1	Nanomaterials for sustainable remediation of chemical contaminants in water and soil
2	Raj Mukhopadhyay ^a , Binoy Sarkar ^{b,*} , Eakalak Khan ^c , Daniel S. Alessi ^d , Jayanta Kumar Biswas ^e ,
3	K. M. Manjaiah ^f , Miharu Eguchi ^g , Kevin C.W. Wu ^h , Yusuke Yamauchi ^{i,j} , Yong Sik Ok ^{k,*}
4	^a Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal
5	– 132001, Haryana, India
6	^b Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
7	^c Department of Civil and Environmental Engineering and Construction, University of Nevada, Las
8	Vegas, NV 89154, USA
9	^d University of Alberta, Earth and Atmospheric Sciences, Edmonton, AB, T6G 2E3, Canada
10	^e Department of Ecological Studies & International Centre for Ecological Engineering, University of
11	Kalyani, Kalyani, Nadia- 741235, West Bengal, India
12	^f ICAR-Indian Agricultural Research Institute, New Delhi – 110012, India
13	^g Electronic Functional Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki,
14	Tsukuba, Ibaraki 305-0044, Japan
15	^h Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
16	ⁱ Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical
17	Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
18	^j Yamauchi Materials Space-Tectonics Project and International Center for Materials
19	Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki,
20	Tsukuba, Ibaraki 305-0044, Japan
21	^k Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of
22	Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
23	*Co-corresponding authors:
24	Dr. Binoy Sarkar, Lancaster University, e-mail: <u>b.sarkar@lancaster.ac.uk</u>
25	Prof. Yong Sik Ok, Korea University, e-mail: <u>yongsikok@korea.ac.kr</u>

26 Graphical abstract

29 Abstract

Rapid growth in population, industry, urbanization and intensive agriculture have led to soil and 30 31 water pollution by various contaminants. Nanoremediation has become one of the most successful emerging technologies for cleaning up soil and water contaminants due to the high 32 reactivity of nanomaterials (NMs). Numerous publications are available on the use of NMs for 33 34 removing contaminants, and the efficiencies are often improved by modifications of NMs with polymers, clay minerals, zeolites, activated carbon, and biochar. This paper critically reviews the 35 current state-of-the-art NMs used for sustainable soil and water remediation, focusing on their 36 applications in novel remedial approaches, such as adsorption/filtration, catalysis, 37 photodegradation, electro-nanoremediation, and nano-bioremediation. Insights into process 38 performances, modes of deployment, potential environmental risks and their management, and 39 the consequent societal and economic implications of using NMs for soil and water remediation 40 indicate that widespread acceptance of nanoremediation technologies requires not only a 41 42 substantial advancement of the underpinning science and engineering aspects themselves, but also practical demonstrations of the effectiveness of already recognized approaches at real world 43 *in-situ* conditions. New research involving green nanotechnology, nano-bioremediation, electro-44 45 nanoremediation, risk assessment of NMs, and outreach activities are needed to achieve successful applications of nanoremediation at regional and global scales. 46

47

Key Words: Environmental protection; Green and sustainable remediation; Sustainable
development goals; Soil remediation; Soil pollution; Wastewater treatment

50 1. Introduction

One of the biggest problems faced currently by most countries in the world is the deterioration of environmental quality due to wastewater generation, groundwater contamination, and land degradation. Providing a clean environment to humankind is a major challenge to the global community. The challenges of contaminated environment are represented by the United Nation's Sustainable Development Goals (SDGs): 'Clean Water and Sanitation', 'Life on Land', and 'Life Below Water' (UN, 2016).

57 Continuous accumulation of toxic trace elements in soil and water environments accelerate their bioaccumulation. Human exposure to cadmium (Cd), lead (Pb), arsenic (As) and fluoride (F) via 58 drinking water and the consumption of contaminated food can lead to severe health problems in 59 the skin, lungs, kidneys and brain (Schaefer et al., 2020; Wang et al., 2019). Organic 60 contaminants such as industrial dyes are difficult to treat due to their recalcitrance and sensitivity 61 on physicochemical properties of the surrounding environment for degradation (Lellis et al., 62 63 2019). Likewise, the excessive application of pesticides in agriculture has contaminated soil and water resources globally (de Souza et al., 2020). Anthropogenic and natural activities including 64 coal gasification, coal-tar pitches and open burning can produce large quantities of polycyclic 65 66 aromatic hydrocarbons (PAHs) due to the incomplete combustion of hydrocarbons (Li et al., 2020). Pharmaceuticals and personal care products (PPCPs) are contaminants of emerging 67 68 concern found in wastewater due to discharge from households, healthcare facilities, and the 69 pharmaceutical manufacturing industry (Meyer et al., 2019). There is a need to develop cost-effective and ecologically benign materials for cleaning up 70

contaminated soil and water. Nanotechnology offers rapid, inexpensive and environmentally safe
solutions, and has great potential to reduce contaminant levels to 'nearly zero' (Bardos et al.,

73	2018). Nanoremediation of the environment can be defined as the process whereby suitable
74	nanomaterials (NMs) are used for cleaning up environmental contaminants in the soil, water, and
75	air. Nanoremediation technologies can eliminate the need for excavating and transporting
76	contaminated soils because the cleanup process often takes place in-situ (Cai et al., 2019; Fajardo
77	et al., 2020). Furthermore, several approaches can be applied to regenerate and reuse
78	nanomaterials in contaminant treatment applications (e.g., magnetic separation of iron
79	nanoparticles, recovery of metals from spent nanosorbents) (Mehta et al., 2015).
80	Nanoparticles (NPs) are particles with sizes of <100 nm in all dimensions (e.g., metal oxides),
81	while NMs require only one dimension to be <100 nm (e.g., carbon nanotubes) (Khan et al.,
82	2019). Nanocomposites are defined as multiphase materials consisting of at least one nanoscale
83	phase that is dispersed in another phase to obtain a combination of the individual properties of its
84	constituents (Bassyounia et al., 2019; Mukhopadhyay et al., 2020). Therefore, one of the
85	constituent materials in nanocomposites should have a dimension <100 nm (Schaefer and
86	Justice, 2007; Zhao et al., 2011). Nanoscale metal oxides, nano-scale zero valent iron (nZVI),
87	bimetallic nanoparticles (BNPs), carbon nanotubes (CNTs), graphene oxides, silica-based NPs,
88	polymers, clay minerals and zeolites have been shown to decontaminate soil and water (Awad et
89	al., 2020; Mukhopadhyay et al., 2020; Sarkar et al., 2018; Zou et al., 2016). Applications of NMs
90	supported on clay minerals, zeolites, activated carbon and biochar have also improved the
91	reactivity and contaminant removal performances of NMs (Mandal et al., 2018). Reactive
92	nanomaterials can chemically reduce and/or aid in the catalytic reactions to degrade, detoxify
93	and transform specific pollutants (Kumar et al., 2020a). Expediting the cleanup of contaminants
94	in water and soil using NMs holds the potential to improve environmental health for human
95	civilization in meeting multiple SDGs.

Based on the functions of various NMs, they can be classified as adsorbents (for adsorption of 96 contaminants), catalysts (for degradation/transformation of pollutants) and membranes (pressure-97 98 driven technique for wastewater and seawater treatment) (Anjum et al., 2019). However, most of the literature focuses on the remediation of aqueous systems, and most of these studies are at the 99 bench scale. Cleanup of contaminated soils using NMs has received less attention. Multiple 100 101 technological, societal and economic bottlenecks (e.g., high preparation and implementation costs of NMs, a lack of desired contaminant removal efficiency under *in-situ* conditions) have 102 103 hindered the widespread application of nanotechnologies in environmental remediation. No comprehensive critical review is currently available that discusses both water and soil 104 remediation using various types of nanomaterials, their fates and concurrent effects on living 105 organisms, feasibility in field-level applications, environmentally benign and inexpensive 106 synthesis methods, and scientific, societal and economic bottlenecks hindering widespread 107 application, which are addressed for the first time in this work. Specifically, focus has been made 108 109 on toxic trace elements, pesticides/herbicides, dyes and selected aromatic compounds, which are most encountered in various industrial systems/discharges, wastewater, contaminated irrigation 110 111 water and agricultural systems.

112

113 2. Nanomaterials for contaminants remediation in water

Nanomaterials can be grouped into: (i) metal-based or inorganic NMs, (ii) carbonaceous NMs,
(iii) polymer-based NMs, and (iv) composite NMs (Guerra et al., 2018). Fig. 1 depicts a
schematic representation of various types of NMs used for the removal of environmental
contaminants. Metal based NMs (e.g., Fe-based NPs, Cu-based NPs, BNPs) are widely used in
environmental remediation followed by carbonaceous NMs (e.g., CNTs, graphene and graphene

119	oxides), while polymer (e.g., chitosan, alginate) and composite (e.g., clay-polymer
120	nanocomposites, zeolite and biochar supported) NMs have received considerable research
121	attention but limited practical applications (Guerra et al., 2018; Mukhopadhyay et al., 2020). Fe-
122	based NPs have been successfully used in the field, in addition to a few examples of Cu-based
123	NPs, BNPs, other metal oxide NPs (e.g., TiO ₂ , ZnO) and CNTs. The main motivations for using
124	NMs for water and soil treatment are: their high selectivity, high adsorption capacity (due to high
125	specific surface area and numerous adsorption sites), and easy regeneration after use.
126	
127	2.1 Iron-based nanoparticles
128	Iron-based NPs include various oxidic NPs (either magnetic or non-magnetic) as well as nZVI,
129	as discussed below:
130	
131	2.1.1 Iron oxide NPs
132	Iron-based NPs (Fe NPs) such as iron oxides (e.g., hematite (α -Fe ₂ O ₃), maghemite (γ -Fe ₂ O ₃),
133	and magnetite (Fe ₃ O ₄)) and oxy-hydroxides (e.g., goethite (α -FeOOH) and lepidocrocite (γ -
134	FeOOH)) were reported to be effective adsorbents of As and other heavy metals (Supplementary
135	Information: Table S1) in water. For instance, a novel nano-adsorbent was prepared by using
136	Fe ₃ O ₄ magnetic core shelled by mesoporous silica (Vojoudi et al., 2017). The obtained material
137	was then modified with bis(3-triethoxysilylpropyl) tetrasulfide and used to remove heavy metals
138	from aqueous solution. The adsorbent removed 303, 256.4 and 270.3 mg/g of Hg(II), Pd(II) and
139	Pb(II) ions, respectively (Vojoudi et al., 2017). The magnetic Fe ₃ O ₄ NMs were found suitable for
140	the remediation of aqueous Cu^{2+} , Ni^{2+} , Cd^{2+} and Zn^{2+} . The amount of Cu^{2+} , Ni^{2+} and Zn^{2+}

adsorption by Fe_3O_4 were 11.5, 6.07, 9.68 and 11.1 mg/g, respectively, at pH 6.0 after 50 min of

reaction time (initial metal concentration = 50 mg/L for each metal ion; adsorbent dose = 6 g/L) 142 (Ebrahim et al., 2016). Following modification with 2-mercaptobenzothiazole, magnetic Fe₃O₄ 143 144 NPs removed 98.6% Hg(II) from a solution that initially contained 50 ng/mL Hg(II) in just four minutes through a complexation mechanism, versus 43.7% removal by the unmodified NPs 145 (Parham et al., 2012). Green-synthesized α -Fe₂O₃ NPs using banana peel extracts showed high 146 147 As(V) adsorption capacity (2.72 mg/g) (Majumder et al., 2019). Similarly, Fe oxide NPs synthesized from green tea leaf extracts removed 13.7 mg/g As(V) from aqueous solution 148 149 (Kamath et al., 2020). Fe NPs supported on inert materials such as clay minerals, zeolites and 150 biochar can improve the speed and efficiency of contaminant remediation by enhancing the dispersion of NPs and preventing their passivation and/or degradation (Supplementary 151 Information: Table S1; Section 2.9). Apart from adsorption, Fe oxide NPs such as Fe₂O₃ and 152 Fe₃O₄ can degrade phenol, aniline, and dye compounds via photochemical oxidation reactions 153 (Fig. 2) (Saharan et al., 2014). 154

- 155
- 156 2.1.2 Nano-scale zero valent iron (nZVI)

ZVI (Fe⁰) applied to groundwater was shown to be a strong adsorbing and reducing agent of
redox-sensitive contaminants (e.g., Cr(VI), As(III), chloroethylene compounds), and displayed a
low toxicity to biota living in the surrounding environment (Chekli et al., 2016). Considering
these advantages, researchers have used nZVI for decontaminating oxyanion (e.g., CrO4²⁻,
TcO4⁻, AsO3³⁻/AsO4³⁻, and SeO3²⁻/SeO4²⁻) and oxycation (e.g., UO2²⁺, VO4³⁻) contaminants in
water (Supplementary Information: Table S1).
In some cases, nZVI was further modified to prepare advanced nanoremediation agents. For

example, bare nZVI (B-nZVI) was modified with hydroxyethyl cellulose (E-nZVI) and hydroxyl

165	propylmethyl cellulose (P-nZVI) to remediate dye compounds in water (Wang et al., 2015b). The
166	discoloration efficiency was 93.4, 96.3, and 98.6% by B-nZVI, E-nZVI, and P-nZVI,
167	respectively, at 0.7 mg/L initial dye concentration (Wang et al., 2015b).
168	The colloidal forms of ZVI (μ m and nm particle sizes) can be mixed into natural aquifers to
169	readily degrade or adsorb various pesticides (e.g., alachlor), dyes (e.g., malachite green, reactive
170	yellow) and other organic contaminants (e.g., trichloroethylene, pentachloroethylene) (Lin et al.,
171	2018). The nZVI interacts with heavy metals and metalloids through precipitation (Cu(II), Pb(II),
172	Cd(II), Co(II) and Zn(II)), co-precipitation (Ni(II), Cr(VI), Se(VI)), redox reactions (As(V),
173	Pb(II), Hg(II), Cu(II), Ag(II) U), and adsorption (Cr(VI), Ni(II), Se (VI)) (Pasinszki & Krebsz,
174	2020). The catalytic activity of nZVI at field conditions can be compromised due to its poor
175	stability and agglomeration behavior (Stefaniuk et al., 2016). However, peroxide free Fenton-
176	type reactions can catalyze organic contaminant degradation to overcome these limitations of
177	nZVI (Pasinszki & Krebsz, 2020). The agglomeration of nZVI at large scales in aquifers may be
178	problematic as this can cause the clogging of pores and reduce inherent hydraulic conductivity.
179	Hence, future research should be concentrated on the modification of nZVI to reduce its
180	agglomeration behavior at field conditions.

182 2.2 Copper-based nanoparticles

Copper based nanoparticles (Cu NPs) have chemical, photocatalytic, optical and electro-thermal properties applicable to remediation. Specifically, copper oxides (CuO and Cu₂O), are well-known p-type semi-conductors with a high thermal stability and chemical reduction potential (Isherwood, 2017). Positive surface charge, optical properties at visible wavelength, and the high surface area of Cu NPs are the beneficial properties for degradation, reduction, and adsorption of inorganic and

organic contaminants (Khalaj et al., 2018) (Supplementary Information: Table S2). For example, 188 CuO NPs synthesized via a sol-gel procedure was used for Cd^{2+} and Ni^{2+} removal from aqueous 189 solution, wherein high pH of the aqueous medium generated surface negative charge on the 190 adsorbent, and stimulated metal adsorption by electrostatic attraction (Hassan et al., 2017). Zero 191 valent Cu NPs (Cu^0) (dose=2 g/L, pH=7.0) degraded 2,4-dichlorophenol (7.5 mg/L) to the tune of 192 193 60% within 5 days of reaction (Chang et al., 2019). Nutrients removal (N, P) from activated sludge using Cu-based NPs were investigated where phosphate removal capacity reached 98%, and N 194 195 removal reached ~73% at a 5 mg/L dosage of NPs (Chen et al., 2012). CuO NPs also degraded 196 nitrobenzene in aqueous solution upon sonication for 25 min via a Fenton reaction (OH radicals) (ElShafei et al., 2014). Furthermore, green synthesized Cu-based NPs using Punica granatum leaf 197 extracts improved the functionality of nanoparticles for removing methylene blue (MB) from 198 aqueous solution through electrostatic attraction, with an adsorption capacity of 166 mg/g MB 199 (Vidovix et al., 2019). However, the increasing application of Cu-based NPs raised concerns of 200 201 negative environmental impacts to living organisms (Chen et al., 2012). The phytotoxicity of Cu NPs on wheat (Perreault et al., 2014), the cytotoxicity of the NPs on human epithelial cells 202 (Moschini et al., 2013), NP-caused growth inhibitions, the Cu uptake of Arabidopsis thaliana upon 203 204 application of Cu NPs (Wang et al., 2016), and their toxic effects on aquatic organisms such as Hydra magnipapillata have been reported (Murugadas et al., 2016). Therefore, it is prudent to 205 206 synthesize encapsulated or supported Cu NPs, which have low toxicity toward organisms while 207 retaining a high contaminant removal capability.

208

Bimetallic nanoparticles (BNPs) 209 2.3

210	BNPs contain two metallic elements, exhibiting properties related to each metal and resulting
211	from synergistic interactions between two metals. The assembly of BNPs can be as random
212	alloys, alloys with an intermetallic compound, cluster-in-cluster or core-shell structures (Zaleska-
213	Medynska et al., 2016). The shape and size of metallic NPs are strictly dependent on their mode
214	of preparation that also influences the physicochemical properties of the final product (Zaleska-
215	Medynska et al., 2016). Preparation methods for the production of BNPs include chemical
216	reduction, green synthesis, microemulsion method, photodeposition, and radiolysis (Zaleska-
217	Medynska et al., 2016).
218	BNPs can remediate multiple contaminants in aqueous systems (Scaria et al., 2020). A Fe0.9/Cu0.1
219	BNP removed $As(V)$ (60.22 mg/g) from aqueous solution (initial $As(V)$ concentration = 200
220	mg/L; adsorbent dose = 2.5 g/L) (Sepúlveda et al., 2018). Incorporation of relatively low
221	amounts of Cu in the Fe/Cu BNP resulted in a non-uniform core-shell structure with
222	agglomerate-type chains of magnetite that enhanced electron transfers among the metals (Fe/Cu)
223	and the target metalloid (As); hence, the adsorption of As(V) increased (Sepúlveda et al., 2018).
224	To decontaminate Se(IV) in groundwater, Fe-Mn binary oxide NPs were synthesized and
225	stabilized with starch and carboxy methyl cellulose (CMC) (Xie et al., 2015). The starch-
226	stabilized NPs were more effective than CMC stabilized NPs in adsorbing Se(IV), with
227	maximum adsorption capacities of 109 and 95 mg Se/g for the starch- and CMC-stabilized NPs
228	(Xie et al., 2015).
229	Ascorbic acid-stabilized Fe/Pd BNPs and silica-based Fe and Fe/Fe-oxide NPs were successfully
230	tested for degrading trichloroethylene in water (Meeks et al., 2012). Due to high catalytic activity
231	of BNPs, Fe/Ni-polystyrene cation exchange resin composites showed nearly 91% degradation
232	and/or dechlorination of trichloroethylene (20 mg/L initial concentration) (Zhou et al., 2016).

Similarly, biochar-supported Ni/Fe BNPs also enhanced the reduction of 1,1,1-trichloroethane
(1,1,1-TCA) in groundwater remediation (Li et al., 2017). The 1,1,1-TCA removal efficiency
increased up to 99.3% when the BC to Ni/Fe mass ratio reached 1.0 (Li et al., 2017).

236

237 2.4 Other metal oxide nanoparticles

238 The oxides of Ti, Mg, and Zn have proven useful for removing contaminants from the

environment although the application of metal oxide nanoparticles can influence mineral

240 nutrition, oxidative stress and photosynthesis of plants (Rizwan et al., 2017). Some nanoparticles

synthesized with the mediation of plants and/or plant products (e.g., Au NPs from Cassia fistula,

242 FeO from *Rumex acetosa*) have been reported to be beneficial in environmental, agricultural and

biomedical applications (Rai et al., 2018). TiO₂ NPs displayed a high photocatalytic degradation

efficiency of 90.24% at a 20 mg/L initial concentration and pH 5.0 for imidacloprid in an

245 aqueous system (Akbari Shorgoli & Shokri, 2017). The catalytic activity of flower-like

246 nanostructured rutile (TiO₂) was used to rapidly degrade methyl orange (MO) and inactivate

247 drug-resistant bacteria such as *Klebsiella pneumonia* (Kőrösi et al., 2016). Similarly,

248 photodegradation of levofloxacin by ternary nano Ag₂CO₃/CeO₂/AgBr photocatalysts under

visible-light irradiation was investigated and a double Z-scheme photocatalytic mechanism was

250 proposed, which involved an electron transfer process by the active participation of radicals such

as h^+ , O_2^- and OH in the photodegradation (Wen et al., 2018). Naphthalene was effectively

removed (148.3 mg/g) from wastewater using ZnO NPs modified with 1-butyl-3-

253 methylimidazolium tetrafluoroborate, and the removal capacity of the modified adsorbent was

122% higher than the bare ZnO NPs (Kaur et al., 2017). In spite of their capacity to remove a

wide range of contaminants, metal oxide NPs may cause ecotoxicological effects towards 255 various organisms. Therefore, care should be taken in terms of dosage during their application. 256 257

2.5 **Carbon nanotubes** 258

Single and multi-walled CNTs (SWCNTs and MWCNTs) are widely used as adsorbents for 259 260 wastewater purification. The rolling of a single graphene layer into a cylindrical shape creates a SWCNT, while the rolling of many concentric SWCNTs into a tubular shape creates an 261 MWCNT (Gusain et al., 2020). The removal of contaminants through adsorption is more rapid 262 263 for CNTs than other carbonaceous adsorbents (activated carbon, graphene, graphene oxides, and biochar) due to availability of reactive adsorption sites and short diffusion distance (Lee et al., 264 2018). The major surface functional groups (e.g., -COOH and -OH) of CNTs participate in the 265 bulk adsorption of contaminants. Studies have been conducted to graft other functional groups 266 (e.g., -NH₂ and -SH) onto the surface of CNTs to enhance the adsorption capacities 267 268 (Supplementary Information: Table S3). The adsorption affinity of CNTs can be increased by functionalizing the surfaces of CNTs through various processes such as oxidation, nonmagnetic 269 metal oxide coating and grafting of magnetic iron oxides (Sarkar et al., 2018). The mechanisms 270 271 involved in the adsorption process of contaminants by CNTs are dependent on the surface properties of CNTs and the chemistry of the contaminant ions or compounds. The mechanisms 272 273 may include chemisorption or physisorption, while the ionic radius and hydration energy of the 274 contaminants are important factors that determine the adsorption mechanisms (Sarkar et al., 275 2018).

276 The most prominent application of CNTs in environmental remediation includes the removal of 277 organic contaminants through membrane filtration due to the high stability and large specific

surface area of CNTs (Jame & Zhou, 2016). An electrochemically activated CNT filter was able 278 279 to generate OH^{-1} radicals from H₂O₂ to remove phenol from aqueous solution to the tune of 87% 280 within 4 h (Liu et al., 2015). CNTs also show catalytic activity to clean wastewater due to their cylindrical hollow tubes, high mechanical strength, and electrochemical properties. Ruthenium 281 (Ru) precursor impregnated MWCNTs converted 100% aniline in wastewater within 45 min of 282 283 reaction time (Garcia et al., 2006). However, the catalytic activity of CNTs is limited due to their hydrophobic nature, and the presence of impurities (Lee et al., 2018). Another prominent 284 application of CNTs is in sensor-based approaches for contaminant detection. A selective sensor 285 for Hg(II) was developed by adsorbing cold mercury vapor on SWCNTs in industrial wastewater 286 (Safavi et al., 2010). The sensor was able to sense as low as 0.64 µg/mL Hg(II) in various types 287 of wastewater samples (Safavi et al., 2010). Future research should be focused on the application 288 of CNTs for real water decontamination using membrane filtration, catalysis, and sensing 289 290 approaches while also concentrating on the ecotoxicity assessment of CNTs.

291

292 **2.6** Graphene and graphene oxide

Graphene is a 2D structured material having a single atomic layer of sp² bonded carbon atoms, 293 294 with each atom bonded to 3 others in a hexagonal lattice. Graphene shows high strength, durability and specific surface area (Meyer et al., 2007). Graphene oxide (GO) has a structure 295 296 similar to that of graphene, while having more oxygen containing functional groups (Ma et al., 297 2017). The presence of hydrophobic moieties and $\pi - \pi$ interactions in GO lead to high removal efficiencies for aromatic pollutants (Ersan et al., 2017). Oxygen-containing surface functional 298 299 groups (-COOH, -OH and -C=O) may also be present in GO due to the incomplete reduction of 300 GO. Another oxidized form of GO is exfoliated graphene oxide (EGO), which contains various

surface functional groups such as hydroxyl, carboxyl, and epoxy groups (Ramesha et al., 2011). 301 302 The advantages of graphene oxides for water treatment are their colloidal stability and high 303 dispersibility in water, while graphene-based nanocomposites (modified with organic molecules and magnetic graphene nanocomposites) show higher specific surface areas and improved 304 functionality than unmodified graphene (Perreault et al., 2015). In addition, reduced GO (rGO) 305 306 shows high electron transport capacity and increased interaction with metal contaminants (Gollavelli et al., 2013; Lin et al., 2019). The adsorption of dyes such as MB, methyl violet, and 307 308 rhodamine B onto EGO and reduced GO (rGO) sheets has been widely studied in water 309 (Supplementary Information: Table S4). The elevated negative charge density assists in the effective adsorption of cationic dyes on EGO. In contrast, rGO, which has a high surface area, is 310 effective in anionic dye adsorption due to van der Waals interactions (Ramesha et al., 2011). 311 The prevalence of surface charges and different functional groups on EGO, GO, and rGO play 312 important roles in the adsorption of polar contaminants such as phenolics and naphthol, charged 313 314 heavy metals (Ahmad et al., 2020; Ersan et al., 2017), antibiotics such as sulfamethoxazole, sulfapyridine, and sulfathiazole (Çalışkan Salihi et al., 2020), and volatile organic compounds 315 (Kumar et al., 2020b). The adsorption of phenolic compounds generally increases with 316 317 increasing reduction degree in GO, whereas the adsorption of heavy metal ions shows the reverse trend (Wang & Chen, 2015). Likewise, Cd(II) and organic pollutants were co-adsorbed onto 318 319 graphene via surface-bridging mechanisms (Wang & Chen, 2015). The adsorption affinity of four aromatics on GO increased in the following order: naphthalene (NAPH) < 1,2,4-320 trichlorobenzene (TCB) < 2,4,6-trichlorophenol (TCP) < 2-naphthol (Pei et al., 2013). The π - π 321 322 interaction was the main mechanism involved during TCB, TCP and 2-naphthol adsorption onto 323 graphene (Zhou et al., 2015), whereas H-bonding and O-containing surface functional groups

were responsible for the adsorption of TCP and 2-naphthol onto GO (Pei et al., 2013). However,
graphene-based NMs often suffer from low densities of reactive sites, including less oxygencontaining functional groups, while graphene-based nanocomposites show variable colloidal
stability depending on modification type (Perreault et al., 2015). Future research should focus on
the development of highly functionalized and stable graphene-based NMs for bulk removal of
contaminants from aqueous solutions.

