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Abstract. For the Cesàro operator C , it is known that ‖C− I‖2 = 1 . Here we prove that
‖C− I‖4 ≤ 31/4 and ‖CT − I‖4 = 3 . Bounds for intermediate values of p are derived from
the Riesz-Thorin interpolation theorem. An estimate for lower bounds is obtained.

1. Introduction and basic results

For a matrix operator A , we denote by ‖A‖p the norm of A as an operator on the
(real) sequence space `p . Let C be the Cesàro operator, so that for a sequence x = (xn) ,
we have Cx = y , where

yn =
1
n
(x1 + x2 + . . .+ xn). (1)

For the transpose CT , we have CT x = y , where

yn =
∞

∑
k=n

xk

k
. (2)

.
Hardy’s inequality [4, p. 239–241] states that ‖C‖p = p∗ , where p∗ is the con-

jugate index defined by 1
p +

1
p∗ = 1. By duality, this implies that ‖CT‖p = p (this is

known as Copson’s inequality).
For p = 2, a stronger statement applies: ‖C− I‖2 = 1, where I is the identity

matrix. This was proved in [3], using the fact that (C− I)(CT − I) is the diagonal
matrix with entries 1− 1

n , together with the Hilbert space property ‖AAT‖2 = ‖A‖2
2 .

However, it can also be easily established by a slightly amended version of the direct
method of [4]. This proof does not appear to be well known, and we will generalise it
below, so we sketch it here.

Proof. We have xn = nyn− (n− 1)yn−1 , hence yn− xn = (n− 1)(yn−1− yn) . For
any a , b , it is elementary that b2−a2 ≥ 2a(b−a) . (Here the proof for general p uses
bp−ap ≥ pap−1(b−a) , valid only for positive a , b .) So 2yn(yn−1− yn)≤ y2

n−1− y2
n ,

hence
2yn(yn− xn)≤ (n−1)(y2

n−1− y2
n),
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equivalently
2xnyn− y2

n ≥ ny2
n− (n−1)y2

n−1.

Adding these inequalities for 1≤ n≤ N , we obtain

2
N

∑
n=1

xnyn−
N

∑
n=1

y2
n ≥ Ny2

N ≥ 0.

so that
N

∑
n=1

y2
n ≤ 2

N

∑
n=1

xnyn,

hence ∑
N
n=1(yn− xn)

2 ≤ ∑
N
n=1 x2

n . (At this point, the proof in [4] applies Hölder’s in-
equality.)

Our objective here is to consider ‖C− I‖p and ‖CT − I‖p for other values of p .
First, some simple facts. By Hardy’s inequality and its dual, p∗−1≤‖C−I‖p≤ p∗+1
and p− 1 ≤ ‖CT − I‖p ≤ p+ 1 for all p ≥ 1. Also, if en is the n th unit vector, then
for p > 1, both ‖Cen‖p and ‖CT en‖p tend to 0 as n→ ∞ , so ‖C− I‖p and ‖CT − I‖p
are not less than 1.

PROPOSITION 1. We have ‖C− I‖∞ = ‖CT − I‖1 = 2 .

Proof. Consider CT − I first. The element (CT − I)en is given by column n :

(CT − I)en =

(
1
n
, . . . ,

1
n
,

1
n
−1,0,0, . . .

)
,

in which 1
n occurs n−1 times. So ‖(CT − I)en‖1 = 2(1− 1

n ) , hence ‖CT − I‖1 = 2.
The statement for C− I follows by duality, or directly by taking x to be e1 + · · ·+

en−1− en : then zn = 2(1− 1
n ) .

Of course, it follows that limp→∞ ‖C− I‖p = limp→1+ ‖CT − I‖p = 2.
Bounds for intermediate values of p can now be derived from the Riesz-Thorin

interpolation theorem. In the version we want (not the most general one), this states:

THEOREM RT. Suppose that 1≤ q < r ≤ ∞ and

1
p
=

1−θ

q
+

θ

r
,

where 0 < θ < 1 . Suppose that A maps `q into `q and `r into `r . Then A maps `p
into `p , and

‖A‖p ≤ ‖A‖1−θ
q ‖A‖θ

r . (3)

A proof can be seen in [2, chap. 1]. Note that the case r = ∞ simplifies to: if
p > q≥ 1, then

‖A‖p ≤ ‖A‖q/p
q ‖A‖1−q/p

∞ . (4)

An obvious consequence of the theorem is: if ‖A‖p ≥ ‖A‖p0 for all p > p0 , then ‖A‖p
increases with p for p≥ p0 .

For C− I and CT − I , we can deduce at once the following facts.
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PROPOSITION 2. For p ≥ 2 , ‖C− I‖p increases with p and is not greater
21−2/p . For 1≤ p≤ 2 , ‖CT − I‖p decreases with p and is not greater than 21−2/p∗ =

22/p−1 .

