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Abstract

Bayesian optimisation (BO) is an increasingly popular strategy for optimising functions

with substantial query costs. By sequentially focusing evaluation resources into

promising areas of the search space, BO is able to find reasonable solutions within

heavily restricted evaluation budgets. Consequently, BO has become the de facto

approach for fine-tuning the hyper-parameters of machine learning models and has

had numerous successful applications in industry and across the experimental sciences.

This thesis seeks to increase the scope of information-theoretic BO, a popular class

of search strategies that regularly achieves state-of-the-art optimisation. Unfortunately,

current information-theoretic BO routines require sophisticated approximation schemes

that incur substantially large computational overheads and are, therefore, applicable

only to optimisation problems defined over low-dimensional and Euclidean search

spaces. This thesis proposes information-theoretic approximations that extend the

Max-value Entropy Search of Wang and Jegelka (2017) to a much wider class of

optimisation tasks, including noisy, batch and multi-fidelity optimisation across both

Euclidean and highly-structured discrete spaces. To comprehensively test our proposed

search strategies, we construct novel frameworks for performing BO over the highly-

structured string spaces that arise in synthetic gene design and molecular search

problems, as well as for objective functions with controllable observation noise. Finally,

we demonstrate the real-world applicability of BO as part of a sophisticated machine

learning pipeline for fine-tuning multi-speaker text-to-speech models .
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Chapter 1

Introduction

Countless problems across machine learning, operational research, science and engineer-

ing can be framed as optimisation tasks. Sometimes these problems have properties

that can be exploited to yield efficient optimisation, for example convex objective

functions permit gradient-based methods and some polynomial objective functions

can be tackled by mathematical programming. However, many objective functions do

not have such clear properties, with only weak prior knowledge available about their

structure. Moreover, as these optimisation tasks are plagued by substantial evaluation

costs, most standard optimisation routines are unsuitable as they require many evalua-

tions. Function evaluation costs can be monetary, for example the significant compute

required to fine-tune deep-learning models (Yu and Zhu, 2020), supply-chain simulators

(Pasupathy and Henderson, 2011) and climate models (Hourdin et al., 2017), or evalu-

ating the objective function could require resource and labour-consuming lab tests, for

example when designing molecular structures (MacLeod et al., 2020), gene sequences

(Yu et al., 2013) or aerodynamic profiles (Daniels et al., 2018). This broad class of

so-called “black-box" optimisation problem, typically characterised by expensive and

noisy evaluations, a lack of accessible gradients and high non-convexity, is the focus of

this thesis.

A popular solution to high-cost "black-box" optimisation tasks has arisen in

Bayesian optimisation (Mockus et al., 1978). As an extension of response surface

methods (Hill and Hunter, 1966), Bayesian optimisation uses cheap probabilistic

1
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surrogate models to predict the value of the objective function at previously un-

observed locations. Heuristic search strategies can then be defined to explicitly control

the balance of exploitation and exploration in subsequent evaluations, typically focusing

evaluation resources into areas of the search space with either promising predictions

or where there is high uncertainty.

A particularly intuitive and empirically effective class of search strategies are those

based on information theory (Cover and Thomas, 2012), a powerful framework from

the interface of statistics and theoretical computer science that provides a meaningful

measurement of uncertainty. Information-theoretic arguments are particularly well

suited to Bayesian optimisation (Hennig and Schuler, 2012), as they provide a clear

measure of the utility (the information gained) of making a particular evaluation.

Unfortunately, the application of information-theoretic search strategies in Bayesian

optimisation has been plagued by computational issues, with most existing information-

theoretic search strategies requiring sophisticated and expensive approximation schemes

for even the most simple optimisation tasks. Moreover, information-theoretic strategies

proposed for popular extended Bayesian optimisation frameworks, for example those

exploiting parallel computing resources or low-fidelity evaluations, incur even larger

computational overheads. Therefore, information-theoretic search is currently suitable

only for optimisation problems where function query costs are sufficiently large to

overshadow very significant optimisation overheads. Another important practical

consideration, is that many of the approximations employed in information-theoretic

search rely on exploiting properties specific to continuous and fixed-dimensional search

spaces, a further serious limitation on their applicability. Consequently, information-

theoretic search strategies have yet to be applied for optimisation over non-Euclidean

spaces, as demanded by many of the high-cost optimisation tasks mentioned above.

Motivated by the empirical success of information-theory within the few settings

where it is currently feasible, the goal of this thesis is to provide new information-

theoretic search strategies suitable for a much wider class of Bayesian optimisation

problems. We achieve this by proposing a series of novel information-theoretic ap-

proximation strategies that are simpler, cheaper and require fewer assumptions on the
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properties of the search space than current techniques. We demonstrate, across a wide

range of Bayesian optimisation frameworks including noisy, batch, multi-fidelity and

string optimisation, and across an even wider range of problems, from hyper-parameter

tuning, molecular search, synthetic gene design, reinforcement learning and simula-

tion optimisation, that our computationally light-weight yet high-performing search

strategies improve upon the current state-of-the-art in Bayesian optimisation.

1.1 Thesis Structure

In Chapter 2 we will introduce Bayesian optimisation and give an overview of popular

extensions. In particular, we will focus on multi-fidelity Bayesian optimisation, batch

Bayesian optimisation, and Bayesian optimisation for structured spaces, as these

problems motivate the work contained in the remainder of the thesis. Our main

contributions are presented as Chapters 3 to 7, each of which has either been published

or is currently in submission as a standalone paper. We have included these papers

in their published form, with the only major change being the inclusion of preface

that extends each abstract to summarise how each contribution fits into the wider

narrative of the thesis. We now summarise the main contributions of each of the core

chapters of the thesis.

• In Chapter 3, we present MUMBO, the first computationally light-weight

information-theoretic approach for multi-task and multi-fidelity Bayesian optimi-

sation. Although outperformed by the subsequent work proposed in Chapter 5,

MUMBO provides a comprehensive summary of information-theoretical multi-

fidelity optimisation and helps prepare the reader for the more sophisticated

approximation strategies that appear later in the thesis.

The work in this chapter appeared as: Moss H. B., Leslie D. S. & Rayson

P., MUMBO: MUlti-task Max-value Bayesian Optimisation, The European

Conference on Machine Learning and Principles and Practice of Knowledge

Discovery in Databases, 2020.
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• Chapter 4 describes BOSS, a BO framework for high-cost string design problems.

Our approach builds a powerful surrogate model based on string kernels and

employs genetic algorithms to explore search spaces of strings that follow syntactic

constraints. Although BOSS does not use information-theoretic techniques,

it forms a challenging non-Euclidean test-case for the information-theoretic

approach of Chapter 5.

The work in this chapter appeared as: Moss H. B., Beck D., Leslie D. S., Gonzalez

J. & Rayson P., Bayesian Optimisation over String spaces, The Conference on

Neural Information Processing Systems, 2020.

• Chapter 5 presents the primary contribution of the thesis through General-

purpose Information-Based Bayesian OptisatioN (GIBBON), an information-

theoretic search strategy supporting a range of popular Bayesian optimisation

problems, including noisy, multi-fidelity and batch optimisations in both contin-

uous and highly-structured spaces. Our principled derivation of GIBBON also

provides the first explicit connection between information-theoretic Bayesian

optimisation and probabilistic repulsion models. We investigate GIBBON’s effi-

cacy and generality across a range of tasks including the multi-fidelity problems

introduced in Chapter 3, as well as using GIBBON to provide a batch extension

of the BOSS framework of Chapter 4.

The work in this chapter is in submission for The Journal of Machine Learning

Research.

• When optimising functions with stochastic evaluations, such as parameter tuning

and simulation optimisation, it is common to instead average of a fixed set

of noisy realisations of the objective function, for example when using K-fold

cross validation (Kohavi, 1995) or sample average approximations (Kleywegt

et al., 2002). However, disregarding the true objective function in this manner

finds a high-precision optimum of the wrong function. Chapter 6 considers this

problem and proposes BOSH, a Bayesian optimisation framework that maintains

a growing pool of realisations as the optimisation progresses. BOSH forms a



CHAPTER 1. INTRODUCTION 5

challenging batch and multi-task Bayesian optimisation problem that further

tests the efficacy and generality of our GIBBON search strategy.

A condensed version of the work in this chapter was presented at the Workshop on

Real World Experimental Design and Active Learning during The International

Conference on Machine Learning, 2020.

• Our final chapter considers a practical application of Bayesian optimisation

within Amazon Alexa’s text-to-speech system. Chapter 7 was completed during

an internship at Amazon Research and serves to demonstrate the effectiveness

and applicability of Bayesian optimisation in the real-world.

The work in this chapter appeared as: Moss H. B., Aggarwal V., Prateek N.,

Gonzalez J. & Barra-Chicote R., BOFFIN TTS: Few-shot Speaker Adaptation

by Bayesian Optimisation, The International Conference on Acoustics, Speech

and Signal Processing, 2020.

• Chapter 8 concludes the thesis, summarising the primary contributions and

outlining areas of potential future research.



Chapter 2

Background

2.1 Bayesian Optimisation

A popular solution for the optimisation of high-cost "black-box" functions has arisen

in Bayesian optimisation (BO) (Mockus et al., 1978). Formally, BO seeks to find the

maximiser

x∗ = argmax
x∈X

g(x), (2.1.1)

over a d-dimensional 1 search space X ∈ Rd whilst incurring as few evaluations of the

expensive objective function g as possible. By sequentially deciding where to make

each evaluation as the optimisation progresses, BO can direct resources into evaluating

promising areas of the search space, thus providing highly efficient optimisation. More

precisely, BO’s decisions are governed by two components - a surrogate model and an

acquisition function (as discussed in depth in Sections 2.1.1 and 2.1.2). For now, we

give a high-level overview of BO for a generic choice of surrogate model and acquisition

function.

Suppose that we wish to evaluate the objective function for the n+ 1th time. By

fitting a surrogate model to the n previously collected objective function location-

evaluation tuples Dn = {(xi, yi)}ni=1 (where yi is the potentially noisy evaluation of
1For simplicity, we first focus on fixed-dimensional search spaces in this introduction. Discrete

and highly structured search spaces are introduced at the end of this Section and in Chapter 5.

6



CHAPTER 2. BACKGROUND 7

the objective function at location xi), we can build a probabilistic model for the

objective function that summarises our current belief about which areas of the search

space maximise our objective function. An acquisition function αn : X → R then

uses the surrogate model to predict the utility of evaluating at a particular location

in the search space, producing large values at promising locations. We choose our

next objective function evaluation to be the maximiser of this acquisition function, i.e

selecting

xn+1 = argmax
x∈X

αn(x).

After evaluating g at xn+1, we refit our surrogate model to include the new evaluation

and repeat the whole process until the optimisation budget is exhausted. Figure 2.1.1

illustrates a simple BO loop over four iterations, demonstrating fast convergence to

the true minima. Panel 2.1.1f shows the final allocation of points from this BO loop,

confirming that evaluation resources have been spent effectively.

BO’s ability to find good solutions for "black-box" optimisation problems within

heavily restricted evaluation budgets has lead to its use across a broad range of

settings. One particularly popular application of BO is for tuning machine learning

hyper-parameters (Swersky et al., 2013), for example in computer vision (Bergstra

et al., 2013), natural language processing (Wang et al., 2015), text-to-speech (Moss

et al., 2020a) and reinforcement learning (Chen et al., 2018b). Moreover, BO has also

been used to solve optimisation problems from fields as widespread as gene design

(González et al., 2014; Tanaka and Iwata, 2018; Moss et al., 2020b), molecular search

(Gómez-Bombarelli et al., 2018; Griffiths and Hernández-Lobato, 2020), simulation

optimisation (Kleijnen, 2009), and the design of physical science experiments (Frazier

and Wang, 2016).

We now introduce the key parts of the standard BO framework, before turning to

more sophisticated extended frameworks that are the focus of this thesis.
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(a) Objective function. (b) First BO step.

(c) Second BO step. (d) Third BO step.

(e) Fourth BO step. (f) Final sate.

Figure 2.1.1: A demonstrative BO loop. We wish to efficiently minimise the single-

dimensional Forrester function starting from an initialisation of four randomly selected

objective function evaluations (the green points). Our probabilistic surrogate model

provides predictions for the objective function across the whole search space, yielding

a predictive mean (the dark blue curve) and variance (the light blue regions). Each

BO step evaluates the objective function at the maxima (the dashed vertical red line)

of the acquisition function (the red curve).
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2.1.1 Gaussian Process Surrogate Models

Although many probabilistic models have been used as BO surrogates, including

random forests (Hutter et al., 2011) and neural networks (Snoek et al., 2015), the

most popular choice by far is the Gaussian Process (Rasmussen, 2004a, GP). GPs are

popular for BO for two key reasons. Firstly, unlike other non-parametric probabilistic

models, GPs are hard to over-fit to the small data-sets common in BO as they

require the specification of only a handful of model parameters rather than the many

thousands required for Bayesian deep learning approaches. Secondly, GPs provide

well-calibrated uncertainty estimates which, through convenient analytical expressions,

can be accessed at low-cost by our acquisition functions. Regardless of the exact

choice of surrogate model, the key attribute required by BO is that the surrogate

model provides an accessible Gaussian predictive distributions for g across the whole

search space, i.e it supplies functions µn : X → R and σn(x) : X → R+ such that

g(x)|Dn ∼ N (µn(x), σ2
n(x)). In addition, some acquisition functions (for example, the

information-theoretic approaches presented in this thesis) also require the predictive

co-variances between sets of objective function evaluations. We now show how such a

posterior predictive distribution is provided by GPs.

Loosely speaking, GPs specify a prior over functions, with each sample draw

from the GP corresponding to a particular function over the search space X . The

smoothness of these sample functions is controlled by a choice of kernel function

k : X ×X → R as chosen when specifying the GP. Now, after defining the n×n Gram

matrix Kn = [k(xi,xj)](xi,xj)∈Dn , as well as a vector of observations y = [yi]i=1,..,n, we

can write down the generative model assumed by our GP as

g ∼ N (0,Kn)

y ∼ N (g, σ2I), (2.1.2)

where I is the identity matrix, 0 is a vector of zeros, and g denotes the true values

of our objective function (before contamination by observation noise). Observation

noise is typically modelled to be Gaussian with homoscedastic variance σ2. Although

alternative noise models have been considered, for example hetroscedastic (Kersting
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et al., 2007) or Student-t (Vanhatalo et al., 2009), these alternatives add substantially

to the cost of fitting the GP and typically require more data than available in BO

applications. In the GP formulation (2.1.2), we have assumed a zero mean for the

latent process g(x), however, this can be replaced with an appropriate deterministic

function or statistical model (Rasmussen, 2004a) when additional knowledge about

the objective function’s structure is available.

Crucially for BO, the posterior predictive distribution of a GP is Gaussian with a

closed-form mean and variance. In particular, standard conditioning and marginalisa-

tion properties of Gaussian distributions (see Rasmussen (2004a)) provide a pos-

terior predictive distribution for the objective function at a new location x∗ as

g(x∗)|Dn ∼ N (µn(x∗), σ2
n(x∗)), where

µn(x∗) =kn(x∗)T (Kn + σ2I)−1yn

σ2
n(x∗) =k(x∗,x∗)− kn(x∗)T (Kn + σ2I)−1kn(x∗)

for kn(x∗) = [k(xi,x∗)]xi∈Dn . The inversion of the n× n matrix Kn + σ2I is the major

contribution to the cost of fitting a GP and requires an O(n3) computation. However,

after this one-off cost, accessing the Gaussian posterior predictive distribution requires

only a cheaper O(n2) calculation.

In the generative model (2.1.2) we see that the choice of kernel function specifies

the assumed co-variance structure of the GP. The most popular choices of kernels for

BO are the Radial Basis Function (RBF) kernel and Matérn-5
2
kernels which measure

the similarity between two inputs x and x′ as

kRBF(x,x′) =α exp

(
−||x− x′||2

2`2

)
kMat(x,x′) =α

(
1 +

√
5||x− x′||

`
+

5||x− x′||2

3`2

)
exp

(
−
√

5||x− x′||
`

)
.

The choice of kernel function imposes strong priors on the type of functions that

can be modelled by the GP. For example, the RBF kernel produces functions that

are infinitely differentiable, whereas the Matérn-5
2
’s sample paths are only twice

differentiable (see Figure 2.1.2). Both theses kernels have two parameters ( α and a
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(a) RBF kernel. (b) Matérn-5
2 kernel.

Figure 2.1.2: 10 sample functions drawn from GPs with RBF and Matérn-5
2
kernels.

length-scale `) which, as well the observation noise variance σ2, must be estimated

from the data as they control the scale and variability of the function draws. These

parameters are typically either chosen to maximise the GP’s marginal likelihood or

are sampled as part of a fully Bayesian treatment where the kernel parameters are

allocated their own priors, the later being more expensive but sometimes yielding more

stable models when data is scarce (Snoek et al., 2012). For search spaces with multiple

dimensions, it is common to learn a length-scale for each dimension, allowing the

learning of the relative importance of each dimension — a process known as automatic

relevance determination (Mackay., 1995).

2.1.2 Acquisition functions

Acquisition functions use the predictive distribution of our surrogate model to predict

the utility of making a new evaluation. Various heuristic strategies have been developed

to form BO acquisition functions, including Probability of Improvement (Jones et al.,

1998, PI), Expected Improvement (Jones et al., 1998, EI), Knowledge Gradient (Frazier

et al., 2008, KG), and Upper-Confidence Bound (Srinivas et al., 2009, UCB). More

recently, a new class of acquisition functions has been proposed based on information

theory, including Entropy Search (Hennig and Schuler, 2012, ES), Predictive Entropy

Search (Hernández-Lobato et al., 2014, PES) and Max-value Entropy Search (Wang

and Jegelka, 2017, MES). Figure 2.1.3 presents a range of acquisition functions when
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Figure 2.1.3: Different acquisition functions recommend evaluating different points (as

denoted by vertical lines). For clarity, all acquisition functions are standardised to lie

in [0, 1].

used to perform the first BO step of Figure 2.1.1.

An important practical consideration for acquisition functions is that the efficacy

of BO depends crucially on our ability to quickly and cheaply optimise our acquisition

function across the search space. This maximisation sub-task, as required for each

individual BO step, is henceforth referred to as the inner-loop maximisation. Clearly

this inner-loop must incur an order-of-magnitudes lower computational cost than the

maximisation of the original objective function for BO to be a feasible optimisation

strategy. With this cost in mind, acquisition functions are typically defined to be cheap

to query and, when considering continuous search spaces, to have accessible gradients for

permitting gradient-based inner-loop maximisation. Of the three acquisition functions

presented in Figure 2.1.3, the inner-loop optimisation took less than 0.1 seconds for EI

and PI, but over 15 seconds for ES (a difference that grows as we increase the search

space dimensions). Although information-theoretic search strategies often yield highly

efficient BO (in terms of the number of BO steps required to find high-performing

solutions), the substantial computational overhead limits their application to BO tasks
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with search spaces of low dimensions, or with very large objective function query costs

that can absorb a significant BO overhead. Reducing the cost and improving the

applicability of information-theoretic acquisition functions is the primary focus of this

thesis.

We now investigate the simple PI and EI acquisition functions to gain intuition

about the properties desirable for acquisition functions, before diving deeper into

information-theoretic search strategies.

Probability of Improvement (Jones et al., 1998)

The simplest BO acquisition function is PI, where we seek to evaluate g at the location

that most likely to yield an improvement over the current best observed value y∗n = yn,

i.e. we measure the utility of an evaluation via the utility function

uPI(x) =

1 if g(x) ≥ y∗n,

0 otherwise
.

Of course, we do not yet know the value of g(x) which must be estimated using our

surrogate model. Therefore, the PI acquisition function is defined as the expected

utility

αPI
n (x) =E

[
uPI(x)|Dn

]
=P (g(x) ≥ y∗n|Dn)

=Φ
(
−γy∗n(x)

)
,

where γy(x) = y−µn(x)
σn(x)

and Φ is the Gaussian cumulative density function.

Expected Improvement (Jones et al., 1998)

Although simple to implement, PI can lead to ineffective BO as it is often a very

greedy search strategy, repeatedly querying points very close together rather than

fully exploring the search space (see Figure 2.1.3). To combat this, we turn to the EI

acquisition function, which, rather than caring only if there will be an improvement,
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considers the size of potential improvement through the utility function

uEI(x) =

g(x)− y∗n if g(x) ≥ y∗n,

0 otherwise
.

The EI acquisition function is then given by the expected utility

αEI
n (x) =E

[
uEI(x)|Dn

]
= (µn(x)− y∗n) Φ(−γy∗n(x)) + σn(x)φ(γy∗n(x)), (2.1.3)

where φ is the Gaussian probability density function.

The analytical form of EI (2.1.3) yields an intuitive decomposition that helps

explain why EI can often provide effective BO. In particular, its first term grows

with µn(x) to encourage evaluating locations that we believe have large objective

function values (known as an exploitation strategy) and its second term grows with

σn(x) to encourage evaluating regions of the objective function for which we have high

uncertainty (known as exploration).

2.1.3 Information-theoretic Acquisition Functions

Information-theoretic BO chooses to make its evaluations with the sole aim of reducing

global uncertainty in the location of high-performing areas of the search space. All

information-theoretic acquisition functions are built on the same core idea: measuring

the utility of a potential evaluation as the reduction in uncertainty it yields about

a particular quantity of interest. In information-theory, we measure the uncertainty

of a random variable A through its differential entropy H (see Cover and Thomas,

2012, for an introduction to information theory), as given by H(A) = −E [log pA(a)].

The expected reduction in differential entropy provided by evaluating another related

random variable B is denoted as the mutual information MI(A;B) = H(A) −

H(A|B). Information-theoretic search can then be defined as seeking those evaluations

that provide the maximal mutual information, with differing information-theoretic

search strategies distinguished by the choice of quantity of interest and the employed

approximation methods.
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Input-space Entropy Search (Hennig and Schuler, 2012)

One particularly intuitive search strategy is to choose evaluations that maximally

reduce uncertainty in the input space location of the maxima x∗ = argmaxx∈X g(x),

a random variable with a distribution induced by the surrogate GP. The resulting

acquisition function is known as Entropy Search (Hennig and Schuler, 2012, ES) and

measures the utility of an observation as

αESn (x) = MI(x∗; yx|Dn) = H(x∗|Dn)− Eyx [H(x∗|yx, Dn)|Dn] , (2.1.4)

where yx denotes the yet-unobserved (and potentially noisy) evaluations of the objective

function g at x, as predicted by our GP surrogate model once conditioned on the

previous evaluations Dn.

By exploiting the symmetric property of mutual information (i.e. MI(A;B) =

MI(B;A)), the ES acquisition function can be equivalently rewritten as

αPES(x) = MI(y;x∗|Dn) = H(yx|Dn)− Ex∗ [H(yx|x∗, Dn)|Dn] , (2.1.5)

yielding the Predictive Entropy Search (Hernández-Lobato et al., 2014, PES) acquisition

function. Crucially, the first term of PES is simply the entropy of a multi-variate

Gaussian distribution with a convenient closed-form expression, yielding a practical

implementation advantage over ES.

Unfortunately, neither ES or PES can be computed analytically, primarily due

to lack of closed form expression for the d-dimensional random variables x∗ and

x∗|y in (2.1.4) and x∗ present in (2.1.5). Therefore, these information-theoretic

acquisition functions incur significant computational overheads through expensive

and complicated sampling-based approximations of the differential entropy of these

d-dimensional quantities.

Output-space Entropy Search (Wang and Jegelka, 2017)

In order to provide computationally light-weight information-theoretic acquisition

functions, search strategies that seek to reduce output uncertainty rather than input
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uncertainty have become popular. Unlike ES, PES, which seek to reduce the uncer-

tainty in the d-dimensional quantity x∗, output-space entropy search seeks to reduce

uncertainty in the single dimensional maximum value g∗ = argmaxx∈X g(x). Although

still without closed-form expressions, g∗ is a single dimensional quantity regardless of

the dimensions of the objective function, and so is significantly easier to approximate

than the d-dimensional x∗ whilst still providing a meaningful search strategy (Wang

et al., 2016).

The Max-value Entropy Search (MES) acquisition function of Wang and Jegelka

(2017), with similar formulations considered by Hoffman and Ghahramani (2015) and

Ru et al. (2018), was the first popular output-space acquisition function and can be

formally expressed as

αMES(x) = MI(y; g∗|Dn) = H(yx|Dn)− Eg∗ [H(yx|g∗, Dn)|Dn] . (2.1.6)

As well as inheriting the analytic first term of PES, Wang and Jegelka (2017) note

that, for problems with exact objective function evaluations, yx|g∗ is equivalent to

yx|yx < g∗, i.e a truncated Gaussian distribution which has a closed-form expression

for its differential entropy. Moreover an efficient sampling strategy for g∗ is proposed,

allowing a purely analytical expression for (2.1.6) through a Monte-Carlo approximation

over this sampled set of maximum valuesM, i.e

αMES
n (x) ≈ 1

|M|
∑
m∈M

[
γm(x)φ (γm(x))

2Φ (γm(x))
− log Φ (γm(x))

]
,

where γm(x) = m−µn(x)
σn(x)

, and φ and Φ are the standard Gaussian probability density

and cumulative density functions. Therefore, after sampling a small collection of

maximum values (a process required only once per BO step), MES has a closed form

expression with accessible gradients that permits efficient inner-loop maximisation.

2.2 Extensions

BO has recently been extended to support a broader class of common high-cost

optimisation tasks, including multi-fidelity, batch, constrained and multi-objective BO,
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as-well as for discrete and highly-structured input spaces. Multi-fidelity BO leverages

cheap approximations of the objective function to speed up optimisation, for example

through exploiting coarse resolution simulations when calibrating large climate models

(Prieß et al., 2011) or designing photonic nanostructures (Song et al., 2018). Batch

BO considers scenarios where parallel computing resources can be exploited to allow

multiple objective functions to be queried during each individual BO step, a scenario

arising in science applications where multiple experiments can be ran concurrently, for

example when training a collection of robots to cook (Junge et al., 2020). In contrast,

multi-objective BO tackles problems that require the simultaneous maximisation of

K separate objective functions, examples including building a chemical reactor that

is both efficient and reliable (Park et al., 2018) or designing aerodynamic structures

that perform well across multiple atmospheric conditions (Zuhal et al., 2018). Finally,

constrained BO considers problems where certain areas of the search space cannot be

queried, for example when designing aerofoils that follow certain shape constraints

(Chaitanya and Vellanki, 2020) or designed molecules that follow synthesis-ability

constraints (Griffiths and Hernández-Lobato, 2020). We now delve a little deeper into

the BO extensions considered in this thesis.

2.2.1 Multi-fidelity Bayesian Optimisation

Multi-fidelity BO (also described as multi-task BO by Swersky et al. (2013)) con-

siders problems where instead of querying the objective function g directly, we can

alternatively query a (possibly infinite) collection functions somehow related to g

(henceforth referred to as our fidelity space F). If these alternative functions, as

indexed by s ∈ F , are cheaper to evaluate and we can learn their relationship with

the true objective function, then we can access cheap information sources that can

be used to efficiently maximise g. Common low-fidelity estimates are those providing

biased or noisy estimates of the true objective function and are typically modelled

with multi-fidelity GPs (Kennedy and O’Hagan, 2000; Le Gratiet and Garnier, 2014;

Klein et al., 2017a; Perdikaris et al., 2017; Cutajar et al., 2019). A popular application

of Multi-fidelity BO is in hyper-parameter tuning, where the reliability (in terms of
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(a) Collected observations. (b) Entropy reduction. (c) Entropy reduction per unit

cost.

Figure 2.2.1: Maximising the negative Forrester function with access to two low-fidelity

approximations at 1
2
(red) and 1

5
(green) the cost of querying the true objective.

Although we learn the most from querying the objective function directly (blue), we

can learn more per unit cost by querying the roughest fidelity. This figure is adapted

from Moss et al. (2020d).

bias and noise) of each hyper-parameter evaluation can be dynamically controlled by

choosing the proportion of data used when training models. Successful frameworks

include those of Lam et al. (2015); Klein et al. (2017a); Kandasamy et al. (2016) and

Kandasamy et al. (2017), all of which can reduce the computational cost of tuning

complicated models by orders of magnitude over standard BO.

In practical terms, each step of multi-fidelity BO needs to choose a location-fidelity

pair z = (x, s) ∈ Z = X ×F upon which to collect the (possibly noisy) next evaluation

yz = f(z) + εz, where f(z) is the result of querying parameter x on fidelity s. To

provide resource-efficient optimisation, we must balance how much we expect to learn

about g∗ with the computational cost of the evaluation (see Figure 2.2.1). Therefore,

it is common to use a cost-weighted acquisition function (Swersky et al., 2013; Klein

et al., 2017a; McLeod et al., 2017; Zhang et al., 2017), with the next evaluation chosen

to satisfy

zn+1 = argmax
z∈Z

αn(z)

c(z)
,

where c : Z → R+ measures the cost of evaluating location x on fidelity f. This cost

function could be known a priori or estimated from observed costs following Snoek

et al. (2012). Many of the standard acquisition functions discussed earlier have been
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extended to multi-fidelity BO, for example there exist variants of KG (Poloczek et al.,

2017; Wu et al., 2019), EI (Swersky et al., 2013; Picheny et al., 2013; Lam et al., 2015),

UCB (Kandasamy et al., 2016, 2017), ES (Swersky et al., 2013) and PES (Zhang et al.,

2017).

2.2.2 Batch Bayesian Optimisation

Two distinct scenarios have been considered for batch BO. Firstly, synchronous batch

BO considers problems where B objective function evaluations can be queried in

parallel, yielding their results at the same time. In contrast, asynchronous batch BO

controls a collection of B independent workers that can query the objective function

and return evaluations separately. The primary practical distinction (as summarised

in Figure 2.2.2) is that, while synchronous batch acquisition functions must be able to

measure the utility of jointly evaluating B locations, asynchronous batch BO has to

measure the utility of a making a further single evaluation whilst taking into account

the utility likely to be provided by the B − 1 pending evaluations. Asynchronous

batch BO is useful for scenarios where function queries take varying amounts of

time, for example when performing multi-fidelity optimisation with access to fast

low-fidelity approximations. However, many problems in BO require full synchronous

batch support. Application of synchronous batch BO include all problems where

objective function query times are equal, or even multi-fidelity optimisation tasks

where individual workers do not have sufficient autonomy to be controlled separately.

Much like in multi-fidelity BO, the popular acqusition functions for standard BO

have also been extended to perform batch optimisation, for example EI (Chevalier

and Ginsbourger, 2013; Marmin et al., 2015), UCB (Contal et al., 2013), KG (Wu and

Frazier, 2016), PES (Shah and Ghahramani, 2015). In addition, heuristics for designing

batches have been proposed that can extend any acquisition function to support batches,

the most popular and empirically successful being the Local Penalisation of González

et al. (2016a) and the DPP-based approach of Kathuria et al. (2016). Other approaches

based on Stein methods (Gong et al., 2019) and Thompson sampling (Kandasamy

et al., 2018a) have also been proposed.
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Figure 2.2.2: Synchronous (left panel) and asynchronous (right panel) batch BO under

the capacity for B = 3 workers. Dots denote the return of an evaluation to the

optimiser and the subsequent reallocation of workers is denoted with a vertical dotted

line. Synchronous BO jointly allocates batches of B evaluations, whereas asynchronous

BO must allocate workers individually whilst taking into account the B − 1 pending

evaluations.

2.2.3 Bayesian Optimisation for Structured Search Spaces

Until very recently, the vast majority of BO approaches were designed for low dimen-

sional and mostly continuous search spaces. However, BO for structured optimisation

tasks is a fast growing frontier of the BO literature, with recent work applying BO to

search spaces consisting of strings (Moss et al., 2020b; Swersky et al., 2020), combina-

torial structures (Deshwal et al., 2020) and neural network architectures (Kandasamy

et al., 2018b).

Objective functions in structured design tasks often satisfy a notion of smoothness,

with small perturbations in their structure leading to only small changes in the objective

function value. This smoothness can, in theory, be exploited by BO arguments to

provide efficient optimisation. However, in practice, two practical considerations

prevent the use of standard BO methodology to string optimisation. Firstly, standard

GP models do not support discrete and often variable-length structures as their inputs,

with their kernels requiring fixed-length continuous search spaces and incurring the

curse of dimensionality when used to model high-dimensional spaces (Györfi et al.,

2006). Secondly, devising a BO framework directly over discrete structures raises the

question of how to maximise acquisition functions. Standard BO over Euclidean spaces

uses standard numerical methods to maximise these functions, for example gradient
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and local-search methods. However, these maximisers are not applicable when the

inputs are discrete structures. Moreover, structured search spaces are often heavily

constrained by complex underlying rules that determine the validity of structures they

contain, making inner-loop maximisation even more challenging.

Consequently, many existing applications of BO to structured optimisation rely on

projecting discrete structures into continuous and unconstrained latent spaces of low

and fixed dimension, in which routine BO techniques can be applied. This projection

approach has provided BO routines for designing molecules (Gómez-Bombarelli et al.,

2018; Kusner et al., 2017), molecular graphs (Kajino, 2019), and networks (Zhang et al.,

2019). As-well as adding (sometimes significantly) to the computational overheads of

BO, learning projections that provide meaningful latent representations for the whole

search space can can be very difficult in the low-data scenarios typical of BO, resulting

in routines that exploring only limited regions of the search space.

