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Abstract 

Back-propagation modelling of viscosity and shear stress of Ionic-MXene nanofluid is carried out 

in this work. The data for Ionic-MXene nanofluid of 0.05, 0.1, and 0.2 weight concentration (wt. 

%) is collected from the experimental analysis. Shear stress and viscosity as a function of shear 

rate and wt. % of MXene nanoparticles is used as input. Additionally, viscosity as a function of 

temperature and % of MXene nanoparticles is collected separately. Based on the possible 

combinations five back-propagation algorithms (BPA) are developed. In each algorithm five 

models depending upon the number of neurons in the hidden layer are used. The training and 

testing of all the model in each algorithm is performed. Statistical analysis of the network output 

is done to evaluate the accuracy of models. Model 1 is found to have lower accuracy than the 

remaining models. The training and testing is of the algorithms is satisfactory as the network output 

is found to be in comfortably good agreement with the desired experimental output. 
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Nomenclature 

ANN   Artificial neural network 

MSE   Mean square error 

RMSE  Root mean square error 

BPA  Back propagation algorithm  

RBF  Radial basis function 

MLP  Multilayer perceptron  

wt%  Weight concentration 

1. Introduction 

The development of industries has given extreme importance in expanding the performance 

of the heat transfer equipment by adopting various methods. Several methods have been adopted 

to increase the performance of the heat transfer system by enhancing the heat transfer rate. 

However, increased surface area and flow arrangement with different design may increase the 

performance. This may lead to complications in the manufacturing of such designs. Therefore, 

enhancing the thermo physical properties of base fluids have attracted various researchers due to 

the possibilities of maintaining the compactness of the heat transfer system. It is well known that 

fluids such as Water, Ethylene glycol (EG), EG and water mixture, Propylene glycols (PEG), PEG 

and water mixtures and oils are generally considered as the base fluid as they possess good heat 

transfer properties and can be used at numerous operating temperatures. Thermo physical 

properties of these fluids can be improved by introducing nano-sized solid particles into it. These 

nano-sized particles are generally known as nanoparticles, and the fluids containing these 

nanoparticles are termed as nanofluids. Nanofluids have shown better thermo physical properties 

than their respective base fluids. However, the enhanced thermal conductivity when nanoparticles 

dispersed into the base fluid has attracted the attention of researchers [1]. 

Many researchers studies have proven enhanced thermal conductivity when nanoparticles 

of different materials are used [2,3]. Subsequently, heat transfer studies have depicted with an 



enhanced heat transfer coefficient [4–6]. The studies related to the effective use of these nanofluids 

in applications such as solar collectors [7,8], refrigeration [9,10], heat pipes [11,12], nuclear 

reactors [13], automobile industry [14] have shown significant improvement in their performance. 

Thermo physical properties of nanofluids have shown variation depends upon the various factors 

such as nanoparticle material, particle concentration, nanoparticles size and shape and temperature 

[15]. Other factors such as the effect of ultrasonication time and surfactant have shown a significant 

effect on thermo physical properties [16–20]. The significant effect on thermal conductivity is 

widely reported considering nanoparticle concentration and temperature [21]. Results indicate that 

increasing concentration and temperature increases the thermal conductivity [22]. Viscosity is one 

of the essential property which is used for analysis in heat transfer. The viscosity of nanofluids 

increases with an increase in nanoparticle concentrations and diminishes as the temperature 

increases [23]. Yashawantha et al., [24] performed the viscosity measurement considering the 

graphite nanoparticles dispersed in EG. The study showed that viscosity depends on concentration 

and temperature. Subsequently, correlations were developed to predict the viscosity of EG-

Graphite nanofluid. 

The process of determining the thermo physical properties of nanofluids experimentally 

consumes more time compared to the numerical method used for the heat transfer study [25]. 

However, to perform heat transfer studies numerically [26], the properties of these nanofluids are 

to be determined experimentally as no numerical approaches are available to estimate these 

properties. Moreover, the addition of nanoparticles into base fluid increases the thermal 

conductivity and at the same time viscosity also increases. Pumping power increases [27] as a 

result of increased viscosity and also it reduces the convective heat transfer coefficient [28]. 

Therefore, an experimental investigation is necessary to find the viscosity of the nanofluid. 

