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Abstract—Meander lines are promising slow wave structures
(SWSs) for millimeter-wave traveling wave tubes (TWTs) due to
low-cost manufacture, low-voltage operation and high interaction
impedance. However, experimental results on meander lines are
rare in literature.

Phase velocity and interaction impedance are the most impor-
tant parameters for the design and characterization of TWT
SWSs. Their experimental determination in meander lines is
crucial for validating simulations and developing new topologies.

Based on a new theoretical model, this paper presents an
experimental procedure to determine the phase velocity and the
interaction impedance. The method is validated on four different
Ka-band (33-37 GHz) meander line SWSs, including two of a
novel topology.

Index Terms—Interaction impedance, meander line, millimeter
wave, phase velocity, satellite communications, slow wave struc-
ture (SWS), traveling wave tube (TWT)

I. INTRODUCTION

THE exploitation of the millimeter wave spectrum for
satellite communications is growing in interest due to the

wide frequency bands available and the short wavelength that
permits to reduce size and weight of payload. In particular,
the Ka-band (26.5-40 GHz) is opening new perspectives for
High Throughput Satellites (HTS) to be integrated in the
new 5G networks [1], [2]. Traveling wave tubes (TWTs) are
the only devices capable of providing high power over a
wide frequency band to enable satellite internet distribution at
millimeter waves [3]. Microwave TWTs are mostly based on
helix slow wave structures (SWSs). However, above 60 GHz,
helix SWSs are either very expensive or unfeasible to fabricate
due to manufacture limitations. The need of alternative SWSs
feasible at milimeter waves has stimulated the investigation
of new full-metal SWSs such as the folded waveguide or the
double corrugated waveguide [4], [5].

A different family of SWSs, the meander lines, has also
shown promising performance suitable for millimeter-wave
space TWTs. Meander line SWSs have some advantages
in comparison with full-metal structures such as low-cost
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production, lower operation voltage and higher interaction
impedance [6].

The interaction impedance of a SWS determines how ef-
ficient is the exchange of energy between the RF signal and
the electron beam. In space applications, both beam voltage
and interaction impedance are important design parameters for
saving power and reducing the TWT weight, which has direct
implications for the final system and launch costs per satellite
[7]. A high interaction impedance (> 3 Ω) is obtained by
an enhanced axial electric field intensity and more efficient
energy exchange between the RF signal and the electron beam.
This increases the gain per period of the SWS and permits
to reduce the SWS length to produce more compact and
lightweight TWTs. A low beam voltage (< 10 kV) allows
to use lightweight and compact high voltage power suppliers
with substantial payload reduction.

Despite the interest on meander lines, most of the results
in literature are simulations, with experimental validation
limited to S-parameters. The interaction impedance is usually
derived by 3D electromagnetic simulations. An experimental
validation is still missing, but it would be of great importance
for a more accurate characterization of meander line SWSs.

The phase velocity and the interaction impedance of helix
SWSs can be determined, for instance, by solving the field
equations [8] or using resonant or non-resonant perturbation
methods [9], [10].

This work aims to provide an experimental procedure to
determine the phase velocity and, for the first time, the
interaction impedance of meander line SWSs.

The experimental validation of the phase velocity is based
on the measurement of the phase difference between the same
meander line with two different lengths. This method, already
proven to give excellent results applied to metal SWSs [11]
and meander line SWSs [12], has been extended, for the first
time, to Ka-band meander line SWSs.

The second novelty of this work is the development of a
theory to experimentally determine the interaction impedance.
A perturbation method, similar to the one presented in [9] for
helix SWSs based on the work from [13], has been applied for
the purpose. A rigorous analytical method has been developed
to compute the electromagnetic fields of meander lines to
determine the interaction impedance from measurements of
the phase difference between a perturbed and an unperturbed
meander line SWS.

