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Abstract

Measuring electron temperature is an important method to understand the
stability and coherence of a quantum circuit, since this variable describes
how ‘quiet’ the electronic environment is. In this thesis, the construction,
calibration and operation of a quantum dot electron thermometer is demon-
strated in two different cryostats. Compared to previous implementations of
a quantum dot thermometer, the work presented here is unique in that it only
requires a single gate connection to calibrate and operate, which simplifies
the application of the device substantially. For the thermometer calibration,
a physical model of the quantum-dot reservoir system was developed, which
reveals information usually obtained from a stability diagram. Electron ther-
mometry was successfully performed with the calibrated thermometer in a
1.0 K to 3.0 K range. With the fastest mode of operation the quantum dot
thermometer was shown to have a sensitivity of 3.7± 0.3 mK/

√
Hz at 1.3 K.

This device provides a new versatile, sensitive and effective tool for moni-
toring electron temperature in nanoelectronic devices at cryogenic tempera-
tures. Also in this thesis, several plastic solid-void structures were demon-
strated to offer excellent thermal and structural properties at sub-Kelvin tem-
peratures. Good low temperature insulators are extremely useful for sup-
port cryogenic components and sample environments without leaking un-
wanted heat. A structure fabricated from commercially available ABS LEGO
elements was shown to be effective at thermally insulating two bodies at
sub-Kelvin temperatures, with a thermal conductivity of κ = (8.7± 0.3) ×
10−5T1.75±0.02 Wm−1K−1. Similar scale 3D printed ABS and PLA gyroid struc-
tures were shown to also be effective as low-temperature insulators, having
a thermal conductivity of κ = (3.07± 0.05) × 10−5T1.72±0.02 Wm−1K−1 and
κ = (4.45 ± 0.05) × 10−5T1.64±0.02 Wm−1K−1, respectively. These samples
demonstrate how low temperature insulation can be improved with readily
available, fully customisable and affordable components.
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Chapter 1

Introduction

1.1 Motivation

Today, physicists have the exciting task of experimentally realising quantum
phenomena in ways that were impossible to achieve during the development
of the theory 100 years ago. The technology now exists to construct ∼ nm
scale devices and control them, therefore providing the freedom to design
and construct scalable quantum circuitry. A notable example is the quan-
tum computer, which uses the superposition of quantum states in an array
of ‘qubits’ to produce advanced logic beyond the reach of classical compu-
tation [2, 3, 4]. Most quantum electronic systems in their current form are
highly sensitive to many forms of energy. Mechanical, electromagnetic and
thermal noise all can limit the performance and capabilities of both classical
and quantum circuits. All of these forms of noise are minimised inside the
shielded low temperature environment of a cryostat.

For charge-based quantum circuits, unwanted heat is important to minimise
so as to reduce the electron temperature, which creates more coherent charge
qubits and increased stability in the application of logic gates, allowing a
more complex and scalable circuit [5, 6, 7]. With increased circuit complexity,
the multiple signal lines required to connect to room temperature electron-
ics can quickly reach the maximum available quantity within the cryostat.
Measuring electron temperature is a good method to understand the stabil-
ity and coherence of a quantum circuit, since this variable is fundamental to
how the circuit will behave. Several approaches exist to perform low tem-
perature electron thermometry, which use the Fermi-Dirac statistical energy
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distribution of an electron gas [8, 9] to read out the temperature [10, 11, 12,
13], for example via tunnel junction transport [14, 15, 16]. Conduction around
the Coulomb blockade within electronic islands [17, 18, 19, 20] or quantum
dots [21, 22, 23] are both good thermometry techniques which require di-
rect galvanic connections to the electron reservoir. Charge sensing quantum
dots allow non-invasive electron temperature readout, with galvanic connec-
tions external to the electron reservoir [24, 25, 26]. Radio-frequency probing
is another technique for non-invasive readout from thermometer devices via
capacitive connections coupled to a resonator [27, 28]. These techniques still
require multiple connections to the thermometer device.

This thesis describes a new take on a non-invasive quantum dot electron ther-
mometer that only requires a single connection to the device for calibration
and operation. The characteristics of the quantum dot are measured during
the calibration procedure without any source or drain connections, which
simplifies the installation and operation of the thermometer substantially.
The thermometer can be used to measure the electron temperature of any
conducting system without any galvanic interference. This makes it an ex-
ceptionally versatile electron thermometer that can be easily added into low
temperature circuits, or retro-fitted to existing systems.

Achieving the lowest possible temperature environment is the first step in
reducing electron temperature. Therefore a cryogenic system requires good
thermal isolation between components to reduce any unwanted heat enter-
ing the experiment. For example some commercial cryogen-free fridges use
stainless steel heat switches to thermally isolate the separate stages. Wet
fridges often use Macor or Vespel pillars to support the mixing plate due
to the excellent insulation provided by plastics and ceramics [29, 30]. Using
insulators with lower heat conductance within these systems can reduce the
thermal energy and noise within an experiment. Good insulation is useful for
all cryogenics, but in particular the current progression of quantum comput-
ing, which relies on isolated low temperatures for operation and coherence.

This thesis describes the testing of several designs for solid-void insulators
that are effective in low temperature environments. This includes the af-
fordable and scalable LEGO element system, a commercial option that gives
very effective insulation and strong support. Several plastic structures were
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created using the cheap and infinitely customisable process of 3D printing.
These structures also demonstrate excellent insulation properties.

1.2 Chapter Outline

In detail, this thesis is organised as follows:

• Chapter 2 describes the necessary theoretical background for this thesis.
This includes quantum dot theory focusing on the Coulomb blockaded
regime, details of using radio-frequency electronics and cryogenic ap-
paratus to probe a quantum dot, and details of fit modelling. The Debye
model of a solid is also discussed in the context of measuring thermal
conductivity.

• Chapter 3 describes the experimental techniques used to build and op-
timise a quantum dot electron thermometer. This includes the design
and optimisation of the low temperature and room temperature radio-
frequency electronics, plus details on the choice of Si field-effect tran-
sistor used to create the quantum dot tunnel coupled to an electron
reservoir.

• Chapter 4 describes the successful single-line calibration and operation
of a quantum dot thermometer, in two different cryostats. This includes
analysing the validity of the thermometer calibration and analysing the
error in the electron thermometry.

• Chapter 5 describes the fabrication and thermal conductivity measure-
ments of new solid-void plastic insulators for use at low temperatures.

• Chapter 6 gives a summary of the outcomes and conclusions from this
thesis, and potential for future work.

1.3 Current and Future Publications

This thesis details the work that went into the following articles, all of which
have been drafted by the author:
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I LEGO® Block Structures as a Sub-Kelvin Thermal Insulator (Published in
Scientific Reports 2019 [31])

II Non-galvanic calibration and operation of a quantum dot thermometer
(Accepted for publication in Physical Review Applied 2021.)

III 3D-Printed Plastic Structures as a Sub-Kelvin Thermal Insulators (To be
submitted.)
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Chapter 2

Background

In October 1745, German cleric Ewald Georg von Kleist went to his lab and
began working on his latest experiment. He connected a wire between a
high-voltage electrostatic generator and a large volume of water in a glass jar,
in an attempt to ’store electricity’ in the conducting water. Von Kleist found
that touching the wire resulted in a powerful spark, much more painful than
that obtained from the electrostatic generator alone. His hand and the water
acted as conductors, and the jar as a dielectric; the capacitor had been dis-
covered. By touching the wire, the capacitor was shorted, and all the stored
charge in the large volume of water was discharged instantly through Von
Kleist. The capacitance between two conductors is a conceptual pillar of all
that came after this discovery; the storage of electrical power, the transistor,
electrical information, and now quantum electronics.

This chapter details the relevant background, theory and techniques that are
applied in the electron thermometer experiments detailed in Chapters 3 and 4,
and the thermal isolation experiments detailed in Chapter 5. This includes a
description of a quantum dot coupled to a electronic reservoir in Section 2.1
and a technique for modelling data to estimate parameters in Section 2.2. The
various cryostat equipment used is described in Section 2.3 and the radio-
frequency electronics used to interact with the quantum electronics is de-
scribed in Section 2.4. The thermal conductivity of an insulator using the
Debye model is derived in Section 2.5.
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2.1 Quantum Dots

An electronic potential island that can confine charge carriers in all three spa-
tial dimensions will have a quantised density of states, for example an atom
and its discrete set of electron energy levels. This occurs when the spatial con-
finement is similar to the de Broglie wavelength of the charge carrier, which
in semiconductors is ∼ 100 nm. A quantum dot (QD) is the artificial creation
of such a system in a metal or semiconductor device [32, 33].

QDs have enjoyed a thorough and varied experimental development in the
last 30 years. The QD’s simplicity and scalability makes it a fundamental
entity in the world of nano-electronics, and one of the most popular gateways
into the quantum world.

This work focuses on semiconductor QDs investigated in the Coulomb block-
ade regime, where the QD is weakly coupled to the electrodes. The properties
of this system are detailed in this section for later reference in the experimen-
tal Chapters 3 and 4, where a QD is integrated into a low temperature circuit
and used as an electron thermometer.

In Section 2.1.1, the basis for the electrostatic behaviour of a QD is explained
with the capacitance model. Section 2.1.2 details the relevant energy scales
in a QD system and the requirements for achieving Coulomb blockade. This
is explained further in Section 2.1.3, where the QD stability diagram is de-
tailed. Section 2.1.4 describes how a QD can be used as an electron ther-
mometer. Some more specific details about a tunnel coupled QD with no
source-drain bias voltage are included in Section 2.1.5. Finally a brief men-
tion of the electron-phonon coupling is included in Section 2.1.6.

2.1.1 Capacitance Model

The behaviour of a QD is built upon the capacitance network that surrounds
it, which is described with a capacitance matrix. Each conducting object i
has a self-capacitance described by the matrix element Cii, which represents
the amount of electric charge that must be added when completely isolated
to raise the object’s potential by one volt. Each object also has a set of mu-
tual capacitance matrix elements Cij, which represents the capacitance with
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any other conducting object j. If we imagine a series of individual metallic
objects, we can define the charge on object i as

Qi =
n

∑
j=0

CijVj + Q(0)
i , (2.1)

where Vj is the potential of object j and Q(0)
i is the charge that resides on

object i when all voltages are zero [34]. n represents the number of con-
ducting objects in the system. For a closed system, the sum of non-residual
charge the capacitance matrix along each row or column is zero, i.e ∑n

j=0 Cij =

∑n
i=0 Cij = 0. Consider the object i = 0 as our QD, the sum across j repre-

sents the addition of the QD self-capacitance C00 and the total capacitance
between the QD and all other objects CΣ = −∑n

j=1 C0j (the values for the
mutual capacitance matrix elements are negative, so CΣ is positive). |C0j| is
the capacitance of object j, such as a gate electrode, with respect to the QD.
Therefore we can say for our closed system C00 − CΣ = 0, which combined
with Equation 2.1 makes the potential V0 on the QD equal to:

V0 =
Q0 −Q(0)

0
CΣ

−
n

∑
j=1

CojVj

CΣ
, (2.2)

For any object, the stored charge Qi must be an integer of the elementary
charge, which has been recently defined to be exactly e = 1.602176634 ×
10−19 C. Note that e is a positive value, which will be the notation throughout
this thesis. Therefore, for the QD, we can define the electrostatic energy Ee

required to add N additional electrons to the object as

Ee(N) =
∫ Q(0)

0

Q(0)
0 −eN

V0(Q0)dQ0 =
e2N2

2CΣ
+ eN

(
Q(0)

0
CΣ

+
n

∑
j=1

C0j

CΣ
Vj

)
. (2.3)

2.1.2 Quantum Dot Energies and the Coulomb Blockade

A QD has several energy scales associated with it, and the magnitude of these
energies define its electronic characteristics.

First we consider the quantum confinement energy. Any quantum-mechanical
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system is described with a Hamiltonian operator Ĥ, which possesses a quan-
tum state described by the wave function Ψ. The total energy of the system
E is defined by the allowed eigenvalues from Schrödinger’s wave Equation
ĤΨ = EΨ [35, 36]. Consider a classical N-electron system within a bulk
semiconductor. The electron distribution can be described as [34]:

ρe(r) = −e ∑
n

δ(r− rn), (2.4)

where e is the elementary charge, δ is the delta function, r is a position vector
and rn is the coordinate vector of the nth electron. The Hamiltonian for this
N-electron system is:

ĤN =
N

∑
n=1

{
[pn + eA(rn)]2

2m∗
− eV(rn) +

1
2

g∗µBσB(rn) + e2
m=1

∑
n−1

G(rm, rn)

}
.

(2.5)
The first term describes the Hamiltonian of a free electron in an external mag-
netic field B = ∇×A, with pn representing the momentum of electron n with
effective mass m∗. The second term is the electric potential field V. The third
term is the Zeeman term which describes the influence of the magnetic field
on the electron’s energy, with the Landé g-Factor g∗ and the Bohr magneton
µB. The components of σ are the Pauli matrices. The final term is the electron-
electron interaction term, which describes the influence of all other electrons
onto each individual electron, where G is the Coulomb interaction between
two electrons at positions rm and rn. For the systems discussed within this
thesis, the magnetic field is at zero. With a sufficiently strong confinement
potential, the energy eigenvalues of the Schrödinger wave equation will be a
set of quantised energy levels that trapped electrons will occupy. For exam-
ple, a QD realised within a 2D electron gas with radius r and N electrons, in
a material with a parabolic dispersion relation, will have a total confinement
energy equal to:

Etot =
h̄2

m∗r2 N2, (2.6)

where m∗ is the electron effective mass and h̄ is the reduced Planck’s constant
[34]. Therefore the confinement energy required to add another electron is
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given by:

Eadd = Etot(N + 1)− Etot(N) =
h̄2

m∗r2 N, (2.7)

for a large N. We then find that the spacing between corresponding confine-
ment energy levels is:

Econ = Eadd(N + 1)− Eadd(N) =
h̄2

m∗r2 . (2.8)

This defines what is known as the single-particle level spacing.

Next we consider the influence of the Coulomb energy, which when domi-
nating can produce interesting electronic characteristics. A conducting island
must charge and de-charge in quantised steps of elementary charge e. If we
consider the island (denoted object i = 0) to contain N electrons, the electro-
static energy is described with Equation 2.3. Therefore the electrochemical
potential of the QD (or the energy required to add one more electron) is:

µN = Ee(N + 1)− Ee(N) =
e2N
CΣ

+
e2

2CΣ
+ e

(
Q(0)

0
CΣ

+
n

∑
j=1

C0j

CΣ
Vj

)
. (2.9)

A common term used to characterise a quantum dot is the charging energy
Ec, which is given as the difference in µN for subsequent electron adding:

Ec = µN+1 − µN =
e2

CΣ
. (2.10)

Therefore in the constant interaction model, the charging energy is assumed
to be a constant. This is safe to assume for a small range of N, where CΣ

will remain constant. Let us assume a dot radius of 100 nm in a GaAs 2DEG.
The self capacitance of such a QD would be C00 = 8εε0r (ε0 is the vacuum
permittivity and ε = 12.53 is the relative permittivity for GaAs). Assuming
the self capacitance dominates over the mutual capacitance from any sur-
rounding objects, this system would be characterised by a charging energy
Ec = 1.8 meV and a single-particle level spacing of Econ = 0.11 meV. In
this case, the Coloumb energy dominates over the confinement energy. This
creates a QD energy spectra with many confined states which all jump sig-
nificantly on the energy scale with the addition or subtraction of an electron,
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E

No. of 
ElectronsN - 1 N N + 1

μN 

μN+1 = μN + Ec 

Ee(N+1) 

Ee(N) 

Ee(N-1) 

Excited 
states

Ground
State

≈ Econ 

Figure 2.1: Typical energy spectra of a QD for adjacent electron numbers. Ee(N)
represents the electrostatic energy required to add all N electrons to the
QD. µN shows the energy required to add just the Nth electron to the
QD. The difference between µN and µN+1 is the charging constant Ec,
which is true for any value of N, assuming the QD has constant geometry.
Econ represents the single-particle level spacing defined by 0D quantum
confinement.

visualised in Figure 2.1. An effective ‘ladder’ of energy levels exists within
the QD, where each ‘rung’ of the ladder is separated by Ec and can be indi-
vidually filled with a single electron.

Another energy to consider is the brodening of the QD energy levels orig-
inating from the tunnel coupling to nearby conductors. The magnitude of
this energy can be derived from an adaptation of Heisenberg’s uncertainty
principle [37, 38], which states:

αEαt ≥
h̄
2

, (2.11)

where h̄ is the reduced Planck constant, αE is the uncertainty in the energy
of an electron occupying a QD energy level and αt is the uncertainty in time
to charge or discharge the QD from the conductor. Each of the QD tunnel
barriers has a tunnel resistance given by:

RT = VR/IR, (2.12)
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where VR is the potential over the barrier and IR is the current tunnelling
through the barrier. If RT is low, electrons can tunnel in and out of the QD
quickly, decreasing αt which in turn allows αE to increase. For Coulomb
blockade to be preserved, the uncertainty in electron energy must be much
less than the charging energy αE � Ec. Therefore, combined with the uncer-
tainty condition in Equation 2.11, the time uncertainty must follow:

αt �
h̄CT

2e2 , (2.13)

where CT is the mutual capacitance across the tunnel coupled QD and nearby
conductor. The charging time for the QD is∼ RTCT, therefore the uncertainty
in energy can broaden the QD density of states, unless the tunnelling resis-
tance RT exceeds the resistance quantum:

RT �
h̄

2e2 . (2.14)

If the condition in Equation 2.14 is met, the uncertainty in the QD energy
levels is diminished and a well defined number of electrons can exist within
the QD. The tunnel rate through the barrier ΓT is given by ΓT = VR/eRT. If all
tunnel barriers are considered with a total tunnel rate Γ, then the minimum
value αE can take is limited by the tunnel coupling energy h̄Γ.

The electrons in the conductors outside the QD also have thermal fluctua-
tions in energy of the order ∼ kBTe, where Te is the electron temperature
and kB is the Boltzmann constant. For the Coulomb blockade to occur, the
charging energy must dominate over the other energy scales [32]:

Ec � kBTe, h̄Γ, Econ. (2.15)

It is possible to observe the single-particle level spacing (referred to as the
QD excited states) if the temperature and tunnel rate are both low enough to
meet the following condition:

Econ > kBTe, h̄Γ. (2.16)
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Figure 2.2: a): Simplified circuit schematic of a QD with source and drain connec-
tions via tunnel barriers and a capacitative plunger gate connection. Vsd
controls the source-drain voltage over the QD and Vpg controls the pluger
gate voltage, which shifts the energy levels in the QD via capacitive cou-
pling. b): An energy diagram of a QD whilst tuned to a Coulomb peak
with a small negative Vsd applied. µs and µd are the source and drain
electrochemical potentials respectively, and µN is the chemical potential
of the QD when it is occupied by N electrons. The Nth electron can tun-
nel in from the source as it has the required energy to do so, and it can
tunnel out into the drain. If Vpg is adjusted so that there is no energy
state within the bias voltage window, then the Nth electron does not have
enough energy to tunnel into the QD, and the N − 1th electron does not
have enough energy to tunnel out. This would mean the QD is Coulomb
blockaded.
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2.1.3 Stability Diagram

To better understand the transport characteristics through a QD, consider
the schematic of a generic QD circuit (Figure 2.2). A plunger gate electrode
is capacitively coupled to the QD, and source-drain connections are coupled
via tunnel barriers. In this system, there are three entities coupled to the QD,
the source connection (s), the drain connection (d) and the plunger gate (pg).
A useful term is the lever arm αi, which is defined as

αi =
Ci

CΣ
, (2.17)

which normalises the capacitive influence of object i on the QD. Therefore,
combining Equations 2.9 and 2.17, the electro-chemical potential of the QD
can be described by

µN(Vpg) =
e2N
CΣ

+ e(αsVs + αdVd + αpgVpg). (2.18)

The electro-chemical potential of the metallic source (drain) connection is de-
fined as µs = −eVs (µd = −eVd), and the source-drain voltage is Vsd =

Vs − Vd. If we assume a small positive source-drain bias Vsd, the QD con-
ductance is non-zero when µs ≥ µN ≥ µd, as this allows electron tun-
nelling through both tunnel barriers. The QD is Coulomb blockaded if µN

is outside this region and the electron tunnelling is blocked at either tun-
nel barrier (shown in Figure 2.2). If Vsd = 0 and Vpg is varied to make
µN(V

(0)
pg + ∆Vpg) = µN+1(V

(0)
pg ), it can be shown with Equation 2.18 that the

change in Vpg must be

∆Vpg =
e

CΣαpg
. (2.19)

This tells us the separation in plunger gate voltage of neighbouring QD Coulomb
peaks if there is a small bias applied (also known as conductance resonances,
however in this thesis they will be referred to as ‘Coulomb peaks’ to avoid
confusion with the electrical response of a resonant circuit).