330

331 **2.7 Polymer nanoparticles**

The synthesis of polymer NPs follows two approaches: top-down and bottom-up (Krishnaswamy 332 & Orsat, 2017). The top-down approach involves the dispersion of preformed polymers to 333 produce polymer nanoparticles, while the bottom-up approach involves the polymerization of 334 monomers to produce polymeric nanoparticles. Following the bottom-up approach, researchers 335 synthesized hybrid polymer NPs from the ring-opening polymerization of pyromellitic acid 336 337 dianhydride and phenylaminomethyl trimethoxysilane, followed by a sol-gel process to remove heavy metals such as Cu(II) and Pb(II) from water (Liu et al., 2010). These zwitterionic hybrid 338 polymers adsorbed 0.28 and 1.56 mmol/g of Cu(II) and Pb(II), respectively, via electrostatic 339 340 attraction when the initial metal concentrations were in the range of 0.001 to 0.1 mol/L, and the dose of adsorbent was 1 g/L (Liu et al., 2010). The development of a negative charge on the 341 342 hybrid polymer NPs was mainly due to –COOH groups in the polymer hybrid which 343 deprotonated to $-COO^{-}$ groups in aqueous system at pH > 4.0 and 5.0 during Cu(II) and Pb(II) adsorption, respectively, and was thus bound to positively charged metal ions on the NP surfaces 344

345 (Liu et al., 2010).

MO was removed in an aqueous solution using polyamine nanoadsorbents. The MO adsorption 346 capacity was increased by 32.04 and 30.28 mg/g, respectively, when the initial dye 347 348 concentrations were increased from 10 to 100 mg/L at 65 °C and 25 °C, respectively. The MO adsorption was endothermic in nature, and the maximum MO adsorption capacity was 75.9 mg/g 349 within 60 min of reaction time when pH of the medium was 6-10. Strong electrostatic attraction 350 351 was the primary mechanism that caused maximum MO adsorption (Tanzifi et al., 2017). Chitosan, a biopolymer, is widely used to synthesize NPs for environmental remediation due to 352 353 its low toxicity and high biodegradability. In a recent study, chitosan NPs were synthesized 354 through ionotropic gelation for encapsulating enzymatic activity (Alarcón-Payán et al., 2017). The chitosan-NPs were loaded with versatile peroxidases and were successful in the 355 biodegradation of phenolic compounds. The chitosan-based enzymatic NPs had a higher affinity 356 constant toward phenolic compounds, were more thermostable than free enzymes, and their 357 operational stability was further enhanced in a real-world wastewater situation when modified 358 359 with different aldehydes (Alarcón-Payán et al., 2017). Similarly, chitosan NPs prepared through ionotropic gelation between chitosan and tripolyphosphates showed a 98% Congo red (CR) 360 removal efficiency and adsorbed 5,107 mg CR/g of adsorbent in an aqueous solution (Alver et 361 362 al., 2017). CR removal was dependent on the pH, ionic strength, encapsulation time and tripolyphosphate concentration. The mechanism involved was a strong electrostatic attraction 363 364 between the protonated amino groups, with anionic CR at low pH (Alver et al., 2017). However, 365 chitosan suffers from poor solubility in water (soluble in acid) and stability, which restrict its 366 applicability in a wide range of contaminant removal applications (Saheed et al., 2020). Future 367 research should be carried out in order to remove these barriers by using novel modifications. 368

2.8 Nanomaterials supported on inert materials and polymers

370 Environmental applications of NMs supported on inert materials (bulky, stable and non-toxic to 371 organisms) such as activated carbon, BC, clay minerals, biodegradable polymers, and zeolites have recently attracted widespread attention (Mandal et al., 2018). Their availability, low-cost, 372 373 and less toxic nature made these support materials popular in the field of soil and water 374 remediation (Krasucka et al., 2021; Lazaratou et al., 2020). Pristine clay minerals, zeolites, and biochar often suffer from low contaminant adsorption and poor regeneration capacity, which can 375 376 be improved by supporting NMs (e.g., nZVI) on the former materials leading to improved 377 functionality and dispersion of the NMs (Mukhopadhyay et al., 2020; Premarathna et al., 2019; Alam et al., 2020) For example, granular activated carbon (GAC) was used to impregnate NPs 378 (e.g., nZVI), and the supported material subsequently removed nitrobenzene from water (Mines 379 et al., 2018). Reduction of nitrobenzene (with an initial concentration of 500 µM) was achieved 380 at up to 56.6% by GAC-nZVI, which further improved to 63.6% following an additional 381 382 modification step of the material with a covalent organic polymer (Mines et al., 2018). The π - π interaction between the aromatic groups of covalent organic polymer materials and nitrobenzene 383 likely facilitated the removal of the contaminant (Mines et al., 2018). 384 385 Clay minerals were used extensively to support NMs for environmental remediation applications. For instance, a cationic surfactant cetyltrimethylammonium bromide (CTMAB) was used to 386 387 improve the hydrophobic property of Fe-NPs supported on palygoskite clay, and the 388 nanocomposite removed acid orange 7 (AO-7) by 98.4% (initial concentration of 20 mg/L) within 2 h of reaction from aqueous solution. At low pH, dissolved oxygen in the solution 389 390 enabled hydrogen ions to produce H₂O₂ and 'OH radicals, which provided more oxidants to 391 degrade AO-7 (Quan et al., 2018). Palygorskite-carbon nanocomposites were prepared through

two methods: composite 1 involved a hydrothermal carbonization with starch on palygorskite, 392 while composite 2 included a thermal activation (550°C for 3 h in a CO₂ environment) of 393 394 composite 1 (Sarkar et al., 2015). Composite 2 adsorbed a large amount of anionic orange II dye (23.0 mg/g), whereas composite 1 efficiently adsorbed cationic MB (46.3 mg/g) (Sarkar et al., 395 396 2015). Similarly, a nanocomposite synthesized *in-situ* by embedding magnetite NPs into the 397 palygorskite structure through the co-precipitation method had a maximum Pb(II) adsorption capacity of 26.6 mg/g (Rusmin et al., 2017). 398 399 nZVI can aggregate in aqueous solution when its concentration is high. Therefore, to avoid rapid aggregation and to improve its reactivity, zeolite supported nZVI (Z-nZVI) was prepared via the 400 liquid phase reduction of Fe(III) salts (Suazo-Hernández et al., 2019). The maximum adsorption 401 capacity of Z-nZVI was 11.52 mg As(III)/g, 48.63 mg Cd(II)/g, and 85.37 mg Pb(II)/g at pH 6, 402 involving mechanisms such as electrostatic attraction, ion exchange, oxidation, reduction, co-403 precipitation, and complexation depending upon the ionic nature of heavy metal(loid)s (Li et al., 404 405 2018). nZVI supported on CTMAB-modified organobentonite was used as a reducing agent for organic contaminants such as 2-chlorophenol(2-CP), 2,4-dichlorophenol (2,4-DCP), 2,4,6-406 407 trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP) in an aqueous system; their removal

408 efficiencies were 95.4, 96.8, 97.8, and 100%, respectively (Li et al., 2013).

409 Similar to clay minerals, biochar is another inert material used widely for supporting NMs (Liu

410 et al., 2020). A novel GO-coated BC nanocomposite achieved a 30% enhancement in

sulfamethazine sorption through π - π interactions between the antibiotic molecules and NPs

412 (Huang et al., 2017). A ZVI-BC-chitosan nanocomposite was also shown suitable for removing

heavy metals such as Pb(II) and As(V) and MB dye (Zhou et al., 2014). The novel

414 nanocomposite removed Pb(II), As(V) and MB at 93, 95 and 68%, respectively (the initial

415 concentrations of Pb(II), As(V) and MB were 40, 21 and 20 mg/L, respectively) (Zhou et al.,
416 2014). The Cr(VI) removal in an aqueous system was also achieved by using nZVI assisted BC

417 composites where the adsorbent showed 58.82 mg/g Cr(VI) removal *via* electrostatic attraction,

418 complexation, metal reduction, and precipitation reactions (Zhu et al., 2018). The nZVI/biochar

composite can play a dual role, firstly by converting the contaminant into a less toxic form by

nZVI, and then adsorbing the contaminant *via* the active surface functional groups present on
biochar, involving electron donor-acceptor reactions, chemisorption, and electrostatic attraction
mechanisms (Fig. 3).

423 Attempts were made to stabilize CNTs on BC to remove heavy metals from wastewater (Inyang et al., 2015). Pb(II) was removed from wastewater using multi-walled CNTs dispersed on BC 424 hickory chips (pyrolysis at 600°C in N₂ environment for 1 h), and the nanocomposite adsorbed 425 31.05 mg Pb(II)/g (initial concentration of 40 mg/L) (Inyang et al., 2015). The authors (Inyang et 426 427 al., 2015) also found that bagasse BC modified with sodium dodecylbenzenesulfonate-CNTs 428 (prepared using the same conditions above) was successful in fixing sulfapyridine by 56% (the initial concentration was 20 mg/L, solid: solution = 2:1, reaction time 24 h) in wastewater. 429 Chitosan-based composite NMs were also successful in removing heavy metals. The efficiency 430 431 of alginate-coated chitosan NPs (Alg-CS-NPs) in removing Ni(II) from industrial effluents was investigated (Esmaeili & Khoshnevisan, 2016), showing that nearly 95% of Ni(II) was removed 432 433 from solution under the following conditions: pH = 3, initial Ni(II) concentration = 70 mg/L, 434 adsorbent dose = 0.3 g, and contact time = 30 min (Esmaeili & Khoshnevisan, 2016). At pH 3.0, the formation of sparingly soluble hydroxides of metals occurred, which contributed to overall 435 436 metal removal from solution. At a high initial Ni(II) concentration (70 mg/L), the competitive 437 adsorption of Ni(II) on the outer surface of the NPs led to a high adsorption capacity, whereas a

high biomass dose (0.3 g) provided an increased surface area for the Ni(II) biosorption process
(Esmaeili & Khoshnevisan, 2016).

Like chitosan, entrapment of nZVI in Ca-alginate beads (polymer) showed promising results for 440 NO₃⁻ removal from groundwater. Ca-alginate beads acted as a bridge to bind the nZVI particles. 441 Between 50-73% NO₃-N was removed by the alginate-entrapped nZVI, which was statistically 442 443 similar to bare nZVI within the 2 h reaction period (Bezbaruah et al., 2009). Like NO₃⁻, TCE degradation was also achieved, up to 81-90%, due to encapsulation of nZVI within Ca-alginate 444 beads. The encapsulation resulted in greater mobility of nZVI particles than the entrapment 445 method, and the required amount of Ca-alginate was significantly lower than for the entrapment 446 method (Bezbaruah et al., 2011). 447 Entrapped nZVI in the alginate polymer matrix showed enhanced removal capacity of 1,1,2-448 trichloroethane (TCA) during the treatment of hydraulic fracturing wastewater (Lei et al., 2018). 449 Results suggested that nZVI entrapment in alginate with or without polyvinyl alcohol removed 450 451 1,1,2-TCA from water (62.6-72.3%) with lower Fe aggregation after 90 days. The nZVI provided a chemically reducing condition, while the polymers adsorbed 1,1,2-TCA during 452 wastewater remediation. Sun et al. (2018) reported that alginate-polyvinyl entrapped nZVI, aged 453 454 for 2-months, showed a high removal capacity for Cu(II) (84.2%) and Cr(VI) (70.8%), much higher than for freshly prepared beads. The corresponding removal efficiencies were 31.2 and 455 456 39.2% in case of Zn(II) and As(V), respectively. The aging effect of the adsorbent for removing 457 heavy metals was dependent on electrostatic interaction and specific bond formation mechanisms 458 (Sun et al., 2018).

459

460 **2.9** Carbo-iron nanomaterials

Carbo-iron is a composite NM consisting of nZVI clusters on activated carbon colloids (ACC) 461 with a particle size of 0.8 µm. The material is especially designed for the *in-situ* generation of 462 463 reactive zones and contaminant source removal when applied in groundwater remediation processes (Bleyl et al., 2012; Mackenzie et al., 2012). The carbo-iron colloids (CIC) can overcome 464 the limitations of nZVI during *in-situ* groundwater remediation. The ACC gets reduced by H_2 in 465 466 order to form CIC. The ACC have sorption properties, while nZVI provides strong reactivity to degrade or immobilize the contaminants. For example, CIC produced 60% chlorine-free-C₂-467 hydrocarbons when degrading TCE (Mackenzie et al., 2012). Similarly, pentachloroethane (PCE) 468 dechlorination in groundwater was achieved at field scale in Germany with NM transport lengths 469 of several metres and fast PCE decomposition without forming toxic vinyl chloride (Mackenzie et 470 al., 2016). However, the release of Carbo-iron NM (in g/L concentration) in the environment 471 during groundwater treatment may have ecotoxicological effects on amphipod Hyalella azteca 472 leading to inhibited weight, length, and feeding rate of the animal (Weil et al., 2016). However, 473 474 the ecotoxicological data on Daphnia magna (Crustacea), Scenedesmus vacuolatus (Algae), Chironomus riparius (Insecta), and nitrifying soil microorganisms revealed no effect at 0.1 mg/L 475 NM concentration in acute or chronic toxicity tests in groundwater contaminated with 476 477 chlorohydrocarbons (Weil et al., 2019). The risks to organisms were minimized by around 50% after the first injection of Carbo-iron NM in heavily contaminated aquifer zones, which suggested 478 479 more benefits of remediation than detriments due to toxicity effects (Weil et al., 2019).

480

- 481 **2.10** Other nanomaterials
- 482 NPs such as NiFe₂O₄ and zinc aluminate were reported to degrade dyes in aqueous solution. For
 483 example, 77% degradation of MO (initial concentration of 10 mg/L) was achieved by NiFe₂O₄

NPs within 5 h of exposure to sunlight, compared to no significant degradation under dark 484 conditions (Hirthna et al., 2018). The dye removal mechanism in this study followed an electron 485 486 paramagnetic resonance type of photodegradation (Hirthna et al., 2018). Likewise, 98.28% photodegradation of MB (initial concentration 10 mg/L) was achieved in 150 min using bismuth 487 doped zinc aluminate NPs (Kirankumar & Sumathi, 2017). Bismuth doping into zinc aluminate 488 489 decreased the band gap energy significantly, which in turn increased the photocatalytic degradation of MB. A hybrid-nano Ag₃PO₄ composite was synthesized by a two-step 490 solvothermal process using reduced graphene oxide (rGO), Ag₃PO₄ NPs and molybdenum 491 492 dichalcogenides (MoS₂, 99%); the synthesized hybrid-nano Ag₃PO₄ composite was suitable for the degradation of 4-nitrophenol, with a greater photocatalytic activity and stability than pure 493 Ag₃PO₄ NPs (Zhang et al., 2018a). 494

495

3. Nanomaterials for contaminants treatment in soil

497 Several studies have reported the immobilization of toxic metal(loids) in soils using NMs (Baragaño et al., 2020; Matos et al., 2017; Tafazoli et al., 2017). However, the fates of NMs after 498 their application to soils for contaminant removal require proper understanding. Currently, 499 500 available soil contaminant remediation strategies follow two main directions: (i) lowering the concentration of pollutants to well below a critical limit, and (ii) stabilization of pollutants within 501 502 the soil to reduce their immediate risk to environmental receptors (Floris et al., 2017; Hou et al., 503 2020). There is a growing interest in NMs for soil remediation because of their large specific surface area, high chemical reactivity and selectivity, although their reactivity may vary with 504 505 geochemical conditions. Reports are available on the use of NMs for the remediation of 506 inorganic contaminants in soil (Supplementary Information: Table S5). Recently, nZVIs have

507	attracted widespread research attention in detoxifying soil due to their effectiveness in reducing
508	or inactivating various metallic species present in soils (Jiang et al., 2018). An nZVI/Cu
509	treatment reduced Cr(VI) by 99% at pH 5.0 (Zhu et al., 2016), while the Cr(VI) reduction
510	efficiency increased from 14.58 to 86.83% without maintaining pH of the soil (Singh et al.,
511	2012b). In the presence of diethylenetriaminepentaacetic acid (DTPA), Cr release decreased up
512	to 81% due to the application of 4% bentonite supported nZVI (prepared using green tea leaf
513	extract and FeSO ₄ .7H ₂ O). The reduction in Cr release by the same material was 79% in the
514	presence of CaCl ₂ in the soil. The mechanisms involved precipitation and surface complexation
515	reactions on the bentonite-nZVI (Soliemanzadeh & Fekri, 2017).
516	The bioavailability of single and multi-metal(loid)s (As, Cd, Cr, Pb, and Zn) in contaminated
517	soils in the presence of nZVI was assessed under acidic and calcareous soils. The availability of
518	heavy metals and metalloids such as As, Cr and Pb was reduced by 82% upon an application of
519	10% nZVI (w/w), whereas the corresponding values for Zn and Cd varied from 31 to 75% and
520	13 to 42% (Gil-Díaz et al., 2017b). Furthermore, the stability and effectiveness of nZVIs were
521	confirmed in contaminated soils (Cd, Cr, and Zn) grown with barley plants. A 10% dose of nZVI
522	enhanced the development of the barley plants and decreased the As uptake by decreasing the
523	bioavailable As fraction (Gil-Díaz et al., 2016a; Gil-Díaz et al., 2016b). A nZVI/Ni BNPs
524	prepared using NaBH4 were applied to remediate Cr(VI) contaminated soils, and the reduction of
525	Cr(VI) in the soil leachate reached as high as 99.84% at pH 5.0 (Zhu et al., 2017a).
526	Three commercial nZVI slurries from Toda (bare RNIP and RNIP-D; D denotes an organic
527	dispersant) and from Nano Iron (25S) were used at different doses (1, 5 and 10%) to immobilize
528	As and Hg in soils. A 5% application of nZVI showed a decreasing trend of exchangeable As (by
529	>70%) in soil, whereas a 10% application of nZVI was necessary to achieve a reduction of

exchangeable-Hg between 63 and 90% depending on the nZVI and soil types. Overall, the 5% 530 nZVI application rate was more effective in the reduction of exchangeable As, whereas RNIP 531 532 and RNIP-D were most effective at a 10% application rate for the reduction of exchangeable-Hg (Gil-Díaz et al., 2017a). A long-term soil heavy metal(loid) immobilization study (6-15 years) 533 using nZVI concluded that nZVI remained "reactive" after 6-15 years, corresponding to an 534 535 observation that available Cu and As were lower in the nZVI-treated soil than in the untreated soil and pH was considered the factor most responsible for both As and Cu immobilization 536 537 (Tiberg et al., 2016). A similar type of investigation on the impact of pH (4-8) and time (48 and 192 h) on nZVI-mediated Pb, Cd, Zn and As immobilization in soils was conducted. The Zn and 538 Cd concentrations in soils decreased by 29-34% and 38-44%, respectively, at pH 8, while the 539 corresponding values for Pb and As were 98 and 96%, respectively (Vítková et al., 2017). The 540 authors (Vítková et al., 2017) confirmed that Fe/Al oxides or hydroxides, organic matter and 541 542 aluminosilicates played a major role in governing the solubility of metals and metalloids in soils, 543 along with soil pH.

The immobilization and degradation of organic contaminants by NMs in soil is sporadically 544 studied. The removal efficiency of hexachlorobenzene by nZVI was investigated in the presence 545 546 of competing or coexisting anions present in the soil (Su et al., 2012). HCO_3^{-1} had no effect on the decomposition of hexachlorobenzene, but Cl⁻ and SO₄²⁻ promoted rapid decomposition rates, 547 548 while NO_3^- competed with the contaminant molecules (Su et al., 2012). p,p'-DDT degradation 549 using nZVI-B (prepared using the sodium borohydride method) and nZVI-T (commercially 550 purchased) in soil showed a low rate of DDT degradation (22.4 and 9.2%) due to the presence of 551 organic matter and other soil constituents (El-Temsah et al., 2016). Han et al. (2016) reported degradation half-lives of 37.5, 73.7 and 24.1 h for DDT in flooded soil at 35°C by nZVI, nZVI 552

553	coated with polyimide, and nZVI coated with sodium oleate, respectively. Similarly, the positive
554	effect of Ni/Fe BNPs in reducing the phytotoxicity of polybrominated diphenyl ethers (PBDEs)-
555	contaminated soil to Chinese cabbage was evaluated (Wu et al., 2016a). The germination rate,
556	and shoot and root lengths of the Chinese cabbage in the Ni/Fe BNPs treated soil increased by
557	nearly 15, 60, and 63%, respectively, compared to the control (Wu et al., 2016a).
558	Biochar supported nanoparticles have shown promise in heavy metal immobilization in soils, as
559	they provide additional active sites for capturing metal ions (Zhu et al., 2017b). Biochar-
560	supported nano iron phosphate particles were synthesized to remediate Cd(II) contaminated soil.
561	The Cd(II) immobilization efficiency of the adsorbent was 81.3% after 28 days, and Cd(II)
562	bioaccessibility (physiological-based extraction test) was reduced by 80.0%. Plant growth
563	experiments proved that the composite inhibited the Cd(II) uptake to the below-ground and
564	above-ground parts of cabbage mustard by 44.8% and 70.2%, respectively (Qiao et al., 2017).
565	Application of BC-supported nano hydroxyapatite reduced Pb by 56.8% after 28 days of
566	application in a Pb-contaminated soil (Yang et al., 2016b), and a column experiment showed
567	significant mobility of BC-supported nano hydroxyapatite. The immobilization rate of Pb in the
568	soil was 74.8% after nano hydroxyapatite-biochar remediation (Yang et al., 2016a).
569	Heavy metals such as Pb, Cu, and Zn were also immobilized by calcium phosphate nanoparticles
570	(CPNs) in shooting range soils. Application of these NPs to the soil decreased Pb and Cu
571	concentrations by more than 90%, and Zn by 50% (Arenas-Lago et al., 2016). Other examples
572	include nano-hydroxyapatite, which reduced Pb(II) concentrations in Ryegrass by 2.86-21.1%
573	and 13.19-20.3% in the roots and shoots, respectively, due to the secretion of tartaric acid in the
574	root rhizosphere that enhanced Pb adsorption onto the NPs (Ding et al., 2017).

575	BNPs and carbonaceous NMs have also been used for soil remediation. For example, CMC-
576	stabilized Pd/Fe ^{0} BNPs displayed a nearly 7-fold greater efficiency for γ - hexachlorocyclohexane
577	degradation in soil as compared to Fe ⁰ NPs (nFe ⁰) alone (Singh et al., 2012a). Similarly, biochar-
578	supported Ni/Fe BNPs debrominated decabromodiphenyl ether at 30.2 and 69.0% higher rates
579	than pristine Ni/Fe and biochar in soil, respectively (Wu et al., 2016b). Similarly, GO was used
580	to remediate Cd-contaminated soils; results suggested that GO could adsorb up to 103.3 mg/g
581	Cd(II) when applied at a high dose (1 g/kg), and could be used for remediating highly
582	contaminated sites (Xiong et al., 2018a).
583	
584	4. Approaches for contaminant nanoremediation
585	Nanoremediation involves various technical approaches such as adsorption, photodegradation,
586	heterogeneous catalysis, the involvement of microorganisms (nano-bioremediation), and
587	deployment of electrical fields (electro-nanoremediation) for applying NMs to remove or

immobilize contaminants in the environment. Hence, it is important to understand how the aboveapproaches work while employing NMs for remediation.

590

591 4.1 Adsorption

Adsorption of contaminants occurs on the surface of an adsorbent at the solid-liquid interface (Fig. 4). The solid surface of the adsorbent interacts with the adsorbate/solute in the solution, and they are attracted to each other by solid-liquid intermolecular forces (Sadegh et al., 2017). In the case of bulk adsorbents, various bond (e.g., ionic, covalent and metallic) requirements of the constituent atoms in the adsorbent are filled by other atoms in the material. Since the bonds of atoms at the surface of the adsorbents are not fully satisfied, they adsorb the adsorbate to achieve

598	a charge/bond balance. However, the nature of adsorption is highly dependent on the nature of
599	the adsorbate species present in the liquid solution. Adsorption processes mainly include van der
600	Waal's forces, electrostatic attraction, and chemisorption (covalent bonding) (Gupta et al., 2016;
601	Sadegh et al., 2017; Sadegh et al., 2016). In addition, adsorption also involves a mass transfer
602	process in which a solute mass is transferred to the surface of a solid and bound by
603	chemisorption or physical adsorption. High specific surface area of an adsorbent can
604	considerably control the degree of adsorbate deposition onto the adsorbent (Sadegh et al., 2017).
605	

4.2 **Photodegradation** 606

Photocatalysis has been one of the most successful processes to remove contaminants from the 607 environment due to its low cost and environmental compatibility (Al-Mamun et al., 2019; 608 Raizada et al., 2019). Photocatalysis is a photoreaction that can be enhanced in the presence of a 609 610 catalyst (Fig. 5). During photocatalytic activity, electron-hole pairs are generated depending 611 upon the type of catalyst. These electron-hole pairs also generate the superoxide radicals that degrade contaminants. TiO₂ NPs were used as catalysts for practical applications. A novel nano-612 TiO₂ photocatalyst doped with neodymium (Nd³⁺) was employed to remove Cr(VI) by catalytic 613 reduction, obtaining a >99% efficiency in Cr(VI) reduction. Here, Nd^{3+} ions deposited on the 614 TiO₂ surfaces facilitated the creation of sites for electron accumulation, and hence achieved a 615 616 high Cr(VI) reduction rate (Rengaraj et al., 2007). However, TiO₂ promotes photodegradation 617 primarily under UV-light, while other catalysts such as CeO₂ show rapid photodegradation rates under visible light (Qi et al., 2014). An Ag₂CO₃/CeO₂/AgBr nano-photocatalyst was designed by 618 619 the *in-situ* loading of Ag₂CO₃ onto CeO₂ spindles via the corrosion process, and the material 620 showed visible light degradation of levofloxacin (Wen et al., 2018). Various carbon-based

nanomaterials such as graphene composites containing NPs (e.g., TiO₂ NPs) showed enhanced
photocatalytic activity. Under UV irradiation, the energy of photons was greater than the band
gap of carbon materials, which generated valence band holes (h⁺) and band electrons (e⁻). The
holes produced superoxide radicals that degraded the organic contaminants, while electrons from
superoxide radicals reduced heavy metal contaminants (Raizada et al., 2019).

