to VPDs of 1.06 and 0.26 kPa, respectively. The plants 

were exposed to a 20 h photoperiod, with light supplied at 220 ± 20 µmol m-2 s-1 at plant height by 



Powerstar HQI-BT metal halide lamps (Ledvance GmbH) as measured using a Li-Cor quantum sensor 

connected to a Li-Cor LI-250 light meter (Li-Cor Inc.). The plants were watered daily using a 50/50 

mixture of YaraLiva® Calcinit™ calcium nitrate solution (14.4% NO3, 1.1% NH4, 19.0% Ca, Yara 

Norge AS, Oslo, Norway) and Kristalon™ Indigo (7.5% NO3, 1% NH4, 4.9% P, 24.7% K, 4.2% Mg, 

5.7% S, 0.027% B, 0.004% Cu, 0.06% Mn, 0.2% Fe, 0.004% Mo, 0.027% Zn, Yara Norge AS), EC 

level 2.0 mS cm-1.  

 

Foliar ABA Radioimmunoassay 

Foliar ABA concentration was measured using a radioimmunoassay as described by Quarrie et al. 

(1988). Fully expanded leaflets from 3-5 plants per genotype per treatment were removed 1-2 h after 

the start of the light period and immediately placed in tubes and frozen in liquid N2. Samples were 

freeze-dried using a Telstar LyoQuest (Telstar). Freeze-dried tissue was ground to powder and extracted 

in distilled de-ionised water on a shaker at 4°C overnight. The extracted aqueous solutions were 

measured for ABA concentration using the monoclonal antibody AFRC MAC 252. 

 

Water relations 

Leaf relative water content 

Detached leaves (two leaves per plant, four plants per treatment, n = 8) were cut under water and 

immediately weighed (FW) before the petiole was submerged in water for at least 1 h. The turgid (TW) 

of each leaf was measured before the leaves were placed in a drying cabinet at 60°C for at least 24 h. 

DW was measured for each leaf, and the following equation was used to calculate the relative water 

content (RWC) for each leaf: 

 

(2) RWC = ([FW-DW]/[TW-DW])×100 

 

Day and night whole plant transpiration 

Plant water usage was determined gravimetrically during three days and three nights on four or five 

plants per genotype in each RH treatment. Each pot was sealed in plastic to prevent water loss from the 

soil, and the plants were weighed at the end of each day and each night. Plants were watered at the end 

of each night (to replace evapotranspirational losses) and weighed both before and after watering. 

Weight differences and leaf area, measured using a LI-3011 Leaf Area Meter (Li-Cor, Inc.), were used 

to determine total water use (g cm-2 h-1) for each day and each night. These data allowed the rate of 

water loss (as mmol H2O m-2 s-1) to be calculated for each plant for each day and night using mol = g 

molar mass-1, where the molar mass of water = 18.01528. 

 



Stomatal morphology 

Three leaf samples were taken from all four genotypes and immediately placed in a fixation solution 

(1.25% glutaraldehyde, 2.5% paraformaldehyde in PIPES buffer). The leaves used for gas exchange 

measurements were removed from each plant, and 2 × 2 mm pieces were cut from close to the mid-rib 

using a scalpel blade. The pieces were placed immediately in fixation medium and stored at 4°C until 

microscopy preparation. For microscopy, the samples were washed twice for 15 min with PIPES buffer 

before being dehydrated using a graded ethanol series. Once dehydrated, the plants were critical point 

dried using a BAL-TEC CPD 030 (BAL-TEC AG). The dried samples were mounted onto stubs and 

sputter coated with a gold-palladium mix using a Polaron SC 7640 Sputter Coater (Quorum 

Technologies Ltd.). The coated samples were analysed using a Zeiss EVO 50 scanning electron 

microscope. Electron micrographs were taken at 400× and 700× magnification for measurements of 

stomatal anatomy. Stomata and trichomes were counted on 10 fields of view per treatment per genotype, 

and stomatal areas were measured on 100 or 57 stomata for each tomato and barley genotype 

respectively. Stomatal areas were measured using ImageJ software (ImageJ 1.49g, National Institutes 

of Health). Further electron micrographs were taken at 7000× magnification to compare single stomata 

between genotypes and treatments. 

