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WHICH GRAPHS ARE RIGID IN Eg?

SEAN DEWAR, DEREK KITSON AND ANTHONY NIXON

ABSTRACT. We present three results which support the conjecture that a graph is minimally
rigid in d-dimensional ¢,-space, where p € (1,00) and p # 2, if and only if it is (d, d)-tight.
Firstly, we introduce a graph bracing operation which preserves independence in the generic
rigidity matroid when passing from Zi to é;”l. We then prove that every (d, d)-sparse graph
with minimum degree at most d + 1 and maximum degree at most d + 2 is independent in
Zg. Finally, we prove that every triangulation of the projective plane is minimally rigid in éi.
A catalogue of rigidity preserving graph moves is also provided for the more general class of
strictly convex and smooth normed spaces and we show that every triangulation of the sphere
is independent for 3-dimensional spaces in this class.
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1. INTRODUCTION

Triangles, as everyone knows, are structurally rigid in the Euclidean plane, as are tetrahedral
frames in Kuclidean 3-space, or the 1-skeleton of any d-simplex in d-dimensional Euclidean space.
In fact these are examples of minimally rigid structures since the removal of any edge will result
in a flexible structure. More generally, one can consider the structural properties of bar-joint
frameworks obtained by embedding the vertices of a graph G in R?. Such a framework is rigid
if the only edge-length-preserving continuous motions of the vertices arise from isometries of R%.
There is a long and abiding theory of rigidity with its origins in both the work of Cauchy on
Euclidean polyhedra [3] and the work of Maxwell on stresses and strains in structures [16].

Much of the modern theory of rigidity considers a linearisation known as infinitesimal rigidity,
which leads into matroid theory, and concentrates on the generic behaviour of the underlying
graph. Standard graph operations such as Henneberg moves and vertex splitting moves [17]
provide a means of constructing further rigid structures in a fixed dimension d, whereas the coning
operation applied to a rigid d-dimensional structure produces a rigid structure one dimension

higher [20].
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But what happens if the underlying Euclidean metric is changed? An illustrative example
is the observation by Cook, Lovett and Morgan [5] that in any non-Euclidean normed plane a
rhombus with generic length diagonal braces cannot be fully rotated. The study of rigidity for
graphs placed in non-Euclidean finite dimensional normed spaces was initiated by Kitson and
Power [14] (see also [0, [7, [12] eg.). These works include the fundamental result, analogous to the
Geiringer-Laman theorem for the Euclidean plane [15] [I§], that the minimally rigid graphs in
dimension 2 are exactly those that decompose into the edge-disjoint union of two spanning trees.

Throughout this article we consider d-dimensional ¢)-space (denoted ﬂg), where p € (1,00)
and p # 2, and occasionally the more general class of strictly convex and smooth normed spaces.
In Section [2] we provide some necessary background material and present the sparsity conjecture
(Conjecture which is our main motivation for the sections that follow. Our first main result
is in Section [3| where we provide a tight analogue of coning, which we term bracing, to transfer
independence from EZ to Zg“ (Theorem . Using this, we show that for a non-Euclidean
smooth Eg—space the analogue of a d-simplex is a fully braced d-dimensional cross-polytope, in
the sense that its underlying graph Koy is minimally rigid for EZ and there is no smaller d-
dimensional structure with this property. In Section [l we present several simple construction
moves for generating new rigid structures from existing ones in a strictly convex and smooth
space.

Our second main result concerns independence which, as in the Euclidean case, is characterised
by the rigidity matrix (defined below) having full rank. Analogous to a result for Euclidean
frameworks due to Jackson and Jordén [11], we obtain a result showing independence in smooth
non-Euclidean ¢,-spaces for graphs of bounded degree (Theorem [5.1)).

Our final main result concerns the rigidity of triangulated surfaces in dimension 3. It is well-
known that the graph of a triangulated sphere is minimally rigid in the Euclidean space £3 and
that, in general, triangulations of closed surfaces are generically rigid in /3 (see [0} 0] eg). It
follows from Euler’s formula that if G = (V, E) is a triangulation of the sphere then |E| = 3|V |—6
while if G is a triangulation of any closed surface of orientable genus > 0 then |E| > 3|V]. A
graph which is minimally rigid for a non-Euclidean ff;—space must satisfy |E| = 3|V| — 3 and so
such triangulations are clearly either underbraced or overbraced for Eg. Triangulations of the
projective plane, on the other hand, do satisfy the necessary counting condition for minimal
rigidity in non-Euclidean Eg—spaces and we prove that these triangulations are indeed minimally
rigid (Theorem [6.7)).

2. RIGIDITY IN Eg

Let X be a finite dimensional real normed linear space. Let G = (V, E) be a finite simple
graph with vertex set V, and consider a point p = (p,)yey € XV such that the components p,
and p,, are distinct for each edge vw € E. We refer to p as a placement of the vertices of G in
X. The pair (G, p) is referred to as a bar-joint framework in X.

A linear functional f : X — R supports a non-zero point xo € X if f(zg) = ||zol/* and
sup|z<1 |f(@)| = [[zol); if exactly one linear functional supports a non-zero point zo then we
say xg is smooth and define ¢,, to be the unique support functional for zy. A space X is said
to be smooth if every non-zero point in X is smooth. A space X is said to be strictly convex
if |z + y|| < |||l + ||y|| whenever z,y € X are non-zero and z is not a scalar multiple of y (or
equivalently, if the closed unit ball in X is strictly convex). We will make use of the following
elementary facts (see for example [2, Part III] and [4, Ch. II] for a general treatment of these
topics).
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Lemma 2.1. Let X be a finite dimensional normed linear space and let S(X) denote the set
of all smooth points in X together with the point 0 € X. Define I' : S(X) — X* by setting
I'(z) = ¢, and T'(0) = 0. Then,

(i) T is continuous,

(ii) X is strictly convez if and only if T is injective,
(iii) X is smooth if and only if T is surjective, and,

(iv) X is both strictly convex and smooth if and only if T : X — X* is a homeomorphism.

2.1. Configuration spaces. Two bar-joint frameworks (G,p) and (G,p’) in X are said to be
equivalent if |p, —pw || = ||p}, —pl,|| for each edge vw € E, and isometric if there exists an isometry
T : X — X such that p, = T(p)) for all v € V. The configuration space for (G,p), denoted
C(G,p), consists of all placements p’ € X" such that (G, p') is equivalent to (G,p). Alternatively,
we can express the configuration space in terms of the rigidity map,

fG : XV — REa (xv)vev = (Hxv - xw”)vweEa

where we note that C(G,p) = f(;l(fg(p)). The set of placements p’ € XV such that (G, p') is
isometric to (G,p) is denoted O, (note this set depends only on p). It can be shown (see [T,
Lemma 3.4] for example) that O, is a smooth submanifold of XV

2.2. The rigidity matrix. Suppose (G, p) is a bar-joint framework in a normed space X with
the property that p, — p, is smooth in X for each edge vw € E(G). Such placements p are
said to be well-positioned in X. Given a basis by, ...,bg for X, the rigidity matriz for (G, p) is
a matrix R(G,p) = (r¢ (vx)), With rows indexed by E and columns indexed by V' x {1,...,d}.
The entries are defined as follows;

| Ppe—pu(br) if e =vw,
Te,(vk) = { 0 otherwise.
If the rank of R(G,p) is maximal with respect to the set of all well-positioned placements of
G in X then (G, p) is said to be a regular bar-joint framework. If the rigidity matrix R(G, p) has
independent rows then (G, p) is said to be independent in X.