However, researchers have developed correlations and modelling to reduce the number of 

experiments required to find these properties. Such modelling approach is accountable for the 

accurate prediction of thermo physical properties [29]. Machine learning model such as artificial 

neural network (ANN), Radial Basis Function (RBF), multivariable polynomial regression (MPR) 

and multivariate adaptive regression splines (MARS) are the tool used for the prediction of thermo 

physical properties of nanofluids.  



Esfe et al., [30] performed ANN modelling for evaluation of viscosity of water - TiO2 

nanofluid considering temperature and mass concentration as an input variable. They achieved a 

regression coefficient of 0.9998 when ANN model was structured with a single hidden layer with 

4 neurons. Afrand et al., [31]  presented optimum predicting model (ANN) for relative viscosity 

of multi-walled carbon nanotubes dispersed in water considering their experimental data. Vakili 

et al., [32] performed a hybrid model (genetic algorithm (GA) and artificial neural network) to 

predict the viscosity of graphene nanoplatelets – deionized water (DI) nanofluids. Experimental 

results obtained for these nanofluids considered as target, temperature and nanoparticles 

concentration were considered for input to perform this predictive analysis. Amani et al., [33] 

studied the ANN and GA approach in predicting the thermal conductivity and viscosity of water 

based spinel - MnFe2O4 nanofluid considering the input variables as magnetic field, concentration 

and temperature. Their study was conducted under multiobjective optimization (thermal 

conductivity and viscosity) considering three different algorithms (Levenberg-Marquardt, quasi-

Newton and resilient back propagation) approach to training the data. Zhao Liu [34] constructed 

an RBF neural network to predict the thermal conductivity and viscosity of water - Al2O3 

nanofluids taking nanoparticle concentration and temperature as an input variable. The 

comparative analysis made with RBF neural network and experimental results have showed 

excellent ability of RBF network to predict the thermal conductivity and viscosity of Al₂O₃ - water. 

Similar kind of study was conducted by Derakhshanfard and Mehralizadeh [35] considering RBF 

method of ANN modelling to predict the viscosity of crude-oil based nanofluids (NiO, WO3, TiO2, 

ZnO and FeO3). They have considered temperature and nanoparticle concentration as the input 

variables.  

Shadloo  et al., [36] performed ANN modeling to predict pressure drop in two-phase flow 

in horizontal long pipes for wide range of operating condition considering the pipe diameters, and 

fluid characteristics. Predicted data of pressure drop showed with good accuracy (deviation less 

than 5%). Ansari et al., [37] reported comprehensive study on modelling viscosity of nanofluids 

using feed-forward back-propagation neural networks considering 1620 experimental data points 

from literature. They have considered different training algorithm such as Scaled Conjugate 

Gradient (SCG), Levenberg-Marquardt (LM), Bayesian Regulation back propagation (BR), and 

Resilient back Propagation (RP). Their study investigated effect on network precision for the 

different transfer functions (Radial basis (radbas), Tan-sigmoid (tansig), Log-sigmoid (logsig), 



Hard-limit (hardlim), Triangular basis (tribas) and Soft max transfer function (softmax)) in hidden 

layer. The input parameter such as temperature, nanoparticle size, shear rate, density of 

nanoparticles and concentration were taken to develop a neural network.  The neural network 

comprising LM training model with 1 hidden layer and 23 neurons with tan-sigmoid and purelin 

transfer functions in the hidden and output layers was found to deliver the best performance 

compared to others.  

Ahmadi et al., [38] presented three different algorithm (ANN-MLP, MARS and MPR ) to 

predict the viscosity of Silver/water nanofluid choosing experimental results reported from the 

literature. The input variables selected in the modelling process are the size of nanoparticles, 

temperature and concentration of the silver nanoparticles. Naik and Vinod [39] implemented the 

Feed forward ANN with Levenberg-Marquardt algorithm approach for predicting the apparent 

viscosity of carboxymethyl cellulose (CMC) based Fe2O3, Al2O3 and CuO nanofluids. The results 

of experimentally obtained apparent viscosity was considered as target for training the neural 

network. Prediction obtained from the ANN modelling showed good agreement with experimental 

results. Shahsavar et al., [40] implemented the ANN model to predict the thermal conductivity and 

viscosity of paraffin - Al2O3 nanofluid using their experimental data. Multiple Inputs (shear rate, 

nanoparticles concentration, and temperature) were considered for modelling the viscosity of 

paraffin - Al2O3 nanofluid.  