In order to experimentally validate the two approaches for



2 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. XX, NO. XX, XXXX 2021

(a) (b) (c) (d)

Fig. 1. Single period design of the four meander line topologies studied in this
work. SML (a) and SMLR (b) stand for the standard meander line topology
with and without round corners and NML1 (c) and NML2 (d) for two novel
meander line designs.

measuring both dispersion and interaction impedance, four
different meander line topologies have been designed (see
Fig. 1) and manufactured at Ka-band. Two novel meander
lines (NML1 and NML2) are proposed to improve specific
performance depending on the application of the TWT. One,
NML1, offers flatter dispersion over a wide band [14], the
other, NML2, provides higher interaction impedance but over a
narrower band [15]. A standard meander line (SML) (Fig. 1(a))
and the standard meander line with round corners (SMLR)
(Fig. 1(b)) are used as reference for comparison with the two
novel meander lines, NML1 (Fig. 1(c)) and NML2 (Fig. 1(d)).
The experimental results for the phase velocity and the inter-
action impedance of the four meander line SWSs are discussed
and compared with 3D electromagnetic simulations (CST
Microwave Studio [16]). Numerical convergence of results
in simulations was obtained by modelling the metallization
with a local hexahedral mesh with 50 µm3 volumetric cells
corresponding to one cell every 2 µm and 5 µm in the vertical
and horizontal coordinates, respectively.

II. CALCULATION OF THE PHASE VELOCITY

The phase velocity of a SWS can be experimentally cal-
culated from measurements of the phase difference of two
identical SWSs with different lengths (l1 and l2) or number
of periods (n1 and n2). The difference in lengths ∆l is a
multiple integer n = n2 − n1 of the pitch length p of
the periodic structure, ∆l = l2 − l1 = np. The phase
delay τ can be defined as the ratio between the variation
of phase and frequency τ = ∆φ/∆ω. Then, the difference
between the phase delay of the SWSs with different lengths
is ∆τ = ∆φ2/∆ω − ∆φ1/∆ω.

The phase velocity vp = ∆l/∆τ is, therefore, computed as

vp =
np

∆φ2/∆ω − ∆φ1/∆ω
. (1)

III. DETERMINATION OF THE INTERACTION IMPEDANCE

A perturbation method is adopted to derive an expression
for the interaction impedance K in terms of a measurable
quantity such as the propagation constant shift ∆β.

The general equation for the calculation of the interaction
impedance for the mth transverse and nth axial harmonics at
any given point of a particular SWS is given by [17]

Kmn(x, y, z) =
Ez,mn(x, y, z)E∗z,mn(x, y, z)

2β2
nP

(2)

where βn = β + 2πn
p , with βn being the axial phase constant

of the nth space harmonic, β the fundamental axial phase

constant, p the pitch length and m and n integers. Ez,mn is
the longitudinal electric field magnitude of the nth axial and
mth transverse space harmonics, E∗z,mn its complex conjugate
and P is the time averaged RF power flow.

When a physical perturbation is introduced in the system
under analysis, the propagation constant shift between the
perturbed and unperturbed signals can be defined as [13]

∆βn =
ω(ε′ − ε2)

∫
∆V

E′mn(x, y, z) ·E∗mn(x, y, z)dV
4Pp

(3)

where E′mn is the perturbed electric field and E∗mn is the
complex conjugate of the electric field without perturbation. ε′

and V are the permittivity and the volume of the perturbation,
respectively. ε2 is the permittivity of the original medium
where the perturbation is applied.

Equation (2) and (3) are valid for any SWS. However, the
expressions for the electric fields in these equations need to
be derived specifically for the SWS under investigation. In
the following, the method will be applied to general meander
line SWSs. In particular, expressions for the electromagnetic
fields are derived for the four different meander line topologies
studied in this work (see Fig. 1). Nevertheless, the procedure
permits to obtain the expression of the interaction impedance
regardless of the meander line topology.

The model uses a selection of trigonometric functions for
computing the electromagnetic fields of meander lines. Even
though those functions are considered valid for the purpose,
slight differences can be found in literature to describe the
fields depending on the approach adopted [18], [19].

The meander line SWS can be assumed made of perfect
conductor with infinitesimal thickness placed on a lossless and
uniform dielectric substrate. The substrate is surrounded by
perfect conductor walls and a ground plane. Following these
assumptions, the expressions for the longitudinal components
of the electromagnetic field in meander lines can be written
as (adapted from [20] for a more general case)

Ez(x, y, z) =
∞∑

m,n=−∞
Ajk,mn

sinh(αijk,mnYi)

sinh(αijk,mnBi)
sin(kjk,mXjk)e−jβnz,

(4)

Hz(x, y, z) =
∞∑

m,n=−∞
Bjk,mn

cosh(αijk,mnYi)

cosh(αijk,mnBi)
cos(kjk,mXjk)e−jβnz

(5)

where α2
ijk,mn = k2

jk,m + β2
n − ω2µεi.