Remark 2.2. Note that if the set S(X) of smooth points in a normed space X is open then
the set Reg(G; X) of regular placements of a graph G = (V,E) in X is an open subset of
XV, This follows immediately from Lemma (1) and the fact that the rank function is lower
semicontinuous.

2.3. Framework rigidity. A regular bar-joint framework (G, p) is rigid in X if the equivalent
conditions of Proposition [2.3| are satisfied.

Proposition 2.3. [7, Theorem 1.1] Let (G, p) be a regular bar-joint framework in a finite dimen-
stonal real normed linear space X. If S(X) is an open subset of X then the following statements
are equivalent.
(1) If v : [0,1] — C(G,p) is a continuous path with v(0) = p and y(1) = p’ then (G,p) and
(G,p) are isometric.
(ii) There exists an open neighbourhood U of p in C(G,p) such that if p' € U then (G,p) and
(G,p') are isometric.
(iii) rank R(G,p) = d|V| — dim T (p), where T (p) denotes the tangent space of the smooth man-
ifold O, at p.

If a bar-joint framework (G, p) is both rigid and independent then it is said to be minimally
rigid in X. A graph G = (V, E) is said to be independent (respectively, minimally rigid or rigid)
in X if there exists a placement p € X" such that the pair (G, p) is an independent (respectively,
minimally rigid or rigid) bar-joint framework in X.
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2.4. Frameworks in Eg. Let Eg denote the d-dimensional vector space R% together with the

1
norm |[(x1,...,2q)|lq == (Zizl |xg|?)e where d > 1 and ¢ € (1,00). With respect to the usual
basis on R?, the rigidity matrix R(G, p) for a bar-joint framework (G,p) in EfIl has entries,

(pv*pw)(q_l) X .
[emp)® Ve i o =,
Te (v,k) = lpo—pwllg

0 otherwise.

Here, for convenience, we use the notation (9 := (sgn(z1)|z1]?, ... ,sgn(xq)|zq|9) and [z]; == zy
for each © = (x1,...,24) € R? Note that by scaling each row of the rigidity matrix by the
appropriate value ||p, — png_z we obtain an equivalent matrix R(G, p) with entries,

_ [(pv - pw)(qil)]k if e = vw,
Te,(vk) = { 0 otherwise.

We refer to R(G,p) as the altered rigidity matriz for (G,p). It can be shown (see [14, Lemma
2.3]) that if ¢ # 2 then dim 7 (p) = d. Thus, for ¢ # 2, a regular bar-joint framework (G, p) in Zg
is rigid if and only if rank R(G,p) = d|V| —d.

Example 2.4. Let G be the wheel graph on vertices V' = {wg, v, v, v3,v4} with center vy and
let ¢ € (1,00). Define p to be the placement of G in Eg where,

Pvy = (070)7 Pvy = (_170)7 Povy = (07 1)7 Do = (170)7 DPvy = (13_1)-

See left hand side of Figure|l|for an illustration. The altered rigidity matrix R(G, p) is as follows,

(vo,1)  (v0,2) (v1,1) (v1,2)  (v2,1)  (v2,2) (v3,1) (v3,2) (va,1) (v4,2)
vour |1 0 -1 0 0 0 0 0 0 0 ]
vova 0o -1 0 0 0 1 0 0 0 0
wvs | —1 0 0 0 0 0 1 0 0 0
v | —1 1 0 0 0 0 0 0 1 -1
v1vs 0 0 -1 -1 1 1 0 0 0 0
vovs 0 0 0 0o -1 1 1 -1 0 0
vava 0 0 0 0 0 0 0 1 0o -1
v1vs 0 0o -—201 1 0 0 0 0 2t

Let M be the 8 x 8 matrix formed by the first 8 columns. We compute det M = 29~ — 2 and
so, for ¢ # 2, rank R(G, p) = 8 = 2|V| — 2. Thus (G, p) is regular and minimally rigid in Eg for
all ¢ # 2. Note that if we instead set p,, = (0, —1) then the resulting bar-joint framework is
non-regular in Eg for all ¢ # 2 (see right hand side of Figure .

pv2 Doy
p’ul pvg pUl pvg

Doy Puy

FIGURE 1. A bar-joint framework in Eg which is regular and minimally rigid (left)
and a bar-joint framework which is non-regular (right), for ¢ € (1,00), q # 2.
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2.5. The sparsity conjecture. Given a graph G = (V, E) and d > 1 we write f;(G) =d|V|—
|E|. We say G is (d,d)-sparse if fq(H) > d for all subgraphs H C G. If G is (d, d)-sparse and
fa(G) = d then G is said to be (d,d)-tight.

Conjecture 2.5. Let ¢ € (1,00), ¢ # 2, and let d > 1. A graph G is independent in Eg if and
only if G is (d, d)-sparse.

The conjecture above is a reformulation of a conjecture from [14] Remark 3.16]. When d =1
the conjecture is true and the result is well-known. The case d = 2 is proved in [14] and is
analogous to a landmark theorem proved independently by Pollaczek-Geiringer [18] and Laman
[15] for graphs in the Euclidean plane. For d > 3, it is known that graphs which are independent
in ¢4 are necessarily (d,d)-sparse (see [14]). Thus, it remains to prove the converse statement:
every (d,d)-sparse graph is independent in Kg for all ¢ € (1,00), ¢ # 2, and for all d > 3.

In this article, we prove this converse statement holds in three special cases: 1) when |V| < 2d,
2) when G has minimum degree at most d + 1 and maximum degree at most d + 2, and 3)
when d = 3 and G is a triangulation of the projective plane. We also provide a catalogue of
independence preserving graph operations, including the well-known Henneberg moves, vertex
splitting and rigid subgraph substitution.

3. DIMENSION HOPPING

In this section we consider two graph operations called coning and bracing. It is well-known
that the coning operation preserves both independence and minimal rigidity when passing from
4 to 4411 (see [20]). We will show that for ¢ € (1,00), ¢ # 2, both the coning operation and
the bracing operation preserve independence (but not minimal rigidity) when passing from 63 to
BZH. A simple application of the coning operation is that the complete graph K411 is minimally
rigid in 5‘21 for all d > 2. Indeed, K5 is minimally rigid in 1-space, and for every d > 2, K411
is obtained from K4 by a coning operation. We will apply the bracing operation to prove the
analogous result that Kgd is minimally rigid in £ , forall d > 2 and all ¢ € (1,00), ¢ # 2. In
particular, Conjecture [2.5] is true whenever G is a subgraph of Koyq.

