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2 Abstract  

Moisture-induced landslides are a global geohazard; mitigating the risk posed by landslides requires 

an understanding of the hydrological and geological conditions present within a given slope. Recently, 

numerous geophysical studies have been attempted to characterise slow moving landslides, with an 

emphasis on developing geoelectrical methods as a hydrological monitoring tool. However, landslides 

pose specific challenges for processing geoelectrical data in long-term monitoring contexts as the 

sensor arrays can move with slope movements. Here we present an approach for processing long-term 

(over 8 years) geoelectrical monitoring data from an active slow moving landslide, Hollin Hill, 

situated in Lias rocks in the southern Howardian Hills, UK. These slope movements distorted the 

initial setup of the monitoring array and need to be incorporated into a time-lapse resistivity 

processing workflow to avoid imaging artefacts. We retrospectively sourced seven digital terrain 

models to inform the topography of our imaging volumes, which were acquired by either Unmanned 
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Aerial Vehicle (UAV)-based photogrammetry or terrestrial laser ranging systems. An irregular grid of 

wooden pegs was periodically surveyed with a global position system, from which distortions to the 

terrain model and electrode positions can be modelled with thin plate splines. In order to effectively 

model the time-series electrical resistivity images, a baseline constraint is applied within the inversion 

scheme; the result of the study is a time-lapse series of resistivity volumes which also incorporate 

slope movements. The workflow presented here should be adaptable for other studies focussed on 

geophysical/geotechnical monitoring of unstable slopes.  
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Paraview A 3D visualisation and data analysis suite (used to produce figures), also open 

source: https://www.paraview.org/ 

4.4 Conflictions of interest 

No known conflicts of interest  

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



1 
 

1 Introduction  1 

Landslides are a global phenomenon, resulting in severe economic and societal losses, and as such represent a 2 

significant geohazard. The majority of land slip events are moisture-induced (Gasmo et al. 2000), whereby 3 

increases in subsurface moisture change the pore pressure conditions which consequently affect the shear 4 

strength within a slope, resulting in slope failure (e.g., Terzaghi 1936). In order to manage this hazard, it is 5 

necessary to characterise landslide bodies both internally and externally. The external geomorphology of 6 

unstable slopes can be characterised directly with observations, aerial imagery and laser ranging methods. 7 

Determining the internal structure of landslides remains more challenging, often practitioners need to rely on 8 

point sensors and physical samples (recovered from pits or core). Over the past few decades, several studies and 9 

reviews have investigated the use of geophysical methods for landslide investigation since they are spatially 10 

sensitive, non  invasive and comparatively inexpensive relative to conventional shallow borehole investigations 11 

(Jongmans and Garambois 2007; Pazzi et al. 2019; Whiteley et al. 2019). Bogoslovsky and Ogilvy (1977) first 12 

demonstrated that geoelectrical techniques could be used to make interpretations on the structure of landslides 13 

and likely hydrological conditions, as relationships between electrical resistivity and moisture content have been 14 

long established (e.g., Archie 1947).  15 

Numerous studies have shown electrical resistivity imaging (ERI), also known as electrical resistivity 16 

tomography (ERT), can be an invaluable aid in interpreting changes in near surface hydrologic conditions 17 

(Binley et al. 2015; Brunet et al. 2010; Chambers et al. 2014; Johnson et al. 2017; McLachlan et al. 2020; 18 

Perrone et al. 2014; Revil et al. 2020; Uhlemann et al. 2017; Uhlemann et al. 2016b). In the absence of any 19 

changes to geological structure, changes in electrical resistivity should be due to changes in temperature and the 20 

pore fluid (saturation/salinity) in the subsurface (Waxman and Smits 1968). Hence, ERI has proven to be a 21 

powerful tool when used in a hydrological monitoring context (Johnson et al. 2017; Uhlemann et al. 2017). The 22 

motivation for conducting time-lapse geoelectrical surveys on landslides is clear; the relationships between 23 

moisture content and resistivity show these methods can be used to infer the hydrological state of a hillslope and 24 

by extension shear strength and liquid limits, key parameters in estimating slope stability. For this reason the 25 

number of geoelectrical studies in landslide prone areas has been increasing in recent years (Pazzi et al. 2019; 26 

Whiteley et al. 2019). Uhlemann et al. (2017) investigated the use of the Waxman-Smits relationship (Waxman 27 

and Smits 1968) for monitoring seasonal moisture content fluctuations in an active landslide over a 3 year time 28 

period, showing that elevated moisture content derived from ERI measurements can be associated with slope 29 

movements. Crawford and Bryson (2018) presented a novel study directly relating electrical conductivity (the 30 

inverse of resistivity) to soil suction which is then used to compute an unsaturated shear strength. Recently, 31 

Revil et al. (2020) demonstrated the use of the time domain induced polarisation (IP) method for use in clay 32 

rich, landslide prone, materials, transforming their geoelectrical models into both a soil moisture content 33 

estimates and cation exchange capacities through petrophysical calibration. Once these parameters have been 34 

estimated a volumetric approximation of permeability can be attempted (Soueid Ahmed et al. 2020), hence this 35 

method may have future implications for coupled geoelectrical and hydrological modelling.  The focus here is 36 

the more widely used ERI method for monitoring landslides.  37 
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The question addressed in this study is how to process long term data on an active landslide? It is imperative 38

that workflows are developed to process time-lapse geoelectrical datasets in a timely and robust manner, as by 39 

their nature landslides can have multiple data processing challenges associated with them. Misplaced electrodes 40 