Now consider varying Vsd whilst keeping Vpg constant. Each QD energy
level within the voltage window allows a electrons to tunnel through the
QD one-by-one. This creates a step-like conductance where each step occurs



14 Chapter 2. Background

when an additional energy level can contribute to the source-drain current.
These steps can only be observed if both the thermal broadening is small and
the total tunnel rate through the QD is small enough to avoid tunnel broaden-
ing (described by Equations 2.15 and 2.14). The minimum source-drain bias
voltage to guarantee conduction through the QD at all Vpg, labelled ∆Vsd, is
equivalent to the charging energy i.e ∆Vsd = Ec/e.

The QD stability diagram is created by measuring Isd whilst sweeping Vpg

against Vsd, and it gives one of the most recognisable signatures of a QD:
the Coulomb diamond (Figure 2.3). This diamond pattern allows us to ex-
tract many characteristics of the QD, for example the plunger gate lever arm
αpg = ∆Vsd/∆Vpg. Both ∆Vpg and ∆Vsd are trivial to interpret from the stabil-
ity diagram. The plunger gate lever arm can be more accurately determined
for a single Coulomb peak using the relationship

αpg =
1

md −ms
, (2.20)

where md = dV(d)
pg /dV(d)

sd is the gradient along the ‘drain resonance’ side of

a Coulomb diamond and ms = dV(s)
pg /dV(s)

sd is the gradient along the ‘source
resonance’ side.

2.1.4 Quantum Dot Thermometry

The technique of probing the statistical energy distribution of an electron gas
to read out the electron temperature exists in several popular forms [10, 11,
12, 13]. One example is measuring tunnel junction conduction, or shot noise,
to perform electron thermometry [14, 16, 15]. Coulomb blockade thermome-
try is a popular choice for measuring electron temperature, and readout can
be achieved with source-drain conduction measurements of metallic islands,
which can be coupled to magnetic cooling mechanisms [17, 12, 18, 19, 20].
A similar technique can be achieved using solitary QDs, which can be easily
coupled to other quantum electronic systems [11, 21, 22, 23]. Localised charge
sensing of QDs is a less invasive approach that does not require conduction
measurements through the electron reservoir(s) [24, 25, 26, 22].
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Figure 2.3: Top: QD charge stability diagram showing Coulomb diamonds formed
(in black) from Coulomb peaks at various source-drain bias Vsd, assuming QD tem-
perature T = 0. The black diamonds are Coulomb blockaded, so the QD is charge
stable and has no conduction. Each subsequent Coulomb diamond with increas-
ing plunger gate voltage Vpg contains an extra electron within the charge stable QD
(labelled with N, N + 1, etc.). The grey and white diamonds demonstrate areas
where there are single and double QD energy levels in the bias voltage window, re-
spectively. Each energy level within the bias window adds a source-drain transport
channel for electrons, which steps up the QD source-drain conductance. The stepped
conductance pattern will continue with larger |Vsd| adding more transport channels.
∆Vpg shows the spacing between Coulomb peaks, with each additional peak adding
an electron to the QD. This is equivalent to the width of the diamonds. ∆Vsd is the
height of the diamonds from the Vsd = 0 axis. Bottom: Electron energy diagrams of
points A to D from the stability diagram, all shown when Vsd = −∆Vsd/2. A to C
show the various stages of a Coulomb peak through the QD. D shows the Coulomb
blockaded QD. Conduction is only allowed when at least one electron energy level
is inside the voltage window.
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For QD thermometry, the technique is ultimately modelled around the tun-
nelling behaviour of electrons in and out of the QD. This is because the elec-
tron occupation of a well defined energy in the QD reveals information about
the statistical distribution in the coupled reservoir, as will be explained here.
Consider an electron transmission from state i to state j. The electron tun-
nel rate γi→j (transmission probability per unit time) is defined by Fermi’s
golden rule [39, 40, 41, 34, 42]:

γi→j =
2π

h̄
|Mij|2ρ(Ej) (2.21)

where Mij is a matrix element that defines the coupling between states i and
j, ρ is the density of states (that is receiving the electron) and Ej is the energy
of state j. The QD is tunnel coupled to two reservoirs, the source and the
drain. The total tunnelling rate from the source lead (s) into the QD (q) is
given from the integral of Equation 2.21:

Γs =
2π

h̄

∫ ∞

−∞
|Msq|2n(E)F(E− µs)dE, (2.22)

where n(E) is the QD density of states and Fs(E) is the probability of find-
ing in electron in the reservoir at energy E, which is given by the thermally
broadened Fermi-Dirac distribution [8, 9]:

F(E) =
1

exp
(

E
kBT

)
+ 1

. (2.23)

For a simple QD system we consider the tunnel rates Γs and Γd for the source
and drain barriers respectively. Lets say the QD has N − 1 electrons and the
resultant available ground state energy is µN. If the tunnelling resistance of
the QD (Equation 2.12) is low, then the each energy in the QD density of
states ladder µN is tunnel broadened. The shape of the broadening can be
approximated as a Lorentzian distribution (or non-relativistic Breit–Wigner
distribution) [32, 34]:

n(E) =
1
π

h̄Γ
(E− µN)2 + (h̄Γ)2 , (2.24)

where Γ is the total tunnel rate in and out of the QD.
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Let us now assume that there is zero source-drain bias, i.e µs = µd = µr,
where µr is the combined source-drain ‘reservoir’ electro-chemical potential.
The temperature of the source and drain electron reservoirs will broaden the
occupation probability of the electron gas around chemical potential µr (for
arbitrary conducting reservoir, ’r’). If h̄Γ� kBT then the QD Coulomb peaks
can be observed to broaden into a Lorentzian distribution originating from
the broadening of µN within the QD. Instead, if the condition h̄Γ � kBT �
Ec is met, then the QD becomes sensitive to the electron temperature of its
source and drain reservoirs, opening the door to thermometry experiments.
In the latter case, the source-drain conductance of the QD is given as [11]:

G(µN) =
e2

4kBT
ΓsΓd

Γs + Γd
cosh−2

(
µN − µr

2kBT

)
. (2.25)

In this case, measuring the shape of the QD conductance curve against µN

gives a readout of electron temperature. It is also possible to measure the
electron temperature by probing the QD capacitively instead of resistively.
The differential capacitance Cpg between the plunger gate and the QD is
given by:

Cpg =
dQ

dVpg
= Cgeom + Ct, (2.26)

where Cgeom is the geometric capacitance and Ct is a subtle extra term: the
tunnelling capacitance (also known as quantum or parametric capacitance,
it will be referred to as the tunnelling capacitance in this thesis) [43, 44, 45,
46, 28, 47]. The tunnelling capacitance appears around the charge degener-
acy point when there is cyclic tunnelling between the reservoir and QD. If
P(0)

N is the probability that the current QD ground state µN is occupied, then,
due to the relationships eαdVpg = dµN and dQ = eαdP(0)

N , the tunnelling
capacitance can be given as:

Ct = (eα)2 ∂P(0)
N

∂µN
. (2.27)

If there is the condition h̄Γ� kBT, the density of states within the QD can be
approximated by a delta function δ(E− µN). P(0)

N is given by the integral of
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the electron distribution in the reservoir and the QD density of states:

P(0)
N (µN) =

∫ ∞

−∞

1

exp
(

E−µr
kBT

)
+ 1

δ(E− µN)dE =
1

exp
(

µN−µr
kBT

)
+ 1

, (2.28)

which can be rearranged to:

P(0)
N (µN) =

1
2

tanh
(

µN − µr

2kBT

)
+

1
2

. (2.29)

Combining this with Equation 2.27 gives the tunnelling capacitance as a func-
tion of µN:

Ct =
(eα)2

4kBT
cosh−2

(
µN − µr

2kBT

)
, (2.30)

which is the same temperature-sensitive shape as the conductance from Equa-
tion 2.25. This can be detected with non-galvanic alternating current (AC)
reflectometry, which is discussed in Section 2.4.2. By measuring the the tun-
nelling capacitance with reflected AC signals, non-galvanic QD electron ther-
mometry can be performed [27, 28].

2.1.5 Quantum Dot Coupled to a Single Reservoir

We now consider specifically a QD that is tunnel coupled (perhaps strongly)
to a single reservoir, shown in Figure 2.4. This is the same situation as con-
necting the source-drain reservoirs together, or simply having no source-
drain bias, i.e Vsd = 0. The reservoir electrons have a distribution in energy
obeying Fermi-Dirac statistics described by Equation 2.23. This tells us the
probability of finding an electron at energy E within the reservoir, which can
be rearranged to:

F(E) =
1
2
− 1

2
tanh

(
E− µ

2kBTe

)
, (2.31)

where µ is the electrochemical potential of the reservoir, Te is the electron
temperature and kB is the Boltzmann constant. The QD contains a ladder
density of states separated by the charging energy Ec, as discussed in Sec-
tions 2.1.2. Each of these states is broadened in the form of a normalised
Lorentzian, given by Equation 2.32. When the QD is Coulomb blockaded,
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Figure 2.4: A diagram visualising the various energy scales in a QD-reservoir cou-
pled system. The reservoir’s electron occupation is broadened following
a Fermi-Dirac distribution F (Equation 2.23) centred on the correspond-
ing chemical potential, visualised in orange. The width of this broaden-
ing is proportional to the temperature of the corresponding reservoir. In
the QD, each additional electron energy µN is separated by charging en-
ergy Ec and is lifetime broadened following a Lorentzian distribution n
(Equation 2.24), visualised in orange. This broadening has a full-width-
half-maximum equal to 2h̄Γ, where Γ is the total tunnelling rate via both
the QD barriers. For QD thermometry the condition kBT, h̄Γ � Ec must
be met to create a full Coulomb blockade and allow a single additional
electron state µN to contribute to the conductance. If h̄Γ � kBT then
the QD is not sensitive to the temperature of the reservoir electrons. If
h̄Γ � kBT then the lifetime broadening can be ignored and the QD is
very sensitive to the temperature of the reservoir electrons. Note the en-
ergy scales on the diagram are for visual aid and are not to particular
scale.
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we can consider just the next available energy level for adding an extra elec-
tron µN, which we will from now on label EQD. Then the density of states
within the QD can be described as:

n(E− EQD) =
1
π

h̄Γ
(E− EQD)2 + (h̄Γ)2 . (2.32)

In the case where the tunnel broadening in the QD is significant when com-
pared with the thermal broadening in the reservoir, then we need to mod-
ify Equation 2.28 to include both mechanisms in the QD occupation model.
Therefore the probability PQD of an excess electron occupying the QD energy
level EQD is given by the integral of the product of n(E− EQD) and F(E):

PQD(EQD) =
∫ ∞

−∞
F(E)n(E− EQD)dE. (2.33)

This is mathematically equivalent to the convolution of the two functions F
and n. The convolution operation expresses how the shape of one function is
modified by the other, and has the general form of [48]:

( f ∗ g)(t) =
∫ ∞

−∞
f (τ)g(t− τ)dτ, (2.34)

and the derivative of the convolution has the following identity:

( f ∗ g)′ = f ∗ g′ = f ′ ∗ g. (2.35)

Using the convolution operation, and because n(E− EQD) = n(EQD− E), we
can use Equation 2.32 to rewrite PQD simply as:

PQD(EQD) = (F ∗ n), (2.36)

where the convolution is a function of EQD. The QD tunneling capacitance
Ct can then be defined by substituting Equation 2.36 into Equation 2.27:

Ct(EQD) = (eα)2(F ∗ n)′, (2.37)
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where the derivative is in respect to EQD. Therefore, using the identity in
Equation 2.35, we can say the tunnelling capacitance is:

Ct(EQD) = (eα)2(F′ ∗ n). (2.38)

The derivative of F with respect to EQD, denoted F′, is

F′(EQD) =
−1

4kBTe
cosh−2

(
EQD − µ

2kBTe

)
. (2.39)

The spin degeneracy of the QD state can affect where the centre of the Coulomb
peak is located. Consider the pair of dot states d and d′, with Nd and Nd + 1
electrons, respectively. In the case where the QD is in state d, there are two
possible situations. If Nd is an odd number, the Nth

d electron is in an incom-
plete spin ‘shell’, which gives state d a spin degeneracy of 2, up or down. An
additional electron tunnelling into the QD must have opposite spin to com-
plete the shell. In this case d′ has a spin degeneracy of 1. In the other case
that Nd is an even number, the Nth

d electron completes the spin ‘shell’, which
gives state d a spin degeneracy of 1. An additional electron tunnelling into
the QD can have either spin up or down to complete the shell. In this case d′

has a spin degeneracy of 2.

In either case, the imbalance of spin degeneracy between states d and d′mean
that the charge equality point, where PQD = 1/2, is shifted away from the
charge degeneracy. The charge equality occurs with the following condition
[28, 49]:

EQD = µ± kBT ln 2, (2.40)

whereas the charge degeneracy occurs when EQD = µ. The sign of the second
term is positive or negative depending on whether the Nd is even or odd.
From Equation 2.27 it follows that the tunnelling capacitance is maximum at
the charge equality point.

2.1.6 Electron-Phonon Coupling

When discussing the temperature T of a conducting material, there are actu-
ally several thermal bodies at play which all affect each other. The important
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elements for this thesis are phonon temperature Tp and electron temperature
Te. Above the Debye temperature, the phonons and electrons are scattering
off each other and are well thermalised, meaning Tp ≈ Te. This means the
electrons can be assumed to have the same temperature as the cryostat base
temperature. However, as discussed in Section 2.5, below the Debye tem-
perature the lattice phonons will begin to freeze out. The heat flow from the
phonon bath to the electrons due to electron-phonon coupling is given by
[50, 30, 20]

Q̇p−e = ΣV(Tn
p − Tn

e ), (2.41)

where V is the material volume and n is typically 5 for materials like copper.
Therefore, as we go to sub-Kelvin temperatures, the bath of electrons within
a reservoir is increasingly thermally isolated from the lattice phonons. This
severely limits electron cooling, and so electrical noise and parasitic heating
can elevate the electron temperature significantly. It is common therefore
to measure elevated electron temperatures in low temperature circuits. In
Chapters 3 and 4, the measured fridge temperature Tf is interpreted as equal
to the phonon temperature Tp.

2.2 Modelling

Model fitting to data has become a standard technique to extract useful infor-
mation and explain experimental observations, and usually such techniques
are only mentioned briefly in a text. In this work, the process of fitting a
model to data is used extensively in Chapter 4, for both the calibration of an
electron thermometer and the subsequent electron temperature readout. The
fitting procedure requires well defined confidence to be used reasonably, for
example the electron temperature readout is meaningless without a well de-
termined uncertainty. Therefore the methods used of fitting to experimental
data and generating uncertainty in the parameter estimates are detailed here.

The background theory for the model fitting approach used is described in
Section 2.2.1, and the method for determining the accuracy of the fit param-
eter estimates is described in Section 2.2.2.
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2.2.1 Chi-square Fitting

Consider a set of N data points (xi, yi), where i = 0, ..., N− 1. We want to fit a
model y(x), with M adjustable parameters aj, where j = 0, ..., M− 1, denoted
by:

y(x) = y(x|a0, ..., aM−1) (2.42)

where y is dependent on the parameters on the right hand side of the verti-
cal bar. If we assume that each data point has a measurement error that is
independently random within a normal Gaussian distribution with standard
deviation σ, then the probability of obtaining the data set measured, with a
fixed uncertainty of ∆y, is proportional to:

P(data|model) ∝
N−1

∏
i=0

{
exp

[
−1

2

(
yi − y(xi|a0, ..., aM−1)

σ

)]
∆y
}

, (2.43)

for a given estimate of the aj parameters [51]. A successful fit of the model
to data will estimate values of the aj parameters such that P(data|model) is
maximised. This is mathematically equivalent to minimising the negative
logarithm of Equation 2.43:[

N−1

∑
i=0

[yi − y(xi|a0, ..., aM−1)]
2

2σ2

]
− Nlog∆y. (2.44)

Since N, σ and ∆y are constants, we can equally say the fit process is min-
imising the sum of the squared residuals between the model and the data:

R2 =
N−1

∑
i=0

[yi − y(xi|a0, ..., aM−1)]
2. (2.45)

Minimising R2 should reveal the fitted values for the aj parameters. If for
each data point i we know the standard deviation of its measurement σi, then
we can normalise R2 to a more useful parameter, χ2

N−M, which normalises
the statistical independence of each data point:

χ2
N−M =

N−1

∑
i=0

[
yi − y(xi|a0, ..., aM−1)

σi

]2

, (2.46)
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where χ2
N−M represents the chi-square distribution for N-M degrees of free-

dom. This can be minimised to obtain the set of aj parameter estimates. If
we have two separate instances of chi-square fitting and we wish to com-
pare them, then χ2 needs to be divided by the number of degrees of freedom,
N −M, like so:

χ2 =
N−1

∑
i=0

[
yi − y(xi|a0, ..., aM−1)

σi(N −M)

]2

. (2.47)

2.2.2 Model Fit Error

After a model fit is complete from minimising Equation 2.47, it is impor-
tant to know the confidence limits for the set of aj parameter estimates. One
approach is to use a constant chi-square boundary to define the confidence
limits, which is particularly useful if the limits may be asymmetrical around
the estimate [51].

Assume a constant standard deviation for data point, i.e. σi = σ for all i.
The minimum value of χ2, which we will label χ2

min, corresponds to the fi-
nal fit estimate for the aj parameters, typically χ2

min ∼ 1. To work out the
certainty of the aj estimates, a constant M-dimensional confidence boundary
of χ2

min + 1 surrounds χ2
min, creating a region which represents one standard

deviation of confidence, i.e 68.3% certainty for the combined estimation of all
aj parameters.

2.3 Cryostats

All the experiments discussed in Chapters 3, 4 and 5 were performed in
cryogenic environments. Around the turn of the 20th Century many low
temperature experimental milestones had been accomplished, including the
first liquefaction of oxygen, hydrogen, nitrogen and (finally) helium gases,
greatly aided by the conception of the dewar. The latent heat from the evap-
oration of these liquid gases creates powerful cooling effects, with helium
evaporation creating temperatures down to ∼ 1 K. This was advanced upon
even further by the mixing of the two helium isotopes to obtain even lower
temperatures [52, 10], and the mid-20th century brought the experimental
realisation of the dilution refrigerator for the first time, in the Kamerlingh
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Onnes Laboratorium at Leiden University [53]. The dilution refrigerator has
enjoyed a rapid and interesting developmental history over the last 50 years,
in which Lancaster University has played a significant part. Thanks to the
recent rise of commercial cryogen-free dilution refrigeration, many options
are now available for simple-operation milliKelvin environments.

