THE ℓ_{p}-NORM OF $C-I$, WHERE C IS THE CESÀRO OPERATOR

G. J. O. Jameson

Submitted to Math. Inequal. Appl.

Abstract

For the Cesàro operator C, it is known that $\|C-I\|_{2}=1$. Here we prove that $\|C-I\|_{4} \leq 3^{1 / 4}$ and $\left\|C^{T}-I\right\|_{4}=3$. Bounds for intermediate values of p are derived from the Riesz-Thorin interpolation theorem. An estimate for lower bounds is obtained.

1. Introduction and basic results

For a matrix operator A, we denote by $\|A\|_{p}$ the norm of A as an operator on the (real) sequence space ℓ_{p}. Let C be the Cesàro operator, so that for a sequence $x=\left(x_{n}\right)$, we have $C x=y$, where

$$
\begin{equation*}
y_{n}=\frac{1}{n}\left(x_{1}+x_{2}+\ldots+x_{n}\right) . \tag{1}
\end{equation*}
$$

For the transpose C^{T}, we have $C^{T} x=y$, where

$$
\begin{equation*}
y_{n}=\sum_{k=n}^{\infty} \frac{x_{k}}{k} . \tag{2}
\end{equation*}
$$

Hardy's inequality [4, p. 239-241] states that $\|C\|_{p}=p^{*}$, where p^{*} is the conjugate index defined by $\frac{1}{p}+\frac{1}{p^{*}}=1$. By duality, this implies that $\left\|C^{T}\right\|_{p}=p$ (this is known as Copson's inequality).

For $p=2$, a stronger statement applies: $\|C-I\|_{2}=1$, where I is the identity matrix. This was proved in [3], using the fact that $(C-I)\left(C^{T}-I\right)$ is the diagonal matrix with entries $1-\frac{1}{n}$, together with the Hilbert space property $\left\|A A^{T}\right\|_{2}=\|A\|_{2}^{2}$. However, it can also be easily established by a slightly amended version of the direct method of [4]. This proof does not appear to be well known, and we will generalise it below, so we sketch it here.

Proof. We have $x_{n}=n y_{n}-(n-1) y_{n-1}$, hence $y_{n}-x_{n}=(n-1)\left(y_{n-1}-y_{n}\right)$. For any a, b, it is elementary that $b^{2}-a^{2} \geq 2 a(b-a)$. (Here the proof for general p uses $b^{p}-a^{p} \geq p a^{p-1}(b-a)$, valid only for positive a, b.) So $2 y_{n}\left(y_{n-1}-y_{n}\right) \leq y_{n-1}^{2}-y_{n}^{2}$, hence

$$
2 y_{n}\left(y_{n}-x_{n}\right) \leq(n-1)\left(y_{n-1}^{2}-y_{n}^{2}\right)
$$

equivalently

$$
2 x_{n} y_{n}-y_{n}^{2} \geq n y_{n}^{2}-(n-1) y_{n-1}^{2} .
$$

Adding these inequalities for $1 \leq n \leq N$, we obtain

$$
2 \sum_{n=1}^{N} x_{n} y_{n}-\sum_{n=1}^{N} y_{n}^{2} \geq N y_{N}^{2} \geq 0 .
$$

so that

$$
\sum_{n=1}^{N} y_{n}^{2} \leq 2 \sum_{n=1}^{N} x_{n} y_{n},
$$

hence $\sum_{n=1}^{N}\left(y_{n}-x_{n}\right)^{2} \leq \sum_{n=1}^{N} x_{n}^{2}$. (At this point, the proof in [4] applies Hölder's inequality.)

Our objective here is to consider $\|C-I\|_{p}$ and $\left\|C^{T}-I\right\|_{p}$ for other values of p. First, some simple facts. By Hardy's inequality and its dual, $p^{*}-1 \leq\|C-I\|_{p} \leq p^{*}+1$ and $p-1 \leq\left\|C^{T}-I\right\|_{p} \leq p+1$ for all $p \geq 1$. Also, if e_{n} is the nth unit vector, then for $p>1$, both $\left\|C e_{n}\right\|_{p}$ and $\left\|C^{T} e_{n}\right\|_{p}$ tend to 0 as $n \rightarrow \infty$, so $\|C-I\|_{p}$ and $\left\|C^{T}-I\right\|_{p}$ are not less than 1.