(in the geophysical model) have potential fields which are incorrectly reproduced in geoelectrical imaging, 41 

therefore the user of geoelectrical monitoring must have a good understanding of both the surface topography 42 

and electrode placement of a given field site before attempting any geophysical method. Foremost, if the 43 

landslide is active then it is likely that the surface will be altered throughout the monitoring period, and secondly 44 

permanently installed electrodes are likely to have translated with surface movements. The latter has been 45 

addressed in the literature as the movements of electrodes mask any changes in resistivity due to moisture 46 

contents and can cause significant artefacts in the resistivity images if not accounted for in geophysical 47 

processing (Uhlemann et al. 2017; Uhlemann et al. 2015; Wilkinson et al. 2016; Wilkinson et al. 2010). 48 

Uhlemann et al. (2015)  demonstrate three interpolation techniques for interpolating electrode movements from 49 

sparse topographic information at a single point in time and Wilkinson et al. (2016) reconstruct landslide 50 

movements from 4D ERI monitoring data, whereby changes in the measured transfer resistances are modelled in 51 

terms of the electrode displacements. However neither of the aforementioned methods addresses changes in 52 

topography, although Loke et al. (2018) reconstruct topography changes from modelling electrode 53 

displacements for 2D monitoring setups. Currently it is logistically difficult, and cost inefficient, to acquire 54 

digital elevation models (DEMs) at a temporal resolution needed for effective geoelectrical monitoring (every 2-55 

3 days in this study). However sparse monitoring of discrete topographic points is more accessible.  For example 56 

Le Breton et al. (2019) demonstrate a relatively low-cost monitoring system, where unwrapped phase changes 57 

recorded between a radio transmitter and a network of receivers (placed on the moving slope) are translated into 58 

one-dimensional movements. The reconstruction of electrode movements with geoelectrical data (Wilkinson et 59 

al. 2016) could also be used for this purpose. Here we manually survey gridded markers on a slope with 60 

repeated field visits.  61 

1.1 Motivations  62 

The aim of this study is to step towards developing a universally applicable workflow for processing long-term 63 

geoelectrical monitoring data on slow moving landslides that appreciates an evolving geomorphology. For a 64 

reliable geoelectrical model, the practitioner must ensure electrodes are correctly positioned within the 65 

geophysical modelling volume that realises the surface geometry (as is the case for near surface geophysics) to 66 

ensure accurate modelling of electrical fields inside the imaging algorithm. The duration of the monitoring data 67 

available to this study spans 8.5 years, which to the authors  knowledge represents one of the longest time series 68 

analysis of ERI data within the literature, allowing the issues of data quality control, finite element mesh 69 

generation and processing time to be explored. To validate the approach we process geoelectrical monitoring 70 

data for a well-characterised site, the Hollin Hill landslide observatory (Chambers et al. 2011; Gunn et al. 2013; 71 

Merritt et al. 2013) expanding on a previous study by Uhlemann et al. (2017).  72 

A notable advance in this case is the inclusion of electrode and elevation changes into the finite element mesh 73 

used to model resistivities. Robust processing of geoelectrical data is necessary for reliable interpretation of the 74 

ERI time series and the conversion of geophysical properties to other parameters such as moisture content 75 

(Archie 1947) or soil suction (Crawford and Bryson 2018). We anticipate, elements of the movement modelling 76 
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methodology presented here could be applicable for future hydro-geophysical investigations of landslides.77

Henceforth this paper aims to produce i) an efficient solution for interpolating landslide movements from a 78 

sparse grid ii) time-lapse landslide surface and distortion maps of electrode arrays iii) time-lapse 3D ERI 79 

volumes which capture distortions to the surface of the slope, and geophysical parameters (electrical resistivity).  80 

2 Field site: Hollin Hill 81 

2.1 Geological setting  82 

The Hollin Hill landslide observatory is situated on a south facing ~12° slope composed of Lower Jurassic, Lias 83 

group, sedimentary rocks (Figure 1). The succession is dominated by marine mudstones, and the stratigraphy of 84 

the field site in ascending order is the Redcar Mudstone (RMF), Staithes Sandstone (SSF), Whitby Mudstone 85 

(WMF) and Dogger (DF) Formations. The field site is located in the southern part of the Howardian Hills, North 86 

Yorkshire UK, near to the town of Malton (Figure 1). The background orthomosaic in Figure 1 was 87 

reconstructed from a fixed-wing Unmanned Aerial Vehicle (UAV) survey in May 2016 as described in Peppa et 88 

al. (2019). Here the WMF is the actively failing unit, and is observed to be landslide-prone elsewhere in the UK 89 

as the Lias group is geographically widespread (Hobbs et al. 2005). The unit is composed of interbedded 90 

siltstones and mudstones, which often host sideritric ironstone nodules towards its base; towards the top horizon 91 

of the WMF represents an erosional unconformity (Hobbs et al. 2005). Merritt et al. (2013) provides further 92 

details on the geological setting and geomorphological attributes of the site. According to Hungr et al. (2014) 93 

the landslide can be classified as a composite, slow clay rotational slide and earth-flow. Many movements have 94 

been attributed to translational movements at the SSF-WMF boundary resulting in lobes of reworked mudstone 95 

material accumulating downslope of the WMF outcrop (Figure 1).  96 

Figure 1: Insert map of the Hollin Hill landslide observatory pictured in May 2016 by a fixed wing UAV (Peppa 97 
et al. 2019), a simplified borehole log intersecting the 2 major lithologies sensed by ERI (location marked on 98 
map), and the location of the ERI monitoring array (interpolated). Coordinates given in British National Grid.   99 