We can derive bounds that are weaker, but easier to apply, as follows: by convexity
of 2x , we have 2x < 1+ x for 0 < x < 1. Hence ‖C− I‖p <

2
p∗ for p > 2 and ‖CT −

I‖p <
2
p for 1 < p < 2.

However, the Riesz-Thorin theorem does not give the exact value when applied to
C and CT themselves, and we would not expect it to do so for C− I and CT − I .

The following conjecture seems plausible:
Conjecture (C): ‖C− I‖p = p∗ − 1 = 1/(p− 1) for 1 < p ≤ 2, equivalently

‖CT − I‖p = p−1 for p > 2.
This conjecture is discussed briefly in [1, p. 48]. After pointing out that the state-

ment ‖C− I‖p = 1 for p > 2 is easily disproved by considering the p∗ -norm of the
rows, Bennett states that “similar examples” disprove conjecture (C). I cannot see that
this is the case in any simple way, and it seems possible that this may have been an
over-hasty remark. Regrettably, Bennett died in 2016, so is not available to elucidate.

2. The case p = 4

We now establish estimates for both operators for the case p = 4, by developing
the method used for ‖C− I‖2 .

THEOREM 1. We have ‖C− I‖4 ≤ 31/4 .

Proof. Choose x ∈ `4 and let yn be defined by (1). Then yn− xn = (n−1)(yn−1−
yn) . By convexity of the function x4 , we have b4−a4 ≥ 4a3(b−a) for any a and b ,
positive or negative. So y4

n−1− y4
n ≥ 4y3

n(yn−1− yn) , hence

4y3
n(yn− xn)≤ (n−1)(y4

n−1− y4
n),

equivalently
4y3

nxn−3y4
n ≥ ny4

n− (n−1)y4
n−1.

Adding for 1≤ n≤ N , we obtain

4
N

∑
n=1

y3
nxn−3

N

∑
n=1

y4
n ≥ Ny4

N ≥ 0.

Hence ∑
N
n=1 y3

n(4xn−3yn)≥ 0. Write yn = xn + zn . Then ∑
N
n=1 F(xn,zn)≥ 0, where

F(x,z) = (x+ z)3(x−3z) = x4−6x2z2−8xz3−3z4. (5)

To deal with the term 8xz3 , we use the inequality −2xz ≤ cx2 + 1
c z2 , with c to be

chosen. This gives −8xz3 ≤ 4z2(cx2 + 1
c z2) , so

F(x,z)≤ x4 +(4c−6)x2z2−
(

3− 4
c

)
z4.

Choose c = 3
2 to deduce that F(x,z)≤ x4− 1

3 z4 , hence ∑
N
n=1 z4

n ≤ 3∑
N
n=1 x4

n .
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Of course, the same estimate applies to ‖CT − I‖4/3 . Compare the bound
√

2
given by Proposition 2.

By the Riesz-Thorin theorem, we can deduce the following bounds on [2,4] and
[4,∞) :

COROLLARY 1.1. For 2≤ p≤ 4 , we have ‖C− I‖p ≤ 31/2−1/p . For p≥ 4 , we
have ‖C− I‖p ≤ 31/p21−4/p .

Proof. For 2 < p < 4, we have 1
p = 1−θ

2 + θ

4 with θ = 2− 4
p , so (3) gives the

stated bound. For p > 4, the stated bound follows at once from (4).

The corresponding bounds for ‖CT − I‖p are 31/p−1/2 for 4
3 ≤ p ≤ 2 and

31−1/p24/p−3 for 1≤ p≤ 4
3 .

We have no reason to suppose that 31/4 is the exact value of ‖C− I‖4 . We will
present a lower bound for it later.

We now turn to CT . As remarked earlier, it is clear that ‖CT − I‖4 ≥ 3. We now
show that this is the exact value, in accordance with conjecture (C). The method has
both similarities and differences to the case of C− I .

THEOREM 2. We have ‖CT − I‖4 = 3 .

Proof. Choose x ∈ `4 and let yn be defined by (2), so that xn = n(yn−yn+1) . Now
b4−a4 ≤ 4b3(b−a) for any a , b , so y4

n− y4
n+1 ≤ 4y3

n(yn− yn+1) , hence

4y3
nxn ≥ n(y4

n− y4
n+1),

equivalently
y4

n ≤ 4y3
nxn +ny4

n+1− (n−1)y4
n.

Adding, we obtain
N

∑
n=1

y4
n ≤ 4

N

∑
n=1

y3
nxn +Ny4

N+1.

By Hölder’s inequality applied to (2), Ny4
N+1→ 0 as N→ ∞ , so

∞

∑
n=1

y4
n ≤ 4

∞

∑
n=1

y3
nxn.

Now write yn = xn + zn . Then ∑
∞
n=1 F(xn,zn)≥ 0, where

F(x,z) = 4x(x+ z)3− (x+ z)4 = 3x4 +8x3z+6x2z2− z4.