Consider a pumped-on liquid bath where n particles per time are moved to
the vapour phase. The cooling power Q̇c is given by

Q̇c = ṅ∆H = ṅL, (2.48)

where L is the latent heat of evaporation and ∆H is the enthalpy [30]. For an
evaporating cryogenic liquid ∆H = Hliq − Hvap where Hliq (Hvap) is the en-
thalpy for the liquid (vapour) phase. Assuming the liquid is pumped with a
constant-volume pumping speed, the ideal gas law determines that the par-
ticle flow ṅ across the liquid–vapour boundary is proportional to the vapour
pressure Pvap ∝ e−L/RT, where R is the ideal gas constant. This gives a cool-
ing power which has the same temperature dependence:

Qc ∝ e−1/T. (2.49)

This shows that the cooling power decreases rapidly with decreasing tem-
perature because of an equivalent drop in vapour pressure, which reduces
the impact of the pumping. When there is almost no vapour left, the system
is at the minimum temperature obtainable by pumping on a bath of an evap-
orating cryogenic liquid. This limit is reached when the refrigeration due
to evaporation of atoms is balanced by heat leaks flowing into the bath. The
practical low-temperature limits determined by experimental parameters are
typically about 1.3 K for 4He and 0.3 K for 3He (3He and 4He represent the
two isotopes of He, where 3He has two protons and one neutron, and 3He
has two protons and two neutrons). For 3He–4He dilution refrigeration the
enthalpy ∆H of mixing is given by the integral of the difference in specific
heat capacity for the 3He concentrated and dilute phases:

∆H ∝
∫

∆CdT (2.50)

The specific heat capacity for both the concentrated and dilute phases has a
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temperature dependence proportional to T at low temperatures, so the cool-
ing has a temperature dependence given by:

Qc ∝ T2 (2.51)

Here the temperature dependence of the cooling power is weaker than that of
the evaporation process, which gives it an advantage at lower temperatures
and, with the right environment, the ability to cool to lower temperatures.

In this thesis, a total of three cryostat systems were used, all of which are
visualised in Figure 2.5. First a 1 K pot fridge custom-built by Oxford In-
struments, called the ‘IO’. This system is a ‘dry’ fridge, and so all the cryo-
gen plumbing is within a vacuum. The IO cryostat uses an in-series dou-
ble pulse tube cryocooler to cool down to 4 K, at which point 4He gas is
pumped through the pot via a closed loop and scroll pump. Initially the
outgoing gas expands and cools the pot. When the incoming pressure is
high enough (∼ 0.1bar), the 4He gas will begin to condense and pool up in
the pot. The liquid 4He evaporates, providing cooling power described with
Equation 2.49, which cools the pot further. The evaporated 4He is pumped
back into the cryostat via the scroll pump and so the cooling continues. The
base temperature typically reaches 1.3 K. This can be elevated with a propor-
tional–integral–derivative (PID) controlled heater element mounted on the
1 K plate, which inputs heat to counter the cooling power of the cryostat,
thereby causing the cryostat to settle at a new temperature.

Another fridge that is used is a commercial dilution refrigerator built by
BlueFors, called the ‘LD250’. This system is also a dry fridge, and so all
the cryogen plumbing is within a vacuum. The LD250 cryostat uses an in-
series double pulse tube cryocooler to cool down to around 4 K. A mixture
of 3He and 4He is circulated through the fridge via a scroll and turbo pump.
A compressor is used to create a high incoming pressure, which causes the
mixture to condense and liquefy into the mixing chamber. When the mix-
ture is in full circulation it separates within the mixing chamber into the 3He
condensed and dilute phases, which produces cooling down to milliKelvin
temperatures via Equation 2.51. The 3He dilute phase pools up to the still,
where 3He evaporates and is pumped out, providing cooling to the still plate
via Equation 2.49. The outgoing dilute phase is thermally connected to the



2.3. Cryostats 27

100 mK

700 mK

PT
1

PT
2

Oxford Instruments `IO’ BlueFors `LD250' Lancaster `Fridge 5'

RT

50 K

4 K

4He

~1 K

PT
1

PT
2

RT

50 K

4 K

3He

~10 mK

4He

Still

Mixing 
Chamber

500 mK

1.2 K

3He

~1 mK

4He

Still

Mixing 
Chamber

Heat 
Exchangers Heat 

Exchangers

4He bath

4.2 K

Pot

Pot

Figure 2.5: Photographs and schematic of the three cryostat systems used in the experiments
detailed within this thesis. The left-most fridge is the ‘IO’, a custom built dry 1 K pot fridge
by Oxford Instruments. It uses an in-series double pulse tube cryocooler, labelled ‘PT 1’ and
‘PT 2’ to cool down to ∼ 4 K. 4He is pumped through a pot to provide evaporative cooling
power, creating a base temperature of 1.3 K. The centre fridge is the ‘LD250’, a commercial
dry dilution refrigerator built by BlueFors. It also achieves ∼ 4 K using a pulse tube. This
fridge features a dilution unit, where 3He dilutes in 4He within the mixing chamber and
separates into the rich and dilute 3He phases. This provides cooling power, creating a base
temperature of 8 mK. The right fridge is ‘Fridge 5’, a home-made wet fridge built at Lan-
caster University. This uses two concentric baths of nitrogen and helium to cool to 4.2 K. A
4He pot is used to provide evaporative cooling power to 1.2 K, then a dilution unit creates
a base temperature of 2.3 mK. The red arrows show heat exchangers which allow heat to
transfer from the incoming mixture to the colder outgoing liquid.
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incoming mixture via heat exchangers. This cools down the incoming mix-
ture and allows the phase separation to create even lower temperatures. The
base temperature typically reaches 8 mK. This can be elevated by remov-
ing a small amount of mixture from the closed loop, which reduces ṅ, and
therefore the cooling power via Equation 2.48. A reduction in cooling power
means the mixing plate will settle at a new, higher temperature.

The final cryostat discussed here is a Lancaster-built ‘wet’ dilution refrig-
erator, affectionately named ‘Fridge 5’. This works in a similar way to the
LD250, however because it is a wet fridge it does not require a pulse tube
for pre-cooling. Instead it relies upon a huge 3 m high dewar which con-
tains a variety of cans in a matryoshka-doll packing style [29]. The outer can
contains a vaccum which protects a bucket of evaporating nitrogen, which
cools the inner can to 77 K, and works as a cryoshield to protect the inner
layers from radiation. The inner can contains a volume connected to the
vacuum, which houses a bucket of evaporating 4He, shown in Figure 2.5,
which cools the cryostat insert to 4.2 K. From there a 4He pot fridge cools the
insert down to 1 K via Equation 2.49, and the mixing chamber phase separa-
tion produces cooling down to milliKelvin temperatures via Equation 2.51.
The nested baths of nitrogen and helium produce a huge amount of cool-
ing power, and less noise than a pulse tube. Combined with excellent heat
exchangers, this fridge can typically reach a base temperature of 2.3 mK.

2.4 Radio-Frequency Electronics

Radio-frequency (RF) electronics is a well established discipline that has an
excellent range of uses for interacting with low temperature experiments.
High frequency tones or quick pulses can be used to control, and readout
from, quantum circuits [54, 55]. This Section will discuss the electronic the-
ory for the apparatus and techniques used in Chapters 3 and 4, where RF
techniques are used to measure the characteristics of a QD and perform elec-
tron thermometry.

First, the fundamental concepts of wave transmission through coaxial lines
and reflection off an impedance load is described in Section 2.4.1. Apply-
ing this to the readout of a variable capacitance is described in Section 2.4.2.
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Figure 2.6: Top-left: x-y axis cross section of a coaxial transmission line with inner
conductor radius a and outer conductor radius b. Top-right: A schematic
representing the coaxial transmission line with voltage V and current I
dependent on location along the z axis. Bottom: A schematic represent-
ing an infinitesimally small section of the coaxial line dz. The transmis-
sion line per unit length has a series resistance R, series inductance L,
shunt conductance G and shunt capacitance C.

Finally, details are included for designing a coplanar waveguide in Section
2.4.3.

2.4.1 Transmission Lines and Termination

RF electronic signals are transmitted around the lab and into cryogenic en-
vironments using coaxial cable. The coaxial geometry acts as an excellent
waveguide, allowing high-frequency signals to propagate over long distances.

Consider an infinitesimally small section of a two-wire transmission line which
per unit length has a series resistance R, series inductance L, shunt conduc-
tance G and shunt capacitance C (Figure 2.6). From Kirchoff’s voltage and
current laws, we can say [56]:

∂ν(z, t)
∂z

= −Ri(z, t)− L
∂i(z, t)

∂t
, (2.52)

∂i(z, t)
∂z

= −Gν(z, t)− C
∂ν(z, t)

∂t
, (2.53)
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where ν(z, t) and i(z, t) is the voltage and current at point z along the trans-
mission cable at time t. Switching from a time domain to a sinusoidal steady
state condition with frequency ω, the transmission line voltage V(z) and cur-
rent I(z) wave Equations are then

dV(z)
dz

− γ2V(z) = 0, (2.54)

dI(z)
dz
− γ2 I(z) = 0, (2.55)

where γ =
√
(R + jωL)(G + jωC) and j is the imaginary unit. The general

solutions to Equations 2.54 and 2.55 are:

V(z) = V+
0 e−γz + V−0 eγz, (2.56)

I(z) = I+0 e−γz + I−0 eγz. (2.57)

The e−γz terms represent wave propagation in the +z direction with voltage
(current) magnitude V+

0 (I+0 ) and the e+γz terms represent wave propagation
in the −z direction with voltage (current) magnitude V−0 (I−0 ). The transmis-
sion line has a characteristic impedance Z0, given by:

Z0 =
V+

0

I+0
=
−V−0

I−0
=

√
R + jωL
G + jωC

(2.58)

which, for an assumed lossless line, becomes Z0 =
√

L/C.

For a co-axial transmission line, with inner radius a and outer radius b (as
shown in Figure 2.6), the electronic parameters are given as [56]:

L =
µ

2π
ln
( a

b

)
(2.59)

R =
Rs

2π

(
1
a
+

1
b

)
(2.60)

C =
2πε′

ln
( a

b
) (2.61)

G =
2πωε′′

ln
( a

b
) (2.62)
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where Rs is the surface resistance of the conductors. The insulator between
the two concentric lines has a complex permittivity ε = ε′ − jε′′ and per-
meability µ. Now consider the termination of a lossless transmission line at
z = 0 with a load impedance ZL. We can say that the load impedance must
be equal to ZL = V(0)/I(0). Using this with Equation 2.58 gives:

ZL =
V+

0 + V−0
I+0 + I−0

=
V+

0 + V−0
V+

0 −V−0
Z0 (2.63)

Rearranging this for V−0 gives

V−0 =
Z0 − ZL

Z0 + ZL
V+

0 = |R|V+
0 (2.64)

The term |R| is called the voltage reflection coefficient and tells us the am-
plitude of the reflected voltage signal V−0 normalised to the amplitude of the
incoming wave V+

0 . To avoid unnecessary loss and deliver maximum power,
|R| should be minimised. To do this, we need to minimise Z0− ZL, or equiv-
alently, make ZL equal to Z0. This process is called impedance matching, and
improves the signal to noise ratio of the circuit. Consider the components in
an equivalent circuit for ZL. The two reactive constituents that can be added
are the capacitor and the inductor, with an impedance of Zc = 1/iωC and
Zl = iωL respectively [57]. A resistive constituent has an impedance of ZR =

R. For a particular frequency ω, the careful adjustment of these constituent
components allows ZL to be matched to Z0, minimising |R|. Impedance
matching can be achieved with the aid of a Smith chart, for a chosen fre-
quency ω.

2.4.2 Phase Readout of Capacitance

RF reflectometry is a good tool for measuring subtle changes in parameters
that make up the load impedance ZL. Very small changes in capacitance
can be detected using an electrical resonator as the load impedance [55, 43,
58, 59, 60, 28, 61]. Consider the circuit shown in Figure 2.7. The total load
impedance of this circuit is

ZL =
1

iωCc
+

1
iω(C + Cv) +

1
iωL

, (2.65)



32 Chapter 2. Background

RF in

Ground

C
L

Cc
RF out

CvZL

Figure 2.7: A schematic showing an example load impedance ZL for an electrical
resonator. L and C are the resonator inductor and capacitor respectively.
Cc is a coupling capacitor for non-galvanic RF connection. Cv is a variable
capacitance the circuit is designed to detect.

where Cc is the ‘coupling’ gateway capacitor for the signal, C is a constant
capacitance, L is a constant inductance and Cv is a variable capacitance that
we want to detect. When Cv = 0, the resonant frequency of the impedance is
given by:

ω0 = 1/
√

L(C + Cc). (2.66)

The voltage reflection amplitude |R| from Equation 2.64 can be rewritten as:

|R| = ei∆φ, (2.67)

where ∆φ is the phase between the incoming and reflected RF waves. This
difference in phase is equal to:

∆φ = arctan
(

2Q(ω−ω0)

ω0

)
, (2.68)

where Q is the unloaded Q factor, which describes how underdamped the
resonator is. Consider the case where the circuit is driven at ω0 and Cv 6= 0.
The resonant frequency will then shift to ω1 = 1/

√
L(C + Cc + Cv). If this

shift occurs whilst the resonator is driven at the bare resonance frequency ω0,
then the corresponding change in reflected wave phase would be equal to:

∆φ = arctan
(

2QCv

C + Cc

)
. (2.69)
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Figure 2.8: A cross section of a coplanar waveguide line on a PCB. The line has width
a and, including the gaps, total width b. The board has a dielectric with
thickness h and relative permittivity εr between the two conducting lay-
ers.

If Cv � C + Cc, then the small angle approximation gives:

∆φ ≈ 2Q
C + Cc

Cv (2.70)

In this case, the RF phase readout is proportional to a small change in ca-
pacitance ∆φ ∝ Cv. For this to work, like in all experiments, the signal we
wish to detect must be greater than the noise floor of the equipment. To help
amplify the signal the circuit must be designed to minimise the background
capacitance C + Cc and maximise Q with good impedance matching, as this
increases the responsivity of ∆φ to Cv.

2.4.3 Coplanar Waveguide Design

Printed circuit boards (PCBs) are extremely useful in RF circuits as they are
highly customisable and provide an excellent interface between transmission
lines and devices in low temperature environments.

On the PCB surface, a coplanar waveguide with conductor width a and total
’conductor and gap’ width b, running on a double sided PCB with thickness h
and relative permittivity εr (as shown in Figure 2.8), will have a characteristic
impedance given by the following formula [62, 63]:

Z0 =
60π√

εeff

 K(a/b)
K(
√

1− (a/b)2)
+

K(k1)

K(
√

1− k2
1)

−1

(2.71)
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where K(k) is the complete elliptic integral of the first kind, which can be
defined as

K(k) =
π

2

∞

∑
n=0

[
(2n− 1)!!
(2n)!!

]2

k2n, (2.72)

where the operation ‘!!’ represents a double factorial. k1 is defined by

k1 =
tanh(πa/4h)
tanh(πb/4h)

, (2.73)

and the effective permittivity is

εeff =

(
1 + εr

K(
√

1− (a/b)2)

K(a/b)
K(k1)

K(
√

1− (k1)2)

)(
1 +

K(
√

1− (a/b)2)

K(a/b)
K(k1)

K(
√

1− (k1)2)

)−1

.

(2.74)
The effective permittivity can be thought of as the dielectric constant of a the-
oretical homogeneous medium that surrounds the waveguide and replaces
the real dielectric with finite thickness h.

These equations may look unpleasant, yet it is a useful tool to help impedance
match the PCB coplanar waveguide with the transmission lines. Aiming for
the lab standard characteristic impedance of Z0 = 50Ω is important so as
to give minimal reflection at the PCB-transmission line interface for both in-
coming and outgoing waves.

2.5 Insulator Thermal Conductivity

A cryostat’s base temperature is limited by the heat transferred from the
warm surroundings to the cold parts of the equipment, or the ‘heat leak’.
A heat leak reduces the cooling power of the fridge and can elevate the
base temperature. To reduce unwanted heat leak, there needs to be good
thermal isolation between fridge components, and the warm surroundings.
Thermal insulator materials that work well in low temperature environments
are therefore useful for providing isolation and structural support for cryo-
genic components, for example radiation spacers and support rods. Insula-
tors like this are useful in all of cryogenics, but also for the progression of
quantum circuits and computing, which relies on isolated temperature for
operation and coherence. Popular choices for these materials are plastics,
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Figure 2.9: Simple picture of an insulator with thermal connection area A on both
ends, and length L. At x = 0 and x = L, the insulator is thermally
coupled to a reservoir at temperature T0 and TL, respectively. Q̇ is the
heat flow from x = 0 to x = L.

such as Vespel, or ceramics, such as Macor [30, 64]. This section outlines
the theory of the thermal conductivity power law, and how it can be used to
analyse the new solid-void insulators tested in Chapter 5.

For an insulating solid, the transfer of heat is mostly, and sometimes en-
tirely, dependent on phonons travelling through the material. Consider a
non-magnetic crystalline insulator with area A and end-to-end length L (Fig-
ure 2.9). At low temperatures the phonon density of states is parabolic as a
function of frequency due to the linear dispersion relation for phonons. In
the Debye model, this is described by [65]:

gph(ω) =


3AL

2π2ν3
s
ω2, ω ≤ ωD,

0, ω > ωD,
(2.75)

where νs is the average value of longitudinal and transversal velocity of
sound. The phonon density of states gph(ω) must contain all phonon fre-
quencies below the Debye frequency ωD. For an insulator material with atom
density N0, it must therefore satisfy

∫ ωD

0
gph(ω)dω = 3N0 (2.76)

The factor of 3 comes from the three degrees of freedom for each atom’s po-
tential and kinetic energy. We can therefore rewrite the phonon density of



36 Chapter 2. Background

Material λ [Wm−1K−(n+1)] n
Macor [67] 5.83× 10−3 2.24

Vespel SP 1 [68, 30] 1.8× 10−3 1.2
Vespel SP 22 [68, 30] 1.7× 10−3 2.0

Wood [69] 9.3× 10−3 2.7
AXM-5Q [64] 1.2× 10−3 1.2

Table 2.1: Some experimental sub-Kelvin parameters for material thermal conduc-
tivity power law model κ = λTn Wm−1K−1.

states below the Debye frequency as:

gph(ω) = 9N0ω2/ω3
D. (2.77)

The cut-off Debye frequency ωD, has a corresponding temperature metric,
the Deybe temperature ΘD = (h̄/kB)ωD. Below the Debye temperature, the
phonons begin to freeze out and heat flow is restrained.

