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Free energies of crystals computed using a center of mass constraint require a finite-size correction, as shown
in previous work by Polson et al. Their reference system is an Einstein crystal with equal spring constants.
In this paper we extend the work of Polson et al. to the case of different spring constants. The generalization
is convenient for constraining the center of mass in crystals with atoms of different masses and it helps to
optimize the free energy calculations. To test the theory we compare the free energies of LiI and NaCl
crystals from calculations with different spring constants to those computed using equal spring constants.
Using these center of mass finite size corrections, we compute the true free energies of these crystals for
different system sizes to eliminate the intrinsic finite-size effects. These calculations help demonstrate the
size of these finite-size corrections relative to other contributions to the absolute free energy of the crystals.

I. INTRODUCTION

Solid phase free energy computations
1–6

are widely

used to predict fluid-solid equilibria,
7–11

solid-solid

equilibria
12

and relative stability of polymorphs.
13,14

The

Frenkel-Ladd method
3

computes the free energy differ-
ence between the solid under consideration and an Ein-
stein crystal, a reference system whose free energy is an-
alytically known. The method uses thermodynamic in-
tegration to transform between the Einstein crystal and
real solid. To supress a weak divergence of the integrand
used in computing the free energy, it is recommended to

fix the center of mass (COM) of the system.
3,8,15,16

To
compute the absolute free energy of the unconstrained
crystal we need to correct for the effect of imposing this
constraint in the calculations. The numerical value of
the free energy correction per atom (or molecule) tends
to zero as the system size tends to infinity, hence it

is a finite-size correction. Polson et al.
15

derived an
O(lnN/N) term in transformation from constrained to
unconstrained crystals as a finite-size correction. Their
calculation is based on an Einstein crystal with fixed cen-
ter of mass and equal spring constants. Note that an

alternate method, the Einstein molecule method,
4,6,17,18

does not require a center of mass constraint or the as-
sociated corrections. However, this paper is aimed at
completing the theory for the Einstein crystal method.

For crystals comprised of atoms with different atomic
masses, different spring constants (in the Einstein crys-
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tal approach
3

) can help to maintain the center of mass
8

constraint (if the molecular dynamics package does not
have built-in features to achieve the same) by choosing
mass-scaled spring constants that equate the angular fre-
quencies. See supplementary material for details. Alter-
natively, different spring constants can help to optimize
the numerical integration to compute the free energy dif-
ference by choosing spring constants that reproduce the
mean-squared displacement (MSD) of atoms in the real

crystal
16

(referred to as MSD-based springs in this arti-
cle).

In this paper, we extend the finite-size corrections of

Polson et al.
15

to the case of different spring constants
in an Einstein crystal. To test the results we compare
the solid free energies of LiI and NaCl crystals from
three calculations: i) mass-scaled springs that exert a
null force on the system and help constrain the COM
without the need of built-in functions to constrain the
COM, ii) MSD-based springs that reproduce the mean-
squared displacement (MSD) of atoms in the real crystal
that help optimize the numerical integration, and iii) cal-
culations with a set of equal springs. A fourth option, not
explored here, is to artificially set all masses and spring
constants to equal values, respectively, and then analyti-
cally recover the free energies for the real masses, e.g. us-
ing equations in Polson et al.15 For the MSD-based and
equal spring sets we make use of the built-in center of
mass constraint features in the molecular dynamics code

LAMMPS
19

. These calculations confirm that the two
procedures (employing different and equal springs) are
equivalent. They also demonstrate the accuracy gained
by the use of spring constants that reproduce the MSD of
atoms in the real crystal along with the relative magni-
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tudes of the finite-size corrections and other contributions
to the absolute free energy of the crystal.