These expressions contain three indexes i, j and k that
vary according to the spatial disposition of the structure and
are fundamental to correctly characterize the electromagnetic
fields of any meander line topology. Specifically, each index
is linked to one spatial dimension; i and k to the transverse
vertical and horizontal coordinates, respectively, and j to the
longitudinal coordinate.

A standard meander line (SML) enclosed in a rectangular
housing, similar to the structure manufactured in this work, is
considered as an example to describe the index association.
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Fig. 2. xy-plane view of the two regions of the meander line to be analyzed.
t is the thickness of the substrate, a is the length of the substrate and b is the
height of the perfect conductor cavity.

Fig. 3. xz-plane view of the standard meander line. There are five and three
regions along the z and x axis, respectively. s is the distance between two
consecutive strips, w is the strip width, p is the pitch length, a is the length
of the substrate and l is the length of the metallization.

As schematically seen in Fig. 2, the index i (coordinate y)
can be either 1 or 2 depending on the region of analysis
if the metallization is considered to be infinitesimally thin:
the substrate with permittivity ε1 or the medium above with
permittivity ε2. Similarly, the indexes j and k (coordinates
z and x, respectively) can be defined taking as a reference
the schematic shown in Fig. 3. The index j varies from
1 to 5 in order to consider the five regions with different
electromagnetic field. The index k varies from 1 to 3 to define
the substrate and metal regions.

As seen in Fig. 2, the expressions for Yi and Bi in (4)
and (5) do not depend on the meander line topology if this is
considered infinitesimally thin. However, the other parameters,
the field amplitudes Ajk and Bjk, and Xjk and kjk do depend
on the meander line shape and vary accordingly.1

Applying Maxwell’s equations to (4) and (5) allows to
obtain general expressions for the transverse electric field
components as

Ex(x, y, x) =
∞∑

m,n=−∞
j

sinh(αijk,mnYi) cos(kjk,mXjk)

β2
n − ω2µεi

e−jβnz·(
Ajk,mn

∂Xjk

∂x

kjk,mβn
sinh(αijk,mnBi)

+Bjk,mn
∂Yi
∂y

αijk,mnωµ

cosh(αijk,mnBi)

)
,

(6)
Ey(x, y, x) =
∞∑

m,n=−∞
j

cosh(αijk,mnYi) sin(kjk,mXjk)

β2
n − ω2µεi

e−jβnz·(
Ajk,mn

∂Yi
∂y

αijk,mnβn
sinh(αijk,mnBi)

+Bjk,mn
∂Xjk

∂x

kjk,mωµ

cosh(αijk,mnBi)

)
.

(7)
Fig. 4 shows the model of a dielectric cylindrical perturba-

tion placed on top of the standard meander line in a similar

1Expressions for Yi, Bi, Xjk and kjk are derived in App. A for the
standard meander line topology (SML) as an example.

Fig. 4. 3D view of the three regions to be analysed including the perturbation.

configuration to the experimental setup that has been used in
this work. The dielectric perturbation with permittivity ε′ is
placed in the region i = 2. Three regions are defined: the
region within the substrate (i = 1), the region above the
substrate excluding the perturbation (i = 2) and the region
within the perturbation.

The fields within the perturbed region are changed in such
a way that the field amplitudes Ajk and Bjk, and the prop-
agation constant βn are shifted to the equivalent parameters
A′jk, B′jk and β′n, respectively. Setting i = 2 in Yi and Bi
as the perturbation is placed in this region, the perturbed field
components are then expressed as

E′z(x, y, z) =
∞∑

m,n=−∞
A′jk,mn

sinh(α′jk,mnY2)

sinh(α′jk,mnB2)
sin(kjk,mXjk)e−jβ

′
nz,

(8)

E′x(x, y, x) =
∞∑

m,n=−∞
j

sinh(α′jk,mnY2) cos(kjk,mXjk)

β′2n − ω2µε′
e−jβ

′
nz·(

A′jk,mn
∂Xjk

∂x

kjk,mβ
′
n

sinh(α′jk,mnB2)
+B′jk,mn

∂Y2

∂y

α′jk,mnωµ

cosh(α′jk,mnB2)

)
,

(9)
E′y(x, y, x) =
∞∑

m,n=−∞
j

cosh(α′jk,mnY2) sin(kjk,mXjk)

β′2n − ω2µε′
e−jβ

′
nz·(

A′jk,mn
∂Y2

∂y

α′jk,mnβ
′
n

sinh(α′jk,mnB2)
+B′jk,mn

∂Xjk

∂x

kjk,mωµ

cosh(α′jk,mnB2)

)
.