&%

FIGURE 2. Left: A coning operation applied to K4—e. Right: A bracing operation
applied to Ky — e.

3.1. The coning operation. Let G = (V, E) and define G’ = (V', E’) to be the graph with
vertex set V! =V U{vp} and edge set E' = EU{vpv : v € V}. Then G’ is said to be obtained
from G by a coning operation. (See left hand side of Figure [2| for an illustration).

Theorem 3.1. Let q € (1,00) and let d > 1. Suppose G' = (V' E’) is obtained from a graph
G = (V,E) by a coning operation. If G is independent in Zg then G’ is independent in EZH.

Proof. Choose a placement p such that (G,p) is independent in ég. Let n : Egl — ZZH be the
natural embedding (z1,...,24) — (21,...,24,0). Choose any = € KZH such that [z], ; # 0.
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Define p’ to be the placement of G’ in Eg“ with pj, = n(py) for all v € V and p,, = . Let
w = (We)ecr’ be a vector in the cokernel of R(G’,p’). Then, for each v € V' we have,
_ (q—l)} — [ I (q—1>] _
oy [(po) =)0 = DT [0 )] =0
wENgr (v)

r!hus Wypy = ONfor all v € V and so it follows that the vector (we)ecr lies in the cokernel of
R(G, p). Since R(G, p) is independent, we have w, = 0 for all e € E. Hence, w = 0 and so (G, p’)
is independent in Eg*l. O

3.2. The bracing operation. Let d > 1 and let G = (V,E) be a finite simple graph with
|V| > 2d. Define G to be the graph with vertex set V(G) =V U {vp,v1} and edge set,

EG)=FEU{vyw:we S}U{viw:we S}U{vv1},

where S C V and |S| = 2d. The graph G is said to be obtained from G by a bracing operation
on S. (See right hand side of Figure [2[ for an illustration).

Lemma 3.2. Let G = (V, E) be a graph with |V| > 2d and suppose G is obtained from G by a
bracing operation on S C 'V, where |S| = 2d.

(i) If G is (d,d)-sparse then~é is (d+1,d + 1)-sparse.

(i1) If G is (d,d)-tight then G is (d + 1,d + 1)-tight if and only if G = Kaq.

Proof. (i) Let H be a subgraph of G and let H = HNG. Recall that K41y is (d+1,d+1)-sparse
and so we may assume that |V (H)| > 2d + 2. If H = H then,
[E(H)| <dV(H)| —d=(d+1)|V(H)| ~ (d+1) = |V(H) + 1.
If [V(H)| = |V(H)| + 1 then,
[B(H)| < (dV(H)|~d)+|S| = (d+1)|V(H)| ~ (d+1) = [V(H)| +d+ 1.
Similarly, if |V (H)| = |V (H)| + 2 then,
|E(H)| < dV(H)|—d+2|S|+1=(d+1)|V(H)| - (d+1)—|V(H)|+2d+ 2.

Thus G is (d + 1,d 4 1)-sparse. ) )

(77) By a counting argument similar to (i), G is (d+1, d+1)-tight if and only if |V (G)| = 2d+2.

In the latter case, G is a (d, d)-tight graph with |V| = 2d and so G = Kyg.
O

Theorem 3.3. Let G = (V, E) be a graph with |V| > 2d and suppose G is obtained from G by
a bracing operation on S C V', where |S| = 2d. Let q € (1,00), g # 2, and let d > 1. If G is
independent in Eg then G is independent in €g+1.

Proof. Let p: V — R? be a placement of G in R? and write p, = (pl,...,p%) for each w € V.
Define p : V(G) — R by setting p, = (p,...,p%,0) for all w € V, p,, = (0,...,0,—N)
and p,, = (1,...,1,A) for some positive scalar A > 0. Thus the vertices of G are embedded
in R? x {0} and the two new vertices vy and v; are placed on the hyperplanes z44; = —\ and
Zg+1 = A respectively. After a suitable permutation of rows and columns, the (altered) rigidity
matrix for (G, p) takes the form,

R(G,p) 0
* D(p)

where D(p) is a (2|S| + 1) x (V] + 2(d + 1))-matrix. We will show that D(p) is independent for
some (and hence almost every) choice of p.
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Suppose |V| = 2d. Then S = V and the rows of D(p) are those indexed by the sets Ey =
{vow : w € V} and By = {vjw : w € V} together with the edge vov;. The columns of D(p)
are those indexed by {(w,d 4+ 1) : w € V} together with the pairs (vg,1),...,(vo,d + 1) and

(v1,1),...,(v1,d + 1). Thus, after a suitable permutation of rows and columns, D(p) takes the
form,

(V;d+1) (’L)Q;l,...,d) (vl;l,...,d) (vo,d+1) (vl,d+1)
T\l —\-1 0 ]
Eo Do(p) 0 : :
Pt )1 0
)\ T 0 N T
Eq 0 D1(p) : :
—)\¢1 0 21
vovr | 0 -1 - —1 I - 1 -2t | et

Note that to show D(p) is independent for some p, it is sufficient to show that the square
submatrix of D(p) formed by deleting the (vq,d + 1)-column is independent. Adding each Ej

row, indexed by vow, of this square submatrix to the corresponding F; row, indexed by viw, we
obtain,

(V(G);d+1) (v031,...,d) (v151,.,d) (vo,d+1)
At e L
Eo Dy(p) 0 :
)\q—l _)\q—l
)1
11 0 Do(p) Di(p) :
—)\¢1
vovr | 0 -1 - -1 I -1 -0t

It is clear that the first |V| rows, indexed by Ep, are independent and that it is now sufficient to
show there exists p such that the (2d 4+ 1) x (2d + 1)-matrix,

(vo31,...,d) (v1;1,...,d) (vo,d+1)
—)\¢1
4. B Dyo(p) Di(p) :
: v
won | =1 - =1 | 1 - 1 | (207!
is independent. To this end, let V' = {ws,...,wq,w1,...,wq}. For each i = 1,...,d, choose

Pw; € R? and py, € RY such that,

0 ifi=j ; 1 ifi=j,
Pu,; = { 3 otherwise, and Pa; = 3 otherwise.
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Then, after a suitable permutation of rows and columns, the square submatrix A takes the form,

(U0;17"'7d) (Ul;lr"?d) (’U07d+1)
viw [ _Aqil i
; 21 —2C 20 — 1 :
v1wg —_)\a!
V1w _Aq_l
: I1-2C 2C — 21 :
v1Wq _)\q—l
vwvi L —1 -+ —1 || —(2)\)‘1*1 i
where C'is the d x d-matrix,
1 1 ... _L_ 7
24=2 2q-2
1 1 1
C— 202 2¢-2