2.2 Instrumentation and previous studies  100 

The investigation of slope movements at Hollin Hill began in 2005; in the following years several geotechnical 101 

and geophysical campaigns have taken place in order to better characterise the hillslope (Chambers et al. 2011; 102 

Merritt et al. 2013). These efforts culminated in setting up a permanent observatory for studying landslide 103 

processes with state-of-the-art instrumentation. The first of these instruments was the Automated Time-lapse 104 

Electrical Resistivity Tomography (ALERT) instrument (Kuras et al. 2009; Ogilvy et al. 2009) which recoded 105 

data from March 2008 (when it was installed), and ran almost continuously up until December 2018. The 106 

electrodes were arranged in five parallel lines, 9.5m apart (Figure 2), with an initial inter-electrode spacing of 107 

4.75 m. Each line has 32 electrodes (160 in total) buried at 0.1m depth to protect the array from animals and 108 

general field activities. The 3D monitoring array (Figure 1) was setup to characterise the hillslope from head to 109 

toe and capture resistivity changes in two flow lobes (Figure 2), referenced as the eastern and western flow lobe 110 

in this study. A grid of wooden marker pegs (45 in total) were installed at the ground surface at 20 m intervals 111 

located on the surface above electrode lines (Figure 1). Alongside the ALERT system, several piezometers, tilt 112 

meters, and shape acceleration arrays (SAAs) were installed (Uhlemann et al. 2016a); a weather station which is 113 

part of UK COSMOS network (Stanley et al. 2019; Zreda et al. 2012) was installed on the stable part of the 114 

slope in 2014 (Figure 1).  115 
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2.3 Reactivations  116 

Previous studies and surveys of marker pegs show there have been two major reactivations at Hollin Hill. In 117 

November 2012 tilt meters recorded displacements on the western flow lobe which corresponded to an 118 

unusually wet summer (Uhlemann et al. 2017), with activity ceasing in February 2013. Additionally a rotational 119 

failure was observed just to the east of the monitored area and captured electrodes on the easternmost part of the 120 

array (line 5 in Figure 2a). Uhlemann et al. (2017) found moisture contents derived from electrical resistivity to 121 

be comparatively higher than that recorded for previous years, suggesting the increased moisture content was 122 

driving movements. Over the monitored period the easternmost side of the monitoring array has periodically 123 

been reactivated, with lateral displacements up to 8.6 m measured by August 2018.  124 

UAV surveys and passive seismic records (unpublished study) show that another rotational back scarp 125 

developed within the monitoring array in late April 2016 at the head of the slope, which spanned four of the 126 

array lines (1 to 4). From 2016 onwards the rotational back scarp has continued to grow, presently up to 2.5 m 127 

deep, spans 36 m in the Easting direction, and ~ 12 m in the northing direction (see Figures 1 and 2 for 128 

backscarp location).  129 

Figure 2: A) Baseline inverted image of Hollin Hill, May 2016. Interpretation of the resistivity units based on 130 
3D ground model proposed by Merritt et al. (2013). B) Surface resistivity in relation to a Hill shaded relief map 131 
from a UAV survey in May 2016.  The ALERT and COSMOS enclosures have been masked.    132 

2.4 Recording geomorphological changes  133 

Approximately every 2  3 years, terrestrial LiDAR (light detection and ranging) scans and UAV 134 

photogrammetry surveys have been conducted in order to capture the changing topography of Hollin Hill. Both 135 

techniques are suited to site scale investigation and yield DEMs which can be used to estimate surfaces changes 136 

and generate modelling volumes in ERI. Terrestrial (or ground based) LIDAR is a well-established tool for 137 

monitoring rock falls and natural slope movements, be it through permanent monitoring solutions (Lingua et al. 138 

2008) or repeated surveys (Delacourt et al. 2007; Guerin et al. 2021; Palenzuela et al. 2016; Rosser et al. 2007). 139 

Recent advances in structure from motion (SfM) photogrammetry have yielded centimetric resolutions such that 140 

they are comparable to terrestrial LiDAR scans and both are suited to the purposes of ERI. Recently Peppa et al. 141 

(2019) demonstrated repeated UAV surveys as a means to map landslide movements  and geomorphological 142 

evolution. In addition, marker pegs were surveyed every 8 -12 weeks with real time kinematic (RTK)-Global 143 

Navigation Satellite Systems (GNSS). Over a 10 year period, lateral displacements of up to 8.6 m were recorded 144 

on the landslide, whilst vertical displacements up to 2.5 m were observed.  145 

3 Methodology  146 

Time-lapse ERI processing of the ALERT data is complicated by the dynamic surface topography present at 147 

Hollin Hill: electrodes have moved with the landslide, and their position cannot be directly measured given that 148 

they are buried. In addition, metre-scale geomorphological features have developed at the site during the 149 

monitoring period, the rotational back scarp feature spanning array lines 1 to 4 was not present for previous 150 

studies of the site (Uhlemann et al. 2017). From a geoelectrical processing prospective a robust approach to 151 

modelling the geoelectrical measurements should be adopted as discrete changes in topography could mask 152 

hydrological changes (as electrical current flow will be incorrectly modelled); in our approach the 3D surface in 153 
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the ERI modelling volume (and electrode coordinates) is updated according to the movements of GPS peg 154

markers, the overall workflow is illustrated in Figure 3 and can be summarised in 3 parts:  155 