 

Leaf gas exchange 

Leaf photosynthesis (A), conductance (gs), and internal CO2 concentration (Ci) were measured on all 

genotypes using a LI-6400 Portable Photosynthesis System. The system was connected to a 6400-40 

Leaf Chamber Fluorometer (LCF; Li-Cor, Inc.), in which LEDs provided 87% red, 10% blue and 3% 

far-red light at 200 µmol m-2 s-1. RH in the cuvette was maintained as close to growth RH as possible 

(±15% during measurement), CO2 was maintained at 400 ppm, and block temperature was set at 22°C. 

Young, fully expanded leaves from four plants per treatment were measured in all genotypes. Leaves 

were acclimatised in the chamber for at least 3 min until variables had stabilised. Leaf temperature was 

20 ± 2°C and only below 20°C in flacca in 60% RH. Measurements were taken one hour after the start 

of the light period. 

 

Growth measurements 

Morphology 

Four to five replicates per treatment were randomly selected, starting two weeks after sowing and 

harvested weekly for two weeks. For each plant, the number of leaves (> 1 cm length) were counted, 

and leaf area was determined using a LI-3100 Area Meter (Li-Cor, Inc.). The stem and leaf materials 

were dried separately at 60°C for a minimum of 48 h before dry weights (DW) were determined. 

Specific leaf area (SLA = leaf area/leaf DW), leaf mass ratio (LMR = leaf DW/shoot DW) and leaf area 



ratio (LAR = LMR × SLA) were calculated for each plant, to conduct a formal growth analysis. Roots 

were not recovered from the substrate. 

 

Relative growth rate 

Relative shoot growth rates (RGRSHOOT) were calculated using the mean of natural logarithm (ln) 

transformed total shoot DW data, according to Hoffmann and Poorter (2002) RGRSHOOT was calculated 

using:  

                                                              

(3) RGRSHOOT = (𝑙𝑙𝑙𝑙𝑙𝑙𝑇𝑇2 – 𝑙𝑙𝑙𝑙𝑙𝑙𝑇𝑇1)/(t2 – t1),  

 

where: WT2 = total shoot DW at time point 2,  

WT1 = total shoot DW at time point 1,  

t2 = time point 2 (14 days of growth),  

t1 = time point 1 (beginning of growth treatments).  

Using the same method, growth rates were calculated for the relative leaf expansion rate (RLER) using 

ln transformed leaf area. 

 

Statistical analysis 

All statistical analyses were performed in R (version 4.0.3, The R Foundation for Statistical 

Computing). Growth data and water relations data were collected from two independent experiments 

(Table S1). Data from replicate experiments were checked for differences between replicates and then 

pooled. Data were analysed factorially using two-way ANOVAs (main effects: genotype and RH), with 

statistical significance assigned to P ≤ 0.05. The data were tested for normality using Shapiro-Wilk 

normality tests, and for homoscedasticity using Levene’s test for homogeneity of variance. Gas 

exchange data were analysed for correlation using Pearson’s test for correlation between paired 

samples. 

 

Results 

Foliar ABA concentration 

Foliar ABA concentration of flacca plants was 69% less than in WT plants averaged across the two RH 

levels (Fig. 1A, P < 0.001 in both RH levels). WT and Az34 barley plants had statistically similar leaf 

ABA levels (Fig. 1B). Furthermore, RH did not affect ABA levels in any of the genotypes analysed 

(Fig. 1A, B).  

 



Relative water content 

In tomatoes, flacca leaves had lower RWC than WT leaves at 60% RH, but not at 90% RH (Fig. 2A). 

In barley, Az34 leaves had lower RWC in 90% RH, but not 60% RH (Fig. 2B). Growth RH did not 

affect RWC of either WT genotype, but the ABA-deficient genotypes showed opposite effects since 

90% RH increased RWC of flacca leaves but decreased RWC of Az34 leaves compared to 60% RH. 

Thus, growth at high RH did not always normalise leaf water relations of the ABA-deficient mutants. 

 

Stomatal morphology and gas exchange 

In tomatoes, flacca leaves had more stomata than WT plants in both RH levels, and their stomata were 

87 and 35% larger than WT stomata in 60% and 90% RH, respectively (Table 2). In barley, WT and 

Az34 leaves had similar stomatal counts, with Az34 stomata being 17% larger than WT in 60% RH, 

but 18% smaller than WT in 90% RH (Table 2). 