Proposition 1. We have $\|C-I\|_{\infty}=\left\|C^{T}-I\right\|_{1}=2$.
Proof. Consider $C^{T}-I$ first. The element $\left(C^{T}-I\right) e_{n}$ is given by column n :

$$
\left(C^{T}-I\right) e_{n}=\left(\frac{1}{n}, \ldots, \frac{1}{n}, \frac{1}{n}-1,0,0, \ldots\right),
$$

in which $\frac{1}{n}$ occurs $n-1$ times. So $\left\|\left(C^{T}-I\right) e_{n}\right\|_{1}=2\left(1-\frac{1}{n}\right)$, hence $\left\|C^{T}-I\right\|_{1}=2$.
The statement for $C-I$ follows by duality, or directly by taking x to be $e_{1}+\cdots+$ $e_{n-1}-e_{n}$: then $z_{n}=2\left(1-\frac{1}{n}\right)$.

Of course, it follows that $\lim _{p \rightarrow \infty}\|C-I\|_{p}=\lim _{p \rightarrow 1^{+}}\left\|C^{T}-I\right\|_{p}=2$.
Bounds for intermediate values of p can now be derived from the Riesz-Thorin interpolation theorem. In the version we want (not the most general one), this states:

Theorem RT. Suppose that $1 \leq q<r \leq \infty$ and

$$
\frac{1}{p}=\frac{1-\theta}{q}+\frac{\theta}{r}
$$

where $0<\theta<1$. Suppose that A maps ℓ_{q} into ℓ_{q} and ℓ_{r} into ℓ_{r}. Then A maps ℓ_{p} into ℓ_{p}, and

$$
\begin{equation*}
\|A\|_{p} \leq\|A\|_{q}^{1-\theta}\|A\|_{r}^{\theta} \tag{3}
\end{equation*}
$$

A proof can be seen in [2, chap. 1]. Note that the case $r=\infty$ simplifies to: if $p>q \geq 1$, then

$$
\begin{equation*}
\|A\|_{p} \leq\|A\|_{q}^{q / p}\|A\|_{\infty}^{1-q / p} . \tag{4}
\end{equation*}
$$

An obvious consequence of the theorem is: if $\|A\|_{p} \geq\|A\|_{p_{0}}$ for all $p>p_{0}$, then $\|A\|_{p}$ increases with p for $p \geq p_{0}$.

For $C-I$ and $C^{T}-I$, we can deduce at once the following facts.

PROPOSITION 2. For $p \geq 2,\|C-I\|_{p}$ increases with p and is not greater $2^{1-2 / p}$. For $1 \leq p \leq 2,\left\|C^{T}-I\right\|_{p}$ decreases with p and is not greater than $2^{1-2 / p^{*}}=$ $2^{2 / p-1}$.

We can derive bounds that are weaker, but easier to apply, as follows: by convexity of 2^{x}, we have $2^{x}<1+x$ for $0<x<1$. Hence $\|C-I\|_{p}<\frac{2}{p^{*}}$ for $p>2$ and $\| C^{T}-$ $I \|_{p}<\frac{2}{p}$ for $1<p<2$.

However, the Riesz-Thorin theorem does not give the exact value when applied to C and C^{T} themselves, and we would not expect it to do so for $C-I$ and $C^{T}-I$.

The following conjecture seems plausible:
Conjecture (C): $\|C-I\|_{p}=p^{*}-1=1 /(p-1)$ for $1<p \leq 2$, equivalently $\left\|C^{T}-I\right\|_{p}=p-1$ for $p>2$.

This conjecture is discussed briefly in [1, p. 48]. After pointing out that the statement $\|C-I\|_{p}=1$ for $p>2$ is easily disproved by considering the p^{*}-norm of the rows, Bennett states that "similar examples" disprove conjecture (C). I cannot see that this is the case in any simple way, and it seems possible that this may have been an over-hasty remark. Regrettably, Bennett died in 2016, so is not available to elucidate.

2. The case $p=4$

We now establish estimates for both operators for the case $p=4$, by developing the method used for $\|C-I\|_{2}$.