Note that in addition to the finite size correction due to
the COM constraint in the calculations, the free energy
of solids presents an intrinsic system size dependence as

shown by Vega et al.
4

These finite size corrections need
to be computed by repeating the free energy calculations
for several system sizes and extrapolating to infinite size.
This intrinsic finite size effect is also computed for the
LiI and NaCl crystal systems to emphasize the difference
between the two different types of finite size effects enter-
ing the solid free energy calculations., i.e., the one stem-
ming due to the COM constraint in the Einstein crystal
method and the other, the intrinsic finite size effect re-
lated to the cutoff in the phonon spectrum introduced by
the finite lattice size.20

II. THEORY

The free energy (F ) of a real crystal (C) is computed
using the following path:

FEC → FCMEC → FCMC → FC

where CM indicates a center of mass constraint and EC
refers to an Einstein crystal.
Therefore,

FC = FEC+(FCMEC −FEC)+(FCMC −FCMEC )+(FC−FCMC )
(1)

where the absolute free energy of the Einstein crystal can
be obtained from its analytically computable partition
function:

βFEC = − ln (QEC) (2)

and the free energy differences are

β(FCMEC − FEC) = − ln

(
QCMEC
QEC

)
(3a)

β(FCMC − FCMEC ) = β

∫ λ=1

λ=0

〈
dU

dλ

〉CM
λ

dλ (3b)

β(FC − FCMC ) = − ln

(
QC
QCMC

)
(3c)

In each of these formulas, Q is a partition function, β =
(kBT )−1, λ is a coupling parameter, U is a λ-dependent
potential energy function that interpolates between that
of the EC and C systems.

A. Spring Constants and Finite Size Corrections for
Einstein Crystals

When all atoms have a common spring constant
(k), the Helmholtz free energy of a crystal with Nmol

molecules composed of a total of N atoms, is given by

Polson et al.
15

as:

βFC =

N∑
i=1

ln

(
βkΛ2

i

2π

)3/2

+ β

∫ λ=1

λ=0

〈
dU

dλ

〉CM
λ

dλ

− ln

( βk

2π
∑N
i=1 µ

2
i

)3/2(
V

Nmol

)
(4)

where Λi = (βh2/(2πmi))
1/2, h is Planck’s constant, mi

is the mass of atom i, V is the volume of the system,

and µi = mi/
∑N
i=1mi.

We have combined terms in the result as given in Pol-
son et al. so that all arguments of logarithms are dimen-
sionless.

Note that the corresponding equations in ref. [8], for
atoms with different spring constants cannot be com-
bined to give a dimensionless argument to the loga-
rithm. The error introduced in that study, however, was
marginal as the spring constants were similar. Using our
revised result shown in equation (10), the free energy in
Ref. [8] is revised to -97.44 ± 0.02 NmolkBT from -97.75
± 0.02 NmolkBT . Since the estimated errors in the free
energy of the fluid phase were larger (≥ 1 NmolkBT ) than
the introduced error in the Einstein crystal calculation,
the melting point prediction of the study is unaffected,
and indeed has been confirmed by independent density
of states calculations.21 In this work we provide a revised
version of equation (4) for systems where atoms have dif-
ferent spring constants.

Since the part of the finite-size correction involving
spring constants emerges from equation (3a), (see Ap-
pendix A), we derive the configurational partition func-
tion ratio, ZCMEC /ZEC here for an EC with different spring
constants (ki, i = 1, 2, ..., N).

For 1-Dimension (x-direction), the configurational par-
tition function of an Einstein crystal with a COM con-
straint is:

ZCMEC,x =

∫
dxN

N∏
i=1

exp

[
−βki

2
x2i

]
δ

(
N∑
i=1

µixi

)
(5)

Without loss of generality, we are letting all particles be
attached by a spring to a point at the origin. This makes
xi the displacement of atom i in the x-direction from the
tether point (origin here).

We make the following variable transformation:

ξi = k
1/2
i xi (6)

with Jacobian determinant

J =

∣∣∣∣∣
N∏
i=1

k
−1/2
i

∣∣∣∣∣ (7)
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Therefore,

ZCMEC,x =

∫
dξNJ

N∏
i=1

exp

[
−β

2
ξ2i

]
δ

(
N∑
i=1

µi

k
1/2
i

ξi

)

= J

 β

2π
∑N
i=1

µ2
i

ki

1/2
N∏
i=1

(
2π

β

)1/2

=

 β

2π
∑N
i=1

µ2
i

ki

1/2
N∏
i=1

(
2π

βki

)1/2

=

 β

2π
∑N
i=1

µ2
i

ki

1/2

ZEC,x

(8)

where ZEC,x is the integral in equation (5), but without
the center of mass constraint. See supplementary mate-
rial for additional details. The extension to three dimen-
sions just results in three factors of (β/2π

∑
i[µ

2
i /ki])

1/2.