1. Update known peg positions after an RTK-GNSS survey, superimpose slope movements on to a 156 

reference DEM to create a time-lapse surface.   157 

2. Parse geoelectrical data (from the ALERT instrument) and perform quality analysis, this includes 158 

applying appropriate filters to raw data.  159 

3. Combing the outputs of steps 1 and 2 to link the geomorphology of the landslide to the ERI models. 160 

Firstly, the time-lapse DEM to informs ERI mesh/modelling volume generation and secondly the 161 

geoelectrical data is inverted to produced volumetric image of the resistivity distribution for a given 162 

time step.  163 

Figure 3: Summary flow chart of updating electrode coordinates and DEM for the time-lapse inversion 164 
workflow.   165 

3.1 Digital Terrain models  166 

The DEMs used in this study (Table 1) had already been processed, with the effects of vegetation and other 167 

artefacts removed, as part of previous research obtained with a fixed-wing UAV (Peppa et al. 2019) and 168 

unpublished studies.  169 

All UAV-derived DEMs referenced here are described in Peppa et al. (2019). In brief, aerial images were 170 

acquired by a fixed wing Quest 300 UAV (www.ukspacefacilities.stfc.ac.uk), equipped with either a Panasonic 171 

Lumix DMC-LX5 or a Sony a6000 compact digital camera. The resulting point clouds were constructed through 172 

SfM photogrammetry (processed using PhotoScan, www.agisoft.com) which were used to generate final DEMs 173 

with a maximum ground sampling distance of 3 cm as explained in Peppa et al.(2019). The individual UAV-174 

derived point clouds per survey were translated and orientated to a fixed coordinate system (Ordnance Survey 175 

Great Britain 36; OSBG36) with the inclusion of surveyed ground control points. Errors due to erroneous co-176 

registration of subsequent UAV surveys were cross validated with benchmark GNSS observations. Areas of 177 

dense vegetation were filtered out from the UAV derived DEMs and the vertical error of the point cloud used 178 

here is estimated to be on average below 5 cm, which is sufficient for the purposes of ERI.  179 

Of the three terrestrial LiDAR scans in this study, two surveys (2008 and 2009) were acquired using a Riegl 180 

LPM i800AH, situated on a tripod positioned at the base and halfway up the slope; the raw point cloud was 181 

post-processed in RiProfile (www.riegl.com) to remove artefacts associated with vegetation. The most recent 182 

LiDAR scan (2018) was acquired with a Leica Pegasus: Backpack Mobile Mapping Solution (Lieca-183 

Geosystems 2019) and involved a continuous walkover survey of the field site, and subsequently processed in 184 

Pegasus Manager.  185 

Table 1: Topographic survey type and date of survey. 186 

Survey Type Date Equipment Method 

LiDAR Jul-08 Riegl LPM i800AH Terrestrial LiDAR 

LiDAR Apr-09 Riegl LPM i800AH Terrestrial LiDAR 

UAV Dec-14 Quest 300 UAV Airborne Photogrammetry  

UAV Mar-15 Quest 300 UAV Airborne Photogrammetry  
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UAV Feb-16 Quest 300 UAV Airborne Photogrammetry  

UAV May-16 Quest 300 UAV Airborne Photogrammetry  

LiDAR Apr-18 Leica Pegasus: Backpack Terrestrial LiDAR 
 187 

Although satellite-based methods such as Interferometric Synthetic Aperture Radar (InSAR) can have 188 

millimetric resolution and have been used successfully in mapping landslide movements (e.g., Booth et al. 189 

2020), in our case satellite techniques were found to be inappropriate due to the lack of permanent scatterers 190 

(Ferretti et al. 2001) and poor data availability during the relevant time periods. 191 

3.2 Movement modelling  192 

The marker pegs were surveyed using a Leica System 1200 RTK-GPS at a higher temporal frequency than the 193 

acquisition of DEMs (shown with vertical lines in Figure 4), hence an interpolation scheme allows the surface of 194 

the DEM to distort with the change in the peg position without the need for frequent DEM surveys (Equation 1). 195 

Figure 4 (a) shows the frequency of peg and number of transfer resistance measurements passed to the inversion 196 

scheme, any missing pegs are assumed to occupy their last known position. 197 

Figure 4: A) Number of transfer resistance measurements retained after parsing the ALERT data with cross line 198 
measurements, including measurements in forward and reverse configurations. Dates of cable repairs and peg 199 
surveys are also indicated. Summer and autumn months are greyed.  B) Median contact resistance computed for 200 
each day ALERT ERI survey was acquired as ALERT reports a contact resistance for each resistivity 201 
measurement. 202 

We adopt a thin plate spline approach to map lateral and vertical movements on the hillslope from a discrete set 203 

of points (surveying pegs in this case) for each time the points have their position recorded. The displacement 204 

for any point within a grid square of the surveying pegs is given as  205 

 Equation 1 206 

Where  is the displacement vector in the vertical and lateral directions at coordinate ( ), the other 207 

parameters denoted ,  and  are model vectors. This can be solved as a system of linear equations such that  208 

 Equation 2 209 

Where for example is the displacement in the x-direction at position . Note Equation 2 cannot be 210 

computed directly as the problem is underdetermined, so Lagrange multipliers are needed to solve the system of 211 

linear equations. Thin plate splines are well suited for modelling movement on Hollin Hill as they are valid for 212 

an irregular grid (Wahba 1990), making use of four points of reference. Previously Uhlemann et al. (2017) used 213 

a piecewise planar approach, which used the three nearest reference points to interpolate the electrode 214 

movements. However, this method does not produce smoothly varying displacements across entire grid squares 215 