 To obtain a precise model to predict the viscosity of  SiO2/EG- water nanofluids, Ahmadi 

et al.,  [41] employed MLP and RBF algorithms to test the experimental data. For this analysis 

experimental data was collected from the literature and the accuracy of the proposed model was 

validated through performing error analysis. Toghraie et al., [42] experimentally investigated the 

dynamic viscosity of Silver/Ethylene glycol nanofluid by varying temperature and volume 

fraction. They designed the best architecture of the ANN model to predict the dynamic viscosity 

of this nanofluid.  

A unique multilayer perceptron model was developed by Yadav et al., [43] to estimate the 

viscosity of  EG based Al2O3, CeO2, and CuO nanofluids from their experimental results. The 

proposed structure of the neural network shows a fair agreement in predicting the viscosity results 

when compared on experimental data. Parashar et al., [44] developed ANN modelling for viscosity 



(377 data) of EG based nanofluids considering the literature data. They have considered the 

diameter of the nanoparticles, temperature, and nanoparticle concentration as inputs variables and 

effective dynamic viscosity (µnf/µbf) as a target.  Optimum model (2 hidden layers and 45 neurons 

in both the hidden layers) was obtained with performing modelling with varying different set of 

neurons in the hidden layer. The comparison made with experimental results and predictive results 

obtained from ANN showed an accurate prediction of effective dynamic viscosity of EG based 

nanofluids.  

Alade et al., [45] presented a comparison study considering ANN and Bayesian support 

vector regression (BSVR) model for predicting the relative viscosity of nanofluids. For this 

purpose 19 different nanofluids results (1425 experimental data) from the literature were 

considered. To determine the optimum structure of model volume concentration, density of 

nanoparticles, fluid temperature, size of nanoparticles, and viscosity of base fluids were considered 

as input parameter. The results obtained from optimized BSVR model based on all possible input 

combinations were compared with the ANN model consisting of best model at two hidden layers 

with 10 neurons per hidden layer. The results indicated that the BSVR model exhibits superior 

prediction results compared to the ANN model and existing empirical model.  

Parashar et al., [46] investigated viscosity of MXene nanomaterials-palm oil nanofluids 

experimentally, subsequently to predict the viscosity results ANN modelling approach was used. 

Temperature and nanoflakes concentration were considered as inputs to the ANN model, whereas 

dynamic viscosity was the output of the model. The prediction obtained from ANN modelling was 

in excellent agreement with the experimental data. The modeling work related to viscosity of 

nanofluids presented in literatures have showed very good prediction of data with multiple input 

variable compared to conventional method (correlation). However, most of studies have 

considered to predict the viscosity using different algorithm. Whereas, shear stress modelling of 

such nanofluids are not reported. Moreover, the shear stress is an important parameter in fluid flow 

and heat transfer. In this article the different back propagation modelling algorithms for shear stress 

and viscosity as a function of shear rate and MXene nanoparticle concentration in aqueous Ionic 

fluid is carried out. Five back propagation algorithms are developed for the modeling and 

prediction of viscosity and shear stress.  



2. Data collection and Back propagation algorithms (BPA) 

2.1 Data collection 

Nanofluid of aqueous Ionic-MXene is prepared using Ionic liquid (1,3-

Dimethylimidazolium dimethyl-phosphate). MXene nanoparticles of weight concentration (wt. %) 

0.05, 0.1, and 0.2 are dispersed in the Ionic solution. MXene were initially synthesized using the 

MAX phase material. Magnetic stirring and probe sonication of the synthesized MXene 

nanoparticles in Ionic solution was followed to obtain the nanofluid. For further details of 

synthesizing of nanoparticles and preparation of nanofluid can be referred in [47]. Thorough 

characterization of the obtained MXene-Ionic nanofluid is performed in the reported work [47]. 

This experimental work performed is further used for the regression of the data using back-

propagation algorithm. The data to perform the back-propagation modelling of shear stress and 

viscosity is taken from the same experimental work [47].   

2.2 Back propagation modelling  

The back propagation ANN (artificial neural networks) is a multi-layered FF (feed 

forward) network, and is the most popularly used. It is also one of the most basic and most popular 

methods of supervised neural network training. The back-propagation operates by changing and 

adjusting the non-linear relation between input and output. In general, two phases are the training 

& testing of the back propagation network. The network is feed with inputs and the appropriate 

classifications during the training process. For example, an encoded image of a face can be the 

input and the output can be described by a code which corresponds to the person's name [48–51].   