More recently, BO approaches have been developed that operate directly on raw

discrete structures through building custom Gaussian process kernels and employing

sophisticated discrete optimisers for inner-loop maximisation. Although often providing

more effective exploration of the search space, these direct approaches incur high

inner-loop maximisation costs, for example when using evolutionary algorithms for BO-

based neural network architecture design (Kandasamy et al., 2018b) or mathematical

programming for combinatorial BO (Deshwal et al., 2020).
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MUMBO: MUlti-task Max-value

Bayesian Optimisation

Status: Published as Moss H. B., Leslie D. S. & Rayson P., MUMBO: MUlti-task

Max-value Bayesian Optimisation, The European Conference on Machine Learning

and Principles and Practice of Knowledge Discovery in Databases, 2020.

3.1 Preface

In this chapter we propose MUMBO, the first high-performing yet computationally

efficient acquisition function for multi-task Bayesian optimisation. Here, the challenge

is to perform efficient optimisation by evaluating low-cost functions somehow related

to our true target function. This is a broad class of problems including the popular

task of multi-fidelity optimisation. However, while information-theoretic acquisition

functions are known to provide state-of-the-art Bayesian optimisation, existing im-

plementations for multi-task scenarios have prohibitive computational requirements.

Previous acquisition functions have therefore been suitable only for problems with

both low-dimensional parameter spaces and function query costs sufficiently large to

overshadow very significant optimisation overheads. In this chapter, we derive a novel

multi-task version of entropy search, delivering robust performance with low computa-

tional overheads across classic optimisation challenges and multi-task hyper-parameter

22
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tuning. MUMBO is scalable and efficient, allowing multi-task Bayesian optimisation

to be deployed in problems with rich parameter and fidelity spaces.

3.2 Introduction

The need to efficiently optimise functions is ubiquitous across machine learning,

operational research and computer science. Many such problems have special structures

that can be exploited for efficient optimisation, for example gradient-based methods

on cheap-to-evaluate convex functions, and mathematical programming for heavily

constrained problems. However, many optimisation problems do not have such clear

properties.

Bayesian Optimisation (BO) is a general method to efficiently optimise ‘black-

box’ functions for which we have weak prior knowledge, typically characterised by

expensive and noisy function evaluations, a lack of gradient information, and high

levels of non-convexity (see Shahriari et al. (2016) for a comprehensive review). By

sequentially deciding where to make each evaluation as the optimisation progresses,

BO is able to direct resources into promising areas and so efficiently explore the

search space. In particular, a highly effective and intuitive search is achieved through

information-theoretic BO, where we seek to sequentially reduce our uncertainty

(measured in terms of differential entropy) in the location of the optima with each

successive function evaluation (Hennig and Schuler, 2012; Hernández-Lobato et al.,

2014).

For optimisation problems where we can evaluate low-cost functions somehow

related to our true objective function, Multi-Task (MT) BO (as first introduced by

Swersky et al. (2013)) provides additional efficiency gains. A popular subclass of MT

BO problems is Multi-Fidelity (MF) BO, where the set of related functions can

be meaningfully ordered by their similarity to the objective function. Unfortunately,

performing BO over MT spaces has previously required complicated approximation

schemes that scale poorly with dimension (Swersky et al., 2013; Zhang et al., 2017),

limiting the applicability of information-theoretic arguments to problems with both low-
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dimensional parameter spaces and function query costs sufficiently large to overshadow

very significant optimisation overheads. Therefore, MT BO has so far been restricted

to considering simple structures at a large computational cost. Despite this restriction,

MT optimisation has wide-spread use across physical experiments (Nguyen et al., 2013;

Zheng et al., 2013; Pilania et al., 2017), environmental modelling (Prieß et al., 2011),

and operational research (Huang et al., 2006; Xu et al., 2016; Yong et al., 2019).

For expositional simplicity, this chapter focuses primarily on examples inspired by

tuning the hyper-parameters of machine learning models. Such problems have large

environmental impact (Strubell et al., 2019), requiring multiple days of computation

to collect even a single (often highly noisy) performance estimate. Consequently, these

problems have been proven a popular and empirically successful application of BO

(Snoek et al., 2012). MF applications for hyper-parameter tuning dynamically control

the reliability (in terms of bias and noise) of each hyper-parameter evaluation (Kennedy

and O’Hagan, 2000; Lam et al., 2015; Klein et al., 2017a; Kandasamy et al., 2016,

2017) and can reduce the computational cost of tuning complicated models by orders

of magnitude over standard BO. Orthogonal savings arise from considering hyper-

parameter tuning in another MT framework; FASTCV (Swersky et al., 2013) recasts

tuning by K-fold cross-validation (CV) (Kohavi, 1995) into the task of simultaneously

optimising the K different evaluations making a single K-fold CV estimate.

Information-theoretic arguments are particularly well suited to such MT problems

as they provide a clear measure of the utility (the information gained) of making

an evaluation on a particular sub-task. This utility then can be balanced with

computational cost, providing a single principled decision (Swersky et al., 2013; Klein

et al., 2017a; McLeod et al., 2017; Zhang et al., 2017). Despite MT BO being a large

sub-field in its own right, there exist only a few alternatives to information-theoretic

acquisition functions. Alternative search strategies include extensions of standard BO

acquisition functions, including knowledge gradient (KG) (Poloczek et al., 2017; Wu

et al., 2019), expected improvement (EI) (Swersky et al., 2013; Picheny et al., 2013;

Lam et al., 2015), and upper-confidence bound (UCB) (Kandasamy et al., 2016, 2017).

KG achieves efficient optimisation but incurs a high computational overhead. The MT
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extensions of EI and UCB, although computationally cheap, lack a clear notion of

utility and consequently rely on two-stage heuristics, where a hyper-parameter followed

by a task are chosen as two separate decisions. Moreover, unlike our proposed work,

the performance of MT variants of UCB and EI depends sensitively on problem-specific

parameters which require careful tuning, often leading to poor performance in practical

tasks. Information-theoretic arguments have produced the MF BO hyper-parameter

tuner FABOLAS (Klein et al., 2017a), out-competing approaches across richer fidelity

spaces based on less-principled acquisitions (Kandasamy et al., 2017). This success

motivates our work to provide scalable entropy reduction over MT structures.

We propose MUMBO, a novel, scalable and computationally light implementation

of information-theoretic BO for general MT frameworks. Inspired by the work of Wang

and Jegelka (2017), we seek reductions in our uncertainty in the value of the objective

function at its optima (a single-dimensional quantity) rather than our uncertainty in the

location of the optima itself (a random variable with the same dimension as our search

space). MUMBO enjoys three major advantages over current information-theoretic

MT approaches:

• MUMBO has a simple and scalable formulation requiring routine one-dimensional

approximate integration, irrespective of the search space dimensions,

• MUMBO is designed for general MT and MF BO problems across both continuous

and discrete fidelity spaces,

• MUMBO outperforms current information-theoretic MT BO with a significantly

reduced computational cost.

Parallel work (Takeno et al., 2019) presents essentially the same acquisition function

but restricted to discrete multi-fidelity problems from the material sciences. Our

chapter provides a different derivation and general presentation of the method which

enables deployment with both discrete and continuous fidelity spaces in general MT

BO (including MF).
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(a) Collected Observations (b) Information gain (c) Gain per unit cost

Figure 3.3.1: Seeking the minimum of the 1D Forrester function (blue) with access to

two low-fidelity approximations at 1
2
(red) and 1

5
(green) the cost of querying the true

objective. Although we learn the most from directly querying the objective function,

we can learn more per unit cost by querying the roughest fidelity.

3.3 Problem Statement and Background

We now formalise the goal of MT BO, introducing the notation used throughout this

work. The goal of BO is to find the maximiser

x∗ = argmax
x∈X

g(x) (3.3.1)

of a function g over a d-dimensional set of feasible choices X ⊂ Rd spending as little

computation on function evaluations as possible.

Standard BO seeks to solve (3.3.1) by sequentially collecting noisy observations of

g. By fitting a Gaussian process (GP) (Rasmussen, 2004a), a non-parametric model

providing regression over all functions of a given smoothness (to be controlled by a

choice of kernel k), we are able to quantify our current belief about which areas of the

search space maximise our objective function. An acquisition function αn(x) : X → R

uses this belief to predict the utility of making any given evaluation, producing large

values at ‘reasonable’ locations. A standard acquisition function (Hennig and Schuler,

2012) is the expected amount of information provided by each evaluation about the

location of the maximum. Therefore after making n evaluations, BO will automatically

next evaluate xn+1 = argmaxx∈X αn(x).
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3.3.1 Multi-task Bayesian Optimisation

Suppose that instead of querying g directly, we can alternatively query a (possibly

infinite) collection of related functions indexed by z ∈ Z (henceforth referred to as

our fidelity space). We then collect the (noisy) observations Dn = {(xt, zt, yt)} for

yt = f(xt, zt)+ εt, where f(x, z) is the result of querying parameter x on fidelity z, and

εt is Gaussian noise. If these alternative functions f are cheaper to evaluate and we

can learn their relationship with g, then we have access to cheap sources of information

that can be used to help find the maximiser of the true task of interest.

3.3.2 Multi-task acquisition functions

The key difference between standard BO and MT BO is that our acquisition function

must be able to not only choose the next location, but also which fidelity to evaluate,

balancing computational cost with how much we expect to learn about the maximum

of g. Therefore, we require an extended acquisition function αn : X × Z → R and a

cost function c : X ×Z → R+, measuring the utility and cost of evaluating location x

at fidelity z (as demonstrated in Figure 3.3.1c). In Section 3.5, we consider problems

both where this cost function is known a priori and where it is unknown but estimated

using an extra GP (Snoek et al., 2012). In this work, we seek to make the evaluation

that provides the largest information gain per unit cost, i.e. maximising the ratio

(xn+1, zn+1) = argmax
(x,z)∈X×Z

αn(x, z)

c(x, z)
. (3.3.2)

3.3.3 Multi-task models

To perform MT BO, our underlying Gaussian process model must be extended across

the fidelity space. By defining a kernel over X×Z, we can learn predictive distributions

after n observations with means µn(x, z) and co-variances Σn((x, z), (x′, z′)) from which

αn(x, z) can be calculated. Although increasing the dimension of the kernel for X

to incorporate Z provides a very flexible model, it is argued by Kandasamy et al.

(2017) that overly flexible models can harm optimisation speed by requiring too much

learning, restricting the sharing of information across the fidelity space. Therefore, it
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is common to use more restrictive separable kernels that better model specific aspects

of the given problem.

A common kernel for discrete fidelity spaces is the intrinsic coregionalisation kernel

of Bonilla et al. (2008) (as used in Figure 3.3.1). This kernel defines a co-variance

between hyper-parameter and fidelity pairs of

k((x, z), (x′, z′)) = kX (x,x′)×B(z, z′), (3.3.3)

for a base kernel kX and a positive semi-definite |Z| × |Z| matrix B (set by maximis-

ing the model likelihood alongside the other kernel parameters). B represents the

correlation between different fidelities, allowing the sharing of information across the

fidelity space. See Section 3.5 for additional standard MF kernels.

3.3.4 Information-theoretic MT BO

Existing methods for information-theoretic MT BO seek to maximally reduce our

uncertainty in the location of the maximiser x∗ = argmaxx∈X g(x). Following the

work of Hennig and Schuler (2012), uncertainty in the value of x∗ is measured as its

differential entropy H(x∗) = −Ex∼px∗ (log px∗(x)), where px∗ is the probability density

function of x∗ according to our current GP model. For MT optimisation, we require

knowledge of the amount of information provided about the location of x∗ from making

an evaluation at x on fidelity z, measured as the mutual information

MI(y(x, z);x∗|Dn) = H(x∗|Dn)− Ey [H(x∗|y(x, z), Dn)]

between an evaluation y(x, z) = f(x, z) + ε and x∗, where the expectation is over

p(y(x, z)|Dn) (see Cover and Thomas (2012) for an introduction to information theory).

Successively evaluating the parameter-fidelity pair that provides the largest in-

formation gain per unit of evaluation cost provides the entropy search acquisition

function used by Swersky et al. (2013) and Klein et al. (2017a), henceforth referred

to as the MTBO acquisition function. Unfortunately, the calculation of MTBO relies

on sampling-based approximations to the non-analytic distribution of x∗ |Dn. Such

approximations scale poorly in both cost and performance with the dimensions of our
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search space (as demonstrated in Section 3.5). A modest computational saving can

be made for standard BO problems by exploiting the symmetric property of mutual

information, producing the predictive entropy search (PES) of Hernández-Lobato et al.

(2014). However, PES still requires approximations of x∗ |Dn and it is unclear how to

extend this approach across MT frameworks.

3.4 MUMBO

In this work, we extend the computationally efficient information-theoretic acquisition

function of Wang and Jegelka (2017) to MT BO. With their max-value entropy-

search acquisition function (MES), they demonstrate that seeking to reduce our

uncertainty in the value of g∗ = g(x∗) provides an equally effective search strategy as

directly minimising the uncertainty in the location x∗, but with significantly reduced

computation. Similarly, MUMBO seeks to compute the information gain

αMUMBO
n (x, z) =MI (y(x, z); g∗|Dn)

=H(y(x, z) |Dn)− Eg∗[H(y(x, z) | g∗, Dn)] , (3.4.1)

which can then be combined with the evaluation cost c(x, z) (following (3.3.2)). Here

the expectation is over our current uncertainty in the value of g∗|Dn.

3.4.1 Calculation of MUMBO

Although extending MES to MT scenarios retains the intuitive formulation and the

subsequent principled decision-making of the original MES, we require a novel non-

trivial calculation method to maintain its computational efficiency for MT BO. We

now propose a strategy for calculating the MUMBO acquisition function that requires

the approximation of only single-dimensional integrals irrespective of the dimensions

of our search space.

The calculation of our MUMBO acquisition function (3.4.1) for arbitrary x and z

must be efficient as each iteration of BO requires a full maximisation of (3.4.1) over x

and z (i.e 3.3.2). For ease of notation we drop the dependence on x and z, so that
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g denotes the target function value at x, f denotes the evaluation of x at fidelity

z, and y denotes the (noisy) observed value of f(x, z). Since BO fits a Gaussian

process to the underlying functions, our assumptions about g and y imply that their

joint predictive distribution is a bivariate Gaussian; with expectation, variance and

correlation derived from our GP (as shown in Appendix A.1) and denoted by (µg, µf ),

(σ2
g , σ

2
f + σ2) and ρ respectively. These values summarise our current uncertainty in g

and f and how useful making an evaluation y will be for learning about g. Note that

access to this simple two-dimensional predictive distribution is all that is needed to

calculate MUMBO (3.4.1).

The first term of (3.4.1) is the differential entropy of a Gaussian distribution and

so can be calculated analytically as 1
2

log(2πe(σ2
f + σ2)). The second term of (3.4.1)

is an expectation over the maximum value of the true objective g∗, which can be

approximated using a Monte Carlo approach; we use Wang and Jegelka (2017)’s

method to approximately sample a set of N samples G = {g1, . . . , gN} from g∗ |Dn,

using a mean-field approximation and extreme value theory.

It remains to calculate the quantity inside the expectation for a given value of

g∗. The equivalent quantity in the original MES (without fidelity considerations)

was analytically tractable, but we show that for MUMBO this term is intractable.

In particular, we show that y | g < g∗ follows an extended-skew Gaussian (ESG)

distribution (Azzalini, 1985; Arnold et al., 1993) in Appendix A.1. Unfortunately,

Arellano-Valle et al. (2013) have shown that there is no analytical form for the

differential entropy of an ESG. Therefore, after manipulations presented also in

Appendix A.1 and reintroducing dependence on x and z, we re-express (3.4.1) as

αMUMBO
n (x, z) =

1

N

∑
g∗∈G

[
ρ(x, z)2γg∗(x)φ(γg∗(x))

2Φ(γg∗(x))
− log(Φ(γg∗(x)))

+ Eθ∼Zg∗ (x,z)

[
log
(

Φ
{γg∗(x)− ρ(x, z)θ√

1− ρ2(x, z)

})]]
, (3.4.2)

where Φ and φ are the standard normal cumulative distribution and probability density

functions, γg∗(x) = g∗−µg(x)

σg(x)
and Zg∗(x, z) is an ESG (with probability density function

provided in Appendix A.1).
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Expression (3.4.2) is analytical except for the final term, which must be approxi-

mated for each of the N samples of g∗ making up the Monte Carlo estimate. Crucially,

this is just a single-dimensional integral of an analytic expression and, hence, can be

quickly and accurately approximated using standard numerical integration techniques.

We present MUMBO within a BO loop as Algorithm 1.

Algorithm 1 MUlti-fidelity and MUlti-task Max-value Bayesian Optimisation
1: function MUMBO(budget B, N samples of g∗)

2: Initialise n← 0, b← 0

3: Collect initial design D0

4: while b < B do

5: Begin new iteration n← n+ 1

6: Fit GP to the collected observations Dn−1

7: Simulate N samples of g∗|Dn−1

8: Prepare αMUMBO
n−1 (x, z) as given by Eq. (3.4.2)

9: Find the next point and fidelity to query (xn, zn)← argmax(x,z)
αMUMBO
n−1 (x,z)

c(x,z)

10: Collect the new evaluation yn ← f(xn, zn) + εn, εn ∼ N(0, σ2)

11: Append new evaluation to observation set Dn ← Dn−1

⋃
{(xn, zn), yn}

12: Update spent budget b← b+ c(xn, zn)

13: return Believed optimum across {x1, ..,xn}

3.4.2 Interpretation of MUMBO

We provide intuition for (3.4.2) by relating MUMBO to an established BO acquisition

function. In the formulation of MUMBO (3.4.2), we see that for a fixed parameter

choice x (and ignoring evaluation costs) this acquisition is maximised by choosing the

fidelity z that provides the largest |ρ(x, z)|, meaning that the stronger the correlation

(either negatively or positively) the more we can learn about the true objective. In

fact, if we find a fidelity z∗ that provides evaluations that agree completely with g,
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then we would have ρ(x, z∗) = 1 and (3.4.2) would collapse to

αn(x, z∗) =
1

N

∑
g∗∈G

[
γg∗(x)φ(γg∗(x))

2Φ(γg∗(x))
− log(Φ(γg∗(x)))

]
.

This is exactly the same expression presented by Wang and Jegelka (2017) in the

original implementation of MES, appropriate for standard BO problems where we can

only query the function we wish to optimise.

3.4.3 Computational Cost of MUMBO

The computational complexity of any BO routine is hard to measure exactly, due to

the acquisition maximisation (3.3.2) required before each function query. However, the

main contributor to computational costs are the resources required for each calculation

of the acquisition function with respect to problem dimension d and the N samples of

g∗. Each prediction from our GP model costs O(d), and single-dimensional numerical

integration over a fixed grid is O(1). Therefore, a single evaluation of MUMBO can be

regarded as an O(Nd) operation. Moreover, as MUMBO relies on the approximation

of a single-dimensional integral, we do not require an increase in N to maintain

performance as the problem dimension d increases (as demonstrated in Section 3.5) and

so MUMBO scales linearly with problem dimension. In contrast, the MT BO acquisition

used by Swersky et al. (2013) and Klein et al. (2017a) for information-theoretic MT

BO relies on sampling-based approximations of d-dimensional distributions, therefore

requiring exponentially increasing sample sizes to maintain performance as dimension

increases, rendering them unsuitable for even moderately-sized BO problems. In

addition, we note that these current approaches require expensive sub-routines and

the calculation of derivative information, making their computational cost for even

small d much larger than that of MUMBO.

3.5 Experiments

We now demonstrate the performance of MUMBO across a range of MT scenarios,

showing that MUMBO provides superior optimisation to all existing approaches, with
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a significantly reduced computational overhead compared to current state-of-the-art.

As is common in the optimisation literature, we first consider synthetic benchmark

functions in a discrete MF setting. Next, we extend the challenging continuous MF

hyper-parameter tuning framework of FABOLAS and use MUMBO to provide a novel

information-theoretic implementation of the MT hyper-parameter tuning framework

FASTCV, demonstrating that the performance of this simple MT model can be

improved using our proposed fully-principled acquisition function. Finally, we use

additional synthetic benchmarks to compare MUMBO against a wider range of existing

MT BO acquisition functions.

Alongside the theoretical arguments of this paper, we also provide a software

contribution to the BO community of a flexible implementation of MUMBO with

support for Emukit (Paleyes et al., 2019). We use a DIRECT optimiser (Jones et al.,

1993) for the acquisition maximisation at each BO step and calculate the single-

dimensional integral in our acquisition (3.4.2) using Simpson’s rule over appropriate

ranges (from the known expressions of an ESG’s mean and variance derived in Appendix

A.1.1).

3.5.1 General Experimental Details

Overall, the purpose of our experiments is to demonstrate how MUMBO compares to

other acquisition functions when plugged into a set of existing MT problems, focusing

on providing a direct comparison with the existing state-of-the-art in information-

theoretic MT BO used by Swersky et al. (2013) and Klein et al. (2017a) (which we

name MTBO). Our main experiments also include the performance of popular low-cost

MT acquisition functions MF-GP-UCB (Kandasamy et al., 2016) and MT expected

improvement (Swersky et al., 2013). In Section 3.5.5 we expand our comparison to

include a wider range of existing BO routines, chosen to reflect popularity and code

availability. We include the MF knowledge gradient (MISO-KG)(Poloczek et al., 2017)1,

an acquisition function with significantly larger computational overheads than MUMBO

(and MTBO), as-well as the low-cost acquisition functions of BOCA (Kandasamy
1As implemented by the original authors at https://github.com/misokg/NIPS2017
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et al., 2017) and MF-SKO (Huang et al., 2006). Due to a lack of provided code,

and the complexity of their proposed implementations, we were unable to implement

multi-fidelity extensions of PES (McLeod et al., 2017; Zhang et al., 2017) or the

variant of knowledge-gradient for continuous fidelity spaces (Wu et al., 2019). As both

PES and knowledge gradient require approximations of quantities with dimensionality

equal to the search space, their MT extensions will suffer the same scalability issue

as MTBO (and MISO-KG). Finally, to demonstrate the benefit of considering MT

frameworks, we also present the standard BO approaches of expected improvement

(EI) and max-value entropy search (MES) which query only the true objective.

To test the robustness of the information-theoretic acquisitions we vary the number

of Monte Carlo samples N used for both MUMBO and MTBO (denoted as MUMBO-

N and MTBO-N). We report both the time taken to choose the next location to

query (referred to as the optimisation overhead) and the performance of the believed

objective function optimiser (the incumbent) as the optimisation progresses. For our

synthetic examples, we measure performance after n evaluations as the simple regret

Rn = g(x∗) − g(x̂n), representing the sub-optimality of the current incumbent x̂n.

Experiments reporting wall-clock timings were performed on single core Intel Xeon

2.30GHz processors. Detailed implementation details are provided in Appendix A.2.

3.5.2 Discrete Multi-fidelity BO

First, we consider the optimisation of synthetic problems, using the intrinsic core-

gionalization kernel introduced earlier (3.3.3). Figure 3.5.1 demonstrates the superior

performance and light computational overhead of MUMBO across these test functions

when we have access to continuous or discrete collections of cheap low-fidelity functions

at lower query costs. Although MTBO and MUMBO initially provide comparable

levels of optimisation, MUMBO quickly provides optimisation with substantially higher

precision than MTBO and MF-GP-UCB. We delve deeper into the low performance

of MF-GP-UCB in Appendix A.2.1. In addition, MUMBO is able to provide high-

precision optimisation even when based on a single sample of g∗, whereas MTBO

requires 50 samples for reasonable performance on the 2D optimisation task, struggles
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(a) Maximisation of the 2D Currin function

(2 fidelity levels).

(b) Minimisation of 3D Hartmann function

(3 fidelity levels).

(c) Minimisation of 6D Hartmann function

(4 fidelity levels).

(d) Maximisation of the 8D Borehole function

(2 fidelity levels).

Figure 3.5.1: MUMBO provides high-precision optimisation with low computational

overheads for discrete MF optimisation. We show the means and standard errors

across 20 random initialisations.

on the 6D task even when based on 200 samples (requiring 20 times the overhead

cost of MUMBO), and proved computationally infeasible to provide reasonable 8D

optimisation (and is therefore not included in Figure 3.5.1d).

Note that MUMBO based on a single sample of g∗ is a more aggressive optimiser,

as we only consider a single (highly-likely) max-value. Although less robust than

MUMBO-10 on average across our examples, this aggressive behaviour can allow faster

optimisation, but only for certain problems (Figure 3.5.1(c)).

3.5.3 Continuous Multi-fidelity BO: FABOLAS

FABOLAS (Klein et al., 2017a) is a MF framework for tuning the hyper-parameter of

machine learning models whilst dynamically controlling the proportion of available data
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z ∈ (0, 1] used for each hyper-parameter evaluation. By using the MTBO acquisition

and imposing strong assumptions on the structure of the fidelity space, FABOLAS is

able to achieve highly efficient hyper-parameter tuning. The use of a ‘degenerate’ kernel

(Rasmussen, 2004a) with basis function φ(z) = (z, (1− z)2)T (i.e performing Bayesian

linear regression over this basis) enforces monotonicity and strong smoothness across

the fidelity space, acknowledging that when using more computational resources, we

expect less biased and less noisy estimates of model performance. These assumptions

induce a product kernel over the whole space X × Z of:

k((x, z), (x′, z′)) = kX (x,x′)(φ(z)TΣ1φ(z′)),

where Σ1 is a matrix in R2×2 to be estimated alongside the parameters of kX . Similarly,

evaluation costs are also modelled in log space, with a GP over the basis φc(z) = (1, z)T

providing polynomial computational complexity of arbitrary degree. We follow the orig-

inal FABOLAS implementation exactly, using MCMC to marginalise kernel parameters

over hyper-priors specifically chosen to speed up and stabilise the optimisation.

In Figure 3.5.2 we replace the MTBO acquisition used within FABOLAS with a

MUMBO acquisition, demonstrating improved optimisation on two examples from

(Klein et al., 2017a). As the goal of MF hyper-parameter tuning is to find high-

performing hyper-parameter configurations after using as few computational resources

as possible, including both the fitting of models and calculating the next hyper-

parameter and fidelity to query, we present incumbent test error (calculated offline

after the full optimisation) against wall-clock time. Note that the entire time span

considered for our MNIST example is still less than required to try just four hyper-

parameter evaluations on the whole data and so we cannot include standard BO

approaches in these figures. MUMBO’s significantly reduced computational overhead

allows twice as many hyper-parameter evaluations as MTBO for the same wall clock

time, even though MUMBO consistently queries larger proportions of the data (on

average 30% rather than 20% by MTBO). Moreover, unlike MTBO, with an overhead

that increases as the optimisation progresses, MUMBO remains computationally

light-weight throughout and has substantially less variability in the performance of
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(a) Tuning C and gamma for an

SVM to minimise MNIST digit clas-

sification error.

(b) Tuning C and gamma for an SVM

to minimise Vehicle Registration clas-

sification error.

Figure 3.5.2: MUMBO provides MF hyper-parameter tuning with a much lower

overhead than FABOLAS. We show the means and standard errors based on 5 runs.

the chosen hyper-parameter configuration. While we do not compare FABOLAS

against other hyper-parameter tuning methods, we have demonstrated that, for this

well-respected tuner and complicated MF BO problem, that MUMBO provides an

improvement in efficiency and a substantial reduction in computational cost.

3.5.4 Multi-task BO: FASTCV

We now consider the MT framework of FASTCV (Swersky et al., 2013). Here, we

seek the simultaneous optimisation of the K performance estimates making up K-fold

CV. Therefore, our objective function g is the average score across a categorical

fidelity space Z = {1, .., K}. Each hyper-parameter is evaluated on a single fold,

with the corresponding evaluations on the remaining folds inferred using the learned

between-fold relationship. Therefore, we can evaluate K times as many distinct hyper-

parameter choices as when tuning with full K-fold CV whilst retaining the precise

performance estimates required for reliable tuning (Moss et al., 2018, 2019).

Unlike our other examples, this is not a MF BO problem as our fidelities have the

same query cost (at 1/Kth the cost of the true objective). Recall that all we require

to use MUMBO is the predictive joint (bi-variate Gaussian) distribution between

an objective function g(x) and fidelity evaluations f(x, z) for each choice of x. For
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FASTCV, g corresponds with the average score across folds and so (following our

earlier notation) our underlying GP provides;

µg(x) =
1

K

∑
z∈Z

µn(x, z), σg(x)2 =
1

K2

∑
z∈Z

∑
z′∈Z

Σn((x, z), (x, z′)),

where µn(x, z) is the predictive mean performance of x on fold z and Σn((x, z), (x, z′))

is the predictive co-variance between the evaluations of x on folds z and z′ after n

hyper-parameter queries. Similarly, we have the correlation between evaluations of x

on fold z with the average score g as

ρ(x, z) =
1
K

∑
z′∈Z Σn((x, z), (x, z′))√

σ2
g(x)Σn((x, z), (x, z))

,

providing all the quantities required to use MUMBO.

(a) Tuning two SVM hyper-

parameters to maximise sentiment

classification accuracy for IMDB

movie reviews by 10-fold CV.

(b) Tuning four hyper-parameters for

probabilistic matrix factorisation to

minimise mean reconstruction error

for movie recommendations using 5-

fold CV.

Figure 3.5.3: MUMBO provides faster hyper-parameter tuning than the MT framework

of FASTCV. We show the mean and standard errors across 40 runs. To measure

total computational cost we count each evaluation by K-fold CV as K model fits.

Experimental details are included in Appendix A.2.3.

In the original implementation of FASTCV, successive hyper-parameter evaluations

are chosen using a two-step heuristic based on expected improvement. Firstly they

choose the next hyper-parameter x by maximising the expected improvement of the
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Figure 3.5.4: The 2D noisy Rosen-

brock function (2 fidelities).

Figure 3.5.5: The 2-d Currin

function (1-d continuous fidelity

space)

predicted average performance and secondly choosing the fold that has the largest fold-

specific expected improvement at this chosen hyper-parameter. We instead propose

using MUMBO to provide a principled information-theoretic extension to FASTCV.

Figure 3.5.3 demonstrates that MUMBO provides an efficiency gain over FASTCV,

while finding high-performing hyper-parameters substantially faster than standard

BO tuning by K-fold CV (where we require K model evaluations for each unique

hyper-parameter query.

3.5.5 Wider Comparison With Existing Methods

Finally, we make additional comparisons with existing MT acquisition functions in

Figures 3.5.4 and 3.5.5. Knowledge-gradient search strategies are designed to provide

particularly efficient optimisation for noisy functions, however this high performance

comes with significant computational overheads. Although providing reasonable early

performance on a synthetic noisy MF optimisation task (Figure 3.5.4), we see that

MUMBO is able to provide higher-precision optimisation and that, even for this simple

2-d search space, MISO-KG’s optimisation overheads are magnitudes larger than

MUMBO (and MTBO). Figure 3.5.5 shows that MUMBO substantially outperforms

existing approaches on a continuous MF benchmark. MF-SKO, MF-UCB and BOCA’s

search strategies are guided by estimating g∗ (rather than x∗) and so have comparable

computational cost to MUMBO, however, only MUMBO is able to provide high-

precision optimisation with this low-computational overhead.
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3.6 Conclusions

We have derived a novel computationally light information-theoretic approach for

general discrete and continuous multi-task Bayesian optimisation, along with an

open and accessible code base that will enable users to deploy these methods and

improve replicability. MUMBO reduces uncertainty in the optimal value of the

objective function with each subsequent query, and provides principled decision-

making across general multi-task structures at a cost which scales only linearly with

the dimension of the search space. Consequently, MUMBO substantially outperforms

current acquisitions across a range of optimisation and hyper-parameter tuning tasks.



Chapter 4

BOSS: Bayesian Optimisation Over

String Spaces

Status: Published as Moss H. B., Beck D., Leslie D. S., Gonzalez J. & Rayson P.,

Bayesian Optimisation over String spaces, Advances in Neural Information Processing

Systems, 2020.

4.1 Preface

In this chapter, we take a brief respite from information-theoretic Bayesian optimisation

(BO), instead focusing on building a BO framework suitable for high-cost string design

problems. This chapter develops a BO method which acts directly over raw strings,

proposing the first uses of string kernels and genetic algorithms within BO loops. Recent

applications of BO over strings have been hindered by the need to map inputs into a

smooth and unconstrained latent space. Learning this projection is computationally

intensive and requires large amounts of data. Our approach instead builds a powerful

Gaussian process surrogate model based on string kernels, naturally supporting variable

length inputs, and performs efficient acquisition function maximisation for spaces with

syntactical constraints. Experiments demonstrate considerably improved optimisation

over existing approaches across a broad range of constraints, including the popular

setting where syntax is governed by a context-free grammar. In Chapter 5, we revisit

41
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and extend this framework to provide batch optimisation using information-theoretic

search.

4.2 Introduction

Many tasks in chemistry, biology and machine learning can be framed as optimisation

problems over spaces of strings. Examples include the design of synthetic genes

(González et al., 2014; Tanaka and Iwata, 2018) and chemical molecules (Griffiths

and Hernández-Lobato, 2020; Gómez-Bombarelli et al., 2018), as well as problems in

symbolic regression (Kusner et al., 2017) and kernel design (Lu et al., 2018). Common

to these applications is the high cost of evaluating a particular input, for example

requiring resource and labor-consuming wet lab tests. Consequently, most standard

discrete optimisation routines are unsuitable, as they require many evaluations.