626 Likewise, the rGO/MS₂ ($M = M_0$, W) hybrid-nano Ag₃PO₄ composite was more suitable for a photocatalytic degradation of 4-nitrophenol than was pure Ag₃PO₄ (Zhang et al., 2018a). The 627 628 Ag₃PO₄@MS₂/rGO composite photo-catalyst displayed a >98% degradation efficiency for 4nitrophenol after four cycles of use. The MS₂/rGO hybrid strongly enhanced the photocatalytic 629 stability of Ag₃PO₄ due to the reduction of Ag₃PO₄ to Ag⁰ by photo-generated electrons (Zhang 630 et al., 2018a). Khairy and Zakaria (2014) reported photocatalytic degradation of MO by Cu-631 doped TiO₂ NPs under both UV and visible light. Doping of metals (e.g., Cu) did not change the 632 structure of the crystal, but a significant change was observed in the particle size and 633 634 photodegradation rate. Cu-doped TiO₂ NPs had a higher MO degradation efficiency under UV irradiation (73%) than visible light irradiation (50%). The doping of metals in the pure oxide 635 matrix served as electron-holes separation centers, which enhanced the degradation of MO 636 637 (Khairy & Zakaria, 2014). Therefore, the introduction of doping metal ions can improve the catalytic activity of TiO₂ NPs under visible light illumination. 638

639

640 **4.3** Heterogeneous catalysis

In heterogeneous catalysis, the phase of the catalyst must be different from the phase of the
reactant. In general, heterogeneous catalysis involves a solid phase catalyst and a liquid phase
reactant. The catalysts are employed to enhance the reaction or adsorption rates. However, mass,

644	heat transfer and thermodynamic parameters also affect the reaction rate (Sievers et al., 2016).
645	The most important parameter affecting the reaction rate of the catalyst is its surface area.
646	Heterogeneous catalysts can be used with NPs to improve the degradation of organic
647	contaminants due to the advanced oxidation capacity of the catalysts. Several oxidants such as
648	persulfate (PS), peroxymonosulfate (PMS) and hydrogen peroxide (HP) have been successfully
649	used for removing contaminants. nZVI coupled with common oxidants such as NaClO, KMnO4
650	and H ₂ O ₂ resulted in high removal efficiencies of As(V), Cd(II), and Hg(II) within only 10-30
651	min (Guo et al., 2016). nZVI with PS showed a high removal capacity of 1,4-dioxane and As(III)
652	from contaminated water, where the As(III) removal capacity of PS/nZVI was 115.27 mg/g, and
653	the 1,4-dioxane degradation rate was 0.0347 h/mg/min (Kang et al., 2018). Similarly, PS/nZVI
654	removed nearly 97% of trichloroethene (TCE) in the presence of ethylenediaminetetraacetic acid
655	(Dong et al., 2017).
656	Bimetallic nZVI NPs were used for dual Fenton oxidation and reductive dechlorination of 2,4-
657	dichlorophenol. A nZVI-Fe/Pd heterogeneous catalyst composite showed an approximate 16%
658	reductive dechlorination efficiency, and a 28% Fenton oxidation efficiency for 2,4-
659	dichlorophenol (Li et al., 2015). A combined application of nZVI and bisulfite (S(IV)) revealed
660	that an increased Fe^0 concentration in the $Fe^0/S(IV)/O_2$ system improved sulfamethoxazole
661	removal from aqueous media due to an accelerated activation of $S(IV)$ and Fe^0 corrosion (Du et
662	al., 2018).
663	

- 663
- 664 4.4 Electro-nanoremediation

Fre-magnetization by the application of a weak magnetic field was suitable for promoting the corrosion of Fe^0 , which might enhance the removal rates of contaminants by nZVI in soil and water

systems (Pan et al., 2017). In view of this principle, electrolysis was applied to micro-sized Fe^{0} 667 (mFe⁰) for *p*-nitrophenol (PNP) removal (Xiong et al., 2018b). The results suggested that the rate 668 constants of PNP removal by electrodialysed-mFe⁰ (Ele-mFe⁰) were 1.72-144.50 fold higher than 669 those of pristine mFe⁰ under various conditions because the electrolysis aggravated the corrosion 670 of mFe⁰ by releasing Fe(II) ions (Xiong et al., 2018b). Similarly, a combined system of nZVI and 671 672 electro-kinetic remediation was used to study the transport and degradation of molinate in soils. Molinate was degraded by nZVI in soils at slower rates than in an aqueous system due to the 673 674 heterogeneous nature of the soil (Gomes et al., 2014). The molinate degradation occurred via the 675 oxidative pathway, which involved oxygen and the formation of hydrogen peroxide and hydroxyl radicals (Gomes et al., 2014). nZVI was employed along with electrokinetic treatment for the 676 degradation of chlorinated ethenes (CEs) in the presence of Dehalococcoides spp. and 677 Desulfitobacterium spp. (Czinnerová et al., 2020). The combined treatment resulted in a rapid 75% 678 679 decrease of cis-1,2-dichloroethene (cDCE) concentration in the contaminated area, and produced 680 methane, ethane, and ethene as the end products. The treated aquifer showed increased activity of organohalide-respiring bacteria, and cDCE-oxidizing methanotrophs and ethenotrophs 681 proliferated near the anode under low oxygen conditions. The nZVI treatment resulted in mild 682 683 negative effect on indigenous bacteria, but the microbiome was restored within 15 days (Czinnerová et al., 2020). Application of nZVI with a direct current (DC) electric field led to a 684 685 greater increase of CE remediation efficiency than nZVI alone in a study in the Czech Republic 686 (Černíková et al., 2020). This method was environmentally sound for improving CE reduction efficiency by improving the longevity, migration and reactivity of the nZVI, and reduced the cost 687 of treatment by five times compared to bare nZVI (Černík et al., 2019; Černíková et al., 2020). 688 689 Only a limited number of studies have been conducted on the electro-nanoremediation of 690 contaminants assisted by NMs, but the potential of this method must be explored in the future for691 practical applications.

692

693 4.5 Nano-bioremediation

Biological technology offers cost-effectiveness and a low generation rate of toxic substances, but 694 695 a relatively slower rate of remediation (Hou et al., 2020). Nano-bioremediation may be defined as the remediation of a contaminant using NPs and biological technology together for 696 697 accelerating the removal/degradation rate of contaminants (Cecchin et al., 2017). The focus of the nano-bioremediation technique is to reduce the concentration of contaminants to a level 698 where it becomes prone to biodegradation, and further reduce the contaminants to a safe limit 699 through biodegradation. TCE was dechlorinated using a long-lasting emulsified colloidal 700 substrate (LECS) that contained nZVI and microorganisms such as *Dehalococcoides* spp. and 701 702 Desulfitobacterium spp. (Sheu et al., 2016). The supplement of LECS in TCE-polluted 703 groundwater effectively stimulated the TCE dechlorination rate under anaerobic conditions (Sheu et al., 2016). Moreover, the population of *Dehalococcoides* sp. increased from 2×10^3 to 704 1.2×10^7 cells/L, and *Desulfitobacterium* sp. increased from 1×10^3 to 7.4×10^6 cells/L after 60 705 706 days. Similarly, TCE removal efficiency was promoted when nZVI was integrated with Dehalococcoides sp. BAV1 compared to systems with nZVI and Dehalococcoides sp. alone, and 707 708 the optimum dose of nZVI for maintaining microbial activity was found to be 0.05 g/L 709 (Shanbhogue et al., 2017). Integration of anaerobic bacteria such as organohalide respiring bacteria, sulfate reducing 710 711

bacteria (SRB) and iron reducing bacteria (IRB) with nZVI also showed promising results in

removing inorganic and organic pollutants (Dong et al., 2019). Here, nZVI provided reducing

conditions, where the generated hydrogen acted as an electron donor for hydrogenotrophic 713 714 bacteria, resulting in the degradation of halogenated compounds. Xu et al. (2014) reported that 715 ZVI was able to reduce higher congeners of PBDEs to lower congeners, and subsequently degradation was promoted by *Dehalococcoides* sp. CBDB1. Thus, complete degradation of 716 PBDEs was achieved by the integration of nZVI with *Dehalococcoides* sp. CBDB1. 717 718 The combination of nZVI and SRB has also improved heavy metal removal from contaminated systems. Yi et al. (2009) reported that 98.1% of U(VI) was removed by a nZVI+SRB integrated 719 720 system within 4 h of reaction, while the removal rate of the individual system of ZVI and SRB 721 was 17.4 and 67.3%, respectively. Under anaerobic conditions, SRB transformed sulfate into sulfides (e.g., H₂S, S²⁻ and HS⁻) via the metabolism of organic matter. Then sulfide could bind 722 with heavy metals to form stable complexes with SRB metabolites (Kumar et al., 2015). 723 Similarly, Vogel et al. (2018) investigated the microbial degradation of PCE in the presence of 724 725 Sulfospirillum multivorans, Desulfitobacterium spp. and Dehalococcoides mccartyi together with 726 Carbo-iron NM. The study suggested that embedded nZVI decreased the redox potential of the groundwater due to their reaction with oxygen, leading to nZVI-corrosion-induced formation of 727 H₂ within 190 days after the injection, the latter promoting sulphate-reducing conditions. 728 729 A similar approach to test the effectiveness of a hybrid system using nano scale zinc oxide (n-ZnO) and lindane-degrading yeast *Candida* VITJzN04 for lindane degradation was evaluated 730 731 (Salam & Das, 2015). The half-life of the lindane was lower (9 h) with an embedded bio-nano 732 hybrid as compared to yeast Candida VITJzN04 (28 h); the enhanced lindane degradation by the 733 bio-nano hybrid was attributed to the increased porosity and permeability of the yeast cell 734 membranes (Salam & Das, 2015). SiO₂ NPs coated with a zwitterionic lipid derivative were used 735 in the bioremediation of benzo[a]pyrene (Wang et al., 2015a). The authors used Pseudomonas

736	aeruginosa, a gram-negative bacterium, and 1,2-dimyristoyl-sn-glycero-3-phosphocholine as a
737	source of lipids, which adsorbed and sequestered benzo[a]pyrene and maintained the colloidal
738	stability of NPs for their transport to the contaminant source (Wang et al., 2015a).
739	Another study using CMC-stabilized Pd/Fe ⁰ (CMC-Pd/nFe ⁰) BNPs, and the microorganism
740	Sphingomonas sp. Strain NM05 targeted the degradation of hexachlorocyclohexane (γ -HCH) in
741	soil and found that the γ -HCH degradation efficiency was ~1.7–2.1 times greater in the
742	integrated system than the control system (Singh et al., 2013). Dechlorination of the PCB
743	Aroclor 1248 was performed using Pd/nFe BNPs and Burkholderia xenovorans LB400 under
744	anoxic conditions. Toxic equivalent values of polychlorinated biphenyls (PCBs) decreased from
745	$33.8 \times 10^{-5} \ \mu g/g$ to $9.5 \times 10^{-5} \ \mu g/g$ after the nano-bioremediation treatment (Le et al., 2015).
746	Apart from organic contaminants, attempts have been made to immobilize heavy metals in soil
747	through nano-bioremediation. Citrobacter freundii Y9, a Se reducing organism, secreted
748	biogenic nano-Se ⁰ , which converted 46-57 and 39-49% of elemental mercury (Hg ⁰) in soils to its
749	insoluble mercuric selenide (Hg-Se) form under oxygen-rich and oxygen-free conditions,
750	respectively. Furthermore, an addition of sodium dodecyl sulfonate enhanced soil Hg^0
751	remediation due to the increased release of intracellular nano-Se ⁰ from the bacterial cells (Wang
752	et al., 2017).

5. Practical applications

Studies on *in-situ* remediation using NMs are important, but available literature is limited. Most
field studies are confined to nZVI applications for contaminants removal from groundwater.
Therefore, we discuss *in-situ* remediation applications focusing on various practical modes of

nanoremediation along with a few examples of real field scale studies as well as issues that needto be resolved for the large-scale field application of NMs for environmental remediation.

760

761 **5.1** Field-scale application of nZVI for groundwater remediation

Nanoremediation using nZVI requires specific conditions to be met for achieving the most 762 763 effective outcome. Appropriate site characteristics in terms of location, geological conditions, soil hydrogeological conditions (e.g., porosity, hydraulic gradient, groundwater velocity), and soil 764 physico-chemical composition (e.g., pH, type and concentration of contaminants, dissolved 765 766 oxygen level, concentration of other ions, redox potential) need to be determined before the injection of nZVI for contaminant remediation. The above would ascertain effective infiltration of 767 nZVI in the contaminated zone, and help to ensure the efficient degradation or adsorption of 768 specific contaminants at *in-situ* conditions (Karn et al., 2009). At the field-level, most of the 769 applications of nZVI are concentrated on the degradation of chlorinated solvents. However, field 770 771 studies were also found successful for treatment of halogenated organic compounds, PAHs, heavy metals (Ni, Cr(VI)), diesel fuel, PCBs, and pesticides (Bardos et al., 2018). In a case study, three 772 types of non-pumping reactive wells (slanting, horizontal and vertical) were mixed with zero 773 valent micro- (dose 0-4 g/L) and nano-sized iron (Fe⁰) (dose 0-2 g/L) for nitrate removal in 774 775 groundwater (Hosseini et al., 2018). Removal was primarily dependent on the contact time of the 776 reactant with nitrate and the zone captured by the tube wells. Slanted non-pumping reactive wells 777 showed higher NO₃⁻ reduction rate (57%) compared to the vertical (38%) and horizontal (41%) configurations (Hosseini et al., 2018). Earlier, nZVI was used to remove TCE from a groundwater 778 aquifer (80 m³) with 1300 L total water capacity (Elliott & Zhang, 2001). Here, approximately 1.7 779 780 kg of nZVI equivalent, yielding a 0.75-1.5 g/L loading, was used to completely dechlorinate TCE

over a period of 2 days. Similarly, Gavaskar et al. (2005) reported the field application of nZVI (at
2 g/L loading) for TCE removal in 68000 L water in 7300 m³ of aquifer volume. Furthermore,
complete reduction of TCE in groundwater was observed using emulsified nZVI (at 140 g/L
loading) in an aquifer of 40 m³ with a 8500 L water capacity (Quinn et al., 2005). Chlorinated
hydrocarbons including TCE in the groundwater were also successfully removed using nZVI (at
30 g/L loading) in 75000 L of water in a 15000 m³ aquifer (Varadhi et al., 2005).

787

788 5.2 Permeable reactive barriers and direct injection

789 Permeable reactive barriers (PRB) consist of a permeable matrix that supports and anchors a reactive material to retain contaminants when a plume passes through the matrix. The main 790 challenge of PRB systems is the costliness of the reactive barrier materials in removing target 791 contaminants at desired levels (Tasharrofi et al., 2020). A nZVI-zeolite composite was evaluated 792 793 to overcome the cost limitation of reactive materials in a PRB system to remediate aqueous 794 Cd(II) (Tasharrofi et al., 2020). The zeolite was able to disperse nZVI well, and prevented its agglomeration. The nZVI-zeolite composite adsorbed 20.6 g/kg Cd(II) within 90 min (initial 795 Cd(II) concentration 50 mg/L), and discharged very low levels of Cd(II) back into the 796 797 environment, making the material suitable for application in PRBs (Tasharrofi et al., 2020). Under a pilot scale application in the Czech Republic, nZVI was injected to successfully remove 798 799 chlorinated hydrocarbons on a short-term basis before the installation of a complete PRB 800 remediation system. The nZVI injection prevented the migration of contaminants to adjacent 801 areas outside the PRB (Bone et al., 2020). Direct injection can be used for both contaminant 802 source and pathway treatments. A known quantity of nZVI is applied to a known depth of an 803 aquifer either by gravity or by introducing pressure. The injection processes may include: (a)
direct push or a stationary injection point to emplace a nZVI slurry in the treatment zone, (b) hydraulic fracturing using air or water to create preferential flow, (c) liquid atomization (i.e., pulses of pressure during injection), and (d) injection through a carrier (e.g., surfactant) for delivery of nZVI in the vadose zone (Ding et al., 2013). Apart from trialling PRB and direct injection technologies under field conditions, future research should concentrate on the development of inexpensive and efficient modes of *in-situ* nanoremediation.

810

5.3 Issues with field application of nanomaterials for remediation

Field scale applications of various NMs in addition to nZVI are urgently needed for

813 environmental remediation including soil contaminants treatment. However, the following issues814 should be considered to enhance the practical utility of nanoremediation.

(1) One of the key concerns of NMs application is the lack of dose optimization. High
application rates of NMs in water may be useful for removing a target contaminant, but it can be
a serious concern when applied to soil. The large quantity of NMs required for remediating
contaminated soils at the field scale is unmanageable using conventional production facilities. In
addition, high concentrations of NPs (e.g., nZVI) may cause toxicity to microorganisms (Dong et
al., 2019).

821 (2) Standard protocols to apply NMs for environmental remediation are still lacking.
822 Therefore, appropriate application procedures for different NMs need to be documented and
823 updated for field scale applications.

Regeneration of applied NMs in soil needs further investigation. It is difficult to separate
NMs from soil once they are added or injected because soil itself is a highly heterogeneous
medium. Adsorbed contaminants may desorb from the nanoadsorbents after some period.

(4) Various NMs such as CNTs and GO, and NPs such as BNPs, polymer NPs, and Cu- and
Fe-based NPs are quite expensive but have enormous potential for both organic and inorganic
contaminant remediation at the field scale. Green synthesis techniques (as applied for nZVI)
should also be considered for these NMs to minimize environmental toxicity.
(5) The impact and fate of applied NMs on aquatic and soil organisms should be studied

thoroughly before application to test their ecological and environmental safety (Besha et al.,2020).

6) Optimum operational factors (e.g., competing ions, pH, time, organic matter,

temperature) of various NMs for remediating various contaminants requires standardization atthe field level due to the heterogeneous nature of field sites.

837

838

6. Environmental risk of nanomaterials

The potentially vast applications of NMs for remediating contaminated soil and water have 839 840 earned widespread research attention; studies have specifically vied to understand the mechanisms of NM interactions with environmental components, microbial communities and 841 target contaminants (Biswas & Sarkar, 2019; Rai & Biswas, 2018). The deposition of NMs in the 842 843 environment through soil and wastewater treatment processes has been reported to cause toxicity to microorganisms such as bacteria including plant growth promoting rhizobacteria (Lewis et al., 844 845 2019). nZVI is the most widely used NPs for the remediation of various contaminants in the 846 environment. The fate of NPs, particularly in soils, depends on several key parameters, such as 847 soil texture, pH and organic matter contents. nZVI might have toxic effects on microbial 848 communities (Lefevre et al., 2016). For example, nZVI disrupted microbial cells by producing 849 reactive oxygen species that caused cytotoxicity and changed the population and functional

composition of the microbial community (Lefevre et al., 2016). Similarly, nZVI particles at high 850 concentrations showed a strain dependent antibacterial effect on *Escherichia coli* leading to cell 851 852 inactivation via oxidative stress (Chaithawiwat et al., 2016a). Gram negative bacteria were more susceptible to nZVI toxicity than Gram positive bacteria (Chaithawiwat et al., 2016a). 853 Chaithawiwat et al. (2016b) reported that the *rpoS* gene was mainly responsible for resisting 854 855 nZVI toxicity at cellular level. Unlike E. coli, Pseudomonas putida F1 exhibited high tolerance to nZVI at a 0.1 g/L dose by virtue of the rigid cell membrane of the bacterium (Kotchaplai et al., 856 857 2017).

858 Since nZVI is an efficient As(V) removal agent in aqueous systems, the effects of its excessive application on plants was studied using Arabidopsis thaliana grown hydroponically (Zhang et 859 al., 2018b). Biosensors for inorganic phosphate (Pi) and Mg-ATP²⁻ were used to monitor *in vivo* 860 Pi and Mg-ATP²⁻ levels in the cells. An excess nZVI exposure resulted in Pi starvation in plants, 861 leading to adverse effects on plant growth (Zhang et al., 2018b). Additionally, earthworm species 862 863 such as *Eisenia fetida* and *Lumbricus rubellus* were also affected by the application of nZVI in soil at a high dose (500 mg/kg). However, aging or oxidation of nZVI may reduce its toxicity 864 level (El-Temsah & Joner, 2012). For example, Fajardo et al. (2015) reported that aged nZVI had 865 866 no adverse effects on soil physico-chemical properties and *Caenorhabditis elegans* in a Zncontaminated soil, although the Fe content in the soil was increased. However, in contrast to the 867 868 Zn-contaminated soil, the growth of *C. elegans* was decreased in a nZVI-treated Pb-polluted soil 869 (Fajardo et al., 2015).

Based on ecotoxicity tests performed by Hjorth et al. (2017), most nZVI products would receive
no environmental hazard classification according to European regulations, except for the ball-

milled nZVI particles; none of the other nZVI particles showed toxicity below a 100 mg/L

concentration. An injection of nZVI to Cr(VI)-contaminated water rapidly decreased total Cr(VI) 873 874 in the groundwater, whereas an ecotoxicological test on Vibrio fischeri with nZVI did not indicate any negative changes on the toxicity of the groundwater (based on the cultivable 875 psychrophilic bacteria population and phospholipid fatty acid analysis) (Němeček et al., 2014). 876 It is not clear whether NPs of metal oxides or metal salts are toxic to aquatic organisms. 877 878 Microarray results suggested that exposure of *Daphnia magna* to CuO and ZnO NPs and their metallic salts had no significant differences between the species' transcribed gene fragments 879 880 (Adam et al., 2015). It was elucidated that the toxicity of ZnO and CuO NPs to D. magna was solely caused by toxic metal ions (Adam et al., 2015). Ti-based NPs also showed deleterious 881 effects on microorganisms in soil (Li et al., 2016); hence, they should be replaced with less toxic 882 metal oxide NPs such as Zn, Fe and Cu, where possible. 883

Toxicity of the NPs in water, particularly Fe NPs (e.g., nZVI), also depends on the mixing and 884 dispersing agents present. There may be residual NPs in water even after pollutant removal is 885 886 complete (Peeters et al., 2016). The dispersion of Fe NPs with tetramethylammonium hydroxide (TMAH) resulted in a slower settling of the iron aggregates. In Milli-Q and forest spring waters 887 treated with Fe NPs and dispersed by TMAH, the nano iron remained in solution for a day after 888 889 the treatment, which represented a residual effect and may pose a threat to aquatic ecosystems (Peeters et al., 2016). Likewise, during the use of nano-TiO₂ in aqueous systems, a combination 890 891 of humic acid and HCO₃⁻ increased the release of Ti in water. Olabarrieta et al. (2018) reported 892 that the nano-TiO₂ rejection rate was generally above 95% in a low-pressure membrane filtration pilot plant, and 2.3 g of the NPs could be released when treating 31 m^3 of tap water with 2 mg/L 893 nano-TiO₂. 894

895 CNTs can be toxic toward bacteria at the cellular level. SWCNTs with varying functional groups 896 altered the gene and protein expressions of *E. coli* at even a low SWCNT concentration (10 897 μ g/mL) causing cell perturbation (Anh Le et al., 2019). In contrast, CNT toxicity to bacteria 898 could be eliminated by entrapping CNTs using polymeric gels such as alginate and poly vinyl 899 alcohol (Le et al., 2016).

900 One of the key concerns in the treatment and remediation of chemical contaminants with NMs is the introduction of little-known man-made materials to the environment/nature. This stigma 901 902 needs to be overcome to gain public acceptance of nanoremediation technologies. Risk 903 assessments of engineered NMs have been conducted for at least two decades, and the perception of risk has begun to change to some extent. For example, Ag-based NPs, which are mainly used 904 for antimicrobial activity and were thought to be very harmful to the environment, were found to 905 pose a small overall risk to terrestrial environments because (1) only a small fraction of Ag NPs 906 907 ultimately enter into the soil, (2) the nano-properties and activities of Ag NPs are diminishable 908 quickly when present in the soil, and (3) only minor bioaccumulation of Ag occurs in edible plant parts (Wang et al., 2018). Moreover, researchers have advocated the application of NM-909 based fertilizers and pesticides (e.g., Fe-, Cu-, Mg-, Mn-, Si-based NMs) directly to soil and/or 910 911 on the plant bodies because these NMs pose negligible environmental risks but support crop production (Adisa et al., 2019; Kopittke et al., 2019). Nevertheless, NMs of various types may be 912 913 associated with different risks, which should be researched thoroughly before their application 914 for environmental remediation.

915

916 7. Risk management applications of nanoremediation

Risk management includes three strategies: (i) contaminant removal at the source, (ii) plume 917 control or pathway treatment, and (iii) limiting the use of resources. Risk management can be 918 919 achieved by eliminating contaminants at their source point and destroying the linkage between contaminant sources, pathways (migration of contaminants), and receptors (Nathanail & Bardos, 920 2004). However, complete mass removal of contaminants at the source is quite difficult due to 921 922 residues and the presence of non-aqueous phase liquids (NAPL) (e.g., chlorinated solvents), contributing to low concentrations of contaminants that are still in excess of regulatory 923 groundwater threshold values (Gavaskar et al., 2005). nZVI is capable of managing source and 924 925 pathway treatments under *in-situ* conditions in the host geologic material as well as in groundwater. The application of nZVI in geologic media through direct injection can cause the in-926 situ degradation of organic contaminants, and adsorption and transformation of inorganic 927 contaminants due to pH and redox potential changes (Pasinszki & Krebsz, 2020; Stefaniuk et al., 928 929 2016). In groundwater, nZVI application by direct injection into the *in-situ* source zone, or via 930 groundwater funneling to an *in-situ* treatment zone (e.g., PRB), and using integrated approaches (e.g., nano-bioremediation, electro-nanoremediation) are effective risk management applications 931 of nanoremediation (Bardos et al., 2015). Bioengineering approaches such as using biomarkers (a 932 933 tool of biological monitoring) to track nZVI during contaminant treatment may effectively minimize the risk of release of contaminant-loaded NMs into the environment (Patil et al., 2016). 934 935 Permeable iron barriers in shallow aquifers capable of collecting nZVI after use could also be 936 useful for minimizing the further release of NMs into the system (Patil et al., 2016). However, risk management studies involving other NMs under field conditions are currently scarce, and 937 938 warrant future research.