To calculate the specific heat capacity of the insulator material, we first con-
sider the internal energy of lattice vibration, which is given by:

U(T) =
∫ h̄ωD

0
h̄ωgph(ω)F(ω, T)dω, (2.78)

where F(ω, T) is the Bose–Einstein distribution function [66]. The specific
heat capacity is defined as Cv = ∂U/∂T, therefore combining Equations 2.77
and 2.78 we can define the specific heat of an insulator:

Cv = 9N0kB

(
T

ΘD

)3 ∫ xD

0

x4ex

(ex − 1)2 dx, (2.79)

where x = h̄ω/kBT and xD = h̄ωD/kBT. Solving the integral then gives us
the specific heat:

Cv =
12π4

5
N0kB

(
T

ΘD

)3

. (2.80)

Now consider the material thermal conductance coefficient κ, which is de-
fined within the following expression [66, 30]:

Q̇
A

= κ∇T. (2.81)
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Using a simple description of heat conduction where we consider the insu-
lator to contain an ideal gas of phonons, we can describe the energy transfer
using the Equations of the kinetic theory of gases. In this approximation, the
thermal conductivity is given by

κ =
1
3

Cvνsλph , (2.82)

where λph is the mean-free path of the phonons. When T � ΘD, Equation
2.80 shows that Cv ∝ T3. But the thermal conductivity temperature depen-
dence is also linked to the mean-free path of the phonons. If we continue to
consider a crystalline insulator, at very low temperatures there are very few
phonon-phonon scattering events. This creates a large λph , and therefore
most phonon scattering occurs at the crystallite boundaries. This removes
the temperature dependence of λph and therefore κ ∝ T3. However the insu-
lator materials we wish to test are produced from amorphous plastics which
are strongly disordered, and therefore the mean free path determined by the
scattering of phonons on defects can become very small, even approaching
atomic distances. This reduces the thermal conductivity considerably, but
also alters the temperature dependence of λph by introducing more scatter-
ing events. Phonon–dislocation scattering and phonon–point defect Rayleigh
scattering can create a temperature dependence of λph ∝ T−1 and ∝ T−4 re-
spectively. To include these scattering events in the model, we define the
thermal conductivity power law:

κ = λTn, (2.83)

where λ is the thermal conductivity scaling constant with units [Wm−1K−(n+1)],
and n is the exponent of the insulator temperature T. We know that n ≈ 3
from Equation 2.80, but also that for amorphous plastics with lots of phonon
scattering this parameter will typically be reduced to around n ≈ 2. Some ex-
amples of insulator thermal conductivity and temperature dependence when
T < 1 K are given in Table 2.1. To experimentally measure κ, we consider the
heat flow Q̇ from one end of a plastic insulator rod where x = 0, to the other
end where x = L:

Q̇ =
∫ L

0
q̇dx =

∫ TL

T0

κ(T)dT (2.84)
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where T0 and TL are the temperature at x = 0 and x = L, respectively. Eval-
uating this integral with Equation 2.83 gives

Q̇ = λ
A
L
(Tn+1

L − Tn+1
0 )

n + 1
. (2.85)

By monitoring the temperatures on either side of the insulator with respect
to the total heat flow, we can calculate λ and n, which defines the thermal
conductivity power law in Equation 2.83.
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Chapter 3

Building a Single-Wire Quantum
Dot Thermometer

This chapter details the construction of a QD electron thermometer, includ-
ing readout circuitry, used in the experiments described in Chapter 4. The
thermometer is built to be calibrated and operated using only non-galvanic
measurements, and require only a single gate connection to the QD. This in-
volves building a dedicated RF phase reflectometry circuit that is capacitively
coupled to the QD. This chapter includes a close look at the devices and ap-
paratus used in Sections 3.1 and 3.2, the construction and optimisation of the
RF reflectometry circuit in Section 3.3, and the behaviour of the QD-reservoir
system in Section 3.4.

3.1 Devices

The key component of the electron thermometer is a silicon chip that con-
tains a gated QD, tunnel coupled to two conducting reservoirs, whose elec-
tron tunnelling properties tells us the temperature of the electrons within
the reservoirs. Therefore the type of device used to define the QD and it’s
tunnel barriers is fundamental to the effectiveness of the thermometer. In
this section we will first discuss briefly the intended quantum system for the
thermometer, and then the realisation.

Consider the a QD coupled to a reservoir, shown in Figure 3.1. The theory
of this system is discussed in Section 2.1.5. It has a differential capacitance to
ground from the perceptive of the QD top gate given by Equation 2.26. One
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Figure 3.1: Energy diagram of a QD tunnel-coupled to a conducting reservoir. The
reservoir has an average occupation of electron states given by the Fermi-
Dirac distribution F, described by Equation 2.31. The Fermi-Dirac distri-
bution is broadened proportional to kBTe, where Te is the electron tem-
perature. The QD energy level EQD is broadened by tunnel coupling to
the reservoir, with a density of states n described by Equation 2.32. The
FWHM of n is 2h̄Γ, where Γ is the tunnelling rate between the QD and
the reservoir. The tunnelling capacitance Ct as a function of EQD has a
shape proportional to F′ ∗ n.

element of this is the tunnelling capacitance Ct, given by Equation 2.38. This
parameter is non-zero when the QD is on a Coulomb peak and is sensitive
to the broadening of the peak. The relationship ∂Vtg = −∂EQD/eα is used to
convert the theory outlined in Section 2.1.5 from energy space into voltage
space, where α = Ctg/CΣ is the top gate QD lever arm and CΣ is the total QD
capacitance. Therefore the tunnelling capacitance can be defined as:

Ct(Vtg) = eα(F′ ∗ n), (3.1)

where Vtg is the top gate voltage. The electron temperature Te dependence of
Ct is sourced from the Fermi-Dirac distribution F′ (Equation 2.39) and is the
basis for the non-galvanic QD thermometer. To get a good detection of Ct,
the QD device needs very strong coupling to the top gate.

Silicon-based QD devices have proven to be an excellent candidate in the
progression of QD physics and quantum circuitry [70, 71, 72, 59, 73, 60, 74, 75,
76, 77]. The QD device used in our experiment is a silicon-on-insulator trigate
accumulation-mode field-effect transistor (FET), shown in Fig 3.2a and b [72,
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Figure 3.2: Details of FET geometry. The FETs were fabricated to a range of different
dimensions. a) Top view SEM image of FET. The lower (dark grey bow-
tie shape) Si is the source-drain channel and the upper (light grey bow-
tie shape) Si is the top gate b). Top view schematic of device, zoomed
in on the interface between the channel and the top gate. The transistor
consists of an undoped 1-D Si channel, 10 nm high, and a length in the
order of l ∼ 10 nm. A polycrystalline silicon top gate bridges over the
channel, separated by a layer of Si oxide. The source (S) and drain (D)
channel connection points are n-doped to allow electronic conduction
at low temperatures. Two spacers are used to prevent doping of the Si
channel under the top gate. c) Cross-section schematic of the device. The
Si channel has a width in the order of w ∼ 10 nm. A grounded Si back
gate is beneath the channel, separated from the channel with a Si oxide
layer.
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60, 28, 78]. For this type of FET, the QD forms directly underneath the top
gate, and so Ctg takes up a large fraction of the total dot capacitance CΣ.
This makes it ideal for non-galvanic measurements as the capacitive coupling
between the QD energy levels and Vtg is significant, i.e the top gate lever
arm α is relatively large, making the detection of Ct easier. A large number
of these devices are fabricated on a single Si chip, with varying geometry.
Each device consists of two major elements, the Si channel and the top gate.
The channel is for source-drain transport, and has a length and width in the
order of ∼ 10 nm, with a height of 10 nm. The channel is made of Si, with
n-doped source-drain connections to allow conduction. It is bridged by a
polycrystalline silicon top gate. The top gate and channel are electronically
insulated by a layer of SiO2 which is 145 nm thick. Two spacers flank either
side of the top gate, over the channel. These spacers act like an umbrella
during the doping of the Si channel, and therefore roughly define the un-
doped area of the channel, including under the top gate.

When the FET is at cryogenic temperatures and a positive DC voltage Vtg is
applied to the top gate, a localisation potential materialises in the Si chan-
nel underneath the gate, which can produce conducting regions and allow
transport between the source and drain. If the channel is wide, two QDs can
sometimes appear in the corners where the top gate angles around the chan-
nel. If the channel is narrow, a single QD can form in the centre of the channel,
again under the top gate. The characteristics of the conducting islands that
appear depend mostly on the channel geometry (described in Section 3.4).
With this type of QD device, the top gate has two jobs, first to accumulate
bound electron states and therefore create the QD, and secondly to act as a
plunger gate to tune the QD. If Vtg is too low, there is no transport through
the undoped silicon, whereas if Vtg is too high, the conducting region that
appears in the channel will be large and will act as a simple conductor be-
tween the source and the drain. In the intermediate values, if we adjust Vtg

from low to high values, (ideally) the QD transitions from a small island with
a large charging energy, passes through several conduction resonances, with
the QD getting larger as Vtg increases, until the charging energy is too small
to retain the Coulomb blockade. The dot can be tuned to any of these con-
duction resonances by adjusting Vtg as desired.
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3.2 Refrigerators

The thermometer was built for use in two cryostat systems; the IO 1 K pot
fridge and the LD250 dilution refrigerator, both of which are described in
Section 2.3. By testing the single-wire thermometer calibration and opera-
tion in two different system, we can verify the versatility of the technique.
In this chapter, all of the initial testing and construction was completed in
the IO fridge. The comparisons with the LD250 experimental setup are made
where necessary and for future reference. In both systems, the fridge tem-
perature is monitored by a ruthenium oxide resistance thermometer which
was thermally anchored to the coldest stage of each fridge during data col-
lection. The reading of the ruthenium oxide thermometer is denoted as Tf.
Each fridge ultimately has the same RF circuitry and Si FET device installed,
however the total attenuation for each system will be different, as discussed
in Section 3.3.4. Each fridge also has an effect on the RF circuit resonance, as
discussed in Section 3.3.2. For the measurements discussed in Chapter 4, the
QD thermometer was mounted within both the IO the LD250 cryostat sys-
tems. The results from the IO and LD250 are discussed in Sections 4.2 and
4.3, respectively.

3.3 Radio-Frequency Circuit

The purpose of the RF reflectometry circuit is to detect the change in the tun-
nelling capacitance Ct (described in Section 3.1), and therefore measure the
QD electron transitions with no galvanic measurements. The completed RF
reflectometry circuit was built in both the IO and LD250, as shown in Figure
3.3. Completing the circuit involved solving many experimental problems at
once, (described in the following subsections), but the author has attempted
to describe the process in an appropriate order. Realising a low temperature
electrical resonator is discussed in Section 3.3.1, and the impedance match-
ing process is detailed in Section 3.3.2. Demodulating the reflected signal is
discussed in Section 3.3.3 and optimising the completed reflectometry circuit
is discussed in Section 3.3.4.

First, we consider how the reflectometry will work to read out Ct. The device
is mounted on a carefully designed PCB (described in Section 3.3.1) which
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Figure 3.3: Schematic of the completed measurement circuit. a) The reflectometry circuit
within the IO cryostat. The resonant circuit is comprised of the inductor L, the parasitic ca-
pacitance Cp, coupling capacitance Cc and the variable QD tunnelling capacitance Ct, which
is the physical parameter monitored for thermometry. Rp is a modelled parasitic loss resis-
tance to ground which impacts the resonant circuit Q-factor. The inductor line has a 100 pF
capacitor to provide a DC break between the top gate and ground. The 96 kΩ resistor lim-
its top gate RF signal loss to the DC line. Vtg is the controllable DC top gate voltage. The
driving signal is a tone from the output of the RF generator. The demodulator is shown in
more detail in Figure 3.9. LO and RF represent the local oscillator and return RF signal in-
puts of the demodulator. ILO, IHI, QLO and QHI are output signals from the demodulator,
which are logged by an analogue to digital converter (ADC). b) The fridge lines correspond-
ing to the LD250 cryostat. This replaces the IO fridge lines at the end points highlighted by
yellow-orange circles, to complete the LD250 circuit.
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also houses an electrical resonator, which in electrical engineering is com-
monly referred to as the tank circuit. The tank circuit is formed by a coupling
capacitor Cc and an inductor L, chosen for good impedance matching (de-
scribed in Section 3.3.2). To measure the electrical resonance a driving signal
is sent to the tank circuit, and the reflected signal is detected using a homo-
dyne detection scheme. This is achieved by demodulating the information
bearing return signal with respect to the driving signal (described in Section
3.3.3). The demodulation of the reflected signal reads the RF reflection power
|S11| and phase φ at the original driving frequency f = ω/2π. A parasitic
capacitance Cp and parasitic resistance Rp also affect the properties of the
resonant circuit. To measure these parameters they are included as fitting
parameters in a circuit model, that can be fit to the measured RF reflection
|S11| and phase φ. The parasitic capacitance Cp includes the geometric gate
capacitance Ctg for modelling purposes. The parasitic resistance Rp models
the circuit loss to ground, which affects the resonance Q-factor [61]. The res-
onant circuit model has an impedance similar to Equation 2.65 but with the
extra parasitic parameters added in:

ZL =
1

iωCc
+

1

iω(Cp + Ct) +
iωCg

1−ω2LCg
+ 1

Rp

, (3.2)

where ω is the angular frequency of the driving signal and Cg = 100 pF is
the grounding capacitor. The magnitude of the reflected power relative to
the driving power, in decibels, is given by

|S11| (dB) = 20log
(

Re
(

ZL − Z0

ZL + Z0

))
+ Rc, (3.3)

where Rc is the circuit background in dB and Z0 = 50 Ω is the characteristic
impedance of the circuit. For clarity, |S11| = |R|+ Rc, where |R| is the reflec-
tion coefficient from Equation 2.64. The phase of the reflected signal relative
to the phase of the driving signal is given by

φ (rads) = Im
(

ZL − Z0

ZL + Z0

)
+ wω + φc, (3.4)

where w (rad Hz−1) is the circuit phase winding and φc is the circuit phase
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offset. The resonant frequency ultimately depends on total top gate capaci-
tance and inductance via ω0 = 1/

√
L(Cc + Cp + Ct). When driving the tank

circuit at ω0, φ ∝ Ct, when Ct � Cp + Cc (as shown in Section 2.4.2). Com-
bining that with Equation 3.1 gives a change in reflected signal phase that
depends on electron temperature Te according to:

φ− φ0 = Ae2α2 (F′ ∗ n
)

, (3.5)

where A is the phase responsivity, which tells us the phase change due to a
small change in capacitance, and φ0 is the circuit phase offset at the resonant
frequency when Ct ≈ 0. From Equation 2.70, we can say that

A = 2QL/(Cp + Cc). (3.6)

If the constants A, α and Γ are known, measuring φ − φ0 as a function of
Vtg − V0 and fitting the model described by Equation 3.5 gives a readout of
electron temperature Te.

3.3.1 Radio-Frequency Tank Circuit Design

The printed circuit board (PCB) is an important stage in assembling the RF
reflectometry apparatus as it is the physical interface between the QD device
chip and the electronics within the fridge. The device chip is directly glued
to the PCB with conducting silver paint. The tank circuit is built onto the
PCB, so the parasitic impedances intrinsic to the PCB will affect the circuit
resonance. The surface mount components of the PCB include Cc, L, Cg and
Rdc from Equation 3.2 and Figure 3.3. This makes the PCB a very influential
element in regards to the behaviour of the reflectometry.

For the thermometry experiments in Chapter 4, the QD thermometer only
requires a DC and RF bias tee connection to Vtg, but the PCB design includes
also a back gate connection, and the two source-drain connections, as shown
in Figure 3.4. These extra connections are included so that measurements can
be taken to confirm that the thermometer is working as intended.

The chosen PCB material is ‘Rogers 4003’, a hydrocarbon ceramic laminate
fabricated with a ‘FR4’ glass-reinforced epoxy material [79]. The ceramic
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Figure 3.4: The design of the PCB used for mounting the FET chip into the cryostats.
The insert shows a photo of the physical PCB, with the wire-bonded Si
chip, and soldered surface mount components that make up the tank
circuit used for the RF reflectometry measurements. The PCB design in-
cludes 0402 imperial code package spaces for the surface mount compo-
nents; the top gate resistor Rdc, the inductor L, the coupling capacitor
Cc and the grounding capacitor Cg. The inductor L package space can
also be used to house a small spiral inductor chip, which is wire-bonded
to the appropriate pads. Vbg shows the pogo-pin landing pad connec-
tion for the chip plane voltage, which is connected to the chip back gate
via conducting silver paint. ‘S’ and ‘D’ represent the connections for the
source and drain lines respectively. Vtg shows the DC connection for the
top gate line, and the RF SMA port provides the top gate AC connection.
The copper ground plane covers both the top and bottom surfaces, but
the area around the top gate connection is removed from both sides to
reduce the parasitic capacitance.
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has a thermal expansion coefficient of ∼ 10−5 K−1, which is very similar
to copper, so it is good for use in a cryostat. The relative dielectric con-
stant εr = 3.38± 0.05 is low, which reduces the parasitic capacitance. This
makes the material ideal for RF electronics with low loss at frequencies f >

500 MHz. The thickness of the layer of dielectric material within the PCB is
h = 0.813 mm.

The purpose of the resonant tank circuit is to pick up a small change in tun-
nelling capacitance Ct, as shown in Section 2.4.2, so the PCB top gate par-
asitic capacitance Cp needs to be minimised to get the best possible signal
via Equation 3.6. Several design choices are made to do this. First, the PCB
metal directly connected to the top gate of the device is kept to a minimum
footprint, with the tank circuit surface mount component package spaces or-
ganised in such a way to achieve this. Secondly, the ground plane is removed
around the top gate metal, on both the top and bottom ground planes for the
PCB.

The RF circuit is connected to the PCB via a ‘SubMiniature version A’ (SMA)
connector. Because the circuit has a characteristic impedance of Z0 = 50 Ω,
the PCB coplanar waveguide track should match this impedance via Equa-
tion 2.71 to avoid reflection of the signal at the RF line-PCB interface. The
waveguide therefore has a track width of a = 1.27 mm and a total width
(track width plus spacing on either side) of b = 1.77 mm. This gives the
waveguide a characteristic impedance of Z0 = 51.3 Ω, which matches well
with the rest of the circuit. This creates an effective permittivity of εeff = 2.369
via Equation 2.74.

The reflectometry driving frequency will be somewhere between 500 MHz
and 1 GHz, which corresponds to a wavelength of λ = 0.6 m and 0.3 m re-
spectively. The PCB dimensions are 28 mm× 28 mm, which is much smaller
than the wavelength, so wave interference on the board is not an issue.

Some of the surface mount component values could be chosen relatively eas-
ily. The device requires a DC bias Vtg to be applied to the top gate, so a
Cg = 100 pF capacitor is placed in series with the inductor to avoid DC-
shorting the device and to create a good RF ground at the frequency of opera-
tion. This value was chosen because it was large enough to create a relatively
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low impedance so as not to affect the tank circuit, but also the self-resonance
of the component was safely far away from the expected operating frequen-
cies. Also, a Rdc = 96 kΩ resistor is used on the top gate DC line to prevent a
loss of RF signal power along this line.

3.3.2 Resonator Impedance Matching

The remaining PCB surface mount components i.e the coupling capacitor
Cc and the inductor L, were more difficult to choose, since their optimum
value depends on both characteristics of the PCB at low temperatures, and
their own temperature dependence. A selection of surface mount compo-
nents were soldered to the PCB, and cooled within the IO cryostat to test
the completed tank circuit. Thin-film AVX Accu-P series multilayer ceramic
capacitors were used with a temperature coefficient of 0± 30 ppm/C◦. The
range of inductors trialled for impedance matching were Coilcraft HP series
(1005) ceramic-core chip inductors, also with a 0402 package size. These in-
ductors have a temperature coefficient of 25− 125 ppm/C◦. The values of
L and Cc were selected to impedance match the resonant tank circuit. The
procedure used here was to first estimate the PCB parasitic loss to ground
at base temperature, including the resistance Rp and capacitance Cp. Then,
using these values, the appropriate values for L and Cc can be calculated and
tested.

Initially, Cp and Rp are unknown quantities, however a guess was made
based on previous literature [74, 28, 61, 78] which suggested values in the
order of Cp ∼ 0.1 pF and Rp ∼ 100 kΩ. Therefore, drawing out ZL from
Equation 3.2 on a Z0 = 50 Ω Smith chart shows that a logical choice for
impedance matching of the tank circuit is in the order of Cc ∼ 0.1 pF and
L ∼ 100 nH. A few combinations of these components were trialled at room
temperature to get a decent match, before being cooled in the IO as shown
in Figure 3.5. The characteristics of the resonance change gradually and sig-
nificantly from room temperature down to ∼ 1 K. This occurs as the surface
mount components that make up the tank circuit shift in value, for example
from changes in resistance and shrinking geometry. Fitting Equation 3.3 to
the resonances with defined values for L, Cg and Ct = 0 reveals how load
impedance ZL is changing with temperature, shown in Figure 3.6. At lower
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Figure 3.5: Three tests of the tank circuit resonance during a cool-down in the IO,
measured with a network analyser. The y-axis shows the transmitted
signal S11 from the LO port to the RF port of Figure 3.3, and the x-axis
is drive frequency f , in the vicinity of the resonance. Each test has a
(labelled) choice of inductor L and coupling capacitance Cc, which gives
the resonance unique characteristics. Each resonance was tested from
room temperature down to ∼ 1 K, throughout which there is a gradual
shift in the circuit characteristics.
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the IO. The values are estimated from a model fit to the resonance as the
fridge is cooled. Rp is the parasitic resistance, Cp and Cc are the parasitic
and coupling capacitors respectively, from the circuit diagram in Figure
3.3. QL is the loaded Q-factor and f0 is the resonant frequency.

temperatures, there is a negative shift in the total capacitance Cp + Cc, which
causes a positive shift in the resonant frequency f0. There is also a positive
shift in parasitic resistance Rp at lower temperature, which causes an increase
in the loaded Q-factor QL, despite the larger magnitude of minimum reflec-
tion |Rmin|. From these tests, the parasitic parameters of the board with sur-
face mount components are Cp ≈ 0.28 pF and Rp ≈ 74.5 kΩ.