Bayesian Optimisation (Shahriari et al., 2016, BO) has recently risen as an effective

strategy to address the applications above, due to its ability to find good solutions

within heavily restricted evaluation budgets. However, the vast majority of BO

approaches assume a low dimensional, mostly continuous space; string inputs have

to be converted to fixed-size vectors such as bags-of-ngrams or latent representations

learned through an unsupervised model, typically a variational autoencoder (Kingma

and Welling, 2014, VAE). In this work, we remove this encoding step and propose a

BO architecture that operates directly on raw strings through the lens of convolution

kernels (Haussler, 1999). In particular, we employ a Gaussian Process (Rasmussen,

2004a, GP) with a string kernel (Lodhi et al., 2002) as the surrogate model for the

objective function, measuring the similarity between strings by examining shared

non-contiguous sub-sequences. String kernels provide an easy and user-friendly way

to deploy BO loops directly over strings, avoiding the expensive architecture tuning

required to find a useful VAE. At the same time, by using a kernel trick to work

in much richer feature spaces than the bags-of-ngrams vectors, string kernels can

encode the non-contiguity known to be informative when modelling genetic sequences

(Vert, 2007) and SMILES (Anderson et al., 1987) representations of molecules (Cao
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Figure 4.2.1: Similar

molecules have SMILES

strings with local differences

(red) but common non-

contiguous sub-sequences.

Figure 4.2.2: BO loop for molecule design using a string

kernel surrogate model (a) and genetic algorithms for

acquisition function maximisation (b).

et al., 2012)(see Figure 4.2.1). We show that our string kernel’s two parameters can

be reliably fine-tuned to model complex objective functions with just a handful of

function evaluations, without needing the large collections of unlabelled data required

to train VAEs.

Devising a BO framework directly over strings raises the question of how to maximise

acquisition functions; heuristics used to select new evaluation points. Standard BO

uses numerical methods to maximise these functions but these are not applicable when

the inputs are discrete structures such as strings. To address this challenge, we employ

a suite of genetic algorithms (Whitley, 1994) to provide efficient exploration of string

spaces under a range of syntactical constraints.

Our contributions can be summarised as follows:

• We introduce string kernels into BO, providing powerful GP surrogate models

of complex objective functions with just two data-driven parameters (Figure

4.2.2.a).

• We propose a suite of genetic algorithms suitable for efficiently optimising

acquisition functions under a variety of syntactical constraints (Figure 4.2.2.b).

• We demonstrate that our framework out-performs established baselines across

four scenarios encompassing a range of applications and diverse set of constraints.
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4.3 Related Work

BO by feature extraction BO has previously been applied to find genes with

desirable features: a high-cost string optimisation problem across a small alphabet

of four bases. Genes are represented as either codon frequencies (a bags-of-ngrams

of triplets of characters) (González et al., 2014), or as a one-hot-encoding of the

genes at each location in the string (Tanaka and Iwata, 2018). Although these

representations are sufficient to allow BO to improve over random gene designs, each

mapping discards information known to be important when modelling genes. A bags-

of-ngrams representation ignores positional and contextual information by modelling

characters to have equal effect regardless of position or context, whereas a one-hot

encoding fails to exploit translational invariance. Moreover, by assuming that all

potential genes belong to a small fixed set of candidates, González et al. (2014) and

Tanaka and Iwata (2018) ignore the need to provide an efficient acquisition optimisation

routine. This assumption is unrealistic for many real gene design loops and is tackled

directly in our work.

BO with VAEs Kusner et al. (2017); Gómez-Bombarelli et al. (2018) and Lu

et al. (2018) use VAEs to learn latent representations for string spaces following the

syntactical constraints given by context-free grammars (CFG). Projecting a variable-

length and constrained string space to an unconstrained latent space of fixed dimensions

requires a sophisticated mapping, which in turn requires a lot of data to learn. As BO

problems never have enough string-evaluation pairs to learn a supervised mapping,

VAEs must be trained to reconstruct a large collection of valid strings sampled from

the CFG. A representation learned in this purely unsupervised manner will likely be

poorly-aligned with the problem’s objective function, under-representing variation and

over-emphasising sub-optimal areas of the original space. Consequently, VAE’s often

explore only limited regions of the space and have ‘dead’ areas that decode to invalid

strings (Griffiths and Hernández-Lobato, 2020). Moreover, performance is sensitive to

the arbitrary choice of the closed region of latent space considered for BO.
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Evolutionary algorithms in BO The closest existing idea to our work is that

of Kandasamy et al. (2018b), where an evolutionary algorithm optimises acquisition

functions over a space of neural network architectures. However, their approach

does not support syntactically constrained spaces and, as it is based solely on local

mutations, cannot perform the global search required for large string spaces. Moreover,

as their kernel is based on an optimal transport distance between individual network

layers, it does not model the non-contiguous features supported by string kernels.

Contemporaneous work of Swersky et al. (2020) also considers BO over strings and

proposes an evolutionary algorithm based on generative modelling for their acquisition

function optimisation. However, their approach relies on ensembles of neural networks

rather than GP surrogate models, is suitable for strings of up to only 100 characters

and does not support spaces with syntactic constraints.

4.4 Preliminaries

Bayesian Optimisation In its standard form, BO seeks to maximise a smooth

function g : X → R over a compact set X ⊂ Rd in as few evaluations as possible.

Smoothness is exploited to predict the performance of not yet evaluated points, allowing

evaluations to be focused into promising areas of the space. BO loops have two key

components - a surrogate model and an acquisition function.

Surrogate model To predict the values of g across X , a surrogate model is fit to the

previously collected (and potentially noisy) evaluations Dt = {(xi, yi)}i=1,..,t, where

yi = g(xi) + εi for iid Gaussian noise εi ∼ N (0, σ2). As is standard in the literature,

we use a GP surrogate model (Rasmussen, 2004a). A GP provides non-parametric

regression of a particular smoothness controlled by a kernel k : X ×X → R measuring

the similarity between two points.

Acquisition function The other crucial ingredient for BO is an acquisition function

αt : X → R, measuring the utility of making a new evaluation given the predictions

of our surrogate model. We use the simple yet effective search strategy of expected

improvement (EI): evaluating points yielding the largest improvement over current
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Sub-sequence Occurrence, u

String, s "genic" "geno" "ge"

"genetics" "genetics"
"genetics"

"genetics"

"genomic" "genomic" "genomic" "genomic"

"genomes" "genomes"
"genomes"

"genomes"

Sub-sequence Contribution, cu(s)

"genic" "geno" "ge"

λ5
mλ

2
g 0 λ2

m(1 + λ2
g)

λ5
mλ

2
g λ4

m λ2
m

0 λ4
m λ2

m(1 + λ4
g)

Table 4.4.1: Occurrences (left panel) and respective contributions function values (right

panel) of sample sub-sequences when evaluating the strings "genetics", "genomic" and

"genomes".

evaluations. Although any BO acquisition function is compatible with our framework,

we choose EI for this chapter as it provides an effective search whilst not incurring

significant BO overheads, allowing focus on the aspects of these problems unique to

string spaces. In Chapter 5, we examine an information-theoretic acquisition function

for string optimisation. A single BO loop is completed by evaluating the location

with maximal utility xn+1 = argmaxx∈X αn(x) and is repeated until the optimisation

budget is exhausted.

String Kernels (SKs) SKs are a family of kernels that operate on strings, measuring

their similarity through the number of sub-strings they share. Specific SKs are

then formally defined by the particular definition of a sub-string they encompass,

which defines the underlying feature space of the kernel. In this work, we employ

the Sub-sequence String Kernel (SSK) (Lodhi et al., 2002; Cancedda et al., 2003),

which uses sub-sequences of characters as features. The sub-sequences can be non-

contiguous, giving rise to an exponentially-sized feature space. While enumerating such

a space would be infeasible, the SSK uses the kernel trick to avoid computation in the

primal space, enabled via an efficient dynamic programming algorithm. By matching

occurrences of sub-sequences, SSKs can provide a rich contextual model of string data,
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moving far beyond the capabilities of popular bag-of-ngrams representations where

only contiguous occurrences of sub-strings are modelled.

Formally, an nth order SSK between two strings a and b is defined as

kn(a,b) =
∑
u∈Σn

cu(a)cu(b) for cu(s) = λ|u|m
∑

1<i1<..<i|u|<|s|

λ
i|u|−i1
g 1u((si1 , .., si|u|)),

where Σn denotes the set of all possible ordered collections containing up to n characters

from our alphabet Σ, 1x(y) is the indicator function checking if the strings x and y

match, and the match decay λm ∈ [0, 1] and gap decay λg ∈ [0, 1] are kernel hyper-

parameters. Intuitively, cu(s) measures the contribution of sub-sequence u to string s,

and the choices λm and λg control the relative weighting of long and/or highly non-

contiguous sub-strings (Table 4.4.1). To allow the meaningful comparison of strings of

varied lengths, we use a normalised string kernel k̃n(a,b) = kn(a,b)/
√
kn(a, a)kn(b,b).

4.5 Bayesian Optimisation Directly On Strings

In string optimisation tasks, we seek the optimiser s∗ = argmaxs∈S g(s) of a function

g across a set of strings S. In this work, we consider different scenarios for S arising

from three different types of syntactical constraints and a sampling-based approach

for when constraints are not fully known. In Section 4.6 we demonstrate the efficacy

of our proposed framework across all four scenarios.

1. Unconstrained Any string made exclusively from characters in the alphabet Σ

are allowed. S contains all these strings of any (or a fixed) length.

2. Locally constrained S is a collection of strings of fixed length, where the set

of possible values for each character depends on its position in the string, i.e.

the character si at location i belongs to the set Σi ⊆ Σ.

3. Grammar constrained S is the set of strings made from Σ that satisfy the

syntactical rules specified by a context-free grammar.

4. Candidate Set. A space with unknown or very complex syntactical rules, but

for which we have access to a large collection S of valid strings.
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4.5.1 Surrogate Models for String Spaces

To build a powerful model across string spaces, we propose using an SSK within a

GP. However, the vanilla SSK presented above is not immediately suitable due to its

substantial computational cost. In contrast to most applications of GPs, BO surrogates

are trained on small datasets and so the computational bottleneck is not inversion

of Gram matrices. Instead, the primary contributors to cost are the many kernel

evaluations required to maximise acquisition functions. Therefore, we develop two

modifications to improve the efficiency and scalability of our SSK.

Efficiency Using the dynamic program proposed by Lodhi et al. (2002), obtaining

a single evaluation of an nth order SSK is O(nl2), where l = max(|a|, |b|). For our

applications where many kernel evaluations are to be made in parallel, we found the

vectorised formulation of Beck and Cohn (2017) to be more appropriate. Although,

having a larger complexity of O(nl3), a vectorised formulation can exploit recent

advancements in parallel processing and in practice was substantially faster. Moreover,

Beck and Cohn (2017)’s formulation provides gradients with respect to the kernel

parameters, allowing their fine-grained tuning to a particular optimisation task. We

found the particular string kernel proposed by Beck and Cohn (2017) — with individual

weights for each different sub-sequence length — to be overly flexible for our BO

applications. We adapt their recursive algorithm for our SSK (Appendix B.1).

Scalability Even with a vectorised implementation, SSKs are computationally

demanding for long strings. Comprehensively tackling the scalability of string kernels

is beyond the scope of this work and is an area of future research. However, we perform

a simple novel approximation to allow demonstrations of BO for longer sequences:

we split sequences into m parts, applying separate string kernels (with tied kernel

parameters) to each individual part and summing their values. This reduces the

complexity of kernel calculations from O(nl3) to O(nl3/m2) without a noticeable effect

on performance (Section 4.6.2). Moreover, the m partial kernel calculations can be

computed in parallel.
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4.5.2 Acquisition function optimisation over String Spaces

We now present a suite of routines providing efficient acquisition function optimisation

under different types of syntactical constraints. In particular, we propose using

genetic algorithms (GA) (Whitley, 1994), biologically inspired optimisation routines

that successively evaluate and evolve populations of n strings. Candidate strings

undergo one of two stochastic perturbations: a mutation operation producing a new

offspring string from a single parent, and a crossover operation combining attributes

of two parents to produce two new offspring. GAs are a natural choice for optimising

acquisition functions as they avoid local maxima by maintaining diversity and the

evolution can be carefully constructed to ensure compliance to syntactical rules. We

stress that GAs require many function evaluations and so are not suitable for optimising

a high-cost objective function, just for this ‘inner-loop’ maximisation. To highlight

robustness, the parameters of our GAs are not tuned to our individual experiments

(Appendix B.4.3). When syntactical rules are poorly understood and cannot be

encoded into the optimisation, we recommend the simple but effective strategy of

maximising acquisition functions across a random sample of valid strings.

GAs for unconstrained and locally constrained string spaces For our first

two types of syntactical constraints, standard definitions of crossover and mutation

are sufficient. For mutation, a random position i is chosen and the character at this

point is re-sampled uniformly from the set of permitted characters Σi (or just Σ) for

locally constrained (unconstrained) spaces. For crossover, a random location is chosen

within one of the parent strings and the characters up until the crossover point are

swapped between the parents. Crucially, the relative positions of characters in the

strings are not changed by this operation and so the offspring strings still satisfy the

space’s constraints.

GA for grammar-constrained string spaces Context free grammars (CFG) are

collections of rules able to encode many common syntactical constraints (see Appendix

B.2 and Hopcroft et al. (2001)). While it is difficult to define character-level mutation
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Figure 4.5.1: Mutations and crossover

of arithmetic expressions following the

grammar:

S → S ‘+’ T | S ‘∗’ T | S ‘/’ T | T

T → ‘ sin (’ S ‘)’ | ‘exp(’ S ‘)’ | ‘x’ | ‘1’ .

Figure 4.5.2: Performance and computa-

tional overhead when searching for binary

strings of length 20 with the most non-

overlapping occurrences of "101" (higher

is better).

and crossover operations that maintain grammatical rules over strings of varying

length, suitable operations can be defined over parse trees, structures detailing the

grammatical rules used to make a particular string. Following ideas from grammar-

based genetic programming (Mckay et al., 2010), mutations randomly replace sub-trees

with new trees generated from the same head node, and crossover swaps two sub-trees

sharing a head node between two parents (see Figure 4.5.1). When sampling strings

from the grammar to initialise our GA and perform mutations, the simple strategy of

building parse trees by recursively choosing random grammar rules produces long and

repetitive sequences. We instead employ a sampling strategy that down-weights the

probability of selecting a particular rule based on the number of times it has already

occurred in the current parse tree branch (Appendix B.3).

4.6 Experiments

We now evaluate our proposed BO framework on tasks from a range of fields and

syntactical constraints. Our code is available at github.com/henrymoss/BOSS and is

built upon the Emukit Python package (Paleyes et al., 2019). All results are based
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on runs across 15 random seeds, showing the mean and a single standard error of the

best objective value found as we increase the optimisation budget. The computational

overhead of BO (the time spent fitting the GP and maximising the acquisition function)

is presented as average wall-clock times. Although acquisition function calculations

could be parallelised across the populations of our GA at each BO step, we use a

single-core Intel Xeon 2.30GHz processor to paint a clear picture of computational

cost.

Considered BO approaches For problems with fixed string-length, we compare

our SSK with existing approaches to define GP models over strings. In particular, we

apply the squared exponential (SE) kernel (Rasmussen, 2004a) to a bags-of-ngrams

feature representation of the strings. SSKs (feature) representations consider sub-

sequences of up to and including five non-contiguous (contiguous) characters, with

additional choices demonstrated in Appendix B.4.1. We also provide a linear kernel

applied to one-hot encodings of each character, a common approach for BO over

categorical spaces. The strategy of sequentially querying random strings is included

for all plots and we introduce task-specific baselines alongside their results. After a

random initialisation of min(5, |Σ|) evaluations, kernel parameters are re-estimated to

maximise model likelihood before each BO step.

4.6.1 Unconstrained Synthetic String Optimisation

We first investigate a set of synthetic string optimisation problems over unconstrained

string spaces containing all strings of a particular length built from a specific alphabet.

Objective functions are then defined around simple tweaks of counting the occurrence of

a particular sub-string. Although these tasks seem simple, we show in Appendix B.4.1

that they are more difficult than the synthetic benchmarks used to evaluate standard

BO frameworks. The results for seven synthetic string optimisation tasks are included

in Table 4.6.1, with a deeper analysis of a single task in Figure 4.5.2. Additional

figures for the remaining tasks showing broadly similar behaviour are included in the

supplement. To disentangle the benefits provided by the SSK and our GA, we consider
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Problem Definition Mean performance with std error (2 s.f.)

Objective Space Steps SSK (ga) SSK (rs) Feature (ga) Linear (ga) RS

# of "101" {0, 1}20 10 100 (0.0) 96 (1.4) 97 (2.2) 58 (3.0) 58 (2.6)

# of "101", no overlaps {0, 1}20 15 98 (1.4) 94 (2.6) 76 (4.1) 64 (2.6) 60 (3.1)

# of "10??1" {0, 1}20 25 98 (1.6) 95 (1.6) 64 (2.0) 64 (3.3) 56 (2.0)

# of "101" in 1st 15 chars {0, 1}30 40 91 (2.6) 83 (1.7) 67 (3.0) 69 (2.6) 61 (2.3)

# of "101" + N (0, 2) {0, 1}20 25 98 (2.1) 95 (1.4) 51 (3.9) 40 (4.0) 45 (3.8)

# of "123" {0, .., 3}30 20 81 (2.3) 35 (2.8) 69 (5.4) 23 (2.0) 17 (1.5)

# of "01??4" {0, .., 4}20 50 67 (4.5) 38 (2.6) 35 (4.0) 33 (3.1) 29 (2.6)

Table 4.6.1: Optimisation of functions counting occurrences of a particular pattern

within strings of varying lengths and alphabets ("?" matches any single character).

Evaluations are standardised ∈ [0, 100] and higher scores show superior optimisation.

Our SSK provides particularly strong performance for complicated patterns (red) or

when evaluations are contaminated with Gaussian noise (blue). Our GA acquisition

maximiser is especially effective for large alphabets (yellow).

two acquisition optimisers: random search across 10, 000 sample strings (denoted rs

and not to be confused with the random search used to optimise the original objective

function) as well as our genetic algorithms (ga) limited to ≤ 100 evolutions of a

population of size 100. The genetic algorithm is at most as computationally expensive

(in terms of acquisition function evaluations) as the random search optimiser, but in

practice is usually far cheaper due to the GA’s early-stopping.

Figure 4.5.2 demonstrates that our approach provides highly efficient global opti-

misation, dramatically out-performing random search and BO with standard kernels.

Interestingly, although the majority of our approach’s advantage comes from the SSK,

our genetic algorithm also contributes significantly to performance, out-performing

the random search acquisition function optimiser in terms of both optimisation and

computational overhead. Although SSKs incur significant BO overheads, they achieve

high-precision optimisation after far fewer objective queries, meaning a substantial re-

duction in overall optimisation costs for all but the cheapest objective functions. Table

4.6.1 shows that our approach provides superior optimisation across a range of tasks
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(`,m) = (30, 1) (`,m) = (186, 2) (`,m) = (360, 8) (`,m) = (3672, 64)

Figure 4.6.1: Finding the representation with minimal minimum free-folding energy

(MFE) for proteins of length `. SSKs are applied to codon or base representations

split into m or 3m parts, respectively.

designed to test our surrogate model’s ability to model contextual, non-contiguous

and positional information.

4.6.2 Locally Constrained Protein Optimisation

For our second set of examples, we consider the automatic design of genes that strongly

exhibit some particular property. We follow the set-up of González et al. (2014), which

optimises across the space of all the genes encoding a particular protein. Proteins

are sequences made from 20 amino acids, but redundancy in genetic coding means

that individual proteins can be represented by many distinct genes, each with differing

biological properties. For this experiment, we seek protein representations with minimal

minimum free-folding energy, a fundamental biological quantity determined by how

a protein ‘folds’ in 3-D space. The prediction of the most likely free-folding energy

for large sequences remains an important open problem (AlQuraishi, 2019), whereas

calculating the minimal free-folding energy (across all possible folds) is possible for

smaller sequences using the ViennaRNA software (Lorenz et al., 2011). We acknowledge

that this task may not be biologically meaningful on its own, however, as free-folding

energy is of critical importance to other down-stream genetic prediction tasks, we

believe it to be a reasonable proxy for wet-lab-based genetic design loops. This results

in a truly challenging black-box string optimisation, requiring modelling of positional

and frequency information alongside long-range and non-contiguous relationships.



CHAPTER 4. BOSS 54

Each amino acid in a protein sequence can be encoded as one of a small subset

of 64 possible codons, inducing a locally constrained string space of genes, where

the set of valid codons depends on the position in the gene (i.e the particular amino

acid represented by that position). Alternatively, each codon can be represented as

triples of the bases (A,C,T,G), forming another locally constrained string space of

three times the length of the codon representation but with a smaller alphabet size

of 4. As well as applying the linear and feature kernels to the base representations,

we also consider the domain-specific representation used by González et al. (2014)

(denoted as Bio-Features) that counts codon frequencies and four specific biologically

inspired base-pairs. Figure 4.6.1 demonstrates the power of our framework across 4

proteins of varying length. Additional details and wall-clock timing are provided in

Appendix B.4.2. SSKs provide particularly strong optimisation for longer proteins,

as increasing the length renders the global feature frequencies less informative (with

the same representations used for many sequences) and the linear kernel suffers the

curse of dimensionality. Note that unlike existing BO frameworks for gene design,

our framework explores the large space of all possible genes rather than a fixed small

candidate set.

4.6.3 Grammar Constrained String Optimisation

We now consider a string optimisation problem under CFG constraints. As these

spaces contain strings of variable length and have large alphabets, the linear and

feature kernel baselines considered earlier cannot be applied. However, we do consider

the VAE-based approaches of Kusner et al. (2017) and Gómez-Bombarelli et al. (2018)

denoted GVAE and CVAE for a grammar VAE and character VAE, respectively. We

replicate the symbolic regression example of Kusner et al. (2017), using their provided

VAEs pre-trained for this exact problem. Here, we seek a valid arithmetic expression

that best mimics the relationship between a set of inputs and responses, whilst following

the syntactical rules of a CFG (Appendix B.2). We investigate both BO and random

search in the latent space of the VAEs, with points chosen in the latent space decoded

back to strings for objective function evaluations (details in Appendix B.4.3). We
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sample 15 strings for initialisation of our GPs, which, for the VAE-approaches, are

first encoded to the latent space, before being decoded for evaluation. The invalid

strings suggested by CVAE are assigned large error.

Figure 4.6.2 shows that our approach is able to provide highly efficient BO across

a space with complicated syntactical constraints, out-performing the VAE methods

which are beaten by even random search (a comparison not made by Kusner et al.

(2017)). The difference in starting values for the performance curves in Figure 4.6.2

is due to stochasticity when encoding/decoding; initial strings are rarely decoded

back to themselves but instead mapped back to a less diverse set. However, sampling

directly in the latent space led to a further decrease in initialisation diversity. We

stress that CVAE and GVAE were initially designed as models which, using BO-

inspired arguments, could generate new valid strings outside of their training data.

Consequently, they have previously been tested only in scenarios with significant

evaluation budgets. To our knowledge, we are the first to analyse their performance in

the low-resource loops typical in BO.

4.6.4 Optimisation Over a Candidate Set

Finally, we return to the task introduced briefly in Figure 4.2.2 of searching over

SMILES strings to find molecules with desirable properties. As the validity of SMILES

strings are governed by complex semantic and syntactic rules that can only be partly

explained by a context-free grammar (Kraev, 2018), it is not obvious how to define a

GA acquisition function optimiser that can explore the space of all valid molecules.

Therefore, we consider an alternative task of seeking high-scoring molecules from

within the large collection of 250, 000 candidate molecules used by Kusner et al. (2017)

to train a CVAE and GVAE. Once again, we stress that Kusner et al. (2017)’s primary

motivation is to use a large evaluation budget to generate new molecules outside of

the candidate set, whereas we consider the simpler but still realistic task of efficiently

exploring within the set’s limits. At each BO step, we sample 100 candidates, querying

those that maximise the acquisition function predicted by our SSK as well as by GPs

with SE kernels over the VAE latent spaces. Figure 4.6.3 shows that only the SSK
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Figure 4.6.2:

Searching for

arithmetic expres-

sions satisfying

constraints from

a CFG (lower is

better).

Figure 4.6.3:

Searching a can-

didate set for

molecules with

desirable properties

(higher is better).

Figure 4.6.4: Top KPCA compo-

nents for our SSK (left) and an

SE kernel in the GVAE (right) for

SMILES strings. Our SSK has a

smoother internal representation,

where ‘close’ points are structurally

similar.

allows efficient exploration of the candidate SMILES strings. We hypothesise that the

VAEs’ poor performance may be partly due to the latent space’s dimension which, at

56, is likely to severely hamper the performance of any BO routine.

SSK’s internal representations A common way to investigate the efficacy of

VAEs is to examine their latent representations. However, even if objective evaluations

are smooth across this space (Kusner et al., 2017), this smoothness cannot be exploited

by BO unless successfully encapsulated by the surrogate model. Although GPs have

no explicit latent space, they have an intrinsic representation that can be similarly

examined to provide visualisation of a surrogate model’s performance. In particular,

we apply kernel principal component analysis (KPCA) (Schölkopf et al., 1997) to

visualise how SMILES strings map into the feature space. Figure 4.6.4 shows the first

two KPCA components of our SSK and of an SE kernel within the GVAE ’s latent

space (additional visualisations in Appendix B.4.4). Although the latent spaces of

the GVAE is known to exhibit some smoothness for this SMILES task (Kusner et al.,
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2017), the smoothness is not captured by the GP model, in contrast with the SSK.

4.7 Discussion

Departing from fixed-length representations of strings revolutionises the way in which

BO is performed over string spaces. In contrast to VAEs, where models are learned

from scratch across thousands of parameters, an SSK’s structure is predominantly

fixed. By hard-coding prior linguistic intuition about the importance of incorporating

non-contiguity, our SSKs have just two easily identifiable kernel parameters governing

modelling of a particular objective function. We posit that the additional flexibility of

VAEs is not advantageous in BO loops, where there is never enough data to reliably

learn flexible models and where calibration is more important than raw predictive

strength.

As well as achieving substantially improved optimisation, we provide a user-friendly

BO building-block that can be naturally inserted into orthogonal developments from the

literature with obvious applications within gene and chemical design loops, including

batch (González et al., 2016a) (Chapter 5), multi-task (Swersky et al., 2013), multi-

fidelity (Moss et al., 2020d) (Chapter 3) and multi-objective (Hernández-Lobato et al.,

2016) BO, as well as BO with controllable experimental noise (Moss et al., 2020c)

(Chapter 6). Moreover, our framework can be extended to other kinds of convolution

kernels such as tree (Collins and Duffy, 2002) and graph kernels (Vishwanathan

et al., 2010). This would allow the optimisation of other discrete structures that have

previously been modelled through VAEs, including networks (Zhang et al., 2019) and

molecular graphs (Kajino, 2019).
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GIBBON: General-purpose

Information-Based Bayesian

OptimisatioN

Status: In submission for The Journal of Machine Learning Research.

5.1 Preface

This chapter describes a general-purpose extension of max-value entropy search. By

extending the MUMBO of Chapter 3, a novel approximation is proposed for the infor-

mation gain — an information-theoretic quantity central to solving a range of popular

BO problems, including noisy, multi-fidelity and batch optimisations in continuous

and highly-structured discrete spaces. Previously, these problems have been tackled

separately within information-theoretic BO, each requiring a different sophisticated

approximation scheme, except for batch BO, for which no computationally-lightweight

information-theoretic approach has previously been proposed. GIBBON (General-

purpose Information-Based Bayesian OptimisatioN) provides a single principled frame-

work suitable for all the above, out-performing existing approaches whilst incurring

substantially lower computational overheads. In addition, unlike most information-

theoretic acquisition functions, GIBBON’s does not require the problem’s search space

58
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to be Euclidean and so is the first computationally-lightweight yet high-performance

acquisition function that supports batch BO over general highly structured input

spaces, for example when using BO to perform molecular search (see Chapter 4). More-

over, our principled derivation of GIBBON yields a natural extension for a popular

heuristic for batch BO based on determinantal point processes free from user-specified

parameters. Finally, the efficacy and efficiency of GIBBON is demonstrated across

a suite of synthetic benchmark tasks as-well as within the molecular search loop

described in Chapter 4. GIBBON is tested further in Chapter 6, where we use it to

make principled decisions as part of a challenging batch multi-fidelity framework for

BO problems with controllable experimental noise.

5.2 Introduction

A popular solution for the optimisation of high-cost black-box functions is Bayesian

optimisation (Mockus et al., 1978, BO). By sequentially deciding where to make each

evaluation as the optimisation progresses, BO can direct resources into evaluating

promising areas of the search space to provide efficient optimisation. BO frameworks

consist of two key components - a surrogate model and an acquisition function. By

fitting a probabilistic surrogate model, typically a Gaussian process (Rasmussen, 2004a,

GP), to the previously collected objective function evaluations, we are able to quantify

our current belief about which areas of the search space maximize our objective function.

An acquisition function then uses this belief to predict the utility of making a particular

evaluation, producing large values at ‘reasonable’ locations. BO automatically evaluates

the location that maximises this acquisition function and repeats until a sufficiently

high-performing solution is found. A popular application of BO is hyper-parameter

tuning, with successful applications in computer vision (Bergstra et al., 2013), text-

to-speech (Moss et al., 2020a) (Chapter 7) and reinforcement learning (Chen et al.,

2018b). Of particular note are the recent extensions of BO beyond Euclidean search

spaces, for example when optimising synthetic genes (González et al., 2014; Tanaka and

Iwata, 2018; Moss et al., 2020b) or performing molecular search (Gómez-Bombarelli
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et al., 2018; Griffiths and Hernández-Lobato, 2020).

Various heuristic strategies have been developed to form BO acquisition functions,

including Expected Improvement (Jones et al., 1998, EI), Knowledge Gradient (Frazier

et al., 2008, KG) and Upper-Confidence Bound (Srinivas et al., 2009, UCB). More

recently, a particularly intuitive and empirically effective class of acquisition functions

has arisen based on information theory. Information-theoretic BO seeks to reduce

uncertainty in the location of high-performing areas of the search space, as measured

in terms of differential entropy. Such entropy-reduction arguments have motivated the

three primary information-theoretic acquisition functions of Entropy Search (Hennig

and Schuler, 2012, ES), Predictive Entropy Search (Hernández-Lobato et al., 2014,

PES) and Max-value Entropy Search (Wang and Jegelka, 2017, MES), differing in

their chosen measure of global uncertainty and employed approximation methods. Of

particular popularity are acquisition functions based on MES, which reduce uncertainty

in the maximum value attained by the objective function, a one-dimensional quantity.

In contrast, both ES and PES seek to reduce uncertainty in the location of the

maximum, a quantity which, as well as being well-defined only for Euclidean search

spaces, requires prohibitively expensive approximation schemes. Due to the large

number of acquisition function evaluations required to identify the next query point

for each BO step, computational complexity is an important practical consideration

when designing acquisition functions, particularly for applications with structured

search spaces containing combinatorial elements.

Although the advent of MES acquisition functions has enabled the application of

information-theoretic BO beyond problems with low-dimensional Euclidean search

spaces, MES can not yet be regarded as a general-purpose acquisition function for two

reasons.

1. Firstly, the existing extensions of MES supporting common BO extensions like

Multi-fidelity BO (Moss et al., 2020d) (Chapter 3) and batch BO (Takeno

et al., 2019) require additional approximations beyond those of vanilla MES,

typically through the numerical integration of low-dimensional integrals. Multi-

fidelity BO (also known as multi-task BO) leverages cheap approximations of
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the objective function to speed up optimisation, for example through exploiting

coarse resolution simulations when calibrating large climate models (Prieß et al.,

2011), whereas batch BO allows multiple objective function evaluations to be

queried in parallel, a scenario arising often in science applications, for example

when training a collection of robots to cook (Junge et al., 2020). Therefore,

although still cheaper than their ES- and PES-based counterparts, extensions of

MES for multi-fidelity and batch BO do not inherit the simplicity and low-cost

of vanilla MES.

2. Secondly, missing from the current extensions of MES is support for general

batch BO, with just asynchronous batch BO supported (a distinction discussed

in depth by Kandasamy et al. (2018a)). The asynchronous MES formulation of

Takeno et al. (2019) supports scenarios where each of B workers are allocated

individually to evaluate different areas of the search space, returning queries

and being re-allocated one by one. In contrast, synchronous batch BO considers

scenarios where where B workers are to be allocated in parallel, as is the case

for many real-world settings including those relying on wet-lab evaluations,

physical experiments, or any framework where workers do not have sufficient

autonomy to be controlled separately. In addition, extending the asynchronous

MES framework of Takeno et al. (2019) to synchronous BO require prohibitively

expensive approximations. Therefore, batch applications of MES have so far

relied on generic batch heuristics suitable for any BO acquisition function,

including greedy allocation through local penalisation (González et al., 2016a;

Alvi et al., 2019) or using probabilistic repulsion models like determinantal point

processes (Kathuria et al., 2016; Dodge et al., 2017), both of which support only

Euclidean search spaces.

In this work we provide a single generalisation of MES suitable for BO problems

arising from any combination of noisy, batch, single-fidelity, and multi-fidelity op-

timisation tasks. Crucially, unlike existing extensions of MES, our general-purpose

acquisition function retains the computational cost of vanilla MES, with no requirement
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for numerical integration schemes, provides the first high-performing yet computation-

ally light-weight framework for synchronous batch BO and the first high-performance

batch framework suitable for search spaces consisting of discrete structures.

Our primary contributions are as follows:

1. We propose an approximation for a general-propose extension of MES named

General-purpose Information-Based Bayesian Optimisation (GIBBON). This

approximation enables application of MES to a wide variety of problems, including

those with combinations of synchronous batch BO, multi-fidelity BO and non-

Euclidean highly-structured input spaces.

2. Analysis of GIBBON leads to a novel connection between information-theoretic

search, determinantal point processes (Kulesza et al., 2012, DPP) and local

penalisation (González et al., 2016a), providing the first theoretical justification

for key attributes of these two popular heuristics previously chosen arbitrarily

by users.

3. We analyse the computational complexity of GIBBON in the wider context of

information-theoretic acquisition functions, providing the first comprehensive

evaluation of the computational overheads of information-theoretic BO.