 

Both WT and flacca tomatoes had fewer, larger stomata in 90% compared to 60% RH (Table 2). In 

barley, RH did not affect the stomatal number of either genotype, but high RH decreased stomatal size. 

In tomatoes, WT and flacca stomata were 47 and 6% larger in 90% compared to 60% RH, respectively, 

while in barley, WT and Az34 stomata were 4 and 33% larger. This indicates that ABA and RH affect 

tomato (but not barley) stomatal number, and the interaction between ABA and RH on stomatal pore 

area affects tomato and barley differently. 

 

Gas exchange 

In tomato, WT and flacca had similar assimilation rates (A) in 60% RH, but in 90% RH flacca had 38% 

higher A than WT (Table S2). A was not correlated with stomatal conductance (gs, Fig. 3A), which was 

127% higher in flacca than WT plants averaged across RH levels (Table S2), but instantaneous water 

use efficiency (iWUE, calculated as A/gs) was 50% lower in flacca than WT plants (Table S2). A was 

not correlated with internal CO2 concentration (Ci, Fig. 3C), which was 10 and 3% higher in flacca than 

WT plants in 60% and 90% RH, respectively (Table S2). Tomato gs and Ci showed a strong positive 

correlation (Fig. 3E). In barley, Az34 plants had 48% lower A than WT plants averaged across RH 

levels (Table S2). A was not correlated with gs (Fig. 3B), which was statistically similar in WT and 

Az34 plants in both RH levels (Table S2), but iWUE was 50% lower in Az34 than WT plants (Table 

S2). A was strongly and negatively correlated with Ci (Fig. 3D), which was 9% higher in Az34 than 

WT plants. Barley gs showed a strong positive correlation with Ci (Fig. 3F). Thus, ABA-deficiency 

affects gas exchange responses differently in tomato and barley plants, most notably in A and gs. 

 

Tomato flacca plants had 42% higher A, 20% lower gs, 5% lower Ci, and 80% higher iWUE in 90% 

RH compared to 60% RH, respectively, while WT showed no effects of RH on gas exchange parameters 

(Table S2). Barley Az34 plants had 54% higher A in 90% RH, while WT showed no impact of RH on 



A (Table S2). Barley WT and Az34 had 27 and 40% lower gs, 10 and 8% lower Ci and 62 and 162% 

higher iWUE in 90% RH compared to 60% RH, respectively. These results show that tomato and barley 

WT and ABA-deficient mutants respond similarly to high RH. 

 

Whole plant transpiration during day and night 

In tomatoes, flacca plants had higher transpiration rates compared to WT plants in 60% RH, but not 

90% RH during both day and night (Fig. 4A). However, in barley, WT and Az34 plants had similar 

transpiration rates during both day and night (Fig. 4B).  

 

Both WT tomatoes and flacca tomatoes had lower transpiration rates in 90% RH compared to 60% RH, 

during both day and night. However, WT plants had higher response indices (calculated as day/night 

ratio of transpiration rates) than flacca plants in both RH levels, indicating that WT plants responded 

more strongly to darkness as a stomatal closing signal (Fig. 4A). Barley showed similar results; both 

genotypes decreased transpiration in darkness in both RH levels, though response indices were greater 

in WT than Az34 plants (Fig. 4B). 

 

Growth rates and morphology 

Genotypic and RH effects on RGRSHOOT components (Eqn. 1) differed between species (Table 3, Fig. 

S1). Averaged across RH levels, RGRSHOOT of flacca was 15% less than WT tomatoes. The differences 

in tomato growth components were not significant in flacca compared to WT, but the components that 

contributed most to the change in RGRSHOOT were LAR and SLA in 60% RH, and SLA in 90% RH 

(Table 3). Averaged across RH levels, RGRSHOOT of Az34 was 20% less than WT barley, with both 

LAR and NAR significantly less than WT plants in 60% RH, by 40 and 21% respectively. Az34 had 

decreased SLA, though this was only significant in 90% RH (-24%). LMR showed a slight increase in 

Az34, though it was not significant in either RH level (Table 3). 

