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THE /,-NORM OF C -1, WHERE C IS THE CESARO OPERATOR
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Abstract. For the Cesaro operator C, it is known that ||C — || = 1. Here we prove that
|C—1I|l4 < 3'* and ||CT —1I||4 = 3. Bounds for intermediate values of p are derived from
the Riesz-Thorin interpolation theorem. An estimate for lower bounds is obtained.

1. Introduction and basic results

For a matrix operator A, we denote by ||A]|, the norm of A as an operator on the
(real) sequence space £,,. Let C be the Cesaro operator, so that for a sequence x = (x,),
we have Cx =y, where

1
yn:;(xl—i—xz—&—...—i—xn). (D
For the transpose C” , we have C”x =y, where

> X
) f )
=n

Hardy’s inequality [4, p. 239-241] states that ||C||, = p*, where p* is the con-
jugate index defined by %—F p% = 1. By duality, this implies that ||CT||, = p (this is
known as Copson’s inequality).

For p =2, a stronger statement applies: ||C —I||; = 1, where I is the identity
matrix. This was proved in [3], using the fact that (C —1)(CT —1I) is the diagonal
matrix with entries 1 — 1 together with the Hilbert space property [|AAT ||, = ||A3.
However, it can also be easily established by a slightly amended version of the direct
method of [4]. This proof does not appear to be well known, and we will generalise it
below, so we sketch it here.

Proof. We have x, = ny, — (n—1)y,_1, hence y, —x, = (n—1)(yp—1 —yn). For
any a, b, it is elementary that b> —a? > 2a(b — a). (Here the proof for general p uses
bP —aP > pa’~' (b —a), valid only for positive a, b.) S0 2y, (Yn_1 —ya) < yil —y2,
hence

29 (vn = %a) < (n=1)(Va_1 = ¥2);
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equivalently
2Xnyn — i = nyn — (n—Dyr_.
Adding these inequalities for 1 <n < N, we obtain

N N
2Y xya— Y 2 = Nyi > 0.
n=1

n=1
so that
N N
Yon <2y xu,
n=1 n=1
hence YN, (yu —x,)> < YN_, x2. (At this point, the proof in [4] applies Holder’s in-
equality.) O

Our objective here is to consider ||C —1||, and ||CT —1||, for other values of p.
First, some simple facts. By Hardy’s inequality and its dual, p* —1 < ||C—I|, < p*+1
and p—1< ||CT —I||, < p+1forall p>1. Also, if e, is the nth unit vector, then
for p > 1, both ||Ce,|, and ||CTe,|, tend to 0 as n — o0, so |C—1||, and ||CT —1]|,
are not less than 1.

PROPOSITION 1. We have ||C—I||.. = ||CT —1I||; = 2.

Proof. Consider CT —1 first. The element (CT —1I)e, is given by column n:

1 11
(€T —De, = (- 1,0,0,...) ,
n n’'n
in which 1 occurs n— 1 times. So [|(CT —1)e,||; =2(1 — 1), hence ||CT —1I||; =2.
The statement for C — I follows by duality, or directly by taking x tobe e; +---+
en—1 —en: then z, =2(1— 1), O

Of course, it follows that lim, .. |C — 1|, =1lim,,_,;+ [|CT — 1|, =2.
Bounds for intermediate values of p can now be derived from the Riesz-Thorin
interpolation theorem. In the version we want (not the most general one), this states:

THEOREM RT. Suppose that 1 < g <r <o and
1 1-6 6

)

p q r
where 0 < 8 < 1. Suppose that A maps £, into £, and {, into {,. Then A maps {,
into {,, and
-0 0
Al < llAllg~®llAlI7- 3)
A proof can be seen in [2, chap. 1]. Note that the case r = oo simplifies to: if
p>q>1,then
lall, < Al Al )
An obvious consequence of the theorem is: if ||A|, > ||A]| p, for all p > po, then ||A]|,

increases with p for p > pg.
For C —1I and CT — I, we can deduce at once the following facts.