Again estimate the term 8x3z using 2xz≤ cx2 + 1
c z2 , with c to be chosen. This gives

F(x,z)≤ (3+4c)x4 +

(
6+

4
c

)
x2z2− z4.
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This time the choice of c will require a little more work. We have shown that

∞

∑
n=1

z4
n ≤ (3+4c)

∞

∑
n=1

x4
n +

∞

∑
n=1

(
6+

4
c

)
x2

nz2
n.

Write ∑
∞
n=1 x4

n = X2 and ∑
∞
n=1 z4

n = Z2 (so that ‖x‖4 = X1/2 ). By the Cauchy-Schwarz
inequality, ∑

∞
n=1 x2

nz2
n ≤ XZ , so

Z2 ≤ (3+4c)X2 +

(
6+

4
c

)
XZ,

hence [
Z−

(
3+

2
c

)
X
]2

≤ g(c)X2,

where

g(c) =
(

3+
2
c

)2

+3+4c = 12+4c+
12
c
+

4
c2 .

We show that c can be chosen so that g(c)1/2+3+ 2
c = 9: it then follows that Z ≤ 9X ,

so that ‖z‖4 ≤ 3‖x‖4 . The required equality is g(c) = (6− 2
c )

2 , which simplifies to
c2− 6c+ 9 = 0, satisfied by c = 3. (We could have shortened the proof by simply
taking c = 3 in the first place, but it is arguably preferable to show how this choice is
derived.)

The Riesz-Thorin theorem delivers the following estimate for intermediate values.

COROLLARY 2.1. For 2≤ p≤ 4 , we have ‖CT − I‖p ≤ 32−4/p . For 4
3 ≤ p≤ 2 ,

we have ‖C− I‖p ≤ 34/p−2 .

To derive a simpler, but weaker bound, note that the convex function 32−x lies
below its linear interpolation 5−2x for 1≤ x≤ 2. Hence 32−4/p ≤ 5− 8

p for 2≤ p≤
4. Meanwhile, it is not hard to show that 32−4/p is strictly greater than the conjectured
value p−1 for 2 < p < 4.

One would hope to be able to extend Theorems 1 and 2 to other values. However,
our methods do not adapt readily even to the case p = 6.

3. Lower bounds

We return to the question of lower bounds for ‖C− I‖p for p > 2.

PROPOSITION 3. For p≥ 2 ,

‖C− I‖p ≥
(

2p−1−1
p−1

)1/p

. (6)
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Proof. Fix n and let x = e1 + · · ·+en−en+1−·· ·−e2n . Let y =Cx and z = y−x .
For 1≤ r ≤ n , we have yn+r = (n− r)/(n+ r) , hence zn+r = 2n/(n+ r) . Hence

2n

∑
k=1

zp
k = (2n)p

n

∑
r=1

1
(n+ r)p .

By integral estimation,

n

∑
r=1

1
(n+ r)p >

∫ 2n

n+1

1
t p dt =

1
p−1

(
1

(n+1)p−1 −
1

(2n)p−1

)
,

so

∑
2n
k=1 zp

k

∑
2n
k=1 |xk|p

>
(2n)p−1

p−1

(
1

(n+1)p−1 −
1

(2n)p−1

)
=

1
p−1

(
(2n)p−1

(n+1)p−1 −1
)
,

which tends to (2p−1−1)/(p−1) as n→ ∞ .

In particular, ‖C− I‖4 ≥ ( 7
3 )

1/4 .
Note that the estimate in (6) reproduces the correct value 1 for p = 2. One can

derive the somewhat simpler lower bound 2(1− 1
p )/(p−1)1/p , which can be compared

with the upper bound 2(1− 1
p ) noted after Proposition 2.

In the light of these results, there would appear to be no obvious candidate to
conjecture for the exact value of ‖C− I‖p for p > 2.

4. The continuous case

In the continuous case, C is the operator defined by (C f )(x) = 1
x
∫ x

0 f (t)dt , with
dual (CT f )(x) =

∫
∞

x
f (t)

t dt . Hardy’s inequality still applies. So do all our estima-
tions, with routine adjustments to the proofs. For example, in Theorem 1, (5) becomes
3
∫ X

0 (C f )4 ≤ 4
∫ X

0 (C f )3 f , and the proof concludes as before.
For p = 2 in the continuous case, it was shown in [5] that C− I is actually isomet-

ric: ‖(C− I) f‖2 = ‖ f‖2 for all f , and similarly for CT − I . Of course, this is not true
in the discrete case. Indeed, (CT − I)e1 = 0. For C , the problem is more interesting. In
finite dimensions, one simply has (C− I)e = 0, where e = (1,1, . . . ,1) . However, in
infinite dimensions, the author has been able to show that ‖(C− I)x‖2 ≥ (1/

√
2)‖x‖2

for all x in `2 ; this constant is attained by x = (1,−1,0,0, . . .) .
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[2] J. BERGH AND J. LÖFSTRÖM, Interpolation Spaces, Springer (1976).
[3] A. BROWN, P. R. HALMOS AND A. L. SHIELDS, Cesàro operators, ACTA SCI. MATH. 26 (1965),
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