(10)
The interaction impedance can be defined at one arbitrary

point (x0, y0) according to (2) as

Kmn(x0, y0) =
Ez,mn(x0, y0)E∗z,mn(x0, y0)

2β2
nP

. (11)

To relate the interaction impedance at this particular point
Kmn(x0, y0) with the measurable quantity ∆βn, it is neces-
sary to find the relation between the product of fields from
(11) with that from (3).

The approach to find this relation is based on the application
of interface conditions, first, between the dielectric perturba-
tion and its surrounding medium (i = 2), and second, between
the meander line substrate (i = 1) and the medium over it
(i = 2). For the first case, the perturbation is assumed to be
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uniform along the axial direction. Therefore, the continuity of
the tangential Et and normal Dn field components used to
relate the perturbed and unperturbed axial field components is
valid at any point of the perturbation surface and independent
of the z coordinate. Similarly for the second case, at the in-
terface between the substrate (i = 1) and the medium (i = 2),
the tangential Et and the normal Dn field components are
continuous.

Applying all these conditions, the following relationships
between the electric fields can be found

E′z,mn(x, y, z)E∗z,mn(x, y, z) =

Ez,mn(x0, y0)E∗z,mn(x0, y0)·
Gjk,z sinh(α′jk,mnY2) sinh(α2jk,mnY2) sin2(kjk,mXjk),

(12)

E′x,mn(x, y, z)E∗x,mn(x, y, z) =

Ez,mn(x0, y0)E∗z,mn(x0, y0)·
Gjk,x sinh(α′jk,mnY2) sinh(α2jk,mnY2) cos2(kjk,mXjk),

(13)

E′y,mn(x, y, z)E∗y,mn(x, y, z) =

Ez,mn(x0, y0)E∗z,mn(x0, y0)·
Gjk,y cosh(α′jk,mnY2) cosh(α2jk,mnY2) sin2(kjk,mXjk)

(14)

with Gjk,z , Gjk,x and Gjk,y being the coefficients that contain
the particularities of every interface condition applied.2

Every expression obtained for the product between the
perturbed and unperturbed field components (12)-(14) can be
then replaced into (3) as

∆βn =
ω(ε′ − ε2)

4Pp
Ez,mn(x0, y0)E∗z,mn(x0, y0)

∫
∆V

∑
j,k

[Gjk,z sinh(α′jk,mnY2) sinh(α2jk,mnY2) sin2(kjk,mXjk)+

Gjk,x sinh(α′jk,mnY2) sinh(α2jk,mnY2) cos2(kjk,mXjk)+

Gjk,y cosh(α′jk,mnY2) cosh(α2jk,mnY2) sin2(kjk,mXjk)]dV.
(15)

Finally, solving for the product
Ez,mn(x0, y0)E∗z,mn(x0, y0) in (15) and replacing into
(11), the interaction impedance at one selected point
Kmn(x0, y0) can be calculated in terms of the measurable
quantities βn and ∆βn according to

Kmn(x0, y0) =
2p

ω(ε′ − ε2)

∆βn
β2
n

1

Imn
(16)

where Imn is the numerical result of the integral in (15).

IV. EXPERIMENTAL SETUP

The four meander line SWSs in Fig. 1 have been fabricated
with two different number of periods each, n1 = 20 (see Fig.
5) and n2 = 40, in order to be able to measure the phase
velocity. The dimensions of the substrate are 21.812 mm x
2.9 mm for the 20-period length and 33.812 mm x 2.9 mm
for the 40-period length. The substrate is alumina with relative

2Equation (12) is derived as an example in App. B.

Fig. 5. The four different topologies of the 20-period meander line SWSs
manufactured for the experiment.

(a) (b)

Fig. 6. (a) Measurement setup with the waveguide flanges connected to the
housing and (b) bottom half of the housing with one of the meander lines
placed inside.

permittivity ε1 = 9.9 and 127 µm thickness. The metallization
is made of gold with 10 µm thickness.