939

940 8. Societal and economic implications

Sustainable remediation involves the elimination or control of a contamination risk in a safe and 941 942 timely manner, while optimizing the environmental, social, and economic values of the work (Nathanail et al., 2017). Sustainable remediation may comprise of one or multiple remediation 943 technologies including *in-situ* and *ex-situ* treatments, and a combination of physical, chemical, 944 945 thermal and biological processes (Nathanail et al., 2017). The International Standard for Organization (ISO) has taken the policy, legislations, and practices for risk management around 946 the world through committee draft ISO/CD 18504, and published international standard ISO/DIS 947 18504. To make the concept widely popular and comprehensive to end users (practitioners, 948 regulators, and stakeholders in land quality), clear definitions of the approaches, standard 949 methodologies, and demonstrations of specific remediation strategies are the need of the hour. The 950 approaches should meet the three pillars of sustainable remediation: (a) inexpensive, (b) eco-951 friendly, and (c) acceptable to society. 952

953

954 8.1 Societal implications

While *in-situ* nanoremediation has become environmentally and socially sustainable (Corsi et al.,
2018), exposures of human beings to NMs through drinking of water, inhalation of polluted air,
and contact with skin, potentially leading to health problems involving the lungs, liver,
respiratory system, and brain. To overcome these barriers, monitoring and interventions must be
performed. To promote this technology without causing harm to humans, the following steps
must be considered (Corsi et al., 2018):
(1) Nanoremediation techniques (success stories) requires documentation in a simple and

961 (1) Nanoremediation techniques (success stories) requires documentation in a simple and962 comprehensive manner.

963 (2) Development of standard protocols is needed to evaluate the ecosafety and economic964 sustainability of NMs.

965 (3) Manufacturers need to inform the consumers via proper labeling of products of the level of

966 risks, potential ecotoxicity, health impact and risk management of nanoproducts.

967 (4) Science-Policy-Interfacing in needed through conversations among scientists,

Government/non-Governmental officials and extension workers about the benefits and potentialhazards of NMs, and the hazard mitigation strategies.

970 (5) High quality and thoroughly validated information (including levels of risks) are needed for a

971 policy framework to encourage *in-situ* uses of NMs for treating contaminated soil and water.

972

973 8.2 Economic implications

974 The costs of remediation technologies encompass capital costs, reagent costs, maintenance, 975 overhead costs and operational costs. The use of nZVIs for remediating organic pollutants such 976 as TCE, chloramphenicol, lindane, and heavy metals such as Pb, Zn, As, Cr, Cd, and Pb, is less expensive than existing advanced technologies such as membrane and ozonation (Adeleye et al., 977 2016). Current technologies such as adsorption and precipitation for heavy metal remediation 978 979 generate substantial solid waste production that can be mitigated by the effective application of nanoremediation technologies (metal oxides and nZVI). For As and NO₃⁻ remediation, using 980 981 nZVI appears to be less expensive than carbon-based nanotechnologies (Adeleye et al., 2016). 982 Although a laboratory scale experiment requires substantially lower amounts of nZVIs, costs for 983 a field scale application are still high. nZVI production costs are approximately \$0.05-0.10/g, whereas micro and bulk Fe^0 cost less than \$0.001/g to produce (Adeleye et al., 2016). TiO₂ NPs 984 985 are currently available at prices ranging from roughly \$0.03/g to \$1.21/g (Lu et al., 2011).

Photocatalysts can potentially be regenerated, as they are hardly degraded during oxidized 986 radical production (Kim et al., 2012), and have potential to further decrease the overall costs 987 988 associated with using photocatalytic metal oxide NPs for water treatment. Similarly, for carbonbased NMs, the cost of nanotechnology varies widely depending upon the material type, 989 functionalization, purity level (wt. %), and grade. Currently, prices range between \$2.50 - 1000/g 990 991 for graphene and derivatives, \$0.10 - 25/g for MWCNTs and \$25 - 300/g for SWCNTs. Aqueous Pb(II) removal using SWCNTs via adsorption may cost an average of \$2.2/g-Pb (Adeleye et al., 992 993 2016). However, carbon-based NMs are extremely expensive from a remediation point of view. 994 The best way to reduce the cost is to further develop regeneration and recycling strategies for 995 nanomaterials. Improved marketability of nanoremediation technology can potentially be achieved via: (1) encouraging NM synthesis from inexpensive renewable sources such as leaf 996 extracts, agro-wastes, microorganisms, and natural clay minerals, and (2) identifying factors that 997 govern the acceptability of the technology among various stakeholders, and taking regional and 998 999 need-based adoption strategies.

1000

1001 9. Conclusions and future outlooks

The NMs discussed in this article exhibit high potential for the remediation of contaminated soil and water. Inorganic and organic modification of NPs along with supporting agents such as clay minerals, biochar, biodegradable polymers, and minimal amounts of zeolite improves the contaminant removal capacity of the NMs. The high degradation capacities and photodegradation efficiencies of NMs, and their possible uses as mediums to target multiple contaminants hold great promise. The practical field application of NMs is, however, still limited to nZVI for soil and groundwater remediation. NMs may pose positive or negative impacts on

1009 living organisms, the environment, society and economy, which should be evaluated in a case-

1010 specific context. Appropriate documentation of NM risks, field scale validation of remediation

1011 results, science-policy interface consultations, and suitable market development initiatives are

1012 ways to increase the popularity and acceptability of nanoremediation technologies.

1013 We put forward the following research challenges for a wider acceptability of nanoremediation1014 technologies:

1015 (1) Future research on both the fundamental and practical aspects of nano-bioremediation is
1016 recommended. The operational conditions of nano-bioremediation such as pH, dosage,

1017 temperature, and solution composition should be optimized to work in real, field contaminated1018 systems.

1019 (2) Molecular mechanisms of biological degradation and removal in nano-bioremediation
 1020 techniques need further investigation.

1021 (3) Since soil is a complex and heterogeneous system, efficient soil remediation techniques
1022 must be developed. The influence of the application of NMs on soil geochemistry, microbiology,
1023 and ultimately toxicity in soil systems should be further studied.

1024 (4) Most extant research on nanoremediation is confined to laboratory studies and modeling.
1025 Transferring these studies to *in situ* conditions is a challenge. Systematic experimentation of the
1026 impact of NMs on soil environments is needed in order to develop standard protocols and doses
1027 for the application of NMs at the field level.

1028 (5) Supporting NMs on inert materials such as activated carbon (e.g., Carbo-iron), clay

1029 minerals, polymers, zeolite, and biochar is believed to improve contaminant remediation

1030 performance while simultaneously reducing unwanted risks of NMs to terrestrial and aquatic

1031 organisms. This requires future research attention for field validation and uptake by industry.

1033	and their strains. Studies on the effect of NMs on diverse living organisms, including humans,
1034	and evaluation of toxicity transmission along the food chain are the need of the hour.
1035	
1036	Acknowledgements
1037	This work was carried out with support from Lancaster Environment Centre Project, and
1038	Cooperative Research Program for Agriculture Science and Technology Development
1039	(Project No. PJ01475801), Rural Development Administration, Republic of Korea, National
1040	Research Foundation of Korea (NRF) (NRF-2015R1A2A2A11001432), and NRF Germany-
1041	Korea Partnership Program (GEnKO Program) (2018–2020). This work was also supported in
1042	part by the Queensland node of the Australian National Fabrication Facility (ANFF), a company
1043	established under the National Collaborative Research Infrastructure Strategy to provide nano
1044	and microfabrication facilities for Australia's researchers.
1045	
1046	Conflicts of interest
1047	There is no conflict of interest to declare.
1048	
1049	Contributions
1050	RM, BS and YSO conceptualized the work. RM and BS prepared the first draft, and revised the

Ecotoxicological and risk assessment studies of NMs are still limited to specific bacteria

1032

(6)

1051 manuscript. All authors provided input on sections in later drafts and edited the manuscript.

1052 **References**

- Adam, N., Vergauwen, L., Blust, R., Knapen, D. 2015. Gene transcription patterns and energy reserves
 in Daphnia magna show no nanoparticle specific toxicity when exposed to ZnO and CuO
 nanoparticles. *Environmental Research*, 138, 82-92.
- Adeleye, A.S., Conway, J.R., Garner, K., Huang, Y., Su, Y., Keller, A.A. 2016. Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. *Chemical Engineering Journal*, 286, 640-662.
- Adisa, I.O., Pullagurala, V.L.R., Peralta-Videa, J.R., Dimkpa, C.O., Elmer, W.H., Gardea-Torresdey,
 J.L., White, J.C. 2019. Recent advances in nano-enabled fertilizers and pesticides: a critical
 review of mechanisms of action. *Environmental Science: Nano*, 6(7), 2002-2030.
- Ahmad, S.Z.N., Wan Salleh, W.N., Ismail, A.F., Yusof, N., Mohd Yusop, M.Z., Aziz, F. 2020.
 Adsorptive removal of heavy metal ions using graphene-based nanomaterials: toxicity, roles of functional groups and mechanisms. *Chemosphere*, 248, 126008.
- Akbari Shorgoli, A., Shokri, M. 2017. Photocatalytic degradation of imidacloprid pesticide in aqueous
 solution by TiO₂ nanoparticles immobilized on the glass plate. *Chemical Engineering Communications*, 204(9), 1061-1069.
- Alam, M.S., Bishop, B., Chen, N., Safari, S., Warter, V., Byrne, J.M., Warchola, T., Kappler, A.,
 Konhauser, K.O., Alessi, D.S. 2020. Reusable magnetite nanoparticles biochar composites for
 the efficient removal of chromate from water. *Scientific Reports*, **10**, 19007.
- Al-Mamun, M.R., Kader, S., Islam, M.S., Khan, M.Z.H. 2019. Photocatalytic activity improvement and
 application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. *Journal of Environmental Chemical Engineering*, 7(5), 103248.
- Alarcón-Payán, D.A., Koyani, R.D., Vazquez-Duhalt, R. 2017. Chitosan-based biocatalytic
 nanoparticles for pollutant removal from wastewater. *Enzyme and Microbial Technology*, 100,
 71-78.
- Alver, E., Bulut, M., Metin, A.Ü., Çiftçi, H. 2017. One step effective removal of Congo Red in chitosan
 nanoparticles by encapsulation. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, **171**, 132-138.
- Anh Le, T.T., Thuptimdang, P., McEvoy, J., Khan, E. 2019. Phage shock protein and gene responses
 of *Escherichia coli* exposed to carbon nanotubes. *Chemosphere*, 224, 461-469.
- Anjum, M., Miandad, R., Waqas, M., Gehany, F., Barakat, M.A. 2019. Remediation of wastewater
 using various nano-materials. *Arabian Journal of Chemistry*, 12(8), 4897-4919.
- Arenas-Lago, D., Rodríguez-Seijo, A., Lago-Vila, M., Couce, L.A., Vega, F.A. 2016. Using Ca₃(PO₄)₂
 nanoparticles to reduce metal mobility in shooting range soils. *Science of The Total Environment*, 571, 1136-1146.
- Awad, A.M., Jalab, R., Benamor, A., Nasser, M.S., Ba-Abbad, M.M., El-Naas, M., Mohammad, A.W.
 2020. Adsorption of organic pollutants by nanomaterial-based adsorbents: An overview.
 Journal of Molecular Liquids, 301, 112335.
- Baragaño, D., Forján, R., Welte, L., Gallego, J.L.R. 2020. Nanoremediation of As and metals polluted
 soils by means of graphene oxide nanoparticles. *Scientific Reports*, 10(1), 1896.
- Bardos, P., Bone, B., Daly, P., Jones, S., Elliott, D., Lowry, G., Merly, C., Bartke, S., Braun, J., Harries,
 N., Hartog, N., Hofmann, T., Wagner, S., Nathanail, P. 2015. A Risk/Benefit Appraisal for the
 Application of Nano-Scale Zero Valent Iron (nZVI) for the Remediation of Contaminated Sites.
 NanoRem; http://www.nanorem.eu/Displaynews.aspx?ID=525.
- Bardos, P., Merly, C., Kvapil, P., Koschitzky, H.-P. 2018. Status of nanoremediation and its potential
 for future deployment: Risk-benefit and benchmarking appraisals. *Remediation Journal*, 28(3),
 43-56.
- Bassyounia, M., Abdel-Aziz, M.H., Zorombab, M.S., Abdel-Hamide, S.M.S., Drioli, E. 2019. A review
 of polymeric nanocomposite membranes for water purification. *Journal of Industrial and Engineering Chemistry*, 73, 19-46.
- Besha, A.T., Liu, Y., Bekele, D.N., Dong, Z., Naidu, R., Gebremariam, G.N. 2020. Sustainability and
 environmental ethics for the application of engineered nanoparticles. *Environmental Science & Policy*, 103, 85-98.

- Bezbaruah, A.N., Krajangpan, S., Chisholm, B.J., Khan, E., Elorza Bermudez, J.J. 2009. Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. *Journal* of Hazardous Materials, 166(2), 1339-1343.
- Bezbaruah, A.N., Shanbhogue, S.S., Simsek, S., Khan, E. 2011. Encapsulation of iron nanoparticles in alginate biopolymer for trichloroethylene remediation. *Journal of Nanoparticle Research*, 1110
 13(12), 6673-6681.
- Biswas, J.K., Sarkar, D. 2019. Nanopollution in the aquatic environment and ecotoxicity: no nano issue!
 Current Pollution Reports, 5(1), 4-7.
- Bleyl, S., Kopinke, F.-D., Mackenzie, K. 2012. Carbo-Iron[®]—Synthesis and stabilization of Fe(0) doped colloidal activated carbon for in situ groundwater treatment. *Chemical Engineering Journal*, **191**, 588-595.
- Bone, B., Bardos, P., Edgar, S., Kvapil, P. 2020. Chapter 14 The sustainability of nanoremediation—
 two initial case studies from Europe. in: *Sustainable Remediation of Contaminated Soil and Groundwater*, (Ed.) D. Hou, Butterworth-Heinemann, pp. 367-404.
- Cai, C., Zhao, M., Yu, Z., Rong, H., Zhang, C. 2019. Utilization of nanomaterials for in-situ remediation of heavy metal(loid) contaminated sediments: A review. *Science of The Total Environment*, 662, 205-217.
- Calışkan Salihi, E., Wang, J., Kabacaoğlu, G., Kırkulak, S., Šiller, L. 2020. Graphene oxide as a new
 generation adsorbent for the removal of antibiotics from waters. *Separation Science and Technology*, 1-9.
- Cecchin, I., Reddy, K.R., Thomé, A., Tessaro, E.F., Schnaid, F. 2017. Nanobioremediation: Integration
 of nanoparticles and bioremediation for sustainable remediation of chlorinated organic
 contaminants in soils. *International Biodeterioration & Biodegradation*, **119**, 419-428.
- Černík, M., Nosek, J., Filip, J., Hrabal, J., Elliott, D.W., Zbořil, R. 2019. Electric-field enhanced reactivity and migration of iron nanoparticles with implications for groundwater treatment technologies: Proof of concept. *Water Research*, **154**, 361-369.
- Černíková, M., Nosek, J., Černík, M. 2020. Combination of nZVI and DC for the in-situ remediation
 of chlorinated ethenes: An environmental and economic case study. *Chemosphere*, 245, 125576.
- Chaithawiwat, K., Vangnai, A., McEvoy, J.M., Pruess, B., Krajangpan, S., Khan, E. 2016a. Impact of nanoscale zero valent iron on bacteria is growth phase dependent. *Chemosphere*, 144, 352-359.
- 1136 Chaithawiwat, K., Vangnai, A., McEvoy, J.M., Pruess, B., Krajangpan, S., Khan, E. 2016b. Role of
 1137 oxidative stress in inactivation of *Escherichia coli* BW25113 by nanoscale zero-valent iron.
 1138 Science of The Total Environment, 565, 857-862.
- Chang, P.-H., Chou, T.-H., Sahu, R.S., Shih, Y.-h. 2019. Chemical reduction-aided zerovalent copper nanoparticles for 2,4-dichlorophenol removal. *Applied Nanoscience*, 9(3), 387-395.
- 1141 Chekli, L., Bayatsarmadi, B., Sekine, R., Sarkar, B., Shen, A.M., Scheckel, K.G., Skinner, W., Naidu,
 1142 R., Shon, H.K., Lombi, E., Donner, E. 2016. Analytical characterisation of nanoscale zero1143 valent iron: A methodological review. *Analytica Chimica Acta*, 903, 13-35.
- Chen, Y., Wang, D., Zhu, X., Zheng, X., Feng, L. 2012. Long-term effects of copper nanoparticles on wastewater biological nutrient removal and N₂O generation in the activated sludge process.
 Environmental Science & Technology, 46(22), 12452-12458.
- Chong, M.N., Jin, B., Chow, C.W.K., Saint, C. 2010. Recent developments in photocatalytic water
 treatment technology: A review. *Water Research*, 44(10), 2997-3027.
- 1149 Corsi, I., Winther-Nielsen, M., Sethi, R., Punta, C., Della Torre, C., Libralato, G., Lofrano, G., Sabatini,
 1150 L., Aiello, M., Fiordi, L., Cinuzzi, F., Caneschi, A., Pellegrini, D., Buttino, I. 2018. Ecofriendly
 1151 nanotechnologies and nanomaterials for environmental applications: Key issue and consensus
 1152 recommendations for sustainable and ecosafe nanoremediation. *Ecotoxicology and*1153 *Environmental Safety*, 154, 237-244.
- Czinnerová, M., Vološčuková, O., Marková, K., Ševců, A., Černík, M., Nosek, J. 2020. Combining
 nanoscale zero-valent iron with electrokinetic treatment for remediation of chlorinated ethenes
 and promoting biodegradation: A long-term field study. *Water Research*, **175**, 115692.
- de Souza, R.M., Seibert, D., Quesada, H.B., de Jesus Bassetti, F., Fagundes-Klen, M.R., Bergamasco,
 R. 2020. Occurrence, impacts and general aspects of pesticides in surface water: A review.
 Process Safety and Environmental Protection, 135, 22-37.

- Ding, L., Li, J., Liu, W., Zuo, Q., Liang, S.-X. 2017. Influence of nano-hydroxyapatite on the metal bioavailability, plant metal accumulation and root exudates of Ryegrass for phytoremediation in lead-polluted soil. *International Journal of Environmental Research and Public Health*, 1163
 14(5), 532.
- Ding, Y., Liu, B., Shen, X., Zhong, L., Li, X. 2013. Foam-assisted delivery of nanoscale zero valent
 iron in porous media. *Journal of Environmental Engineering*, 139(9), 1206-1212.
- Dong, H., He, Q., Zeng, G., Tang, L., Zhang, L., Xie, Y., Zeng, Y., Zhao, F. 2017. Degradation of
 trichloroethene by nanoscale zero-valent iron (nZVI) and nZVI activated persulfate in the
 absence and presence of EDTA. *Chemical Engineering Journal*, **316**, 410-418.
- Dong, H., Li, L., Lu, Y., Cheng, Y., Wang, Y., Ning, Q., Wang, B., Zhang, L., Zeng, G. 2019.
 Integration of nanoscale zero-valent iron and functional anaerobic bacteria for groundwater remediation: A review. *Environment International*, **124**, 265-277.
- Du, J., Guo, W., Wang, H., Yin, R., Zheng, H., Feng, X., Che, D., Ren, N. 2018. Hydroxyl radical dominated degradation of aquatic sulfamethoxazole by Fe⁰/bisulfite/O₂: Kinetics, mechanisms, and pathways. *Water Research*, **138**, 323-332.
- Ebrahim, S.E., Sulaymon, A.H., Saad Alhares, H. 2016. Competitive removal of Cu²⁺, Cd²⁺, Zn²⁺, and Ni²⁺ ions onto iron oxide nanoparticles from wastewater. *Desalination and Water Treatment*, 57(44), 20915-20929.
- El-Temsah, Y.S., Joner, E.J. 2012. Ecotoxicological effects on earthworms of fresh and aged nano sized zero-valent iron (nZVI) in soil. *Chemosphere*, **89**(1), 76-82.
- El-Temsah, Y.S., Sevcu, A., Bobcikova, K., Cernik, M., Joner, E.J. 2016. DDT degradation efficiency
 and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and
 soil. *Chemosphere*, 144, 2221-2228.
- Elliott, D.W., Zhang, W.-x. 2001. Field Assessment of Nanoscale Bimetallic Particles for Groundwater
 Treatment. *Environmental Science & Technology*, **35**(24), 4922-4926.
- ElShafei, G.M.S., Yehia, F.Z., Dimitry, O.I.H., Badawi, A.M., Eshaq, G. 2014. Ultrasonic assisted Fenton-like degradation of nitrobenzene at neutral pH using nanosized oxides of Fe and Cu.
 Ultrasonics Sonochemistry, 21(4), 1358-1365.
- Ersan, G., Apul, O.G., Perreault, F., Karanfil, T. 2017. Adsorption of organic contaminants by graphene
 nanosheets: A review. *Water Research*, 126, 385-398.
- Esmaeili, A., Khoshnevisan, N. 2016. Optimization of process parameters for removal of heavy metals
 by biomass of Cu and Co-doped alginate-coated chitosan nanoparticles. *Bioresource Technology*, 218, 650-658.
- Fajardo, C., Gil-Díaz, M., Costa, G., Alonso, J., Guerrero, A.M., Nande, M., Lobo, M.C., Martín, M.
 2015. Residual impact of aged nZVI on heavy metal-polluted soils. *Science of The Total Environment*, 535, 79-84.
- Fajardo, C., Sánchez-Fortún, S., Costa, G., Nande, M., Botías, P., García-Cantalejo, J., Mengs, G.,
 Martín, M. 2020. Evaluation of nanoremediation strategy in a Pb, Zn and Cd contaminated soil.
 Science of The Total Environment, **706**, 136041.
- Floris, B., Galloni, P., Sabuzi, F., Conte, V. 2017. Metal systems as tools for soil remediation.
 Inorganica Chimica Acta, 455, 429-445.
- Garcia, J., Gomes, H.T., Serp, P., Kalck, P., Figueiredo, J.L., Faria, J.L. 2006. Carbon nanotube
 supported ruthenium catalysts for the treatment of high strength wastewater with aniline using
 wet air oxidation. *Carbon*, 44(12), 2384-2391.
- Gavaskar, A., Tatar, L., Condit, W. 2005. Cost and performance report nanoscale zero-valent iron
 technologies for source remediation. Naval Facilities Engineering Service Center. N47408-01 D-8207.
- Gil-Díaz, M., Alonso, J., Rodríguez-Valdés, E., Gallego, J.R., Lobo, M.C. 2017a. Comparing different
 commercial zero valent iron nanoparticles to immobilize As and Hg in brownfield soil. *Science* of The Total Environment, 584-585, 1324-1332.
- Gil-Díaz, M., Diez-Pascual, S., González, A., Alonso, J., Rodríguez-Valdés, E., Gallego, J.R., Lobo,
 M.C. 2016a. A nanoremediation strategy for the recovery of an As-polluted soil. *Chemosphere*,
 149, 137-145.

- Gil-Díaz, M., González, A., Alonso, J., Lobo, M.C. 2016b. Evaluation of the stability of a nanoremediation strategy using barley plants. *Journal of Environmental Management*, 165, 150-158.
- Gil-Díaz, M., Pinilla, P., Alonso, J., Lobo, M.C. 2017b. Viability of a nanoremediation process in single
 or multi-metal(loid) contaminated soils. *Journal of Hazardous Materials*, **321**, 812-819.
- Gollavelli, G., Chang, C.-C., Ling, Y.-C. 2013. Facile synthesis of smart magnetic graphene for safe
 drinking water: heavy metal removal and disinfection control. ACS Sustainable Chemistry &
 Engineering, 1(5), 462-472.
- Gomes, H.I., Fan, G., Mateus, E.P., Dias-Ferreira, C., Ribeiro, A.B. 2014. Assessment of combined
 electro–nanoremediation of molinate contaminated soil. *Science of The Total Environment*,
 493, 178-184.
- Guerra, F.D., Attia, M.F., Whitehead, D.C., Alexis, F. 2018. Nanotechnology for environmental remediation: materials and applications. *Molecules*, 23(7), 1760.
- Guo, X., Yang, Z., Dong, H., Guan, X., Ren, Q., Lv, X., Jin, X. 2016. Simple combination of oxidants
 with zero-valent-iron (ZVI) achieved very rapid and highly efficient removal of heavy metals
 from water. *Water Research*, 88, 671-680.
- Gupta, V.K., Moradi, O., Tyagi, I., Agarwal, S., Sadegh, H., Shahryari-Ghoshekandi, R., Makhlouf,
 A.S.H., Goodarzi, M., Garshasbi, A. 2016. Study on the removal of heavy metal ions from
 industry waste by carbon nanotubes: Effect of the surface modification: a review. *Critical Reviews in Environmental Science and Technology*, 46(2), 93-118.
- Gusain, R., Kumar, N., Ray, S.S. 2020. Recent advances in carbon nanomaterial-based adsorbents for
 water purification. *Coordination Chemistry Reviews*, 405, 213111.
- Han, Y., Shi, N., Wang, H., Pan, X., Fang, H., Yu, Y. 2016. Nanoscale zerovalent iron-mediated degradation of DDT in soil. *Environmental Science and Pollution Research*, 23(7), 6253-6263.
- Hassan, K.H., Jarullah, A.A., Saadi, S.K. 2017. Synthesis of copper oxide nanoparticle as an adsorbent
 for removal of Cd(II) and Ni(II) ions from binary system. *International Journal of Applied Environmental Sciences*, 12, 1841-1861.
- Hirthna, Sendhilnathan, S., Rajan, P.I., Adinaveen, T. 2018. Synthesis and characterization of NiFe₂O₄
 nanoparticles for the enhancement of direct sunlight photocatalytic degradation of methyl
 orange. Journal of Superconductivity and Novel Magnetism, **31**(10), 3315-3322.
- Hjorth, R., Coutris, C., Nguyen, N.H.A., Sevcu, A., Gallego-Urrea, J.A., Baun, A., Joner, E.J. 2017.
 Ecotoxicity testing and environmental risk assessment of iron nanomaterials for sub-surface remediation Recommendations from the FP7 project NanoRem. *Chemosphere*, **182**, 525-531.
- Hosseini, S.M., Tosco, T., Ataie-Ashtiani, B., Simmons, C.T. 2018. Non-pumping reactive wells filled
 with mixing nano and micro zero-valent iron for nitrate removal from groundwater: Vertical,
 horizontal, and slanted wells. *Journal of Contaminant Hydrology*, 210, 50-64.
- Hou, D., O'Connor, D., Igalavithana, A.D., Alessi, D.S., Luo, J., Tsang, D.C.W., Sparks, D.L.,
 Yamauchi, Y., Rinklebe, J., Ok, Y.S. 2020. Metal contamination and bioremediation of
 agricultural soils for food safety and sustainability. *Nature Reviews Earth & Environment*, 1,
 366–381.
- Huang, D., Wang, X., Zhang, C., Zeng, G., Peng, Z., Zhou, J., Cheng, M., Wang, R., Hu, Z., Qin, X.
 2017. Sorptive removal of ionizable antibiotic sulfamethazine from aqueous solution by
 graphene oxide-coated biochar nanocomposites: Influencing factors and mechanism. *Chemosphere*, **186**, 414-421.
- Inyang, M., Gao, B., Zimmerman, A., Zhou, Y., Cao, X. 2015. Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars. *Environmental Science and Pollution Research*, 22(3), 1868-1876.
- Isherwood, P.J.M. 2017. Copper zinc oxide: Investigation into a p-type mixed metal oxide system.
 Vacuum, 139, 173-177.
- Jame, S.A., Zhou, Z. 2016. Electrochemical carbon nanotube filters for water and wastewater treatment.
 Nanotechnology Reviews, 5(1), 41-50.
- Jiang, D., Zeng, G., Huang, D., Chen, M., Zhang, C., Huang, C., Wan, J. 2018. Remediation of
 contaminated soils by enhanced nanoscale zero valent iron. *Environmental Research*, 163, 217 227.