Subtracting each v1w; row from the corresponding viw; row and applying further row reductions,
this matrix reduces to,

(UO;L"-vd) (’Ul;lv"':d) (U07d+1)
V1w [ O i
; I I
V1Wqg 0
B:= . —\I T
: 0 C :
v1Wq _)\q—l
wor L O -+ 0 2 ... 2 —(2N)7 1]
For i =1,...,d, let r; denote the row of B which is indexed by vw; and let r. denote the row

indexed by vgv1. Note that C'is a circulant matrix with determinant,

d—1 1\

Thus, since ¢ # 2, C' is invertible and so the rows rq, ..., rq are independent.
Suppose 1. = Zle w;r; for some scalars pq, .. ., ug € R. On considering the (vg,d+ 1) column
it is clear that ch'l:1 w; = 29-1. Moreover, considering the (v1,1) column,

1 1
="

Thus, since g # 2, we have p; = 0. By similar arguments, puo = --- = ug = 0. Thus the matrix
B, and hence also the matrices A and D(p), are independent.

Note that the set of points p for which D(p) is independent is open and dense in RAV(GI, Thus
we may choose p € RUV(G) such that both ]:Z(G, p) and D(p) are independent. In particular,
R(G, p) is independent, as required.

Finally, if |[V| > 2d then note that R(G, p) will have additional columns, indexed by {(w,d+1) :
w € V\S}, with zero entries. These columns do not alter the dependencies between the rows
and so the result follows as above. Il

1
)H1=M1+2q2(ﬂ2+“'+ud)—2=0-

As a corollary we show that Koy is minimally rigid in Eg for g € (1,00), q # 2.
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Corollary 3.4. Let g € (1,00), q # 2.

(i) If |V| < 2d then G = (V, E) is independent in Eg.

(ii) Ksq is minimally rigid in fg for alld > 1.
Proof. 1t is clear that K5 is independent in R. Note that, for all d > 2, K54 is obtained from
Kj@g—1) by a bracing operation on the vertex set of Kyy_1). Thus, by Theorem Koyg is
independent in Kg for all d > 2. If |V| < 2d then G is a subgraph of K54 and hence is independent
in Ef]l. Finally, since Koq4 is independent and |E| = d|V| — d, it is minimally rigid in fg. O
Remark 3.5. We conjecture that Ks; admits a rigid (but not necessarily minimally rigid)
placement in every d-dimensional normed space. This conjecture clearly holds for the Euclidean
norm and the above corollary confirms the conjecture for all non-Euclidean smooth ¢, norms.

The conjecture is also known to hold for all non-Euclidean normed planes (see [6]) and for the
cylinder and hypercylinder norms on R?® and R* respectively (see [13]).

4. GRAPH OPERATIONS

In this section we provide a catalogue of graph operations which preserve independence in
smooth and strictly convex normed spaces. These include the well known Henneberg moves (0
and l-extensions), vertex splitting moves and rigid subgraph substitutions. By applying any
sequence of these graph operations to Ks; we may obtain a large class of minimally rigid graphs
for Eg when ¢ € (1,00) and g # 2.

4.1. 0-extensions.

Definition 4.1. Let G = (V, E) be a graph and define G’ by setting V(G') = V U {v} and
E(G")=EU{vw:w e S}, where S CV and |S| = d. The graph G’ is said to be obtained from
G by a d-dimensional 0-extension on S; see Figure

CEEEES I

FIGURE 3. A 3-dimensional 0-extension.

To prove that 0-extensions preserve rigidity in the generality of strictly convex and smooth
normed spaces we will need the following lemma.

Lemma 4.2. Let X be a finite dimensional real normed linear space which is smooth and strictly
conver and let d = dim X. Let y1,...,yn € X where n < d. Then, for all € > 0, there exists

Yl Yy € X such that ||y;—vyi|| < € for each1 < i <n and ©yls - - Py, are linearly independent
in X*.
Proof. Let € > 0 and let by,...,bq be a basis for X. Define,

Pz (bl) v Py (bd)

0:Xn—>Mn><d(R), (xl,...,xn)|—>

Note that since X is smooth and strictly convex then by Lemma , the duality map I' :
X = X* x© — @, is a homeomorphism. It follows that 6 is also a homeomorphism. Recall
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that the set Z,,«4(R) of independent n x d real matrices is open and dense in M,,«4(R). Thus
071 (Zxa(R)) is dense in X™ and so there exists ¥’ = (y},...,,) € X" such that ||y; — v}|| <€
for each 1 < i < n and 0(y’) is independent. In particular, the linear functionals Pyls - Py, azE
linearly independent, as required. O

In the following proposition, the set of regular placements of G in X is denoted Reg(G; X).

Proposition 4.3. Let X be a finite dimensional real normed linear space which is smooth and
strictly convexr and let d = dim X. Let G = (V, E) be a graph and suppose G’ is obtained from
G by a d-dimensional 0-extension on S C V', where |S| = d. Then G is independent (resp.
minimally rigid) in X if and only if G' is independent (resp. minimally rigid) in X.

Proof. Let 6 be the homeomorphism described in Lemma for n = d. Then 6~(GLg4(R)) is
dense in X¢ where GL4(R) denotes the general linear group of degree d over R. Note that the
map,

n: XV = Mg v(R), = R(G, ),
is continuous. Since the rank function is lower semicontinuous, it follows that Reg(G; X) is open
in XIVI. Thus the intersection

Reg(G; X) N (X x 071 (GLa(R)))
is non-empty in XV|. Let p = (p1,p2) be a point in this intersection and set
p = (p1,p2,0) € X"\ x X9 x X.

Here p' describes a placement of G’ in X in which p; is a placement of the vertices in V\ S, po is
a placement of the vertices in S, and the new vertex v is placed at the origin. After a suitable
permutation of rows and columns, the rigidity matrix for (G’,p’) takes the form,

oy [R(Gp) 0
R(G'.p) = [c(pQ) 9(192)}

As p1 € Reg(G; X) and 0(py) is invertible it follows that p’ € Reg(G’; X). Note that R(G’,p’)
is independent if and only if R(G,p) is independent, and that fy;(G') = f4(G) so the result
follows. O

4.2. 1-extensions.

Definition 4.4. Let G = (V, E) be a graph containing vertices vy, ..., v4+1 and the edge vgvg411 €
E. Define G’ by setting,

V(G/) =Vu {Uo}, E(G/) = (E\{’Ud’l)dJrl}) U {1)01)1, NN ,'UO'UdJrl}.