Two aluminum housings corresponding to the two different
lengths of the meander lines were manufactured. The housings
are designed with two WR28 waveguide ports with dimensions
7.112 mm x 3.556 mm, one at each side of the aluminum
block, that are connected to the waveguide flanges as seen
in the measurement setup in Fig. 6(a). The flanges are then
connected to a Vector Network Analyzer to perform the
measurements. As shown in Fig. 5, the meander lines are
terminated in coupling probes so that the electromagnetic field
applied through the waveguide ports can be coupled to the
meander line. The final assembly of the meander line inserted
into the housing is shown in Fig. 6(b).

The phase velocity measurements for every topology are
performed using the same housing and replacing the inner
meander line for both 20 and 40-period cases. Then, the phase
delay difference is measured for every pair of meander line
topologies to obtain the data in (1).

To compute the interaction impedance, the perturbed phase
is measured after introducing a nylon (ε′ = 3.4) rod with
radius 120 µm, placed at 450 µm from the metal strip as
shown in Fig. 7. The dielectric rod is introduced in the housing
by means of two holes that were drilled at both ends of the
aluminum holder.

As derived in (16), β and ∆β are the quantities that need
to be measured in order to experimentally determine the
interaction impedance. The values of β are obtained from the
phase velocity measurements as β = ω/vp, and ∆β from
the phase difference between the perturbed and unperturbed
circuits as ∆β = ∆φ/l where l is the length of the circuit.
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(a) (b)

Fig. 7. (a) Bottom half of the housing with the perturbation introduced on
top of the meander line. (b) Detail of the perturbation over the meander line.

V. EXPERIMENTAL RESULTS

A. Phase velocity

The measurements of the phase velocity for all the four
meander lines are shown in Fig. 8. A measurement error
has been added to the results considering that, for a same
meander line, different samples were fabricated and measured.
In particular, twenty samples were used, two 20-period and
40-period samples of SML and SMLR and three 20-period
and 40-period samples of NML1 and NML2. Therefore,
to calculate the phase velocity, four curves were computed
for SML and SMLR while nine curves were computed for
NML1 and NML2. The measurement error, represented by a
shadowed area in Fig. 8, is given by the highest and lowest
phase velocity measured for the various samples available. The
measurement curves, which are drawn with solid lines in Fig.
8, are the mean value of the results obtained from the various
samples.

The measurement results for NML1 and NML2 (Fig. 8(c)
and 8(d)) show good correlation with the simulated curves.
However, the experimental curves for SML and SMLR (Fig.
8(a) and 8(b)) show a correct trend but values slightly higher
than the obtained for the simulations at the low-half frequency
band. This difference could be due to manufacture tolerances
or slight deviations in the position of the meander line inside
the housings.

B. Interaction impedance

The experimental curves for the interaction impedance for
the four meander lines considered are compared with the
simulation results in Fig. 9(a) and 9(b) for SML and SMLR,
and Fig. 9(c) and 9(d) for NML1 and NML2. Similar to the
measurements of the phase velocity, two samples of SML and
SMLR and three samples of NML1 and NML2 have been
used for the tests. Therefore, the shadowed areas in Fig. 9,
account for the deviation from the mean value considering the
different samples of the same meander line. The simulated
curves are obtained by two different methods: simulating the
equivalent virtual experiment to obtain the data to apply (16)
and using the Eigenmode solver in CST-MWS based on (2).
The interaction impedance is computed at the centre of the
perturbation, corresponding to a distance of 570 µm from the
metallization (450 µm + 120 µm of the rod radius).

The good agreement between experiment and simulations
demonstrates the validity of the method. In meander lines,
the longitudinal electric field is concentrated close to the

(a) (b)

(c) (d)

Fig. 8. Comparison of the phase velocity measurements (solid curves plus
error) with the simulation curves (dashed curves). (a) SML, (b) SMLR, (c)
NML1 and (d) NML2.

(a) (b)

(c) (d)

Fig. 9. Comparison of the interaction impedance measurements (solid curves
plus error) with the simulation curves using (16) (dashed curves) and using
(2) (dotted curves). (a) SML, (b) SMLR, (c) NML1 and (d) NML2.

metallization. Consequently, the interaction impedance grows
as the calculation point approaches the meander line. The low
interaction impedance measured in Fig. 9 is due to the position
of the perturbation far from the metallization. According to
simulations, if the perturbation is placed at a distance of
50 µm from the metallization, the interaction impedance is
over 3 Ω for the four meander lines. In future experiments,
the perturbation will be placed closer to the meander line to
measure higher values of the interaction impedance.