 

High RH significantly increased flacca RGRSHOOT by 8% but did not affect WT. It furthermore 

decreased LMR by 3.5%, averaged across tomato genotypes, though no other components significantly 

changed with RH (Table 3). High RH decreased NAR (by 14%) and increased SLA (by 40%) in WT 

barley, but no other growth components were significantly affected by RH in WT barley. Az34 

RGRSHOOT was not affected by high RH despite significantly increased SLA (24%), LAR (73%) and 

NAR (7%) (Table 3). Thus, the growth response to high RH is somewhat ABA-independent in 

tomatoes, but ABA-dependent in barley.  

 

At both RH levels, flacca plants had fewer leaves than WT plants, thereby decreasing RLER and total 

leaf area of these plants (Table 4). A similar response occurred in barley (Table 4). High RH did not 

affect either tomato or barley leaf number or area, with no significant main effect or interaction between 



RH and ABA status. However, in tomatoes, the effect of high RH on RLER depended on ABA status, 

with 90% RH increasing RLER in flacca, but not WT tomatoes (Table 4). Thus, ABA status alters 

tomato leaf development by interacting with RH, but not in barley. 

 

Discussion 

We hypothesised that high RH would promote growth and water status of ABA-deficient mutants of 

tomato and barley. This was confirmed for tomato, but not for barley (Fig. 2, Table 3). Commercially 

growing tomatoes at high humidities (up to 90%) increased their biomass and yield (Lu et al. 2015, 

Shamshiri et al. 2018), but barley did not show the same response. While tomato growth responses to 

high RH were ABA-independent, they were ABA-dependent in barley (Table 3). Furthermore, tomato 

gas exchange responses to high RH were ABA-dependent, while those of barley were not. Overall, 

despite similar lesions in the ABA biosynthetic pathway, ABA-deficient mutants of tomato and barley 

responded differently to their aerial environment, caused by differences in the relative magnitude of 

ABA deficiency and/or the specific enzymes impaired by mutations in the molybdenum cofactor.  

 

As expected, flacca plants had 60-70% less ABA than WT tomato (Tal and Nevo 1973), while Az34 

and WT barley plants had similar foliar ABA concentrations (Fig. 1) (Walker-Simmons et al. 1989). In 

leaky mutants such as Az34 barley, end product quantification (here ABA) in plant tissues may not 

adequately indicate plant function (Walker-Simmons et al. 1989). Instead, xylem sap ABA 

concentration of Az34 was only half that of WT plants (Martin-Vertedor and Dodd 2011), consistent 

with the decreased growth rate of Az34 compared to WT plants (Table 3).  

 

ABA-deficiency affects tomato water relations independently of RH, but is RH-dependent in barley 

Higher gs of flacca was consistent with its larger, more abundant stomata independent of RH (Table 2). 

This agrees with similar results from guard cell-specific ABA-insensitive Arabidopsis mutants (Yaaran 

et al. 2019), suggesting that ABA status influences stomatal traits under differing RH levels. 

Nevertheless, high RH diminished genotypic differences in both stomatal size and gs in tomatoes (Table 

2, Table S2). In barley, Az34 had smaller, more abundant stomata than WT in 60% RH, but it had fewer, 

larger stomata than WT in 90% RH (Table 2). Despite these morphological differences, gs of both 

genotypes was similar at either RH level, as previously found when these genotypes were grown under 

control and salt-stressed conditions (Zuo et al. 2019). Previous findings in Arabidopsis indicate that 

aba3 mutants, which have a similar lesion to flacca and Az34 (see Table 1), had higher stomatal density 

than Col-0 wild-type plants (Jalakas et al. 2018). Thus, ABA-deficiency influences stomatal traits in 

tomatoes, though whether these are direct (e.g. regulation of stomatal conductance) or indirect (e.g. an 

artefact of low leaf turgor constraining cellular expansion) consequences of ABA-deficiency remains 

equivocal. Further analyses into the mechanisms involved in RH responses in WT and ABA-related 

(biosynthesis and receptor) mutants would help clarify this. 