In Figure 1 the BPA developed for the present work is shown. It should be noted that in 

BPA developed for regression modelling of shear stress and viscosity the inputs are 1) shear rate, 

2) nanoparticle wt. % in Ionic solution, and 3) temperature. Based on the combinations the BPA 

are totally 5 in number. The combinations of the proposed BPA with input and output are 

mentioned in Table 1. These BPA proposed are based on the given number of inputs and outputs 

obtained experimentally. Algorithm 1 and 4 and algorithm 2, 5 have same outputs but with 

different methods. In Algorithm 1 or 2 which is actually same gives only one output at a time. 

Hence to differentiate this the BPA is designated as Algorithm 1 if the output is viscosity and as 



Algorithm 2 when the output is shear stress. However, Algorithm 4 or 5 gives two outputs at a 

time. When viscosity is used from the BPA, it is called as Algorithm 4 and when shear stress is 

used it is mentioned as Algorithm 5. This naming convention is followed to avoid confusion in the 

statistical analysis of the data predicted for training and testing.  

In each Algorithm the regression is performed varying the number of neurons in the hidden layer. 

In Table 2 the naming convention followed for each model in every BPA is provided. Model 1 to 

Model 5 is general name designated for BPA having neurons 1 to 5 respectively. The model pattern 

in the form Model A-B-C represents BPA model with A as number of inputs, B as number of 

neurons in hidden layer, and C as outputs. For example Model 2-1-2 represents BPA having 2 

inputs, 1 neuron in hidden layer, and 2 outputs. This convention is followed for the analysis of 

training and testing results obtained. 

Table 1. Algorithms developed based on input and output combinations 

Algorithm no. Inputs Output Output neurons 

Algorithm 1 Shear rate & wt. % Viscosity 1 

Algorithm 2 Shear rate & wt. % Shear stress 1 

Algorithm 3 Temperature & wt. % Viscosity 1 

Algorithm 4 Shear rate & wt. % Viscosity 2 

Algorithm 5 Shear rate & wt. % Shear stress 2 

Table 2. Model names followed in the proposed BPA  

Algorithm 

no. 
Model no. Model pattern 

Neurons in 

input layer 

Neurons in 

hidden layer 

Neurons in 

output layer 

Algorithm 

1, 2, and 3 

Model 1 Model 2-1-1 2 1 1 

Model 2 Model 2-2-1 2 2 1 

Model 3 Model 2-3-1 2 3 1 

Model 4 Model 2-4-1 2 4 1 

Model 5 Model 2-5-1 2 5 1 

Algorithm 

4 and 5 

Model 1 Model 2-1-2 2 1 2 

Model 2 Model 2-2-2 2 2 2 

Model 3 Model 2-3-2 2 3 2 



Model 4 Model 2-4-2 2 4 2 

Model 5 Model 2-5-2 2 5 2 

2.3 Statistical analysis 

For the developed BPA the statistical analysis is performed to know their performance. 

%AAD (error deviation %), error of mean square (MSE), R (correlation coefficient), and RMSE 

(root mean square error) are employed for the BPA accuracy evaluation. Equations 1-4 are adopted 

for the estimation of these parameters. 
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In the above equations P is the number of data points, VDO and VNO represents the desired 

output obtained experimentally and network output obtained from BPA respectively. In statistical 

analysis the lower %AAD value dictates the accuracy. The R value should be high enough to 

represent better accurate model which can go up to max equal to 1. MSE and RMSE of the model 

should be low enough (as low as possible) to show that the model is more accurate. 
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(c) Algorithm 4 and 5 

Figure 1. Back propagation algorithms (BPA) developed for modelling of shear stress and 

viscosity individually (Algorithm 1, 2, and 3) and combined (Algorithm 4 and 5). Algorithm 1, 2 

and Algorithm 4, 5 are same as the input for them is same i.e. shear rate and nanoparticle wt. %. 

3. Results and discussion 

The back propagation modelling of shear stress and viscosity as a function of shear rate 

and MXene nanoparticle wt. % in aqueous Ionic solution is analyzed in this section. Initially, the 

statistical analysis of BPAs is performed and then the predictions from the network during training 

and testing is presented. The prediction by different BPA using 5 models is discussed separately.  