- 1267 Kamath, V., Chandra, P., Jeppu, G.P. 2020. Comparative study of using five different leaf extracts in
 1268 the green synthesis of iron oxide nanoparticles for removal of arsenic from water. *International* 1269 *Journal of Phytoremediation*, 22(12), 1278-1294.
- Kang, Y.-G., Yoon, H., Lee, W., Kim, E.-j., Chang, Y.-S. 2018. Comparative study of peroxide oxidants
 activated by nZVI: Removal of 1,4-Dioxane and arsenic(III) in contaminated waters. *Chemical Engineering Journal*, 334, 2511-2519.
- 1273 Karn, B., Kuiken, T., Otto, M. 2009. Nanotechnology and *in situ* remediation: a review of the benefits
 1274 and potential risks. *Environmental Health Perspectives*, **117**(12), 1813-1831.
- Kaur, Y., Bhatia, Y., Chaudhary, S., Chaudhary, G.R. 2017. Comparative performance of bare and functionalize ZnO nanoadsorbents for pesticide removal from aqueous solution. *Journal of Molecular Liquids*, 234, 94-103.
- 1278 Khairy, M., Zakaria, W. 2014. Effect of metal-doping of TiO₂ nanoparticles on their photocatalytic
 1279 activities toward removal of organic dyes. *Egyptian Journal of Petroleum*, 23(4), 419-426.
- 1280 Khalaj, M., Kamali, M., Khodaparast, Z., Jahanshahi, A. 2018. Copper-based nanomaterials for
 1281 environmental decontamination An overview on technical and toxicological aspects.
 1282 *Ecotoxicology and Environmental Safety*, 148, 813-824.
- 1283 Khan, I., Saeed, K., Khan, I. 2019. Nanoparticles: Properties, applications and toxicities. *Arabian* 1284 *Journal of Chemistry*, 12(7), 908-931.
- 1285 Kim, Y.-M., Murugesan, K., Chang, Y.-Y., Kim, E.-J., Chang, Y.-S. 2012. Degradation of polybrominated diphenyl ethers by a sequential treatment with nanoscale zero valent iron and aerobic biodegradation. *Journal of Chemical Technology & Biotechnology*, 87(2), 216-224.
- Kirankumar, V.S., Sumathi, S. 2017. Catalytic activity of bismuth doped zinc aluminate nanoparticles
 towards environmental remediation. *Materials Research Bulletin*, 93, 74-82.
- Kopittke, P.M., Lombi, E., Wang, P., Schjoerring, J.K., Husted, S. 2019. Nanomaterials as fertilizers
 for improving plant mineral nutrition and environmental outcomes. *Environmental Science: Nano*, 6(12), 3513-3524.
- Kőrösi, L., Prato, M., Scarpellini, A., Kovács, J., Dömötör, D., Kovács, T., Papp, S. 2016. H₂O₂-assisted
 photocatalysis on flower-like rutile TiO2 nanostructures: Rapid dye degradation and
 inactivation of bacteria. *Applied Surface Science*, 365, 171-179.
- Kotchaplai, P., Khan, E., Vangnai, A.S. 2017. Membrane alterations in *Pseudomonas putida* F1
 exposed to nanoscale zerovalent iron: effects of short-term and repetitive nZVI exposure.
 Environmental Science & Technology, 51(14), 7804-7813.
- 1299 Krasucka, P., Pan, B., Sik Ok, Y., Mohan, D., Sarkar, B., Oleszczuk, P. 2021. Engineered biochar A
 1300 sustainable solution for the removal of antibiotics from water. *Chemical Engineering Journal*,
 1301 405, 126926.
- 1302 Krishnaswamy, K., Orsat, V. 2017. Chapter 2 Sustainable Delivery Systems Through Green
 1303 Nanotechnology. in: *Nano- and Microscale Drug Delivery Systems*, (Ed.) A.M. Grumezescu,
 1304 Elsevier, pp. 17-32.
- Kumar, A., Sharma, G., Naushad, M., Al-Muhtaseb, A.a.H., García-Peñas, A., Mola, G.T., Si, C.,
 Stadler, F.J. 2020a. Bio-inspired and biomaterials-based hybrid photocatalysts for
 environmental detoxification: A review. *Chemical Engineering Journal*, 382, 122937.
- Kumar, N., Chaurand, P., Rose, J., Diels, L., Bastiaens, L. 2015. Synergistic effects of sulfate reducing
 bacteria and zero valent iron on zinc removal and stability in aquifer sediment. *Chemical Engineering Journal*, 260, 83-89.
- Kumar, V., Lee, Y.-S., Shin, J.-W., Kim, K.-H., Kukkar, D., Fai Tsang, Y. 2020b. Potential applications
 of graphene-based nanomaterials as adsorbent for removal of volatile organic compounds.
 Environment International, 135, 105356.
- Lazaratou, C.V., Vayenas, D.V., Papoulis, D. 2020. The role of clays, clay minerals and clay-based
 materials for nitrate removal from water systems: A review. *Applied Clay Science*, 185, 105377.
- Le, T.T., Nguyen, K.-H., Jeon, J.-R., Francis, A.J., Chang, Y.-S. 2015. Nano/bio treatment of polychlorinated biphenyls with evaluation of comparative toxicity. *Journal of Hazardous Materials*, 287, 335-341.
- Le, T.T.A., McEvoy, J., Khan, E. 2016. Mitigation of bactericidal effect of carbon nanotubes by cell
 entrapment. *Science of The Total Environment*, 565, 787-794.

- Lee, K.M., Wong, C.P.P., Tan, T.L., Lai, C.W. 2018. Functionalized carbon nanotubes for adsorptive removal of water pollutants. *Materials Science and Engineering: B*, 236-237, 61-69.
- Lefevre, E., Bossa, N., Wiesner, M.R., Gunsch, C.K. 2016. A review of the environmental implications
 of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on
 microbial communities. *Science of The Total Environment*, 565, 889-901.
- Lei, C., Sun, Y., Khan, E., Chen, S.S., Tsang, D.C.W., Graham, N.J.D., Ok, Y.S., Yang, X., Lin, D.,
 Feng, Y., Li, X.-D. 2018. Removal of chlorinated organic solvents from hydraulic fracturing
 wastewater by bare and entrapped nanoscale zero-valent iron. *Chemosphere*, **196**, 9-17.
- Lellis, B., Fávaro-Polonio, C.Z., Pamphile, J.A., Polonio, J.C. 2019. Effects of textile dyes on health
 and the environment and bioremediation potential of living organisms. *Biotechnology Research and Innovation*, 3(2), 275-290.
- Lewis, R.W., Bertsch, P.M., McNear, D.H. 2019. Nanotoxicity of engineered nanomaterials (ENMs) to
 environmentally relevant beneficial soil bacteria a critical review. *Nanotoxicology*, 13(3),
 392-428.
- Li, D., Li, B., Wang, Q., Hou, N., Li, C., Cheng, X. 2016. Toxicity of TiO₂ nanoparticle to denitrifying
 strain CFY1 and the impact on microbial community structures in activated sludge.
 Chemosphere, 144, 1334-1341.
- Li, F., Chen, J., Hu, X., He, F., Bean, E., Tsang, D.C.W., Ok, Y.S., Gao, B. 2020. Applications of carbonaceous adsorbents in the remediation of polycyclic aromatic hydrocarbon-contaminated sediments: A review. *Journal of Cleaner Production*, 255, 120263.
- Li, H., Qiu, Y.-f., Wang, X.-l., Yang, J., Yu, Y.-j., Chen, Y.-q., Liu, Y.-d. 2017. Biochar supported
 Ni/Fe bimetallic nanoparticles to remove 1,1,1-trichloroethane under various reaction
 conditions. *Chemosphere*, 169, 534-541.
- Li, R., Gao, Y., Jin, X., Chen, Z., Megharaj, M., Naidu, R. 2015. Fenton-like oxidation of 2,4-DCP in aqueous solution using iron-based nanoparticles as the heterogeneous catalyst. *Journal of Colloid and Interface Science*, 438, 87-93.
- Li, Y., Zhang, Y., Li, J., Sheng, G., Zheng, X. 2013. Enhanced reduction of chlorophenols by nanoscale
 zerovalent iron supported on organobentonite. *Chemosphere*, **92**(4), 368-374.
- Li, Z., Wang, L., Meng, J., Liu, X., Xu, J., Wang, F., Brookes, P. 2018. Zeolite-supported nanoscale
 zero-valent iron: New findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in
 aqueous solution and soil. *Journal of Hazardous Materials*, 344, 1-11.
- Lin, K.-S., Mdlovu, N.V., Chen, C.-Y., Chiang, C.-L., Dehvari, K. 2018. Degradation of TCE, PCE, and 1,2–DCE DNAPLs in contaminated groundwater using polyethylenimine-modified zero-valent iron nanoparticles. *Journal of Cleaner Production*, **175**, 456-466.
- Lin, Z., Weng, X., Ma, L., Sarkar, B., Chen, Z. 2019. Mechanistic insights into Pb(II) removal from aqueous solution by green reduced graphene oxide. *Journal of Colloid and Interface Science*, 1357
 550, 1-9.
- Liu, J., Jiang, J., Meng, Y., Aihemaiti, A., Xu, Y., Xiang, H., Gao, Y., Chen, X. 2020. Preparation, environmental application and prospect of biochar-supported metal nanoparticles: A review. *Journal of Hazardous Materials*, 388, 122026.
- Liu, J., Ma, Y., Xu, T., Shao, G. 2010. Preparation of zwitterionic hybrid polymer and its application
 for the removal of heavy metal ions from water. *Journal of Hazardous Materials*, **178**(1), 1021 1029.
- Liu, Y., Xie, J., Ong, C.N., Vecitis, C.D., Zhou, Z. 2015. Electrochemical wastewater treatment with
 carbon nanotube filters coupled with in situ generated H₂O₂. *Environmental Science: Water Research & Technology*, 1(6), 769-778.
- Lu, S.-y., Wu, D., Wang, Q.-l., Yan, J., Buekens, A.G., Cen, K.-f. 2011. Photocatalytic decomposition
 on nano-TiO2: Destruction of chloroaromatic compounds. *Chemosphere*, 82(9), 1215-1224.
- Ma, J., Ping, D., Dong, X. 2017. Recent Developments of Graphene Oxide-Based Membranes: A
 Review. *Membranes*, 7(3), 52.
- Mackenzie, K., Bleyl, S., Georgi, A., Kopinke, F.-D. 2012. Carbo-Iron An Fe/AC composite As alternative to nano-iron for groundwater treatment. *Water Research*, 46(12), 3817-3826.
- Mackenzie, K., Bleyl, S., Kopinke, F.-D., Doose, H., Bruns, J. 2016. Carbo-Iron as improvement of the
 nanoiron technology: From laboratory design to the field test. *Science of The Total Environment*, 563-564, 641-648.

- Majumder, A., Ramrakhiani, L., Mukherjee, D., Mishra, U., Halder, A., Mandal, A.K., Ghosh, S. 2019.
 Green synthesis of iron oxide nanoparticles for arsenic remediation in water and sludge utilization. *Clean Technologies and Environmental Policy*, 21(4), 795-813.
- Mandal, S., Sarkar, B., Mukhopadhyay, R., Biswas, J.K., Manjaiah, K.M. 2018. MicroparticleSupported Nanocomposites for Safe Environmental Applications. in: *Nanomaterials: Ecotoxicity, Safety, and Public Perception*, (Eds.) M. Rai, J.K. Biswas, Springer International
 Publishing. Cham, pp. 305-317.
- Matos, M.P.S.R., Correia, A.A.S., Rasteiro, M.G. 2017. Application of carbon nanotubes to immobilize
 heavy metals in contaminated soils. *Journal of Nanoparticle Research*, 19(4), 126.
- Meeks, N.D., Smuleac, V., Stevens, C., Bhattacharyya, D. 2012. Iron-based nanoparticles for toxic
 organic degradation: silica platform and green synthesis. *Industrial & Engineering Chemistry Research*, 51(28), 9581-9590.
- 1388 Mehta, D., Mazumdar, S., Singh, S.K. 2015. Magnetic adsorbents for the treatment of 1389 water/wastewater—A review. *Journal of Water Process Engineering*, **7**, 244-265.
- Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., Roth, S. 2007. The structure
 of suspended graphene sheets. *Nature*, 446(7131), 60-63.
- Meyer, M.F., Powers, S.M., Hampton, S.E. 2019. An evidence synthesis of pharmaceuticals and personal care products (PPCPs) in the environment: imbalances among compounds, sewage treatment techniques, and ecosystem types. *Environmental Science & Technology*, 53(22), 12961-12973.
- Mines, P.D., Uthuppu, B., Thirion, D., Jakobsen, M.H., Yavuz, C.T., Andersen, H.R., Hwang, Y. 2018.
 Granular activated carbon with grafted nanoporous polymer enhances nanoscale zero-valent iron impregnation and water contaminant removal. *Chemical Engineering Journal*, 339, 22-31.
- Moschini, E., Gualtieri, M., Colombo, M., Fascio, U., Camatini, M., Mantecca, P. 2013. The modality
 of cell-particle interactions drives the toxicity of nanosized CuO and TiO₂ in human alveolar
 epithelial cells. *Toxicology Letters*, 222(2), 102-116.
- Mukhopadhyay, R., Bhaduri, D., Sarkar, B., Rusmin, R., Hou, D., Khanam, R., Sarkar, S., Kumar
 Biswas, J., Vithanage, M., Bhatnagar, A., Ok, Y.S. 2020. Clay–polymer nanocomposites:
 Progress and challenges for use in sustainable water treatment. *Journal of Hazardous Materials*,
 383, 121125.
- Murugadas, A., Zeeshan, M., Thamaraiselvi, K., Ghaskadbi, S., Akbarsha, M.A. 2016. Hydra as a
 model organism to decipher the toxic effects of copper oxide nanorod: Eco-toxicogenomics
 approach. *Scientific Reports*, 6(1), 29663.
- Nathanail, C.P., Bakker, L.M.M., Bardos, P., Furukawa, Y., Nardella, A., Smith, G., Smith, J.W.N.,
 Goetsche, G. 2017. Towards an international standard: The ISO/DIS 18504 standard on
 sustainable remediation. *Remediation Journal*, 28(1), 9-15.
- 1412 Nathanail, C.P., Bardos, R.P. 2004. Risk Management. in: *Reclamation of Contaminated Land*, (Eds.)
 1413 C.P. Nathanail, R.P. Bardos, John Wiley & Sons Ltd. Chichester, UK, pp. 109-124.
- 1414 Němeček, J., Lhotský, O., Cajthaml, T. 2014. Nanoscale zero-valent iron application for in situ reduction of hexavalent chromium and its effects on indigenous microorganism populations.
 1416 Science of The Total Environment, 485-486, 739-747.
- Olabarrieta, J., Monzón, O., Belaustegui, Y., Alvarez, J.-I., Zorita, S. 2018. Removal of TiO₂
 nanoparticles from water by low pressure pilot plant filtration. *Science of The Total Environment*, 618, 551-560.
- Pan, Y., Zhou, M., Li, X., Xu, L., Tang, Z., Sheng, X., Li, B. 2017. Highly efficient persulfate oxidation
 process activated with pre-magnetization Fe0. *Chemical Engineering Journal*, **318**, 50-56.
- Parham, H., Zargar, B., Shiralipour, R. 2012. Fast and efficient removal of mercury from water samples
 using magnetic iron oxide nanoparticles modified with 2-mercaptobenzothiazole. *Journal of Hazardous Materials*, 205-206, 94-100.
- Pasinszki, T., Krebsz, M. 2020. Synthesis and application of zero-valent iron nanoparticles in water
 treatment, environmental remediation, catalysis, and their biological effects. *Nanomaterials*,
 10(5), 917.
- Patil, S.S., Shedbalkar, U.U., Truskewycz, A., Chopade, B.A., Ball, A.S. 2016. Nanoparticles for environmental clean-up: A review of potential risks and emerging solutions. *Environmental Technology & Innovation*, 5, 10-21.

- Peeters, K., Lespes, G., Zuliani, T., Ščančar, J., Milačič, R. 2016. The fate of iron nanoparticles in environmental waters treated with nanoscale zero-valent iron, FeONPs and Fe₃O₄ NPs. *Water Research*, 94, 315-327.
- Pei, Z., Li, L., Sun, L., Zhang, S., Shan, X.-q., Yang, S., Wen, B. 2013. Adsorption characteristics of
 1435 1,2,4-trichlorobenzene, 2,4,6-trichlorophenol, 2-naphthol and naphthalene on graphene and
 graphene oxide. *Carbon*, **51**, 156-163.
- Perreault, F., Fonseca de Faria, A., Elimelech, M. 2015. Environmental applications of graphene-based
 nanomaterials. *Chemical Society Reviews*, 44(16), 5861-5896.
- Perreault, F., Popovic, R., Dewez, D. 2014. Different toxicity mechanisms between bare and polymer coated copper oxide nanoparticles in Lemna gibba. *Environmental Pollution*, 185, 219-227.
- Premarathna, K.S.D., Rajapaksha, A.U., Sarkar, B., Kwon, E.E., Bhatnagar, A., Ok, Y.S., Vithanage,
 M. 2019. Biochar-based engineered composites for sorptive decontamination of water: A
 review. *Chemical Engineering Journal*, **372**, 536-550.
- 1444 Qi, J., Zhao, K., Li, G., Gao, Y., Zhao, H., Yu, R., Tang, Z. 2014. Multi-shelled CeO₂ hollow 1445 microspheres as superior photocatalysts for water oxidation. *Nanoscale*, **6**(8), 4072-4077.
- Qiao, Y., Wu, J., Xu, Y., Fang, Z., Zheng, L., Cheng, W., Tsang, E.P., Fang, J., Zhao, D. 2017.
 Remediation of cadmium in soil by biochar-supported iron phosphate nanoparticles. *Ecological Engineering*, 106, 515-522.
- Quan, G., Kong, L., Lan, Y., Yan, J., Gao, B. 2018. Removal of acid orange 7 by surfactant-modified iron nanoparticle supported on palygorskite: Reactivity and mechanism. *Applied Clay Science*, 1451 152, 173-182.
- Quinn, J., Geiger, C., Clausen, C., Brooks, K., Coon, C., O'Hara, S., Krug, T., Major, D., Yoon, W.-S.,
 Gavaskar, A., Holdsworth, T. 2005. Field demonstration of DNAPL dehalogenation using
 emulsified zero-valent iron. *Environmental Science & Technology*, **39**(5), 1309-1318.
- Rai, M., Biswas, J.K. 2018. *Nanomaterials: Ecotoxicity, Safety and Public Perception*. Springer Nature,
 Switzerland.
- Rai, P.K., Kumar, V., Lee, S., Raza, N., Kim, K.-H., Ok, Y.S., Tsang, D.C.W. 2018. Nanoparticle-plant interaction: Implications in energy, environment, and agriculture. *Environment International*, 1459
 119, 1-19.
- Raizada, P., Sudhaik, A., Singh, P. 2019. Photocatalytic water decontamination using graphene and
 ZnO coupled photocatalysts: A review. *Materials Science for Energy Technologies*, 2(3), 509 525.
- Ramesha, G.K., Vijaya Kumara, A., Muralidhara, H.B., Sampath, S. 2011. Graphene and graphene
 oxide as effective adsorbents toward anionic and cationic dyes. *Journal of Colloid and Interface Science*, 361(1), 270-277.
- 1466 Rengaraj, S., Venkataraj, S., Yeon, J.-W., Kim, Y., Li, X.Z., Pang, G.K.H. 2007. Preparation,
 1467 characterization and application of Nd–TiO2 photocatalyst for the reduction of Cr(VI) under
 1468 UV light illumination. *Applied Catalysis B: Environmental*, **77**(1), 157-165.
- Rizwan, M., Ali, S., Qayyum, M.F., Ok, Y.S., Adrees, M., Ibrahim, M., Zia-ur-Rehman, M., Farid, M.,
 Abbas, F. 2017. Effect of metal and metal oxide nanoparticles on growth and physiology of
 globally important food crops: A critical review. *Journal of Hazardous Materials*, 322, 2-16.
- 1472 Rusmin, R., Sarkar, B., Tsuzuki, T., Kawashima, N., Naidu, R. 2017. Removal of lead from aqueous solution using superparamagnetic palygorskite nanocomposite: Material characterization and regeneration studies. *Chemosphere*, **186**, 1006-1015.
- Sadegh, H., Ali, G.A.M., Gupta, V.K., Makhlouf, A.S.H., Shahryari-ghoshekandi, R., Nadagouda,
 M.N., Sillanpää, M., Megiel, E. 2017. The role of nanomaterials as effective adsorbents and
 their applications in wastewater treatment. *Journal of Nanostructure in Chemistry*, 7(1), 1-14.
- Sadegh, H., Zare, K., Maazinejad, B., Shahryari-ghoshekandi, R., Tyagi, I., Agarwal, S., Gupta, V.K.
 2016. Synthesis of MWCNT-COOH-Cysteamine composite and its application for dye removal. *Journal of Molecular Liquids*, 215, 221-228.
- Safavi, A., Maleki, N., Doroodmand, M.M. 2010. Fabrication of a selective mercury sensor based on the adsorption of cold vapor of mercury on carbon nanotubes: Determination of mercury in industrial wastewater. *Journal of Hazardous Materials*, **173**(1), 622-629.
- Saharan, P., Chaudhary, G.R., Mehta, S.K., Umar, A. 2014. Removal of water contaminants by iron
 oxide nanomaterials. *Journal of Nanoscience and Nanotechnology*, 14(1), 627-643.

- Saheed, I.O., Da, O.W., Suah, F.B.M. 2021. Chitosan modifications for adsorption of pollutants a review. *Journal of Hazardous Materials*, 408, 124889.
- Salam, J.A., Das, N. 2015. Degradation of lindane by a novel embedded bio-nano hybrid system in aqueous environment. *Applied Microbiology and Biotechnology*, **99**(5), 2351-2360.
- Sarkar, B., Liu, E., McClure, S., Sundaramurthy, J., Srinivasan, M., Naidu, R. 2015. Biomass derived palygorskite–carbon nanocomposites: Synthesis, characterisation and affinity to dye compounds. *Applied Clay Science*, **114**, 617-626.
- Sarkar, B., Mandal, S., Tsang, Y.F., Kumar, P., Kim, K.-H., Ok, Y.S. 2018. Designer carbon nanotubes
 for contaminant removal in water and wastewater: A critical review. *Science of The Total Environment*, 612, 561-581.
- Scaria, J., Nidheesh, P.V., Kumar, M.S. 2020. Synthesis and applications of various bimetallic
 nanomaterials in water and wastewater treatment. *Journal of Environmental Management*, 259, 110011.
- Schaefer, D.W., Justice, R.S. 2007. How nano are nanocomposites? *Macromolecules*, 40(24), 8501 8517.
- Schaefer, H.R., Dennis, S., Fitzpatrick, S. 2020. Cadmium: Mitigation strategies to reduce dietary
 exposure. *Journal of Food Science*, 85(2), 260-267.
- Sepúlveda, P., Rubio, M.A., Baltazar, S.E., Rojas-Nunez, J., Sánchez Llamazares, J.L., Garcia, A.G.,
 Arancibia-Miranda, N. 2018. As(V) removal capacity of FeCu bimetallic nanoparticles in
 aqueous solutions: The influence of Cu content and morphologic changes in bimetallic
 nanoparticles. *Journal of Colloid and Interface Science*, **524**, 177-187.
- Shanbhogue, S.S., Bezbaruah, A., Simsek, S., Khan, E. 2017. Trichloroethene removal by separately
 encapsulated and co-encapsulated bacterial degraders and nanoscale zero-valent iron.
 International Biodeterioration & Biodegradation, 125, 269-276.
- Sheu, Y.T., Lien, P.J., Chen, K.F., Ou, J.H., Kao, C.M. 2016. Application of NZVI-contained emulsified substrate to bioremediate PCE-contaminated groundwater – A pilot-scale study. *Chemical Engineering Journal*, **304**, 714-727.
- Sievers, C., Noda, Y., Qi, L., Albuquerque, E.M., Rioux, R.M., Scott, S.L. 2016. Phenomena affecting
 catalytic reactions at solid–liquid interfaces. ACS Catalysis, 6(12), 8286-8307.
- Singh, R., Manickam, N., Mudiam, M.K.R., Murthy, R.C., Misra, V. 2013. An integrated (nano-bio)
 technique for degradation of γ-HCH contaminated soil. *Journal of Hazardous Materials*, 258 259, 35-41.
- 1518 Singh, R., Misra, V., Mudiam, M.K.R., Chauhan, L.K.S., Singh, R.P. 2012a. Degradation of γ -HCH 1519 spiked soil using stabilized Pd/Fe⁰ bimetallic nanoparticles: Pathways, kinetics and effect of 1520 reaction conditions. *Journal of Hazardous Materials*, **237-238**, 355-364.
- Singh, R., Misra, V., Singh, R.P. 2012b. Removal of Cr(VI) by nanoscale zero-valent iron (nZVI) from
 soil contaminated with tannery wastes. *Bulletin of Environmental Contamination and Toxicology*, 88(2), 210-214.
- Soliemanzadeh, A., Fekri, M. 2017. The application of green tea extract to prepare bentonite-supported
 nanoscale zero-valent iron and its performance on removal of Cr(VI): Effect of relative
 parameters and soil experiments. *Microporous and Mesoporous Materials*, 239, 60-69.
- Stefaniuk, M., Oleszczuk, P., Ok, Y.S. 2016. Review on nano zerovalent iron (nZVI): From synthesis
 to environmental applications. *Chemical Engineering Journal*, 287, 618-632.
- Su, Y.-f., Hsu, C.-Y., Shih, Y.-h. 2012. Effects of various ions on the dechlorination kinetics of hexachlorobenzene by nanoscale zero-valent iron. *Chemosphere*, 88(11), 1346-1352.
- Suazo-Hernández, J., Sepúlveda, P., Manquián-Cerda, K., Ramírez-Tagle, R., Rubio, M.A., Bolan, N.,
 Sarkar, B., Arancibia-Miranda, N. 2019. Synthesis and characterization of zeolite-based composites functionalized with nanoscale zero-valent iron for removing arsenic in the presence of selenium from water. *Journal of Hazardous Materials*, **373**, 810-819.
- Sun, Y., Lei, C., Khan, E., Chen, S.S., Tsang, D.C.W., Ok, Y.S., Lin, D., Feng, Y., Li, X.-d. 2018.
 Aging effects on chemical transformation and metal(loid) removal by entrapped nanoscale zero-valent iron for hydraulic fracturing wastewater treatment. *Science of The Total Environment*, 615, 498-507.