The graph G’ is said to be obtained from G by a d-dimensional 1-extension on the vertices
V1, ...,0q+1 € V and the edge vquir1 € E; see Figure @

Gt

FIGURE 4. An example of a 3-dimensional 1-extension.
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Proposition 4.5. Let X be a finite dimensional real normed linear space which is smooth and
strictly convex and let d = dim X. Suppose G’ is obtained from G = (V, E) by a d-dimensional
1-extension. If G is independent in X then G’ is independent in X. Further; if both G and G’
are independent then G is rigid in X if and only if G’ is rigid in X.

Proof. Let vg be the unique vertex in V(G') \ V, let vovy,...,vv4r1 € E(G') be the added
edges for distinct vy, ...,v441 € V, and let vgugs1 be the deleted edge. If GG is independent in
X then there exists a placement p of G in X for which (G, p) is independent. By translating
the framework (G,p) we may assume without loss of generality that p, # 0 for all v € V' and
Puvgi1 = —Puy- By Lemma and since the set of independent placements of G is open in XV,
we may also assume that the linear functionals ¢, ... s Ppy, A€ linearly independent. Define a
placement p’ of G' in X by setting p), = p, for all v € V and p,, = 0. We claim that (G, p’) is
independent in X.

Suppose a = (Ge)ecr(cr) € RZ(E) is a linear dependence on the rows of R(G’,p’). From the
entries of the vp-column of R(G’,p’) we obtain,

d—1 d+1
E Aygv; Ppy, + (@vgvy — avovdﬂ)@omd =- E :avovisppéo —Ph; T 0.
i=1 =1

Thus, since Ppoysr-- -3 Ppy, aT€ linearly independent, we have ayyp, = ... = Gyyo, , = 0 and
Qugug = Ougugy, - Define b = (be)eer € R¥ with b, = a. for e # vqug41 and bugvgsr = %avovd- Then
b is a linear dependence on the rows of R(G,p). Thus b = 0 as (G, p) is independent. It now
follows that a = 0 and so (G’,p’) is independent, as required.

The final statement of the proposition follows since fq(G') = f4(G). O

4.3. Vertex splitting.

Definition 4.6. Let G = (V, E) be a graph containing a vertex vg € V' and edges vov; € F for
t=1,...,d — 1. Let G’ be a graph obtained from G by the following process:

(i) adjoin a new vertex wp to G together with the edges wovg, wov1, ..., Wov4—1,
(ii) for every edge of the form vow in E, where w ¢ {v1,...,v4_1}, either leave the edge as it
is or replace it with the edge wow.

The graph G’ is said to be obtained from G by a d-dimensional vertez split at the vertex vy € V
and edges vgvy,...,v0v4—1 € E; see Figure

FIGURE 5. A 3-dimensional vertex split.

For a graph G = (V, E) and a vertex v € V, we will use Ng(v), or N(v) when the context is
clear, to denote the set of neighbours of v in G.

Proposition 4.7. Let X be a smooth and strictly convexr normed space with dimension d. Sup-
pose G’ is a d-dimensional vertex split of G. If G is independent in X then G’ is independent in
X. Further; if both G and G’ are independent then G’ is rigid in X if and only if G is rigid in
X.
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Proof. Let vy, wg,v1,...,v4_1 be as described in Deﬁnition Since G is independent in X there
exists a placement p € XV of G in X such that R(G,p) is independent. Choose y € X\{0}.
By Lemma and since the set of independent placements of G is open in XV, we may
assume that the linear functionals ¢y, ¢p, —p,, ;- - -, Ppy,—ps,_, are linearly independent. Write
E(G") = E1 U Ey U {vpwp} where E; consists of all edges in G’ which are not incident with wy
and Es consists of all edges in G’ of the form vwy with v # vy. Fix a basis by, ...,bg for X and
define R to be the |E(G")| x d|V(G")| matrix with non-zero row entries as described below and
zero entries everywhere else,

(v,) (w,z) (vo,%) (wo,1)

vweEq oo ¢pU,pw (bl) PR 7(va7pw (bz)
vwg € By N (ppv_pvo (bz) “ e P e e “ e _(va—on (bz)
Suppose a € RF (") is a linear dependence on the rows of R. Define b € R¥, where
Qpgv; + Qwge;  if vw =vov; forany i =1,...,d—1,
bow = < Gy if vw = vy but vy ¢ E(G'),
Apw otherwise.

If v # vy then note that ZwENG(v) bowPp,—p, = ZweNG,(U) AowPpy—pw = 0. Also note that
Z:UJGNG(vo) bowPpog—pw = A + B where,

A = auguopy + Z Qogw Ppoy—puw = 05
wGNG/(UQ)\{’u)o}

B = —QygwoPy + Z Awow Ppog—pw = 0.
wEN g (wo)\{vo}

Thus if b # 0 then b is a linear dependence on the rows of R(G, p), a contradiction. We conclude
that b = 0. In particular, we have ay,,;, = —@ug,; forallt=1,...,d—1 and a,,, = 0 for all edges
vw in E(G")\{vowo, vovi, wov; : i = 1,...,d — 1} AS @y, @p, —pyys - s Ppug—po, , are linearly
independent then by observing how the linear dependence acts on the vg columns of R we obtain
Apowo, = 0 and ayyy, =0 for alli=1,...,d—1. Thus a =0 and so R is independent.

Let € > 0 and let R, denote the independent matrix obtained by multiplying the entries of
the vowp row of R by e. Define a placement p’ of G’ in X by setting p), = p, for all v € V
and pivo = py, + €y. Note that for each edge vow € E(G), py, — pw is a smooth point of X.
Thus, using Lemma it follows that for e sufficiently small, the rigidity matrix R(G’,p") will
lie in an open neighbourhood of R, consisting of independent matrices. We conclude that G’ is
independent in X.

The final statement of the proposition follows since fq(G') = f4(G). O

Remark 4.8. There is a natural variant of vertex splitting known as spider splitting. In this
version, d vertices adjacent to vg become adjacent to both vy and wg but there is no edge between
vo and wy, see Figure[] With a simplified version of the proof of Proposition [£.7] above we obtain
the analogous result. The 2-dimensional spider split has been considered in Euclidean contexts
under other names such as the vertex-to-4-cycle move [17].
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FIGURE 6. A 3-dimensional spider split.

4.4. Graph substitution.

Definition 4.9. Let G and H be graphs and choose vy € V(G). A graph G’ is obtained from G
by a vertez-to-H substitution at vg if it is formed by replacing the vertex vy € V(G) with V(H),
adding the edges E(H) and changing each edge vow € E(G) to vw for some v € V(H). See
Figure [7| for an example of a vertex-to- K4 substitution applied to a wheel graph.

FIGURE 7. A vertex-to-K4 substitution at the center vertex of the wheel graph
on 5 vertices. This graph operation will preserve rigidity in any non-Euclidean
2-dimensional normed space [0, Lemma 5.5].

Recall that 7 (p) denotes the tangent space at p of Op; the smooth manifold of placements
isometric to p. Our next result shows that the vertex-to-H substitution move preserves indepen-
dence for a normed space X whenever H is independent.