ZCMEC
ZEC

=

 β

2π
∑N
i=1

µ2
i

ki

3/2

(9)

Using equation (9) in place of equation (A.5a) in the
derivation shown in Appendix A, we get

βFC =

N∑
i=1

ln

(
βkiΛ

2
i

2π

)3/2

+ β

∫ λ=1

λ=0

〈
dU

dλ

〉CM
λ

dλ

− ln


 β

2π
∑N
i=1

µ2
i

ki

3/2(
V

Nmol

)
(10)

for an Einstein crystal system with different spring con-
stants.

Equation (10) gives the free energy of a real crys-
tal computed using an EC system constituting different
spring constants. Note that equation (10) is properly di-
mensionless. Moreover, equation (10) collapses to equa-
tion (4) when ki = k, i.e., when all spring constants are
equal.

B. Constraining the center of mass

In molecular dynamics (MD) simulations with stan-
dard force fields, the center of mass can be fixed by be-
ginning with zero total momentum and not adding exter-
nal forces. For the Einstein crystal, the springs do exert
external forces so additional measures are needed.

A simple way to fix the center of mass in a system
with springs begins by making the spring constants pro-
portional to the atom masses, so that all atoms have the

same frquency. When all oscillators have frequency ω,
the center of mass evolves as

xCM (t) = ω−1voCM sin(ωt) + xoCM cos(ωt) (11)

where, voCM is the initial center of mass velocity, and
xoCM is the initial displacemet of the center of mass from
the tether points’ (lattice positions’) center of mass. See
supplementary material for details.

Clearly, we can maintain xCM = 0 by choosing spring
constants proportional to the atom masses, so that all
atoms have the same frquency and setting initial condi-
tions such that voCM = xoCM = 0.

We note that certain MD packages such as LAMMPS
do not need to have a net zero external force on the sys-
tem to constrain the center of mass. This is achieved
by thermostating all degrees of freedom except the cen-
ter of mass and shifting all atom coordinates after every
timestep (equal to the drift in center of mass) to recenter
the system to the initial value of the center of mass. This
recentering does not alter the dynamics of the system or
change the relative coordinates of any pair of atoms.

C. Thermodynamic Integration

To compute the free energy difference between the
crystal of interest and the Einstein crystal, i.e., FCMC −
FCMEC , we use thermodynamic integration (T.I.)

22

with a

linear homotopy
23

U(T, VC ;λ) = (1− λ)UEC(T, VC) + λUC(T, VC) (12)

where U(T, VC ;λ) is the potential energy function and
λ is the coupling parameter. Also, UEC and UC are the
potential energy functions of the Einstein crystal and the
crystal of interest (described by the chosen force field),
respectively. Therefore

FCMC − FCMEC =

∫ λ=1

λ=0

〈
dU

dλ

〉CM
λ

dλ

=

∫ λ=1

λ=0

〈UC − UEC〉CMλ dλ

(13)

where, 〈dU/dλ〉CMλ is evaluated by computing an average
of (UC − UEC) over configurations in the λ state canon-
ical ensemble. Note, for 0 < λ < 1, equation (11) is still
applicable. See supplementary material for details.

III. SIMULATION DETAILS

We model LiI and NaCl using the Joung Cheatham

force field (the version optimized for SPC/E).
24

All MD

simulations were carried out using LAMMPS.
19

The NVT simulations for computing the free ener-
gies were setup using the interionic distances reported by
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Joung et al.
24

, of 3.05 Å, and 2.89 Å for LiI and NaCl, re-
spectively. A super cell measuring 36.6 Å× 36.6 Å× 36.6
Å comprising 864 ion pairs was used for LiI, and a super
cell measuring 34.68 Å × 34.68 Å × 34.68 Å comprising
864 ion pairs was used for NaCl. This is equivalent to 6
× 6 × 6 unit cells for both crystal systems. To compute
the intrinsic finite-size effects, systems comprising 7 × 7
× 7, 8 × 8 × 8, and 9 × 9 × 9 unit cells were used for
both crystals.