- Tafazoli, M., Hojjati, S.M., Biparva, P., Kooch, Y., Lamersdorf, N. 2017. Reduction of soil heavy metal
 bioavailability by nanoparticles and cellulosic wastes improved the biomass of tree seedlings.
 Journal of Plant Nutrition and Soil Science, 180(6), 683–693.
- Tanzifi, M., Hosseini, S.H., Kiadehi, A.D., Olazar, M., Karimipour, K., Rezaiemehr, R., Ali, I. 2017.
 Artificial neural network optimization for methyl orange adsorption onto polyaniline nanoadsorbent: Kinetic, isotherm and thermodynamic studies. *Journal of Molecular Liquids*, 244, 189-200.
- Tasharrofi, S., Rouzitalab, Z., Maklavany, D.M., Esmaeili, A., Rabieezadeh, M., Askarieh, M., Rashidi,
 A., Taghdisian, H. 2020. Adsorption of cadmium using modified zeolite-supported nanoscale
 zero-valent iron composites as a reactive material for PRBs. *Science of The Total Environment*, **736**, 139570.
- Tiberg, C., Kumpiene, J., Gustafsson, J.P., Marsz, A., Persson, I., Mench, M., Kleja, D.B. 2016.
 Immobilization of Cu and As in two contaminated soils with zero-valent iron Long-term performance and mechanisms. *Applied Geochemistry*, 67, 144-152.
- Uddin, M.K. 2017. A review on the adsorption of heavy metals by clay minerals, with special focus on
 the past decade. *Chemical Engineering Journal*, **308**, 438-462.
- 1555 UN. 2016. The Sustainable Development Goals Report 2016. United Nations.
- 1556 Varadhi, S.N., Gill, H., Apoldo, L.J., Liao, K., Blackman, R.A., Wittman, W.K. 2005. Full-scale
 1557 nanoiron injection for treatment of groundwater contaminated with chlorinated hydrocarbons.
 1558 in: *Natural Gas Technologies Conference*. Orlando, FL.
- Vidovix, T.B., Quesada, H.B., Januário, E.F.D., Bergamasco, R., Vieira, A.M.S. 2019. Green synthesis
 of copper oxide nanoparticles using Punica granatum leaf extract applied to the removal of
 methylene blue. *Materials Letters*, 257, 126685.
- 1562 Vítková, M., Rákosová, S., Michálková, Z., Komárek, M. 2017. Metal(loid)s behaviour in soils
 1563 amended with nano zero-valent iron as a function of pH and time. *Journal of Environmental*1564 *Management*, 186, 268-276.
- Vogel, M., Nijenhuis, I., Lloyd, J., Boothman, C., Pöritz, M., Mackenzie, K. 2018. Combined chemical and microbiological degradation of tetrachloroethene during the application of Carbo-Iron at a contaminated field site. *Science of The Total Environment*, **628-629**, 1027-1036.
- Vojoudi, H., Badiei, A., Bahar, S., Mohammadi Ziarani, G., Faridbod, F., Ganjali, M.R. 2017. A new nano-sorbent for fast and efficient removal of heavy metals from aqueous solutions based on modification of magnetic mesoporous silica nanospheres. *Journal of Magnetism and Magnetic Materials*, 441, 193-203.
- Wang, H., Kim, B., Wunder, S.L. 2015a. Nanoparticle-supported lipid bilayers as an in situ remediation
 strategy for hydrophobic organic contaminants in soils. *Environmental Science & Technology*,
 49(1), 529-536.
- Wang, J., Chen, B. 2015. Adsorption and coadsorption of organic pollutants and a heavy metal by
 graphene oxide and reduced graphene materials. *Chemical Engineering Journal*, 281, 379-388.
- Wang, M., Hossain, F., Sulaiman, R., Ren, X. 2019. Exposure to inorganic arsenic and lead and autism
 spectrum disorder in children: a systematic review and meta-analysis. *Chemical Research in Toxicology*, 32(10), 1904-1919.
- Wang, P., Lombi, E., Menzies, N.W., Zhao, F.-J., Kopittke, P.M. 2018. Engineered silver nanoparticles in terrestrial environments: a meta-analysis shows that the overall environmental risk is small. *Environmental Science: Nano*, 5(11), 2531-2544.
- Wang, X., Wang, P., Ma, J., Liu, H., Ning, P. 2015b. Synthesis, characterization, and reactivity of
 cellulose modified nano zero-valent iron for dye discoloration. *Applied Surface Science*, 345,
 57-66.
- Wang, X., Zhang, D., Pan, X., Lee, D.-J., Al-Misned, F.A., Mortuza, M.G., Gadd, G.M. 2017. Aerobic
 and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil. *Chemosphere*, **170**, 266-273.
- Wang, Z., Xu, L., Zhao, J., Wang, X., White, J.C., Xing, B. 2016. CuO Nanoparticle interaction with
 Arabidopsis thaliana: toxicity, parent-progeny transfer, and gene expression. *Environmental Science & Technology*, **50**(11), 6008-6016.

- Weil, M., Mackenzie, K., Foit, K., Kühnel, D., Busch, W., Bundschuh, M., Schulz, R., Duis, K. 2019.
 Environmental risk or benefit? Comprehensive risk assessment of groundwater treated with nano Fe0-based Carbo-Iron[®]. *Science of The Total Environment*, **677**, 156-166.
- Weil, M., Meißner, T., Springer, A., Bundschuh, M., Hübler, L., Schulz, R., Duis, K. 2016. Oxidized
 Carbo-Iron causes reduced reproduction and lower tolerance of juveniles in the amphipod
 Hyalella azteca. *Aquatic Toxicology*, 181, 94-103.
- Wen, X.-J., Niu, C.-G., Guo, H., Zhang, L., Liang, C., Zeng, G.-M. 2018. Photocatalytic degradation of levofloxacin by ternary Ag₂CO₃/CeO₂/AgBr photocatalyst under visible-light irradiation: degradation pathways, mineralization ability, and an accelerated interfacial charge transfer process study. *Journal of Catalysis*, **358**, 211-223.
- Wu, J., Xie, Y., Fang, Z., Cheng, W., Tsang, P.E. 2016a. Effects of Ni/Fe bimetallic nanoparticles on phytotoxicity and translocation of polybrominated diphenyl ethers in contaminated soil. *Chemosphere*, 162, 235-242.
- Wu, J., Yi, Y., Li, Y., Fang, Z., Tsang, E.P. 2016b. Excellently reactive Ni/Fe bimetallic catalyst
 supported by biochar for the remediation of decabromodiphenyl contaminated soil: reactivity,
 mechanism, pathways and reducing secondary risks. *Journal of Hazardous Materials*, 320,
 341-349.
- Xie, W., Liang, Q., Qian, T., Zhao, D. 2015. Immobilization of selenite in soil and groundwater using
 stabilized Fe–Mn binary oxide nanoparticles. *Water Research*, **70**, 485-494.
- Xiong, T., Yuan, X., Wang, H., Leng, L., Li, H., Wu, Z., Jiang, L., Xu, R., Zeng, G. 2018a. Implication
 of graphene oxide in Cd-contaminated soil: A case study of bacterial communities. *Journal of Environmental Management*, 205, 99-106.
- Xiong, Z., Lai, B., Yang, P. 2018b. Enhancing the efficiency of zero valent iron by electrolysis:
 Performance and reaction mechanism. *Chemosphere*, **194**, 189-199.
- 1616 Xu, G., Wang, J., Lu, M. 2014. Complete debromination of decabromodiphenyl ether using the 1617 integration of Dehalococcoides sp. strain CBDB1 and zero-valent iron. *Chemosphere*, 117, 1618 455-461.
- Yang, Z., Fang, Z., Tsang, P.E., Fang, J., Zhao, D. 2016a. In situ remediation and phytotoxicity assessment of lead-contaminated soil by biochar-supported nHAP. *Journal of Environmental Management*, 182, 247-251.
- Yang, Z., Fang, Z., Zheng, L., Cheng, W., Tsang, P.E., Fang, J., Zhao, D. 2016b. Remediation of lead
 contaminated soil by biochar-supported nano-hydroxyapatite. *Ecotoxicology and Environmental Safety*, 132, 224-230.
- Yi, Z.-j., Lian, B., Yang, Y.-q., Zou, J.-l. 2009. Treatment of simulated wastewater from in situ leaching
 uranium mining by zerovalent iron and sulfate reducing bacteria. *Transactions of Nonferrous Metals Society of China*, 19, s840-s844.
- Zaleska-Medynska, A., Marchelek, M., Diak, M., Grabowska, E. 2016. Noble metal-based bimetallic
 nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties.
 Advances in Colloid and Interface Science, 229, 80-107.
- Zhang, W., Li, G., Wang, W., Qin, Y., An, T., Xiao, X., Choi, W. 2018a. Enhanced photocatalytic
 mechanism of Ag₃PO₄ nano-sheets using MS2 (M = Mo, W)/rGO hybrids as co-catalysts for 4 nitrophenol degradation in water. *Applied Catalysis B: Environmental*, 232, 11-18.
- Zhang, W., Lo, I.M.C., Hu, L., Voon, C.P., Lim, B.L., Versaw, W.K. 2018b. Environmental risks of nano zerovalent iron for arsenate remediation: impacts on cytosolic levels of inorganic phosphate and MgATP2- in *Arabidopsis thaliana*. *Environmental Science & Technology*, 52(7), 4385-4392.
- 1638 Zhao, X., Lv, L., Pan, B., Zhang, W., Zhang, S., Zhang, Q. 2011. Polymer-supported nanocomposites
 1639 for environmental application: A review. *Chemical Engineering Journal*, **170**(2), 381-394.
- Zhou, Y., Apul, O.G., Karanfil, T. 2015. Adsorption of halogenated aliphatic contaminants by graphene
 nanomaterials. *Water Research*, **79**, 57-67.
- Zhou, Y., Gao, B., Zimmerman, A.R., Chen, H., Zhang, M., Cao, X. 2014. Biochar-supported
 zerovalent iron for removal of various contaminants from aqueous solutions. *Bioresource Technology*, 152, 538-542.

- Zhou, Z., Ruan, W., Huang, H., Shen, C., Yuan, B., Huang, C.-H. 2016. Fabrication and characterization
 of Fe/Ni nanoparticles supported by polystyrene resin for trichloroethylene degradation.
 Chemical Engineering Journal, 283, 730-739.
- Zhu, F., Li, L., Ma, S., Shang, Z. 2016. Effect factors, kinetics and thermodynamics of remediation in
 the chromium contaminated soils by nanoscale zero valent Fe/Cu bimetallic particles. *Chemical Engineering Journal*, **302**, 663-669.
- Zhu, F., Li, L., Ren, W., Deng, X., Liu, T. 2017a. Effect of pH, temperature, humic acid and coexisting
 anions on reduction of Cr(VI) in the soil leachate by nZVI/Ni bimetal material. *Environmental Pollution*, 227, 444-450.
- Zhu, S., Ho, S.-H., Huang, X., Wang, D., Yang, F., Wang, L., Wang, C., Cao, X., Ma, F. 2017b.
 Magnetic nanoscale zerovalent iron assisted biochar: interfacial chemical behaviors and heavy metals remediation performance. *ACS Sustainable Chemistry & Engineering*, 5(11), 9673-9682.
- Zhu, S., Huang, X., Wang, D., Wang, L., Ma, F. 2018. Enhanced hexavalent chromium removal performance and stabilization by magnetic iron nanoparticles assisted biochar in aqueous solution: Mechanisms and application potential. *Chemosphere*, 207, 50-59.
- Zou, Y., Wang, X., Khan, A., Wang, P., Liu, Y., Alsaedi, A., Hayat, T., Wang, X. 2016. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. *Environmental Science & Technology*, **50**(14), 7290-7304.

1665 Figures

Fig. 1. Types of nanomaterials used for the removal of environmental contaminants.

Fig. 2. Factors and processes affecting the adsorption and degradation of contaminants by

1672 metal-based NMs.

- 1676 Fig. 3. Mechanisms of contaminants removal by nZVI/biochar composites (adapted from
- 1677 (Zhu et al., 2018))

- 1680 Fig. 4. Adsorption of contaminants onto nanoparticles, and mechanisms involved (adapted
- 1681 from (Mukhopadhyay et al., 2020; Uddin, 2017)).

- **Fig. 5.** Photodegradation of contaminants in the presence of a photocatalyst nanoparticle
- 1685 (adapted from (Chong et al., 2010)).

- 1687 Supplementary Information for:
- 1688 Nanomaterials for sustainable remediation of chemical contaminants in water and soil
- 1689 Raj Mukhopadhyay^a, Binoy Sarkar^{b,*}, Eakalak Khan^c, Daniel S. Alessi^d, Jayanta Kumar Biswas^e, K.
- 1690 M. Manjaiah^f, Miharu Eguchi^g, Kevin C.W. Wu^h, Yusuke Yamauchi^{i,j}, Yong Sik Ok^{k,*}
- ^{*a*} Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute,
- 1692 Karnal 132001, Haryana, India
- 1693 ^b Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
- 1694 ^c Department of Civil and Environmental Engineering and Construction, University of Nevada, Las
- 1695 Vegas, NV 89154, USA
- 1696 ^d University of Alberta, Earth and Atmospheric Sciences, Edmonton, AB, T6G 2E3, Canada
- ^e Department of Ecological Studies & International Centre for Ecological Engineering, University of
- 1698 Kalyani, Kalyani, Nadia- 741235, West Bengal, India
- 1699 ^fICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- 1700 ^g Electronic Functional Materials Group, National Institute for Materials Science (NIMS), 1-1
- 1701 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- ^hDepartment of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- ^{*i*} Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical
- 1704 Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- 1705 ^{*j*} Yamauchi Materials Space-Tectonics Project and International Center for Materials
- 1706 Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki,
- 1707 Tsukuba, Ibaraki 305-0044, Japan
- 1708 ^k Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of
- 1709 Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of
- 1710 Korea
- 1711 ^{*}Co-corresponding authors:
- 1712 Dr. Binoy Sarkar, Lancaster University, e-mail: <u>b.sarkar@lancaster.ac.uk</u>
- 1713 Prof. Yong Sik Ok, Korea University, e-mail: <u>yongsikok@korea.ac.kr</u>

1714 SI Tables

Table S1. Contaminant adsorption, degradation and removal efficiencies by Fe NPs in water systems.

Iron based nanoparticles	Contaminants	Amount removed /removal efficiency	Contact time	Mechanism(s)	References
nZVI	Co(II)	172 mg/g	10 min	Adsorption on negative charges developed upon hydroxylation of nZVI	Üzüm et al., 2008
Forager sponge-loaded superparamagnetic iron oxide NPs	As(III) and As(V)	As(III): 2.1 mmol/g As(V): 12.1 mmol/g	10 min	Adsorption via anion exchange and ligand exchange	Morillo et al., 2015
Ascorbic acid coated Fe ₃ O ₄ NPs	As(III) and As(V)	As(III): 40.06 mg/g As(V): 16.56 mg/g	30 min	Adsorption on high surface area and separation using external magnetic field	Feng et al., 2012
Green nano-iron particles and chitosan composite	As(III) and As(V)	As(III): 98.79% As(V): 99.65%	30 min	Adsorption through ion exchange	Prasad et al., 2014
nZVI	PO4 ³⁻	96-100%	30 min	Adsorption through pH-induced positive charge formation	Almeelbi & Bezbaruah, 2012
nZVI	Cd(II) and Ni(II)	Cd(II): 65% Ni(II): 27%	2 h	Removal through pH rises and aging effect of nZVI	Calderon & Fullana, 2015
Sulfidized derivative of nZVI	Cd(II)	80%	1 h	Removal by complex formation between sulfidized nZVI-Cd	Stevenson et al., 2017
nZVI	Cr(VI)	3.33 mg/g	24 h	Reduction of Cr(VI) to Cr(III)	Vilardi et al., 2018
Polyethylenimine coated-nZVI	Cr(VI)	99.9%	10 min	Oxidation of nZVI to Fe_2O_3 and Fe_3O_4	Mdlovu et al., 2020
Iron oxide NPs	Cr(VI)	4.62 mg/g	2 h	Chemisorption	Mahanty et al., 2019
Sulfidated nZVI	Cr(VI)	100%	3 h	Surface reduction and precipitation	Zou et al., 2019
CNTs/nZVI composites	Se and Co	Se: 2.52 mg/g Co: 2.35 mg/g	24 h	Removal by chemisorption	Vilardi et al., 2018

nZVI	Yb and La (rare earth elements)	Yb: 410 mg/g La: 61 mg/g	30 min	Surface mediated precipitation	Crane & Sapsford, 2018
nZVI	Uranium (U(VI))	99%	<10 min	Removal via reduction, sorption and precipitation	Hua et al., 2018
Sodium hypochlorite (NaClO)- modified nZVI	PO ₄ ³⁻	94.8-98.2%	12 min	Rapid oxidation due to presence of NaClO as oxidant	Luo et al., 2020
Iron oxide NPs dispersed onto zeolite by Eucalyptus leaf extracts	$\mathrm{NH_4^+}$ and $\mathrm{PO_4^{3-}}$	NH4 ⁺ : 3.47 mg/g PO4 ³⁻ : 38.91 mg/g	15 min	Chemisorption	Xu et al., 2020
Starch modified nZVI	NO ₃ ⁻	91%	-	Force electromagnetism	Mofradnia et al., 2019
Zero valent (Fe/Ni) BNP	Profenofos	94.51%	-	Degradation by deprotonation at high pH	Mansouriieh et al., 2019
Potassium persulfate modified Fe ₃ O ₄	Aldrin, eldrin and lindane	Aldrin: 24.7 mg/g Eldrin: 33.5 mg/g Lindane: 10.2 mg/g	10 min	Removal by chemisorption	Lan et al., 2014
nZVI-B (Sodium borohydride method) and nZVI-T (Commercially purchased)	DDT [1,1,1-trichloro2,2- bis(p-chlorophenyl) ethane]	nZVI-B: 92% nZVI-T: 78%	24 h	Degradation due to highly reactive functional surface sites	El-Temsah et al., 2016
Zeolite-supported Fe NPs	Methomyl	100%	4 h	Degradation via photocatalytic oxidation	Tomašević et al., 2010
nZVI	Alachlor	92-96%	72 h	Reductive degradation by nZVI	Bezbaruah et al., 2009
nZVI	Tributyltin and trimethyltin	Tributyltin: 96% Trimethyltin: 40%	7 days	High pH (8.0) followed by acidification with citric acid at pH 3.0	Peeters et al., 2015
Clinoptilolite/nZVI composite	MB and MO	MB: 96.6% MO: 90.2%	MB: 15 min MO: 30 min	Adsorption under wider dispersion of Fe nanoparticle chains in clinoptilolite matrix	Nairat et al., 2015
Fe-NPs	МО	100% degradation	6 h	Strong electrostatic attraction between anionic MO and Fe-NPs below point of zero charge of Fe- NPs	Xingu- Contreras et al., 2020

nZVI	Reactive yellow	59.9%	5 min	Removal via corrosion of nZVI and Fe(II) consumption	Mao et al., 2015
nZVI/H ₂ O ₂ (Fenton like system)	MB	94.5%	1 h	OH radical oxidation	Yang et al., 2019
Granular reinforced ZVI activated by persulfate	Acid orange 7	90.78%	2 h	Diffusion mediated reduction	Du et al., 2020
Biochar supported nZVI	Ciprofloxacin	70%	1 h	OH radical oxidation	Mao et al., 2019
Wheat straw supported nZVI	Cu(II), chlorotetracycline	Cu(II): 376.4 mg/g Chlorotetracycline: 1280.8 mg/g	2 h	Chemisorption and redox reaction	Shao et al., 2020
Polyethylenimine (PEI) surface-modified zero- valent iron NPs (PEIenZVI)	Trichloroethylene, perchloroethylene, and 1,2- dichloroethene	99%	2 h	Removal through high surface area $(53.4 \text{ m}^2/\text{g})$ particles	Lin et al., 2018
Sulfide-modified nZVI	Trichloroethylene	66%	1 h	Strong corrosion of Fe°	Wang et al., 2020
Sulfide-modified nZVI/graphene aerogel composite	Trichloroethylene	100%	50 min	Electron transfer from Fe core to trichloroethylene	Bin et al., 2020
Heat treated biochar impregnated nZVI	Trichloroethylene	88%	20 min	Chemisorption	Mortazavian et al., 2019

1717 '-' indicates unavailability of information on contact time.

Copper based nanoparticles	Contaminants	Amount removed /removal efficiency	Contact time	Mechanism(s)	References
Chitosan encapsulated CuO	As(V)	28.1 mg/g	3.5 h	Adsorption by electrostatic attraction	Elwakeel & Guibal, 2015
CuO-Fe ₃ O ₄	As(V)	118.11 mg/g	1 h	Removal through protonation and improved electrostatic gravity under acidic conditions	Sun et al., 2017
CuFe ₂ O ₄	As	45.7 mg/g	5 h	Bonding with reactive surface sites	Masunga et al., 2019
Cu NPs intercalated into CNTs	As(III)	>90%	66.7 h	Adsorptive filtration and partial oxidation	Luan et al., 2019
CuO NPs	Cr(VI)	18.51 mg/g	3 h	Removal by chemisorption	Gupta et al., 2016
Alginate-coated chitosan/CuO	Ni(II)	94.48% removal	30 min	Removal through formation of less soluble hydrolyzed products such as NiOH and Ni(OH) ₂ at pH 3.0	Esmaeili & Khoshnevisan, 2016
Nano structured CuO granules	Pb(II)	55.24 mg/g	5 h	Adsorption via strong electrostatic attraction under alkaline conditions	Ahmadi et al., 2012
Amine-functionalized copper ferrite chelated with La(III)	PO ₄ ³⁻	12.6 mg/g	40 min	Chemisorption	Gu et al., 2018
Cu NPs coated biochar (bamboo shoot shell)	Re(VII)	20.91 mg/g	5 h	Complexation	Hu et al., 2018
CuI-CuO NPs loaded activated carbon	Malachite green	136.67 mg/g	≥25 min	Adsorption via electrostatic attraction at low pH	Nekouei et al., 2015
3.025% Cu-embedded chitosan	Rhodamine B	99% degradation	1 h	Degradation through active •OH radicals	Senthil Kumar et al., 2015
CuO nano-needles on GO sheets	Coomassie brilliant blue (CBB), MB, Congo red (CR) and amido black 10B (AB)	>98% removal	13.33 h	Adsorption via strong electrostatic attraction and high surface area of CuO nano-needles on GO sheets	Rajesh et al., 2016
30% Cu ₂ O/TiO ₂	Acid red B	>70% decolorization	1 h	Adsorptive decolorization via electrostatic attraction and large surface area of Cu ₂ O/TiO ₂	Fei et al., 2015

Table S2. Cu NPs for contaminant adsorption/removal/degradation in water.