Proposition 4.10. Let X be a normed space with dimension d and suppose that the set of smooth
points of X form an open subset. Suppose G’ is obtained from G by a vertex-to-H substitution
at vo. If G and H are independent in X then G’ is independent in X . Further; if dim T (r) =d
for any placement v of H and H is rigid in X then G’ is rigid in X if and only if G is rigid in
X.

Proof. Let (G,p) and (H,r) be independent in X. Denote by OV (H) all the edges in G’ with
exactly one vertex in V(H). Let b1,...,bq be a basis for X. Consider the |E(G")| x d|V (G|
matrix R with non-zero row entries as described below,

(v,) (w,1)

vweE(G)NE(G") . Ppy—puw (bz) ce —Ppy—puw (bz)
vweE(H) ce Ory—rw (bl) C —Ory—rw (bl)
vwedV (H), veV (H) e Ppyy—pw (bz) - —Ppyy—pw (bz)

Suppose a € RE(E) is a linear dependence on the rows of R. Define b € RE(G) by setting
bow = auy if vw € E(G) N E(G') and byyw = ayy if the edge vow € E(G) is replaced by
vw € IV (H). If v ¢ Ng(vo) U {vo} then note that,

Z b”w(ppv—Pw = Z AywPpy—pw — 0.

wENgG(v) wWENgr (v)
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If v € Ng(vp) and vvg € E(G) is replaced by vz € 0V (H) then note that,

§ bvwPp, —puw = Az Ppy—py, T E QvwPp,—pw = 0

weNG(v) weNgr (v)\{z}
Since,
Z Z AvwPro—ry = Z avw(Pro—ry + Oro—r,) =0,
veV(H) weNg (v) vweE(H)
we have,
Z bvow gOpvo —pw Z Z Ay Sopvo —Pw
wENgG(vo) vEV (H) weNg (v)\V(H)
= Z Z a'U’lUSOT'v_Tw + Z avw@pvo —Pw
veV(H) \weNg(v) wENqr (vV)\V (H)
= 0.

Thus, if b # 0 then b is a linear dependence on the rows of R(G,p). Since R(G,p) is independent,
it follows that b = 0. In particular, a,, = 0 for all vw € E(G')\E(H). Note that if ag =
(@vw)vweE(H) 18 non-zero then ay is a linear dependence on the rows of R(H,r). Since R(H, ) is
independent, we conclude that ayy = 0 and so a = 0. Thus we have shown that R is independent.

Let € > 0 and let R, denote the independent matrix obtained by multiplying the entries of the
E(H) rows of R by €. Define a placement p’ of G’ in X by setting p), = p, for allv € V(G')\V(H)
and p,, = p,, + €ry for all v € V(H). Note that for each edge vow € E(G), py, — pw is a smooth
point of X. Thus, using Lemma [2.1] it follows that for e sufficiently small, the rigidity matrix
R(G',p') will lie in an open neighbourhood of R, consisting of independent matrices. We conclude
that G’ is independent in X.

If H is also rigid and dim 7 (r) = d for any choice of placement r of H, then we note that
fa(G") = f4(G), thus G’ is rigid if and only if G is rigid. O

Remark 4.11. It can be shown that Proposition holds for any normed space. Since the
proof is significantly more technical we refer the reader to [§] for details.

5. DEGREE-BOUNDED GRAPHS

Recall that Conjecture 2.5 proposed a characterisation of independence in 62. We will prove
the conjecture for a certain family of degree bounded graphs. This is analogous to a theorem of
Jackson and Jordan [IT] who worked in the Euclidean space £4.

Let G = (V,E). For U C V, let G[U] denote the subgraph of G induced by U and let i¢(U), or
simply (U) when the context is clear, denote the number of edges in G[U]. We also use d(U, W)
to denote the number of edges of the form zy with x € U\ W and y € W\ U, where U,WW C V.
Let §(G) denote the minimum degree in the graph G and A(G) denote the maximum degree in
G. Let dg(v), or simply d(v), denote the degree of a vertex v in G.

Theorem 5.1. Let ¢ € (1,00), ¢ # 2 and let d > 3. Suppose G is a connected graph with
0(G) <d+1 and A(G) < d+2 for any d > 3. Then G is independent in Eg if and only if G is
(d, d)-sparse.

To prove the theorem we will need several additional lemmas. The first of these is easily
proved by counting the contribution to both sides.

Lemma 5.2. Let G = (V, E). For any UyW CV we have i(U) +i(W)+d(U W) =i(UUW)+
WU W),
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We will say that U C V' is critical if |[U| > 1 and ¢(U) = d|U| — d.

Lemma 5.3. Let G = (V, E) be (d, d)-sparse and suppose U C 'V is critical. Then dg)(v) > d
for allv e U.

Proof. Suppose U is critical and there exists x € U with dgy) (z) < d. Then
iU —A{z}) =i(U) — dg)(x) = d|U| — d — dey)(z) = d|U — {z}| — de(x) > d|U — {z}| - d,

contradicting the (d, d)-sparsity of G. O
Let G = (V, E). A graph G’ is said to be obtained from G by a (d-dimensional) 1-reduction
at v adding x129 if V(G') = V — {v}, for some vertex v with Ng(v) = {x1,29,...,24+1}, and

E(G") = E\ {vx1,vze,. .., 00001} U {z122}.

Lemma 5.4. Let G = (V, E) be (d,d)-sparse, suppose v € V has d(v) =d+1 and z,y € N(v).
Then the graph resulting from a 1-reduction at v adding xy is not (d,d)-sparse if and only if
either vy € E or there exists a critical set U with x,y € U C V — {v}.

Proof. If xzy € E or there exists a critical set U with x,y € U C V — {v} then it is obvious
that the 1-reduction at v adding zy does not result in a (d,d)-sparse graph. Conversely if a
1-reduction at v adding xy does not result in a (d, d)-sparse graph then either there is a pair of
parallel edges between x and y in the resulting graph giving xy € F or there is a violation of
(d, d)-sparsity. In the latter case let G’ be the graph resulting from the specified 1-reduction.
Then there is a subgraph of Hy = (V1, E1) of G’ with (V1) = d|V4| — (d — 1). Clearly z,y € V7,
otherwise Hj is a subgraph of G contradicting the (d, d)-sparsity of G. Hence Vi, as a subset of
V, is the required critical set in G. O

The key technical lemma we will need is the following.

Lemma 5.5. Let d > 3 and suppose G = (V, E) is (d,d)-sparse. Suppose v € V has d(v) = d+1
and d(x) < d+2 for all x € N(v). Then there is a 1-reduction at v which results in a (d, d)-sparse
graph unless G[{v} U N (v)] = Kg42.