The Lorentz-Berthelot mixing rules were used for com-
puting the interatomic pair coefficients. We used a time
step of 1 fs. Nonbonded interactions were cutoff at 1.6
nm, and 1.1 nm for LiI and NaCl, respectively, with
long range electrostatics handled by LAMMPS’ Particle-

Particle-Particle-Mesh (PPPM) summation
25,26

and a
switching function applied for Lennard-Jones interac-
tions between 1.4-1.6 nm, and 0.9-1.1 nm for LiI and
NaCl, respectively.

A 25 point Gauss Legendre quadrature method
27

was
used to evaluate the integral in equation 13. The NVT
simulations were run for a total of 8 ns, of which the
initial 2 ns were used for equilibration and then dis-
carded. Data every 1 ps was used to compute the ther-
modynamic averages for LiI and NaCl systems (the au-
tocorrelation times for 〈dU/dλ〉λ were approximately in
the range of 50 - 400 fs, therefore a 1 ps sampling fre-
quency provides independent samples for each λ state.
See supplementary material for autocorrelation time cal-
culations). The spring constants for the reference Ein-
stein crystals are chosen to reproduce the mean square
displacement of lithium and sodium ions at 300K. For
the different springs case, respective spring constants are
scaled to compute the counter ion’s spring constant such
that ki/mi is constant. Table I reports the numerical
values used in this study.

TABLE I: Masses (a.m.u) & spring constants (kBT/Å2)

LiI NaCl

Li+ I− Na+ Cl−

mass 6.941 126.904 22.990 35.450

ki using mass-scaled springs 35.866 655.749 77.543 119.581

ki using MSD-based springs 35.866 67.121 77.543 85.167

ki using equal springs 35.866 35.866 77.543 77.543

For the MSD-based and equal springs cases, to con-
strain the center of mass in LAMMPS, we use the
temp/com command in conjuction with the langevin
thermostat to thermostat all degrees of freedom except
the center of mass. We use the recenter command to cor-
rect for the drift in the center of mass after every time
step.

IV. RESULTS AND DISCUSSION

For each crystal system (i.e., LiI and NaCl) we com-
pute free energies using mass-scaled, MSD-based and
equal spring constants. Table II shows the dimension-
less Helmholtz free energies per ion pair. All compo-
nents of equation 10 are reported to show the relative
magnitudes of corrections. See supplementary material
for plots of the T.I. integrands. The free energies should
match for the two procedures, i.e., with different and
equivalent springs. As seen in Table II the free ener-
gies computed using different spring constants are in ex-
cellent agreement with the free energies computed using
equivalent spring constants, thereby successfully testing
the theory. Also, the use of MSD-based spring con-
stants optimizes the calculations as can be seen in the
near 24% uncertainty reduction for LiI when compared
to the equal spring case. This is because the MSD of
the Li and I atoms differ significantly as can be seen by
the MSD-based spring constants. In the NaCl calcula-
tions, the MSD of the two atoms are similar, leading
to marginal accuracy gains on using MSD-based springs.
We also compute the free energy of NaCl crystal at 298
K to compare with Aragones et al.6 Our free energy es-
timate at 298 K is −311.0340 ± 0.0002 NmolkBT (using
ΛNa = ΛCl = 1Å), which is in excellent agreement with
their result of −311.10± 0.1 NmolkBT.

As seen in Figures 1 and 2, the solid free energies of
LiI and NaCl demonstrate a significant system size de-
pendence, i.e. the free energy size dependence is greater
than the calculation uncertainty. Tables III and IV show
the accounting of the COM constraint finite size correc-
tion for each system size for LiI and NaCl, respectively.

We use a linear model to capture the intrinsic finite
size effect and predict free energy in the thermodynamic
limit:4

βf(Nmol) = βf(Nmol →∞) +
d1
Nmol

(14)

The value of the slopes (d1) for LiI and NaCl are -13.1
± 0.2, and -14.7 ± 0.2, respectively.

FIG. 1: Intrinsic system-size dependence of LiI crystal’s
free energy
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TABLE II: Absolute dimensionless Helmholtz free energy (βf = βF/Nmol) calculation of LiI and NaCl (per ion
pair) at 300 K. See supplementary material for details of the column headings shown in this table.