 

Changes in stomatal morphology in response to high RH affected leaf gas exchange responses in WT 

and flacca tomatoes (Table S2). While fewer, larger stomata decreased gs and Ci of flacca plants at high 

RH, RH did not change gs and Ci in WT tomatoes, again indicating stomatal responses of tomatoes to 

high RH are ABA-dependent. The stability of leaf ABA concentration in different RHs in WT tomato 

(Fig. 1A) likely explains why RH did not change gs and Ci. High RH decreased stomatal pore areas of 

both barley genotypes, to a greater extent in Az34 than WT (Table 2), indicating an ABA-dependent 

RH response. However, RH did not affect the stomatal number of either barley genotype. The stomatal 

number varied between Arabidopsis WT and guard cell-specific ABA insensitive mutants when grown 

in 90% RH, where the mutants had fewer stomata while WT plant showed no difference in stomatal 

number (Yaaran et al. 2019). High (92%) RH decreased leaf ABA concentration in roses compared to 

moderate (61%) RH, thereby increasing stomatal aperture (Carvalho et al. 2015) with no effect on 

stomatal density. Taken together, ABA deficiency affects stomatal number responses similarly in 

tomato and Arabidopsis at high RH, but barley showed opposing effects of high RH on stomatal number 

in both genotypes.  

 

Photosynthesis was not related to gs across our range of conditions (Fig. 3A, B), but stomatal closure at 

lower gs would likely induce stomatal limitations to photosynthesis (Flexas et al. 2004). However, while 

neither species showed stomatal limitations to photosynthesis, non-stomatal factors such as lower foliar 

total soluble protein content and total Rubisco activity (Jauregui et al. 2018) likely limit photosynthetic 

assimilation in ABA-deficient barley plants (Jiang et al. 2006). However, the strong negative correlation 

between A and Ci in barley (Fig. 3D) may result from NR deficiency, as opposed to ABA-deficiency, 

in this genotype. An NR-deficient Nicotiana plumbaginifolia accumulated starch which led to a 

disruption of the thylakoid structure, disorientation of grana and pigment deficiency, all of which 

decreased RuBP carboxylase activity and photosynthetic carbon assimilation rates (Saux et al. 1987). 

As NR-deficiency is an artefact of the molybdenum cofactor (MoCo) mutation in barley (Walker-

Simmons et al.1989), but not tomato (Sagi et al. 1999), this may explain interspecific differences in the 

A:Ci relationships (Fig. 3D). In contrast, tomato photosynthesis responds little to changes in stomatal 

size and movement in response to ABA and humidity (Flexas et al. 2004), and neither ABA-deficiency 

nor high RH limits photosynthesis (Long and Bernacchi 2003).  

 

The stomata of ABA-deficient mutants of both species closed in response to darkness (Fig. 4), though 

the degree of closure (response index) was higher in WT than ABA-deficient mutants of both species 

(Fig. 4). Consistent differences in response index also occurred when comparing WT and flacca 

tomatoes (Bradford et al. 1983, Neill and Horgan 1985), yet Arabidopsis plants with guard cell-specific 

ABA-insensitivity showed a WT-like response to darkness (Yaaran et al. 2019). As darkness has been 

a constant, unchanging factor affecting gas exchange since plants colonised land, Costa et al. (2015) 



postulated that the dark response of stomata is a “primitive regulatory backbone” upon which other 

mechanisms have evolved in order to respond to an increasing number of stimuli over time. While ABA 

signalling is required for stomatal responses to environmental stimuli such as elevated CO2, O3 and 

decreased relative humidity (Merilo et al. 2013, Chater et al. 2015), it has been proposed that stomatal 

response to darkness may occur, at least partially, via an ABA-independent pathway (Merilo et al. 2013, 

Costa et al. 2015). Our results support this, though the greater response of WT plants than ABA-

deficient mutants (Fig. 4 response indices), indicates some involvement of ABA. 

 

Effects of ABA-deficiency and RH on growth rate components is not conserved across species 

Both flacca and Az34 had lower RGRSHOOT than their respective WT plants, as reported previously for 

tomato (Nagel et al. 1994, Coleman and Schneider 1996) and barley (Mulholland et al. 1996b). 