Theorem 1. We have $\|C-I\|_{4} \leq 3^{1 / 4}$.
Proof. Choose $x \in \ell_{4}$ and let y_{n} be defined by (1). Then $y_{n}-x_{n}=(n-1)\left(y_{n-1}-\right.$ $\left.y_{n}\right)$. By convexity of the function x^{4}, we have $b^{4}-a^{4} \geq 4 a^{3}(b-a)$ for any a and b, positive or negative. So $y_{n-1}^{4}-y_{n}^{4} \geq 4 y_{n}^{3}\left(y_{n-1}-y_{n}\right)$, hence

$$
4 y_{n}^{3}\left(y_{n}-x_{n}\right) \leq(n-1)\left(y_{n-1}^{4}-y_{n}^{4}\right)
$$

equivalently

$$
4 y_{n}^{3} x_{n}-3 y_{n}^{4} \geq n y_{n}^{4}-(n-1) y_{n-1}^{4} .
$$

Adding for $1 \leq n \leq N$, we obtain

$$
4 \sum_{n=1}^{N} y_{n}^{3} x_{n}-3 \sum_{n=1}^{N} y_{n}^{4} \geq N y_{N}^{4} \geq 0
$$

Hence $\sum_{n=1}^{N} y_{n}^{3}\left(4 x_{n}-3 y_{n}\right) \geq 0$. Write $y_{n}=x_{n}+z_{n}$. Then $\sum_{n=1}^{N} F\left(x_{n}, z_{n}\right) \geq 0$, where

$$
\begin{equation*}
F(x, z)=(x+z)^{3}(x-3 z)=x^{4}-6 x^{2} z^{2}-8 x z^{3}-3 z^{4} . \tag{5}
\end{equation*}
$$

To deal with the term $8 x z^{3}$, we use the inequality $-2 x z \leq c x^{2}+\frac{1}{c} z^{2}$, with c to be chosen. This gives $-8 x z^{3} \leq 4 z^{2}\left(c x^{2}+\frac{1}{c} z^{2}\right)$, so

$$
F(x, z) \leq x^{4}+(4 c-6) x^{2} z^{2}-\left(3-\frac{4}{c}\right) z^{4}
$$

Choose $c=\frac{3}{2}$ to deduce that $F(x, z) \leq x^{4}-\frac{1}{3} z^{4}$, hence $\sum_{n=1}^{N} z_{n}^{4} \leq 3 \sum_{n=1}^{N} x_{n}^{4}$.

Of course, the same estimate applies to $\left\|C^{T}-I\right\|_{4 / 3}$. Compare the bound $\sqrt{ } 2$ given by Proposition 2.

By the Riesz-Thorin theorem, we can deduce the following bounds on $[2,4]$ and $[4, \infty)$:

Corollary 1.1. For $2 \leq p \leq 4$, we have $\|C-I\|_{p} \leq 3^{1 / 2-1 / p}$. For $p \geq 4$, we have $\|C-I\|_{p} \leq 3^{1 / p} 2^{1-4 / p}$.

Proof. For $2<p<4$, we have $\frac{1}{p}=\frac{1-\theta}{2}+\frac{\theta}{4}$ with $\theta=2-\frac{4}{p}$, so (3) gives the stated bound. For $p>4$, the stated bound follows at once from (4).

The corresponding bounds for $\left\|C^{T}-I\right\|_{p}$ are $3^{1 / p-1 / 2}$ for $\frac{4}{3} \leq p \leq 2$ and $3^{1-1 / p} 2^{4 / p-3}$ for $1 \leq p \leq \frac{4}{3}$.

We have no reason to suppose that $3^{1 / 4}$ is the exact value of $\|C-I\|_{4}$. We will present a lower bound for it later.

We now turn to C^{T}. As remarked earlier, it is clear that $\left\|C^{T}-I\right\|_{4} \geq 3$. We now show that this is the exact value, in accordance with conjecture (C). The method has both similarities and differences to the case of $C-I$.