VI. CONCLUSION

The first experimental computation of the phase velocity
at Ka-band and a new method for measuring the interaction
impedance in meander line SWSs for TWTs have been pre-
sented. Four Ka-band meander line SWSs were manufactured
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and tested to validate the theory. In general, the experimen-
tal results showed good agreement with 3D electromagnetic
simulations.

The presented methods are useful experimental tools for
design and test of a new family of meander line SWSs for a
new generation of low-cost and lightweight space TWTs for
millimeter-wave communications. High interaction impedance
and low beam voltage are important meander line features to
reduce the size and weight of the TWT and the power supply,
with benefits on the mission cost for cost-effective satellite
communication systems.

APPENDIX A
DERIVATION OF THE PARAMETERS Yi, Bi, Xjk AND kjk

Assuming an infinitesimal thickness for the metallization,
the characterization over the transverse vertical component
is not dependent on the meander topology. As seen in
Fig. 2, the structure is divided in two regions along the y
coordinate (i = 1, 2). To obtain the values for Yi and Bi,
these two regions need to satisfy the boundary conditions
of the structure, Ez = 0 at y = 0 and y = b. Therefore,
expressions for the axial component of the electric field can
be obtained depending on the region of analysis as

0 < y < t or i = 1

Ez(x, y, z) =
∞∑

m,n=−∞
Ajk,mn

sinh(α1jk,mnY1)

sinh(α1jk,mnB1)
sin(kjk,mXjk)e−jβnz

with Y1 = y and B1 = t.

t < y < b or i = 2

Ez(x, y, z) =
∞∑

m,n=−∞
Ajk,mn

sinh(α2jk,mnY2)

sinh(α2jk,mnB2)
sin(kjk,mXjk)e−jβnz

with Y2 = b− y and B2 = b− t.

The study over the x and z coordinates depends on the
particular topology of the meander line. The longitudinal
electric field expressions for the standard meander line are
derived according to Fig. 3. Five regions can be defined along
the z coordinate, j = 1, 2, 3, 4, 5, and three regions over the
x coordinate, k = 1, 2, 3. The regions k = 1 and k = 3 refer
to the left and right hand side of the substrate, respectively,
whereas k = 2 is the region containing the metallization.
Therefore, the limits for the regions along the x coordinate
are not fixed and depend on the z position of analysis. For
the case of SML, the fields in regions j = 1 and j = 5 are
the same and also those in regions j = 2 and j = 4. In
order to derive expressions for the parameters Xjk and kjk,
boundary conditions of the structure are applied. Specifically,
Ez = 0 at x = 0 and x = a and also at the areas where
the metallization is located. These expressions can be then
determined as

0 < z < s/2, 3s/2 + 2w < z < p and 0 < x < a/2 + l/2−w
or j = 1, 5 and k = 1

Ez(x, y, z) =
∞∑

m,n=−∞
A11,mn

sinh(αi11,mnYi)

sinh(αi11,mnBi)
sin(k11,mX11)e−jβnz

with k11,m = (2m−1)π
a/2+l/2−w and X11 = x.

0 < z < s/2, 3s/2 + 2w < z < p and
a/2 + l/2 − w < x < a/2 + l/2 or j = 1, 5 and
k = 2

Ez(x, y, z) = 0

0 < z < s/2, 3s/2 + 2w < z < p and a/2 + l/2 < x < a or
j = 1, 5 and k = 3

Ez(x, y, z) =
∞∑

m,n=−∞
A13,mn

sinh(αi13,mnYi)

sinh(αi13,mnBi)
sin(k13,mX13)e−jβnz

with k13,m = (2m−1)π
a/2−l/2 and X13 = a− x.

s/2 < z < s/2 + w, 3s/2 + w < z < 3s/2 + 2w and
0 < x < a/2 − l/2 or j = 2, 4 and k = 1

Ez(x, y, z) =
∞∑

m,n=−∞
A21,mn

sinh(αi21,mnYi)

sinh(αi21,mnBi)
sin(k21,mX21)e−jβnz

with k21,m = (2m−1)π
a/2−l/2 and X21 = x.