However, the underlying components of RGRSHOOT differed in their response between ABA-deficient 

genotypes, with NAR similar in flacca and WT tomatoes, but strongly reduced in Az34 (Table 3). NAR 

indicates the efficiency of leaves in generating biomass, and is related to photosynthesis as the basis of 

dry matter production in plants (Sudhakar et al. 2016). Here, photosynthesis strongly decreased in Az34 

compared to WT barley, but was similar in both tomato genotypes (Table S2). NAR usually best 

predicts RGR (Shipley 2006, Li et al. 2016), as in barley (Table 3), though SLA better predicted RGR 

in herbaceous plants experiencing low irradiance (Shipley 2006). Low light levels may account for SLA 

being a stronger determinant of RGRSHOOT than NAR in the tomatoes studied here.  

 

Growing crops in high RH decreased transpiration and increased leaf water status, while also impairing 

stomatal functioning upon removal to a lower RH environment (Fanourakis et al. 2011, Aliniaeifard 

and van Meeteren 2013, Arve et al. 2013, Fanourakis et al. 2016). ABA-deficiency inhibits stomatal 

closure and alters stomatal anatomy, thereby increasing transpiration and decreasing leaf water status 

which in turn may inhibit cell expansion and decrease leaf growth (Tal and Nevo 1973, Bradford 1983, 

Radin 1983, Nagel et al. 1994, Coleman and Schneider 1996, Mäkelä et al. 2003). Here, high RH 

attenuated the negative effect of ABA-deficiency on tomato RGRSHOOT by improving leaf RWC (Fig. 

2, Table 3). In contrast, Az34 plants had lower RWC than WT barley in 90% RH, but not 60% RH (Fig. 

2), indicating alternative mechanisms of growth regulation than leaf water status. Furthermore, high RH 

attenuated the negative effect of ABA-deficiency on tomato, but not barley RLER (Table 4). Previously, 

leaf growth inhibition of Az34 mutant was not attributed to compromised water relations when grown 

in compacted soil at high RH (Mulholland et al. 1996a, Mulholland et al. 1996b). Indeed, ABA-

deficiency is considered to inhibit shoot growth by non-hydraulic mechanisms (Bradford 1983, Sharp 

et al. 2000) such as enhanced emission of the growth inhibitor ethylene (Sharp et al. 2000; Dodd et al. 

2009), even if RH did not affect ethylene emission of flacca tomato (Arve and Torre 2015). 

Furthermore, leaf water deficits induced by high transpiration rates may affect eudicots more severely 

than monocots, as monocot transpiration and leaf expansion zones are spatially separate (Radin 1983). 



 

Growth in high RH increased NAR, SLA, and thereby LAR of Az34 (Table 3), with almost complete 

phenotypic reversion of these growth components in Az34 (Fig. S2). While high RH significantly 

increased SLA of WT barley, both LAR and RGRSHOOT were unaffected. Thus, barley growth responses 

to high RH were ABA-dependent, with high RH allowing partial recovery from the negative effects of 

ABA-deficiency via a non-hydraulic mechanism. Overall, the effects of ABA-deficiency on tomato, 

but not barley growth seem partially dependent on leaf water status, while high RH effects on growth 

are ABA-independent in tomato, but ABA-dependent in barley. 

 

While flacca and Az34 are both molybdenum cofactor mutants and have similar lesions in the ABA 

biosynthetic pathway, flacca plants retain NR activity (Sagi et al. 1999), yet this is impaired in Az34 

barley (Walker-Simmons et al. 1989). Differences in ABA-dependent responses to relative humidity 

may be related to NR activity, with NR activity playing a crucial role in stomatal movement in response 

to UV-B radiation downstream of ABA responsive genes (Tossi et al. 2014). This same pathway 

indicates the importance of NR in producing NO, which is critical to regulating stomatal movement 

(García-Mata and Lamattina 2003, Cheeseman and Tankou 2005). Furthermore, the Arabidopsis aba3 

MoCo mutants which retain NR activity (Sagi et al. 1999) have a similar stomatal phenotype to flacca, 

with higher stomatal density than WT counterparts (Chater et al. 2015, Jalakas et al. 2018), which was 

not found in Az34 barley. Arabidopsis NR mutants (nia1nia2) are impaired in stomatal closure due to 

alterations in genes of ABA signalling components (Zhao et al. 2016), though they do not have a wilty 

phenotype and close their stomata in response to stimuli such as darkness and H2O2 (Desikan et al. 

2002). Further investigation into the effects of NR impairment and its involvement in ABA responses 

to RH, e.g. by comparing responses of NR and NCED mutants, may help understand the differences 

between flacca and Az34 mutants. 