PROPOSITION 2. For p >2, ||C—I|, increases with p and is not greater
2172/ For 1 < p <2, ||CT —1||, decreases with p and is not greater than 2'~2/?" =
2%/,

We can derive bounds that are weaker, but easier to apply, as follows: by convexity
of 2%, we have 2 < 1+x for 0 <x < 1. Hence ||C—I||, < 1% for p>2 and ||CT —
1||,,<% for 1 <p<2.

However, the Riesz-Thorin theorem does not give the exact value when applied to
C and CT themselves, and we would not expect it to do so for C—1 and CT —1.

The following conjecture seems plausible:

Conjecture (C): ||C—1||, =p*—1=1/(p—1) for 1 < p <2, equivalently
ICT —1||,=p—1 for p>2.

This conjecture is discussed briefly in [1, p. 48]. After pointing out that the state-
ment ||[C—1||, =1 for p > 2 is easily disproved by considering the p*-norm of the
rows, Bennett states that “similar examples” disprove conjecture (C). I cannot see that
this is the case in any simple way, and it seems possible that this may have been an
over-hasty remark. Regrettably, Bennett died in 2016, so is not available to elucidate.

2. The case p =4

We now establish estimates for both operators for the case p =4, by developing
the method used for ||C—1||>.

THEOREM 1. We have ||C —1I||4 < 3'/*.
Proof. Choose x € {4 and let y, be defined by (1). Then y, —x, = (n—1)(y,—1 —

y,). By convexity of the function x*, we have b* —a* > 4a®(b—a) for any a and b,
positive or negative. So y* | —y% > 4y3(y,—1 —yn), hence

4y§z(yn _xn) < (I’l— 1)())3—1 _yi)’

equivalently
Ayn =3y =y — (n—= 1)y

Adding for 1 <n < N, we obtain

N N
4Y vixa—3Y yp = Nyy >0.

n=1 n=1
Hence Zﬁ,vzl y3(4x, — 3y,) > 0. Write y, = x, +z,. Then Zﬁ,vzl F(x,2,) > 0, where
F(x,2) = (x+2)°(x — 32) = x* — 6x22% — 8x2> — 3%, 3)

To deal with the term 8xz>, we use the inequality —2xz < cx? + %zz, with ¢ to be
chosen. This gives —8xz> < 4z%(cx? + 12%), so

4
F(x,2) <x*+ (dc — 6)x*2 — (3 - ) P4

c

Choose ¢ = 3 to deduce that F(x,z) < x*— %14 ,hence YN 7zt <3y O

n=1"n"



Of course, the same estimate applies to [[CT —1||4/3. Compare the bound +/2
given by Proposition 2.

By the Riesz-Thorin theorem, we can deduce the following bounds on [2,4] and
[4,00):

COROLLARY 1.1. For 2 < p <4, we have ||C 1|, <3271/ For p >4, we
have ||C—1|, < 3'/P21=4/p,

Proof. For 2 < p <4, we have % = %Jr% with 6 =2 — %, so (3) gives the
stated bound. For p > 4, the stated bound follows at once from (4). O]

The corresponding bounds for ||CT —1||, are 3'/P~1/2 for % <p <2 and
31-1rp4/p=3 for 1 < p < .

We have no reason to suppose that 3'/4 is the exact value of ||C—I||4. We will
present a lower bound for it later.

We now turn to CT. As remarked earlier, it is clear that ||CT —1I||s > 3. We now
show that this is the exact value, in accordance with conjecture (C). The method has
both similarities and differences to the case of C —1.

THEOREM 2. We have ||CT —1||4 = 3.

Proof. Choose x € ¢4 and let y, be defined by (2), so that x, = n(y, — yy+1) . Now
b* —a* < 4b3(b—a) for any a, b, so y* —yle < 4y3(yy —yni1), hence

4Yr31xn 2 ”(Y?z _y;t+l ),
equivalently
Vi S 4y F g — (n=1)y;.
Adding, we obtain

N N
Zy: <4 Zyzxn +Ny;‘\7+1‘
n=1

n=1

By Holder’s inequality applied to (2), Nyj‘V 41— 0as N — e, 50
Z yﬁ <4 Z yflxw
n=1 n=1

Now write y, = x, +2,. Then Y~ F(x,,2,) > 0, where

F(x,2) =4x(x+2)% — (x+2)* = 3x* + 83z + 60222 — 2.