These values were then used in the final stage of impedance matching, where
a simulation was performed to test every variation of L and Cc to find the
optimum choice for the selection components available, shown in Figure
3.7. The figure of merit for each simulation was the minimum reflection
|Rmin|, which highlights where the board is well matched. A condition of
500 MHz < f0 < 1000 MHz was set as this allows a high enough frequency
for fast reflectometry readout but still works with the other RF components in
the circuit, including the demodulator discussed in Section 3.3.3. This sim-
ulation suggested the theoretical best choice for the components was Cc =

0.2 pF and L = 100 nH, and so these components were chosen to complete the
tank circuit. A simultaneous fit of Equations 3.3 and 3.4 to the |R| and phase
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Figure 3.7: Impedance matching with the aid of simulation. a) a simulation of min-
imum reflection |Rmin| against inductor and coupling capacitor, L and
Cc respectively, from the circuit in Figure 3.3. The dashed lines repre-
sent the chosen component values, which was partially based on what
compatible options were available. The simulation assumes a parasitic
capacitance Cp ≈ 0.28 pF and resistance Rp ≈ 74.5 kΩ obtained from
earlier tests in Figure 3.5. The white areas show where the resonant fre-
quency goes above the 1 GHz boundary and below 100 MHz boundary.
The red dot shows the values of the components selected to impedance
match the tank circuit, considering the limited range of values manufac-
tured to work at low temperatures (which is why it is not dead centre
in the |Rmin| valley). b) The resonance of the tank circuit with the se-
lected components, measured with a network analyser. The tank circuit
is mounted within the IO at base temperature. The black dashed line
shows a model fit with a loaded Q-factor of QL = 35.2 and resonant fre-
quency f0 = 655.2 MHz. |R| and φ are respectively the reflection and
phase of the signal, from the tank circuit.
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Figure 3.8: Comparison of completed RF circuit resonance curves within the IO and
LD250 cryostats, including Al-bonded spiral inductor and FET. For both
plots, the reflected signal magnitude |R| and phase φ is shown in red
and blue, respectively. The data was taken with a network analyser. The
x axis shows the RF drive frequency f . The black dashed lines show
the fitting of |R| and φ with Equations 3.3 and 3.4 respectively, using
the load impedance model described by Equation 3.2. The fit estimates
the parasitic capacitance Cp and resistance Rp. a) The circuit resonance
in the IO. The resonance has a Q-factor of QL = 59.3 and a resonant
frequency of f0 = 593.6 MHz. The fit estimates a parasitic capacitance of
Cp = 0.57 pF and a parasitic resistance of Rp = 40.3 kΩ. b) The circuit
resonance in the LD250. The resonance has a Q-factor of QL = 63 at
a resonant frequency of f0 = 593.4 MHz. The fit estimates a parasitic
capacitance of Cp = 0.57 pF and a parasitic resistance of Rp = 43.2 kΩ.

φ of the tanks circuit resonance estimates the parasitic parameters. This esti-
mated a parasitic capacitance of Cp = 0.39 pF and resistance Rp = 121.8 kΩ.
The circuit has a loaded Q-factor of 35.2 and a resonant frequency of f0 =

655.2 MHz.

To finalise the circuit, the surface mount inductor was switched for a super-
conducting NbTiN-on-quartz spiral, which is expected to have much lower
signal loss, and therefore should increase the unloaded Q-factor and boost
phase responsivity. The inductor has 11 turns with 6 µm spacing, which gives
it inductance L = 96 nH (via the Wheeler formula [80]), similar to the 100 nH
surface mount inductor used previously. At this point, the QD chip was
mounted and connected via 17 µm diameter aluminium bond wires. The
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tank circuit was built to be extremely sensitive to capacitance, so these addi-
tions affect the behaviour of the resonator, as shown with the new resonance
in Figure 3.8a. A fit of Equations 3.3 and 3.4 to the new resonance estimates
that the parasitic capacitance increases significantly to Cp = 0.57 pF, pre-
sumably from the extra metal that connects the QD top gate. The parasitic
resistance increases to Rp = 40.3 kΩ. The Q-factor increased to 41.7 and the
resonant frequency drops to f0 = 593.6 MHz. The increased Rp and loaded
Q-factor is a result of the lower losses in the high-Q spiral inductor. The cou-
pling capacitor is assumed to have reduced in capacitance by 10 % from the
cooling, to Cc = 0.18 pF.

The choice of cryostat has a small, but noticeable, effect on the external cir-
cuit properties. When mounted in the cooled LD250 dilution refrigerator, the
circuit model estimated a parasitic capacitance of Cp = 0.57 pF and a para-
sitic resistance of Rp = 43.2 kΩ. Comparing to the IO circuit, the resonance
frequency was very similar at f0 = 593.4 MHz with an increase in Q-factor to
63.

3.3.3 Demodulation of Reflected Signal

The reflectometry circuit is operated at the resonant frequency f0, which acts
as the carrier frequency. Any modulation that occurs at this frequency needs
to be measured. When the reflected signal returns via the amplified return
line, it is demodulated at f0 into the reflected signal power S11 and the differ-
ence in phase φ (relative to the ingoing signal). To do this, the driving signal
and return signal are connected to an active ADL5387 quadrature demodula-
tor chip, shown in Figure 3.9. The chip was mounted within grounded metal
housing along with several RF circuit components and the +5 V power lines.
The housing had high-frequency SMA ports for the LO and RF inputs, and
Bayonet Neill–Concelman (BNC) ports for the demodulated outputs. The
LO input is connected to a ×2 frequency multiplier (MC model No. MK-5)
followed by a high pass filter (MC model No. SHP-900+). The high pass fil-
ter has a cut off at f = 910 MHz, which prevents the local oscillator driving
frequency f interfering with the chip, whilst allowing the 2 f signal through.
The ADL5387 requires double the local oscillator frequency on the LOIP pin
(refer to Figure 3.9), with a signal power of 0± 6 dBm for the demodulation
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Figure 3.9: The custom demodulator setup, using a quadrature ADL5387 chip. RFIN
and RFIP pins are for RF input. A single-ended signal is applied to
the RF input pins through a T1 1:1 balun. Ground-referenced induc-
tors are also connected to the RF input pins for noise reduction. LOIP
is the local oscillator pin, which requires double the driving frequency
2× f . This is achieved with a ×2 frequency multiplier on the LO input,
which has 13 dB of attenuation. A 910 MHz high pass filter (HPF) al-
lows 2× f through to the LOIP pin. Both the LO and RF input pins have
AC coupling capacitors at 1 nF. ILO, IHI, QLO and QHI pins are the I-
channel and Q-channel mixer baseband outputs. Each of these lines has
a ground-referenced resistor and 48 MHz low pass filter (LPF) for noise
reduction. VPA, VPL, VPB, VPX are power supply pins for for LO, RF,
biasing and baseband sections, respectively. The +5 V input to each of
these pins is filtered with 100 pF and 100 nF capacitors.
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to work. The RF input line is connected to a balun which creates a balanced
signal pair for the RF input (returning from the reflectometry circuit) via the
RFIP and RFIN pins. Both the LO and RF lines have AC coupling capacitors
at 1 nF. The demodulated output signal is carried on four lines, ILO, IHI, QLO

and QHI. The values of I = IHI − ILO and Q = QHI − QLO represent the
Cartesian coordinates of the demodulated signal. Each output for I and Q
has a 50 Ω differential output impedance (25 Ω per pin). The bias level on
the four I-Q pins are −2.8 V. Each output line is filtered with low pass filters
with a 48 MHz cutoff (MC model No. SLP-50+), which reduce noise in the
demodulated signal. External to the metal housing, the four voltage readings
ILO, IHI, QLO and QHI were each connected to the inputs of a USB-6356 NI
DAQ, which converts the four analogue voltages into digital data at a maxi-
mum sample rate of 2.6 × 105 s−1. The reflection from the circuit S11 can be
calculated from these readings via:

S11 =
√
(IHI − ILO + I0)2 + (QHI −QLO + Q0)2, (3.7)

where Q0 = 6.0 × 10−4 V and I0 = 0.13 V are output voltage offsets. The
phase φ can be read via

φ = arctan
(

QHI −QLO + Q0

IHI − ILO + I0

)
. (3.8)

Power was supplied to the active demodulator chip at +5 V (> 180 mA) con-
nected in parallel to each appropriate pin with 100 pF and 100 nF capacitors
to filter out noise and provide steady power.

3.3.4 Reflectometry Optimisation

Optimising the power and frequency of the driving and reflected signals is
important to increase measurement responsiveness whilst minimising dis-
turbance to the QD-reservoir system. Once the QD is tuned and a Coulomb
resonance has been located, the reflectometry circuit can be optimised to get
the best possible responsivity to the QD total capacitance.

The completed reflectometry circuit has several signal power requirements
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Figure 3.10: Calibration of RF power on the FET. The DC top gate voltage Vtg is
swept over a single Coulomb peak while the AC RF driving power is
adjusted. The measurements are taken from within the IO at base tem-
perature. a) The single conduction Coulomb peak observed by monitor-
ing the source-drain current Isd with a small source-drain bias voltage
Vsd = 1.05 mV. The source-drain voltage is small enough that the AC
signal can create a small negative current on the edge of the Coulomb
peak. When the driving power is reduced, the width of the peak, ∆Vtg,
narrows. The peak shifts around the Vtg axis due to the charge noise
induced by the relatively high AC power on the top gate. b) The mea-
sured width of the Coulomb peak ∆Vtg against the driving power, from
the same data. The width converges at around −20 dBm. The orange
line is a fit of the Pythagorean addition of two broadening effects, the
background broadening and the AC power broadening. The red dashed
line represents the converged value for the background width ∆V0

tg,
which is related to the bias Vsd and other broadening effects. The green
dashed line represents the AC peak-to-peak voltage Vpp from the driv-
ing power, which from the fit estimates the attenuation from the ingoing
fridge lines to be −39 dB, which agrees with the circuit design.
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for successful operation. The driving signal needs to be attenuated as it trav-
els to the cooled environment within the fridge. This helps prevent any un-
wanted warming of the device, and in this case it is essential to the experi-
ment. The attenuation is spread across the multiple stages of the cryostat, so
as to attenuate any unwanted thermal noise that may get in from black body
radiation. A RF signal at the tank circuit resonant frequency will oscillate the
QD energy level by ∆ERF = |eαVpp|, where Vpp is the peak-to-peak AC volt-
age at the QD top gate. The nature of the experiment requires the observation
of several broadening mechanisms, including thermal and tunnel broaden-
ing, which cannot be observed if the RF signal power is too high. Therefore
we need to meet the condition:

∆ERF � kBT, h̄Γ. (3.9)

A very convenient method of ensuring this condition is met is to reduce
the driving power whilst monitoring the width of a single QD Coulomb
resonance. This is done by measuring the source-drain current Isd with a
small source-drain bias voltage Vsd = 1.05 mV (which is around 1/30 the
QD charging energy) as demonstrated within the IO in Figure 3.10. When
performing this experiment, the fridge was held at base temperature Tf =

1.268± 0.001 K. The driving signal is directly connected into the fridge lines,
i.e. there is no room temperature attenuation. During the experiment, the
relatively high power caused extra charge noise and switching events, but
the width of the peak is mostly unaffected, as it was measured compara-
tively quickly. As the power is lowered, the width of the peak in top gate
voltage, ∆Vtg, narrows and then settles at the width defined by Vsd and the
QDs intrinsic broadening mechanisms. For the IO circuit shown in Figure
3.3, a driving power of < −20 dBm is low enough to have no effect on the
Coulomb peak width. Considering the ingoing fridge attenuation of 52 dB,
this equates to a device signal power of < −72 dBm. The driving frequency
needs to be operating at 19 dBm to get the appropriate power in the demod-
ulator chip LO input, so a 49 dB attenuator is placed on the ingoing RF line,
which makes the device signal power −82 dBm. Reducing the power further
would deteriorate the signal. The LD250 has an ingoing fridge attenuation
of 71 dB, so a room temperature 38 dB attenuator was added to the ingoing
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Figure 3.11: Coulomb peak detection of tank circuit resonance, in the IO cryostat at
base temperature. The top gate voltage Vtg is swept over two Coulomb
peaks as the driving RF frequency f is adjusted, while the source-drain
current Isd is monitored. There is a small source-drain bias voltage
Vsd ≈ 0.3 mV. The source-drain voltage is small enough that the AC
signal can create a small negative current on the edge of the Coulomb
peak. The RF power at the device was −41 dBm. The width of the
Coulomb peaks hits a maximum when the driving frequency matches
the resonant frequency of the tank circuit. This allows the observa-
tion of the resonance to be made via the device instead of from the re-
flected signal. The orange line shows the resonance at f0 = 595.5 MHz,
which is slightly higher than the network analyser |S11| measured res-
onance f0 = 593.6 MHz (observed in Figure 3.8). The equivalent ex-
periment from the LD250 circuit gives a device-measured resonance of
f0 = 593.5 MHz.

line, which creates a similar device power of −90 dBm.

A convenient technique to optimise the driving frequency is to observe the
resonant frequency f0 from the response of the QD. This was done by setting
the driving frequency power to an appropriately high level, so that when the
tank circuit is in resonance ∆ERF > kBT, h̄Γ. The width of the QD Coulomb
peaks in top gate voltage ∆Vtg was observed (again by measuring the source-
drain current Isd with a small source-drain bias voltage Vsd ≈ 0.3 mV) as the
driving frequency f is varied, demonstrated within the IO (at base tempera-
ture) in Figure 3.11. When f = f0, the transmission of power into the QD top
gate is maximised, which also maximises the width of the Coulomb peak,
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revealing the optimum driving frequency to maximise phase responsivity.

The returning RF signal (from the cooled device to the RF demodulator pins)
needs to have a high enough power for the demodulator to function properly
(between −40 dBm and +10 dBm), so two amplifiers are included in the re-
turn line. At the 4 K fridge stage, a cryogenic SiGe low noise amplifier (CMT
model No. CITLF3) is added to the return line which contributes 35 dB of am-
plification. This cryogenic amplifier has a low noise temperature (4.5± 1 K
at a temperature of 4 K) and therefore it boosts our signal whilst contributing
less noise than a room-temperature amplifier. An extra room temperature
40 dB amplifier is added on the return line. Combined with the cryo-amp,
this produces a 75 dB total gain from the device, which brings the power
level back to ∼ −10 dBm at room temperature, ideal for the demodulator
chip.

3.4 Quantum Dot Geometry

The final stage of building the thermometer was to choose an appropriate Si
FET device geometry from the device chip (detailed in Section 3.1) to create
a suitable QD system. The FET chip was mounted on the PCB (detailed in
Section 3.3.1). These devices were trialled in the IO cryostat.

The first FET that was measured had a Si channel with a width of 30 nm and
a length of 200 nm (which also corresponds to a top gate width of 200 nm).
A stability diagram was taken (at IO base temperature) with both Isd and
φ measured simultaneously, shown in Figure 3.12a. This device required a
large top gate voltage Vtg ∼ 1 V to get source-drain transport to appear, and
so some regions were fairly unstable with charge noise and switching events.
Coulomb diamonds were observed with a charging energy of Ec = 56.9 meV
and top gate lever arm α = 0.86. However there is also a second set of smaller
diamonds within the first set, with a charging energy of Ec ≈ 5.5 meV and
top gate lever arm α ≈ 0.9. The second set of diamonds are even clearer in
the reflected phase measurement, where a distinct phase response is picked
up from each ‘drain resonance’ side of the diamonds. Periodic lines like this
suggest the charging of a second floating object [81]. It is likely two QDs
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Figure 3.12: Charge stability diagrams measured by reflectometry technique and DC
transport in IO cryostat. For both diagrams the fridge was held at tem-
perature Tf = 1.268± 0.001 K. a) The stability diagram shows the QD
source-drain current |Isd| in log scale on the left, and the simultaneous
reflected signal phase is shown on the right. Two sets of Coulomb di-
amond can be observed, labelled ‘1’ and ‘2’. On the right there is a
schematic of the FET (not to scale) that details the device geometry and
illustrates how two QDs might appear in the device, labelled ‘1’ and ‘2’
to match the respective Coulomb diamonds. b) The stability diagram
shows the QD source-drain current |Isd| in log scale on the left, and the
simultaneous derivative of reflected signal phase in relation to the top
gate voltage dφ/dVtg is plotted on the right. On the right there is a
schematic of the FET (not to scale) that details the device geometry, in
this case only one QD appears.
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have formed, with both a large and small QD forming under the top gate in
response to large Vtg.

The second FET trialled had a top gate 80 nm wide, and a Si channel 30 nm
wide. The idea was to reduce the width of the top gate (or the length of
the undoped Si channel under the top gate), which should reduce the Vtg

needed to get source-drain transport. A stability diagram was taken (at IO
base temperature) with both Isd and φ measured simultaneously, shown in
Figure 3.12b. In this case to get source-drain transport the top gate was only
Vtg ∼ 0.1 V. A single set of stable Coulomb diamonds was observed, and the
QD existed over several Coulomb peaks in the Vtg axis.

To choose a Coulomb peak to use for thermometry, the source-drain con-
nections on this device were grounded (so Vsd = 0) and the top gate was
scanned, revealing the Coulomb peaks which are picked up by the phase
reflectometry, shown in Figure 3.13. The peaks were chosen for the ther-
mometry location based on demonstrating a clear phase responsivity and
low charge noise. The position of the Coulomb peak along the Vtg axis must
be stable enough so that the magnitude of variance is much lower that the
FWHM. This prevents charge noise interfering with the shape of the peak.
A narrow peak suggests a reduced tunnel broadening (as they are all at the
same temperature), which is desirable for thermometry.
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Figure 3.13: Coulomb peaks observed from phase reflectometry by sweeping top
gate voltage Vtg. The red data shows measurements taken from within
the IO at base temperature, and the blue data shows the LD250 data
from the same FET. The QD source and drain connections are grounded
during the measurements. The peaks show the QD electron transitions,
where thermometry can be performed. The arrows show the peaks used
for thermometry in Chapter 4.
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Chapter 4

Operating a Single-Wire Quantum
Dot Thermometer

This chapter details the results from the calibration and operation of the QD
electron thermometer described in Chapter 3. Both the calibration and opera-
tion of the thermometer are performed with a single capacitive measurement
of the QD. This chapter includes a description of the experiment in Section
4.1, the results from the IO and LD250 fridges in Sections 4.2 and 4.3, respec-
tively, the description of a physical model of the thermometer in Section 4.4,
thermometry error analysis in Section 4.5 and a close look at the QD energy
scales in Section 4.6. The implications of the results are discussed in Section
4.7. Some of these results are accepted for publication in Physical Review
Applied.

4.1 Calibration and Operation

Here, the process of thermometer calibration and operation with a single-
wire is described in detail. These techniques are used in the experiments
described in Sections 4.2 and Sections 4.3 for the IO and LD250 cryostats,
respectively.

The experimental data discussed in this chapter come from two separate
cool-downs of the FET device, in two different cryostats; the IO 1 K pot cryo-
stat and the LD250 dilution refrigerator (details on these systems are in Sec-
tion 2.3). The RF reflectometry measurement circuits were mounted in both
cryostats, described in Chapter 3, and shown in Figure 3.3. The Si FET device
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used is detailed in section 3.4. Each cool-down has two stages to the experi-
ment, the calibration of the QD thermometer which also estimates a physical
model of the system, and then the subsequent operation to measure electron
temperature. Additionally, because these are first-time demonstrations, this
is also a ‘confirmation’ stage in Section 4.4 where source-drain connection are
used to confirm the validity of the physical model.