4. We demonstrate the performance of GIBBON across a suite of popular bench-

mark optimisation tasks, including the first application of information-theoretic

acquisition functions to high-cost string optimisation tasks.

The remainder of the chapter is structured as follows. Section 5.3 reviews prior

work on MES and introduces the extended acquisition function that will be the focus

of this work. In section 5.4, we propose the GIBBON acquisition function, before

examining GIBBON in the context of existing heuristics for batch BO (Section 5.5).

In Section 5.6 we consider the computational complexity of GIBBON in the wider

context of information-theoretic BO. Finally, Section 5.7 provides a thorough empirical

evaluation.
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5.3 Max-value Entropy Search for Black-Box Func-

tion Optimisation

We now introduce max-value entropy search (MES) for BO, providing an information-

theoretic motivation for the general-purpose framework that is the focus of this

manuscript. We then introduce existing work that has applied more restrictive

formulations of MES to deal with specific BO tasks, before briefly summarising

additional popular acquisition functions that are not based on MES.

BO routines seek the global maximum

x∗ = argmax
x∈X

g(x)

of a ‘smooth’ but expensive to evaluate black-box function g : X → R. By sequentially

choosing where and how to make each evaluation, BO directs resources into promising

areas to efficiently explore the search space X ⊂ Rd and provide fast optimisation.

In its simplest formulation (henceforth referred to as standard BO), BO controls

the locations x ∈ X at which to collect (potentially noisy) queries of the objective

function. A more general framework is that of multi-fidelity BO (Swersky et al., 2013)

(also known as multi-task BO), where the ‘quality’ of each function query can also

be controlled, for example by choosing the level of noise or bias across a (possibly

continuous) space of fidelities s ∈ F . If these lower-fidelity estimates of g are cheaper

to evaluate, then BO has access to cheap but approximate information sources that

can be used to efficiently maximise g. In practical terms, each step of multi-fidelity

BO needs to choose a location-fidelity pair z = (x, s) ∈ Z = X × F upon which to

make the next evaluation. A further extension arises as batch BO, where we wish to

exploit parallel resources by choosing a set of B ≥ 1 locations {z1, .., zB} ∈ ZB to be

evaluated in parallel.

BO’s decisions are governed by two primary components - a surrogate model and

an acquisition function. The surrogate model makes probabilistic predictions of the

objective function at not-yet-evaluated locations using the already collected location-

evaluation tuples Dn = {(zi, yi)}i=1,..,n. The most most popular choice of model is a
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Gaussian process (Rasmussen, 2004a, GP). GPs provide non-parametric regression

over all functions of a smoothness controlled by a kernel k : X × X → R. Crucially,

our GP conditioned on Dn produces a tractable Gaussian predictive distribution that

quantifies our current belief about the objective function across the whole search space.

GP models can also be defined for multi-fidelity optimisation tasks (Kennedy and

O’Hagan, 2000; Le Gratiet and Garnier, 2014; Klein et al., 2017a; Perdikaris et al.,

2017; Cutajar et al., 2019) and when modelling highly-structured input spaces like

strings (Beck and Cohn, 2017), trees (Beck et al., 2015) and molecules (Moss and

Griffiths, 2020).

Given such a probabilistic model over the search space, all that remains to perform

an iteration of BO is an acquisition function measuring the utility of making evaluations.

The Max-value Entropy Search (MES) of Wang and Jegelka (2017), with similar

formulations considered by Hoffman and Ghahramani (2015) and Ru et al. (2018),

seeks to query the objective function at locations that reduce our current uncertainty

in the maximum value of our objective function g∗ = argmaxx∈X g(x). In information

theory (see Cover and Thomas, 2012, for a comprehensive introduction), uncertainty

in the unknown g∗ is measured by its differential entropy H(g∗|Dn) = −Eg∗ [log p(g∗)],

where p is the predictive probability distribution function for g∗ (as induced by the

surrogate model). In particular, the utility of making an evaluation is measured as

the reduction in the uncertainty of g∗ it provides, a quantity known as the mutual

information (MI).

Although initially proposed for just standard BO problems, an MES-based search

strategy can be readily formulated for the general batch multi-fidelity framework

(described above) by measuring the utility of evaluating a batch of fidelity evaluations

as their joint mutual information with the maximum value. To the author’s knowledge,

we are the first to consider this general formulation, which we name General-purpose

MES (GMES), formally expressed in Definition 5.3.1.

Definition 5.3.1 (The GMES acquisition function). The GMES acquisition function
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is defined as

αGMES
n ({zi}Bi=1) :=MI(g∗; {yzi}Bi=1|Dn)

=H(g∗|Dn)− E{yzi}Bi=1

[
H(g∗|Dn ∪ {yzi}Bi=1)

]
, (5.3.1)

where {zi}Bi=1 denotes the location-fidelity pairs of the batch elements and yz denote

the yet-unobserved results of querying location-fidelity pair z = (x, s) ∈ X × F .

Note that standard BO, batch BO and multi-fidelity BO are trivial special cases of

this general-purpose framework obtained by either or both of fixing the fidelity space

F to a singleton containing just the true objective function or setting B = 1.

To provide resource-efficient optimisation, we must balance how much we expect

to learn about g∗ with the computational cost of the evaluations. Therefore, following

the arguments of Swersky et al. (2013), each BO step chooses to evaluate the set of B

locations that maximises the cost-weighted mutual information, i.e

{z|Dn|+1, .., z|Dn|+B} = argmax
{zi}Bi=1∈ZB

αGMES
n ({zi}Bi=1)

c({zi}Bi=1)
,

where c : ZB → R+ measures the costs of evaluating the batch. This cost function

could be known a priori or estimated from observed costs (Snoek et al., 2012). The

optimisation of acquisition functions is known as the inner-loop maximisation and,

when considering continuous search spaces, is typically performed with a gradient-based

optimiser. For discrete search spaces it is common to use local optimisation routines

like DIRECT (Jones et al., 1993) or genetic algorithms (Moss et al., 2020b). For search

spaces with discrete and continuous dimensions, hybrid optimisers can be used (Ru

et al., 2019).

Unfortunately, calculating GMES in its full generality is challenging and providing

a practically viable approximation strategy is the major contribution of this work. The

primary difficulty in its computation arises from the lack of closed-form expression for

the distribution of g∗, as required for all differential entropy calculations. We now end

this section by discussing the three scenarios where specific sub-cases of GMES have

already been used to provide highly effective BO — a noiseless variant of standard

BO, multi-fidelity BO, and a special case of batch BO.
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5.3.1 Max-value Entropy Search for noiseless standard BO

Firstly, we consider the original MES formulation of Wang and Jegelka (2017), where

they perform standard BO with noiseless observations. This acquisition function is

formally expressed as

αMES
n (x) := MI(yx; g∗|Dn) = H(yx|Dn)− Eg∗ [H(yx|g∗, Dn)|Dn] . (5.3.2)

Here, the symmetric property of mutual information has been used to swap yx and g∗ in

its definition, yielding an equivalent (albeit less intuitive) expansion. Crucially, the first

term of the expansion of (5.3.2) is now simply the entropy of a multivariate Gaussian

distribution with a convenient closed-form. Moreover, Wang and Jegelka (2017) note

that under the assumption of exact objective function evaluations (where yx = g(x)),

the distribution of yx conditional on its maximum possible value (i.e knowing that

yx ≤ g∗) is simply that of a truncated Gaussian, also with a closed-form differential

entropy. All that remains to calculate MES is to approximate an expectation over g∗.

Wang and Jegelka (2017) build a Monte-Carlo estimate of the expectation with a set

of samplesM from g∗, providing a closed-form approximation of MES as

αMES
n (x) ≈ 1

|M|
∑
m∈M

[
γx(m)φ (γx(m))

2Φ (γx(m))
− log Φ (γx(m))

]
,

where Φ and φ are the standard normal cumulative distribution and probability density

functions (as arising from the expression for the differential entropy of a truncated

Gaussian) and γx(m) = m−µn(x)
σn(x)

. Here, µn(x) and σ2
n(x) are the predictive mean and

standard deviation for the objective function value g at location x as easily extracted

from our surrogate model. The set of sample max-valuesM is built by modelling the

empirical cumulative distribution function of g∗ with a Gumbel distribution (see Wang

and Jegelka (2017) for details) which can be sampled to yieldM cheap but approximate

sampled max-values. This Gumbel approximation provides a fast sampling strategy

and has been successful across a wide range of BO applications (Wang and Jegelka,

2017; Moss et al., 2020d,c; Takeno et al., 2019) (see Chapters 3 and 6 )

For the limited set of BO problems supported by this original MES acquisition func-

tion, MES has had great empirical success, typically outperforming other information-

theoretic BO methods with an order of magnitude smaller computational overhead.
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However, once MES arguments are extended to support the more sophisticated BO

frameworks (or even just to support noisy function evaluations), we will see that the

second term of (5.3.2) is no longer (the expectation of) the differential entropy of a

truncated Gaussian and additional approximations have to be made.

5.3.2 Max-value Entropy Search for multi-fidelity BO

MES-based search strategies have also been previously used for multi-fidelity BO

through the MUlti-task Max-value Bayesian Optimisation (MUMBO) acquisition

function of Chapter 3 (proposed in parallel by Takeno et al. (2019)) and, just like

original MES, MUMBO has been shown to perform highly efficient BO. However,

unlike when collecting exact observations of g, fidelity evaluations yz|g∗ no longer

follow a truncated Gaussian distribution and instead follow an extended skew Gaussian

distribution (as shown by Moss et al. (2020d) and re-derived in Section 5.4) which

has no closed-form expression for its differential entropy (Azzalini, 1985). Therefore,

the MUMBO acquisition function does not inherit all the computational savings of

standard MES, requiring numerical integration. Note that by considering a single

fidelity system, where low-fidelity evaluations are just noisy observations of the true

objective function, a multi-fidelity formulation of MES also serves as an extended

standard (single-fidelity) MES suitable for when evaluations are contaminated with

observation noise.

5.3.3 Max-value Entropy Search for Batch BO

Motivated by the empirical success of MES-based acquisition functions, it is natural to

wonder if they can be used for batch BO. However, of the two popular batch scenarios

of asynchronous and synchronous batches commonly considered in the BO literature,

only asynchronous batch BO is currently supported by a MES-based acquisition

function (Takeno et al., 2019). The primary practical distinction is that, while

synchronous batch acquisition functions must be able to measure the total reduction

in entropy provided by the joint evaluation of B locations, asynchronous batch BO
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has only to measure the relative reduction in entropy provided by making a single

evaluation whilst taking into account the B − 1 pending evaluations. Through clever

algebraic manipulations, Takeno et al. (2019) require only single-dimensional numerical

integrations when calculating the relative entropy reduction required for asynchronous

batch BO. Unfortunately, as demonstrated in Section 5.4, complex interactions between

each of the B fidelity evaluations yzi once conditioned on g∗ (as present in the second

term of (5.3.1)) prevents the approximation strategies employed by Takeno et al. (2019)

being extended to the synchronous batch setting. In particular, a naive extension

of Takeno et al. (2019)’s approach requires the prohibitively expensive numerical

approximations of B-dimensional multivariate Gaussian cumulative density functions.

In this work, we propose a novel approximation strategy for (5.3.1) completely free

from numerical integrations, thus providing the first computationally light-weight

information-theoretic acquisition function for synchronous batch BO.

5.3.4 Alternatives to Max-value Entropy Search

As discussed in Section 5.2, MES is not the only information-theoretic BO acquisition

function and is a descendent of ES and PES. However, the original ES and PES, as-well

as their extensions for batch BO (Hernández-Lobato et al., 2017) and multi-fidelity

BO (Swersky et al., 2013; Zhang et al., 2017), seek to reduce the differential entropy

of the d-dimensional maximiser x∗ (rather than the single dimensional g∗ targeted

by MES). The calculation of this entropy is challenging, requiring sophisticated and

expensive approximation strategies (see Section 5.6). As well as being substantially

more expensive than MES, the reliance of ES and PES on coarse approximations means

they provide less effective optimisation (Wang and Jegelka, 2017; Moss et al., 2020d;

Takeno et al., 2019) (Chapter 3). Moreover, the approximation strategy employed by

PES restricts its use to only Euclidean search spaces

Of course, attempts have been made to adapt other standard acquisition functions

to multi-fidelity and batch BO, with examples including EI (Picheny et al., 2010;

Chevalier and Ginsbourger, 2013; Marmin et al., 2015), UCB (Contal et al., 2013;

Kandasamy et al., 2016, 2017) and KG (Wu and Frazier, 2016, 2018). However,
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extensions of EI and UCB, although computationally cheap and often enjoying strong

theoretical guarantees, are typically lacking in performance and even though KG-based

methods can provide highly effective optimisation, their large computational cost

restricts them to problems with function query costs large enough to overshadow

very significant overheads (as demonstrated in Section 5.7). For batch BO, additional

heuristic strategies have been developed that are compatible with any acquisition

function, with the most popular and empirically successful being the Local Penalisation

of González et al. (2016a) and DPP-based approach of Kathuria et al. (2016) (see

Section 5.5 for a thorough discussion). Alternative but less performant heuristics

include approaches based on Stein methods (Gong et al., 2019) and Thompson sampling

(Kandasamy et al., 2018a).

5.4 A Novel Approximation of General-purpose Max-

value Entropy Search

In this section, we present the key theoretical contribution of this work: a novel

approximation of the GMES acquisition function proposed in Section 5.3. In particular,

we formulate GMES in terms of a the Information Gain (IG) — a measure of entropy

reduction often used when pruning decision tree classifiers (Raileanu and Stoffel, 2004)

and when selecting features for statistical models of textual data (Yang and Pedersen,

1997). The remainder of the section then details a novel approximation strategy for

the information gain based on simple well-known information-theoretic inequalities,

before demonstrating explicitly how this IG approximation can be used to approximate

the GMES acquisition function.

5.4.1 GMES as a Function of Information Gain

Recall our proposed GMES acquisition function (5.3.1), defined as the mutual infor-

mation between a set of B fidelity evaluations and the objective function’s maximum

value g∗. As in the derivation of the original MES acquisition function (5.3.2), the
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symmetric property of mutual information can be used to yield the expansion

αGMES
n ({zi}Bi=1) := H({yzi}Bi=1|Dn)− Eg∗

[
H({yzi}Bi=1|Dn, g

∗)|Dn

]
. (5.4.1)

For ease of notation, we now define Ai = yzi and Ci = g(xi) for each of the B

candidate location-fidelity tuples zi, as well as the multivariate random variables

A = (A1, .., AB) and C = (C1, .., CB). The information gain is then defined as the

reduction in the entropy of A provided by knowing the maximal value of C∗ = maxC,

i.e.

IGn (A,m|Dn) := H(A|Dn)−H(A|C∗ < m,Dn), (5.4.2)

Comparing (5.4.1) and (5.4.2), it follows that the GMES acquisition function can be

expressed in terms of IG as

αGMES
n ({zi}Bi=1) = Em∼g∗ [IGn (A,m|Dn)] .

We can now see that efficiently calculating (5.4.2) in general scenarios will allow

principled max-value entropy search across a wide range of BO settings. This goal is

therefore the focus of the remainder of this section.

5.4.2 Required Predictive Quantities

Before presenting our proposed approximation for IG, it is convenient to discuss the

distributional forms induced by our surrogate GP model. All random variables are

now assumed to be conditioned on the arbitrary information set Dn, which, alongside

references to n, is henceforth dropped from our notation.

Courtesy of our GP surrogate model, we have that

A ∼ N(µA,ΣA), C ∼ N(µC ,ΣC) and Corr(Ai, Ci) = ρi,

for predictive means µC ,µA ∈ RB, predictive covariances ΣC ,ΣA ∈ RB×B and a vector

of pairwise predictive correlations ρ ∈ RB (Rasmussen, 2004a; see Appendix C.1 for

details on how these predictive quantities are easily extracted from a GP).
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Figure 5.4.1: The considered dependency structure between the two set of random

variables {A1, .., AB} and {C1, .., CB}. Arrows denote the direction of dependence and

latent variables are drawn in squares.

In addition to these well-known distributional forms, we can exploit the specific

conditional structure of our GP surrogate model (which we describe below and sum-

marise in Figure 5.4.1) to derive the conditional distribution of the random variable

A given that C∗ < m. In particular, our planned BO applications ensure that each

Aj is conditionally independent of {Ci}i 6=j given Cj. This condition holds trivially for

single-fidelity BO, where the difference between each Ai and Ci is just independent

Gaussian noise. For multi-fidelity BO, this condition corresponds exactly to the

multi-fidelity Markov property that is a key assumption underlying multi-fidelity GP

modelling (Kennedy and O’Hagan, 2000; Le Gratiet and Garnier, 2014; Perdikaris

et al., 2017). This is not a restrictive assumption, with O’Hagan (1998) showing that

the multivariate Markov property holds for any GP surrogate model with a kernel

that can be factorised into a product of kernels, one defined across the fidelity and

one across the search space.

Under these dependence assumptions, Theorem 5.4.1 provides the distribution of

A|C∗ < m in closed-form, yielding a probability density function that, to the authors’

knowledge, has not been previously considered in the statistics literature. Theorem

5.4.1 provides our first intuition for why the efficient calculation of the differential

entropy H(A|C∗ < m) is challenging, i.e. the presence of the multivariate Gaussian

cumulative density in its probability density function.

Theorem 5.4.1 (Distribution of A given C∗ < m). Consider two b-dimensional
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multivariate Gaussian random variables A and C where C ∼ N(µC ,ΣC) and each

individual component of A is distributed as Aj ∼ N(µAj ,Σ
A
j,j). Suppose further that each

pair {Aj, Cj} are jointly Gaussian with correlation ρj, and that each Aj is conditionally

independent of {Ci}i 6=j given Cj. Define C∗ = maxC. Then the conditional density

of A given that C∗ < m is given by
1

P(C∗ < m)
φZ1(a)ΦZ2(m),

where m = (m, ..,m) ∈ RB and φZ1 and ΦZ2 are the probability density and cumulative

density functions for the multivariate Gaussian random variables

Z1 ∼ N
(
µA, S +DΣCD

)
and Z2 ∼ N

(
µC + Σ−1DS−1(a− µA),Σ−1

)
,

where ΣA = DΣCD + S for D and S, diagonal matrices with elements Dj,j = ρj

√
ΣAj
ΣCj,j

and Sj,j = (1− ρ2
j)Σ

A
j , and Σ =

((
ΣC
)−1

+DS−1D
)
.

Proof. See Appendix C.2

Note that in the uni-variate case (i.e B = 1 and C∗ = C1), Theorem 5.4.1 collapses

to the settings already considered when calculating MES and MUMBO in Section 5.3.

Firstly, under the strong restriction that C1 = A1 (arising from BO without observation

noise), A1|C∗ < m follows the well-known truncated Gaussian distribution, which can

be seen directly from Theorem 5.4.1 by setting ρj = 1, µCj,j = µAj and ΣC
j,j = ΣA

j . This

truncated Gaussian has a simple analytical expression for its differential entropy which

is exploited by standard MES. Secondly, if Cj and Aj are not perfectly correlated, we

see that the density of Theorem 5.4.1 reduces to that of an Extended Skew Gaussian

(ESG) distribution (Azzalini, 1985) as required for the MUMBO acquisition function

(see Chapter 3). Although the differential entropy of an ESG has no closed-form

expression (Arellano-Valle et al., 2013), we will later exploit the fact that its variance

has an analytical form

Var(Aj|Cj < m) = ΣA
j

(
1− ρ2

j

φ(γj(m))

Φ(γj(m))

[
γj(m) +

φ(γj(m))

Φ(γj(m))

])
, (5.4.3)

where γj(m) = (m − µCj )/
√

ΣC
j,j. We stress that, due to the complex interactions

between each Aj|C∗ < m, the joint distribution of A|C∗ < m is not the multivariate

ESG discussed by Azzalini and Valle (1996)).
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5.4.3 Approximating Information Gain

We now present a lower bound IGAPPROX for IG as Theorem 5.4.2. This bound is to be

used as an approximation IG ≈ IGApprox. We stress that replacing the maximisation

of an intractable quantity with the maximisation of a lower bound is a well established

strategy in the ML literature, for example in variational inference (Blei et al., 2017).

Theorem 5.4.2 (A lower bound for information gain). Under the assumptions of

Theorem 5.4.1, it holds that IG(A,m) ≥ IGApprox(A,m), where

IGApprox (A,m) :=
1

2
log |RA| − 1

2

B∑
i=1

log

(
1− ρ2

i

φ(γi(m))

Φ(γi(m))

[
γi(m) +

φ(γi(m))

Φ(γi(m))

])
,

(5.4.4)

where RA ∈ RB×B is the predictive correlation matrix of A with entries RA
i,j =

ΣA
i,j/
√

ΣA
i,iΣ

A
j,j.

Proof. Recall the definition of information gain IG (A,m) := H(A)−H(A|C∗ < m).

The first term of IG is simply the differential entropy of a multivariate Gaussian

distribution and so can be written in closed-form as H(A) = 1
2

log
[
(2πe)B

∣∣ΣA

∣∣],
where

∣∣ΣA

∣∣ is the determinant of the B ×B co-variance matrix of A. Unfortunately

calculating the second term of IG is significantly more complicated, with a closed form

expression only in the limited cases discussed above.

We now build an analytical upper bound for H (A|C∗ < m) by exploiting three

common information-theoretic inequalities. As derived in Cover and Thomas (2012),

we know that,

H(A) ≤
B∑
i=1

H(Ai), H(Ai|C∗ < m) ≤ H(Ai), and H(Ai) ≤
1

2
log 2πeVar(Ai).

Applying the first two of these inequalities in sequence to A|C∗ < m yields the

upper-bound

H(A|C∗ < m) ≤
B∑
i=1

H(Ai|Ci < m).

Then, as we know that Aj|Cj < m is an ESG (with a closed form expression for

its variance), we can apply the third information-theoretic inequality to yield the
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analytical upper bound

H(A|C∗ < m) ≤1

2

B∑
i=1

log(2πeVar(Ai|Ci < m))

=
1

2

B∑
i=1

log 2πeΣA
i,i

(
1− ρ2

j

φ(γi(m))

Φ(γi(m))

[
γi(m) +

φ(γi(m))

Φ(γi(m))

])
.

Substituting this upper bound into (5.4.2), we have a lower bound for the information

gain

IGApprox (A,m) :=
1

2
log
∣∣ΣA

∣∣−1

2

B∑
i=1

log ΣA
i,i

(
1− ρ2

j

φ(γi(m))

Φ(γi(m))

[
γi(m) +

φ(γi(m))

Φ(γi(m))

])

=
1

2
log
∣∣ΣA

∣∣+1

2
log

b∏
i=1

(
ΣA
i,i

)−1−

1

2

b∑
i=1

log

(
1− ρ2

j

φ(γi(m))

Φ(γi(m))

[
γi(m) +

φ(γi(m))

Φ(γi(m))

])
,

which after defining the predictive correlation matrixRA (with entriesRA
i,j = ΣA

i,j/
√

ΣA
i,iΣ

A
j,j)

and noting that

1

2
log
∣∣ΣA

∣∣+
1

2
log

b∏
i=1

(ΣA
i,i)
−1 =

1

2
log

∣∣∣∣∣∣∣∣∣∣


1√
ΣA1,1

0

. . .

0 1√
ΣAb,b

ΣA


1√
ΣA1,1

0

. . .

0 1√
ΣAb,b


∣∣∣∣∣∣∣∣∣∣

=
1

2
log
∣∣RA

∣∣,
provides the claimed expression.

5.4.4 GIBBON: General-purpose Information-Based Bayesian

OptimisatioN

We end this section with explicitly demonstrating how IGApprox can be used to

approximate the GMES acquisition function. Recall that GMES can be expressed in

terms of IG as

αGMES
n ({zi}Bi=1) = Em∼g∗ [IGn (A,m|Dn)] .
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We have already provided an approximation for IG and so all that remains to

approximate GMES is to deal with its outer expectation over g∗. Following the

arguments of Wang and Jegelka (2017), we build a Monte-Carlo approximation of

this expectation using a Gumbel-based sampler. Therefore, given a set of sampled

max-valuesM = {m1, ..,mM} of g∗|Dn and access to the predictive distributions

{yzi}Bi=1|Dn ∼ N(µy,Σy), {g(xi)}Bi=1|Dn ∼ N(µg,Σg) and Corr(yzi , g(xi)|Dn) = ρi,

we can approximate GMES with

αGIBBON
n ({z}Bi=1) =

1

|M|
∑
m∈M

IGAPPROX({yz1 , .., yzb},m).

This construction is henceforth referred to as the General Information-Based Bayesian

OptimisatioN (GIBBON) acquisition function and is defined as the closed-form ex-

pression in Definition 5.4.3 and demonstrated within a BO loop as Algorithm 2.

Definition 5.4.3 (The GIBBON acquisition function.). The GIBBON acquisition

function is defined as

αGIBBON
n ({z}Bi=1) =

1

2
log
∣∣R∣∣− 1

2|M|
∑
m∈M

B∑
i=1

log

(
1− ρ2

i

φ(γi(m))

Φ(γi(m))

[
γi(m) +

φ(γi(m))

Φ(γi(m))

])
,

where R is the correlation matrix with elements Ri,j = Σy
i,j/
√

Σy
i,iΣ

y
j,j and γi(m) =

m−µgi√
Σgi,i

.

At first glance, GIBBON’s analytical form looks complex. However, as GIBBON

contains only simple algebraic operations, it can be easily calculated in just a few lines

of code, unlike existing ES-based and PES-based acquisition functions and all existing

extensions of MES (as discussed in depth in Section 5.6). An important practical

consideration for GIBBON is that, for continuous search spaces, it has accessible

gradients that can easily be derived from its analytical expression, allowing efficient

inner-loop optimisation.

We end this section with a visual analysis of the accuracy of the GIBBON approxi-

mation. We consider a standard BO task with exact objective function evaluations
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Algorithm 2 GIBBON for general-purpose BO tasks.
function GIBBON(Resource budget R, Batch size B, Gumbel sample size N)

Initialise n← 0 and spent resource counter r ← 0

Propose initial design I

while r ≤ R do

Begin new iteration n← n+ 1

Fit GP model to collected evaluations Dn

Simulate N samples from g∗|Dn

Compute αGIBBON
n as given by Definition 5.4.3

B locations {zi}Bi=1 maximising αGIBBON
n ({zi}Bi=1)

c({zi}Bi=1)

Evaluate new locations and collect evaluations Dn+1 ← Dn

⋃
{(zi, yi)}Bi=1

Update spent budget r ← r + c({zi}Bi=1)

return Believed maximiser argmaxx∈Dn g(x)

(i.e not multi-fidelity or batch optimisation) as, in this setting, the MES acquisition

function provides an exact calculation of the entropy reductions. In Figure 5.4.2 we

see that the approximation provided by GIBBON is very close to the ground truth

provided by MES, with GIBBON and MES sharing modes and differing only in areas

of the space that would never be selected by BO, i.e those locations with very low

utility.

5.5 Relationship Between GIBBON and Heuristics

for Batch Bayesian Optimisation

We now provide insights into the batch capabilities of our GIBBON acquisition function

by drawing equivalences between GIBBON and two popular heuristics for batch BO —

determinantal point processes (Section 5.5.1) and local penalisation (Section 5.5.2).

Recall that performing an iteration of BO requires the identification of optimal

candidate points across the search space, i.e the maximisation of our acquisition

function. For GIBBON, this inner-loop maximisation task corresponds to allocating a



CHAPTER 5. GIBBON 77

(a) MES acquisition function surface (ground

truth).

(b) GIBBON acquisition function surface.

Figure 5.4.2: Comparison of the MES and GIBBON acquisition functions for a two-

dimensional BO task where MES can calculate entropy reductions exactly. The crosses

denote the locations already queried by the BO routine. GIBBON provides a very

close approximation of MES that reliably captures all its modes.

batch of B locations as

{z|Dn|+1, .., z|Dn|+B} = argmax
z∈Z

αGIBBON
n ({zi}Bi=1).

Before introducing the two batch BO heuristics, it is convenient to provide an

alternative expression for the GIBBON acquisition function. From Definition 5.4.3, we

see that the GIBBON acquisition function for a candidate batch of B location-fidelity

tuples can be decomposed into a sum of B GIBBON acquisition function evaluated

separately for each tuple with an additional determinant term as

αGIBBON
n ({z}Bi=1) =

1

2
log
∣∣R∣∣+

B∑
i=1

αGIBBON
n (zi), (5.5.1)

where R is the predictive correlation matrix of the batch. Note that the first term of this

decomposition encourages diversity within the batch (achieving high values for points

with low predictive correlation) whereas the second term ensures that evaluations are

targeted in areas of the search space providing large amounts of information about g∗.
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5.5.1 Relationship with Determinantal Point Processes

We can now interpret GIBBON in the context of a popular heuristic approach for

batch design based on probabilistic models of repulsion known as Determinantal Point

Processes (DPPs) (Kulesza et al., 2012). This comparison provides the first theoretical

justification for choices of key DPP attributes which previously had to be chosen

arbitrarily by practitioners.

DPPs provide a probability distribution over sets of points, such that sets of high-

quality points (as measured by a quality function q : X → R) with a diverse spread

(as measured by a similarity kernel s : X × X → R+) occur with high probability.

More precisely, a particular set of points {xi}Bi=1 occurs with probability.

P({xj}Bj=1) ∝ |L({xj}Bj=1)|, (5.5.2)

where L({xj}Bj=1) is a b× b matrix with elements Li,j = q(xi)q(xj)s(xi,xj).

Generating diverse but high-quality collections of points is exactly what we seek

when allocating batches in BO problems. Unfortunately, a lack of understanding of how

to choose appropriate quality functions and similarity kernels a-priori have previously

limited the performance of DPP methods in BO, with existing applications requiring

users to plug in arbitrary choices. The primary complication is that the relative scales

of q and s trade-off the quality and diversity of batches, and so, for high-performance

BO, these measures must be carefully chosen to complement (rather than dominate)

each other. Consequently, the most common approach for using DPPs for BO is as

part of pure exploration strategies, where the quality function is ignored (q(x) = 1)

and a DPP with a radial basis function kernel as its similarity measure is sampled to

allocate a whole batch (Dodge et al., 2017), or to allocate the B−1 elements remaining

after choosing an initial point through a standard sequential BO routine (Kathuria

et al., 2016). Related approaches have also been used for high-dimensional BO (Wang

et al., 2017b), where DPPs are used to sample a subset of the available search space

dimensions. Note that these existing applications of DPPs to batch BO are limited in

scope, supporting only single-fidelity problems over Euclidean search spaces, i.e those

over which a standard similarity kernel can easily be defined.
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We now explicitly show that our GIBBON acquisition function is equivalent to

a DPP with specific choices of quality functions and similarity kernels. First define

the exponential of our GIBBON acquisition function (with B = 1) as a quality

function qG(z) = exp
(
αGIBBON(z)

)
and the predictive correlation (as specified by our

GP surrogate model) as a similarity kernel sG(zi, zj) = Ri,j. Then, after defining

LG({zj}Bj=1) as the matrix with elements LG
i,j = qG(zi)qG(zj)sG(zi, zj), simple algebraic

manipulations allow the batch GIBBON acquisition function (5.5.1) to be expressed as

αGIBBON
n ({zj}Bj=1) =

1

2
log |LG|,

i.e the maximisation of our acquisition function corresponds to allocating the batch

with maximal |LG|, known as the maximum a posteriori (MAP) problem of DPPs.

This is known to be NP -hard (Ko et al., 1995). However, the submodularity of DPPs

ensures reasonable performance of greedy approximate solutions (as demonstrated by

Gillenwater et al., 2012), explaining the observed effectiveness of a greedy batch-filling

strategy when optimising our GIBBON acquisition function (see Section 5.7).

Recasting GIBBON as a DPP provides the first theoretical motivation for using

DPPs for batch BO, with the particular choices of quality and similarity function

arising from our information-theoretical derivation leading to significant improvements

over existing DPP heuristics (Section 5.7). Moreover, we have greatly increased the

generality of DPP-based BO, providing the first formulation that supports multi-fidelity

and structured search spaces, or any other framework using a surrogate model where

posterior correlation is easily accessible.

5.5.2 Relationship with Local Penalisation

Another class of popular heuristics for batch BO are those based on local penalisation

(LP) (González et al., 2016a; Alvi et al., 2019). Rather than explicitly balancing the

diversity and quality of batches as two additive contributions, LP methods apply a

multiplicative scaling to down-weight an acquisition function around locations already

present in the batch, thus ensuring the selection of a diverse set of points. We now show

that GIBBON can be interpreted as a penalisation strategy and consequently, for the
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first time in the literature, we make an explicit link between DPP- and LP-based BO

routines. By recasting GIBBON as a local penalisation, we are able to derive a novel

theoretically-justified penalisation function that outperforms existing LP methods.

For any choice of acquisition function αn : X → R taking positive values, an LP

strategy greedily chooses the ith element of the n+ 1th batch as

xn+1,i = argmax
x∈X

αn (x)
i−1∏
j=1

ψ(x;xn+1,j),

where ψ(x,x′) : X × X → [0, 1] is a penalisation function. By requiring that ψ(x,x′)

is a non-increasing function of ||x− x′||, we ensure that penalisation is largest when

considering x close to elements already present in the batch. The most popular

penalisation function is the soft penaliser of González et al. (2016a)

ψsoft(x,x′) =
1

2
erfc(−z) for z =

1√
σ2
n(x′)

(L||x− x′|| − g∗ + µn(x′)) ,

where erfc is the complementary error function and g∗ is the current believed optimum.