In Figure 2 the MSE of BPA 1 to 5 is shown for models 1 to 5 obtained from the training 

and testing of the network. Each model represents the number of neurons in the hidden layer. The 

BPA represents the parameter modelled like shear stress or viscosity. From the results it can be 

seen that the MSE highest is for BPA 5 at Model 1. Further observation reveals that for Model 1 

in all BPA the MSE is comparatively higher. The reason is the single neuron in the hidden layer 

which finds difficult to adjust its weight to the fluctuating data with respect to inputs. The back 

propagation of error with single neuron is a difficult task to get the desired output. Therefore the 



network output with single neuron (Model 1 or Model A-1-C) will usually have large error than 

the other models. For BPA 5 the error is highest because the outputs involved in this algorithm are 

two which are shear stress and viscosity combined. In testing of the network the MSE is frequent 

than the training network. The MSE involved in training and testing is nearly same.  

  

Figure 2. MSE of all the algorithms and models  

  

Figure 3. Error deviation by each algorithm and model 

From Figure 3 the error deviation is shown for all the models and algorithms. In the training 

part the %AAD of each model is very close to 0 showing a greater fitness of the models in 
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prediction of the output, except at BPA 5 the model 1 has shown more deviations. In the testing 

part of the network, BPA 1 model 2 has shown slightly more %AAD than the models. In rest of 

the algorithms model 1 is having more %AAD. In testing of the data obtained by network the 

%AAD indicates some instability of model. However BPA 5 provides %AAD very close to 0 for 

models 2 to 5.  

The RMSE value for all models is shown in Figure 4. The error is less than 0.08 for all 

models in each algorithm. For most of the models the RMSE is very close to 0.01 indicating that 

the predicted values are close to desired values. BPA 1 for all models has shown the lowest error 

and BPA 5 is also predicted sufficiently the output as the error is low. The error developed by the 

model 1 in each algorithm is again clearly noticeable. The correlation coefficient must be very 

close to 1 indicating the model accuracy. In Figure 5 the R value is shown for each model. The R 

indicates that the training of the BPA is successful as it value is very close to 1. Only model 1 in 

each BPA is having slightly lower R value while other models are suitable. In training for model 

2 to 5 in each training algorithm the R is closer to 1 i.e. 0.99. Model 5 having 5 neurons in hidden 

layer has provided the most accurate model in all aspects. The MSE, %AAD, RMSE, and R value 

of model 5 is better than the other models in each algorithm. 

  

Figure 4. RMSE between the desired and network output 
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Figure 5. Correlation coefficient obtained from 5 models and 5 BPAs 

In Figure 6 the viscosity predictions by the BPA 1 is provided for training data set. The 

data set is 400 points long for training and 30 points long in testing. For each model the training 

data set allotted is maximum to get the predictions properly. Testing is carried to know how well 

the network predicts after successful training of the model. In Figure 6 (a) the training results as 

obtained by the algorithm BPA 1 is shown. The viscosity predictions with shear rate and MXene 

wt. % is input. The model 2-1-1 to model 2-5-1 predictions are shown in the figure. The 

experimental results and the BPA 1 results by each model are of same trend. However except 

model 2-1-1 the predictions by BPA 1 is very close to the experimental results. The inset figure 

clearly indicates which model is most close to the desired output. Model 2-5-1 is very close the 

experimental readings indicating successful training. In Figure 6 (b) the testing predictions by the 

BPA 1 after training is shown. All model are here showing a good match with the experimental 

readings. Hence it can be said that BPA 1 and models 2 to 5 are good in predicting the viscosity 

of MXene-Ionic nanofluids.  
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(a) Prediction by BPA 1 and experimental values 

 

(b) Prediction by BPA 1 and experimental values 

Figure 6. Training/testing results by BPA 1 
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Figure 7 shows the training of the BPA 2 by 5 models to predict the shear stress having 

same input as BPA 1. It is worth observing that with the increase of neurons in the hidden layer 

the prediction i.e. training of the BPA 2 becomes more fit. The R-squared value is mentioned at 

the bottom left corner to show how close the experimental values and network values are. If R-

squared value is close to unity, it indicates the model predicts the output more accurately. Model 

3, 4, and 5 having R-squared 0.99 showing a good fit between experimental and BPA 2 values. 