The calibration of the QD thermometer has two purposes. First of all, to
make sure the electron temperature readout from the thermometer is accu-
rate, but secondly, to fill in unknown physical parameters within the model
that makes up Equation 3.5. The FET is tuned to a QD Coulomb peak with
a positive Vtg, shown in Figure 3.13. With the driving frequency f set to the
tank circuit bare resonance frequency f0, the phase of the demodulated sig-
nal φ is monitored as the DC QD top gate voltage Vtg is swept across the
chosen QD Coulomb peak, located at top gate voltage V0 (this measurement
will be referred to as a phase trace). The calibration process involves a single
Chi-square fit (described in Section 2.2.1) of Equation 3.5 over several phase
traces taken at a variety of fridge temperatures. These temperatures need to
be across a large enough range so that the phase traces are distinct enough to
determine electron temperature dependence. The calibration temperatures
also need to be high enough that it can be assumed the electrons are ther-
malised with the cryostat. The measurements are designed to require no use
of the source-drain QD connections, so the usual method of characterising
the QD via a stability diagram is not possible. This means there are three
parameters unaccounted for within Equation 3.5; the top gate lever arm α,
the tunnel rate Γ, and the phase responsivity A. The calibration fit shapes
the model over all the phase traces by adjusting α, Γ and A, which have no
dependence on temperature and are distinct enough to avoid crossover in
the fitting between the estimation of each parameter. All three of these pa-
rameters remain constant over a single QD conduction resonance. The phase
responsivity A can be calculated via Equation 3.6, but the introduction of the
demodulator chip (discussed in Section 3.3.3), and the large attenuation of
signals entering the fridge, alters the loaded Q-factor from what is observed
with the network analyser in Figure 3.8. Allowing A to be a fitting param-
eter reduces the chance of calibration error and also increases the versatility
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of the calibration process. For example, different circuits would have varia-
tions in parasitic capacitance or loaded Q-factor, and the calibration fit would
include the influence of these factors within A, and no extra measurements
would be needed. Each phase trace has an individual fit for φ0 and V0. These
values can change if there is a long pause between data sweeps, if there is
significant charge noise, or a different ambient lab temperature effecting the
room temperature electronics. Extracting φ0 and V0 from each phase trace
is trivial, so it has no effect on the fitting of α, Γ and A. The difference in
temperature between the phase traces within the calibration data is crucial to
capturing the physical picture of the QD. Once α, Γ, and A are defined from
the calibration fit, then the QD thermometer is ready for operation.

Operating the calibrated thermometer is a more straightforward process. At
a stable fridge temperature, a phase trace is measured. The electron tempera-
ture Te is then estimated by fitting Equation 3.5 to the sweep, equipped with
the values α, Γ and A previously determined from the calibration. A single
electron thermometry fit has three fitting parameters, Te, φ0 and V0. Like with
the calibration, these last two parameters are trivial to estimate.

Another electron thermometry technique is to measure the phase at the cen-
tre of the Coulomb peak, when the DC top gate voltage is set to Vtg = V0.
With this condition, the tunnelling capacitance Ct is at its maximum value,
so the phase response peaks such that φ− φ0 = φMAX. The calibrated Equa-
tion 3.5 predicts a relationship between φMAX and Te, allowing a conversion
between the two. This method allows fast readout because only one phase
value needs to be measured and converted, instead of an entire phase trace
being measured and fitted to. The precision of this measurement is entirely
dependent on the averaging time that goes into each φMAX data point. The
electron temperature readout can be affected by charge noise in the Coulomb
peak. The technique can stop working if there is a significant charge jump in
the Si FET, causing the location of the Coulomb peak to shift, which would
mean relocating V0 to continue the thermometry. This is rare with a stable
fridge temperature, and the likelihood decreases with time spent in the cryo-
stat. If the fridge temperature is changed then it is likely the peak position
has moved, and hence V0 should be relocated.
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4.2 IO Cryostat Results

This section details the results of the QD thermometer calibration and elec-
tron thermometry from within the IO 1 K pot cryostat, at fridge temperatures
1.3 < Tf < 3.0 K. The FET used is discussed in Section 3.4 and the tank cir-
cuit is discussed in Section 3.3.1. The complete circuit can be seen in Figure
3.3. The driving frequency was set to the resonant frequency of the IO circuit
f0 = 598.0 MHz (from Figure 3.11).

To collect the calibration data, the fridge temperature was stabilised at a par-
ticular value using a PID controlled heater mounted on the 1 K plate, and a
set of 10 reflected signal phase traces were taken by sweeping Vtg across the
QD Coulomb peak. This was done at three particular fridge temperatures
Tf = 2.0, 2.5, 3.0 K. The temperatures are purposely high to guarantee the
electrons are well thermalised with the fridge (via phonons described in Sec-
tion 2.1.6), and the temperatures are well spaced enough to create a variety
of distinct phase traces, which helps the calibration. The difference in tem-
perature is crucial for the calibration to estimate realistic parameters within
the physical model.

A single least-squares fit of Equation 3.5 was performed on the collection of
phase traces for all three temperatures. Some example phase traces from the
calibration fit are shown in Figure 4.1. The model was fitted simultaneously
to all the phase traces by adjusting α, Γ and A. These three parameters have
a fixed value across all of the calibration data and they are distinct enough
to avoid crossover in the fitting. Each phase trace has an individual fit for φ0

and V0, which are both trivial to define for each phase trace, so they have very
little influence on the fitting of α, Γ and A. All the calibration data was taken
at 2 K and above, so it is assumed that the electrons are well thermalised with
the fridge temperature, i.e Te = Tf, in Equation 3.5

The IO calibration fit estimated the values of the model parameters to be
α = 0.74 ± 0.02 , Γ = 270 ± 20 ns−1 and A = 5.13 ± 0.06 rad pF−1. This
implies Γ� 2π f0, therefore dissipative effects are assumed not to occur and
the cyclic tunnelling is considered adiabatic. The parameter estimate error
from the fit (detailed in Section 2.2.2) is low (< 3%), suggesting there was no
issue with crossover between the parameters during the fit. With the three
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Figure 4.1: QD thermometer calibration in IO cryostat, showing three experimental
phase traces taken at fridge temperatures Tf = 2.0, 2.5, 3.0 K. The fridge
temperature Tf is read from a ruthenium oxide resistance thermometer
thermally linked to the FET device. Each trace shows the change in re-
flected signal phase φ − φ0 against top gate voltage Vtg − V0, where V0
is the location of the QD Coulomb peak. The solid black lines show
the least-square fit of Equation 3.5 onto the data, assuming the elec-
tron temperature Te equals the fridge thermometer readout Tf. This cal-
ibration procedure estimates α = 0.74 ± 0.02 , Γ = 270 ± 20 ns−1 and
A = 5.13± 0.06 rad pF−1. For each of the three temperatures 10 traces
were measured to complete the calibration data, but for clarity this plot
only shows one example trace for each temperature group.
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Figure 4.2: Example of electron thermometry in the IO. The data here shows two
reflected signal phase φ − φ0 measurements against top gate voltage
Vtg −V0 around the charge degeneracy point of the QD. The fridge tem-
perature Tf is read from a ruthenium oxide resistance thermometer ther-
mally linked to the FET device. The blue and orange points were taken
at Tf = 1.3 K and 3.0 K, respectively. The blue and orange lines show the
fit of the calibrated model (Equation 3.5) to their respective phase trace,
which returns an estimate of Te = 1.4 K and 2.9 K, respectively.

parameters estimated completing the physical model, the thermometer was
calibrated and ready for thermometry operation.

To test the calibrated electron thermometer, a series of phase traces were
taken at varying fridge temperatures between Tf = 3.0 K and 1.3 K. The
fridge temperature was stepped by 0.1 K intervals and at each temperature
10 phase traces were measured. This range contains temperatures lower
than the calibration data to test if the the model can capture the QD be-
haviour at lower temperatures. The electron temperature Te is estimated by
fitting Equation 3.5 to the sweep, equipped with the values α = 0.74± 0.02,
Γ = 270± 20 ns−1 and A = 5.13± 0.06 rad pF−1 (from the calibration). A
demonstration of operating the calibrated thermometer is shown in Figure
4.2. A single electron thermometry fit has three fitting parameters, Te, φ0 and
V0, although the last two are trivial to define.

To verify the validity of the electron thermometry, the QD thermometer elec-
tron temperature readout, Te, was compared with the fridge temperature,
Tf, in Figure 4.3. The results show a striking agreement between the QD
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Figure 4.3: Electron temperature Te readout from QD thermometer in the IO cryostat
for various fridge temperatures. The fridge temperature Tf is read from
a ruthenium oxide resistance thermometer thermally linked to the FET
device. The dashed line highlights where Te = Tf. The Te error bars
show the standard error from the fitting.

electron thermometer and fridge thermometer, even down to temperatures
much lower than the calibration data. This suggests that the calibration had
been successful in modelling the system, as it correctly predicted the tem-
perature dependence of the phase trace curve at lower temperatures. The
physical model accurately predicted the influence of the tunnelling and ther-
mal broadening mechanisms. This is discussed in detail in Section 4.6.

To operate the thermometer in its fastest readout mode, the QD was tuned
to the centre of the Coulomb peak where Vtg = V0 so that φ − φ0 = φMAX.
The value of φMAX can be converted into an electron temperature using the
calibrated Equation 3.5, with the assumption Vtg = V0. To test faster electron
temperature readout the maximum phase φMAX was monitored at different
values of Tf, and compared with the prediction from Equation 3.5 (assuming
Te = Tf), shown in Figure 4.4. Each reading of φMAX took ≈ 0.3 s. The φMAX

data and the model prediction line up well, so the physical model can be
used to convert φMAX to Te.
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Figure 4.4: Maximum phase φMAX readout from QD thermometer in the IO cryostat
for a variety of fridge temperatures. φMAX is the peak phase measured at
the centre of the QD Coulomb peak Vtg = V0. The fridge temperature Tf
is read from a ruthenium oxide resistance thermometer thermally linked
to the FET. The dashed line represents the model prediction (not a fit)
from calibrated Equation 3.5 assuming both Vtg = V0, and Tf = Te.

4.3 LD250 Cryostat Results

This section details the results of the QD thermometer calibration and elec-
tron thermometry from within the LD250 dilution refrigerator, at fridge tem-
peratures in the range of 0.2 < Tf < 1.6 K. This experiment tests to see if the
QD thermometer calibration and operation work in a completely different
system, and also to find the low temperature limit of the thermometer. The
exact same FET and tank circuit used in the IO experiment (Section 4.2) were
also mounted in the LD250 for this experiment, and the same room temper-
ature electronics were used. The complete circuit can be seen in Figure 3.3.
The driving frequency was set to the resonant frequency of the LD250 circuit
f0 = 593.5 MHz.

To collect the calibration data, the fridge temperature was adjusted by remov-
ing some 3He/4He mixture from circulation, which reduces cooling power
and causes the mixing chamber temperature to settle at a higher tempera-
ture (more information in Section 2.3). At each fridge temperature a set of
∼ 100 reflected signal phase traces were taken by sweeping Vtg across the
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Figure 4.5: QD thermometer calibration in LD250 cryostat, showing two experimen-
tal phase traces taken at fridge temperatures Tf = 1.62, 1.40 K. The fridge
temperature Tf is read from a ruthenium oxide resistance thermometer
thermally linked to the FET device. Each trace shows the change in re-
flected signal phase φ− φ0 against top gate voltage Vtg − V0 around the
Coulomb peak of the QD. The solid blue and red lines show the least-
square fit of Equation 3.5 onto the data at Te = 1.40 K and 1.62 K, respec-
tively, assuming the electron temperature Te equals the fridge thermome-
ter readout Tf. This calibration procedure estimates α = 0.84 ± 0.03,
Γ = 510± 10 ns−1 and A = 0.75± 0.07 rad pF−1. For each of the three
temperatures, 10 traces were measured to complete the calibration data,
but for clarity this diagram only shows one example trace for each tem-
perature.

QD Coulomb peak, although for the calibration data only 10 phase traces
were chosen at random per temperature. This was done at two particular
fridge temperatures Tf = 1400, 1620 mK. The temperature range is pur-
posely high, when compared to the base temperature of the fridge, to guar-
antee the electrons are well thermalised with the fridge temperature (via
phonons described in Section 2.1.6), and each temperature is well spaced
enough to help the calibration.

A single least-squares fit of Equation 3.5 was performed on the collective
phase traces across both temperatures, as shown in Figure 4.5. The model
was fitted to the phase traces simultaneously by adjusting α, Γ and A. Each
phase trace has an individual fit for φ0 and V0. All the calibration data was
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taken at 1.4 K and above, so it can be assumed that the electron temperature
is well thermalised with the fridge temperature. Therefore during the cali-
bration fit we assume that Te = Tf in Equation 3.5, i.e. the fridge temperature
reading is interpreted as the electron temperature.

The LD250 calibration fit estimated the values α = 0.84± 0.03 , Γ = 510±
10 ns−1 and A = 0.75± 0.07 rad pF−1. This implies Γ� 2π f0, therefore dissi-
pative components were neglected and the cyclic tunnelling was considered
adiabatic. The difference in α , Γ and A as compared with the IO calibration
can be attributed to the differences between the two cryostat systems and the
Si FET having undergone a thermal cycle. For example, the PCB tank circuit
is extremely sensitive to the nearby metallic geometry of the fridge, which
can change the value A via the top gate parasitic capacitance Cp or QD ge-
ometric capacitance C (in Equation 3.6). It seems unlikely that the parasitic
capacitance has shifted as the circuit model suggests there is no change (de-
tails in Section 3.3.2). Instead, it is possible the geometric capacitance C of the
QD has changed. The QD parameters α and Γ are also sensitive to the shape
and position of the QD in the Si channel, which are likely to change after a
thermal cycle. Also the location of the Coulomb peak is different between
the two cryostats (shown in Figure 3.13), which changes the QD geometry
during the measurements, which affects C.

The re-calibrated thermometer was then used for electron thermometry. A
series of phase traces were taken at the following fridge temperatures Tf =

180, 630, 1400, and 1620, mK. At each temperature ∼ 100 phase traces were
measured, but in the thermometry analysis only 10 phase traces were ran-
domly chosen to be used per temperature. This range contains temperatures
lower than the calibration data to test the effectiveness of the calibration. The
electron temperature Te was then estimated by fitting Equation 3.5 to the
sweep, equipped with the values α = 0.84 ± 0.03, Γ = 510 ± 10 ns−1 and
A = 0.75 ± 0.07 rad pF−1 (from the calibration). Each single electron ther-
mometry fit has three fitting parameters, Te, φ0 and V0.

To analyse the electron thermometry, the QD thermometer electron temper-
ature readout Te was compared with the fridge temperature Tf in Figure 4.6.
Using the electron thermometer in a different system at lower temperature



4.3. LD250 Cryostat Results 75

10 1 100

Tf (K)

10 1

100
T e

(K
)

Tf = Te

Figure 4.6: Electron temperature Te readout from recalibrated QD thermometer in
the LD250 cryostat, for various fridge temperatures. The fridge tempera-
ture Tf is read from a ruthenium oxide resistance thermometer thermally
linked to the FET device. The dashed line highlights where Te = Tf. The
Te error bars show one standard deviation of certainty. The readout of Te
deviates from the Tf below 1 K, as the QD goes further into the strongly
coupled regime kBTf < h̄Γ.

gave a reasonable agreement above Tf = 1 K, despite kBTf ∼ h̄Γ (from cali-
bration estimation). Below Tf = 1 K there was a considerable increase in Te

readout error from the the fit. This is because the thermometer was enter-
ing the regime where the QD energy level is strongly tunnel broadened, and
therefore Ct has much weaker temperature dependence. This is discussed in
detail in Section 4.6. The error for an individual fit of Te increases with lower
temperatures due to the weaker temperature dependence (the calculation of
the error is described in Section 2.2.2). The Te = Tf line does remain with
the standard deviation error from the electron thermometry. To compound
the issue of strong tunnel broadening, it is likely there are elevated electron
temperatures from a weaker electron-phonon coupling (described in Section
2.1.6).

An attempt was made to operate the QD thermometer in a faster readout
mode by tuning to the centre of the Coulomb peak where Vtg = V0, so that
φ − φ0 = φMAX. The value of φMAX can be converted into an electron tem-
perature using the calibrated Equation 3.5, with the assumption Vtg = V0.
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Figure 4.7: Max phase φMAX readout from QD thermometer in the LD250 cryostat
for a variety of fridge temperatures. φMAX is the peak phase change mea-
sured at the centre of the QD Coulomb peak Vtg = V0. The error on the
data points show one standard deviation of certainty based on the range
of values measured (not from any fitting procedure). The fridge tempera-
ture Tf is read from a ruthenium oxide resistance thermometer thermally
linked to the FET. The black dashed line represents the model predic-
tion (not a fit) from calibrated Equation 3.5 assuming both Vtg = V0, and
Tf = Te. The grey shaded area shows one standard deviation of error in
the model prediction.
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The maximum phase φMAX was monitored at different values of Tf, and com-
pared with the prediction from Equation 3.5 (assuming Te = Tf), shown in
Figure 4.4. The φMAX data and the model prediction line up relatively well,
however the projection of the calibrated physical model into lower temper-
atures deviates slightly from what was then measured at low temperatures.
The height of all the phases traces is almost constant, which is due to domi-
nant tunnel brodening. This means that φMAX thermometry can not be done
accurately below 1 K with this particular FET. The solution to this problem is
to reduce the tunnel coupling.

4.4 Validity of Physical Model

The calibration process described in Sections 4.1 produces estimations for the
parameters α, Γ and A from Equation 3.5, each of which represent a real phys-
ical property in the model. To verify the validity of the calibration fit, a sta-
bility diagram of the QD was measured for both the IO and the LD250 exper-
iments. To do this, the FET source and drain connections were ungrounded
to apply a source-drain voltage Vsd over the QD.

In the IO, the charge stability diagram was measured by monitoring the
source-drain current Isd as both Vsd and Vtg were adjusted, shown in Figure
4.8. Using the relationship from Equation 2.20 the value for α predicted by the
calibration fit was added onto the stability diagram in the form of two gra-
dients; the gradient along the ‘drain resonance’ side of a Coulomb diamond
md = ∆Vd

tg/∆Vd
sd and the ‘source resonance’ side ms = ∆Vs

tg/∆Vs
sd. The drain

resonance and source resonance cross at the location of the Coulomb peak
used in the thermometry. The calibrated lever arm α = 0.74± 0.02 matches
well with the Coulomb diamond geometry, suggesting the value has been
correctly estimated. Above and below the thermometry Coulomb peak, the
order of magnitude of the source-drain current |Isd| from the unblockaded
QD was found to be ∼ 10 nA. This agrees with the calibration fit predic-
tion of the tunnel coupling Γ = 270± 20 ns−1 which suggests a source-drain
current of eΓ ∼ 6.9 ± 0.5 nA. The agreement of both α and Γ between the
calibration prediction and the measured stability diagram suggest strongly
that the physical model is accurate. Considering the calibration is based on
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Figure 4.8: Charge stability diagram measured from source-drain transport, in the
IO cryostat. Vtg is the top gate voltage, Vsd is the source-drain voltage and
|Isd| is the source-drain current, plotted in log scale. The fridge was held
at temperature Tf = 1.268± 0.001 K. Red lines highlight the source and
drain resonance gradients, ms and md, respectively, which match up with
the calibration fit lever arm prediction, α = 0.74± 0.02, via Equation 2.20.
The two gradients cross at the the Coulomb peak where the thermometry
took place. Here the on-resonance current has an order of magnitude
Isd ∼ 10 nA, which is similar to the single electron current defined by the
calibration fit tunnel coupling eΓ ≈ 6.9± 0.5 nA.
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Figure 4.9: Charge stability diagram measured from source-drain transport, in the
LD250 cryostat. Vtg is the top gate voltage, Vsd is the source-drain voltage
and |Isd| is the source-drain current, plotted in log scale. The fridge was
held at temperature Tf = 8.70± 0.05 mK. Red lines highlight the source
and drain resonance gradients, ms and md, respectively, which match up
with the calibration fit lever arm prediction, α = 0.84± 0.03, via Equa-
tion 2.20. The two gradients cross at the the Coulomb peak where the
thermometry took place. Here the on-resonance current has a order of
magnitude Isd ∼ 10 nA, which is similar to the single electron current
defined by the calibration fit tunnel coupling eΓ ≈ 13.1± 0.3 nA.

measurements made at three relatively high temperatures, the technique is
good at characterising the QD and predicting how it will behave at lower
temperatures.