Proof. Suppose G[{v} U N(v)] # Kg12. Then without loss of generality we may suppose that
xy ¢ E for some x,y € N(v). Hence Lemma implies there is a critical set U C V — v with
x,y € U. Choose U to be the maximal critical set containing x,y but not v. If N(v) C U then
i(UU{v}) > d|U U {v}| — d, contradicting (d, d)-sparsity. So without loss of generality we may
suppose w ¢ U for some w € N(v) \ {z,y}.

Suppose there is a critical set W with y,w € W C V — {v}. Then, by the maximality of
U, UUW is not critical, so i(U U W) < d|UUW|— (d+ 1). Since G is (d,d)-sparse we also
have (U NW) < d|JU N W/| — d. Now using Lemma [5.2] we get d|U| + d|W| — 2d + d(U, W) <
dUUW|+dlUNW|—2d—1, a contradiction.

Hence Lemma [5.4] implies that yw € E. The same argument applied to the pair x, w implies
that zw € E. Since d > 3, there exists z € N(v) \ {z,y,w}. If z ¢ U then we can repeat the
same argument to the pair y, z to find that yz € E. However this would imply that d + 2 >
d(y) > dgu)(y) + 3, which is a contradiction by Lemma Hence for all z € N(v) \ {z,y,w}
we have that z € U. We may now apply the previous argument to each pair z,w to see that
each zw € E. Hence w has d neighbours in U so U’ = U U {w} is critical, contradicting the
maximality of U. 0

We can now prove the theorem.

Proof of Theorem [5.1. Necessity is easy. For the sufficiency we use induction on |V|. The base
cases are K and Kgo. The latter of which is independent in Eg by Corollary (1)
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Suppose G = (V, E) is (d,d)-sparse, |V| > 2, G # Ky42 and v € V has minimum degree.
Suppose first that G — v is disconnected. Then each component H; = (V;, E;) of G — v is
connected with §(H;) < d+ 1 and A(H;) < d + 2. Hence H; is independent in Kg by induction.
Since dp,4+4(v) < d, Proposition implies that G[V; + v] is independent in Kg. Hence G is
independent in Eg by Proposition Thus we may suppose that G — v is connected.

Suppose d(v) < d. Then G — v is connected with 6(G — {v}) < d+1 and A(G — {v}) < d+2.
Hence G — {v} is independent in ég by induction and G is independent in Egl by Proposition
Thus we may suppose that d(v) = d + 1. Suppose G[{v} U N(v)] # Kgy2. Then Lemma
implies there is a 1-reduction at v which results in a (d, d)-sparse graph G'. Since G — {v} is
connected, G’ is connected. Since §(G) < d+ 1 and A(G) < d + 2 we also have §(G') < d+1
and A(G') < d + 2. By induction G’ is independent in ¢¢ and hence G is independent in (2 by
Proposition [£.5

Hence G[{v} U N(v)] = Kgyo2. Since G # Kgyo, there exists u € V' \ V(Kz42). Consider
H = G — K415. Each component H; of H is connected with §(H;) < d+ 1 and A(H;) < d+ 2.
Hence H; is independent in Eg by induction, and trivially H is independent in EZ. Note that
for each vertex r € K9, there is at most one edge of the form rs where s € H. Thus G is a
subgraph of the graph formed from K3 by a vertex-to-H move on t where ¢ is the vertex of
K413 not in the Ky, o. Also, since d > 3, K443 is independent in Eg by Corollary (1) That G
is independent in 62 now follows from Proposition m O

We close this section by noting another independence result for normed spaces which we adapt
from [I1]. This time we may use the combinatorics of [11] directly.

Theorem 5.6. Let X be a smooth and strictly convexr normed space of dimension 3 and let
G = (V,E) be a graph such that i(U) < 3(5|U| —7) for all U C V with |U| > 2. Then G is
independent in X.

Proof. We use induction on |V|. If |V| = 2 then trivially K5 is independent in X. If |V| > 3
then, in the proof of [I1, Theorem 5.1], it was shown that there must exist a O-reduction or a
1-reduction on G to a smaller graph satisfying the hypotheses of the theorem. Since this smaller
graph is independent in X by induction the proof is completed by application of Propositions

[4.3] and 4.5 O

Note that neither Theorem nor are best possible. Indeed if Conjecture [2.5]is true then
one can remove the degree hypotheses in Theorem and replace the sparsity assumption in
Theorem by (3, k)-sparsity, where k is the dimension of the isometry group of the normed
space. On the other hand it seems to be a difficult problem to work with vertices of degree 5 so
even extending Theorem [5.6[ to include the case when i(U) = 15|U| may be challenging.

6. SURFACE GRAPHS

In this final section we consider the graphs of triangulated surfaces. We will use our results
to deduce first that every triangulation of the sphere is independent in Eg and then that every
triangulation of the projective plane is minimally rigid in Eg for 1 < g # 2 < co. To this end
we will use the following topological results providing recursive constructions of triangulations
of the sphere and of the projective plane by vertex splitting due to Steinitz [19] and Barnette
[1]. In the statements we use topological vertex splitting to mean a vertex splitting operation
that preserves the surface, and we use K7 — K3 to denote the unique graph obtained from K
by deleting the edges of a triangle.

Proposition 6.1 ([19]). Every triangulation of the sphere can be obtained from K4 by topological
vertex splitting operations.
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Proposition 6.2 ([I]). Every triangulation of the projective plane can be obtained from Kg or
K7 — K3 by topological vertex splitting operations.

Theorem 6.3. Let X be a smooth and strictly convex normed space of dimension 3, and let G
be a triangulation of the sphere. Then G is independent in X.

Proof. Let G be a triangulation of the sphere. Proposition shows that G can be generated
from K4 by vertex splitting operations. We may use Proposition [£.3] to deduce that Ky is
indepedendent in X and Proposition [£.7] shows that vertex splitting preserves minimal rigidity
in X. The theorem follows from these results by an elementary induction argument. O

To give an analogous result for the projective plane we will need to restrict to 62 and make
use of the following lemmas.

Lemma 6.4. Letx >y > 0. Ifk > 1 then 2* —y* > (x—1)¥ and if k < 1 then 2 —y* < (z—y)*.