(Figure 5). Here Equation 2 is solved in order to firstly estimate any electrode positions for a given peg survey, 216 

and secondly estimate displacements in the DEM. Some parts of the slope are not subject to movements, as 217 

observed from repeated field observations and peg surveys, this is the case for the outcrop of the Staithes 218 
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Sandstone Formation (Figure 2). Therefore, an additional constraint is placed on the interpolations of electrode 219

positions, such that electrodes downslope of the flow lobes are fixed (Figure 2 a).  220 

Figure 5: Comparison of displacement grids using the piecewise planar (Uhlemann et al. 2015) and Spline 221 
approaches. Red dots indicate markers used to interpolate movements and are representative of the movements 222 
observed at Hollin Hill.   223 

For each time the pegs were surveyed slope movements are modelled to produce a time series of electrode 224 

coordinates and DEMs. When a LIDAR or UAV survey took place during the monitoring period, the reference 225 

DEM is updated (Table 1). During the monitoring period, any broken or missing surveying pegs were replaced 226 

in-situ, and at no time were the pegs returned to their starting positions (hence the interpolation scheme works 227 

on an irregular grid). In order to maintain consistency between DEMs for time-lapse analysis, the point cloud 228 

from each UAV or LIDAR scan (Table 1) is filtered with a 2D 1 × 1 m moving average window with 0.5 m 229 

tolerance, to avoid interference from vegetation features left inside the DEMs. The point clouds are then down 230 

sampled on to a regular 1 m grid for the purposes of ERI mesh generation using a bilinear interpolation scheme. 231 

As 3 different field and processing techniques were used to acquire each DEM, the point clouds are then aligned 232 

using CloudCompare (GPL-software 2020) against the DEM acquired in July 2008.  233 

3.3 Time-lapse ERI acquisition and processing  234 

3.3.1 Measurements  235 

The ALERT system was set up to record multichannel dipole-dipole measurements (Binley and Slater 2020), for 236 

both in-line and cross-line (equatorial) configurations. Raw measurements are in the form of transfer resistances 237 

(TR): the ratio of a difference in voltage between two electrodes and the current injected in the other two 238 

electrodes of a specific four electrode configuration. The dipole lengths, a, on inline measurements range 239 

between 1 to 4 electrode spacings (4.75 to 19 m) with inter-dipole separations, na, where n = 1-8 (Uhlemann et 240 

al. 2017).  Dipole  dipole equatorial measurements are made on adjacent lines, where a = 9.5 m and n = 0.5, 241 

-line spacing). The ALERT 242 

data are stored by date and compiled into a time series of 3D ERI data, with 929 entries in total (Figure 4) 243 

between the 21st of December 2009 to the 16th of September 2018. Note that although ALERT was installed in 244 

March 2008, automated recording did not start until January 2009 and cross-line measurements were not added 245 

to the ALERT scheduling files until December 2009. Generally, measurements were made every 2 - 3 days, 246 

however there are data gaps due to power failures and equipment malfunctions associated with ALERT and its 247 

supporting infrastructure.  248 

ERI data quality varied widely during the monitoring period, this is largely driven by seasonal changes in 249 

contact resistances; which were higher during summer months due to the decreased moisture content of the 250 

ground surface (Figure 4 b), resulting in poorer galvanic contact between the electrodes and their surrounding 251 

material. Consequently, more data are filtered out during the summers (Figure 4 a). Breakages in the electrode 252 

cables (as a result of movements) rendered some electrodes inoperable, also contributing to diminished data 253 

quality. The ERI cable on line 5 had to be repaired during the monitoring period due to breakages (Figure 2 a, 254 

Figure 4 a), which rendered four electrodes on this line inoperable from February 2015 until October 2016. The 255 

measurements are filtered out based on five criteria (two of which refer to a measurement of reciprocity (Tso et 256 

al. 2017)):  257 
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1. A contact resistance over 5000 , as these measurements are likely to have a high signal to noise ratio 258

given that the environment is relatively conductive (apparent resistivities below 200 m are observed).  259 

2. An approximated apparent resistivity outside the range of 0 and 200 m. Apparent resistivity is 260 

computed by multiplying the TR measurement by a geometric factor (Binley and Slater 2020), which 261 

differs dependi262 

positive geometric factors are anticipated due to the geometry of active electrodes, and measurements 263 

with over 200 m corresponded with erroneous TR measurements which resulted in artefacts in the 264 

ERI inversions. 265 

3. An amplitude ratio (measure of waveform symmetry) outside the range of 0.85 and 1.15. Beyond this 266 

desired range shows that the alternating current signal is asymmetrical.   267 

4. A reciprocal error over 10%, which often taken as a standard cut off for reliable transfer resistance 268 

measurements (e.g., Carrigan et al. 2013). 269 

5. Measurements without reciprocals, as their reliability cannot be assessed.  270 

Generally, over 3000 individual measurements are retained for inversion (approximately 68% of viable 271 

measurements made in the forward direction).  272 

3.3.2 Inversion workflow  273 

As noted by Uhlemann et al. (2017) (and references therein), incorrect electrode positions within the ERI 274 

inversion lead to artefacts in the resulting model. As the ERI surveys have a higher temporal frequency than the 275 

peg surveys, a linear interpolation (using time and displacement as input) is used to sample the estimated 276 

displacements onto the days which ERI surveys took place (every ~3 days). This is deemed appropriate as the 277 

landslide is slow moving and significant movements are captured by the GPS surveys of the marker pegs.  278 