Bio-engineered Cu NPs	Alizarin Yellow R	89.71%	36 h	Combination of van der Waals forces, electrostatic attraction and H-bonding	Usman et al., 2019
CuO/nanoTiO ₂	MB	99% degradation	5 h	Degradation via electron scavenging effect of Cu^{2+} in seawater	Simamora et al., 2012
Cu-oxide NPs annealed at 600°C	MB	91% degradation	2.5 h	Generation of more electro-hole pairs and reduction in the electron-hole recombination rate	Nwanya et al., 2019
Cu ₂ O-zeolite	1,2-Dichloroethane	83.8% removal	2 h	Removal under UV irradiation at low relative humidity (15%)	Lin et al., 2014
Zero valent Cu	Dichloromethane	90% degradation	1 h	Degradation through hydrodechlorination with a high dose of zero valent Cu (2.5 g/L)	Huang et al., 2012
Zero valent Cu and reductant NaBH ₄	Mono chloroaromatic	90% dechlorinated	12 h	Dechlorination through breaking of Ar-Cl bond by e ⁻ produced by NaBH ₄ and formation of Ar-H bond on zero valent Cu (Cu ⁰).	Raut et al., 2016
Nano CuO	Nitrobenzene	100% degradation	25 min	Degradation by •OH radicals	ElShafei et al., 2014
Cu-doped TiO ₂	Phenol	52% degradation	3 h	Degradation through electron (e ⁻) scavenging effect of Cu ²⁺ and prevention of recombination of electron hole pairs	Sohrabi & Akhlaghian, 2016
Chitosan embedded Cu NPs	4-nitroaniline	Rate of reduction: 7.51×10^{-3} /s	<4.5 min	Cu NP-assisted reduction by NaBH ₄	Bakhsh et al., 2019
Graphene-wrapped zero-valent Cu NPs	Metronidazole	92%	2 h	·OH radical	Xu et al., 2019
Cu NPs	Ibuprofen	36.0 mg/g	1 h	Chemisorption	Husein et al., 2019
Bentonite supported green nZVI-Cu nanocomposite	Tetracycline	95%	1.5 h	OH radical production due to galvanic corrosion of nZVI-Cu	Gopal et al., 2020

Types of CNTs	Modification	Contaminants	Amount adsorbed /removal efficiency	Contact time	Mechanism(s)	References
MWCNTs	TiO ₂ -grafted	Pb(II)	137 mg/g	1 h	Electrostatic attraction	Zhao et al., 2010
MWCNTs	Nano iron oxide coated	Cr(III)	>90%	2 h	Cr (III) removal related to flow rate (inverse relation)	Gupta et al., 2011
MWCNTs	Iron oxide-coated	As(V) and As(III)	As(V): 0.19 mg/g As(III): 1.72 mg/g	30 min	Simple electrostatic Attraction	Addo Ntim & Mitra, 2011
MWCNTs	Al_2O_3	Cd(II)	27.2 mg/g	4 h	Sorption	Liang et al., 2015
MWCNTs	Oxidized	Cd(II)	22.4 mg/g	30 min	Precipitation	Vuković et al., 2010
MWCNTs	Iodide	Hg(II)	123.5 mg/g	2 h	Chemisorption	Gupta et al., 2014
SWCNTs	Thiol derived	Hg(II)	131.0 mg/g	1 h	Chemisorption	Bandaru et al., 2013
MWCNTs	-	Cr(III)	2.07 mmol/g	30 min	Electrostatic attraction	Manilo et al., 2017
Magnetic CNTs	N-doped	Cr(VI)	970.87 mg/g	10 min	Acid medium and reduction reaction between Fe ⁰ NPs and Cr(VI)	Huang et al., 2019
MWCNTs	Fe ₃ O ₄	As(V)	39.1 mg/g	1 h	Inner sphere complex	Mishra & Ramaprabhu, 2010
Purified SWCNTs	-	Zn(II)	41.8 mg/g	1 h	-	Lu et al., 2006
MWCNTs	2-(5-Bromo-2-pyridylazo)-5- (diethylamino)phenol	U(VI)	83.4 mg/g	20 min	Trinuclear, $(UO_2)_3(OH)^{5+}$ formation	Khamirchi et al., 2018
CNTs	Oxidized	Co(II)	69.6 mg/g	20 min	Chemical interaction	Tofighy & Mohammadi, 2011
MWCNTs	Amidoamine	Hg(II)	45.05 mg/g	3 h	Chemisorption	Singha Deb et al., 2017
MWCNTs	Polypyrrole-coated and oxidized	Pb(II) and Cu(II)	Pb(II): 26.3 mg/g Cu(II): 24.4 mg/g	1 h	Deprotonation of NH ₂ and nitrogen	Nyairo et al., 2018
MWCNTs	Chitin/magnetite	Cr(VI)	11.30 mg/g	45 min	Strong interaction with reactive functional groups	Salam, 2017

1721 Table S3. Adsorption of different contaminants onto various carbon nanotubes in water.

MWCNTs	Al ₂ O ₃	Cd(II)	27.21 mg/g	1 h	Electrostatic attraction	Verma & Balomajumder, 2020
CNTs	Chitosan sponge	F⁻	975.4 mg/g	20 min	Functional groups of chitosan and CNTs	Affonso et al., 2020
CNTs	Carbon graphite	Cu(II)	25%	-	Oxidation effect	Zghal et al., 2020
MWCNTs	Oxidation	Diuron	29.82 mg/g	1 h	Electrostatic attraction	Deng et al., 2012
MWCNTs	Oxidation	Methyl orange (MO)	306 mg/g	3.5 h	Electrostatic interaction	Mahmoodian et al., 2015
MWCNTs	Graphene oxide	Methylene blue (MB)	87.9 mg/g	2 h	Electrostatic interaction	Ai & Jiang, 2012
MWCNTs	-	Isoproturon	8.1 mg/g	-	Strong attraction between surface reactive sites and contaminant	Sotelo et al., 2012
SWCNTs	-	Atrazine	4.97 mg/g	-	Chemisorption	Jung et al., 2015
CNTs	Chitosan hydrogel scaffold	Food red 17 and Food blue 1	Food red 17: 1480 mg/g; Food blue 1: 1508 mg/g	50 min	Strong interaction with surface functionalized groups	Gonçalves et al., 2020
MWCNTs	COOH-carboxylate COOH-cysteamine	Amido black 10B	COOH-carboxylate: 90 mg/g COOH-cysteamine: 131 mg/g	18 min	Chemisorption and protonation due to pH of the medium	Sadegh et al., 2016
CNTs	Trimesoyl chloride and m- phenylenediamine grafting	Phenol	261.6 mg/g	50 min	Electrostatic attraction	Saleh et al., 2019
CNTs	Fe/Ni NPs supported	2,6 dichlorophenol	82.6% (dechlorination)	50 min	Bonding with reactive sites of Fe/Ni NPs	Liu et al., 2020
CNTs	Chitosan hydrogel scaffold	Phenol	404.2 mg/g	20 min	Chemisorption	Alves et al., 2019
Magnetic CNTs	Polyethyleneimine	Alizarin Red S	196.08 mg/g	40 min	Interaction with active sites and multiple interactions	Zhang et al., 2019

1723 '-'indicates unavailability of information on contact time.
Heavy metals	Adsorbents	Amount adsorbed /removal efficiency	Contact time	Mechanism(s)	References
Cu(II)	GO	46.6 mg/g	-	Electrostatic attraction and coordination between Cu(II) and carboxyl groups	Yang et al., 2010
Cd(II), Ni(II)	GO	Cd(II): 83.3 mg/g Ni(II): 62.3 mg/g	10 min	Lewis acid base interaction	Tan et al., 2015
Pb(II)	Few layered GO	842 mg/g	24 h	Surface complexation	Zhao et al., 2011
Sb(III)	Reduced GO (rGO)	8.1 mg/g	4 h	van der Waals force	Leng et al., 2012
Zn(II)	GO	245.7 mg/g	20 min	Ion exchange and electrostatic attraction	Wang et al., 2013
Eu(III)	GO nanosheets	175.4 mg/g	48 h	Mononuclear and binuclear complexes	Sun et al., 2012
Hg(II), Cu(II), Pb(II)	EDTA [*] -GO	Hg(II): 268.4 mg/g Cu(II): 301.2 mg/g Pb(II): 508.4 mg/g	Hg(II): 50 min Cu(II): 90 min Pb(II): 40 min	Electrostatic attraction	Cui et al., 2015
Co(II)	GO-NH ₂	116.4 mg/g	5 min	Complexation with carboxyl and amino groups on GO surfaces	Fang et al., 2014
U(VI)	rGO/CoFe ₂ O ₄ /polyaniline	2430 mg/g	4 h	Strong electrostatic attraction	Dat et al., 2018
As(V)	GO/CuFe ₂ O ₄ held onto Fe-Ni foam	125 mg/g	30 min	Ligand exchange	Wu et al., 2018
As(V)	GO/MnFe ₂ O ₄	240 mg/g	20 min	Bonding with active sorption sites	Huong et al. 2016
Pb(II), Cr(III), Cu(II)	Magnetic GO	Pb(II): 200 mg/g Cr(III):24.3 mg/g Cu(II): 62.8 mg/g	Pb(II): 25 min Cr(III): 35 min Cu(II):25 min	Electrostatic attraction and precipitation	Ain et al., 2020

Table S4. Contaminant adsorption capacities of graphene oxide (GO) and GO composites in water.

Hg(II)	Polyamine modified rGO in hydrothermal method	63.8 mg/g	10 min	Chemisorption	Yap et al., 2020
Hg(II)	Sulphur-doped carbon nitride/ graphene oxide	40 mg/g	2 h	Electrostatic attraction	Li et al., 2020
Pb(II)	rGO/Fe NPs	82.4%	10 min	Interaction with active functional groups	Xiao et al., 2019
Phenanthrene, biphenyls	GO	Phenanthrene: 174.6 mg/g Biphenyls: 59 mg/g	-	van der Waals force	Apul et al., 2013
TCP, TCB, 2-napthol, NAPH	GO	TCP: 3.5 mg/g TCB: 1.6 mg/g 2-napthol: 4.2 mg/g NAPH: 0.9 mg/g	24 h	π π interaction	Pei et al., 2013
MB	Exfoliated GO (EGO)	17.3 mg/g	2 h	Electrostatic attraction/ van der Waals force	Ramesha et al., 2011
Methyl violet (MV) and Rhodamine B, (RhB)	EGO	MV: 2.5 mg/g RhB: 1.2 mg/g	MV: 2 h RhB: 25 min	Electrostatic attraction/ van der Waals force	Ramesha et al., 2011
MB	rGO/ZnFe ₂ O ₄	9.7 mg/g	30 min	Bonding with reactive functional groups	Park et al., 2019
2,4-Dichlorophenol	Polysulfone-iron oxide/GO composite	96.5%	-	Oxygen-enriched functional groups and hydrophilicity	Modi & Bellare, 2020
Rhodamine-B	Polysulfone-GO	>90%	4 h	Chemisorption	Zambianchi et al., 2017
MB, RhB, MV	SiO ₂ -GO hybrid	MB: 300 mg/g RhB: 258 mg/g MV: 178 mg/g	3 min	Interfacial catalytic process	Czepa et al., 2020
MB	Sulfated-cellulose GO	421.90 mg/g	<1 h	Chemisorption	Wang et al., 2019
2, 4-Dichlorophenol	α-Fe ₂ O ₃ @Fe ₃ O ₄ shell–core magnetic nanoparticles and GO	>60% degradation	2 h	Large surface area accompanied by pore size diameter	Pang et al., 2020

1726 *EDTA: Ethylenediaminetetraacetic acid; '-' indicates unavailability of information on contact time.

Table S5. List of nanomaterials and their contaminant removal capacities in soil.

Contaminants	Nanomaterials	Removal capacity /degradation efficiency	Contact time	Mechanism(s)	References
Pb(II)	Nano-hydroxy apatite	Concentration decreased by 3-21% in roots and 13- 20% in shoots of ryegrass	30 days (rye grass crop cycle)	Secretion of tartaric increased the Pb adsorption	Ding et al., 2017
Pb(II), Cu(II) and Zn(II)	Calcium phosphate nanoparticles (CPNs)	Pb: > 90% Cu: 50% Zn: 50%	10 days aging of CPNs and soil mixture	Insoluble complex formation between CPNs and heavy metals	Arenas-Lago et al., 2016
Pb(II)	nZVI/citric acid	87% in farmland soil	4 h	Organic acid and metal chelate formation	Wang et al., 2014
Cr(VI)	CMC-stabilized FeS NPs/biochar composite	11.9 to 0.63 mg/L in the leachate	180 days	Strong interaction with reactive surface sites	Lyu et al., 2018
Cr(VI)	nZVI/Cu	99%	10 min	Reduction of Cr(VI) to Cr(III) at low pH and generation of more electrons	Zhu et al., 2016
As	nZVI	40.4%	3 days	Bioaccessibility reduced through surface complexation	Zhang et al., 2010
As	Green iron oxide NPs	67.3%	120 days	Covalent bonding and high Fe content of soil due to application of Fe-oxide NPs	Su et al., 2020
Pb(II)	Biochar supported nZVI	54.68%	90 days	Co-precipitation and secondary Pb-Fe mineral formation under alkaline environment	Peng et al., 2019
Cr(VI)	CMC stabilized FeS NPs	Leachate Cr(VI) immobilized by >90%	42 h	Co-precipitation, adsorption and reduction	Wang et al., 2019
As	nZVI and n-goethite	nZVI: 89.5% n-goethite: 82.5% (decrease in As bioavailability)	-	Inner-sphere complexation	Baragaño et al., 2020

Cd(II)	nZVI/palm BC	Pronounced immobilization in soil	120 days (Rice life cycle)	Sorption and precipitation	Qiao et al., 2018
Sb(V)	nZVI	>90%	6-8 min	Chemisorption	Dorjee et al., 2014
Cd(II)	GO	103.3 mg/g	60 days	Adsorption via chelation to form stable Cd-complexes	Xiong et al., 2018
Decabromodiphenyl ether (BDE-209)	Ni/Fe BNPs	72%	72 h	Mass transfer and Generation of active H ₂ species due to Fe corrosion in water	Xie et al., 2014
Decabromodiphenyl ether (BDE-209)	nZVI immobilized in mesoporous silica microspheres covered with FeOOH (SiO ₂ @FeOOH@Fe)	78%	120 h	Corrosion of Fe	Xie et al., 2016
Polychlorinated biphenyls (PCB)	nZVI	83%	5 days	Hydro-dechlorination by generation of H ⁺ in anode	Gomes et al., 2015
PAHs	Fe ₃ O ₄ /persulfate	75%	24 h	Generation of free radicals or reactive oxygen species	Dong et al., 2018
PAHs	nZVI/BC	40%	30 days	Active sites and functional groups of biochar	Oleszczuk & Kołtowski, 2017
Chlorpyriphos	Laccase immobilized iron oxide NPs	K _d : 112.3 L/kg	30 days	Hydrolysis of chlorpyriphos due to presence of Cu in laccase molecules	Das et al., 2020
Sulfamethazine	nZVI/corn stalk biochar	74%	12 h	Fenton like degradation	Deng et al., 2018
Ibuprofen	nZVI using grape vine leaf extract	66%	73 h	Low pH and faster reactivity	Machado et al., 2013

1729 '-' indicates unavailability of information on contact time.

1730 References

- Addo Ntim, S., Mitra, S. 2011. Removal of trace arsenic to meet drinking water standards using iron
 oxide coated multiwall carbon nanotubes. *Journal of Chemical & Engineering Data*, 56(5), 2077 2083.
- Affonso, L.N., Marques, J.L., Lima, V.V.C., Gonçalves, J.O., Barbosa, S.C., Primel, E.G., Burgo, T.A.L.,
 Dotto, G.L., Pinto, L.A.A., Cadaval, T.R.S. 2020. Removal of fluoride from fertilizer industry
 effluent using carbon nanotubes stabilized in chitosan sponge. *Journal of Hazardous Materials*,
 388, 122042.
- Ahmadi, S.J., Sadjadi, S., Hosseinpour, M. 2012. Adsorption behavior of toxic metal ions on nano structured CuO granules. *Separation Science and Technology*, 47(7), 1063-1069.
- Ai, L., Jiang, J. 2012. Removal of methylene blue from aqueous solution with self-assembled cylindrical graphene–carbon nanotube hybrid. *Chemical Engineering Journal*, **192**, 156-163.
- Ain, Q.-U., Farooq, M.U., Jalees, M.I. 2020. Application of magnetic graphene oxide for water
 purification: heavy metals removal and disinfection. *Journal of Water Process Engineering*, 33, 101044.
- Almeelbi, T., Bezbaruah, A. 2012. Aqueous phosphate removal using nanoscale zero-valent iron. *Journal of Nanoparticle Research*, 14(7), 900.
- Alves, D.C.S., Gonçalves, J.O., Coseglio, B.B., Burgo, T.A.L., Dotto, G.L., Pinto, L.A.A., Cadaval,
 T.R.S. 2019. Adsorption of phenol onto chitosan hydrogel scaffold modified with carbon
 nanotubes. *Journal of Environmental Chemical Engineering*, 7(6), 103460.
- Apul, O.G., Wang, Q., Zhou, Y., Karanfil, T. 2013. Adsorption of aromatic organic contaminants by
 graphene nanosheets: Comparison with carbon nanotubes and activated carbon. *Water Research*,
 47(4), 1648-1654.
- Arenas-Lago, D., Rodríguez-Seijo, A., Lago-Vila, M., Couce, L.A., Vega, F.A. 2016. Using Ca₃(PO₄)₂
 nanoparticles to reduce metal mobility in shooting range soils. *Science of The Total Environment*,
 571, 1136-1146.
- Bakhsh, E.M., Ali, F., Khan, S.B., Marwani, H.M., Danish, E.Y., Asiri, A.M. 2019. Copper nanoparticles
 embedded chitosan for efficient detection and reduction of nitroaniline. *International Journal of Biological Macromolecules*, 131, 666-675.
- Bandaru, N.M., Reta, N., Dalal, H., Ellis, A.V., Shapter, J., Voelcker, N.H. 2013. Enhanced adsorption of
 mercury ions on thiol derivatized single wall carbon nanotubes. *Journal of Hazardous Materials*,
 261, 534-541.
- Baragaño, D., Alonso, J., Gallego, J.R., Lobo, M.C., Gil-Díaz, M. 2020. Zero valent iron and goethite
 nanoparticles as new promising remediation techniques for As-polluted soils. *Chemosphere*, 238,
 124624.
- Bezbaruah, A.N., Thompson, J.M., Chisholm, B.J. 2009. Remediation of alachlor and atrazine
 contaminated water with zero-valent iron nanoparticles. *Journal of Environmental Science and Health, Part B*, 44(6), 518-524.
- Bin, Q., Lin, B., Zhu, K., Shen, Y., Man, Y., Wang, B., Lai, C., Chen, W. 2020. Superior
 trichloroethylene removal from water by sulfide-modified nanoscale zero-valent iron/graphene
 aerogel composite. *Journal of Environmental Sciences*, 88, 90-102.
- 1771 Calderon, B., Fullana, A. 2015. Heavy metal release due to aging effect during zero valent iron
 1772 nanoparticles remediation. *Water Research*, 83, 1-9.
- Crane, R.A., Sapsford, D.J. 2018. Sorption and fractionation of rare earth element ions onto nanoscale
 zerovalent iron particles. *Chemical Engineering Journal*, 345, 126-137.
- 1775 Cui, L., Wang, Y., Gao, L., Hu, L., Yan, L., Wei, Q., Du, B. 2015. EDTA functionalized magnetic
 1776 graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: Adsorption
 1777 mechanism and separation property. *Chemical Engineering Journal*, 281, 1-10.

- 1778 Czepa, W., Pakulski, D., Witomska, S., Patroniak, V., Ciesielski, A., Samorì, P. 2020. Graphene oxide 1779 mesoporous SiO₂ hybrid composite for fast and efficient removal of organic cationic
 1780 contaminants. *Carbon*, **158**, 193-201.
- 1781 Das, A., Jaswal, V., Yogalakshmi, K.N. 2020. Degradation of chlorpyrifos in soil using laccase
 1782 immobilized iron oxide nanoparticles and their competent role in deterring the mobility of
 1783 chlorpyrifos. *Chemosphere*, 246, 125676.
- Dat, T.Q., Ha, N.T., Thin, P.V., Tung, N.V., Hung, D.Q. 2018. Synthesis of RGO/CF/PANI Magnetic
 Composites for Effective Adsorption of Uranium. *IEEE Transactions on Magnetics*, 54(6), 1-6.
- 1786 Deng, J., Dong, H., Zhang, C., Jiang, Z., Cheng, Y., Hou, K., Zhang, L., Fan, C. 2018. Nanoscale zero1787 valent iron/biochar composite as an activator for Fenton-like removal of sulfamethazine.
 1788 Separation and Purification Technology, 202, 130-137.
- Deng, J., Shao, Y., Gao, N., Deng, Y., Tan, C., Zhou, S., Hu, X. 2012. Multiwalled carbon nanotubes as
 adsorbents for removal of herbicide diuron from aqueous solution. *Chemical Engineering Journal*, 193–194, 339-347.
- Ding, L., Li, J., Liu, W., Zuo, Q., Liang, S.-X. 2017. Influence of nano-hydroxyapatite on the metal
 bioavailability, plant metal accumulation and root exudates of Ryegrass for phytoremediation in
 lead-polluted soil. *International journal of environmental research and public health*, 14(5), 532.
- Dong, C.-D., Tsai, M.-L., Chen, C.-W., Hung, C.-M. 2018. Remediation and cytotoxicity study of
 polycyclic aromatic hydrocarbon-contaminated marine sediments using synthesized iron oxide–
 carbon composite. *Environmental Science and Pollution Research*, 25(6), 5243-5253.
- Dorjee, P., Amarasiriwardena, D., Xing, B. 2014. Antimony adsorption by zero-valent iron nanoparticles
 (nZVI): Ion chromatography–inductively coupled plasma mass spectrometry (IC–ICP-MS) study.
 Microchemical Journal, 116, 15-23.
- 1801 Du, Y., Dai, M., Cao, J., Peng, C., Ali, I., Naz, I., Li, J. 2020. Efficient removal of acid orange 7 using a
 porous adsorbent-supported zero-valent iron as a synergistic catalyst in advanced oxidation
 process. *Chemosphere*, 244, 125522.
- 1804 ElShafei, G.M.S., Yehia, F.Z., Dimitry, O.I.H., Badawi, A.M., Eshaq, G. 2014. Ultrasonic assisted 1805 Fenton-like degradation of nitrobenzene at neutral pH using nanosized oxides of Fe and Cu.
 1806 Ultrasonics Sonochemistry, 21(4), 1358-1365.
- 1807 El-Temsah, Y.S., Sevcu, A., Bobcikova, K., Cernik, M., Joner, E.J. 2016. DDT degradation efficiency
 1808 and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil.
 1809 *Chemosphere*, 144, 2221-2228.
- 1810 Elwakeel, K.Z., Guibal, E. 2015. Arsenic(V) sorption using chitosan/Cu(OH)₂ and chitosan/CuO
 1811 composite sorbents. *Carbohydrate Polymers*, 134, 190-204.
- 1812 Esmaeili, A., Khoshnevisan, N. 2016. Optimization of process parameters for removal of heavy metals by
 1813 biomass of Cu and Co-doped alginate-coated chitosan nanoparticles. *Bioresource Technology*,
 1814 218, 650-658.
- Fang, F., Kong, L., Huang, J., Wu, S., Zhang, K., Wang, X., Sun, B., Jin, Z., Wang, J., Huang, X.-J., Liu,
 J. 2014. Removal of cobalt ions from aqueous solution by an amination graphene oxide
 nanocomposite. *Journal of Hazardous Materials*, 270, 1-10.
- Fei, X., Li, F., Cao, L., Jia, G., Zhang, M. 2015. Adsorption and photocatalytic performance of cuprous oxide/titania composite in the degradation of acid red B. *Materials Science in Semiconductor Processing*, 33, 9-15.
- Feng, L., Cao, M., Ma, X., Zhu, Y., Hu, C. 2012. Superparamagnetic high-surface-area Fe₃O₄
 nanoparticles as adsorbents for arsenic removal. *Journal of Hazardous Materials*, 217-218, 439 446.
- 1824 Gomes, H.I., Dias-Ferreira, C., Ottosen, L.M., Ribeiro, A.B. 2015. Electroremediation of PCB
 1825 contaminated soil combined with iron nanoparticles: Effect of the soil type. *Chemosphere*, 131, 157-163.
- 1827 Gonçalves, J.O., da Silva, K.A., Rios, E.C., Crispim, M.M., Dotto, G.L., de Almeida Pinto, L.A. 2020.
 1828 Chitosan hydrogel scaffold modified with carbon nanotubes and its application for food dyes

- removal in single and binary aqueous systems. *International Journal of Biological Macromolecules*, 142, 85-93.
- 1831 Gopal, G., Sankar, H., Natarajan, C., Mukherjee, A. 2020. Tetracycline removal using green synthesized
 1832 bimetallic nZVI-Cu and bentonite supported green nZVI-Cu nanocomposite: A comparative
 1833 study. *Journal of Environmental Management*, 254, 109812.
- 1834 Gu, W., Li, X., Xing, M., Fang, W., Wu, D. 2018. Removal of phosphate from water by amine1835 functionalized copper ferrite chelated with La(III). *Science of The Total Environment*, 619-620,
 1836 42-48.
- 1837 Gupta, A., Vidyarthi, S.R., Sankararamakrishnan, N. 2014. Enhanced sorption of mercury from compact
 1838 fluorescent bulbs and contaminated water streams using functionalized multiwalled carbon
 1839 nanotubes. *Journal of Hazardous Materials*, 274, 132-144.
- 1840 Gupta, V.K., Agarwal, S., Saleh, T.A. 2011. Chromium removal by combining the magnetic properties of
 1841 iron oxide with adsorption properties of carbon nanotubes. *Water Research*, 45(6), 2207-2212.
- 1842 Gupta, V.K., Chandra, R., Tyagi, I., Verma, M. 2016. Removal of hexavalent chromium ions using CuO
 1843 nanoparticles for water purification applications. *Journal of Colloid and Interface Science*, 478, 54-62.
- Hu, H., Sun, L., Jiang, B., Wu, H., Huang, Q., Chen, X. 2018. Low concentration Re(VII) recovery from
 acidic solution by Cu-biochar composite prepared from bamboo (*Acidosasa longiligula*) shoot
 shell. *Minerals Engineering*, **124**, 123-136.
- Hua, Y., Wang, W., Huang, X., Gu, T., Ding, D., Ling, L., Zhang, W.-x. 2018. Effect of bicarbonate on aging and reactivity of nanoscale zerovalent iron (nZVI) toward uranium removal. *Chemosphere*, 201, 603-611.
- Huang, C.-C., Lo, S.-L., Lien, H.-L. 2012. Zero-valent copper nanoparticles for effective dechlorination
 of dichloromethane using sodium borohydride as a reductant. *Chemical Engineering Journal*,
 203, 95-100.
- Huang, J., Cao, Y., Qin, B., Zhong, G., Zhang, J., Yu, H., Wang, H., Peng, F. 2019. Highly efficient and acid-corrosion resistant nitrogen doped magnetic carbon nanotubes for the hexavalent chromium removal with subsequent reutilization. *Chemical Engineering Journal*, 361, 547-558.
- Huong, P.T.L., Huy, L.T., Phan, V.N., Huy, T.Q., Nam, M.H., Lam, V.D., Le, A.-T. 2016. Application of
 graphene oxide-MnFe₂O₄ magnetic nanohybrids as magnetically separable adsorbent for highly
 efficient removal of arsenic from water. *Journal of Electronic Materials*, 45(5), 2372-2380.
- Husein, D.Z., Hassanien, R., Al-Hakkani, M.F. 2019. Green-synthesized copper nano-adsorbent for the
 removal of pharmaceutical pollutants from real wastewater samples. *Heliyon*, 5(8), e02339.
- Jung, C., Son, A., Her, N., Zoh, K.-D., Cho, J., Yoon, Y. 2015. Removal of endocrine disrupting
 compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: A
 review. *Journal of Industrial and Engineering Chemistry*, 27, 1-11.
- 1865 Khamirchi, R., Hosseini-Bandegharaei, A., Alahabadi, A., Sivamani, S., Rahmani-Sani, A., Shahryari, T.,
 1866 Anastopoulos, I., Miri, M., Tran, H.N. 2018. Adsorption property of Br-PADAP-impregnated
 1867 multiwall carbon nanotubes towards uranium and its performance in the selective separation and
 1868 determination of uranium in different environmental samples. *Ecotoxicology and Environmental* 1869 Safety, 150, 136-143.
- Lan, J., Cheng, Y., Zhao, Z. 2014. Effective organochlorine pesticides removal from aqueous systems by
 magnetic nanospheres coated with polystyrene. *Journal of Wuhan University of Technology- Mater. Sci. Ed.*, 29(1), 168-173.
- 1873 Leng, Y., Guo, W., Su, S., Yi, C., Xing, L. 2012. Removal of antimony(III) from aqueous solution by
 1874 graphene as an adsorbent. *Chemical Engineering Journal*, 211-212, 406-411.
- 1875 Li, M., Wang, B., Yang, M., Li, Q., Calatayud, D.G., Zhang, S., Wang, H., Wang, L., Mao, B. 2020.
 1876 Promoting mercury removal from desulfurization slurry via S-doped carbon nitride/graphene
 1877 oxide 3D hierarchical framework. *Separation and Purification Technology*, 239, 116515.
- Liang, J., Liu, J., Yuan, X., Dong, H., Zeng, G., Wu, H., Wang, H., Liu, J., Hua, S., Zhang, S., Yu, Z., He,
 X., He, Y. 2015. Facile synthesis of alumina-decorated multi-walled carbon nanotubes for