An important practical consideration of LP routines is that their performance is

sensitive to predicting a Lipschitz constant L (i.e |g(x)− g(x′)| ≤ L||x−x′|| ∀x,x′ ∈

X ), for which point-estimates must be carefully extracted from previous function

evaluations. Note that this Lipschitz constant can only be defined for Euclidean search

spaces.

We now show that allocating batches by performing a greedy maximisation of

GIBBON can be interpreted as an LP routine for specific choices of acquisition and

penalisation functions. Define a re-scaled GIBBON acquisition function αscaledn (x) =(
eα

gibbon
n (x)

)2

and a penaliser ψcorr(x; {xj}i−1
j=1) =

∣∣R({xj}i−1
j=1∪{x})

∣∣ as the determinant

of the batch’s predictive correlation. After routine algebraic manipulations, we can see

that allocating the ith element of the n+ 1th batch according to a greedy maximisation

of our GIBBON acquisition function is equivalently expressed as

xn+1,i = argmax
x∈X

αGIBBON
n

(
{x} ∪ {xn+1,j}i−1

j=1

)
= argmax

x∈X
αscaledn (x)ψcorr(x; {xn+1,j}i−1

j=1),
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i.e. the predictive correlation term in GIBBON can be interpreted as a form of local

penalisation. However, unlike ψsoft and ψhard, ψcorr does not require the estimation of

L, instead just using the easily accessible predictive correlation of our GP. In fact the

superior performance of our proposed approach over existing LP methods suggests

that complicated penalisation functions are not needed at all.

5.6 The Computational Complexity of Information-

theoretic Bayesian Optimisation

In this final section before our experimental results, we analyse the computational

overhead incurred by GIBBON and compare with all other existing information-

theoretic acquisition functions, many of which are included in our experimental

results of Section 5.7. To the authors’ knowledge, this analysis forms the first such

comparative analysis across all information-theoretic BO. We discuss the complexity

of the information-theoretic acquisition functions mentioned in Sections 5.2 and 5.3:

Entropy Search (Hennig and Schuler, 2012, ES), Predictive Entropy Search (Hernández-

Lobato et al., 2014, PES) and its extensions PPES (Hernández-Lobato et al., 2017)

and MF-PES (Zhang et al., 2017), Max-value Entropy Search (Wang and Jegelka,

2017, MES) and its extensions MUMBO (Moss et al., 2020d) (Chapter 3) and MF-

MES (Takeno et al., 2019), as well as the Fast Information-Theoretic BO of Ru et al.

(2018, FITBO). Although MFMES was originally designed for asynchronous batch

BO, Takeno et al. (2019) do discuss (in their Appendix D.4) an alteration that allows

the support for the synchronous batch BO problems targeted in this work but with

large computational cost. It is this variant of MFMES that we consider in this Section

and for our experimental results (Section 5.7).

The computational complexity of BO routines is hard to measure exactly as we do

not know a-priori how many evaluations are required to maximise the highly multi-

modal acquisition function in each inner loop. However, there are two main contributors

to the computational cost of information-theoretic BO that can be analysed: a one-

off initialisation calculation required to ‘prepare’ the acquisition functions for each
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Method Noise?
Multi-

Fidelity ?
Batch?

Non-

Euclidean ?

Initialisation

costs

Acquisition

query costs

ES X X × X n2e2d + e3d n2ed

PES X × × × n2e2d + (n+ d)3ed n2 + (n+ d)ed

PPES X × X × n2e2d + (n+ d)3ed B2n2 + (B3 + n+ d)ed

MF-PES X X × × n2e2d + (n+ d)3ed n2 + (n+ d)ed

FITBO × × × × 1 n2

MES × × × X n2ed n2

MUMBO X X × X n2ed n2

MF-MES X X X X n2ed B2n2 +B3 + eB

GIBBON X X X X n2ed B2n2 +B3

Table 5.6.1: Computational complexity of existing entropy-based acquisition functions.

d denotes the dimensions of the search space, n is the number of observations already

collection, and B denotes batch size. Complexity results are correct to highest order

terms only and ignore constant factors.

separate BO step, and the costs of each acquisition function query required for the

inner-loop maximisation. These two complexity contributions are presented in Table

5.6.1, alongside a summary of the type of extended BO problems supported by each

acquisition function, i.e whether they permit noisy, multi-fidelity, batch observations

or non-Euclidean search spaces. We now derive the stated complexity results for

initialisation and acquisition function query costs.

5.6.1 Acquisition Function Initialisation Costs

All BO routines incur a computational cost at the start of each individual BO step

through the fitting of the surrogate model. The primary contribution to the cost of

fitting a GP surrogate model on n data points is an n × n matrix inversion, i.e an

O(n3) computation. Extracting a single predictive mean or co-variance from this GP

then costs O(n) and O(n2), respectively. As the overhead of fitting the GP is incurred
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across all BO routines, we leave out its contribution from our complexity analysis.

We instead focus purely on the initialisation overheads specific to each information-

theoretic acquisition function incurred when collecting sets of samples required for their

approximation strategies. This set is reused for all acquisition function evaluations

during a single inner-loop maximisation but re-sampled for each BO step.

All the samples required for information-theoretic acquisition functions can be

separated into two distinct classes — those approximating single-dimensional quantities

and those approximating quantities with the same dimensions as the search space. To

paint a clear picture of computational cost, we consider BO problems with a search

space of fixed dimension d and focus primarily on how the costs scale with respect

to d, the batch size B, and the number of previously queried points n. Although all

sample sizes are user-controllable, the efficiency of the resulting acquisition function

depends sensitively on appropriately large sample sizes (as demonstrated for PES and

MES by Wang and Jegelka (2017)). Therefore, sample sizes used when approximating

d-dimensional quantities must grow exponentially as O(ed) in order to preserve approx-

imation accuracy. In contrast, the sample sizes required for effective approximations

of single dimensional quantities can be chosen independently of d and so are denoted

as O(1) in our complexity analysis.

As discussed in Section 5.3, MES-based acquisition functions (including GIBBON),

uses a Gumbel sampler to access samples of the maximum value g∗. This sampler

evaluates our GP surrogate model’s posterior (at O(n2) cost) across O(ed) points

to form a discretisation of the d-dimensional search space. Each of the required

O(1) samples of g∗ (a single dimensional quantity) can then be extracted with O(1)

cost, yielding an overall complexity of O(n2ed). As shown in Table 5.6.1, GIBBON’s

initialisation costs are substantially lower than those of the acquisition functions based

on PES and ES. Only FITBO has a lower initialisation cost, however it has not

seen widespread use as it supports only noiseless standard BO tasks and employs a

complicated construction requiring linear approximations of non-central χ2 process

(operations not supported by GP libraries). For the ES and PES-based acquisition

functions, which require samples from the d-dimensional objective function maximiser
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x∗, initialisation costs are substantial.

In ES, each sample of x∗ is the maximum of a sample function drawn from the

GP across an O(ed) discretisation of the search space. Simulating these function

draws requires a one-off O(e3d) computation for the Cholesky factor of the predictive

co-variance matrix evaluated across the discretisation, as accessed with an O(n2)

cost for each of its O(e2d) elements. Consequently, the initialisation of ES incurs a

sizeable O(n2e2d+ e3d) complexity scaling. PES also requires samples of x∗ but instead

maximises the sample draws from a finite feature approximation of the GP surrogate

model (Rahimi and Recht, 2008), requiring just an O(n2) cost for each of the required

O(ed) samples. However, unlike ES, PES incurs the additional cost of pre-computing

an n + d-dimensional matrix inversion for each sample. Therefore, PES has a total

initialisation cost of O(n2ed + (n+ d)3ed)). Note that the finite feature approximation

employed by PES and its variants is only rigorously defined for GPs with stationary

kernels and Euclidean search spaces.

5.6.2 Acquisition Function Query Costs

We now discuss the computational complexity of each individual acquisition function

query. As highlighted in Table 5.6.1, not only does the GIBBON acquisition func-

tion match the lowest query costs attained by any information-theoretic acquisition

functions, but it is the first truly general acquisition function suitable for standard,

stochastic, multi-fidelity and batch optimisation.

To calculate GIBBON and the other MES-based acquisition functions, we require

the joint predictive distribution across B proposed batch locations. Accessing these

B2 predictive co-variance terms from a GP surrogate model and then taking its

determinant cost O(B2n2) and O(B3), respectively. Finally, GIBBON calculates an

analytical expression for each of the O(1) samples from g∗ and across each of the batch

elements, yielding an overall complexity of O(B2n2 + B3). MF-MES has a similar

construction to GIBBON, but requires the additional calculation of a B-dimensional

integral, each to be approximated numerically with O(eB) cost. Although in the

non-batch setting, all MES-based acquisition functions have O(n2) cost, we stress
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that FITBO, MUMBO and MF-MES all require numerical integration (a significant

constant factor cost not picked up in our highest order complexity analysis), whereas

GIBBON and standard MES do not. Consequently, the experiments of Section 5.7

show that GIBBON is substantially cheaper than MUMBO and MF-MES in practice.

The ES and PES-based acquisition functions incur a substantially larger query cost

than GIBBON. Their primary computational bottleneck is the requirement of separate

calculations for each of their O(ed) samples of x∗. In ES, each evaluation requires an

n2 prediction from the GP for each location across a small O(1)-sized collection of

points for each sampled x∗. In contrast, PES requires only a single prediction from the

GP but additional O(n+ d) manipulations for each of its O(ed) pre-computed kernel

matrices. For batch BO, PPES requires B2 GP predictions and a B3 calculation to

access the determinant of the batch’s posterior co-variance, as well as an additional

B3 determinant calculations a for each pre-computed kernel matrix.

5.7 Experiments

We now finish this chapter with a comprehensive empirical evaluation of our GIBBON

acquisition function. In particular, we consider batch (Section 5.7.1) and multi-fidelity

(Section 5.7.2) synthetic benchmarks, as-well as well as a molecular design loop over a

non-Euclidean and highly-structured search space (Section 5.7.3).

For clarity, all of our experiments follow a similar format. We run each of the

considered BO methods across 50 random seeds, plotting mean performance and a

single standard error. For batch algorithms, we count the evaluation of a batch as a

single BO iteration. Suboptimality of the current believed optimum x̂ is measured

by the regret g(x∗) − g(x̂), where x∗ is the true maximiser. For some experiments

we also measure the time taken to choose the next query points (referred to as the

optimisation overhead). This computational cost of performing BO includes fitting

the GP surrogate model as well as initialising and maximising the acquisition function.

All experiments reporting optimisation overheads were performed on a quad core Intel

Xeon 2.30GHz processor.
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Across all our experiments, we see the same general behaviour: GIBBON at least

matches, and often exceeds, the performance of existing high-performance acquisi-

tion functions whilst incurring an order of magnitude lower computational overhead.

Moreover, the breadth of our experiments showcases that GIBBON is truly a general-

purpose acquisition function, forming the first computationally light-weight acquisition

function suitable for standard BO extensions, batch high-cost string design problems

and sophisticated synchronous batch multi-task BO frameworks.

Overall, the purpose of our experiments is to demonstrate how GIBBON performs

relative to other BO acquisition functions, with a primary focus on existing MES-based

approaches. For completeness, we also compare against a range of additional methods,

chosen to reflect their popularity, code availability and suitability for the particular

experiment. To this end, we compare GIBBON with all the acquisition functions

supported by BoTorch and Emukit, as-well as our own implementations of the batch

heuristics discussed in Section 5.5. We will introduce these competitors alongside

the relevant empirical results. Unfortunately, the PES-based methods discussed in

Section 5.6 do not have implementations in BoTorch or Emukit. Moreover, we could

not find any other comparable maintained software implementations, likely due to

demonstrably worse performance of PES than MES (as shown by Wang and Jegelka,

2017) and PES’s difficult-to-implement subroutines (Section 5.6).

5.7.1 Standard and Batch Optimisation

For our first set of experiments, we consider a set of synthetic functions provided with

the BoTorch package. In particular, we recreate two of the experiments of Balandat

et al. (2019) by maximising the Hartmann (d = 6) and Ackley functions (d = 4), each

with observations perturbed by centred Gaussian noise with a variance of 0.25. In

addition, we also consider the Shekel function (d = 4) under exact observations. For

details of these synthetic functions, we refer readers to Appendix C.3.1. Following the

setup of Balandat et al. (2019), we initialise all routines by evaluating 2d+ 2 random

locations, refit our GP’s kernel parameters after each BO step, and choose the current

believed optimum x∗ by maximising the posterior mean of the GP surrogate model.
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For each experiment, we separately consider purely sequential BO (B = 1) and batch

BO (B = 5), recording the evaluation of the whole batch as a single optimisation step.

As well as reporting the performance of GIBBON, MES and Expected Improvement

(EI), we also ran the acquisition functions already supported in BoTorch, i.e Knowledge

Gradient (KG), Noisy Expected Improvement (NEI) (Picheny et al., 2010), and

MFMES (the multi-fidelity MES extension of Takeno et al. (2019),used here to support

noisy observations). We stress that MFMES was designed to provide computationally

light-weight asynchronous batch BO and we will see that its adaptation to synchronous

problems (as implemented by BoTorch and discussed earlier in Sections 5.3 and

5.6) incurs a substantial computational overhead. For our batch problems, we also

implemented BoTorch versions of Local Penalisation (LPEI) and the DPP heuristic

(DPPEI) of Kathuria et al. (2016), both using EI as their base acquisition function

(as considered by González et al. (2016a) and Kathuria et al. (2016)). In addition,

we also provide local penalisation with an MES base acquisition function (LPMES),

a combination not tested by González et al. (2016a) but found to be particularly

effective in our experimentation. All MES-based acquisition functions (including

GIBBON) use 5 max-values sampled from a Gumbel distribution fit to surrogate

model predictions at 10, 000 ∗ d random locations and are re-sampled for each BO step.

All other implementation parameters follow the BoTorch defaults.

For acquisition function maximisation we use BoTorch’s gradient-based maximiser.

However, as this inner-loop maximisation can be challenging since it corresponds to a

highly multi-modal maximisation across a B × d-dimensional space. Therefore most

batch BO routines build batches greedily by breaking batch design into B separate d-

dimensional maximisations. Consequently, for all approaches (including our GIBBON

acquisition function) except KG , batches are constructed in this greedy manner with a

maximisation budget of 10∗d random restarts for each element of the batch. Although

KG is able to jointly allocate batches, its large computational cost restricted us to 20

restarts (the amount recommended by the BoTorch authors).

Across the three synthetic experiments (Figure 5.7.1) we see that GIBBON provides

efficient high-precision optimisation, yielding small regret in competitively few iterations



CHAPTER 5. GIBBON 88

(a) Noiseless Shekel (d = 4, B = 1) (b) Noiseless Shekel (d = 4, B = 5)

(c) Noisy Ackley (d = 4, B = 1) (d) Noisy Ackley (d = 4, B = 5)

(e) Noisy Hartmann (d = 6, B = 1) (f) Noisy Hartmann (d = 6, B = 5)

Figure 5.7.1: Optimisation of synthetic benchmark functions. GIBBON provides

efficient and high-precision optimisation, matching or exceeding the performance of

existing approaches.
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(a) B=1 (b) B=5

Figure 5.7.2: The computational overheads incurred while optimising the Hartmann

function. GIBBON’s costs remains low throughout the optimisation, whereas the

other high-performing batch acquisition functions costs increase dramatically as the

optimisation progresses.

for both sequential and batch BO. Of particular note is the order of magnitude smaller

overhead incurred by GIBBON over the other high-performing acquisition functions

(NEI, KG and MFMES) as summarised in Table 5.7.1a (for B = 1) and Table 5.7.1b

(for B = 5). In particular, batch KG incurs at least a 10 times larger overhead than

GIBBON. Moreover, while the computational overhead of batch KG, MFMES and NEI

increase substantially as the optimisation progresses, GIBBON’s overhead remains the

same (see Figure 5.7.2). Figure 5.7.3 confirms our earlier claim that GIBBON is indeed

a high-performance yet computationally light-weight acquisition function, showing

that GIBBON performs better than all competing acquisition functions while incurring

a computational overhead only slightly worse than the simple but low-performance

approaches. We were surprised to see that GIBBON is able to outperform standard

MES in the noiseless optimisation task of Figure 5.7.1a, as it is for such scenarios that

standard MES is exact. As GIBBON approximates MES, we expected it to perform

strictly worse for this example. We delve deeper into this phenomenon in Appendix

C.4.
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Computational Overhead (seconds 1 d.p.)

Shekel (d=4) Ackley (d=4) Hartmann (d=6)

EI 0.2 (±0.0) 0.2 (±0.1) 0.8 (±0.1)

MES 0.5 (±0.1) 0.5 (±0.0) 1.0 (±0.1)

NEI 3.5 (±0.3) 3.0 (±0.2) 8.9 (±0.7)

MFMES 3.0 (±0.4) 0.7 (±0.1) 4.5 (±0.2)

KG 13.0 (±0.8) 22 (±1.0) 66.6 (±4.6)

GIBBON 0.6 (±0.1) 0.8 (±0.1) 1.5 (±0.1)

(a) Computational overheads for sequential BO (B = 1).

Computational Overhead (seconds 1 d.p.)

Shekel (d=4) Ackley (d=4) Hartmann (d=6)

DPPEI 0.8 (±0.1) 0.8 (±0.0) 1.2 (±0.0)

LPEI 1.4 (±0.2) 2.3 (±0.1) 2.9 (±0.1)

LPMES 2.9 (±0.1) 3.3 (± 0.1) 3.5 (± 0.1)

NEI 21.3 (±1.8) 23.4 (±0.6) 43.0 (±2.6)

MFMES 24.4 (±2.3) 26.7 (±0.6) 38.6 (±1.9)

KG 58.1 (±4.4) 53.0 (±3.1) 103.4 (±6.2)

GIBBON 5.0 (±0.5) 5.8 (±0.7) 13.3 (±1.3)

(b) Computational overheads for batch BO (B = 5)

Table 5.7.1: Computational overheads for the synthetic benchmarks of Figure 5.7.1

averaged over the whole optimisation run. The two algorithms achieving lowest

regret for each task are highlighted, demonstrating that GIBBON at least matches

the overhead of other high-performing sequential acquisition functions and incurs a

significantly lower overhead than other batch high-performing acquisition functions.



CHAPTER 5. GIBBON 91

(a) B=1 (b) B=5

Figure 5.7.3: Comparison of the final regret achieved by each BO method with their

computational overheads. Scores are standardised to sit within [0, 1] and averaged

across the three synthetic benchmark tasks. Lower scores on the x and y axis represent

a smaller computational overheads and more effective optimisation, respectively.

5.7.2 Multi-fidelity Optimisation

We now turn to multi-fidelity optimisation, where the current state-of-the-art acquisi-

tion functions are the effectively equivalent MUMBO (Moss et al., 2020d) (Chapter

3) and MFMES (Takeno et al., 2019) acquisition functions. Moss et al. (2020d)

demonstrates comprehensively that MUMBO outperforms a wide range of existing

multi-fidelity acquisition functions, including the entropy search-based approach of

Swersky et al. (2013), the upper-confidence bound variants of Kandasamy et al. (2016)

and Kandasamy et al. (2017), as well as extensions of EI (Huang et al., 2006) and

KG (Wu and Frazier, 2016). Therefore, to test GIBBON’s multi-fidelity optimisation

capabilities, it is sufficient to compare with MUMBO. To this end, we provide an

implementation of GIBBON for the Emukit Python library and recreate exactly the

synthetic experiments from Figure 3.5.1 of Chapter 3 (or Figure 2 of Moss et al.

(2020d)). These experiments consider popular synthetic multi-fidelity benchmarks

with discrete fidelity spaces consisting of between 2 and 4 fidelity levels (each with

differing query costs) and search space dimensions ranging from 2 to 8 dimensions

(see Appendix C.3.2 for the analytical forms of these synthetic benchmarks). In these
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Overhead for Multi-fidelity Optimisation (Seconds 1 d.p.)

Curin (d=4) Hartmann (d=3) Hartmann (d=6) Borehole (d=8)

ES 16.6 (±0.7) 59.7 (±4.2) 229.8 (±15.3) -

MUMBO 13.7 (±0.6) 18.6 (±1.0) 79.9 (±6.2) 51.5 (±7.5)

GIBBON 4.0 (±0.2) 9.9 (±0.7) 50.2 (±4.0) 46.1 (±7.5)

Table 5.7.2: Computational overheads of the multi-fidelity synthetic benchmarks of

Figure 5.7.4. GIBBON enjoys the lowest overheads for all the tasks (as highlighted in

bold), often less than half those of MUMBO.

experiments, we use the linear multi-fidelity GP model of Kennedy and O’Hagan

(2000) as our surrogate model, initialise the GP with a random sample of 2 ∗ d points

queried across all fidelity levels, and fit the GP’s kernel parameters to maximise model

marginal likelihood after each BO step.

Figure 5.7.4 shows that GIBBON provides at least as effective optimisation as

MUMBO and Table 5.7.2 shows that GIBBON has a significantly lighter computational

overhead. To provide context for the high performance and low overhead of GIBBON

we also present the performance of EI and MES when restricted to just querying the

true objective function (i.e no access to low-fidelity observations) and the performance

of the ES acquisition function, used to perform multi-fidelity optimisation by Swersky

et al. (2013). Although the difference in overhead between MUMBO and GIBBON

decreases as we consider higher-dimensional search spaces (primarily due to the growing

cost of the Gumbel sampler used by both approaches), the difference in achieved regret

increases in GIBBON’s favour.

5.7.3 Batch Molecular Search

In Chapter 4, we applied BO to high-cost string design problems, considering, among

other problems, the task of optimising over molecules. Such tasks are well-suited for

BO, due to the high cost of evaluating candidate molecules via wet-lab experiments.

Chapter 4 proposed a BO framework that fits a GP surrogate model to a popular string-
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(a) Maximisation of the 2D Currin function

(2 fidelity levels with evaluation costs 10 and

1).

(b) Minimisation of 3D Hartmann function (3

fidelity levels with evaluations costs 100, 10

and 1).

(c) Minimisation of 6D Hartmann function (4

fidelity levels).

(d) Maximisation of the 8D Borehole function

(2 fidelity levels with evaluation costs 10 and

1).

Figure 5.7.4: GIBBON provides high-precision multi-fidelity optimisation with low

computational overheads across a range of synthetic multi-fidelity benchmarks. Due to

the high-cost of MTES, we were not able to run it on the higher-dimensional Borehole

task. As is standard in multi-fidelity optimisation, the x-axis for these results measures

the resources spent on function evaluations (rather than raw BO steps).



CHAPTER 5. GIBBON 94

based representation of molecules known as SMILES strings (Anderson et al., 1987)

through a string kernel GP (Beck et al., 2015). Standard EI arguments are then applied,

yielding a highly effective strategy for searching large candidate set of molecules. One

practical limitation of this framework, however, is the large computational cost of string

kernels, as incurred for each prediction from the surrogate model GP. Consequently,

the framework of Chapter 4 is limited to acquisition functions that require a small

number of surrogate model predictions. Aside from GIBBON, our other considered

high-performing batch acquisition functions (MFMES, NEI and KG) require many

kernel evaluations for each acquisition function query and the low-cost approaches of

DPPEI and LPEI are limited to only Euclidean search spaces. In contrast, GIBBON

requires only B surrogate model predictions to measure the utility of a candidate

batch and makes no assumptions on the properties of the search space. Therefore,

GIBBON can be used to extend the framework of Chapter 4 to provide the first

information-theoretical and the first batch approach for BO sting design. Batch

design are particularly attractive for molecular search applications where it is common

practice to synthesis collections of candidate molecules in parallel.

We now recreate the Zinc example considered by Moss et al. (2020b), where they

explore a large collection of 250,000 molecules. The task is then to quickly find

molecules that score highly according to a chemically-inspired metric, i.e. forming a

proxy molecular design loop. At each BO step, we randomly sample 1, 000 molecules

from which we (greedily) choose to evaluate the B molecules that maximise our

GIBBON acquisition function. We fit our Gumbel sampler on this same sample,

re-sampling both the max-values required for GIBBON and the considered 1, 000

molecules at the start of each BO step. We evaluate 20 randomly chosen molecules

to initialise our GP and then allow BO to choose 100 further molecules, either one

by one or as 20 batches of 5 molecules or 10 batches of 10 molecules. Figure 5.7.5

shows that even in the purely sequential case, GIBBON provides a modest boost in

performance over EI (the acquisition function previously used by Moss et al. (2020b)).

More importantly, Figure 5.7.5 also shows that GIBBON is able to provide effective

batch optimisation over batches of size 5 and 10, therefore providing an extension of
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Figure 5.7.5: Exploring the Zinc database of molecules with GIBBON. In the purely

sequential case, GIBBON finds higher-scoring molecules than EI. The batched GIBBON

approaches reach roughly the same final regret after the same total number of 100

synthesised molecules, demonstrating that GIBBON is able to effectively leverage

parallel synthesis resources.

Moss et al. (2020b)’s framework where parallel synthesising resources can be used to

speed up the molecular search.

5.8 Conclusions and Future Work

We have presented GIBBON, a general-purpose acquisition function that extends

max-value entropy search to provide computationally light-weight yet high performing

optimisation for a wide range of BO problems. The efficiency of GIBBON relies on a

novel information-theoretical approximation. Moreover, the derivation of this approxi-

mation allowed the exploration of the first explicit connection between information-

theoretic search, determinantal point process and local penalisation, tying together

large sections of the BO literature previously developed and analysed independently.

Not only does GIBBON provide competitive optimisation for common BO exten-

sions like batch and multi-fidelity optimisation, but it forms the first high-performance

batch acquisition function suitable for applying BO across highly-structured search

spaces, as we demonstrated within a molecular design loop. BO for structured optimi-

sation tasks is a fast growing frontier of the BO literature, with recent work tackling
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BO for strings (Moss et al., 2020b; Swersky et al., 2020), combinatorial spaces (Deshwal

et al., 2020) and spaces of neural network architectures (Kandasamy et al., 2018b).

Therefore, we believe that GIBBON (and our flexible software implementation) will

have substantial utility for the machine learning community.

As a final comment, we would like to point out that, although we have already

shown GIBBON to have wide applicability, GIBBON can be readily applied to an

even wider collection of BO problems. For example, GIBBON can be combined with

MESMO (Belakaria et al., 2019), an extension of MES for multi-objective optimisation,

to provide the first computationally light-weight acquisition function for batch multi-

objective BO. Similarly, GIBBON can also provide a computationally light-weight

approach for batch constrained optimisation by extending the MES-based approach of

Belakaria et al. (2020). Finally, GIBBON can be used to improve the performance

and reduce the computational cost of any framework relying on batch BO heuristics,

for example in non-myopic BO (González et al., 2016b; Jiang et al., 2020).



Chapter 6

BOSH: Bayesian Optimisation by

Sampling Hierarchically

Status: A condensed version of the work in this chapter was presented at the Workshop

on Real World Experimental Design and Active Learning during The International

Conference on Machine Learning, 2020.

6.1 Preface

In this chapter, we turn to a challenging multi-fidelity and batch BO framework

inspired by BO problems with controllable observation noise. Existing deployments

of Bayesian Optimisation (BO) in this setting, such as parameter tuning via cross

validation and simulation optimisation, typically optimise an average of noisy real-

isations of the objective function as induced by a fixed collection of random seeds.

However, disregarding the true objective function in this manner means that BO finds

a high-precision optimum of the wrong function. To solve this problem, we propose

Bayesian Optimisation by Sampling Hierarchically (BOSH), a novel BO routine pairing

a hierarchical Gaussian process with a custom information-theoretic framework to

generate a growing pool of seeds as the optimisation progresses. We demonstrate

97
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that BOSH provides more efficient and higher-precision optimisation than standard

BO across synthetic benchmarks, simulation optimisation, reinforcement learning and

hyper-parameter tuning tasks. Two empirical studies also published during the PhD

but outside the focus of this thesis provide additional compelling justification for the

need for this BOSH framework when performing model selection and hyper-parameter

tuning in natural language processing (Moss et al., 2018, 2019).

6.2 Introduction

Bayesian optimisation (BO) (Mockus, 2012) is a well-studied global optimisation

routine for finding the optimiser

x∗ = argmax
x∈X

g(x), (6.2.1)

of a ‘smooth’ but expensive to evaluate function g over a compact domain X ∈ Rd.

BO is particularly popular for problems where we have access to only noisy evaluations

of g and has had many successful applications optimising high-cost stochastic functions

including fine-tuning machine learning (ML) models (Snoek et al., 2012), optimising

simulations in operational research (Kleijnen, 2009), and designing physical science

experiments (Frazier and Wang, 2016).

For many stochastic optimisation tasks, it is commonplace to disregard the original

objective function g and instead optimise the average of a collection of K specific

realisations fs, each generated by fixing a source of randomness through the specification

of a random seed. Common examples include the K data partitions used to estimate

ML model performance throughK-fold cross validation (CV)(Kohavi, 1995) (see Figure

6.2.1) or considering K fixed initial conditions to create sample average approximations

Kleywegt et al. (2002) for simulation optimisation or reinforcement learning. This

small collection of seeds S = {s1, ..sK} is typically randomly initialised, but then fixed

for the remainder of the optimisation. We henceforth refer to S as an evaluation

strategy, with its optimisation seeking

x∗S = argmax
x∈X

(g̃S(x)) , (6.2.2)
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Figure 6.2.1: Estimated performance according to different train-test splits when

tuning the amount of regularisation for a logistic regression classifier of sentiment

in IMDB movie reviews. Individual performance estimates are plotted as purple

lines (with five highlighted), and the score from a large test set (a proxy for true

performance) is plotted in black. The histogram of chosen regularisation (performance

curve maxima) shows many train-test splits choosing sub-optimal regularisation (−4%

accuracy).
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where g̃S(x) = 1
K

∑K
i=1 fsi(x).

Evaluations of g̃S(x) enjoy a substantial reduction in variance compared to a

single stochastic evaluation of the true objective function g(x). However, there is

no guarantee that x∗S ≈ x∗, as x∗S is a function of the randomly selected S. In

fact, the expected suboptimality ES[g(x∗) − g(x∗S)] is a positive quantity decaying

as O( 1
K

) where K = |S| (as derived in Appendix D.1). Therefore, regardless of the

sophistication of our optimisation routine, if K is set too low we cannot optimise g

to an arbitrary precision level. However, as each individual evaluation of g̃S costs K

times that of evaluating g, setting K too large wastes computational resources on

unnecessarily expensive evaluations. Therefore, as demonstrated by Moss et al. (2018)

for hyper-parameter tuning and Kim et al. (2015) for simulation optimisation, the

efficiency and effectiveness of a fixed evaluation strategy crucially depends on the

choice of K, taking into account evaluation variability and the desired optimisation

precision.

In this work, we propose BOSH (Bayesian Optimisation by Sampling Hierarchi-

cally), an optimisation routine that sidesteps the complications of choosing a fixed

function evaluation strategy by instead maintaining a pool of candidate seeds that

grows as the optimisation progresses, providing efficient optimisation of the true ob-

jective function to arbitrary precision. By using a Hierarchical Gaussian Process

(HGP) (Hensman et al., 2013) to model function evaluations for each random seed

as separate perturbations of the latent ‘true’ object function, we can quantify the

uncertainty in our current evaluation strategy. Consequently, BOSH is able to compare

the utility of making further evaluations on each individual seed in the current pool

with the benefit of considering a new seed (See Figure 6.2.2), avoiding over-fitting to

a particular evaluation strategy or wasting resources evaluating poor choices across

multiple seeds.
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Figure 6.2.2: Tuning SVM regularisation on IMDB data using BOSH. We see the

aggregation of knowledge from hyper-parameter evaluations spread among three train-

test splits to produce predictions for the true accuracy g (in green) and belief about

the behaviour of a potential new train-test split. The red lines show the predicted

utility of making a new evaluation on each of the considered splits, showing lower

values around hyper-parameters already evaluated on another split, and almost zero if

already evaluated on that split.
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6.3 Related Work

The idea of using low-cost approximations to speed up the optimisation of expensive

functions is well-studied in the BO literature. Multi-task (MT) BO (Swersky et al.,

2013; Poloczek et al., 2017) can provide efficient optimisation for problems with access

to a finite collection of low-cost alternative functions holding some relationship with

the true objective function. For problems where we can directly control the quality of

objective function evaluations to produce a hierarchy of related functions, multi-fidelity

(MF) BO (Wu and Frazier, 2018; McLeod et al., 2017; Kandasamy et al., 2016) can

provide an additional improvement in optimisation efficiency. A particularly popular

application of MF BO is hyper-parameter tuning, where routines can control the

amount of data and training time used to train models (Klein et al., 2017a; Kandasamy

et al., 2017; Falkner et al., 2018). Although these routines can provide incredibly

fast rough hyper-parameter tuning, their reliance on very low-quality performance

estimates typically limits their ability to perform high-precision optimisation (Section

6.6).

As BOSH controls the number of low-cost approximations it considers and can

never query the true objective directly, BOSH does not fit into any current MT or MF

frameworks. The closest existing idea to BOSH is FASTCV (Swersky et al., 2013), an

extension of MT BO which, by evaluating the individual K train-test splits making

up K-fold CV, speeds up hyper-parameter tuning under fixed evaluation strategies.

However, FASTCV’s intrinsic coregionalisation kernel (Bonilla et al., 2008) cannot

predict performance on previously un-observed splits. Moreover, FASTCV chooses

hyper-parameters and splits using a two-stage heuristic that has no clear extension to

recommend batches of points.

A key component of BOSH is its careful choice of both x and the specific function

realisation fs used for each evaluation. However, when parallel computing resources

allow the full evaluation of g̃S in the same time as fs, there is no longer a computational

saving from evaluating a single realisation. A batch deployment of BOSH can make

better use of such parallel resources to simultaneously evaluate a batch of (xi, si) pairs,
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resulting in even greater gains. Although there are many heuristics for batch design

within BO (Shah and Ghahramani, 2015; Wu and Frazier, 2016; González et al., 2016a;

Hernández-Lobato et al., 2017; Kandasamy et al., 2018a), these approaches do not

support the allocation of batches across a seed pool.