s/2 < z < s/2 + w, 3s/2 + w < z < 3s/2 + 2w and
a/2 − l/2 < x < a/2 + l/2 or j = 2, 4 and k = 2

Ez(x, y, z) = 0

s/2 < z < s/2 + w, 3s/2 + w < z < 3s/2 + 2w and a/2 +
l/2 < x < a or j = 2, 4 and k = 3

Ez(x, y, z) =
∞∑

m,n=−∞
A23,mn

sinh(αi23,mnYi)

sinh(αi23,mnBi)
sin(k23,mX23)e−jβnz

with k23,m = (2m−1)π
a/2−l/2 and X23 = a− x.

s/2 + w < z < 3s/2 + w and 0 < x < a/2 − l/2 or
j = 3 and k = 1

Ez(x, y, z) =
∞∑

m,n=−∞
A31,mn

sinh(αi31,mnYi)

sinh(αi31,mnBi)
sin(k31,mX31)e−jβnz

with k31,m = (2m−1)π
a/2−l/2 and X31 = x.

s/2 +w < z < 3s/2 +w and a/2− l/2 < x < a/2− l/2 +w
or j = 3 and k = 2

Ez(x, y, z) = 0
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s/2 + w < z < 3s/2 + w and a/2 − l/2 + w < x < a or
j = 3 and k = 3

Ez(x, y, z) =
∞∑

m,n=−∞
A33,mn

sinh(αi33,mnYi)

sinh(αi33,mnBi)
sin(k33,mX33)e−jβnz

with k33,m = (2m−1)π
a/2+l/2−w and X33 = a− x.

APPENDIX B
DERIVATION OF (12)

The product between the axial components of the perturbed
and the complex unperturbed fields, (8) and the conjugate
equivalent of (4), can be written as

E′z,mn(x, y, z)E∗z,mn(x, y, z) =
A′jk,mn
Ajk,mn

A∗jk,mnAjk,mn·

sinh(α′jk,mnY2) sinh(αijk,mnYi)

sinh(α′jk,mnB2) sinh(αijk,mnBi)
sin2(kjk,mXjk)e−j(β

′
n−βn)z.

(17)

The unperturbed axial field component at one given point (x0,
y0) within the region of perturbation is defined, according to
(4), as

Ez,mn(x0, y0, z) =

Ajk,mn
sinh(α2jk,mnY

0
2 )

sinh(α2jk,mnB2)
sin(kjk,mX

0
jk)e−jβnz,

(18)

and multiplying with its complex conjugate gives

Ez,mn(x0, y0)E∗z,mn(x0, y0) =

Ajk,mnA
∗
jk,mn

sinh2(α2jk,mnY
0
2 )

sinh2(α2jk,mnB2)
sin2(kjk,mX

0
jk).

(19)

Solving for the product between the field amplitudes gives

Ajk,mnA
∗
jk,mn = Ez,mn(x0, y0)E∗z,mn(x0, y0)·

sinh2(α2jk,mnB2)

sinh2(α2jk,mnY 0
2 ) sin2(kjk,mX0

jk)
.

(20)

The continuity of the tangential axial field component at the
perturbation surface implies that at one given point (x1, y1)
of the surface, E′z(x1, y1, z) = Ez(x1, y1, z). By using this
relation, a relationship between the unperturbed and perturbed
field coefficients can be found

A′jk,mn
Ajk,mn

e−j(β
′
n−βn)z =

sinh(α2jk,mnY
1
2 ) sinh(α′jk,mnB2)

sinh(α′jk,mnY
1
2 ) sinh(α2jk,mnB2)

.

(21)

Finally, replacing the expressions from (20) and (21) into
(17), the product of the perturbed and unperturbed fields can
be rewritten in terms of the product between the original and
complex unperturbed axial field components as

E′z,mn(x, y, z)E∗z,mn(x, y, z) =

Ez,mn(x0, y0)E∗z,mn(x0, y0)·
Gjk,z sinh(α′jk,mnY2) sinh(α2jk,mnY2) sin2(kjk,mXjk),

(22)

with

Gjk,z =
sinh(α2jk,mnY

1
2 )

sinh(α′jk,mnY
1
2 ) sinh2(α2jk,mnY 0

2 ) sin2(kjk,mX0
jk)

.

Equation (13) and (14) can be derived in a similar fashion
applying the interface conditions that correspond to each field
component.
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