Proof. Fix y € (0,00) and define the smooth function f : (y,00) — R, t = tF —yF — (t —y).
We note that f/(t) = kt*=1 — k(t — y)*~1. If k£ > 1 then f/(t) > 0 and f is strictly increasing,
while if £ < 1 then f'(t) < 0 and f is strictly decreasing. As lim;_,, f(t) = 0, it follows that if
k > 1 then f(t) > 0, while if £ < 1 then f(¢) < 0. The result now follows by choosing = > y and
rearranging f(x). O

Lemma 6.5. Let g € (1,2) U (2,00), let v € (0,1) and let p7 be the placement of the complete
graph K4 on the vertex set {vg,v1,va, v3} with,

Py, = (0,0), pJ, =(0,1), pj,=(-1,0), pl,=(r,7):
Then (K4,p") is independent in K?].
Proof. Consider the 6 x 6-matrix
[0 1 0 0 0 0 |
0 0 -1 0 0 0
o 0 0 0 0 a1 a1
My = 1 1 —1 —1 0 0
=yt L=yt 0 0 vt =yt
| 0 0 G S0 K L O B o) L L

Note that M, is the submatrix of the altered R(K4, p?Y) formed by removing the columns corre-
sponding to vg. Thus, if M, is invertible then (K4,p”) is independent. We have,

det My = (7771 (297 = (L+7)" " + (1 =9)"7).
By Lemma[6.4] if ¢ — 1 > 1 then,
L+ = (A=) > 2070 > 2907
while if ¢ — 1 < 1 then,
L+ = L=yt <207yt <2907t
Thus det M, # 0 and so M, is invertible, as required. O
Lemma 6.6. The graph K7 — K3 is minimally rigid in fg for any q € (1,00),q # 2.

Proof. Let G := K7 — K3 be the graph with vertex set V := {vg, v1,v2,v3,a,b,c} and edge set
E := K(V)\ {ab,ac,bc}. Choose v € (0,1). We now define a placement p of G in £3 by putting

p'UO = (07070)7 p’Ul - (07 170)7 pvg - (_17070)7
Pa = (0707_1)7 Py = (1>1>1)a

p'UB = (7777())7
De = (17071)'
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Let (K4, r) be the bar-joint framework in 62 with,
Tvg = (070)7 Ty, = (Oa 1)7 Tvy = (_170)7 Tvg = (77’7)'

Then, by Lemma the altered rigidity matrix R(Ky,r) is independent. By shifting all (v;;1)
and (v;;2) columns of R(G,p) to the left, we obtain the matrix

R(Ky,7) Ogx13
* M ’
where for any a € R we define a,,«,, to be the n x m matrix with a for each entry, and M is a

12 x 13 matrix. To show R(G, p) is independent it suffices to show M has row independence.
By reordering rows and columns if needed, we have that

(v072)"'(v37‘z) (avx) (a’y) (bvx) (bvy) (C,:C) (C:y) (avz) (bvz) (C,Z)

via, 0<i<3 Iy Az Ay Osx1 Osxr Oaxr Osx1 —laxa Osx1 Osxa
M = wvb, 0<i<3 —1Iy O4x1 Oax1 Bz By Oax1 Osx1 Osx1 laxi Osxa
vie, 0<i<3 —1y O4x1 Oax1 Osx1 Osx1 Cr Cy  Ogx1 Osx1 laxa
(we order the rows (vg,a),. .., (vs,a), etc.) where I4 is the 4 x 4 identity matrix and
0 0
0 -1
Ay = 1 , Ay = 0 = Cy,
_,yq—l _fyq—l
1 1
1 0
B, = 9q—1 = C,, B, = 1
(1 =)t 1=yt

By applying row operations to M we obtain a 12 x 13 matrix of the form

I4 *
Ogxa N |’
where N is the 8 x 9 matrix

Ar Ay By By Oax1 Osx1 —laxt laxi Osxa
Az Ay Opa Our Cp Oy —luxr Oaxi laxa |7

and we note that the rows of N are linearly independent if and only if the rows of M are
linearly independent. By adding the seventh and ninth columns to the eighth column followed
by subtracting the first four rows of N from the last four rows of N (i.e. subtract the first from
the fifth, the second from the sixth, etc.) we obtain

Ax Ay Bx By O4x1 Oax1 —laxi Osx1 Osxi
O4x1 O4x1 —Ba: —By Cx Cy O4x1 O4x1 laxi ’

We may remove the eighth column to obtain the 8 x 8 matrix

|

0 0 1 1 0 0 -1 0

0 -1 1 0 0 0 -1 0

1 0 2¢-1 1 0 0 -1 0

0| T =t A=yt -yt 0 0 -10
' 0 0 -1 -1 1 0 0 1
0 0 -1 0 1 -1 0 1

0 0 —2a-1 -1 211 0 0 1

0 0 —(1-77" Q-9 1=yt 1 0 1
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and note that the rows of N are linearly independent if and only if the rows of O are linearly
independent. By subtracting the first row from the second, third and fourth rows, and by
subtracting the fifth row from the sixth, seventh and eighth rows, followed by deleting the first
and fifth rows and the last two columns, we obtain the 6 x 6 matrix

0 —1 0 —1 0 0
1 0 201 1 0 0 0
JE e L L € ) Ll S O ) 0 0
0 0 0 1 0 —1
0 0 —20=1 41 0 201 1 0
0 0 1=y +1 —(1-7""+1 1=y =1 —!

and, as det P = det O, O is invertible if and only if P is invertible. By subtracting the second
column of P from the fourth, adding the sixth column of P to the fourth, and then deleting the
second and sixth columns and the first and fourth rows, we obtain the 4 x 4 matrix

1 2071 —1 0 0
o= | " A-ol (=)t 14y 0
- 0 —2071 41 0 2071 —1
0 —(1-7""+1 Q-7+l (1-y) -1
and, as det ) = —det P, P is invertible if and only if @ is invertible. By adding the fourth

column of @) to the second and then deleting the third row and fourth columns, we obtain the
3 X 3 matrix

1 201 —1 0
Ri=| =" (1-7)1"=1 (1-9)" 1447
0 0 —(1 =) 1=yt

Since det R = (1 — 297 1) det Q and 2971 # 1, Q is invertible if and only if R is invertible.
We now calculate that

det R = ((1 =771 = (1= 7)) (1= 7)™+ (29)7 = (1 4477)),
thus R is not invertible if and only if either 1 — 97! = (1 — )% or
(1) @) =T A=) 1= (2 T (1) -1 =0

By Lemma [6.4] as ¢ # 2 and 1 > =, the first equality cannot hold, thus R is invertible if and
only if Equation does not hold.
Consider the continuous function f : R — R with

flz): =2 =12t + (1 —2)T 1t —1.

Note that f(1) = 2971 —2 £ 0, as ¢ # 1, and so we can choose v € (0,1) such that f(v) # 0.
Thus Equation [1| does not hold and R is invertible. This now implies that R(G,p) has linearly
independent rows, thus K7 — K3 is independent in 62. Since f3(K7 — K3) = 3 also, we have that
K7 — K3 is minimally rigid in Eg. O

Theorem 6.7. Let G = (V, E) be a triangulation of the projective plane. Then G is minimally
rigid in Eg for all g € (1,00), q # 2.

Proof. We prove the result by induction on |V|. Corollary [3.4(ii) shows that Kg is minimally
rigid in Kg and Lemma shows that K7 — K3 is minimally rigid in 62. Let G = (V,E) be a
triangulation of the projective plane. Proposition [6.2] shows that G can be generated from K¢ or
K7 — K3 by topological vertex splitting operations. We can now apply Proposition [4.7] to show
that G is minimally rigid in 63 completing the proof. U
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