Recent work of Pearce et al. (2019) from the operational research literature address

a similar problem but in a different way. They seek to reduce stochasticity in simulation

optimisation problems by exploiting common random numbers and propose a framework

similar to BOSH, where performance is measured according to individual random

seeds. They deploy a complex model with multiple kernel parameters, making it very

difficult to fit (requiring a Gibbs-style optimisation of the kernel hyper-parameters),

and decisions are made using an extension of the knowledge gradient (KG) acquisition

function (Frazier et al., 2008). Although enjoying theoretical guarantees, KG incurs

significant computational overheads, and requires discretisation of the search space

X ∈ Rd and so has computational cost growing exponentially with d. In contrast, our

proposed light-weight information-theoretic approach makes principled decisions with

a linearly scaling cost and is able to recommend batches of points.

6.4 Bayesian Optimisation

By sequentially deciding where to make each evaluation as the optimisation progresses,

BO can direct resources into promising areas to efficiently explore the search space

and provide fast optimisation. BO’s decisions are governed by two components - a

surrogate model and an acquisition function.

Surrogate Model. Standard BO fits a Gaussian process (GP) (Rasmussen, 2004a)

to the collected (potentially noisy) evaluations Dn = {(xi, yi)}i=1,..,n, where we assume

yi = g̃S(xi) + εi for iid Gaussian noise εi with zero mean and variance σ2. GPs provide

non-parametric regression over all functions of a smoothness controlled by a kernel

k : X × X → R. Crucially, our GP conditioned on Dn is still a GP, producing a

Gaussian predictive distribution for g̃S(x) with mean µn(x) = kn(x)T (Kn + σ2I)−1yn

and variance σ2
n(x) = k(x,x) − kn(x)T (Kn + σ2I)−1kn(x), where we define Kn =
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[k(xi,xj)](xi,xj)∈Dn , kn(x) = [k(xi,x)]xi∈Dn and y = [yi]i=1,..,n. Therefore we have a

tractable predictive distribution quantifying our current belief about the shape of g̃S

across the whole of X .

Acquisition Function. The other crucial ingredient for BO is an acquisition

function αn(x) : X → R, measuring the utility of making a new evaluation at any

given x. In this work, we focus on highly successful information-theoretic acquisition

functions which measure the amount of information provided about the location of the

optimal x by evaluating a specific location in the search space and have achieved state-

of-the-art performance across a variety of BO tasks (Wang and Jegelka, 2017; Klein

et al., 2017a; Takeno et al., 2019). Information-theoretic arguments are particularly well

suited to BOSH as they provide a clear measure of the utility of making an evaluation

on a particular function realisation. Other multi-task BO acquisition functions, such

as Swersky et al. (2013); Picheny et al. (2013); Lam et al. (2015); Kandasamy et al.

(2016) lack such a clear notion of utility and consequently rely on two-stage heuristics

that require tuning to a particular task. After making n evaluations, we next evaluate

xn+1 = argmaxx∈X (αn(x)).

6.5 BOSH

The key difference between BOSH and existing BO routines is that instead of only

modeling g̃S for a fixed evaluation strategy S, BOSH separately models realizations

fs for each seed s ∈ S. By assuming that each fs is some perturbation of the true

objective function g, we can fit a hierarchical model that learns the correlations

between g and each fs in our current seed pool S. Knowledge of this correlation

structure provides information about the likely behavior of a yet unobserved seed.

Therefore, BOSH can measure the benefit of expanding the current seed pool and make

principled decisions about which seed to use for the next evaluation from the set of

candidate seeds S∗ = S ∪ {s∗} — either a seed from the current evaluation strategy S

or generating a new seed s∗ (to be absorbed into S for subsequent optimization steps).

This allows BOSH to target g directly, instead of targeting g̃S for a fixed evaluation
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strategy S.

6.5.1 The BOSH Surrogate Model

Hierarchical Gaussian Process. A natural model for modeling function realizations

as perturbations of a true objective function is an HGP (Hensman et al., 2013), where

the true objective function is modeled as a GP with an ‘upper’ kernel kg, and the

deviations to all the individual realizations fs modeled by another GP with a ‘lower’

kernel kf . This structure is equivalently understood as modeling each fs as separate

GPs with a shared mean function g, i.e.

g ∼ GP(0, kg)

fs ∼ GP(g, kf )

yi = fsi(xi) + εi, (6.5.1)

where yi is the evaluation of fsi at xi and εi
i.i.d.∼ N (0, σ2). This formulation induces

the following prior covariance:

Cov(fs(x), fs′(x′))) = kg(x,x′) + Is=s′kf (x,x′)

Cov(fs(x), g(x′)) = kg(x,x′), (6.5.2)

where I is an indicator function. Samples from this prior are provided in Figure 6.5.1.

Predictive Distribution. Once conditioned on the collected evaluations Dn, we

can predict evaluations at ys(x)|Dn (for any s ∈ S∗) and g(x)|Dn across any location

x ∈ X (see Figure 6.2.2). In particular, for any s ∈ S∗ and any x ∈ X , our HGP

provides a bi-variate Gaussian joint predictive distribution for ys(x)|Dn and g(x)|Dn

- the only quantities required to calculate our chosen acquisition function (Section

6.5.2). We provide closed-form expressions for these quantities in Appendix D.2. The

computational cost of predictions is equivalent to a standard GP, with a cost dominated

by an O(n3) matrix inversion during the nth BO step.
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(a) (b)

Figure 6.5.1: Simulations from two HGPs, demonstrating their capacity for modelling

scenarios like Figure 6.2.1. The purple lines show 25 sampled fs(x) and the true

objective g(x) is plotted in black. Tiles (a) and (b) demonstrate lower kernels with

large and small lower kernel flexibility respectively.

6.5.2 The BOSH Acquisition Function

Information-theoretic BO. An intuitive search strategy is to make evaluations

that maximally reduce our uncertainty in the maximiser x∗ of the true objective

function. As is common in the BO literature (Hennig and Schuler, 2012; Hernández-

Lobato et al., 2014), we measure our uncertainty in terms of differential entropy (see

Cover and Thomas, 2012, for an introduction to information theory). In particular,

following the arguments of Wang and Jegelka (2017), Moss et al. (2020d) (Chapter

3) and Takeno et al. (2019), we seek to reduce the differential entropy of our current

belief about the maximum value of the objective function g∗ = g(x∗), given by

H(g∗) = −Eg∼pg∗ (log pg∗(g)), where pg∗ is the probability density function of g∗|Dn

according to our current HGP model. The reduction in entropy of g∗ provided by a

single (possibly noisy) evaluation ys(x) is measured as their mutual information I,

defined as

I(ys(x); g∗|Dn) := H(ys(x)|Dn)− Eg∗|Dn [H(ys(x)|g∗, Dn)] . (6.5.3)
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Performing principled information-theoretic BO corresponds to defining an acquisition

function αn(x, s) as the mutual information (6.5.3) and choosing to make the n+ 1th

evaluation at zn+1 = argmaxz∈Z αn(z) where, for ease of notation, we define Z = X×S∗

and z = (x, s).

In practice, distributed computing resources can be used to calculate the evaluations

forming a particular evaluation strategy in parallel, for example the K model fits re-

quired for a single K-fold CV estimate. Therefore, we extend the information-theoretic

framework (6.5.3) to recommend sets of B evaluations {ysj(xj)}Bj=1 at each iteration,

i.e. we allocate our batch of points to maximise the quantity of information provided

by a batch about the unknown g∗, resulting in acquisition function αn({(xj, sj)}Bj=1)

equal to

I({ysj(xj)}Bj=1; g∗|Dn) := H({ysj(xj)}Bj=1|Dn)− Eg∗|Dn
[
H({ysj(xj)}Bj=1|g∗, Dn)

]
.

(6.5.4)

Performing principled information-theoretic batch BO corresponds to allocating our

n+ 1th batch by solving

(zn+1,1, ..zn+1,B) = argmax
(z1,..,zB)∈ZB

αn({zj}Bj=1), (6.5.5)

where zn,i is be ith element of the nth batch.

GIBBON Approximation Unfortunately, closed-form expressions for the distri-

bution of g∗|Dn or the differential entropy of ys(x|g∗, Dn) do not exist. Therefore to

implement information-theoretic BO, the second term of (6.5.3) and (6.5.4) must be

approximated. Our GIBBON acquisition function of Chapter 5, provides one such

approximation for (6.5.3) suitable for BOSH. We demonstrate this acquisition function

within BOSH in Figure 6.2.2.

Acquisition Maximisation. Even though we can now easily calculate the utility

of evaluating any given candidate batch, it still remains to determine the optimal

elements for a batch. We found that allocating a whole batch by naively performing

the B × d-dimensional maximisation of the multi-modal acquisition (6.5.5) posed too

great computational challenge for even low dimensional search spaces and batch sizes.

We, therefore, propose using a greedy strategy to fill the batch, breaking batch design
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into B separate sequential decisions. Therefore, our batch BOSH formulation comes

with only the insignificant overhead of calculating between batch correlations over B

sequential BOSH steps. Algorithm 3 shows a high-level summary of BOSH.

Algorithm 3 BO by Sampling Hierarchically: BOSH
Input: Number of steps N , batch size B

Initialise n← 0

Collect initial design D0 (Section 6.6)

while n ≤ N do

Begin new iteration n← n+ 1

Fit a HGP to observations Dn−1

for i = 1, .., B do

Prepare αn,i(z)← αGIBBONn

(
{zn,j}i−1

j=1 ∪ {z}
)

Find zn,i ← maximiser of αn,i

Query batch yn,i ← fsn,i(xn,i) for i ∈ {1, .., B}

Update Dn ← Dn−1

⋃
{(xn,i, sn,i, yn,i)}Bi=1

return argmaxx∈{x1,..,xN} (g(x)|DN)

6.6 Experiments

We now demonstrate the performance of BOSH across a wide range of stochastic

optimisation tasks from different fields. We provide full details for each experiment in

Appendix D.3.

General experimental framework. For clarity, all of our experiments follow a

similar format. We compare the performance of BOSH when producing batches of size

B against the performance of existing BO routines based on fixed evaluation strategies

of size B (denoted with the suffix ‘fixed B’) and existing routines based on random

evaluation strategies of size B (denoted with the suffix ‘rand B’), where we query

objective functions B times but do not fix seeds between BO steps. Performance of

our algorithms is measured by the number of individual optimisation steps required
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to reach a certain incumbent performance, including resources spent evaluating the

initial design. For a fair reflection of the increasing availability of parallel computing

resources, we record the evaluation of the whole batch (or evaluation strategy) as a

single optimisation step. Each method is run across 100 random seeds (except the

more expensive RL task which was run 50 times) and we plot mean performance with

a single standard error. Suboptimality of the current believed optimum x̂ is measured

by the simple regret g(x∗obs)− g(x̂), where x∗obs is the highest scoring parameters found

by any of our considered routines on that problem.

Considered BO routines We consider standard BO using three well-known

acquisition functions: expected improvement (EI) (Mockus et al., 1978), max-value

entropy search (MES) (Wang and Jegelka, 2017), and knowledge-gradient (KG) (Frazier

et al., 2008). Expected improvement is widely regarded as the base-line for BO,

max-value entropy search is often seen as the state-of-the-art computationally-light

acquisition function, and, although incurring significant computational overheads, KG

has high performance and theoretical guarantees. We also consider the FASTCV

of Swersky et al. (2013) (as presented in Section 6.3) as an approach to speed up

optimisation under a fixed evaluation strategy. For our hyper-parameter tuning

experiments we further consider the hyper-parameter specific BO routine of FABOLAS

(Klein et al., 2017a) (with code provided in (Klein et al., 2017b)). As FASTCV and

FABOLAS do not support Batch decisions, we present their performance only for

experiments where B = 1.

For experiments where B > 1, we must disentangle the benefits of considering an

adaptive evaluation strategy with the efficiency improvements naturally provided by

allowing batch recommendations. To this end, we compare each run of batch BOSH

with popular BO heuristics allocating batches of size B across a fixed evaluation strategy

of size one. Batches are allocated using the popular heuristic of locally penalised (LP)

EI (González et al., 2016a), as-well as the GIBBON acquisition function of chapter

5 (referred to in the subsequent experiments as Batch DPP). Unfortunately, Pearce

et al. (2019) have yet to provide code for their batch KG approach, so we have been

unable to provide direct comparisons. However, standard BO under the KG acquisition
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function had very similar performance but larger overheads to standard BO with MES

(upon which BOSH is based). We do not consider scenarios where we simultaneously

deploy both batch BO and full evaluation strategies (e.g. a batch of 5 different x values,

each evaluated using 5-fold CV). Fitting 25 models in parallel is beyond the resources

of most ML researchers, necessitating a choice between batch BO or an evaluation

strategy of size larger than 1.

GP Kernels All our GPs use Matérn 5/2 kernels (Matérn, 1960), resulting in

d+ 2 unknown kernel parameters for standard BO and d+ 2 +B2 for FASTCV (which

requires an additional B×B between-seed correlation matrix). For BOSH, rather than

using separate lower and upper kernels for our HGP, we found that tying length-scales

between each kernel greatly improved the stability of the HGP. Moreover, adding a bias

term to the lower kernel sped up early-stage optimisation by conveniently modelling

realisations of the objective function differing significantly in value but not in shape

(i.e approximate translations). Therefore, our HGP has d+ 4 kernel parameters. We fit

kernel parameters after each BO step to maximise the model marginal likelihood across

all presented approaches except for KG, where the only available implementation

(Balandat et al., 2019) follows the arguments of Snoek et al. (2012) and integrates

kernel parameters over specially chosen hyper-priors. Although parameter integration

can stabilise the early stages of BO for some tasks, it incurs significant overheads

and would have harmed the light computational nature of our proposed acquisition

function.

Initialisation costs Before beginning any BO routine, we must collect an ini-

tialisation of points to fit the surrogate model. To allow stable maximisation of the

marginal likelihood, it is common to initialise with at least as many evaluations as

unknown kernel parameters (to guarantee identifiability). For standard BO, this corre-

sponds to d+ 3 evaluations of the chosen evaluation strategy (i.e requiring B ∗ (d+ 3)

individual function evaluations). Similarly, we allowed BOSH d + 5 evaluations for

each of the seeds in an initial seed pool with two elements (i.e 2 ∗ (d+ 5) evaluations

in total). Reliable initialisation of FASTCV’s B ×B correlation matrix (of which its

performance was very sensitive) required at least d+ 3 evaluations for each of its B
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considered seeds. Therefore, as well as providing improved efficiency and precision

once optimisation begins, BOSH’s ability to model only as many individual seeds as

required allows significantly lower initialisation costs.

Figure 6.6.1: Optimisation of the upper function of the two HGPs presented in Figure

6.5.1.

6.6.1 Optimisation of Synthetic Objective

First, we simulate data directly from an HGP to investigate exactly when BOSH

provides more efficient and reliable optimisation than standard BO. We seek to find

the maximum of g(x) (as plotted in Figure 6.5.1) by querying the perturbed curves

fs generated from two different lower kernels, one with a small lower kernel variance

(denoted as V ) causing low between-realisation variability, and another with a larger

variance causing high between-realisation variability.

Figure 6.6.1 demonstrates the general behaviour that we see across all our ex-

periments: using fixed evaluation strategies can provide either precise or efficient

optimisation of stochastic objective functions, not both. BOSH’s adaptive evaluation

strategy is able to provide both efficient and precise optimisation. Although standard

BO under large evaluation strategies can be as precise optimisation as BOSH, the
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reliance on expensive evaluations early in the optimisation and the substantial initiali-

sation costs mean that they provide significantly slower optimisation (a performance

gap growing with the size of evaluation variance). Reassuringly, using fixed evaluation

strategies does provide improved performance over making completely random queries.

6.6.2 Reinforcement Learning

We now consider a challenging seven-dimensional stochastic optimisation test-case

for BOSH. We wish to fine-tune a controller for a well-studied reinforcement learning

problem, where we must guide a lunar lander across a randomly initialised space to

its landing zone by controlling its thrusters (as provided in the OpenAI Gym1). Our

controller is parameterised by seven unknown constants and a particular configuration

can be tested by running a single (or B) randomly generated scenarios. To construct

a more challenging optimisation task, we randomly vary the initial location and

velocities of the lander as well as the location of the landing site across scenarios

(all controlled by the same random seed). We seek to outperform OpenAI’s hard-

coded controller (denoted as the PID controller) according to a ‘true’ performance

measured over a set of 100 fixed initial conditions, using as few simulation runs as

possible (Figure 6.6.2). In this task there is substantial variation in performance

across different random seeds meaning that optimising the controller over a small

collection of initialisation fails to provide good ‘true’ performance. In fact, basing

optimisation on a single fixed initialisation is comfortably outperformed by using no

evaluation strategy at all. Although batch BO on single seeds provides fast initial

optimisation, achieving reasonable precision requires much larger evaluation strategies.

By adaptively considering up to 15 different seeds, BOSH is able to provide fast

and precise optimisation to quickly match the performance of the PID controller.

In contrast, FASTCV’s need to initialise and then update the large between-seed

correlation matrix severely hampers optimisation efficiency.
1https://gym.openai.com/envs/LunarLander-v2/



CHAPTER 6. BOSH 113

(a) B=1

(b) B=5 (c) B=10

Figure 6.6.2: Optimising 7 parameters of a Lunar Lander controller.
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6.6.3 Hyper-parameter Tuning

We now test the performance of BOSH on two well-known ML hyper-parameter tuning

tasks : using a support vector machine (SVM) to classify the sentiment in IMDB

movie reviews (Maas et al., 2011) and using probabilistic matrix factorisation (PMF)

(Mnih and Salakhutdinov, 2008) to recommend movies on the Movie-lens-100k data

set (Hoffman et al., 2010). Here, we seek hyper-parameter values that provide the

highest model performance. As already argued, the model scores based on a particular

evaluation strategy do not necessarily correspond to the true performance and so

true model performance is calculated for IMDB data on a large held-out test set and

using expensive but reliable performance estimates based on 20 train-test splits for the

PMF. We stress that these high-cost estimates are only performed retrospectively, after

stopping the optimisation, and during the actual tuning our individual performance

estimates are generated using a pool of randomly generated train-test splits for BOSH

or single train-test splits and K-fold CV as fixed evaluation strategies for standard BO.

As FABOLAS is able to query models using only small proportions of the available

data, it is able to find reasonably well performing hyper-parameter configurations in

a fraction of the computation used by standard BO and BOSH. However, we will

see that a shortcoming of FABOLAS’s reliance on low-fidelity performance estimates

mean that even if allowed a significantly longer run-time, it fails to improve upon this

chosen configuration (which we plot as a horizontal line).

These tuning tasks form two very different challenges for BOSH. Firstly our IMDB

data-set is relatively small and, as it consists of textual data, is highly heterogeneous,

meaning that there is high-variability between performance estimates made on different

partitions of the data. Figure 6.6.3a shows that BOSH adaptively considers up to four

seeds as the optimisation progresses, providing higher-precision tuning than standard

BO based on single train-test splits. KG’s initial fast optimisation is due to integration

of its kernel parameters, however, even this computationally expensive BO routine is

unable to reach the final precision of BOSH. In contrast, the much larger Movie-lens

dataset has low variability between performance estimates and so should be able to be

optimised without the need for fixed evaluation strategies. Unlike FASTCV, which
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(a) B=1

(b) B=5 (c) B=10

Figure 6.6.3: Tuning two SVM hyper-parameters for IMDB movie review classification.

incurs unnecessary costs for this task, BOSH’s adaptive evaluation strategy allows it

to closely match the performance of standard BO (Figure 6.6.4a). Across both tasks,

FABOLAS fails to provide high-precision optimisation, although we do note that it

identifies reasonably well-performing configuration using only as much computation as

fitting a single model on all the data. When parallel resources are available, BOSH

provides substantially faster tuning than BO under cross-validation and, for tasks with

significant variability, more precise tuning than batch BO on single splits (Figures

6.6.3b,6.6.3c and 6.6.4b).

6.6.4 Simulation Optimisation

For our final experiment we consider a simulation optimisation problem from the set

of benchmark tasks presented at http://simopt.org/. Here we wish to decide (x, y)
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(a) B=1 (b) B=5

Figure 6.6.4: Tuning four PMF hyper-parameters to minimise root mean reconstruction

error for movie recommendations.

locations of two warehousing facilities on a unit square. Orders arise throughout the

square according to a pre-specified non-homogeneous Poisson process and each order

is served by one of the ten trucks belonging to the closest warehouse (or queued if

all trucks are busy). It is our goal to position the warehouses such that we maximise

the proportion ρ of orders delivered within 60 minutes. Our base estimate of ρ comes

from simulating demand for a single day according to a single random seed. We can

calculate more reliable estimates by simulating demand for B independent days and we

retrospectively estimate the true ρ with an expensive but reliable 100 day simulation.

We see that although standard BO based on single day simulations is able to provide

fast rough optimisation (Figure 6.6.5), efficient high-precision optimisation requires an

adaptive evaluation strategy.

6.7 Conclusions

Optimising stochastic functions using Bayesian optimisation with a fixed evaluation

strategy does not achieve the high precision optimisation that is commonly claimed,

since it simply results in over-fitting to the evaluation strategy. We instead pro-

pose BOSH, an extension to Bayesian optimisation that instead deploys an adaptive
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(a) B=1 (b) B=5

Figure 6.6.5: Allocating warehouses to cope with simulated demand.

evaluation strategy as the optimisation progresses using a novel principled information-

theoretical framework.



Chapter 7

BOFFIN TTS: Few-shot Speaker

Adaptation by Bayesian Optimisation

Status: Published as Moss H. B., Aggarwal V., Prateek N., Gonzalez J. & Barra-

Chicote R., BOFFIN TTS: Few-shot Speaker Adaptation by Bayesian Optimisation,

The International Conference on Acoustics, Speech and Signal Processing, 2020.

7.1 Preface

Our final chapter presents BOFFIN TTS (Bayesian Optimisation For FIne-tuning

Neural Text To Speech), a real-world deployment of BO implemented while seconding

at Amazon Research. Here, the task is to fine-tune a pre-trained TTS model to

mimic a new speaker using a small corpus of target utterances. Contrary to the

current practice in speaker adaptation, this chapter demonstrates that there does

not exist a one-size-fits-all adaptation strategy, with convincing synthesis requiring

a corpus-specific configuration of the hyper-parameters that control fine-tuning. By

using Bayesian optimisation to efficiently optimise these hyper-parameter values for a

target speaker, we are able to perform adaptation with an average 30% improvement in

speaker similarity over standard techniques. Results indicate, across multiple corpora,

that BOFFIN TTS can learn to synthesise new speakers using less than ten minutes

of audio, achieving the same naturalness as produced for the speakers used to train

118
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the base model.

7.2 Introduction

Given enough data, text to speech (TTS) systems can learn to convincingly mimic

speakers across a wide range of acoustic and phonetic styles. However, training systems

from scratch requires tens of hours of high-quality audio and reliable transcriptions,

either from a single speaker to create speaker-specific models or spread across several

speakers when training multi-speaker models (Latorre et al., 2019; van den Oord et al.,

2016; Gibiansky et al., 2017; Ping et al., 2018). Training models on less data sacrifices

quality and reliability Chung et al. (2019).

To scale TTS catalogues across speakers for whom we have limited data, we adapt

existing multi-speaker systems to generate new speakers - a well-studied form of

transfer learning known as speaker adaptation (Yamagishi et al., 2009). Adaptation

is possible in scenarios where we have just minutes of target audio and partial phoneme

coverage, as the robust representation of text and subsequent mappings to coherent

speech are shared between the speakers (Latorre et al., 2019). Only a small proportion

of our network’s capacity encodes speaker-specific information. We, therefore, need

only enough utterances to learn speaker identity (the characteristics defining a

target speaker’s voice).

Existing strategies for speaker adaptation fall into two broad categories. Many

approaches use pre-trained auxiliary encoding networks to extract speaker characteris-

tics to be combined with linguistic features as inputs to a TTS model (Li et al., 2017;

Taigman et al., 2017; Nachmani et al., 2018; Jia et al., 2018). In contrast, alternative

approaches fine-tune the weights of existing multi-speaker models to synthesise new

speakers (Arik et al., 2018; Chen et al., 2018a). As fine-tuning provides the most

natural adaptation across multiple TTS models (Arik et al., 2018; Chen et al., 2018a),

and is applicable to any existing system (without the need for training additional

encoding networks), it is the focus of this report.

Our primary contribution is to demonstrate that successful speaker adaptation
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requires fine-tuning of adaptation hyper-parameters (henceforth referred to as the adap-

tation strategy) for each target speaker. We carefully tune the hyper-parameters

governing adaptation and introduce two additional parameters not previously used

for speaker adaption, demonstrating that the optimal hyper-parameter configuration

depends subtly on the acoustic and phonetic properties of the target speaker alongside

attributes of the target corpus (like audio-quality and size). For example, the amount

of regularisation required to prevent over-fitting (of which few-shot speaker adaptation

is particularly susceptible (Chen et al., 2018a)), depends on the quality and quantity

of adaptation utterances.

In this work, we formulate few-shot speaker-adaptation as an optimisation problem

- the task of finding appropriate hyper-parameter values for any given speaker. Our

proposed BOFFIN1 TTS system automatically and efficiently solves this optimisation

problem through the hyper-parameter tuning framework of Bayesian optimisation

(BO), providing a fully automatic speaker-adaptation system suitable for general

target speakers. BO has been shown to find high-performing hyper-parameters in

competitively few model fits for many machine learning tasks (Snoek et al., 2012),

surpassing the performance of human tuners for problems in computer vision (Bergstra

et al., 2013), natural language processing (Wang et al., 2015), and recently for re-

inforcement learning in AlphaGo (Chen et al., 2018b). However, BO has yet to see

wide-spread use in TTS, where grid-based and random searches are still commonplace

for hyper-parameter optimisation. We hope that our successes with BO for speaker

adaptation will encourage its more wide-spread use across TTS.

We evaluate BOFFIN TTS across three distinct scenarios, varying both the number

of speakers in the base multi-speaker model and corpora audio-quality.
1Boffin: British slang for a scientific expert.
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7.3 System Description

7.3.1 Base Multi-Speaker Model

Our base model (the model we adapt to target speakers) is a Tacotron2 (Wang et al.,

2017a) style multi-speaker system explained in detail by Latorre et al. (2019) and

Prateek et al. (2019), consisting of an acoustic context-generation model and neural

vocoder. Our acoustic model relies on an attention-based sequence-to-sequence network

to generate context sequences (represented as mel-spectrograms) from input texts (see

Figure 7.3.1). Unlike Tacotron2 which models raw graphemes, we pre-process input

text with a grapheme-to-phoneme module. To condition on individual speakers, we

learn a speaker-embedding from a one-hot-encoding of speaker IDs (following van den

Oord et al. (2016)). This dense representation of speaker characteristics is presented to

the attention module alongside encoded input text, to be decoded as a speaker-specific

mel-spectrogram. Model weights are tuned with an ADAM optimiser to minimise the

teacher-forced L1 loss between predicted and extracted mel-spectrograms. To complete

the TTS pipeline, we convert mel-spectograms to waveforms using the multi-speaker

neural vocoder of Lorenzo-Trueba et al. (2018). This vocoder is trained across 74

speakers and suitable for generating natural speech for our wide-range of adaptation

speakers.

7.3.2 Base-line Speaker Adaptation System

Existing approaches for speaker adaptation by fine-tuning, although targeting different

TTS architectures (Arik et al., 2018; Chen et al., 2018a), all share the same approach

which we apply to our chosen model to form a base-line adaptation system. To

synthesise speakers not present in the training corpus, we continue the same learning

process used to train the base model, but replace the training data with utterances

of only the target speaker to allow the fine-tuning of weights and the learning of

a new speaker embedding with respect to this new data. To avoid over-fitting to

small collections of target utterances, we hold-out 20% of adaptation data to form a
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Figure 7.3.1: Multi-speaker acoustic model architecture.

validation set for early-stopping. From extensive human tuning, we know that the hyper-

parameter configuration chosen for our base-model is capable of producing high-quality

synthesis (achieving higher than four MOS naturalness scores for several speakers). We,

therefore, expect this hyper-parameter configuration to form a competitive base-line

for adaptation. Nevertheless, we later demonstrate that we can achieve a substantial

improvement in adaptation quality using BOFFIN TTS.

7.4 BOFFIN TTS

There are two key differences between BOFFIN TTS and the base-line adaptation

system. We allow the hyper-parameters controlling our adaptation to change to

suit the target-speaker and, crucially, propose a framework for finding their optimal

configuration in an efficient and automatic manner.

7.4.1 How Does BOFFIN TTS Control Adaptation?

The key to effective adaptation is to learn characteristics of the target speaker without

losing the generalisability of the base model (a phenomenon known as catastrophic

forgetting). To this end, we believe there are nine key hyper-parameters that determine
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(a) INTERNAL speaker A. (b) VCTK speaker p362.

(c) LibriTTS speaker 114. (d) Tuned hyper-parameter values.

Figure 7.4.1: (a, b, c): Loss of the current best hyper-parameter configuration found

by each system as we adapt to three randomly selected speakers from each corpora.

We plot means and standard error for BOFFIN TTS and RS based on 5 runs with

different random seeds, alongside the loss achieved by the base-line adaptation system.

(d): Hyper-parameter values chosen by BOFFIN TTS for multiple target speakers

across three different data-sets. Each point represents a single speaker. We plot the

six hyper-parameters whose optimal values show the largest variation across speakers.



CHAPTER 7. BOFFIN TTS 124

the success of adaptation. These include seven parameters already widely used in

machine learning to control learning dynamics (learning rate, batch size, decay-factor

and gradient-clipping threshold) and to perform regularisation (dropout and two

zoneout parameters), alongside two parameters unique to BOFFIN TTS.

Although, tuning these seven standard hyper-parameters allowed us to learn the

identity of the target speaker, the resulting models often show poor generalisation

capabilities. Therefore, we propose two additional hyper-parameters. Firstly, we

supplement our adaptation corpus, forming a tune-able ratio of target speakers to

speakers already seen by the model (a simple approach to mitigate catastrophic

forgetting known as a rehearsal method). Finally, we also tune which epoch of

our trained base-model from which we begin adaptation. A base model before full

convergence to the base speakers can provide a model more amenable for adaptation.

In addition to hyper-parameter tuning, we also exploit the specific architecture

of our chosen base-model. Rather than allowing our fine-tuning to update all model

weights (as in Chen et al. (2018a)), we only allow fine-tuning of the weights in

our speaker embedding and decoder modules (i.e those containing speaker-specific

information, see Figure 7.3.1). We know that our encoder and attention modules are

already able to facilitate synthesis across multiple speakers and we found that freezing

their weights during adaptation led to more robust synthesis.

7.4.2 How Does BOFFIN TTS Optimise Adaptation?

Learning an optimal adaptation strategy for a target speaker is a difficult high-

dimensional hyper-parameter optimisation (HPO) problem. As is common in HPO, this

optimisation task is characterised by expensive evaluations (requiring a full adaptation

to evaluate each single hyper-parameter configuration), a mixture of discrete and

continuous variables, and a lack of analytical gradients for our objective function (the

performance of adaptation) with respect to all our hyper-parameters. Consequently,

we cannot apply gradient-based optimisers and the high-dimension of our tuning task

makes a simple grid-search computationally infeasible (and likely ineffective (Bergstra

and Bengio, 2012)). We, therefore, use Bayesian optimisation.
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In a nutshell, BO is able to provide highly efficient HPO by using information from

already evaluated hyper-parameter configurations to predict which untested configura-

tions are ‘likely’ to perform well and therefore should be next evaluated. In particular,

to choose the t+ 1th hyper-parameter for evaluation, we fit a Gaussian process model

Rasmussen (2004a) to our t collected configuration-evaluation pairs Dt = {xi, yi}i=1,..,t

across the hyper-parameter space X , producing Gaussian predictions of performance

at each configuration x ∈ X of y(x)|Dt. We then evaluate the configuration that we

expect (according to our model) will provide the largest improvement over the best

current best evaluation (with score y′t = mini=1,..,t yi), i.e we next evaluate configuration

xt+1 = argmax
x∈X

Ey(x)|Dt [max(y′t − y(x), 0)|Dt] . (7.4.1)

For Gaussian processes, the inner expression of (7.4.1) and its gradients have convenient

analytical forms (see Shahriari et al. (2016) for a comprehensive review of BO).

Therefore, xt+1 can be efficiently found using a standard gradient-based optimiser.

We consider the performance of BOFFIN TTS when seeking to minimise L1 mel-

spectogram loss across a held-out validation set of target speaker utterances. Although

L1 loss does not necessarily correlate exactly with the perceptual quality of synthesised

samples (as is the case for all objective TTS metrics), we found it informative enough

to find hyper-parameters with high perceptual scores (Section 7.5). Adaptation to

speakers from three different corpora is presented in Figure 7.4.1 (experimental details

are discussed in Section 7.5). Our plots start after an initialisation stage of 10 random

hyper-parameters, as this is required to provide a meaningful initial model across X .

Note that replacing BOFFIN TTS’s BO component with random search (RS) fails

to substantially improve upon our baseline (not speaker-specific) adaptation system.

We need a sophisticated tuner like BO to find speaker-specific adaptation strategies.