Crystal system βfEC β(fCM
EC − fEC)∗ β∆fCM

EC→C β(fC − fCM
C )∗ βfC

LiI
mass-scaled springs

-0.53908 -0.01990 -307.42991 ± 0.00028 -0.00467 -307.99356 ± 0.00028

LiI
MSD-based springs

-3.95800 -0.01603 -304.01438 ± 0.00016 -0.00467 -307.99308 ± 0.00016

LiI
equiv. springs

-4.89807 -0.01494 -303.07519 ± 0.00021 -0.00467 -307.99286 ± 0.00021

NaCl
mass-scaled springs

-1.81876 -0.01772 -317.07633 ± 0.00015 -0.00449 -318.91719 ± 0.00015

NaCl
MSD-based springs

-2.32772 -0.01734 -316.56798 ± 0.00015 -0.00449 -318.91753 ± 0.00015

NaCl
equiv. springs

-2.46850 -0.01723 -316.42744 ± 0.00016 -0.00449 -318.91755 ± 0.00016

TABLE III: Absolute dimensionless Helmholtz free energy (βf = βF/Nmol) calculation of LiI (per ion pair) at 300
K for varying system size using MSD-based springs. See supplementary material for details of the column headings

shown in this table.

Nmol βfEC β(fCM
EC − fEC)∗ β∆fCM

EC→C β(fC − fCM
C )∗ βfC

864 -3.95800 -0.01603 -304.01438 ± 0.00016 -0.00467 -307.99308 ± 0.00016
1372 -3.95800 -0.01060 -304.01569 ± 0.00013 -0.00294 -307.98723 ± 0.00013
2048 -3.95800 -0.00739 -304.01515 ± 0.00010 -0.00197 -307.98251 ± 0.00010
2916 -3.95800 -0.00537 -304.01679 ± 0.00009 -0.00138 -307.98154 ± 0.00009

Nmol →∞ -3.95800 0.00000 -304.01730 ± 0.00021 0.00000 -307.97607 ± 0.00014

TABLE IV: Absolute dimensionless Helmholtz free energy (βf = βF/Nmol) calculation of NaCl (per ion pair) at 300
K for varying system size computed using MSD-based springs. See supplementary material for details of the column

headings shown in this table.

Nmol βfEC β(fCM
EC − fEC)∗ β∆fCM

EC→C β(fC − fCM
C )∗ βfC

864 -2.32772 -0.01734 -316.56798 ± 0.00015 -0.00449 -318.91753 ± 0.00015
1372 -2.32772 -0.01143 -316.56964 ± 0.00012 -0.00283 -318.91162 ± 0.00012
2048 -2.32772 -0.00795 -316.57104 ± 0.00010 -0.00189 -318.90860 ± 0.00010
2916 -2.32772 -0.00576 -316.57206 ± 0.00008 -0.00133 -318.90687 ± 0.00008

Nmol →∞ -2.32772 0.00000 -316.57449 ± 0.00013 0.00000 -318.90223 ± 0.00013

FIG. 2: Intrinsic system-size dependence of NaCl crys-
tal’s free energy

V. CONCLUSIONS

In this paper we extend the work of Polson et al.
15

to
compute free energies of crystals using an Einstein crystal
with fixed center of mass and different spring constants.
For calculations that make use of different spring con-
stants, our result provides a revised equation to be used
in place of equation (3) in ref. [8]. We also provide nec-
essary conditions to help constrain the center of mass in
a molecular dynamics simulations (using MD packages
with no built-in capabilities to do the same) employing
springs to tether atoms. The free energies of LiI and
NaCl crystals computed using different and equal spring
constants are in excellent agreement, thus successfully
testing the theory. Our results also demonstrate a re-
duction in error bars when MSD-based springs are used
to optimize the calculations. The significant system size
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dependence of the solid free energy after applying the
COM-constraint corrections helps demonstrate the rel-
ative magnitudes of the intrinsic and COM-constraint
finite-size corrections relative to other contributions to
the absolute free energy of the crystals.