Theorem 2. We have $\left\|C^{T}-I\right\|_{4}=3$.
Proof. Choose $x \in \ell_{4}$ and let y_{n} be defined by (2), so that $x_{n}=n\left(y_{n}-y_{n+1}\right)$. Now $b^{4}-a^{4} \leq 4 b^{3}(b-a)$ for any a, b, so $y_{n}^{4}-y_{n+1}^{4} \leq 4 y_{n}^{3}\left(y_{n}-y_{n+1}\right)$, hence

$$
4 y_{n}^{3} x_{n} \geq n\left(y_{n}^{4}-y_{n+1}^{4}\right)
$$

equivalently

$$
y_{n}^{4} \leq 4 y_{n}^{3} x_{n}+n y_{n+1}^{4}-(n-1) y_{n}^{4} .
$$

Adding, we obtain

$$
\sum_{n=1}^{N} y_{n}^{4} \leq 4 \sum_{n=1}^{N} y_{n}^{3} x_{n}+N y_{N+1}^{4}
$$

By Hölder's inequality applied to (2), $N y_{N+1}^{4} \rightarrow 0$ as $N \rightarrow \infty$, so

$$
\sum_{n=1}^{\infty} y_{n}^{4} \leq 4 \sum_{n=1}^{\infty} y_{n}^{3} x_{n} .
$$

Now write $y_{n}=x_{n}+z_{n}$. Then $\sum_{n=1}^{\infty} F\left(x_{n}, z_{n}\right) \geq 0$, where

$$
F(x, z)=4 x(x+z)^{3}-(x+z)^{4}=3 x^{4}+8 x^{3} z+6 x^{2} z^{2}-z^{4} .
$$

Again estimate the term $8 x^{3} z$ using $2 x z \leq c x^{2}+\frac{1}{c} z^{2}$, with c to be chosen. This gives

$$
F(x, z) \leq(3+4 c) x^{4}+\left(6+\frac{4}{c}\right) x^{2} z^{2}-z^{4}
$$

This time the choice of c will require a little more work. We have shown that

$$
\sum_{n=1}^{\infty} z_{n}^{4} \leq(3+4 c) \sum_{n=1}^{\infty} x_{n}^{4}+\sum_{n=1}^{\infty}\left(6+\frac{4}{c}\right) x_{n}^{2} z_{n}^{2} .
$$

Write $\sum_{n=1}^{\infty} x_{n}^{4}=X^{2}$ and $\sum_{n=1}^{\infty} z_{n}^{4}=Z^{2}$ (so that $\|x\|_{4}=X^{1 / 2}$). By the Cauchy-Schwarz inequality, $\sum_{n=1}^{\infty} x_{n}^{2} z_{n}^{2} \leq X Z$, so

$$
Z^{2} \leq(3+4 c) X^{2}+\left(6+\frac{4}{c}\right) X Z
$$

hence

$$
\left[Z-\left(3+\frac{2}{c}\right) X\right]^{2} \leq g(c) X^{2}
$$

where

$$
g(c)=\left(3+\frac{2}{c}\right)^{2}+3+4 c=12+4 c+\frac{12}{c}+\frac{4}{c^{2}} .
$$

We show that c can be chosen so that $g(c)^{1 / 2}+3+\frac{2}{c}=9$: it then follows that $Z \leq 9 X$, so that $\|z\|_{4} \leq 3\|x\|_{4}$. The required equality is $g(c)=\left(6-\frac{2}{c}\right)^{2}$, which simplifies to $c^{2}-6 c+9=0$, satisfied by $c=3$. (We could have shortened the proof by simply taking $c=3$ in the first place, but it is arguably preferable to show how this choice is derived.)

The Riesz-Thorin theorem delivers the following estimate for intermediate values.
Corollary 2.1. For $2 \leq p \leq 4$, we have $\left\|C^{T}-I\right\|_{p} \leq 3^{2-4 / p}$. For $\frac{4}{3} \leq p \leq 2$, we have $\|C-I\|_{p} \leq 3^{4 / p-2}$.

To derive a simpler, but weaker bound, note that the convex function 3^{2-x} lies below its linear interpolation $5-2 x$ for $1 \leq x \leq 2$. Hence $3^{2-4 / p} \leq 5-\frac{8}{p}$ for $2 \leq p \leq$ 4. Meanwhile, it is not hard to show that $3^{2-4 / p}$ is strictly greater than the conjectured value $p-1$ for $2<p<4$.

One would hope to be able to extend Theorems 1 and 2 to other values. However, our methods do not adapt readily even to the case $p=6$.