In addition, Figure 7.4.1d shows that not only does the optimal hyper-parameter

configuration vary between data-sets, but also across each individual speaker within

each corpora. For example, our proposed Mixing Ratio hyper-parameter requires larger

values in general across the VCTK corpus than for our other corpora, however, the

optimal Mixing Ratio still varies substantially across just the VCTK speakers.
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System INTERNAL VCTK LibriTTS

base-synth 3.45 ± 0.08 3.76 ± 0.10 3.10 ± 0.10

base-truth 3.84 ± 0.08 4.05 ± 0.08 4.10 ± 0.08

adapt-synth 3.43 ± 0.10 3.6 ± 0.10 2.90 ± 0.10

adapt-truth 4.05 ± 0.08 4.09 ± 0.08 3.97 ± 0.08

Table 7.4.1: Comparing the mean naturalness scores achieved by BOFFIN TTS on

target speakers (adapt-synth), by the base multi-speaker model on base speakers(base-

synth), and by true audio for both target (adapt-truth) and base-model speakers

(base-truth). We present each listener with samples across multiple base and adapted

speakers and ask for a 5 point score from ‘completely unnatural’ to ‘completely natural’.

We print mean responses alongside 95% confidence bounds.

7.5 Results

We have demonstrated that BOFFIN outperforms the base-line speaker adaptation

system with respect to L1 loss. However, to investigate whether this lower score

corresponds to an improvement in perceptual quality at inference time, we collected

the perceptual evaluations of human listeners.

7.5.1 Experimental Protocol

To thoroughly test the performance of BOFFIN TTS, we consider three distinct corpora:

(i) multi-speaker corpus with studio-quality recordings (referred to as INTERNAL2), (ii)

the open-source VCTK corpus Veaux et al. (2017), and (iii) the LibriTTS audio-book

corpus Zen et al. (2019). By considering a range of recording qualities and base-models

with differing numbers of base speakers, we can understand the limitations of using

BOFFIN TTS in a variety of practical settings. The architecture of our base-model

remains fixed except for the more challenging LibriTTS task, where we double the

size of our speaker embedding to accommodate a larger collection of base speakers.

BO is performed with the Python library Emukit (Paleyes et al., 2019).
2The internal corpus contains no customer voice recordings.



CHAPTER 7. BOFFIN TTS 127

For each experiment, we adapt to 4 unseen speakers (from the same corpora used to

train the base-model) using a random sample of 100 utterances (representing between

5 and 10 minutes of audio depending on the corpus), with 20% retained as a validation

set. To evaluate each system, we compare naturalness and achieved similarity to the

target speaker using a MUltiple Stimuli with Hidden Reference and Anchor (MUSHRA)

test (Recommendation, 2001). We also compare the naturalness achieved by BOFFIN

TTS on target speakers with that achieved by the base multi-speaker model on its

original speakers using a Mean Objective Score (MOS) test for naturalness. Each

evaluation is presented to 25 native US listeners using Amazon Mechanical Turk.

Statistical significance tests are performed at the p=0.01 level with Bonferroni-Holm

corrections, using paired t and Mann-Whitney U tests for the MUSHRA and MOS

evaluations respectively.

7.5.2 Adaptation from a base-model with few speakers

For our first experiment, we train a base-model on 4 male and 4 female proprietary

speakers (each with 2.5k utterances) and adapt to 2 female and 2 child held-out speakers.

Figure 7.5.1a show that BOFFIN TTS is able to achieve significant improvements

in speaker similarity, with an improvement of 28% over the base-line and 39% over

RS. Crucially, Figure 7.5.1b shows BOFFIN TTS’ improvement in similarity does not

sacrifice perceptual quality, achieving a small but statistically significant improvement

in naturalness over the base-line speaker adaptation system. Moreover, Table 7.4.1

demonstrates that BOFFIN TTS is able to adapt to target speakers without a significant

drop in perceptual quality from the base-model’s speakers (learnt with 250 times more

data).

7.5.3 Adaptation from a moderately rich base-model

We now consider a harder adaptation task; adapting to VCTK speakers with much

higher variation in expressiveness, prosody and audio-quality than those in INTERNAL.

Our base-model is trained on 22 speakers: 14 from VCTK (with 400 utterances each)
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(a) Similarity INTERNAL. (b) Naturalness INTERNAL.

(c) Similarity VCTK. (d) Naturalness VCTK.

(e) Similarity LibriTTS. (f) Naturalness LibriTTS.

Figure 7.5.1: MUSHRA tests for speaker similarity and naturalness. For similarity,

we presented the same utterance synthesised by each system alongside a reference

recording of the target speaker on another utterance and requested a rating of each

system between ‘definitely a different person’ (0) and ‘definitely the same person’ (100).

For naturalness, we repeat without a reference recording and instead asked for ratings

between ‘completely unnatural’ and ‘completely natural’
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supplemented with the 8 already considered in our first experiment (added to provide

a more robust base-model). We adapt to 4 unseen VCTK speakers. This challenging

adaptation scenario necessitates target speaker-specific adaptation strategies, with

BOFFIN TTS providing significant improvements of 57% in similarity and 13% in

naturalness over the base-line (Figures 7.5.1c and 7.5.1d). Moreover, Table 7.4.1

shows that BOFFIN TTS is once again able synthesise target speakers without a

significant drop in naturalness than achieved for speakers already present in the base

multi-speaker model.

7.5.4 Adaptation from a rich base-model

To understand the limitations of BOFFIN TTS, our final experiment considers an even

larger base-model containing 200 speakers (each with 200 utterances) from LibriTTS.

We adapt to 4 additional unseen libriTTS speakers. LibriTTS is derived from audio-

books and so contain noise, artefacts, and highly expressive voices. Consequently,

although BOFFIN TTS was able to adapt to target speakers without a statistically

significant drop in naturalness over the speakers used to train the base-system (Table

7.4.1) (as is consistent with our other experiments), our base-model itself was of

much lower quality than our other base-models, making it difficult for our MUSHRA

listeners to make a statistically significant preference in similarity across all three

systems (Figures 7.5.1e and 7.5.1f).

7.6 Conclusion

We propose the few-shot speaker-adaptation framework of BOFFIN TTS. By learning

adaptation strategies custom to each target speaker, BOFFIN TTS can achieve higher

speaker similarity than using a one-size-fits-all adaptation strategy, particularly when

adapting to challenging target speakers from high-performance multi-speaker models.

A direction for future work is to provide an information-theoretic extension of

BOFFIN. For example, we could use the GIBBON acquisition function of Chapter

5 to further improve speaker adaptation efficiency and to build a framework that
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supports parallel computing resources. Unfortunately, we have been unable to test

this hypothesis ourselves as the experiments ran in this paper require substantial

computational resources, proprietary data, and a private code-base only accessible to

Amazon employees.



Chapter 8

Conclusions

8.1 Final Remarks and Contributions

This thesis addresses challenging open problems in Bayesian optimisation. Novel

approximation strategies have been proposed that greatly increase the applicability of

information-theoretic BO. These approximations are analysed theoretically and empir-

ically, with the resulting acquisition functions tested in exotic Bayesian optimisation

frameworks developed in the remainder of the thesis. A primary focus is on developing

BO frameworks for highly-structured input spaces.

In Chapter 3, this thesis proposed a novel computationally light information-

theoretic approach for multi-task Bayesian optimisation. MUMBO reduces uncertainty

in the optimal value of the objective function with each subsequent query, and

provides principled decision-making across general multi-task structures at a cost

which scales only linearly with the dimension of the search space. Consequently,

MUMBO substantially outperforms current acquisitions across a range of optimisation

and hyper-parameter tuning tasks.

Chapter 4 revolutionises the way in which Bayesian optimisation is performed

for high-cost string design problems like molecular search and synthetic gene design.

By departing from fixed-length representations of strings, BOSS is the first Bayesian

optimisation method that acts directly over raw strings. BOSS is able to provide highly

effective optimisation even for spaces obeying complicated syntactical constraints.
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Chapter 6 provides BOSH, a challenging multi-task and batch Bayesian optimisa-

tion setting in which to test GIBBON. BOSH is inspired by optimisation problems

with controllable observation noise, for example when choosing train-test splits for

hyper-parameter optimisation or initial conditions for simulation optimisation. In

particular, we combine GIBBON with hierarchical Gaussian processes to build an

optimisation routine that adaptively increases the number of considered objective

function realisations as the optimisation progresses, yielding more efficient and precise

optimisation than standard BO methods based on fixed collections of realisations.

Our final chapter presents a real-world application of BO. Chapter 7 considers the

task of few-shot speaker-adaptation, a well-established natural language processing

pipeline which adapts an existing text-to-speech system to mimic a new speaker. Using

BO, we are able to build a framework that can learn adaptation strategies custom

to each target speaker, achieving a higher level of speaker similarity than existing

methods.

8.2 Future Work and Possible Extensions

During this thesis, we have demonstrated the efficacy of performing information-

theoretic search for many popular BO extensions. However, there are many other

variants of BO that were not tackled in this thesis. Prominent examples already per-

formed by information-theoretic BO include multi-objective (Hernández-Lobato et al.,

2016; Belakaria et al., 2019) and constrained BO (Garrido-Merchán and Hernández-

Lobato, 2019; Belakaria et al., 2020). Our GIBBON acquisition function could be used

within these frameworks to provide batch extensions and reduce their computational

overhead. Similarly, GIBBON could also be used to improve the performance of any

framework relying on batch BO heuristics, for example in non-myopic BO (González

et al., 2016b; Jiang et al., 2020).

BO for structured optimisation is still an open area of research. Although there is

now a high-performance and computationally light-weight acquisition function suitable

for these tasks (courtesy of GIBBON), future work is required to build frameworks
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to expand the ideas of BOSS to other types of discrete structures beyond strings.

Promising work has already begun on BO for neural network architecture design

(Kandasamy et al., 2018b) and BO for combinatorial structures (Deshwal et al., 2020),

however, many structures highly prevalent in machine learning, like trees and graphs

remain largely unsupported by BO. To solve these remaining problems, our BOSS

framework could be extended to support other convolution kernels such as tree (Collins

and Duffy, 2002) and graph kernels (Vishwanathan et al., 2010).



Appendix A

Supplementary Material for MUMBO

A.1 Calculation of the MUMBO acquisition function

We now provide a thorough description of our proposed approach to calculate the

MUMBO acquisition function for any choice of x and z:

αMUMBO
n (x, z) = H(y(x, z) |Dn)− Eg∗[H(y(x, z) | g∗, Dn)] . (A.1.1)

For ease of notation we drop the dependence on x and z, so that g denotes the target

function value at x, f denotes the evaluation of x at fidelity z, and y denotes the

(noisy) observed value of f(x, z), and seek to calculate the respective acquisition value

αMUMBO
n . From our underlying GP model we can extract our current beliefs about g

and f as following a bi-variate Gaussian distribution:g
f

 ∼ N

 µg

µf

 ,

 σ2
g Σ

Σ σ2
f

 .
Then, noting that Cov(y, g) = Σ, we can write a similar expression for our current

beliefs about g and noisy observations y asg
y

 ∼ N

 µg

µf

 ,

 σ2
g Σ

Σ σ2
f + σ2

 .
We now derive analytical expressions for these predictive distributions from

our underlying GP model. We denote our chosen kernel (defined over X × Z)
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as k, so that k((x, z), (x′, z′)) represents our prior co-variance between the eval-

uation of x on fidelity z and the evaluation of x′ on fidelity z′. Denote the lo-

cation in the fidelity space that corresponds to the true objective function as z0

(i.e. f(x, z0) = g(x)). For observations Dn, let yn be the observed y values, de-

fine the kernel matrix Kn = [k((xi, zi), (xj, zj))](xi,zi),(xj ,zj)∈Dn and kernel vectors

kn((x, z)) = [k((xi, zi), (x, z))](xi,zi)∈Dn . Then, following Rasmussen (2004a), the

terms of our bi-variate Gaussian after observations Dn are:

µg =kn((x, z0))T (Kn + σ2I)−1yn

µf =kn((x, z))T (Kn + σ2I)−1yn

σ2
g =k((x, z0), (x, z0))− kn((x, z0))T (Kn + σ2I)−1kn((x, z0))

σ2
f =k((x, z), (x, z))− kn((x, z))T (Kn + σ2I)−1kn((x, z))

Σ =k((x, z), (x, z0))− kn((x, z))T (Kn + σ2I)−1kn((x, z0))).

Following the advice of Snoek et al. (2012) we consistently use a Matérn 5/2 kernel to

model performance surfaces over the hyper-parameter space.

The first term of (A.1.1) is simply the differential entropy of a Gaussian distribution

and so can be calculated analytically as 1
2

log(2πe(σ2
f + σ2)). The second term of

(3.4.1) is an expectation over the maximum value of the true objective g∗, which can

be approximated using a Monte Carlo approach; we use Wang and Jegelka (2017)’s

method to approximately sample from g∗ |Dn using a mean-field approximation and

extreme value theory, generating a set of N values G = {g1, . . . , gN}. For each d-

dimensional example in Section 3.5, we base our mean-field approximation on a grid

of GP predictions at 10, 000d random locations and any already evaluated locations.

Note that we generate only one set of N samples of g∗ for each BO step and all the

required acquisition queries in that step are calculated with respect to this sample.

All that remains is to calculate the quantity inside the expectation for a given value

of g∗, i.e the differential entropy of the random variable y|g < g∗ with a distribution

that we now derive.
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A.1.1 Derivation of the Extended Skew Normal Distribution

To simplify notation, rather than manipulating the co-variance Σ directly, we derive

MUMBO in terms of the predictive correlation between y and g:

ρ =
Σ

σg
√
σ2
f + σ2

.

Then using the well-known result for the conditional distribution of a bi-variate normal,

we know that g | y is also normally distributed with mean µg + σg√
σ2
f+σ2

ρ(y − µf ) and

variance σ2
g(1− ρ2). We can therefore write the cumulative distribution function for

y|g ≤ g∗ as

P(y ≤ θ|g ≤ g∗) =
P(y ≤ θ, g ≤ g∗)
P(g ≤ g∗)

=

∫
θ

−∞
φ(

u−µf√
σ2
f+σ2

)Φ

(
g∗−µg−

σg√
σ2
f
+σ2

ρ(u−µf )

√
σ2
g(1−ρ2)

)
du√

σf + σ2Φ(g∗−µg
σg

)
.

After differentiating with respect to θ and defining γg∗ = g∗−µg
σg

, we can write down

the probability density function for the standardized variable Zg∗ =
y−µf√
σ2
f+σ2
|g < g∗ as;

p(θ) =
1

Φ(γg∗)
φ(θ)Φ

(
γg∗ − ρθ√

1− ρ2

)
,

which we recognize as the density of an extended skew normal distribution (ESG)

(Azzalini, 1985), with moments

E(Zg∗) = ρ
φ(γg∗)

Φ(γg∗)
, Var(Zg∗) = 1− ρ2 φ(γg∗)

Φ(γg∗)

[
γg∗ +

φ(γg∗)

Φ(γg∗)

]
. (A.1.2)

As Arellano-Valle et al. (2013) show that the differential entropy of an ESG is

non-analytical, so too must be the final term in our MUMBO acquisition (A.1.1). We

therefore perform numerical integration using Simpson’s rule across eight standard

deviations around the mean of Zg∗ (quantities provided by (A.1.2)). Note that

the equivalent quantity in the original implementation of MES (without fidelity

considerations) has a truncated normal distribution, with a closed form expression for

its entropy.
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A.1.2 Derivation of the full MUMBO acquisition function

We can now derive the simplified form (3.4.2) of the MUMBO acquisition function

presented in Section 3.4, starting from the information-theoretic definition (A.1.1).

Noting that H(y|g∗, Dn) = H(Zg∗)+ 1
2

log(σ2
f +σ2) and that H(y|Dn) = 1

2
log(2πe(σ2

f +

σ2)), we can rewrite (A.1.1) for a fixed choice of x and z as

αMUMBO
n =

1

2
log(2πe)− Eg∗ [H(Zg∗)] .

The differential entropy H(Zg∗) for a fixed sample g∗ can be decomposed into three

terms

H(Zg∗) = Eθ∼Zg∗

[
− log(φ(θ)) + log(Φ(γg∗))− log

(
Φ

(
γg∗ − ρθ√

1− ρ2

))]

After expanding the first of these terms as

Eθ∼Zg∗ [− log(φ(θ))] = 1
2
Eθ∼Zg∗

[
θ2
]

+ 1
2

log(2π),

and further expanding using our expressions for the moments of Zg∗ , we now have

αMUMBO
n = Eg∗

[
ρ2γg∗φ(γg∗)

2Φ(γg∗)
− log(Φ(γg∗)) + Eθ∼Zg∗

[
log
(

Φ
{ γg∗ − ρθ√

1− ρ2

})]]
.

Therefore, after reintroducing dependence on x and z and replacing the expectation

over g∗ with a Monte-Carlo approximation across our set of N samples G, we see that

MUMBO can be expressed as

αMUMBO
n (x, z) ≈ 1

N

∑
g∗∈G

[
ρ(x, z)2γg∗(x)φ(γg∗(x))

2Φ(γg∗(x))
− log(Φ(γg∗(x)))

+ Eθ∼Zg∗ (x,z)

[
log
(

Φ
{γg∗(x)− ρ(x, z)θ√

1− ρ2(x, z)

})]]
.

A.2 Experimental Details

We now provide implementation details for our all our experiments.
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A.2.1 Discrete Multi-fidelity BO

Figure 3.5.1 shows the performance of MUMBO over the standard MF benchmark

functions used by Xiong et al. (2013) and Kandasamy et al. (2016). These problems

have an objective function and a discrete hierarchy of low-fidelity approximations that

can be queried at reduced cost. We measure the performance of the MF approaches

in terms of the total resources spent on query costs after random initializations. We

wish to find high-performing incumbents after spending few resources. We generate

starting points for the optimization by querying twice as many random points as the

problem dimension and evaluate these across all fidelities. For the information-theoretic

approaches we also provide the time spent deciding where to make each successive

evaluation as this is an important practical consideration.

In Figure 3.5.1 we present the performance of the MF-GP-UCB algorithm of

Kandasamy et al. (2017) using their published code. Unfortunately we were unable

to achieve performance on these functions even close to the level claimed in their

work. However, our approaches outperform even the results claimed in their paper.

This performance discrepancy is likely due to our different initialization scheme and

that we do not tune their algorithm’s hyper-parameters (illustrating the benefit of

using a parameter-free approach like MUMBO). Also note that MF-GP-UCB models

fidelities as separate GPs, whereas MUMBO and MTBO use the more sophisticated

coregionaliazation model.

We now provide detailed information about each of our synthetic functions.

Forrester Function. A single dimensional function (Forrester et al., 2008) defined

on X = [0, 1] with three fidelitlies with query costs 10, 5 and 2:

f(x1, 0) = (6x1 − 2)2 sin(12x1 − 4)

f(x1, 1) = 0.75f(x1, 0) + 3(x1 − 0.5) + 2

f(x1, 2) = 0.5f(x1, 0) + 5(x1 − 0.5) + 2

Currin exponential function (discete fidelity space). A two-dimensional
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function defined on X = [0, 1]2 with two fidelities queried with costs 10 and 1:

f(x1, x2, 0) =

(
1− exp(− 1

2x2

)

)
2300x3

1 + 1900x2
1 + 2092x1 + 60

100x3
1 + 500x2

1 + 4x1 + 20

f(x1, x2, 1) =
1

4
f(x1 + 0.05, x2 + 0.05, 0)

+
1

4
f(x1 + 0.05,max(0, x2 − 0.05), 0)

+
1

4
f(x1 − 0.05, x2 + 0.05, 0)

+
1

4
f(x1 − 0.05,max(0, x2 − 0.05), 0).

Hartmann 3 function. A three-dimensional function with 4 local extrema defined

on X = [0, 1]3 with three fidelities (m = 0, 1, 2) queried at costs 100, 10 and 1:

f(x1, x2,x3,m) = −
4∑
i=1

αi,m+1 exp

(
−

3∑
j=1

Ai,j(xj − Pi,j)2

)
,

where

A =


3 10 30

0.1 10 35

3 10 30

0.1 10 35

 , α =


1 1.01 1.02

1.2 1.19 1.18

3 2.9 2.8

3.2 3.3 3.4

 , P =


3689 1170 2673

4699 4387 7470

1091 8732 5547

381 5743 8828

 .

Hartmann 6 function. A six-dimensional function defined on X = [0, 1]6 with

four fidelities (m = 0, 1, 2, 3) queried at costs 1000, 100, 10 and 1:

f(x1, x2, x3, x4, x5, x6,m) = −
4∑
i=1

αi,m+1 exp

(
−

6∑
j=1

Ai,j(xj − Pi,j)2

)
,
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where

A =


10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14

 , α =


1 1.01 1.02 1.03

1.2 1.19 1.18 1.17

3 2.9 2.8 2.7

3.2 3.3 3.4 3.5

 ,

P =


1312 1696 5569 124 8283 5886

2329 4135 8307 3736 1004 9991

2348 1451 3522 2883 3047 6650

4047 8828 8732 5743 1091 381

 .

Borehole function. An eight-dimensional function defined on

X = [0.05, 0.15; 100, 50, 000; 63070, 115600; 990,

1110; 63.1, 116; 700, 820; 1120, 1680; 9855, 12055]

with two fidelities queried with costs 10 and 1:

f(x, 0) =
2πx3(x4 − x6)

log(x2/x1)
(

1 + 2x7x3
log(x2/x1)x21x8

+ x3
x5

) ,
f(x, 1) =

5x3(x4 − x6)

log(x2/x1)
(

1.5 + 2x7x3
log(x2/x1)x21x8

+ x3
x5

) .
A.2.2 Continuous Multi-fidelity BO: FABOLAS

For our second set of experiments, we consider the MF hyper-parameter tuning

framework of Klein et al. (2017a), which dynamically chooses the amount of training

data used for hyper-parameter evaluations. Their FABOLAS algorithm is widely

regarded as state-of-the-art, achieving hyper-parameter tuning with orders of magnitude

less computation that standard BO and other competing MF tuning routines. We

use the code provided for FABOLAS within the ROBO package (Klein et al., 2017b)

by the same authors. We use their implementation exactly, only swapping out their

original MTBO acquisition function for our proposed MUMBO acquisition. A good
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hyper-parameter tuner finds hyper-parameter configurations that will perform well on

new data after using as little computational resource as possible, including effort spent

fitting models and deciding the hyper-parameter configuration and fidelity to query.

By splitting our data into train, validation and test sets, we are able to report total

wall-clock time against the performance (in accuracy) of incumbents on this test set

(calculated retrospectively at the end of the optimization). During the optimization,

models are trained on random subsets of chosen proportions of the training set and

tested on the full validation set.

We consider the same examples as Klein et al. (2017a), using the same data-sets

downloaded from the HPOlib BO benchmark repository (Eggensperger et al., 2013) of

MNIST (Deng, 2012) and Vehicle Registrations (Siebert, 1987) - we refer the reader

to their work for specific details. As a result of limited computational resources and

wishing to repeat each experiment over multiple random seeds, we had to halve the

training data (to 25, 000 for both MNIST and Vehicle) throughout the experiment

(including testing the incumbents). We do, however, use the full test and validation

sets. For each replication, we start with 10 random hyper-parameter initializations

each evaluated on 1
64
, 1

32
, 1

16
and 1

8
of the training data.

A.2.3 Multi-task BO: FASTCV

In Section 3.5.4, we test MUMBO in a multi-task framework by providing the first

information-theoretic implementation of FASTCV (Swersky et al., 2013), where we

sequentially make evaluations on a single K-fold CV folds with the aim of optimizing

the evaluations based on all K folds. As discussed in Section 3.5.4, the original

implementation of FASTCV chooses hyper-parameters to evaluate and then the fold

upon which to make the evaluation as a two-stage heuristic based on the expected

improvement acquisition. In Figure 3.5.3, we investigate the change in performance of

replacing this acquisition function with the principled MT decision-making provided by

our MUMBO acquisition function. We also present the performance of standard BO

routines that have to evaluate all K CV folds for each hyper-parameter query. For ML

models, the acquisition function overheads are insignificant compared to the costs of
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fitting the model on large proportions of the training data (unlike the small proportions

chosen by FABOLAS), and so we measure the performance of our algorithms by the

number of individual model fits required to reach a certain incumbent performance.

To allow the fair comparison of the computational resources used by each algorithm,

we consider a single optimization step as the evaluation of a single model on a single

fold and so each hyper-parameter evaluation using K-fold CV counts as K steps.

We consider two well-known ML tasks: using a support vector machine (SVM) to

classify the sentiment in IMDB movie reviews (Maas et al., 2011) and using probabilistic

matrix factorization (PMF) (Mnih and Salakhutdinov, 2008) to recommend movies

on the Movie-lens-100k data set (Hoffman et al., 2010). We tune the regularization

strength across [e−5, e25] and kernel coefficient across [e−25, e5] for the SVM and the

learning rate across [0, 0.01], regularization strength across [0, 0.1], matrix rank across

[50, .., 150] and number of model epochs across [10, .., 50] for the PMF. To create a

difficult MT optimization problem, we use only a small subset of the IMDB data (a

random subset of 1, 000 reviews split into 10 folds) as this increases the between-fold

variability of a K-fold CV estimate (Bengio and Grandvalet, 2004) and so limits

the similarity of evaluations on different folds that is exploited by FASTCV. Despite

this challenging MT set-up, both the original FASTCV and MUMBO are able to

provide significantly faster tuning than standard approaches, with MUMBO providing

an additional increase in test performance over FASTCV (as based on the reliable

performance estimates calculated on the 49, 000 reviews not used for training). In

addition, we also consider the whole of the large Movelens-100k dataset split into 5

folds. Despite the stochastic nature of PMF meaning that our tuning algorithms have

deal with high levels of observation noise for each hyper-parameter evaluation, we

once again we see that the principled decision-making of MUMBO allows much faster

optimization than all the other approaches - achieving lower 5-fold CV estimated mean

squared error (a standard measurement of performance for recommendation systems).

A.2.4 Wider Comparison With Existing Methods

We now present the functions used for final experiments.
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Currin exponential function (continuous fidelity space). A two-dimensional

function defined on X = [0, 1]2 with fidelity space z ∈ [0, 1]. The cost of querying

fidelity z is given by λ(z) = 0.1 + z2 with the objective lying at fidelity z = 1.

f(x1, x2, z) =

(
1− 0.1(1− z) exp(− 1

2x2

)

)
2300x3

1 + 1900x2
1 + 2092x1 + 60

100x3
1 + 500x2

1 + 4x1 + 20
.

Rosenbrock function. A two-dimensional function defined on X = [−2, 2]2 with

two fidelities (m = 0, 1) queried at costs 1000 and 1. Observations are contaminated

with Gaussian noise with variance 0.001 and 1e− 6 for each fidelity respectively :

f(x1, x2, 0) =(1− x1)2 + 100(x2 − x2
1)2

f(x1, x2, 1) =f(x1, x2, 0) + 0.1 sin(10x1 + 5x2).



Appendix B

Supplementary Material for BOSS

B.1 Dynamic Programs For SSK Evaluations and

Gradients

We now detail recursive calculation strategies for calculating kn(a,b) and its gradients

with O(nl3) complexity. A recursive strategy is able to efficiently calculate the

contributions of particular sub-string, pre-calculating contributions of the smaller

sub-strings contained within the target string.

Adapting the recursion and notation of Beck and Cohn (2017) to our chosen

contribution function, kn(a,b) can be calculated by following for i = 1, ..n− 1:

K′0 = 1

K′i = DT
|a|K

′′
iD|b|

K′′i = λ2
m(M�K′i−1)

ki = λ2
m

∑
j,k

(M�K′i)j,k,

producing the kernel evaluation kn(a,b) =
∑
ki. Here, � is the Hadamard product,

M is the |a|× |b| matrix of character matches between the two strings (Mij = 1ai(bj)),

and D` is the `× ` matrix
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D` =



0 1 λg · · · λ`−2
g

0 0 1 · · · λ`−3
g

...
...

... . . . ...

0 0 0 · · · 1

0 0 0 · · · 0


.

The gradients of kn with respect to the kernel parameters λm and λg can also

be calculated recursively. For the kernel gradients with respect to match decay we

calculate

∂K′0
∂λm

= 0

∂K′i
∂λm

= DT
|a|
∂K′′i
∂λm

D|b|

∂K′′i
∂λm

= 2λm(M�K′i−1) + λ2
m

(
M�

∂K′i−1

∂λm

)
∂ki
∂λm

=
∑
j,k

[
2λm(M�K′ijk) + λ2

m

(
M�

∂K′ijk
∂λm

)]
,

producing the gradient ∂kn(a,b)
∂λm

=
∑

∂ki
∂λm

.

Similarly, kernel gradients with respect to gap decay are calculated by

∂K′0
∂λg

= 0

∂K′i
∂λg

=
∂DT

|a|

∂λg
K′′iD|b| + DT

|a|
∂K′′i
∂λg

D|b| + DT
|a|K

′′
i

∂D|b|
∂λg

∂K′′i
∂λg

= λ2
m

(
M�

∂K′i−1

∂λg

)
∂ki
∂λg

= λ2
m

∑
j,k

(
M�

∂K′ijk
∂λg

)
,

producing the gradient ∂kn(a,b)
∂λg

=
∑

∂ki
∂λg

, where ∂D`

∂λg
is the `× ` matrix
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∂D`

∂λg
=



0 0 1 2λg 3λ2
g · · · (`− 2)λ`−3

g

0 0 0 1 2λg · · · (`− 3)λ`−4
g

0 0 0 0 1 · · · (`− 4)λ`−5
g

...
...

...
...

... . . . ...

0 0 0 0 0 · · · 1

0 0 0 0 0 · · · 0


.

B.2 Context-free Grammars

Context-free grammars (CFG) are 4-tuples G = (V,Σ, R, S), consisting of:

• a set of non-terminal symbols V ,

• a set of terminal symbols Σ (also known as an alphabet),

• a set of production rules R,

• a non-terminal starting symbol S from which all strings are generated.

Production rules are simple maps permitting the swapping of non-terminals with

other non-terminals or terminals. All strings generated by the CFG can be broken

down into a (non-unique) tree of production rules with the non-terminal starting

symbol S at its head. These are known as the parse trees and are demonstrated in

Figure 4.5.1 in the main paper.

The CFG for the symbolic regression task of Section 4.6.3 is given by the following

rules:
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S → S ‘+’ T

S → S ‘∗’ T

S → S ‘/’ T

S → T

T → ‘(’ S ‘)’

T → ‘ sin (’ S ‘)’

T → ‘exp(’ S ‘)’

T → ‘x’

T → ‘1’

T → ‘2’

T → ‘3’ ,

where V = {S, T} and Σ = {+, ∗, /, x, 1, 2, 3}. Although each individual production

rule is a simple replacement operation, the combination of many such rules can specific

a string space with complex syntactical constraints. For example, these 11 rules are

able to specify that the string ‘(sin(2*x)+3(x*(2+exp(x))))+1/2’ is valid but that

‘(sin(2*x)+3(x*(2+exp(x)))+1/2’ (with invalid bracket closing) is not.

Sampling from the CFG. One of the advantages of CFGs is that it is easy (and

cheap) to generate large collections of valid strings by recursively sampling production

rules. However, when sampling strings from the grammar, we found this simple

sampling strategy to produce long and repetitive strings. For our BO applications,

where sample diversity is key, we instead employed a sampling strategy that down-

weights the probability of selecting a particular rule based on the number of times

it has already occurred in the parse tree. In particular, the probability of applying

a particular rule to a non-terminal is proportional to cn, where n is the number of

occurrences of that rule in the current branch and c is a discount factor (set to 0.1 in

all our experiments). The construction of this sampler ensures that a wide range of

production rules are used when generating from the CFG.
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B.3 Genetic Algorithms

We now provide implementation details for our GA acquisition function optimisers.

During each GA step, populations are refined through stochastic biologically-inspired

operations, providing a population achieving (on average) higher scores. The GA

begins with a randomly sampled population and ends once the best string in the

population stops improving between iterations (Algorithm 4). The N strings of the

i + 1th population are perturbations of the ith population. To evolve a population

(Algorithm 5), a tournament process first selects n candidate strings (with replacement)

attaining the highest evaluations across random sub-samples of a proportion pt of the

current population. To create the next population, these candidate strings undergo

stochastic perturbations: a mutation operation producing a new offspring string

from a single parent, and a crossover operation combining attributes of two parent

strings to produce two new offspring. These operations occur with probability pc

and pm respectively, which, alongside pt, control the level of diversity maintained

across populations. To highlight the robustness of our genetic algorithm acquisition

optimiser, we do not tune the evolution parameters to each task, using populations of

100 candidate strings and (pt, pc, pm) = (0.5, 0.75, 0.1) for all our experiments. The

exact crossover and mutation operators chosen to traverse string spaces under different

syntactical constraints are discussed in the main paper.

B.4 Experimental Details

We now provide implementation details for our all our experiments.

B.4.1 Synthetic String Optimisation Experiments

Although seemingly simple tasks, our synthetic string optimisation tasks of Section

4.6.1 are deceptively challenging, as only a very small proportion of valid strings

produce high scores. In fact, these tasks are considerably more challenging than the

common benchmarks used to test standard BO frameworks. Figure B.4.1, shows the
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Algorithm 4 Genetic Algorithms for Acquisition Function Maximisation
1: function GA(pt, pc, pm, N)

2: n← 0

3: Sample N strings for initial population P0

4: Evaluate acquisition function A0 ← α(P0)

5: Store current best value αbest ← max(A0)

6: while αbest = max(An) do

7: Begin new iteration n← n+ 1

8: Evolve population Pn ← EVOLVE(Pn−1, pt, pc, pm)

9: Evaluate acquisition function An ← α(Pn)

10: Store current best value αbest ← max(max(An−1), αbest)

11: return String achieving score αbest

performance attained by random search over our synthetic string tasks and standard

benchmarks 1. All objective functions are standardised (∈ [0, 1]) and we run 1000

optimisation steps, plotting the mean and standard error across 25 replications. We

see that our easiest synthetic string optimisation tasks are among the hardest of the

standard benchmark problems to solve with random search, and we expect this to

hold similarly for BO.