 

Conclusions 

Although flacca tomato and Az34 barley both have molybdenum cofactor mutations and similar 

phenotypic responses to ABA-deficiency and high RH, these species varied in the mechanisms 

underlying the responses. High RH alleviated the effects of ABA-deficiency on tomato growth, likely 

by increasing leaf water status. However, growth responses to high RH varied with ABA status, 

indicating that high RH responses are ABA-independent in this species. High RH also alleviated the 

effects of ABA-deficiency on barley growth, but independently of leaf water status. Furthermore, lower 

photosynthesis in ABA-deficient barley, likely related to lower Rubisco activity, did not occur in 

tomato. Comparing different species highlights that similar phenotypic responses to ABA deficiency 

do not necessarily indicate similar mechanisms, which may be important to crop improvement efforts 

within a changing climate. 
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Figure legends 

 

Fig. 1. Foliar ABA concentrations in wild-type and ABA-deficient tomato (A) and barley (B) genotypes 

grown in 60% (black bars) or 90% (grey bars) RH in environmentally controlled growth chambers. 

Means ± SE shown, ABA: n = 18 for tomato WT and flacca, n = 3 for barley WT and Az34. Different 

scales used for different genotypes due to the large interspecific difference in ABA content. Different 

letters indicate significant differences between treatments (P < 0.05) as determined by two-way 

ANOVA (insert, G: genotype, RH: RH, G*RH: interaction) and post-hoc Tukey HSD analyses. 

 

Fig. 2. Leaf relative water contents of wild-type (WT) and ABA-deficient tomato (A) and barley (B) 

genotypes grown in 60% (black bars) or 90% (grey bars) RH in environmentally controlled growth 

chambers. Means ± SE shown, n = 12. Different letters indicate significant differences between 

treatments (P < 0.05) determined by two-way ANOVA (insert, G: genotype, RH: RH, G*RH: 

interaction) and post-hoc Tukey HSD analyses. 

 

Fig. 3. Leaf gas exchange of wild-type (WT) and ABA-deficient tomato (A, C, E) and barley (B, D, F) 

genotypes grown in 60% or 90% RH in environmentally controlled growth chambers. Photosynthetic 

assimilation rate (A) plotted against stomatal conductance (A, B) (gs) and internal CO2 concentration 

(Ci); (C, D) along with gs plotted against Ci (E, F). Pearson’s correlation coefficient (r) and statistical 

significance of correlation indicated when significant. Statistical significance: NS, not significant; * P 

< 0.05; ** P < 0.01; *** P < 0.001. 

 

Fig. 4. Whole plant transpiration rates (mmol m-2 s-1) of wild-type (WT) and ABA-deficient tomato (A) 

and barley (B) genotypes grown in 60% or 90% RH in environmentally controlled growth chambers. 

The plants were measured over day (20 h) and night (4 h) periods. Means ± SE, n = 4-5. Different letters 

indicate significant differences between genotypes and RH levels for a given time of day, as determined 

by two-way ANOVA (insert) and post-hoc Tukey HSD analyses (P < 0.05). Black letters indicate day, 

grey letters indicate night. Horizontal brackets indicate significant differences between day and night 

transpiration for each genotype in each treatment. Statistical significance: NS, not significant; * P < 

0.05; ** P < 0.01; *** P < 0.001. Numbers above brackets indicate response index (day/night 

transpiration). 
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Table 1. Species, genotype and mutation description of the ABA-deficient mutants used in this 

experiment. Schematic indicates mutations in the ABA biosynthesis pathway, as well as the 

corresponding Arabidopsis thaliana mutants. Figure adapted from McAdam et al. (2015).

Species Genotype
Mutation 

description

cv. 'Ailsa Craig' Wild typeTomato 

(Solanum 

lycopersicum) flacca MoCo mutation

cv. 'Steptoe' Wild typeBarley 

(Hordeum 

vulgare) Az34 MoCo mutation
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Table 2. Stomatal morphology data from wild-type (WT) and ABA-deficient tomato and barley 

genotypes grown in 60% or 90% RH in environmentally controlled growth chambers. Stomatal 

pore area (µm2) and stomatal counts, and scanning electron micrographs of single stomata 

taken at 7000x magnification. Scale bars = 10 µm. Measurements were taken from scanning 

electron micrographs. Means ± SE shown, as well as main effects (genotype, RH) and 

interaction effects from two-way ANOVA, n = 57-100 for stomatal area, n = 20 for stomata 

counts. Different letters indicate significant differences between treatments (P < 0.05) as 

determined by post-hoc Tukey HSD analyses.