- 1880 simultaneous adsorption of cadmium ion and trichloroethylene. *Chemical Engineering Journal*,
 1881 273, 101-110.
- Lin, J.-H., Wu, S.-W., Kuo, C.-Y. 2014. Degradation of gaseous 1,2-dichloroethane using a hybrid
 cuprous oxide catalyst. *Process Safety and Environmental Protection*, 92(5), 442-446.
- Lin, K.-S., Mdlovu, N.V., Chen, C.-Y., Chiang, C.-L., Dehvari, K. 2018. Degradation of TCE, PCE, and
 1,2–DCE DNAPLs in contaminated groundwater using polyethylenimine-modified zero-valent
 iron nanoparticles. *Journal of Cleaner Production*, **175**, 456-466.
- Liu, Z., Ding, C., Gao, P., Xu, Y., Sun, Y., Wen, X., Dai, J., Fei, Z. 2020. Enhanced dechlorination of
 2,6-dichlorophenol by carbon nanotubes supported Fe/Ni nanoparticles: Characterization,
 influencing factors, and kinetics. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 585, 124089.
- Lu, C., Chiu, H., Liu, C. 2006. Removal of zinc(II) from aqueous solution by purified carbon nanotubes:
 kinetics and equilibrium studies. *Industrial & Engineering Chemistry Research*, 45(8), 2850-2855.
- Luan, H., Teychene, B., Huang, H. 2019. Efficient removal of As(III) by Cu nanoparticles intercalated in
 carbon nanotube membranes for drinking water treatment. *Chemical Engineering Journal*, 355,
 341-350.
- Luo, X., Guo, X., Xia, X., Zhang, X., Ma, N., Leng, S., Ullah, S., Ayalew, Z.M. 2020. Rapid and longeffective removal of phosphate from water by zero-valent iron in combination with hypochlorite (ZVI/NaClO). *Chemical Engineering Journal*, **382**, 122835.
- Lyu, H., Zhao, H., Tang, J., Gong, Y., Huang, Y., Wu, Q., Gao, B. 2018. Immobilization of hexavalent
 chromium in contaminated soils using biochar supported nanoscale iron sulfide composite.
 Chemosphere, **194**, 360-369.
- Machado, S., Stawiński, W., Slonina, P., Pinto, A.R., Grosso, J.P., Nouws, H.P.A., Albergaria, J.T.,
 Delerue-Matos, C. 2013. Application of green zero-valent iron nanoparticles to the remediation of
 soils contaminated with ibuprofen. *Science of The Total Environment*, 461-462, 323-329.
- Mahanty, S., Bakshi, M., Ghosh, S., Gaine, T., Chatterjee, S., Bhattacharyya, S., Das, S., Das, P.,
 Chaudhuri, P. 2019. Mycosynthesis of iron oxide nanoparticles using manglicolous fungi isolated
 from Indian sundarbans and its application for the treatment of chromium containing solution:
 Synthesis, adsorption isotherm, kinetics and thermodynamics study. *Environmental Nanotechnology, Monitoring & Management*, **12**, 100276.
- Mahmoodian, H., Moradi, O., Shariatzadeha, B., Salehf, T.A., Tyagi, I., Maity, A., Asif, M., Gupta, V.K.
 2015. Enhanced removal of methyl orange from aqueous solutions by poly HEMA–chitosan MWCNT nano-composite. *Journal of Molecular Liquids*, 202, 189-198.
- Manilo, M.V., Choma, Z.Z., Barany, S. 2017. Comparative study of Cr(III) adsorption by carbon
 nanotubes and active carbons. *Colloid Journal*, **79**(2), 212-218.
- Mansouriieh, N., Sohrabi, M.R., Khosravi, M. 2019. Optimization of profenofos organophosphorus
 pesticide degradation by zero-valent bimetallic nanoparticles using response surface
 methodology. *Arabian Journal of Chemistry*, 12(8), 2524-2532.
- Mao, Q., Zhou, Y., Yang, Y., Zhang, J., Liang, L., Wang, H., Luo, S., Luo, L., Jeyakumar, P., Ok, Y.S.,
 Rizwan, M. 2019. Experimental and theoretical aspects of biochar-supported nanoscale zero valent iron activating H₂O₂ for ciprofloxacin removal from aqueous solution. *Journal of Hazardous Materials*, 380, 120848.
- Mao, Y., Xi, Z., Wang, W., Ma, C., Yue, Q. 2015. Kinetics of Solvent Blue and Reactive Yellow removal
 using microwave radiation in combination with nanoscale zero-valent iron. *Journal of Environmental Sciences*, 30, 164-172.
- Masunga, N., Mmelesi, O.K., Kefeni, K.K., Mamba, B.B. 2019. Recent advances in copper ferrite
 nanoparticles and nanocomposites synthesis, magnetic properties and application in water
 treatment: Review. *Journal of Environmental Chemical Engineering*, 7(3), 103179.

- Mdlovu, N.V., Lin, K.-S., Chen, Z.-W., Liu, Y.-J., Mdlovu, N.B. 2020. Treatment of simulated
 chromium-contaminated wastewater using polyethylenimine-modified zero-valent iron
 nanoparticles. *Journal of the Taiwan Institute of Chemical Engineers*, 108, 92-101.
- Mishra, A.K., Ramaprabhu, S. 2010. Magnetite decorated multiwalled carbon nanotube based
 supercapacitor for arsenic removal and desalination of seawater. *The Journal of Physical Chemistry C*, 114(6), 2583-2590.
- Modi, A., Bellare, J. 2020. Efficient removal of 2,4-dichlorophenol from contaminated water and
 alleviation of membrane fouling by high flux polysulfone-iron oxide/graphene oxide composite
 hollow fiber membranes. *Journal of Water Process Engineering*, 33, 101113.
- Mofradnia, S.R., Ashouri, R., Tavakoli, Z., Shahmoradi, F., Rashedi, H., Yazdian, F., Tavakoli, J. 2019.
 Effect of zero-valent iron/starch nanoparticle on nitrate removal using MD simulation.
 International Journal of Biological Macromolecules, 121, 727-733.
- Morillo, D., Pérez, G., Valiente, M. 2015. Efficient arsenic(V) and arsenic(III) removal from acidic
 solutions with Novel Forager Sponge-loaded superparamagnetic iron oxide nanoparticles. *Journal of Colloid and Interface Science*, 453, 132-141.
- Mortazavian, S., Jones-Lepp, T., Bae, J.-H., Chun, D., Bandala, E.R., Moon, J. 2019. Heat-treated biochar
 impregnated with zero-valent iron nanoparticles for organic contaminants removal from aqueous
 phase: Material characterizations and kinetic studies. *Journal of Industrial and Engineering Chemistry*, **76**, 197-214.
- Nairat, M., Shahwan, T., Eroğlu, A.E., Fuchs, H. 2015. Incorporation of iron nanoparticles into
 clinoptilolite and its application for the removal of cationic and anionic dyes. *Journal of Industrial and Engineering Chemistry*, 21, 1143-1151.
- 1951 Nekouei, F., Nekouei, S., Tyagi, I., Gupta, V.K. 2015. Kinetic, thermodynamic and isotherm studies for
 acid blue 129 removal from liquids using copper oxide nanoparticle-modified activated carbon as
 a novel adsorbent. *Journal of Molecular Liquids*, 201, 124-133.
- 1954 Nwanya, A.C., Razanamahandry, L.C., Bashir, A.K.H., Ikpo, C.O., Nwanya, S.C., Botha, S., Ntwampe,
 1955 S.K.O., Ezema, F.I., Iwuoha, E.I., Maaza, M. 2019. Industrial textile effluent treatment and
 1956 antibacterial effectiveness of *Zea mays* L. Dry husk mediated bio-synthesized copper oxide
 1957 nanoparticles. *Journal of Hazardous Materials*, **375**, 281-289.
- Nyairo, W.N., Eker, Y.R., Kowenje, C., Akin, I., Bingol, H., Tor, A., Ongeri, D.M. 2018. Efficient
 adsorption of lead (II) and copper (II) from aqueous phase using oxidized multiwalled carbon
 nanotubes/polypyrrole composite. *Separation Science and Technology*, 53(10), 1498-1510.
- Oleszczuk, P., Kołtowski, M. 2017. Effect of co-application of nano-zero valent iron and biochar on the
 total and freely dissolved polycyclic aromatic hydrocarbons removal and toxicity of contaminated
 soils. *Chemosphere*, 168, 1467-1476.
- Pang, Y., Zhou, Y., Luo, K., Zhang, Z., Yue, R., Li, X., Lei, M. 2020. Activation of persulfate by
 stability-enhanced magnetic graphene oxide for the removal of 2,4-dichlorophenol. *Science of The Total Environment*, **707**, 135656.
- Park, C.M., Kim, Y.M., Kim, K.-H., Wang, D., Su, C., Yoon, Y. 2019. Potential utility of graphene-based nano spinel ferrites as adsorbent and photocatalyst for removing organic/inorganic contaminants from aqueous solutions: A mini review. *Chemosphere*, 221, 392-402.
- Peeters, K., Lespes, G., Milačič, R., Ščančar, J. 2015. Adsorption and degradation processes of tributyltin
 and trimethyltin in landfill leachates treated with iron nanoparticles. *Environmental Research*,
 1972 142, 511-521.
- Pei, Z., Li, L., Sun, L., Zhang, S., Shan, X.-q., Yang, S., Wen, B. 2013. Adsorption characteristics of
 1974 1,2,4-trichlorobenzene, 2,4,6-trichlorophenol, 2-naphthol and naphthalene on graphene and
 1975 graphene oxide. *Carbon*, **51**, 156-163.
- Peng, D., Wu, B., Tan, H., Hou, S., Liu, M., Tang, H., Yu, J., Xu, H. 2019. Effect of multiple iron-based nanoparticles on availability of lead and iron, and micro-ecology in lead contaminated soil.
 Chemosphere, 228, 44-53.

- Prasad, K.S., Gandhi, P., Selvaraj, K. 2014. Synthesis of green nano iron particles (GnIP) and their
 application in adsorptive removal of As(III) and As(V) from aqueous solution. *Applied Surface Science*, **317**, 1052-1059.
- Qiao, J.-t., Liu, T.-x., Wang, X.-q., Li, F.-b., Lv, Y.-h., Cui, J.-h., Zeng, X.-d., Yuan, Y.-z., Liu, C.-p.
 2018. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils. *Chemosphere*, **195**, 260-271.
- 1985 Rajesh, R., Iyer, S.S., Ezhilan, J., Kumar, S.S., Venkatesan, R. 2016. Graphene oxide supported copper
 1986 oxide nanoneedles: An efficient hybrid material for removal of toxic azo dyes. *Spectrochimica* 1987 Acta Part A: Molecular and Biomolecular Spectroscopy, 166, 49-55.
- 1988 Ramesha, G.K., Vijaya Kumara, A., Muralidhara, H.B., Sampath, S. 2011. Graphene and graphene oxide
 1989 as effective adsorbents toward anionic and cationic dyes. *Journal of Colloid and Interface*1990 *Science*, **361**(1), 270-277.
- Raut, S.S., Kamble, S.P., Kulkarni, P.S. 2016. Efficacy of zero-valent copper (Cu⁰) nanoparticles and reducing agents for dechlorination of mono chloroaromatics. *Chemosphere*, **159**, 359-366.
- Sadegh, H., Zare, K., Maazinejad, B., Shahryari-ghoshekandi, R., Tyagi, I., Agarwal, S., Gupta, V.K.
 2016. Synthesis of MWCNT-COOH-Cysteamine composite and its application for dye removal.
 Journal of Molecular Liquids, 215, 221-228.
- Salam, M.A. 2017. Preparation and characterization of chitin/magnetite/multiwalled carbon nanotubes
 magnetic nanocomposite for toxic hexavalent chromium removal from solution. *Journal of Molecular Liquids*, 233, 197-202.
- Saleh, T.A., Sarı, A., Tuzen, M. 2019. Carbon nanotubes grafted with poly(trimesoyl, m phenylenediamine) for enhanced removal of phenol. *Journal of Environmental Management*, 252, 109660.
- Senthil Kumar, P., Selvakumar, M., Babu, S.G., Jaganathan, S.K., Karuthapandian, S., Chattopadhyay, S.
 2003 2015. Novel CuO/chitosan nanocomposite thin film: facile hand-picking recoverable, efficient
 and reusable heterogeneous photocatalyst. *RSC Advances*, 5(71), 57493-57501.
- Shao, Y., Gao, Y., Yue, Q., Kong, W., Gao, B., Wang, W., Jiang, W. 2020. Degradation of
 chlortetracycline with simultaneous removal of copper (II) from aqueous solution using wheat
 straw-supported nanoscale zero-valent iron. *Chemical Engineering Journal*, **379**, 122384.
- Simamora, A.J., Hsiung, T.L., Chang, F.C., Yang, T.C., Liao, C.Y., Wang, H.P. 2012. Photocatalytic
 splitting of seawater and degradation of methylene blue on CuO/nano TiO₂. *International Journal* of Hydrogen Energy, **37**(18), 13855-13858.
- Singha Deb, A.K., Dwivedi, V., Dasgupta, K., Musharaf Ali, S., Shenoy, K.T. 2017. Novel amidoamine
 functionalized multi-walled carbon nanotubes for removal of mercury(II) ions from wastewater:
 Combined experimental and density functional theoretical approach. *Chemical Engineering Journal*, **313**, 899-911.
- Sohrabi, S., Akhlaghian, F. 2016. Modeling and optimization of phenol degradation over copper-doped titanium dioxide photocatalyst using response surface methodology. *Process Safety and Environmental Protection*, **99**, 120-128.
- Sotelo, J.L., Rodríguez, A.R., Mateos, M.M., Hernández, S.D., Torrellas, S.A., Rodríguez, J.G. 2012.
 Adsorption of pharmaceutical compounds and an endocrine disruptor from aqueous solutions by carbon materials. *Journal of Environmental Science and Health, Part B*, 47(7), 640-652.
- Stevenson, L.M., Adeleye, A.S., Su, Y., Zhang, Y., Keller, A.A., Nisbet, R.M. 2017. Remediation of
 cadmium toxicity by sulfidized nano-iron: the importance of organic material. *ACS Nano*, **11**(10),
 10558-10567.
- Su, B., Lin, J., Owens, G., Chen, Z. 2020. Impact of green synthesized iron oxide nanoparticles on the
 distribution and transformation of As species in contaminated soil. *Environmental Pollution*, 258, 113668.
- Sun, T., Zhao, Z., Liang, Z., Liu, J., Shi, W., Cui, F. 2017. Efficient As(III) removal by magnetic CuO Fe₃O₄ nanoparticles through photo-oxidation and adsorption under light irradiation. *Journal of Colloid and Interface Science*, 495, 168-177.

- Sun, Y., Wang, Q., Chen, C., Tan, X., Wang, X. 2012. Interaction between Eu(III) and graphene oxide
 nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and
 by modeling techniques. *Environmental Science & Technology*, 46(11), 6020-6027.
- Tan, P., Sun, J., Hu, Y., Fang, Z., Bi, Q., Chen, Y., Cheng, J. 2015. Adsorption of Cu²⁺, Cd²⁺ and Ni²⁺
 from aqueous single metal solutions on graphene oxide membranes. *Journal of Hazardous Materials*, 297, 251-260.
- Tofighy, M.A., Mohammadi, T. 2011. Adsorption of divalent heavy metal ions from water using carbon
 nanotube sheets. *Journal of Hazardous Materials*, 185(1), 140-147.
- Tomašević, A., Kiss, E., Petrović, S., Mijin, D. 2010. Study on the photocatalytic degradation of
 insecticide methomyl in water. *Desalination*, 262(1), 228-234.
- Usman, M., Ahmed, A., Yu, B., Peng, Q., Shen, Y., Cong, H. 2019. Photocatalytic potential of bio engineered copper nanoparticles synthesized from *Ficus carica* extract for the degradation of
 toxic organic dye from waste water: Growth mechanism and study of parameter affecting the
 degradation performance. *Materials Research Bulletin*, **120**, 110583.
- Üzüm, Ç., Shahwan, T., Eroğlu, A.E., Lieberwirth, I., Scott, T.B., Hallam, K.R. 2008. Application of
 zero-valent iron nanoparticles for the removal of aqueous Co²⁺ ions under various experimental
 conditions. *Chemical Engineering Journal*, **144**(2), 213-220.
- Verma, B., Balomajumder, C. 2020. Surface modification of one-dimensional carbon nanotubes: a review
 for the management of heavy metals in wastewater. *Environmental Technology & Innovation*, 17, 100596.
- Vilardi, G., Mpouras, T., Dermatas, D., Verdone, N., Polydera, A., Di Palma, L. 2018. Nanomaterials
 application for heavy metals recovery from polluted water: The combination of nano zero-valent
 iron and carbon nanotubes. Competitive adsorption non-linear modeling. *Chemosphere*, 201, 716 729.
- Vuković, G.D., Marinković, A.D., Čolić, M., Ristić, M.Đ., Aleksić, R., Perić-Grujić, A.A., Uskoković,
 P.S. 2010. Removal of cadmium from aqueous solutions by oxidized and ethylenediamine functionalized multi-walled carbon nanotubes. *Chemical Engineering Journal*, 157(1), 238-248.
- Wang, B., Dong, H., Li, L., Wang, Y., Ning, Q., Tang, L., Zeng, G. 2020. Influence of different cocontaminants on trichloroethylene removal by sulfide-modified nanoscale zero-valent iron. *Chemical Engineering Journal*, 381, 122773.
- Wang, G., Zhang, S., Xu, X., Li, T., Li, Y., Deng, O., Gong, G. 2014. Efficiency of nanoscale zero-valent iron on the enhanced low molecular weight organic acid removal Pb from contaminated soil.
 Chemosphere, 117, 617-624.
- Wang, H., Yuan, X., Wu, Y., Huang, H., Zeng, G., Liu, Y., Wang, X., Lin, N., Qi, Y. 2013. Adsorption
 characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution.
 Applied Surface Science, 279, 432-440.
- Wang, S., Ma, X., Zheng, P. 2019. Sulfo-functional 3D porous cellulose/graphene oxide composites for
 highly efficient removal of methylene blue and tetracycline from water. *International Journal of Biological Macromolecules*, 140, 119-128.
- Wang, T., Liu, Y., Wang, J., Wang, X., Liu, B., Wang, Y. 2019. In-situ remediation of hexavalent
 chromium contaminated groundwater and saturated soil using stabilized iron sulfide
 nanoparticles. *Journal of Environmental Management*, 231, 679-686.
- Wu, L.-K., Wu, H., Zhang, H.-B., Cao, H.-Z., Hou, G.-Y., Tang, Y.-P., Zheng, G.-Q. 2018. Graphene
 oxide/CuFe₂O₄ foam as an efficient absorbent for arsenic removal from water. *Chemical Engineering Journal*, 334, 1808-1819.
- Xiao, X., Wang, Q., Owens, G., Chiellini, F., Chen, Z. 2019. Reduced graphene oxide/iron nanoparticles
 used for the removal of Pb (II) by one step green synthesis. *Journal of Colloid and Interface Science*, 557, 598-607.
- Xie, Y., Cheng, W., Tsang, P.E., Fang, Z. 2016. Remediation and phytotoxicity of decabromodiphenyl
 ether contaminated soil by zero valent iron nanoparticles immobilized in mesoporous silica
 microspheres. *Journal of Environmental Management*, 166, 478-483.

- Xie, Y., Fang, Z., Cheng, W., Tsang, P.E., Zhao, D. 2014. Remediation of polybrominated diphenyl
 ethers in soil using Ni/Fe bimetallic nanoparticles: Influencing factors, kinetics and mechanism.
 Science of The Total Environment, 485-486, 363-370.
- Xingu-Contreras, E., García-Rosales, G., García-Sosa, I., Cabral-Prieto, A. 2020. Degradation of methyl
 orange using iron nanoparticles with/without support at different conditions. *Microporous and Mesoporous Materials*, 292, 109782.
- Xiong, T., Yuan, X., Wang, H., Leng, L., Li, H., Wu, Z., Jiang, L., Xu, R., Zeng, G. 2018. Implication of
 graphene oxide in Cd-contaminated soil: A case study of bacterial communities. *Journal of Environmental Management*, 205, 99-106.
- Xu, L., Yang, Y., Li, W., Tao, Y., Sui, Z., Song, S., Yang, J. 2019. Three-dimensional macroporous
 graphene-wrapped zero-valent copper nanoparticles as efficient micro-electrolysis-promoted
 Fenton-like catalysts for metronidazole removal. *Science of The Total Environment*, 658, 219 203
- Xu, Q., Li, W., Ma, L., Cao, D., Owens, G., Chen, Z. 2020. Simultaneous removal of ammonia and
 phosphate using green synthesized iron oxide nanoparticles dispersed onto zeolite. *Science of The Total Environment*, **703**, 135002.
- Yang, B., Zhou, P., Cheng, X., Li, H., Huo, X., Zhang, Y. 2019. Simultaneous removal of methylene blue
 and total dissolved copper in zero-valent iron/H₂O₂ Fenton system: Kinetics, mechanism and
 degradation pathway. *Journal of Colloid and Interface Science*, 555, 383-393.
- Yang, S.-T., Chang, Y., Wang, H., Liu, G., Chen, S., Wang, Y., Liu, Y., Cao, A. 2010.
 Folding/aggregation of graphene oxide and its application in Cu²⁺ removal. *Journal of Colloid* and Interface Science, 351(1), 122-127.
- Yap, P.L., Tung, T.T., Kabiri, S., Matulick, N., Tran, D.N.H., Losic, D. 2020. Polyamine-modified
 reduced graphene oxide: A new and cost-effective adsorbent for efficient removal of mercury in
 waters. *Separation and Purification Technology*, 238, 116441.
- Zambianchi, M., Durso, M., Liscio, A., Treossi, E., Bettini, C., Capobianco, M.L., Aluigi, A., Kovtun, A.,
 Ruani, G., Corticelli, F., Brucale, M., Palermo, V., Navacchia, M.L., Melucci, M. 2017. Graphene
 oxide doped polysulfone membrane adsorbers for the removal of organic contaminants from
 water. *Chemical Engineering Journal*, **326**, 130-140.
- Zghal, S., Jedidi, I., Cretin, M., Cerneaux, S., Abdelmouleh, M. 2020. One-step synthesis of highly
 porous carbon graphite/carbon nanotubes composite by in-situ growth of carbon nanotubes for the
 removal of humic acid and copper (II) from wastewater. *Diamond and Related Materials*, 101,
 107557.
- Zhang, M., Wang, Y., Zhao, D., Pan, G. 2010. Immobilization of arsenic in soils by stabilized nanoscale
 zero-valent iron, iron sulfide (FeS), and magnetite (Fe₃O₄) particles. *Chinese Science Bulletin*,
 55(4), 365-372.
- Zhang, Z., Chen, H., Wu, W., Pang, W., Yan, G. 2019. Efficient removal of Alizarin Red S from aqueous solution by polyethyleneimine functionalized magnetic carbon nanotubes. *Bioresource Technology*, 293, 122100.
- Zhao, G., Ren, X., Gao, X., Tan, X., Li, J., Chen, C., Huang, Y., Wang, X. 2011. Removal of Pb(ii) ions
 from aqueous solutions on few-layered graphene oxide nanosheets. *Dalton Transactions*, 40(41),
 10945-10952.
- Zhao, X., Jia, Q., Song, N., Zhou, W., Li, Y. 2010. Adsorption of Pb(II) from an aqueous solution by
 titanium dioxide/carbon nanotube nanocomposites: kinetics, thermodynamics, and isotherms.
 Journal of Chemical & Engineering Data, 55(10), 4428-4433.
- Zhu, F., Li, L., Ma, S., Shang, Z. 2016. Effect factors, kinetics and thermodynamics of remediation in the
 chromium contaminated soils by nanoscale zero valent Fe/Cu bimetallic particles. *Chemical Engineering Journal*, **302**, 663-669.
- Zou, H., Hu, E., Yang, S., Gong, L., He, F. 2019. Chromium(VI) removal by mechanochemically
 sulfidated zero valent iron and its effect on dechlorination of trichloroethene as a co-contaminant.
 Science of The Total Environment, **650**, 419-426.