We now provide comprehensive experimental results across the synthetic string

optimisation tasks. In Figures B.4.2,B.4.3,B.4.4,B.4.5,B.4.6,B.4.7 and B.4.8, we show

the performance and computational overhead of our string kernels, extending the

analysis from the main paper to include a variety of sub-sequence lengths considered

by the string and feature-based kernels. We see that the string kernels always provide

superior optimisation over existing kernels, with the string kernel based on sub-

sequences of maximum length 5 consistently among the best. The string kernel is

particularly effective for the most complicated objective functions (Figures B.4.3 and

B.4.7) and when observations are contaminated by observation noise (Figure B.4.6).

For problems with larger alphabets (and so significantly larger search spaces), our
1https://www.sfu.ca/ ssurjano/index.html
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Figure B.4.1: Comparing random search

across standard BO benchmarks (faint)

and our synthetic string experiments

(bold). For the string tasks, the legend

ALS denoted the task with an alphabet

of size A, strings of length L and counting

the occurrences of the pattern S.

Figure B.4.2: Optimising the number of

non-overlapping occurrences of "101" in a

string of length 20 and alphabet ["0","1"]

genetic algorithm acquisition optimiser dramatically outperforms a larger budget

random search optimiser (Figure B.4.5 and B.4.7).
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Figure B.4.3: Optimising the number

of occurrences of "10??1" in a string of

length 20 and alphabet ["0","1"]

Figure B.4.4: Optimising the number of

occurrences of "101" in the first half of a

string of length 30 and alphabet ["0","1"].

Figure B.4.5: Optimising the number

of occurrences of "123" of a string

with length 30 and an alphabet of

["0","1","2","3"].

Figure B.4.6: Optimising the number of

occurrences of "101" with observations

contaminated by Gaussian noise (with a

variance of 2) of a binary string of length

20.
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Figure B.4.7: Optimising the num-

ber of occurrences of "01??4" in a

string of length 20 and alphabet

["0","1","2,"3","4"]

Figure B.4.8: Optimising the number of

occurrences of "101" in a string of length

20 and alphabet ["0","1"]

B.4.2 Protein Optimisation

We now provide additional details for our four protein optimisation experiments, each

targeting one of the following proteins.

1. Cystic fibrosis transmembrane conductance regulator:

TIKENIFGVS.

2. Invertebrate iridescent virus 6 (IIV-6) (Chilo iridescent virus):

MTSRGHLRRAPCCYAFKSATSHQRTRTSLCLASPPAPHCLLLYSHRCLTYFTVDYELSFFCL.

3. Anaphase-promoting complex subunit 15B:

MSTLFPSLLPQVTDSLWFNLDRPCVDENELQQQEQQHQAWLLSIAEKDSSLVPIGKPASEPY
DEEEEEDDEDDEDSEEDSEDDEDMQDMDEMNDYNESPDDGEIEADMEGAEQDQDQWMI.

4. Tyrosine-protein kinase abl-1:

MGHSHSTGKEINDNELFTCEDPVFDQPVASPKSEISSKLAEEIERSKSPLILEVSPRTPDSV
QMFRPTFDTFRPPNSDSSTFRGSQSREDLVACSSMNSVNNVHDMNTVSSSSSSSAPLFVALY
DFHGVGEEQLSLRKGDQVRILGYNKNNEWCEARLYSTRKNDASNQRRLGEIGWVPSNFIAPY
NSLDKYTWYHGKISRSDSEAILGSGITGSFLVRESETSIGQYTISVRHDGRVFHYRINVDNT
EKMFITQEVKFRTLGELVHHHSVHADGLICLLMYPASKKDKGRGLFSLSPNAPDEWELDRSE
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IIMHNKLGGGQYGDVYEGYWKRHDCTIAVKALKEDAMPLHEFLAEAAIMKDLHHKNLVRLLG
VCTHEAPFYIITEFMCNGNLLEYLRRTDKSLLPPIILVQMASQIASGMSYLEARHFIHRDLA
ARNCLVSEHNIVKIADFGLARFMKEDTYTAHAGAKFPIKWTAPEGLAFNTFSSKSDVWAFGV
LLWEIATYGMAPYPGVELSNVYGLLENGFRMDGPQGCPPSVYRLMLQCWNWSPSDRPRFRDI
HFNLENLISSNSLNDEVQKQLKKNNDKKLESDKRRSNVRERSDSKSRHSSHHDRDRDRESLH
SRNSNPEIPNRSFIRTDDSVSFFNPSTTSKVTSFRAQGPPFPPPPQQNTKPKLLKSVLNSNA
RHASEEFERNEQDDVVPLAEKNVRKAVTRLGGTMPKGQRIDAYLDSMRRVDSWKESTDADNE
GAGSSSLSRTVSNDSLDTLPLPDSMNSSTYVKMHPASGENVFLRQIRSKLKKRSETPELDHI
DSDTADETTKSEKSPFGSLNKSSIKYPIKNAPEFSENHSRVSPVPVPPSRNASVSVRPDSKA
EDSSDETTKDVGMWGPKHAVTRKIEIVKNDSYPNVEGELKAKIRNLRHVPKEESNTSSQEDL
PLDATDNTNDSIIVIPRDEKAKVRQLVTQKVSPLQHHRPFSLQCPNNSTSSAISHSEHADSS
ETSSLSGVYEERMKPELPRKRSNGDTKVVPVTWIINGEKEPNGMARTKSLRDITSKFEQLGT
ASTIESKIEEAVPYREHALEKKGTSKRFSMLEGSNELKHVVPPRKNRNQDESGSIDEEPVSK
DMIVSLLKVIQKEFVNLFNLASSEITDEKLQQFVIMADNVQKLHSTCSVYAEQISPHSKFRF
KELLSQLEIYNRQIKFSHNPRAKPVDDKLKMAFQDCFDQIMRLVDR.

As each amino acid in these protein sequences can be represented as one of a set of

possible codons (triples of bases), the string spaces for these problems are incredibly

large, with each space containing 5.53e+4, 9.48e+33, 4.81e+49 and 1.22e+614 unique

strings, respectively. The permitted mappings from amino acids to valid codons are as

follows:
F → ttt | ttc

L → tta | ttg | ctt | ctc |cta , ctg

S → tct | tcc | tca | tcg |agt |agc

Y → tat | tac

C → tgt | tgc

W →tgg

P → cct | ccc |cca| ccg

H → cat |cac

Q → caa|cag

R → cgt |cgc|cga|cgg|aga|agg

I → att |atc |ata

M →atg

T → act |acc|aca|acg

N → aat|aac

K →aaa|aag

V → gtt | gtc |gta | gtg

A → gct |gcc|gca|gcg

D → gat |gac

E → gaa|gag

G → ggt |ggc|gga|ggg.

Figure B.4.9 extends the analysis of our protein optimisation tasks to include

the computational overheads incurred by each each BO routine (as measured on a

single processor). The high evaluation costs of our SSK means that its overhead is

substantially greater than the other approaches. However, in real gene design loops,

this additional computational cost (hours) is negligible compared to the cost and time

saved in wet-lab experiments (days). Moreover, the acquisition function calculations



APPENDIX B. SUPPLEMENTARY MATERIAL FOR BOSS 154

can be trivially parallelised across up to 100 cores (the size of the populations used in

the GA acquisition function optimiser) as well as across the m partial SSK calculations.

If GPUs are available, these can also be used to efficiently calculate SSKs (Beck and

Cohn, 2017).

B.4.3 BO in a VAE’s Latent Space

To perform BO in the latent space of a VAE, we follow the set-up of Kusner et al. (2017),

fitting a GP with an SE kernel and using a multi-start gradient descent acquisition

function optimiser. We tried SE kernels with both individual and tied length scales

across latent dimensions, however, this did not have a significant effect on performance,

possibly due to difficulties in estimating many kernel parameters in these low-data BO

problems. In order to perform BO, a compact area of the latent space must be chosen

for the search space. Unfortunately, Kusner et al. (2017) do not provide details about

how this should be determined. We chose the space containing the most central 75%

of representations from the set of strings used to train the VAE (100, 000 arithmetic

expressions). We also tried using the space containing all representations from the

training data, however, this led to a drop in optimisation performance, likely due to

less reliable encoding/decoding learned by the VAE in these more sparsely supported

parts of the latent space.

B.4.4 Visualising BO Surrogate Models

In Section 4.6.4, we present a kernel principal component analysis (KPCA) visualisation

of the feature space induced by our SSK. We now extend this analysis to include the

VAE competitors. In particular, we perform KPCA on the SE kernel used to define a

surrogate model over each VAE’s latent representations (Figure B.4.10). All figures

show the representations of the same sampled 4, 000 SMILES strings, color-coded to

represent their molecule scores (a linear combination of their water-octanol partition

coefficient, ring-size and synthetic accessibility). We see that the GP with an SSK

produces a significantly smoother KPCA space that the GPs fit in VAE latent space,
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with the CVAE showing slightly more structure than the GVAE. This ranking matches

the relative performance of the BO routines based on these surrogate models (Figure

4.6.3). So although the latent spaces of these VAE have been shown to exhibit some

smoothness (Kusner et al., 2017), this is not captured by the GP model. Figure 4.6.3.d

visualises the intrinsic representation of an SSK when kernel parameters are purposely

chosen to provide a bad fit. We choose very low λm and high λg to heavily penalise

the long contiguous sub-sequences we know to be informative for this task. The stark

difference in smoothness between the visualisations of the tuned and badly-tuned

SSKs demonstrates their flexibility as well as the importance of using a representation

supervised to the the specific objective function of interest.
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Algorithm 5 Evolution of Genetic Algorithm Populations
1: function EVOLVE(P ,pt, pc, pm)

2: Initialise new population Pnew ← ∅

3: while |Pnew| < |P | do

4: Collect a candidate string s1 ← TOURNAMENT(P, pt)

5: Sample r ∼ U [0, 1]

6: if r < pc then

7: Sample another candidate string s2 ← TOURNAMENT(P, pt)

8: Perform crossover s1, s2 ← CROSSOVER(s1, s2)

9: Sample r1, r2 ∼ U [0, 1]

10: if r1 < pm then

11: Perform mutation s1 ←MUTATION(s1)

12: if r2 < pm then

13: Perform mutation s2 ←MUTATION(s2)

14: Add two strings to new population Pnew ← Pnew
⋃
{s1, s2}

15: else

16: Sample r ∼ U [0, 1]

17: if r1 < pm then

18: Perform mutation s1 ←MUTATION(s1)

19: Add string to new population Pnew ← Pnew
⋃
{s1}

20: return New population Pnew
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(a) (`,m) = (30, 1) (b) (`,m) = (186, 2)

(c) (`,m) = (360, 8) (d) (`,m) = (3672, 64)

Figure B.4.9: Optimisation performance and computational overhead when finding

the representation with minimal minimum free-folding energy (MFE) of a protein of

length `. SSKs are applied to codon or base representations split into m or 3m parts,

respectively.
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(a) SSK on raw SMILES strings. (b) SE kernel in the CVAE latent space.

(c) SE kernel in the GVAE latent space. (d) SSK with poor choices of kernel parameters.

Figure B.4.10: Top two KPCA components visualising the intrinsic representations

of the surrogate models used to predict molecule scores from SMILES strings. Aside

from (d), kernel parameters are tuned to maximise GP likelihood over 10 evaluated

molecules.



Appendix C

Supplementary Material for GIBBON

C.1 Extracting The Required Predictive Quantities

from a Gaussian Process Surrogate Model

We now demonstrate how the distributional quantities required to calculate GIBBON

can easily be extracted from a GP surrogate model. For observations Dn, let yn be the

already observed evaluations y , and define the kernel matrix Kn = [k(zi, zj)]zi,zj∈Dn
and kernel vectors kn(z) = [k(zi, z)]zi∈Dn for any valid kernel defined over the combined

search space Z = X×F . Finally, denote the location in the fidelity space corresponding

to the true objective function as s0 (i.e fs0(x) = g(x)). Here, as is standard in multi-

fidelity optimisation, we have assumed the ability to query (at least nosily) the true

objective function. Then, following Rasmussen (2004a) our GP surrogate model

provides the following:

µCi =kn((xi, s0))T (Kn + diag(σn))−1yn

µAi =kn(zi)T (Kn + diag(σn))−1yn

ΣC
i,j =k((xi, s0), (xj, s0))− kn((xi, s0))T (Kn + diag(σn))−1kn((xj, s0))

ΣA
i,j =k(zi, zj)− kn(zi)T (Kn + diag(σn))−1kn(zj)

ρi =
k(zi, (xi, s0))− kn(zi)T (Kn + diag(σn))−1kn((xi, s0)))√

Σg
i,iΣ

y
i,i

,

159
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where diag(σn) is the |Dn| × |Dn| diagonal matrix of observation noises in the evalua-

tions Dn.

C.2 Proof of Theorem 5.4.1

Theorem 5.4.1 (Distribution of A given C∗ < m). Consider two b-dimensional

multivariate Gaussian random variables A and C where C ∼ N(µC ,ΣC) and each

individual component of A is distributed as Aj ∼ N(µAj ,Σ
A
j,j). Suppose further that each

pair {Aj, Cj} are jointly Gaussian with correlation ρj, and that each Aj is conditionally

independent of {Ci}i 6=j given Cj. Define C∗ = maxC. Then the conditional density

of A given that C∗ < m is given by

1

P(C∗ < m)
φZ1(a)ΦZ2(m),

where m = (m, ..,m) ∈ RB and φZ1 and ΦZ2 are the probability density and cumulative

density functions for the multivariate Gaussian random variables

Z1 ∼ N
(
µA, S +DΣCD

)
and Z2 ∼ N

(
µC + Σ−1DS−1(a− µA),Σ−1

)
,

where ΣA = DΣCD + S for D and S, diagonal matrices with elements Dj,j = ρj

√
ΣAj
ΣCj,j

and Sj,j = (1− ρ2
j)Σ

A
j , and Σ =

((
ΣC
)−1

+DS−1D
)
.

Proof. As detailed in the main body of this report, we have that

C ∼ N(µC ,ΣC) and Aj ∼ N1

(
µAj ,Σ

A
j

)
,

for some known mean vectors µC ,µA ∈ RB, a variance vector ΣA ∈ RB and a co-

variance matrix ΣC ∈ RB×B, as well as a vector ρ ∈ RB of the correlation between

each pair {Aj, Cj}. In this section we use fX to denote the probability density function

for the random variable X and fX,Y to denote the joint probability density function

for the random variables X and Y.
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Now, consider the probability distribution function of random variable of interest:

fA|C∗≤m(a) =
1

P(C∗ ≤ m)

∫
m

fA,C(a,b) db

=
1

P(C∗ ≤ m)

∫
m

fA|C=b(a)fC(b) db

=
1

P(C∗ ≤ m)

∫
m

B∏
i=1

[
fAi|Ci=bi(ai)

]
fC(b) db, (C.2.1)

where b ∈ RB and m = (m, ..,m) ∈ RB. The factorisation of fA|C=b is due to the

conditional independence of Aj|Cj from {Ci}i 6=j.

A well-known result for the conditional distribution from a bi-variate Gaussian

gives us that for each i ∈ {1, .., B}

Ai = ai|Ci = bi ∼ N1

(
µAi + ρi

√
ΣA
i

ΣC
i,i

(bi − µCi ), (1− ρ2
i )Σ

A
i

)
,

i.e. we have that

A|C = b ∼ N
(
µA +D(b− µC), S

)
, (C.2.2)

for diagonal matrices D,S ∈ RB with elements Di,i = ρi

√
ΣAi
ΣCi,i

and Si,i = (1− ρ2
i )Σ

A
i .

Using (C.2.2), the integrand of (C.2.1) can now be regarded as the product of two

b-dimensional Gaussian densities[
b∏
i=1

fAi|Ci=bi(ai)

]
fC(b) = N

(
a;µA +D(b− µC), S

)
∗N(b;µC ,ΣC)

= |D|N
(
b;µC +D−1(a− µA), D−1SD−1

)
∗N(b;µC ,ΣC),

which, using the following standard formula for the product of Gaussians densities

N(x;m1,Σ1) ∗N(x;m2,Σ2) =N(m1;m2,Σ1 + Σ2)

∗N(x;
(
Σ−1

1 + Σ−1
2

)−1 (
σ−1

1 m1 + Σ−1
2 m2

)
,
(
Σ−1

1 + Σ−1
2

)−1
),
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can be re-expressed as[
b∏
i=1

fAi|Ci=bi(ai)

]
fC(b) = |D|N

(
µC ;µC +D−1(a− µA), D−1SD−1 + ΣC

)
∗N

(
b;µC + Σ−1DS−1(a− µA),Σ−1

)
= N

(
a;µA, S +DΣCD

)
∗N

(
b;µC + Σ−1DS−1(a− µA),Σ−1

)
where Σ =

((
ΣC
)−1

+DS−1D
)
.

Therefore, we have rewritten the integrand of (C.2.1) as a product of two Gaussian

densities, where only one depend on b. Consequently, the first Gaussian term can be

taken outside the integral, yielding the claimed expression

fA|C∗<m(a) =
1

P(C∗ < m)
φZ1(a)ΦZ2(m), (C.2.3)

where φZ1 and ΦZ2 are the probability density and cumulative density functions for

the multivariate Gaussian variables

Z1 ∼ Nb

(
µA, S +DΣCD

)
and Z2 ∼ Nb

(
µC + Σ−1DS−1(a− µA),Σ−1

)
.

C.3 Experimental Details for Synthetic Benchmarks.

We now provide detailed information about each of our synthetic benchmarks.

C.3.1 Standard BO benchmarks

Shekel function. A four-dimensional function with ten local and one global minima

defined on X ∈ [0, 10]4:

f(x) = −
10∑
i=1

(
4∑
j=1

(xj − Aj,i)2 + βi

)−1

,
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where

β =



1

2

2

4

4

6

3

7

5

5



and A =


4 1 8 6 3 2 5 8 6 7

4 1 8 6 7 9 3 1 2 3.6

4 1 8 6 3 2 5 8 6 7

4 1 8 6 7 9 3 1 2 3.6

 .

Ackley function. A four-dimensional function with many local minima and

a nearly flat outer region surrounding a single global minima defined on X ∈

[−32.768, 32.768]4:

f(x) = −20 exp

−0.2 ∗

√√√√1

4

d∑
i=1

x2
i

− exp

(
1

4

4∑
i=1

cos(2πxi)

)
+ 20 + exp(1).

Hartmann 6 function. A six-dimensional function with six local minima and a

single global minima defined on X ∈ [0, 1]6:

f(x) = −
4∑
i=1

αi exp

(
−

6∑
j=1

Ai,j(xj − Pi,j)2

)
,
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where

A =


10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14

 , α =


1

1.2

3

3.2

 ,

P = 10−4


1312 1696 5569 124 8283 5886

2329 4135 8307 3736 1004 9991

2348 1451 3522 2883 3047 6650

4047 8828 8732 5743 1091 381

 .

C.3.2 Multi-fidelity benchmarks

Currin exponential function (discrete fidelity space). A two-dimensional func-

tion defined on X = [0, 1]2 with two fidelities queried with costs 10 and 1:

f(x1, x2, 0) =

(
1− exp(− 1

2x2

)

)
2300x3

1 + 1900x2
1 + 2092x1 + 60

100x3
1 + 500x2

1 + 4x1 + 20

f(x1, x2, 1) =
1

4
f(x1 + 0.05, x2 + 0.05, 0)

+
1

4
f(x1 + 0.05,max(0, x2 − 0.05), 0)

+
1

4
f(x1 − 0.05, x2 + 0.05, 0)

+
1

4
f(x1 − 0.05,max(0, x2 − 0.05), 0).

Hartmann 3 function. A three-dimensional function with 4 local extrema defined

on X = [0, 1]3 with three fidelities (m = 0, 1, 2) queried at costs 100, 10 and 1:

f(x1, x2,x3,m) = −
4∑
i=1

αi,m+1 exp

(
−

3∑
j=1

Ai,j(xj − Pi,j)2

)
,
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where

A =


3 10 30

0.1 10 35

3 10 30

0.1 10 35

 , α =


1 1.01 1.02

1.2 1.19 1.18

3 2.9 2.8

3.2 3.3 3.4

 , P =


3689 1170 2673

4699 4387 7470

1091 8732 5547

381 5743 8828

 .

Hartmann 6 function. A six-dimensional function defined on X = [0, 1]6 with

four fidelities (m = 0, 1, 2, 3) queried at costs 1000, 100, 10 and 1:

f(x1, x2, x3, x4, x5, x6,m) = −
4∑
i=1

αi,m+1 exp

(
−

6∑
j=1

Ai,j(xj − Pi,j)2

)
,

where

A =


10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14

 , α =


1 1.01 1.02 1.03

1.2 1.19 1.18 1.17

3 2.9 2.8 2.7

3.2 3.3 3.4 3.5

 ,

P = 10−4


1312 1696 5569 124 8283 5886

2329 4135 8307 3736 1004 9991

2348 1451 3522 2883 3047 6650

4047 8828 8732 5743 1091 381

 .

Borehole function. An eight-dimensional function defined on

X = [0.05, 0.15; 100, 50, 000; 63070, 115600; 990,

1110; 63.1, 116; 700, 820; 1120, 1680; 9855, 12055]

with two fidelities queried with costs 10 and 1:

f(x, 0) =
2πx3(x4 − x6)

log(x2/x1)
(

1 + 2x7x3
log(x2/x1)x21x8

+ x3
x5

) ,
f(x, 1) =

5x3(x4 − x6)

log(x2/x1)
(

1.5 + 2x7x3
log(x2/x1)x21x8

+ x3
x5

) .
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C.4 Comparing GIBBON with MES

In our synthetic experiments of Section 5.7, we were surprised to see that GIBBON

was able to outperform MES even in the noiseless standard BO case for which MES

provides an exact calculation of entropy reductions. As GIBBON approximates MES,

we actually expected GIBBON to perform strictly worse than MES in this particular

setting. We posit that the high-performance of GIBBON is due to it enjoying an easier

inner-loop maximisation, permitting higher-precision maximisation under the same

acquisition maximisation budget. We now explore this hypothesis.

To gain further intuition about why GIBBON’s acquisition function is easier to

optimise, we analyse the so-called degenerate forms of MES and GIBBON where the

acquisition functions are built using only a single max-value sample. By defining the

function u(x) = m∗−µgn(x)√
Σg(x)

, degenerate GIBBON and MES can be expressed as

αGIBBON
n (x) = − log

(
1− φ(u(x))

Φ(u(x))

(
u(x) +

φ(u(x))

Φ(u(x))

))
αMES
n (x) =

u(x)φ(u(x))

2Φ(u(x))
− log Φ(u(x)).

Although taking very different analytical forms, these two acquisition functions are

strictly decreasing in u (as shown in Figure C.4.1), with GIBBON taking larger values

in promising locations of the space. So although (in this degenerate and noiseless

setting) GIBBON and MES would choose exactly the same points under given exact

inner-loop maximisation, GIBBON’s larger values around its local maxima make

high-precision inner-loop maximisation easier.

Note that in this limited setting, Wang and Jegelka (2017) provide a bound on the

simple regret of degenerate MES. As degenerate GIBBON and degenerate MES choose

the same query points, this regret bound is also inherited by degenerate GIBBON.

Although this result does not hold for practical implementations of GIBBON, where

we typically use 5 or 10 samples of g∗, or when we perform batch or multi-fidelity BO,

the existence of this theoretical guarantee provides reassuring evidence for the validity

of our approach.
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Figure C.4.1: Degenerate GIBBON and MES as functions of u. The two acquisition

functions are monotonically decreasing, with GIBBON taking much larger values.



Appendix D

Supplementary Material for BOSH

D.1 Suboptimality of Tuning a Fixed Evaluation Strat-

egy

We now derive the expected suboptimality of optimising a fixed evaluation strategy

instead of the true objective function, following the notation defined in Section 6.2.

For ease of understanding, we just consider a single dimensional optimisation problem.

However, a similar (but less intuitive) expression can be derived for optimisation over

multi-dimensional search spaces.

We wish to compare x∗, the optimiser of true model performance, with x∗S, the

optimiser of the evaluation strategy based on a collection of K random train-test splits

S = {s1, .., sK} (a random variable).

Estimators of this form are well-studied in the robust statistics literature, and

are known as M-estimators (see Hampel et al., 2011, for a summary). Under some

non-restrictive assumptions, which we state shortly, these estimators are known to be

approximately normally distributed

x∗S ∼ N (x∗,
σ2

K
),

where σ2 = Vars(x
∗
{s}) represents the variability in optimisers chosen according to

evaluation strategies based on single random seeds. We have assumed that x∗ is unique,
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that the space of feasible hyper-parameter values is a compact set and that fsi(x) are

continuous, twice differential and uniformly bounded.

Now, after performing a first order Taylor expansion, we have

ES [g(x∗S)] ≈ g(x∗) +
g′′(x∗)

2

σ2

K
,

providing

ES [g(x∗)− g(x∗S)] ≈ |g
′′(x∗)|
2K

σ2, (D.1.1)

where g′′(x∗) is the second derivative of the true objective function at its maximum

(measuring the stability of our objective function around its optimum).

(D.1.1) represents the stability of the objective function as we move away from its

optimiser. Therefore this expression explicitly relates the reliability of our optimisation

with our chosen evaluation strategy (through the choice of K) and shows that there is

a minimum threshold for K that ensures reliable optimisation to any chosen level of

precision. Optimising an evaluation strategy based on fewer seeds than this threshold

will likely just over-fit to our evaluation strategy rather than providing the desired

precision. In other words, we do not want to waste resources finding the location x∗S

to a higher precision than |x∗ − x∗S|.

D.2 Predictive Distribution of an HGP

In Section 6.5.1 we defined our HGP model

g(x) ∼ GP(0, kg)

fs(x) ∼ GP(g(x), kf )

ys(x) = fs(x) + ε.

As demonstrated by Hensman et al. (2013), this formulation is equivalent to assuming

a prior co-variance of

Cov(fs(x), fs′(x′))) = kg(x,x′) + Is=s′kf (x,x′)

Cov(fs(x), g(x′)) = kg(x,x′) (D.2.1)
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We will now provide closed form expressions for the joint predictive distributions

of g(x) and ys(x) given a set of collected evaluations Dn = {(xi, si, yi)}ni=1, where

yi = fsi(xi) + ε under Gaussian noise ε ∼ N (0, σ2).

Defining a compound kernel k̃ (defined over X ×S) as k̃((x, s), (x′, s′)) = kg(x,x′)+

Is=s′kf (x,x′) and following Rasmussen (2004a) and Hensman et al. (2013), our joint

posterior distribution can be written as

 g(x)

ys(x)

 ∣∣∣∣Dn (D.2.2)

∼ N

 µgn(x)

µn(x, s)

 ,

 σg2n (x) Σn(x, s)

Σn(x, s) σ2
n(x, s) + σ2

 ,
where

µn(x, s) =k̃n((x, s))T
(
K̃n + σ2In

)−1

yn

µgn(x) =kgn((x, s))T
(
K̃n + σ2In

)−1

yn

σ2
n(x, s) =k̃ ((x, s), (x, s))

− k̃n((x, s))T
(
K̃n + σ2In

)−1

k̃n((x, s))

σg2n (x) =kg (x,x)− kgn(x)T
(
K̃n + σ2In

)−1

kgn(x)

Σn(x, s) =kg ((x, s), (x, s))

− k̃n((x, s))T
(
K̃n + σ2In

)−1

kgn(x),

for K̃n =
[
k̃((xi, si), (xj, sj))

]
i,j=1,..,n

, k̃n((x, s)) =
[
k̃((xi, si), (x, s))

]
i=1,..,n

,kgn(x) =

[kg(xi,x)]i=1,..n and y = [yi]i=1,..,n.

Similarly, we also have a predictive covariance between evaluations on different

seeds as

Vn((x, s), (x′, s′)) = k̃ ((x, s), (x′, s′))

− k̃n((x, s))T
(
K̃n + σ2In

)−1

k̃n(x′, s′), (D.2.3)

Note that predicting from our HGP requires the inversion of the n × n matrix

K̃n + σ2In and so has comparable cost to predictions from standard GPs.
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D.3 Experimental Details

We now provide additional details about our implementation of BOSH and the exact

set-ups of our experiments. Experimental code implementing BOSH through the

Emukit 1 Python package for these examples is available at redacted for review.

HGP Kernel. Our implementation of BOSH uses the following structure for the

upper and lower kernels:

kg(x,x′) = kαg ,β(x,x′)

kf (x,x′) = kαf ,β(x,x′) + σ2
f ,

where kα,β denotes the Matérn 5/2 (Matérn, 1960) kernel with variance α ∈ R term

and length scales β ∈ Rd hyper-parameters, i.e

kα,β(x,x′) = α(1 +
√

5dβ(x,x′) +
5

3
dβ(x,x′)2)e−

√
5dβ(x,x′),

for a weighted distance measure dβ(x,x′) = (x− x′)Tdiag(β)(x− x′).

As the length-scales are shared between the lower and upper kernels, the total

number of kernel parameters for BOSH (including the scale of observation noise σ2in

our Gaussian likelihood) is d+ 4, only two more than a standard GP with a Matérn

5/2 kernel.

D.3.1 Reinforcement Learning: Lunar Lander

The Lunar Lander problem is a well-known reinforcement learning task, where we must

control three engines (left, main and right) to successfully land a rocket. The learning

environment and a hard-coded PID controller is provided in the OpenAI gym 2. We

seek to optimise the 7 thresholds present in the description of the controller to provide

the largest average reward over 100 random initial conditions. Our RL environment is

exactly as provided by OpenAI, with the small modification of randomly initialising

the initial lander location (as-well as random initial velocities and terrain) to make
1https://github.com/amzn/emukit
2https://gym.openai.com/
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a more challenging stochastic optimisation problem. We lose 0.3 points per second

of fuel use and 100 if we crash. We gain 10 points each time a leg makes contact

with the ground, 100 points for any successful landing, and 200 points for a successful

landing in the specified landing zone· Each individual run of the environment allows

the testing of a controller on a specific random seed.

D.3.2 Hyper-parameter Tuning: IMDB SVM

We tested the performance of BOSH on a real ML problem: tuning a sentiment

classification model on the collection of 25, 000 positive and 25, 000 negative IMDB

movie reviews used by Maas et al. (2011), seeking the hyper-parameter values that

provide the model with the highest accuracy. We tune the flexibility of the decision

boundary (C) and the RBF kernel coefficient (gamma) for an SVM (Cortes and Vapnik,

1995), a standard model for binary text classification. As is common in the natural

language processing literature, we train our classifier on a bag-of-words representation

of the data (Jurafsky and Martin, 2014), using tf-idf weightings (Salton and Buckley,

1988). In order to measure the true performance of tuned hyper-parameters, we must

use the available data in an unconventional way. By restricting our model fitting and

tuning to a randomly sub-sampled 1, 000 review subset to act as our training set for all

our experiments, we provide a large held-out collection of 49, 000 movie reviews, upon

which we can calculate the ‘true’ performance of the hyper-parameter configurations

chosen by our tuning algorithms. We then randomly draw our train-test splits from

this fixed training set, with test sets of 10%. As already argued, the model scores

based on a particular evaluation strategy do not necessarily correspond to the true

performance and so, although we acknowledge that this contrived use of the data is

not standard, this set-up is necessary to measure the improved efficiency and reliability

provided by BOSH.
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D.3.3 Hyper-parameter Tuning: Movie-lens PMF

For our second hyper-parameter tuning task we consider tuning the learning rate

across [0, 0.01], regularisation strength across [0, 0.1], matrix rank across [50, .., 150] and

number of model epochs across [10, .., 50] for a probabilistic matrix factorisation (MPF)

(Mnih and Salakhutdinov, 2008) recommendation system on the well-known Movie-

lens-100k Hoffman et al. (2010) data (using the Surprise3 Python library). Unlike the

IMDB data-set, we consider the whole of the 100, 000 data points for training (to be

used for train-test splits and K-fold CV). As we do not have any held-out data to

calculate true performance, we instead use the average performance estimates across

20 train-test splits to reliably (albeit expensively) measure true performance in terms

of mean reconstruction error (a standard metric for recommendation systems).

D.3.4 Simulation Optimisation: Facility Allocation

Our final example considers the problem of optimally allocating two warehouses on a

unit square (each edge corresponds to 30km), with a search space consisting of the x and

y locations for each warehouse (x1, y1, x2, y2) ∈ [0, 1]4. We are interested in maximising

the proportion of orders delivered in under 60 minutes. The only way to estimate the

performance of a particular facility allocation is to simulate demand for a particular

day and seeing how each configuration copes. More reliable performance estimates can

be obtained by running multiple days of simulations. For most real-world simulation

optimisation problems, the cost of running a single simulation is substantial and so

there there is a need to find the optimum allocation whilst running as few simulations

as possible. In our experiments we run the exact implementation provided as part

of the SimOpt4 test-bed of simulation optimisation problems, originally proposed by

Pasupathy and Ghosh (2013).

Orders are assumed to arise during working hours (8AM to 5PM) at a rate of 0.3

per minute with the exact delivery location (x, y) controlled by a density function

proportional to 1.6− (|x− 0.8|+ |y − 0.8|). Each warehouse has 10 trucks that can
3http://surpriselib.com/
4http://simopt.org/
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carry and deliver a single order. Any orders for which there are no available trucks are

queued and those in a queue at the end of the day must still be delivered. Time taken

to load and unload the trucks are assumed to be distributed exponentially with means

5 and 10. Trucks can travel only in the x or y direction at a speed of 30kmh.
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