The deviations by model 1 and model 2 are very clear as the R-squared value is slightly more than 

0.95. Model 3 to model 5 are successfully trained and are fit for predictions. Further in Figure 7 it 

should be noted that for model 5 the fitness of data is highest showing that 5 neurons are suitbale 

for the data more appropriately. The basic reason can be attributed to the back propagation of error 

to a greater number of neurons which can make the weight and bias values adjustment acordingly. 

For lower neurons the error corrections is having less scope so the dispute with the experimental 

observations.  
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Figure 7. BPA 2 training results of shear stress obtained from each model 

 

The testing of shear stress by BPA 2 is shown in Figure 8 using model 1 to 5. The testing 

of BPA 2 once the model is trained (as shown in Figure 7) indicates that the output is very close 

to experimental values. Though model 1 and 2 have not performed well in training the testing 

results indicate a good fit. However a model must be first proven in training to opt for testing of 

the data. The testing results indicate an R-squared value of 0.96. As there are lot of minor 

fluctuations in shear stress value with shear rate at some instance during the experiments the 

prediction by network need still huge data.  The BPA 2 used for each model has shown almost a 
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same nature of agreement due to lower number of points available. Increase in data may further 

help us in better prediction of the shear stress with respect to shear rate.  
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Figure 8. Testing of BPA 2 to predict shear stress  

The BPA 3 used for regression of experimental data with viscosity as output and 

temperature and MXene nanoparticle wt. % in Ionic solution is shown in Figure 9. The data points 

are less in number which is around 200 and hence the successful training is an important task. With 

the model 2 to 5 the accuracy of the BPA 3 has remained same. Only model 1 shows larger 

deviations while for remaining models the R-squared value if 0.99 showing a good fit. However 

model 2 to 5 can be preferred as training is found to be successful. Here the shear rate is kept 

constant while temperature is increased from 20°C to 50°C. With the increase of temperature the 

viscosity has reduced which is non-linear. This non-linear data is found to be well predicted by the 

models. The improvement in the agreement between experimental and predicted data is so nicely 

inclining with the trendline can be easily made out. This is purely due to the increase of neurons 

in the hidden showing their greater impact on the efficiency of algorithm to predict the data. 
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Figure 9. Training of BPA 3 to predict viscosity as a function of temperature and MXene 

nanoparticle wt. % 

The testing of BPA 3 to predict the viscosity as a function of temperature is shown in Figure 

10. The testing of BPA 3 shows that the viscosity predicted by each model is successful. The 

experimental viscosity and BPA 3 output during the testing is found to be well established.  Based 

on the training of BPA 3 it can be inferred that models 2 to 5 are better suited for prediction though 

model 1 shows good agreement with the experimental values. The main reason for model 1 

predicting the viscosity in testing is the low data points used. The last readings of viscosity were 

used which does not much change with temperature hence data with much fluctuations will 

indicate the proper fitness of the model 1. 
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Figure 10. Testing of BPA 3 to predict viscosity 
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The BPA 4/5 used for modelling of viscosity and shear stress together are same. The 

training results of BPA 4 for viscosity is shown in Figure 11 (a). Here the fluctuations of viscosity 

prediction by model 1 is clearly noticed. Other models 2 to 5 are in the verge of exact prediction. 

However model 5 is closer than other. The inset figures provided clearly indicates this fact. When 

there are two outputs from a network, the weights and bias functions are completely different than 

the model having single output. But such a model is of more advantage than a single output 

network as the computational time is saved and robustness of model is increased. The testing of 

BPA 4 for viscosity is shown in Figure 11 (b). Again the testing of model 1 has shown large 

deviations. The other models have close values to experimental part. However to be consistent 

model 3 to model 5 are found to be robust in all algorithms adopted. The testing of model 2 to 5 

have indicated a good agreement between the experimental part and BPA 4. 

In Figure 12 the shear stress prediction using algorithm 5 is shown for 5 models. In line 

with the results provided by BPA 2 the predictions are similar. Model 1 and model 2 can be 

however neglected as also seen in previous case. The rest models 3 to 5 give comfortable 

agreement and fit between the experimental and network output. In Figure 13 the testing results 

obtained from BPA 5 is depicted for each model. It is seen that each model predicts comfortably 

the experimental test data points. All models have R-squared very close to unity. As mentioned in 

the preceding discussion the test results of model 1 cannot be considered as the training part is not 

found to be much accurate like other models. Hence as a general observation with the increase of 

number of neurons in hidden layer the model performance increases. But also it is seen that a 

certain maximum number of neurons in hidden layer are enough to accurately predict the output. 