3. Lower bounds

We return to the question of lower bounds for $\|C-I\|_{p}$ for $p>2$.
Proposition 3. For $p \geq 2$,

$$
\begin{equation*}
\|C-I\|_{p} \geq\left(\frac{2^{p-1}-1}{p-1}\right)^{1 / p} \tag{6}
\end{equation*}
$$

Proof. Fix n and let $x=e_{1}+\cdots+e_{n}-e_{n+1}-\cdots-e_{2 n}$. Let $y=C x$ and $z=y-x$. For $1 \leq r \leq n$, we have $y_{n+r}=(n-r) /(n+r)$, hence $z_{n+r}=2 n /(n+r)$. Hence

$$
\sum_{k=1}^{2 n} z_{k}^{p}=(2 n)^{p} \sum_{r=1}^{n} \frac{1}{(n+r)^{p}}
$$

By integral estimation,

$$
\sum_{r=1}^{n} \frac{1}{(n+r)^{p}}>\int_{n+1}^{2 n} \frac{1}{t^{p}} d t=\frac{1}{p-1}\left(\frac{1}{(n+1)^{p-1}}-\frac{1}{(2 n)^{p-1}}\right)
$$

so

$$
\begin{aligned}
\frac{\sum_{k=1}^{2 n} z_{k}^{p}}{\sum_{k=1}^{2 n}\left|x_{k}\right|^{p}} & >\frac{(2 n)^{p-1}}{p-1}\left(\frac{1}{(n+1)^{p-1}}-\frac{1}{(2 n)^{p-1}}\right) \\
& =\frac{1}{p-1}\left(\frac{(2 n)^{p-1}}{(n+1)^{p-1}}-1\right)
\end{aligned}
$$

which tends to $\left(2^{p-1}-1\right) /(p-1)$ as $n \rightarrow \infty$.
In particular, $\|C-I\|_{4} \geq\left(\frac{7}{3}\right)^{1 / 4}$.
Note that the estimate in (6) reproduces the correct value 1 for $p=2$. One can derive the somewhat simpler lower bound $2\left(1-\frac{1}{p}\right) /(p-1)^{1 / p}$, which can be compared with the upper bound $2\left(1-\frac{1}{p}\right)$ noted after Proposition 2.

In the light of these results, there would appear to be no obvious candidate to conjecture for the exact value of $\|C-I\|_{p}$ for $p>2$.

4. The continuous case

In the continuous case, C is the operator defined by $(C f)(x)=\frac{1}{x} \int_{0}^{x} f(t) d t$, with dual $\left(C^{T} f\right)(x)=\int_{x}^{\infty} \frac{f(t)}{t} d t$. Hardy's inequality still applies. So do all our estimations, with routine adjustments to the proofs. For example, in Theorem 1, (5) becomes $3 \int_{0}^{X}(C f)^{4} \leq 4 \int_{0}^{X}(C f)^{3} f$, and the proof concludes as before.

For $p=2$ in the continuous case, it was shown in [5] that $C-I$ is actually isometric: $\|(C-I) f\|_{2}=\|f\|_{2}$ for all f, and similarly for $C^{T}-I$. Of course, this is not true in the discrete case. Indeed, $\left(C^{T}-I\right) e_{1}=0$. For C, the problem is more interesting. In finite dimensions, one simply has $(C-I) e=0$, where $e=(1,1, \ldots, 1)$. However, in infinite dimensions, the author has been able to show that $\|(C-I) x\|_{2} \geq(1 / \sqrt{ } 2)\|x\|_{2}$ for all x in ℓ_{2}; this constant is attained by $x=(1,-1,0,0, \ldots)$.

REFERENCES

[1] Grahame Bennett, Factorizing the classical inequalities, Mem. American Math. Soc. 576 (1996).
[2] J. BERGH AND J. LÖFSTRÖM, Interpolation Spaces, Springer (1976).
[3] A. Brown, P. R. Halmos And A. L. Shields, Cesàro operators, Acta Sci. Math. 26 (1965), 125-137.
[4] G. H. Hardy, J. Littlewood and G. Pólya, Inequalities, 2nd ed., Cambridge Univ. Press (1967).
[5] N. Kaiblinger, L. Maligranda and L.-E. Persson, Norms in weighted L^{2}-spaces and Hardy operators, Function spaces, the fifth conference, Poznań 1998, Lecture Notes in Pure Appl. Math. 213, Dekker (2000), 205-216.
G. J. O. Jameson, Department of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YF, UK e-mail: g.jameson@lancaster.ac.uk