Appendix A: Revisiting the Finite Size Correction

Derivation
15

1. Computing QCM
EC /QEC :

For an N atom Einstein crystal system with uniform
spring constants (k) and distinguishable particles,

QEC =
1

h3N
ZEC PEC (A.1)

where,

ZEC =

∫
drN

N∏
i=1

exp

[
−βk

2
‖ri‖2

]
=

N∏
i=1

(
2π

βk

)3/2

(A.2a)

PEC =

∫
dpN

N∏
i=1

exp

[
− β

2mi
‖pi‖

2

]
=

N∏
i=1

(
2πmi

β

)3/2

(A.2b)
Similarly,

QCMEC =
1

h3(N−1)
ZCMEC PCMEC (A.3)

Note that in the above equation we have h3(N−1) be-
cause with a hard constraint of a fixed center of mass,
the system “lives in” a 6N − 6 dimensional phase space.
Equation (A.3) differs from a harmonically restrained
system in 6N dimensions, in which case we would still
have h3N .
ZCMEC and PCMEC are

ZCMEC =

∫
drN

N∏
i=1

exp

[
−βk

2
r2i

]
δ

(
N∑
i=1

µiri

)

=

(
βk

2π
∑N
i=1 µ

2
i

)3/2 N∏
i=1

(
2π

βk

)3/2

=

(
βk

2π
∑N
i=1 µ

2
i

)3/2

ZEC

(A.4a)

PCMEC =

∫
dpN

N∏
i=1

exp

[
− β

2mi
p2i

]
δ

(
N∑
i=1

pi

)

=

(
β

2πM

)3/2 N∏
i=1

(
2πmi

β

)3/2

=

(
β

2πM

)3/2

PEC

(A.4b)

where M =
∑N
i=1mi.

Therefore,

ZCMEC
ZEC

=

(
βk

2π
∑N
i=1 µ

2
i

)3/2

(A.5a)

PCMEC
PEC

=

(
β

2πM

)3/2

(A.5b)

Now, using (A.1) and (A.3),

QCMEC
QEC

= h3
(
ZCMEC
ZEC

)(
PCMEC
PEC

)

=

(
βk

2π
∑N
i=1 µ

2
i

)3/2 (
βh2

2πM

)3/2 (A.6)

2. Computing QC/Q
CM
C :

QC =
1

h3N
ZC PC (A.7)

where:

ZC =

∫
drN

N∏
i=1

exp
[
−βU(rN )

]
(A.8a)

PC =

∫
dpN

N∏
i=1

exp

[
− β

2mi
‖pi‖

2

]
=

N∏
i=1

(
2πmi

β

)3/2

(A.8b)

now using equation (13) from Polson et al.
15

,

ZC
ZCMC

=

∫
drN

∏N
i=1 exp

[
−βU(rN )

]∫
drN

∏N
i=1 exp [−βU(rN )] δ

(∑N
i=1 µiri

)
=

1〈
δ
(∑N

i=1 µiri

)〉
=

1
℘(rCM = 0)

=
V

Nmol

(A.9)

Note
15

that ℘(rCM ) is the probability distribution
function of the center of mass. Since, the probability dis-
tribution of the center of mass of the lattice is evenly dis-
tributed over a volume equal to that of the Wigner–Seitz
cell of the lattice positioned at the center of the volume
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over which we carry out the integration in the partition
function. It follows for one molecule per Wigner-Seitz
cell: ℘(rCM = 0) = Nmol/V .

Since PC = PEC we have from equation (A.5b)

PC
PCMC

=

(
β

2πM

)−3/2

(A.10)

Therefore,

QC
QCMC

= h−3

(
ZC
ZCMC

)(
PC
PCMC

)
=

(
V

Nmol

) (
βh2

2πM

)−3/2 (A.11)

3. Free energy of the crystal:

Using equations (A.6) and (A.11), we have

βFC =

N∑
i=1

ln

(
βkΛ2

i

2π

)3/2

− ln

( βk

2π
∑N
i=1 µ

2
i

)3/2 (
βh2

2πM

)3/2


+ β

∫ λ=1

λ=0

〈
dU

dλ

〉
λ

dλ

− ln

[(
V

Nmol

) (
βh2

2πM

)−3/2
]

(A.12a)

βFC =

N∑
i=1

ln

(
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where, Λi = (βh2/(2πmi))
1/2

Note that the log terms in equation (A.12b) have been
combined to give a dimensionless argument to the loga-
rithms.

SUPPLEMENTARY MATERIAL

See supplementary material for details of the column
headings shown in Table II, III, and IV, Mathematica
result of ZCMEC,x, details to ensure zero net external force
due to springs, plots of the T.I. integrands, details of the
error propagation and autocorrelation time results.
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