If the neurons, as in this case are increased from 1 to 5, models 3 to 5 have shown very close 

results. Hence upper limit to number of neurons in hidden layer exists. 



 

(a) Training of BPA 4 for viscosity 

 

(b) Testing of BPA 4 for viscosity 

Figure 11. BPA 4 training/testing results obtained for viscosity  
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Figure 12. BPA 5 used for prediction of shear stress during the training process 
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Figure 13. Testing of BPA 5 prediction of shear stress 
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Figure 14 (a) depicts validation results obtained from the NN modelling for BPA 2, 3 and 4 

respectively for model 5 i.e. 5 neurons in hidden layer. It can be observed that Algorithm 2 to 4 

validation results are very close to the experimental results. The data distribution for training, 

testing and validation is random and results shows the less deviations in case of validation process 

displaying a good fitness of model in prediction of output with considering the data which 

previously has been not used for training and testing. As mentioned earlier the algorithm 2 and 3 

contains single output and 4 having two output and validation of these data is found to be effective. 

In case of model optimizing the neurons in hidden layer is essential. As seen in this study 

increasing the neuron in hidden layer gives the better performance. However, with limited neurons 

(<5) in hidden layer for prediction of data with multioutput has been responsible to provide 

effective results instead of having more neurons in hidden layer. Hence, upper limit of model 5 is 

considered for the presenting the validation results. In remaining models the observed validation 

results from the NN model is also close to experimental results but comparatively higher for the 

model 2 to 4 with algorithm 2, 3 and 4 respectively. The MSE obtained for these results are very 

close to zero (as seen in case of training and testing) and which gives proper validation of results. 

Similarly, the correlation coefficient of these algorithms I validation process has shown the value 

close to indicating the accuracy of viscosity and shear stress prediction. 

 

(a) Algorithm 2 
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(b) Algorithm 3 

 

(c) Algorithm 4 

Figure 14. Validation plots for algorithm 2-4 

In Table 3 the weigth and bias values of Model 5 from BPA 1 is mentioned.  

Table 3. Weight and Bias values of BPA 1 for Model 5  
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From the input layer 

To the 1rst  

hidden layer 
Bias 1th neuron 2th neuron 3th neuron 4th neuron  

1th neuron 0.69301 0.007816 6.93545 -5.93534 5.417912  

2th neuron -5. 5181 0.0017742 0.51441 -11.4157 -26.95542  

3th neuron -21. 561 -0.0082714 -0.103354 -31.0137 1.137775  

4th neuron -2. 4624 -0.0071242 -2.78927 3.8025844 -0.101495  

5th neuron 6. 9256 0.0080793 3.5414256= 12.902675 -0.707268  

From the 1rst hidden layer 

To the 

output layer 
Bias 1th neuron 2th neuron 3th neuron 4th neuron 5th neuron 

1th neuron 1.16612 4.84427 1.59697 8.37624 -6.08835 -12.0812 

 

4. Conclusion 

Back propagation modelling of the experimental data performed for the analysis of 

viscosity and shear stress of Ionic-MXene nanofluids of different wt. % is carried out in this article. 

Five back propagation algorithms (BPA) are developed for the modelling of data. In each BPA 5 

models are developed to accurately predict the experimental data. It is found that the number of 

neurons in the hidden layer has a significant role in proper prediction. The training and testing of 

the developed algorithms is found to predict the shear stress and viscosity appropriately. The 

statistical analysis performed for the algorithms also reveal the good accuracy of the model. Model 

1 having a single neuron is not able to predict the output giving a significant error. The viscosity 

and shear stress are predicted appropriately in the training and testing phase by each algorithm.  

The mean square error, root mean square error, error deviation %, and correlation coefficient for 

all the models in each BPA is analyzed. The statistical analysis reveals that all BPA are good for 

the prediction of viscosity and shear stress. However, Model 1 has much less accuracy than the 

remaining five models. In BPA 5 the accuracy of Model 1 further reduces as the input and output 

neurons increase. This has clearly indicated that the neurons in the hidden layer paly a significant 



role in viscosity and shear stress prediction. Further, the role of layers in between the input and 

output layer can be explored. Impact of random seed on accuracy of prediction and use of different 

activation functions needs to be explored as it is an interesting study. 
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