For each time step in the time-lapse ERI a new mesh with unique topography and electrode nodes is generated; 279 

this is necessary to realise vertical and lateral landslide movements in the ERI inversions. The options for time-280 

lapse inversion are therefore limited in this case. Difference inversions (LaBrecque and Yang 2001) do not 281 

allow for changing meshes or electrode positions, and time-lapse inversions with moving electrodes have only 282 

recently been demonstrated for 2D problems (Loke et al. 2014; Loke et al. 2018). Here we adopt a similar 283 

custom workflow to that of previous studies (Uhlemann et al. 2017; Whiteley et al. 2020) through a baseline-284 

constrained approach. A nearest neighbour look up is used to translate the baseline model values onto each time-285 

lapse mesh. Compared to Uhlemann et al. (2017), who considered a shorter time series, the inclusion of 286 

topography is necessary due to the surface changes during the timescales of this study, and whereas a fine mesh 287 

was used such that electrodes could move on the same mesh for each ERI inversion, here a coarser mesh is used 288 

during the inversion to give a comparatively modest computation time. Of the 929 datasets collected in total, 289 

914 were processed (the rejected surveys have fewer than 500 valid measurements). The inversions were run on 290 

a high-performance cluster, across two Intel nodes each with 16 logical processing cores, taking approximately 291 

3 days to run. The baseline inversion is taken from 15th of April 2010 as this represents a time of intermediate 292 

saturation on the hillslope, good data quality and when the landslide was not influenced by movements 293 

(Uhlemann et al. 2017).  294 
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We use E4D (Johnson et al. 2010) for the 3D ERI on a tetrahedral mesh, as the code scales with computational 295

resources. Additionally the ResIPy python code is used to prepare data for inversion (Blanchy et al. 2019). 296 

Weighting the measured transfer resistances by a reciprocal error model has been shown to produce more robust 297 

results (Tso et al. 2017), therefore for each ERI step a unique reciprocal error model is computed based on 298 

multi-bin analysis (Binley and Slater 2020; Mwakanyamale et al. 2012). The average resistance of both the 299 

forward and reciprocal measurement is taken into the inversion, and the absolute reciprocal error is defined as  300 

 Equation 3 301 

where  and  are transfer resistance measured in forward and reverse mode, respectively. A different 302 

error model is required for each ERI time step because of the different error characteristics present for different 303 

seasons and data quality present in the time-lapse data. For all inversions a constant 2.5% is added to the 304 

reciprocal errors to represent the forward modelling errors, as this was found to result in a spatially and 305 

temporarily smooth model comparable to previous investigations (e.g., Merritt et al. 2013). Resistivity is 306 

expected to vary smoothly from the baseline (Uhlemann et al. 2017), and hence an L2 norm (Loke et al. 2014) is 307 

applied as a temporal constraint as well as a smoothness constraint. For time-lapse inversions a relative weight 308 

of 0.1 is used as a baseline constraint verses 0.9 for spatial constraint; this encourages a smooth spatial result 309 

over smoothed temporal changes. E4D was assigned a target Chi-squared ( ) value of 1.1. These parameters 310 

were found to minimise inversion artefacts, whilst converging on reasonable solutions.  311 

We use a custom mesh generation scheme, a flat tetrahedral mesh is generated within Gmsh (Geuzaine and 312 

Remacle 2009), and the topography is transposed onto the mesh using triangulation interpolation. Mesh node 313 

boundary conditions are then computed, such that the upper surface of the mesh is considered a zero flux 314 

boundary (i.e., cannot transmit electrical current) and the mesh is exported into the tetgen format (Si 2015) used 315 

by E4D. The baseline inversion is done on a finer inversion mesh to encourage accurate as possible starting 316 

resistivities for each subsequent time step during nearest neighbour lookup. 317 

3.3.3 Temperature correction  318 

Electrical resistivity varies as a function of temperature, consequently time-lapse ERI volumes should be 319 

corrected for changes in seasonal temperature to avoid misinterpretation of inversion results that could 320 

otherwise be confused for hydrological changes (Chambers et al. 2014). The same seasonal depth,  and 321 

temperature model is used to correct the inverted resistivities (post processing) here as in previous studies 322 

(Uhlemann et al. 2017) 323 

 Equation 4 324 

with  as the average annual air temperature,  as the difference between the largest and smallest annual 325 

temperatures,  is a phase offset to bring surface and air temperature into phase,  is a characteristic depth and 326 

is defined as the depth where  has decreased by  (Brunet et al. 2010).  is the day in the year. The depth of 327 

the (barometric) centre of each cell in the mesh is computed, and the corrected resistivity calculated using the 328 

ratio model (Ma et al. 2011; Uhlemann et al. 2017)  329 

 Equation 5 330 
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expressed here in terms of resistivity where is the cell resistivity at temperature , is the temperature 331

correction factor, set at -0.02°C-1, and  is a constant reference temperature, in this case 20°C. The constants 332 

used in Equations 4 and 5 are documented by Uhlemann et al. (2017) (  = 10.03°C,  = 15.54°C,  = 2.26 333 

m, and  =1.91).  334 

4 Results 335 

4.1 Landslide kinematics   336 

The modelling of the electrode movements allows for an assessment of landslide kinematics at Hollin Hill (e.g., 337 

Hutchinson 1983) over a 10 year period, Figure 6 illustrates the direction and relative magnitude of lateral 338 

electrode movements. At the end of 2012 down slope movements have been observed on the eastern flow lobe, 339 

which are accompanied up slope with a rotational failure just to the east of the monitoring array, affecting the 340 

electrodes on line 5. These movements correspond to the reactivation of the eastern flow lobe documented by 341 

Uhlemann et al. (2017) (Figure 6 b, c and S1).  342 

We compute differences from the baseline elevation measured in 2008 (Figure 6a). The back scarp feature 343 