1

Again estimate the term 8x’z using 2xz < cx? + Ezz, with ¢ to be chosen. This gives

4
F(x,z) < (3 +4c)x4+ <6+ c) 22—~



This time the choice of ¢ will require a little more work. We have shown that

(==} (==} (==} 4
Y a<B+40 Y o+ Y (6+ C) X2z,
n=1 n=1 n=1
Write Y, x* = X2 and ¥, 2} = Z? (so that ||x||4 = X'/?). By the Cauchy-Schwarz
inequality, Y»_; x2z2 < XZ, 50

4
72 < (3+40)X*+ (6+ C> XZ,

hence
2\ _1° 5
Z—(3+2)x| <gle)x?
c
where

2\? 12 4
g(c):<3+> +3+dc=12+4dc+—+ .
Cc C C

We show that ¢ can be chosen so that g(c)l/2 +34+ % = 9: it then follows that Z < 9X,

so that ||z]|4 < 3||x[|s. The required equality is g(c) = (6 — %), which simplifies to
¢ —6c+9 =0, satisfied by ¢ = 3. (We could have shortened the proof by simply
taking ¢ = 3 in the first place, but it is arguably preferable to show how this choice is

derived.) O

The Riesz-Thorin theorem delivers the following estimate for intermediate values.

COROLLARY 2.1. For 2 < p <4, we have |CT —1I||, <3>7%/P. For $ <p<2,
we have ||C —1I||, < 3%/P~2,

To derive a simpler, but weaker bound, note that the convex function 327 Jies
below its linear interpolation 5 —2x for 1 <x < 2. Hence 32-4/p <5-— % for2<p<

4. Meanwhile, it is not hard to show that 32~4/7 is strictly greater than the conjectured
value p—1 for 2 < p < 4.

One would hope to be able to extend Theorems 1 and 2 to other values. However,
our methods do not adapt readily even to the case p = 6.

3. Lower bounds

We return to the question of lower bounds for ||C—1||, for p > 2.

PROPOSITION 3. For p>2,

2])71_1 1/p
) . (6)

c-1I||,> —
je-11,> (55



Proof. Fix nandletx=e;+---+e,—e,11— - —ey,. Let y=Cx and z=y—x.
For 1 <r <n, wehave y,4, = (n—r)/(n+r), hence z,4, =2n/(n+r). Hence

[

N

F

1

P _ p
Z, = (2n .
klk ( )r:Z’l(nJrr)/’

By integral estimation,

)3 : >/2nldt— ! ! 1
()7 " S r =7 p =T\ P Q1)

r=1

S0

3t S TRy ST

2 1 \ kT @]

1 (2n)P~!
= —1 R
p—1\(n+1)r1!

which tends to (277! —1)/(p—1) as n — oo. O

In particular, |C—1I||4 > (%)1/4.
Note that the estimate in (6) reproduces the correct value 1 for p =2. One can
derive the somewhat simpler lower bound 2(1 — %) /(p—1)"/? which can be compared

with the upper bound 2(1 — %) noted after Proposition 2.
In the light of these results, there would appear to be no obvious candidate to
conjecture for the exact value of ||C —1I||, for p > 2.

4. The continuous case

In the continuous case, C is the operator defined by (Cf)(x) = 1 [i f(¢) dt, with
dual (CTf)(x) = [ @ dt. Hardy’s inequality still applies. So do all our estima-
tions, with routine adjustments to the proofs. For example, in Theorem 1, (5) becomes
3 [X(Cf)* <4 X (Cf)*f, and the proof concludes as before.

For p =2 in the continuous case, it was shown in [5] that C —I is actually isomet-
ric: ||(C—1I)f]|l2 = ||f]|2 for all £, and similarly for CT —I. Of course, this is not true
in the discrete case. Indeed, (CT —I)e; = 0. For C, the problem is more interesting. In
finite dimensions, one simply has (C —1I)e =0, where e = (1,1,...,1). However, in
infinite dimensions, the author has been able to show that ||(C —I)x|2 > (1/+/2)]x||2
for all x in ¢, ; this constant is attained by x = (1,—1,0,0,...).
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