In the LD250, the charge stability diagram was also measured, shown in
Figure 4.9. Using the relationship from Equation 2.20 the value for α pre-
dicted by the calibration fit was added onto the stability diagram in the
form of the source and drain resonance gradients that cross at the location
of the Coulomb peak used in the thermometry. The calibrated lever arm
α = 0.84± 0.03 matches well with the Coulomb diamond geometry, suggest-
ing the value has been correctly estimated. This demonstrates that this single-
gate technique to measure the lever arm of a QD is a reliable technique across
independent experiments in different systems. Above and below the ther-
mometry Coulomb peak, the order of magnitude of the source-drain current
|Isd| from the unblockaded QD was found to be∼ 10 nA. This agrees with the
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calibration fit prediction of the tunnel coupling constant Γ = 510± 10 ns−1

which suggests a source-drain current of eΓ ∼ 13.1± 0.3 nA.

In both the IO and the LD250 the calibration has correctly estimated the top
gate lever arm, despite the change in value. This demonstrates that the lever
arm of a QD can be obtained using a single non-galvanic gate connection,
and measurements spanning a range of temperatures. The appropriate esti-
mations of Γ provide more evidence that this technique completes a realistic
model of the QD broadening.

4.5 Electron Temperature Error Analysis

This section takes a necessary look at the confidence in the electron thermom-
etry. This includes the electron temperature readout certainty for the fitting
procedure in Section 4.5.1, and the temperature sensitivity when measuring
φMAX in Section 4.5.2.

4.5.1 Phase Trace Fit Error

The electron thermometry error is an important parameter as it shows where
the temperature limits of this technique lie. The thermometry readout for Te

is meaningless if there is no certainty in the measurement. To quantify the
error, a constant Chi-square boundary technique is used during the fit for Te.

The technique used here involves forcing a range of guesses for Te, and ob-
serving how well the model fits the phase trace. The calibrated estimates of
α, Γ and A are included in the phase model Equation 3.5, leaving only elec-
tron temperature Te as a fitting parameter, along with φ0 and V0. We assume
that for a given phase trace at constant temperature, each phase data point
has a measurement error that is random within the same normal Gaussian
distribution, with standard deviation σ, i.e. σi = σ for all phase data points i.
Therefore from equation 2.47, for a given phase trace, each guess of Te returns
a goodness of fit χ2 that can be quantified via

χ2 =
N−1

∑
i=0

[φi − φ(Vi
tg|Te, φ0, V0)]

2

σ(N − 3)
, (4.1)
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where N is the number of data points in the phase trace, φi and Vi
tg are the

values of phase and top gate voltage, respectively, for the ith data point [51].
It is the case that σ vary between traces, for example if the temperature is
different. The minimum value of χ2, which we will label χ2

min, corresponds
to the final fit estimate for Te, and should meet the condition χ2

min < 10 if
the fit is good. To work out the certainty of this measurement, a constant
confidence boundary of χ2

min + 1 surrounds χ2
min, creating an interval which

represents one standard deviation of confidence (described in Section 2.2.2).
Because φ0 and V0 are trivial to define, they have very little impact on the
goodness of the fit, so we can plot χ2 against the proposed guess for Te to see
where the confidence boundaries lie.
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Figure 4.10: Electron thermometry goodness of fit χ2/χ2
min, against electron tem-

perature Te guess, for a variety of phase traces from the IO cryo-
stat. Three example phase traces are taken from fridge temperatures at
Tf = 1.35 K, 2.1 K and 3.0 K. The black points represent the Te fit where
χ2 is minimum. The height of these points is the confidence boundary
χ2 = χ2

min + 1 which defines the confidence region shown by the error
bars, representing one standard deviation of uncertainty.

First we will take a look at the error for the IO electron thermometry. Fig-
ure 4.10 demonstrates this process with a few example phase traces taken at
fridge temperatures of; Tf = 3.0 K, 2.1 K and 1.35 K. The location of χmin is
well defined, with one standard deviation of uncertainty being around±10%
for a single readout of Te. The condition χmin < 10 is true for all the phase
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traces, which indicates a good quality fit. The confidence boundary decreases
with lower fridge temperature. This is because the thermal noise and charge
noise are both reduced and the signal height φMAX is larger, which both con-
tribute to a tighter tolerance on the model fit.
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Figure 4.11: Electron thermometry goodness of fit χ2/χ2
min, against electron tem-

perature Te guess, for a variety of phase traces from the LD250 cryo-
stat. Three example phase traces are taken from fridge temperatures at
Tf = 0.18 K, 1.4 K and 1.62 K. The black points represent the Te fit where
χ2 is minimum. The height of these points is the confidence boundary
χ2 = χ2

min + 1 which defines the confidence region shown by the error
bars, representing one standard deviation of uncertainty.

Now we will take a look at the error for the LD250 electron thermometry.
Figure 4.11 demonstrates this process with a few example phase traces taken
at fridge temperatures of Tf = 0.18 K, 1.4 K and 1.62 K. At Tf > 1 K, the loca-
tion of χmin is well defined, with one standard deviation of uncertainty being
around ±20% for a single readout of Te. Pushing the QD thermometer to its
lower temperatures creates a transition from having a single clear location
of χmin, to a regime where there is a large spread of possible Te values, all
of similar validity. This represents the area where the tunnel coupling domi-
nates the thermal energy, i.e kBTe < h̄Γ, so the thermal energy has very little
impact on the phase trace shape. The dependence of the measured trace on
electron temperature gets weaker with lower values. Despite this, the condi-
tion χmin < 10 is true for all the phase traces, which indicates a good fit. At
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Tf = 0.18 K, some of the Te error bar lower bounds extend towards 0 K. At
this point it can be said the QD thermometer has reached its lower tempera-
ture limit for operation.

4.5.2 Max Phase Sensitivity

Measuring the maximum phase φMAX has been demonstrated to work as a
fast method of electron readout above 1 K, for the particular FET used, in
Section 4.2. The precision of this measurement is improved with more av-
eraging. An experiment was carried out to determine the sensitivity of the
φMAX thermometry for this particular experimental set-up and equipment.
The analogue to digital converter used to record the demodulated return sig-
nal has a maximum sample rate of 1.25 Ms−1. For each value of φ, the demod-
ulator chip output voltages ILO, IHI, QLO and QHI (details in Section 3.3.3) all
need to be recorded simultaneously. Therefore the maximum sample rate for
recording phase is 0.26 Ms−1.

With the FET and circuit mounted in the LD250, a single set of phase data
was taken for 60 s at the maximum sample rate (15.6 million phase values).
This was divided into 128 sets of data, each of which was converted into a
phase spectral density estimation via Welch’s method [82]. The 128 spectral
densities were averaged, producing Figure 4.12. The background spectral
density is notably flat, although there are features on top of the flat back-
ground. These spikes are much narrower than their typical spacing (most
only having a single data point), therefore contribute relatively little to the
total noise. Averaging the spectral density over the entire bandwidth gives
an effective white noise phase sensitivity of 1.1± 0.1 µrad/

√
Hz. From the IO

calibration of Equation 3.5 (with the condition Vtg = V0), we can use dφ/dTe

to convert the phase spectra into a temperature spectra. This gives an ap-
proximate white noise temperature sensitivity of 11 ± 1 mK/

√
Hz at 3.0 K,

and 4.0± 0.3 mK/
√

Hz at 1.3 K. For example, if φMAX is recorded with mea-
surement frequency of 10 Hz at a fridge temperature of 1.3 K, the error in the
recorded Te data would be±14 mK. There was a similarity between the noise
measured on the tail and peak of the phase trace. This suggests that the noise
measured is dominated by the experimental measurement chain, and the QD
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Figure 4.12: Spectral density of reflected phase readout from RF reflectometry taken
at 8.7 mK in the LD250 cryostat. A total of 27 samples of phase data
were read, each one at a sample rate of 2.6× 105 s−1 for 0.5 s, and con-
verted to a spectral density via the Welch’s method, represented by the
black data points linked with grey lines (left y-axis). The spectral den-
sities were averaged to produce the plot. The blue line shows the to-
tal RMS phase noise (right y-axis), which is the integral of the spec-
tral density between 0.27 Hz and the frequency indicated. The orange
dashed line corresponds to the average spectral density over the whole
bandwidth, which is equal to a effective white noise phase sensitivity of
1.1± 0.1 µrad/

√
Hz.

charge noise (which would likely have a 1/ f dependence) is somewhere un-
derneath this noise floor. Therefore, the sensitivity values mentioned here
are not device limited.

4.6 Quantum Dot Energies and Behaviour

Several energy scales are involved in the experiment that impact the be-
haviour of the QD, described in Section 2.1.2. The magnitude of the tunnel
coupling is of particular interest as a strongly tunnel coupled QD limits the
range of electron thermometry [28]. Here we show the different energy scales
for the experiments in both cryostats, and use them to explain the thermome-
ter’s behaviour. A brief look at how electron spin effects the location of the
Coulomb peak, V0, is also included.
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The tunnel coupling h̄Γ is estimated from the QD thermometer calibration
process. The QD excited state confinement energy Econ and QD charging
energy Ec = e∆Vsd can be observed from the stability diagram. To extract
the voltage ∆Vsd, the average height was taken from the Coulomb diamonds
on either side of the conduction resonance where the thermometry was per-
formed. The confinement energy is measured by Econ = −eα∆Vcon

tg , where
∆Vcon

tg is the difference in top gate voltage between the drain resonance and
the first observed excited state, which is detected from an increase in source
drain conduction.
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Figure 4.13: QD stability diagram from IO mounted FET. Vtg is top gate voltage, Vsd
is source-drain voltage and Isd is source-drain current. The black and
white scale shows the differential of the source-drain current with re-
spect to the source-drain voltage |dIsd/dVsd|. The crossed red dashed
lines highlight the Coulomb resonance where the thermometry was per-
formed, and the gradients correspond to the lever arm as measured
from the QD calibration process, α = 0.74± 0.02. The lowest red dashed
line highlights the first excited state of the QD. ∆Vcon

tg is the correspond-
ing top gate voltage interval for the first excited state. ∆V1

sd and ∆V2
sd

represents the height of the Coulomb diamonds to the left (1) and to the
right (2) of the thermometry Coulomb peak, respectively. The charging
energy can therefore be estimated as Ec = e(∆V1

sd + ∆V2
sd)/2.

For the IO experiment, the stability diagram gives a charging energy of Ec =

16.9 and a confinement energy of Econ = 3.7, which are estimated from ∆Vsd

and ∆V(con)
pg , shown in Figure 4.13. The thermal energy kBTe is approximately
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extracted from the range of fridge temperatures used during the experiment,
1.3 < Tf < 3.0 K. The tunnel coupling from the calibration process gives
Γ = 270± 20 ns−1.
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Figure 4.14: QD stability diagram from LD250 mounted FET. Vtg is top gate volt-
age, Vsd is source-drain voltage and Isd is source-drain current. The
black-and-white map shows the magnitude of the source-drain current
differential with respect to the source-drain voltage |dIsd/dVsd|, in log
scale. The crossed red lines highlight the Coulomb resonance where the
thermometry was performed, and the gradients correspond to the lever
arm as measured from the QD calibration process, α = 0.84± 0.03. The
lowest red line highlights the first excited state of the QD. ∆V(con)

tg is the

corresponding top gate voltage interval for the first excited state. ∆V(1)
sd

and ∆V(2)
sd represents the height of the Coulomb diamonds to the left (1)

and to the right (2) of the thermometry Coulomb peak, respectively. The
charging energy can therefore be estimated as Ec = e(∆V(1)

sd +∆V(2)
sd )/2.

For the LD250 experiment, the stability diagram gives a charging energy of
Ec = 28.8 and a confinement energy of Econ = 4.2, shown in Figure 4.14 . The
thermal energy kBTe is approximated from the range of electron temperatures
measured during the experiment, 0.18 < Tf < 1.62 K, assuming the electron
temperatures are roughly similar. The tunnel coupling from the calibration
process gives Γ = 510± 10 ns−1.

All the energy scales for both systems are stated in Table 4.1 for comparison.
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Energy Scale kBTe h̄Γ Econ Ec
Cryogen-free 1K cryostat 0.12− 0.26 0.18 3.7 16.9

Dilution refrigeration system 0.015− 0.14 0.32 4.2 28.8

Table 4.1: Energy scales associated with the experiments in the two fridge systems.
Te is the electron temperature, which has been obtained from the fit of the
model to the experimental data. The experiments took place over a range
of temperatures, so the thermal energy scale is shown as a range. Γ is the
QD tunnel rate. Econ is the confinement energy for the first excited state in
the QD. Ec is the charging energy for the QD.

From these measurements and estimates, we can say that for the IO experi-
ment, the hierarchy of energy scales was

kBTe ∼ h̄Γ < Econ < Ec. (4.2)

In this case the Coulomb-blockaded QD was affected significantly, but not
dominated, by tunnel coupling. The tunnel coupling is included within the
physical model, and so when the calibration fit was performed it was techni-
cally estimating the balance between the two main broadening mechanisms,
tunnelling and thermal. The thermometry in Figure 4.3 works well because
the calibration correctly predicts how the two broadening mechanisms affect
the phase trace, at different electron temperatures. For the LD250 experi-
ment, the hierarchy of energy scales was

kBTe < h̄Γ < Econ < Ec. (4.3)

In this case the Coulomb-blockaded QD was strongly tunnel coupled, and
the tunnel broadening was consistently larger than the thermal broadening
within the fridge temperature range tested. This makes the electron temper-
ature dependence of the phase trace much weaker, and as the temperature
was reduced it weakened further. This is what is observed in Figure 4.6,
where the QD thermometer reaches its lower temperature limit at around
Te ∼ 0.2 K. To use the thermometer at lower temperatures, the tunnel broad-
ening must be reduced to allow the thermal broadening more influence on
the phase trace. This can sometimes be done by applying a negative back
gate voltage to increase the tunnel barrier resistance. Another effective solu-
tion is to use a different QD geometry, where the source and drain contacts
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are less strongly coupled to the QD.
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Figure 4.15: Location of the Coulomb Peak centre, V0, against fridge temperature,
Tf, in the IO cryostat. The voltage V0 represents where the QD occu-
pation probability PQD = 1/2. The orange line shows the theoretical
temperature dependence of V0 with a gradient of m = kBln2/eα VK−1.
The green line shows a linear fit to the data which predicts a gradient of
m = −(6± 4)× 10−5 VK−1.

It has been shown that for a QD-reservoir system, the QD state has a different
spin degeneracy corresponding to N and N + 1 electrons in the QD. This cre-
ates a temperature dependence for the value of QD energy which creates 1/2
occupation probability, described by Equation 2.40 in Section 2.1.5. The top
gate voltage value for PQD = 1/2, labelled V0, is recorded for each phase trace
measured across a range of temperatures. Figure 4.15 shows a subtle negative
correlation between V0 and the fridge temperature Tf. The theoretical gradi-
ent dV0/dTf = −kBln2/eα VK−1 is certainly believable when compared with
the measured V0, and a linear fit returns dV0/dTf = −(6± 4)× 10−5 VK−1.
Although the correlation is clouded by charge noise, the relationship between
V0 and Tf is consistent with the theory.

4.7 Discussion

In summary, the QD thermometer built in Chapter 3 was successfully cali-
brated and operated as an electron thermometer with a single capacitive gate
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in two separate cryostats. This introduces and demonstrates a new level of
simplicity and versatility for measuring electron temperature.

The thermometer was calibrated via a single fitting of a physical model to
reflected RF signal phase data taken at 2.0 K, 2.5 K and 3.0 K, within the IO
cryostat. The calibration uses limited data to generate a physical model of
the QD-reservoir system, which correctly estimates physical parameters such
as the QD top gate lever arm. Electron thermometry was successfully per-
formed with the calibrated QD thermometer in a 1.0 K to 3.0 K range. The
QD thermometer was also used for faster readout by monitoring the phase
when the QD has an occupation probability of 1/2. In this mode of operation
the QD thermometer was shown to have a sensitivity of 4.0± 0.3 mK/

√
Hz

and 11± 1 mK/
√

Hz, at 1.3 K and 3.0 K, respectively.

The thermometer was also calibrated via a single physical model fit to data
taken at 1.40 K and 1.62 K, within the LD250 cryostat. The calibration proce-
dure once again correctly estimated physical parameters such as the QD top
gate lever arm. Electron thermometry was performed with the calibrated QD
thermometer down to 0.18 K. The QD thermometer can even operate in the
case where kBTe ∼ h̄Γ, however with the system and techniques used here,
the thermometry uncertainty starts to increase below 1 K due to strong tunnel
coupling. Careful analysis of the thermometry uncertainty reveals the cold-
est limit of the QD thermometer, when the electron temperature confidence
boundary increases dramatically and extends towards 0 K.

The ability to fully calibrate and operate a non-galvanic electron thermome-
ter with a single RF line simplifies the application of the device substantially.
This device provides a versatile, sensitive and effective tool for monitoring
electron temperature in nanoelectronic devices at cryogenic temperatures.

Looking to the future, an appropriately redesigned FET geometry could al-
low a QD to form with a reduced tunnel rate. This would reduce the in-
fluence of tunnel broadening and allow more accurate electron temperature
readout at lower temperatures.
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Chapter 5

New Thermal Insulators for
Sub-Kelvin Environments

This chapter will describe our experiments demonstrating new methods of
improving insulation within sub-Kelvin environments. We present results
on plastic-based solid-void structures, including a structure fabricated from
commercially available modular ‘LEGO’ blocks, and three other custom de-
signs fabricated using a 3D printer, described in Section 5.1. A detailed de-
scription of the thermal conductivity experiment is included in Section 5.2,
and the results are shown in Chapter 5.3, where the samples tested are found
to have excellent properties as a low temperature insulator. The significance
of these results is discussed in Chapter 5.4. Some of these results are pub-
lished in Scientific Reports [31].

5.1 New Insulator Sample Designs

We investigated several structures to be used as insulators within low tem-
perature environments. The objective was to create a mechanically strong
solid-void structure which maximises thermal insulation whilst retaining good
strength. All the samples discussed here are shown in Figure 5.1.

The first sample is a readily available commercial solution: a modular acry-
lonitrile butadiene styrene (ABS) structure comprised of four standard LEGO
block elements (Catalog No 3001) stacked vertically. These elements are in-
jection moulded with a precision of σx ≈ 5 µm [84], so each element is almost
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AL AOGAWG and PWG

Figure 5.1: A 3D render (top) and cross-section (bottom) for each of the three solid-
void insulators tested. Sample AL (left) is fabricated from four modular
ABS LEGO elements (Catalog No 3001) stacked vertically [83]. The cross
section shows the interface between the green and blue elements. The
green shaded area is against the surface of the blue element below, how-
ever the blue shaded area does not contact the green element above, but
clutches to the green element via friction between the two geometries,
with a height of 1.8 mm. There are four such corner connections and four
side connections, labelled ‘C’ and ‘S’ respectively. Samples AWG and
PWG (centre) are 3D printed walled gyroid structures, fabricated with
ABS and PLA filaments respectively, and have a 5% volume fill factor.
The cross-section shows an example of the walled gyroid geometry in the
x-y plane, but this geometry will change depending on where the sample
is sliced. Sample AOG (right) is the 3D printed open gyroid structures,
fabricated with ABS filament and an 8% volume fill factor. The cross-
section shows an example of the gyroid geometry in the x-y plane, but
this geometry will change depending on where the sample is sliced.