(spanning lines 1 to 4) is clear in the elevation models after April 2016: a decrease in the surface elevation is 344 

observed, whilst downslope of the scarp an increase in surface elevation occurs. This supports an interpretation 345 

that a rotational slip plane is present at depth; at the head of the failure a slump can be observed corresponding 346 

to an accumulation of material. After the development of the rotational back scarp feature (Figure 6) downslope 347 

displacement of the electrodes can be observed, as electrodes move with the rotating mass. Variations in 348 

elevation associated with the eastern flow lobe show a decrease near the crest of the lobe, and an increase at the 349 

head of the lobe, indicating a downslope translation of material that accumulates at the head of the flow lobe 350 

(Figure 6d). Field observations support this hypothesis, as freshly disturbed material can be observed at the toe 351 

of the flow lobe. Although movements in the mid-section of the sliding material are slight, it is also likely that 352 

this material feeds the flow lobes which move in turn. Any movements downslope on the lobes reduce the 353 

support for the upper part of the slope and further encourage the development of rotational back scarps. The 354 

observations of electrode and slope movements (as well as field visits) shows that failure at the top of the slope 355 

is progressing westward in the field area. Although beyond the scope of this study, the electrode displacements 356 

effectively provide a 3D displacement field which can be quantitively accessed to map the slip surface at depth 357 

(Aryal et al. 2015; Booth et al. 2020). 358 

Figure 6: Overview of elevation and electrode coordinate changes at Hollin Hill. A) Baseline hillshade, as 359 
captured by terrestrial LiDAR IN 2008, initial electrode locations (black dots), fixed electrodes (black crosses), 360 
and peg locations (blue triangles). B, C, D, E and F show the modelled displacement vectors for the electrodes 361 
and difference in elevation for November 2012, January 2013, March 2015, May 2016 and April 2018 362 
respectively. Note part of the difference maps have been masked as the changes in these regions relate to tree 363 
cover.  364 

Through the workflow described above (Section 3 and Figure 3), an ERI time series is produced where features 365 

such as the back scarp and flow lobes evolve naturally in the ERI inversion mesh. Figure 7 shows the 366 

development of a rotational backscarp at the head of the landslide being reproduced in the time-lapse modelling 367 

mesh which captures the inverted resistivities. The depth of the backscarp feature grows from April 2016 to 368 

December 2016.   369 
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Figure 7: Time-lapse ERI results for 2016, when the back scarp was first observed.370

4.2 Inverse Model Validation  371 

The statistical validity of inverse models are generally accessed through a value of  (Constable et al. 1987; 372 

Günther et al. 2006), in the ideal case that there are no modelling errors and data errors are fully realised a  of 373 

1 should be obtained (Johnson 2014). In this case E4D converged on a target   of 1.1 for each time-step 374 

showing reasonable fit between ERI models and the ALERT data. Note that setting a target  of 1 meant E4D 375 

could not achieve convergence for all timesteps, it can be expressed as the model misfit over the number of 376 

measurements, , as:  377 

  Equation 6  378 

where  is the data weight vector (obtained from the reciprocal error model),  is the measurement vector and 379 

 is the forward response to the model parameters  (Binley and Slater 2020). To assess the reliability of 380 

results we ran a separate baseline constrained inversion for March 2017 where: both electrode coordinates and 381 

topography are updated, only the electrode coordinates are updated, and neither the topography and electrode 382 

positions are updated (Figure 8), respectively these are referred to as the updated, partially updated and none 383 

updated inversions. The percentage RMS (root mean squared) error for these respective inversions are 384 

calculated as 6.9%, 7.2% and 8.2%, and hence the updated inversion (using the proposed workflow) yielded the 385 

best fit in this case. RMS in this case is defined as:  386 

  Equation 7 387 

where  and  are the observed and modelled transfer resistances, respectively, and  is the number of 388 

measurements. For the partially updated and none updated inversions there is a negative resistivity anomaly 389 

present on the eastern flow lobe, which is not consistent with expected resistivity changes or updated inversion. 390 

Furthermore, the updated inversion shows positive changes in resistivity compared to the baseline inversion 391 

implying relative drying, however the partially updated inversion shows an overall negative change in resistivity 392 

implying relative wetting, altering the hydrological interpretation of hill slope processes. This demonstrates the 393 

importance of topographic variations when interpreting subtle changes in resistivity as hydrological changes 394 

maybe masked if topography is not updated in the time-lapse inversion volumes.  395 

Figure 8: Comparison of a time-lapse inversion for March 2017 for A) the updated inversion, B) the partially 396 
updated inversion and C) the non-updated inversion.  397 

In October 2020, the ALERT system was fully decommissioned and the buried electrode arrays were recovered 398 

in preparation for the installation of a new monitoring system. It is challenging to assess the success of the 399 

interpolation scheme given the electrodes had been placed in the ground 12 years prior, as landslide movements, 400 

particularly in the flow lobes, made it difficult to relocate electrodes which had become disconnected from the 401 

buried cable. Additionally, many of the original pegs had perished and hence the quality of the interpolation 402 

likely suffered. Where the electrodes were found in place an RTK GPS was used to survey their final position, 403 

of the original 160 electrodes 108 (67.5%) were recovered. On average electrodes predicted by the interpolation 404 

were 0.51 m away from their final recorded position, the median value is 0.25 m and the standard RMS between 405 
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the predicted and observed displacements is 0.79 m. For context, the electrodes moved 1.79 m on average and406

the maximum observed displacement was 7.88 m, suggesting a reasonable fit between the interpolated and 407 

observed electrode positions.  408 

5 Discussion  409 

Time-lapse ERI data is difficult to visualise for multiple time steps in a static format, therefore results of the ERI 410 