Genotype RH 
(%)

Stomatal 
density (per 
0.14 mm2)

Stomatal area 
(µm2)  Single stomate 7000x mag. 

Tomato     

60 52.05 ± 0.90b 268.0 ± 4.0d  
WT

90 47.25 ± 1.01c 393.3 ± 6.3d  

60 65.40 ± 1.49a 502.4 ± 10.7b  
flacca

90 61.60 ± 1.26a 534.7 ± 12.3a  

P values  

Genotype < 0.001 < 0.001  

RH < 0.001 < 0.001  

Genotype*RH 0.092 < 0.001  

Barley  

60 9.1 ± 0.8a 734.9 ± 25.8b  
WT

90 9.2 ± 0.8a 703.1 ± 16.7b  

60 8.8 ± 0.8a 861.8 ± 37.8a  
Az34

90 10.8 ± 1.1a 575.4 ± 19.4c  

P values  

Genotype 0.459 0.050  

RH 0.235 < 0.001  
Genotype*RH 0.281 < 0.001  
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Table 3. Change (%) in RGRSHOOT and its components in wild-type (WT) and ABA-deficient 

genotypes of tomato and barley genotypes grown in 60% or 90% RH in environmentally 

controlled growth chambers. Values are relative to WT plants and 60% RH respectively. ■ 

indicates significant increase, ■ indicates significant decrease and ■ indicates no significant 

change as determined by two-way ANOVA and post-hoc Tukey analyses, where significance 

was assigned to P < 0.05. 

 Tomato  Barley  Tomato  Barley
flacca vs WT  Az34 vs WT 90% vs 60% RH  90% vs 60% RH

 
60% 
RH

90% 
RH

 
60% 
RH

90% 
RH

 WT flacca  WT Az34

RGRSHOOT 
(g g-1 d-1)

-17 -12 -22 -17 1 8 -4 2

NAR 
(mg cm-2 d-1)

-6 -8 -21 -2 1 -2 -14 7

LAR (cm2 g-1) -14 -4 -40 -2 -8 3 6 73
SLA (cm-2 g-1) -16 -17 -14 -24 -2 -3 40 24
LMR (g g-1) -2 -2  -3 -4  -4 -3  7 6
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Table 4. Morphological parameters measured in wild-type (WT) and ABA-deficient genotypes 

of tomato and barley genotypes grown in 60% or 90% RH in environmentally controlled 

growth chambers. Means ± SE shown, as well as main effects (genotype, RH) and interaction 

effects from two-way ANOVAs. Different letters indicate significant differences between 

genotypes and RH levels for a given time of day, as determined by post-hoc Tukey HSD 

analyses (P < 0.05).

Genotype RH (%) Number of leaves Total leaf area 
(cm2)

RLER            
(g g-1 d-1)

Tomato     
60 17.7 ± 1.1a 875 ± 57a 0.297 ± 0.003a

WT
90 18.0 ± 0.7a 906 ± 84a 0.296 ± 0.002a

60 12.0 ± 0.0b 324 ± 19b 0.237 ± 0.004c
flacca

90 14.5 ± 2.1ab 388 ± 71b 0.261 ± 0.005b

P values     
Genotype 0.004 < 0.001 < 0.001
RH 0.176 0.462 0.003
Genotype*RH  0.549 0.796 0.002
Barley     

60 16.2 ± 2.5a 185 ± 32a 0.173 ± 0.004a
WT

90 15.9 ± 2.2a 194 ± 36a 0.177 ± 0.004a

60 13.1 ± 1.9a 103 ± 12a 0.130 ± 0.003b
Az34

90 11.0 ± 1.4a 107 ± 10a 0.129 ± 0.004b

P values     
Genotype < 0.001 < 0.001 < 0.001
RH 0.246 0.626 0.783
Genotype*RH  0.397 0.819 0.414
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