workflow are presented in S2. To summarise overall increases in resistivity can be observed during the summer 411 

months, which is associated with decreased moisture content. Elevated moisture contents during winter months 412 

are associated with lower resistivities. This is in accordance with seasonal moisture content variations observed 413 

by Uhlemann et al. (2017). One approach to assess spatial and temporal variability in the resistivity results is to 414 

calculate a coefficient of variation (standard deviation of each point in its time series over its mean). Although 415 

each mesh in the time series is different, a nearest neighbour lookup scheme can be used to map cell resistivity 416 

values onto a representative mesh, from which statistical analysis can be made as in Figure 9. The Whitby 417 

mudstone downslope of the back scarp (in a rotational slump) experiences relatively little change compared to 418 

the flow lobes or back scarp area whilst maintaining a relatively low resistivity, indicating the slump retains a 419 

high level of moisture throughout an annual cycle. This supports previous interpretations of the hillslope 420 

hydrogeology for the Hollin Hill landslide that included perched aquifers (Gunn et al. 2013; Uhlemann et al. 421 

2017). It is likely positive pore pressure under the slump encourages movement on a slip plane at depth. 422 

Significant changes in resistivity on the flow lobes (Figure 9) can be attributed to relative drying during the 423 

summer suggesting drainage of the lobes into the SSF; and partly explained by extensional features (cracks) 424 

which dominate the surface of that part of the landslide (increasing the effective porosity of the material) (Peppa 425 

et al. 2019). 426 

Figure 9: Coefficient of variation volume for Hollin Hill on a representative mesh.                                                                                                                          427 

5.1 Workflow 428 

Through monitoring geomorphological changes, it is possible to interpret slope failure mechanisms (Hutchinson 429 

1983) in this case a rotational failure is observed in slope movements. Consequently, the inclusion of time-lapse 430 

DEMs likely improves the quality of inverted images (Figure 8) as the modelling of the potential field during 431 

the imaging process is sensitive to surface topography, for example the development of the backscarp (over lines 432 

1  4) would be particularly troublesome for conventional time-lapse ERI. The approach adopted here facilitates 433 

a two phased interpretation through i) visualisation of slope movements characterising the external nature of the 434 

landslide though time and ii) capturing the internal structure of the landslide through volumetric electrical 435 

imaging which by extension can be related to moisture contents.  436 

With the exception of certain models in the ERI series, which are associated with poor raw data quality 437 

(particularly in 2018 when the number of  TR measurements drops off significantly), the time-series analysis 438 

could be taken further with petrophysical relationships between resistivity, moisture content (Uhlemann et al. 439 

2017) and other critical parameters for assessing slope stability such as soil suction (Crawford and Bryson 440 

2018). Alternatively, more involved workflows could conceivably couple hydrological and geoelectrical 441 

modelling through petrophysical relationships (Johnson et al. 2017; Revil et al. 2020), allowing for robust 442 

assessments on the slope hydrogeology through time.   443 
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A limitation of the workflow proposed here that it fails to account for sudden changes to the slope surface which 444

have been recorded by SAAs and tilt meters, rather treating alterations to the slope surface as smoothly varying 445 

between different DEM surveys. We suggest further coupling between in field sensors, like SAAs, and 446 

interpolation of movements to force distortions to slope topography and electrode positions to occur within 447 

discrete time windows where movement is recorded. Another drawback is that the approach adopted here relies 448 

on repeated field visits that are labour intensive and time consuming, hence an automated approach to 449 

monitoring slope movements (Le Breton et al. 2019; Wilkinson et al. 2016) would be beneficial to future 450 

studies.   451 

6 Conclusions  452 

Landslide monitoring through ERI is likely to become more pervasive in coming decades, as the method is 453 

suitable for long term applications and provides volumetric estimations of hydrological parameters that 454 

complements more conventional point sensors. However accurate modelling of the electrical potential field 455 

requires a good understanding of the slope geomorphology, which as demonstrated here is subject to slope 456 

movements if the landslide is active. Previous papers (Uhlemann et al. 2015; Wilkinson et al. 2016) have 457 

addressed modelling electrode movements in ERI inversion, while this study proposes a methodology that fully 458 

incorporate landslide kinematics (S1) into the inversion workflow.  459 

Time series ERI volumes (S2) capture the changes in slope topography, necessary for avoiding imaging 460 

artefacts, and electrical resistivity. Variations in the latter can be reasonably explained by seasonal fluctuations 461 

in moisture content observed at Hollin Hill (Uhlemann et al. 2017). Although the 4D ERI data were processed 462 

with baseline constrained inversion scheme, reasonable time-lapse results were achieved for the majority of 463 

time-steps. Higher  values associated with inversions where the electrode coordinates or topography are not 464 

updated demonstrate that the inversion workflow described here (Figure 3) improves the quality of inverted 465 

results and is necessary for reliable hydrological interpretation of time-lapse ERI volumes. Hence establishing a 466 

framework (and corresponding algorithms) for processing (hydro) geophysical datasets resulting from long term 467 

monitoring solutions on active landslides.  468 

Relationships between electrical resistivity and soil moisture are well documented, hence geoelectrical model 469 

time series can be interpreted in terms of hydro-mechanical parameters through petrophysical calibrations. 470 

Furthermore, linking between relevant weather data, petrophysical relationships, ERI data and landslide 471 

kinematics (through the framework proposed here) could be used as forcing datasets inside of a coupled 472 

hydrological modelling and ERI approach. This is a crucial step forward for developing geoelectrical landslide 473 

monitoring techniques and anticipating potential failure events.   474 
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