5.1. New Insulator Sample Designs 93

identical. The elements were held together entirely by their interlocking ge-
ometry clamping power, with no added adhesive material. The sample had
a total height of h = 40.2 mm, length l = 31.8 mm and width w = 15.8 mm,
giving a footprint area of A = 502 mm2. The total mass of the sample was
9.28± 0.01 g. The wall thickness is 1.2 mm. This ABS LEGO sample is la-
belled ‘AL’.

3D printing is an ideal technique to create sophisticated stuctures with a high
level of detail, so we also tested 3D printed structures for use as insulators.
The printed samples discussed here were created using a ‘Prusa i3 mk3s’
model printer equipped with a nozzle which prints filaments of 0.45 mm in
diameter. Two printer filaments were used for printing samples: a clear ABS
plastic with tensile strength PTS = 39.2± 0.5 MPa and an opaque white poly-
lactide (PLA) plastic with tensile strength PTS = 120± 20 MPa. A periodic
minimal surface gyroid pattern [85, 86] was chosen as the core geometry for
the printed samples, due to its strength capabilities with a limited volume
of material [87]. Gyroids can be challenging and expensive to manufacture
due to the complexities of their geometry, but 3D printing bypasses these
difficulties.

The second sample was printed with the ABS filament, and has a total height
of h = 40.2 mm, length l = 31.8 mm and width w = 15.8 mm (footprint area
A = 502 mm2), to match the AL sample. The faces have walls which are
0.9 mm thick, consisting of 2 print layers, and the gyroid interior was printed
with a nominal volume fill factor of 5%. The finished ABS walled-gyroid
sample has a mass of m = 4.80± 0.01 g, and is labelled ‘AWG’.

The third sample was also printed with the ABS filament, and has the same
total height of h = 40.2 mm and footprint area A = 502 mm2, to match the
standard. The sample was designed with no walls, so consists entirely of an
open gyroid structure. A 5% volume fill factor is too low for a stable structure
with these dimensions, so this was increased to 8%. The finished ABS open-
gyroid sample has a mass of m = 1.69± 0.01 g, and is labelled ‘AOG’.

The fourth sample was printed with the PLA filament, and has the same
total height of h = 40.2 mm and footprint area A = 502 mm2, to match the
standard. The faces have walls which are 0.9 mm thick, consisting of 2 print
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layers, and the gyroid interior was printed with a volume fill factor of 5%.
The finished PLA walled-gyroid sample has a mass of m = 5.343 g, and is
labelled ‘PWG’.

Samples AWG and PWG have identical geometry to facilitate direct compari-
son between thermal conductivity of ABS and PLA. Samples AWG and AOG
are printed from identical plastic to facilitate direct comparison between ther-
mal conductivity of the open and walled gyroid designs.

5.2 Thermal Conductivity Measurement Details

The insulator samples were mounted in succession within a Lancaster-built
3He/4He dilution refrigerator to obtain their thermal conductivity. Details on
the refrigerator are in Section 2.3. Each sample was sandwiched between two
copper plates at either end of the sample’s height, as shown in Figure 5.2. The
‘lower’ copper plate connects to the dilution refrigerator mixing chamber via
a silver wire. This thermally anchors one end of the sample to the coldest
body within the refrigerator. The ’upper’ copper plate is thermally isolated
via the sample. Vacuum grease was applied to both copper plates to create
a firm thermal contact with the sample [88]. On the upper copper plate, a
calibrated RuO2 resistance thermometer was mounted to monitor the tem-
perature of the insulated body. This was used for measuring the upper plate
temperature Thigh using a 4-point measurement with a Lake Shore 370 AC
Resistance Bridge. The resistance was calibrated with temperature readout
from a Lake Shore Ge thermometer, with both devices previously mounted
on the mixing chamber plate in another dilution refrigerator, as shown in
Figure 5.3. To calibrate the thermometer, a least squares fit was performed
on the resistance data, with the equation Rt = A/Tt + C, where A and C are
fit parameters. To take a temperature reading of the upper plate, the Lake
Shore resistance bridge measures Rt, which is then converted to Thigh via the
calibration equation. A heater was also mounted on the upper plate. This
consisted of a 3.1 Ω resistor, controlled and measured using another 4 point
measurement setup. Bare NbTi wires, 40 cm long and 62 µm diameter, were
used for electrical connections from the connector plate (thermalised with the
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Figure 5.2: Schematic of experimental setup for low temperature thermal conduc-
tivity measurements. The sample is sandwiched between two copper
plates, the ‘upper’ plate and the ‘lower’ plate (not to scale). The lower
plate is connected thermally to the dilution refrigerator mixing chamber
via a silver wire. This keeps the lower plate anchored at temperatures in
the order of Tlow ∼ mK. The upper plate is thermally connected to both
the resistance thermometer with resistance Rt and a heater resistor which
supplies heat Q̇. Heat leaks to the upper plate and from the sample are
modelled as an effective heat leak Q̇0, so the total heat flowing through
the sample at thermal equilibrium is Q̇ + Q̇0. The resistance thermome-
ter is controlled and measured with a Lake Shore 370 resistance bridge at
room temperature. The heater is controlled by a Keithley 2400 function
generator supplying an AC RMS voltage Vi. A SR830 lock-in amplifier
was used to monitor the RMS voltage over the heater resistor, Vh. The
RMS voltage Vr over a large series resistor R is monitored with another
SR830 lock-in amplifier.
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Figure 5.3: Thermal conductivity measurement with PWG sample. a) Resistance
thermometer calibration. The orange data points show the value of ther-
mometer resistance Rt recorded for a provided temperature Tt from a
Lake Shore Ge thermometer. This is fit with a simple model, shown with
the solid black line, which can be used to convert resistance Rt into a
temperature reading. b) an example of the thermal conductivity mea-
surement process, here showing data for the PWG sample. As the input
heat Q̇ is adjusted, the upper plate temperature Thigh, as read from the
calibrated resistance thermometer, settles at a new value. Q̇ is stepped
when Thigh has stabilised, roughly 90 minutes after the previous step.
Each data point for Figure 5.4 is read from 2 minutes before Q̇ is stepped,
shown by the dashed red lines.
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mixing chamber) down to the thermometer and heater mounted on the insu-
lated upper plate. A Keithley 2400 supplied an AC input root mean square
(RMS) voltage amplitude Vi at a frequency fi = 13 Hz. SR830 lock-in ampli-
fiers were used to monitor the RMS voltage across heater and a line resistor
R, Vh and VR respectively. The heat Q̇ being applied from the heater is then:

Q̇ = Vh I =
VhVr

R
. (5.1)

The 3.1 Ω resistor is small and will vary slightly with temperature, so we
used the line resistor R = 9.9829 kΩ to limit the current and provide accurate
current readouts below Vr = 1 V. Above 1 V, the reading of Vr reached a
maximum limit, so in this situation, Vr was supplied from a calibration of Vi

with the available correct data, owing to the fact that Vi ∝ Vr.

Each sample was cooled in the refrigerator and measured using the setup de-
tailed in Figure 5.2. The temperature of the dilute phase in the mixing cham-
ber of the dilution refrigerator, Tlow, was measured using a vibrating wire
resonator [89]. With the measurement wires in place, this value is usually
Tlow ≈ 2.3 mK, but for the AL sample run it was around Tlow ≈ 4.0 mK. To
obtain the thermal conductance, a range of input RMS voltage Vi was applied
step-wise. This provides a unique input heat Q̇, via Equation 5.1. Each time
Q̇ was stepped to a new value, there would be a time interval, typically 90
minutes long, to allow the insulated upper plate temperature to reasonably
reach thermal equilibrium before taking an upper plate thermometer read-
ing Thigh, demonstrated in Figure 5.3. Data points of Thigh against Q̇ were
extracted from the raw data by reading the values 2 minutes before Q̇ was
stepped. Each sample will produce a parasitic heat, which is a slow leakage
of heat from the plastic material itself [90]. For each cooldown, the mixing
chamber plate was held at base temperature for at least 9 days before the ex-
periment was carried out, so the parasitic heat is small compared to Q̇. The
parasitic heat of the sample, combined with heat leaks to the upper plate,
contributes to the total heat flow through the insulator Q̇Σ, and was mod-
elled by including an effective heat leak constant Q̇0 so that Q̇Σ = Q̇ + Q̇0.
For the thermal conductance of insulating materials at temperatures well be-
low the Debye temperature, we can usually use the power law expression
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Sample λ [Wm−1K−(n+1)] n Q̇0 [W]
AL (8.7± 0.3)× 10−5 1.75± 0.02 3.4× 10−11

AWG (3.07± 0.05)× 10−5 1.72± 0.02 1.7× 10−9

AOG (7.33± 0.13)× 10−5 1.68± 0.02 8.4× 10−10

PWG (4.45± 0.05)× 10−5 1.64± 0.02 5.47× 10−9

Table 5.1: Fitted values for Equation (5.2) of the insulator samples, as can be seen in
FIG 5.4. ’W’ and ’O’ represent walled and open samples respectively.

from Equation 2.83. The thermal conductivity scaling constant λ and expo-
nent of the insulator temperature n are related in the expression

λ =
Q̇Σ(n + 1)h

A(Tn+1
high − Tn+1

low )
, (5.2)

where T high and T low are respectively the temperatures of the upper and
lower copper plates sandwiching the insulator. A derivation of this expres-
sion from the Debye model is shown in Section 2.5. Since in all our measure-
ments Thigh is much greater than Tlow, and for plastics n ∼ 2, we can safely
neglect Tlow from Equation 5.2. This then gives us the upper plate tempera-
ture Thigh as a function of applied heat Q̇, which is

Thigh(Q̇) =

(
(n + 1)h(Q̇ + Q̇0)

Aλ

)−(n+1)

. (5.3)

This can be fit to the experimental data to extract λ and n, and therefore tell
us the thermal conductivity κ, as a function of temperature T.

5.3 Insulator Results and Comparison

The results for applied heat Q̇ versus upper plate temperature Thigh are pre-
sented in Figure 5.4, which also includes the least squares fit of Equation 5.3
to the experimental data. The measurements from all four insulator samples
tested demonstrate clear power law dependence for thermal conductivity.
The model fit of Equation 5.3 yielded the values for scaling constant λ, tem-
perature exponent n and effective heat leak Q̇0, for the temperature range
measured. All of the power law parameters for all of the samples are shown
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Figure 5.4: The relationship between settled upper plate temperature Thigh and to-
tal heat applied Q̇ + Q̇0 for all three 3D printed samples (AWG, AOG
and PWG), and the LEGO sample (AL). The dots show the experimental
data points and the line represents the least-squared fit of Equation (5.2),
which gives the values shown in Table 5.1.
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in Table 5.1. These fitted values define the thermal conductivity κ power law
via Equation (2.83). All of the ABS material samples, i.e samples AL, AWG
and AOG, have a temperature exponent of around n ≈ 1.70. For the PLA
material sample, PWG, n ≈ 1.65. This change in the temperature exponent is
expected with a change in material. s m

The solid-void insulator samples were compared with previously measured
bulk materials (from Table 2.1) in Figure 5.5. It can be seen that the new solid-
void insulators offer an order of magnitude lower thermal conductance than
the best bulk thermal insulators, such as Macor and Vespel-SP22 [64]. Ther-
mal conductances in plastic materials at very low temperatures in general
show Tn dependencies with n ranging between 1.7 and 2.4 [30], and all the
samples we tested fall close to this range. The 3D printed structures are all
more insulating than sample AL, which is likely due to the multi-layered na-
ture of printed materials impeding heat flow. It has been shown that bulk 3D
printed ABS has a thermal conductivity of κ ≈ 3.8 WK−1m−1 at 4.2 K, with
a n = 0.5 temperature dependence [91]. The thermal conductivity for the
ABS samples (in fact, all our samples) begins to plateau with respect to tem-
perature above 1 K, which suggest the ABS power law is changing at higher
temperature to agree with the T > 4.2 K experiment. The reduced value of λ

we measure arises from the solid-void internal geometry of our ABS samples,
and the natural next step in this analysis is to measure the thermal conduc-
tivity of bulk ABS and bulk 3D printed ABS below 1 K.

The new insulators all have a solid-void internal structure, which could be a
concern for reliable mechanical strength. A single “No 3001” LEGO element
was tested in a hydraulic press, with an increasing load applied until the ma-
terial failed. It was found to withstand ≈ 290 kg, demonstrating that it is
mechanically robust despite the void space and will sustain any reasonable
cryogenic experiment. The power input Q̇Σ required to heat the top plate
to Thigh = 1 K when insulated with sample AL is Q̇Σ = 0.4 µW. To achieve
the same level of insulation with commercial Vespel-SP22 (at the standard
height of h = 40.2 mm), the cross sectional area of the insulator would need
to be A = 28.2mm2. This is equivalent to a wall thickness of 0.3mm, assum-
ing the standard sample length and width dimensions. In reality this would
be a fragile design, and unlikely to withstand ∼ 290 kg of load. The power
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Figure 5.5: Comparison of the effective thermal conductivities κ of the insulator
samples and other commonly used materials (and wood) at T < 1 K.
The properties and citations for the other materials are shown in Table
2.1. The lines follow the thermal conductivity power law described by
Equation 2.83

.
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input Q̇Σ required to make Thigh = 1 K for sample AWG, AOG and PWG
is Q̇Σ = 0.14 µW, 0.34 µW and 0.21 µW, respectively. This means for equiv-
alent insulation, a Vespel-SP22 sample would need cross-sectional areas of
9.07 mm2, 21.6 mm2 and 13.2 mm2, which would require a wall thickness of
0.10mm, 0.23mm and 0.14mm, respectively. Considering the printed samples
have a wall thickness of 0.90mm and gyroid line thickness of 0.45mm, using
Vespel-SP22 reduces the contact area and weakens the structure for the same
insulation power.

5.4 Discussion

In this work, we have demonstrated that both commercially fabricated and
3D-printed plastic solid-void structures offer excellent thermal and structural
properties at sub-Kelvin temperatures.

A structure fabricated from commercially available LEGO elements is shown
to be surprisingly effective at insulating two bodies at sub-Kelvin tempera-
tures, and is more effective than solid Macor or Vespel with the same volume
footprint. The high level of insulation from this sample arises from the solid-
void internal geometry combined with the contact resistance between the
individual LEGO elements. The LEGO system contains a huge number of
different compatible elements, so is an excellent basis for a versatile and cus-
tomisable insulator solution. LEGO elements are moulded with a precision
of σx ≈ 5 µm [84], so reproducing structures accurately is very easy.

ABS and PLA gyroid structures produced by a 3D printer are shown to be
even more effective as low-temperature insulators than the LEGO stack. The
mechanical properties of 3D-printed plastic structures can be custom en-
gineered and fine-tuned to match the required specifications beyond that
which traditional machining can achieve. At the time of writing, the mar-
ket price of a single sheet of Vespel of order 100 cm2 would cover the cost of
the whole 3D printer setup needed for creating the structures, which could
be used repeatedly.

These features make solid-void insulators ideal for a range of applications.
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For example a 3D-printed plastic structure could provide a way of support-
ing a classical processing unit at an elevated temperature very close to the
sub-mK temperature of nearby quantum devices. An on-site classical pro-
cessor can be used to control superconducting qubits, which is an essential
step in the development of a scalable quantum computer [92, 93]. Industrial
use of cryogenic technology will directly benefit from affordable cryogenic
materials, for example performing passive terahertz imaging based on su-
perconducting instruments [94]. The new insulators also have applications
for space technology, especially 3D printed materials which can be manu-
factured in-orbit [95], to be used as versatile materials with well-established
cryogenic properties [96]. The building of cryogenic refrigerators, specifically
plastic mixing chambers and sample containers [29], could be improved with
solid-void walls, reducing the parasitic heat leak from the walls while main-
taining mechanical reliability.

The next stage in this project is to measure the thermal conductivity of both
a bulk ABS sample and a 3D printed bulk ABS sample, below 1 K, for com-
parison with our results. This will give insight into which factors are con-
tributing the most to the insulation properties of our samples. The bulk ABS
sample will tell us to what degree the structure of samples AL, AWG and
AOG have improved the insulation. The 3D printed bulk sample will tell
us the impact on insulation for printed materials over the raw material. A
similar set of measurements could also be made for the PLA material. All
the samples discussed here need to undergo precise compressive and ten-
sile testing to further determine the practicality of the samples’ strength and
compare with future design choices. The goal is to choose a sample geometry
that minimises both the thermal conductivity and the impact on the samples’
strength, as compared with bulk. Looking to the future, it would be useful
to chart the cryogenic applications of other available 3D-printable materials,
such as composite carbon fibre structures for high thermal conductivity and
outstanding mechanical properties [97, 98].
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Chapter 6

Conclusions

This thesis presents new techniques for both the measurement of electron
temperature and the isolation of low temperature environments.

In this work, an electron thermometer built from a field-effect transistor was
calibrated and operated with a single capacitive gate in two separate cryostats
with different base temperatures. The experiments introduce and demon-
strate a new level of simplicity and versatility for measuring electron tem-
perature in a low temperature environment. The calibration of the ther-
mometer generates a physical model of the quantum dot-reservoir system
that exists within the field-effect transistor. In both cryostats this procedure
correctly estimated physical parameters that characterise the quantum dot
which would usually require source-drain connections to obtain. Electron
thermometry was successfully performed with the calibrated thermometer
in a 1.0 K to 3.0 K range. Below a fridge temperature of 1 K, the electron tem-
perature readout confidence boundary increases dramatically and extends
towards 0 K, due to strong tunnel coupling in the quantum dot. This de-
fines the coldest limit of the electron thermometry for this specific thermome-
ter and, more generally, demonstrates how this limit is observed. The elec-
tron thermometer was shown to have a sensitivity of 4.0± 0.3 mK/

√
Hz and

11± 1 mK/
√

Hz, at 1.3 K and 3.0 K respectively.

The ability to calibrate and operate a non-galvanic electron thermometer with
a single radio-frequency device connection simplifies the application of the
device substantially. This new technique provides a versatile, sensitive and
effective tool for monitoring electron temperature in nanoelectronic devices
at cryogenic temperatures.



106 Chapter 6. Conclusions

Looking to the future, a redesigned field-effect transistor geometry could al-
low a quantum dot to form with a weaker tunnel coupling to the reservoir.
This would reduce the influence of tunnel broadening and allow more accu-
rate electron temperature readout at lower temperatures, and a colder read-
out lower limit.

Also in this work, several plastic solid-void structures were demonstrated
to offer excellent thermal isolation at sub-Kelvin temperatures. Thermally
isolating refrigerator components and experiments can help reduce thermal
noise and electron temperatures, for example within quantum circuits. They
also provide a useful solution for containing elevated temperature experi-
ments within a low temperature environment, which is useful in both re-
search and industrial applications.

A structure fabricated from commercially available ABS LEGO elements was
shown to be effective at thermally insulating two bodies at sub-Kelvin tem-
peratures, and is more effective than commonly used solid insulators, such
as Macor or Vespel, with the same volume footprint. The LEGO structure
was found to follow a power law thermal conductivity of κ = (8.7± 0.3)×
10−5T1.75±0.02 Wm−1K−1. The high level of insulation from this sample arises
from the solid-void internal geometry combined with the contact resistance
between the individual LEGO elements. 3D printed ABS and PLA gyroid
structures were shown to be even more effective as low-temperature insu-
lators than the LEGO structure. The ABS gyroid was found to have a ther-
mal conductivity of κ = (3.07 ± 0.05) × 10−5T1.75±0.02 Wm−1K−1 and κ =

(7.33 ± 0.13) × 10−5T1.68±0.02 Wm−1K−1 with and without outer walls, re-
spectively. The walled sample has a lower thermal conductivity as the added
structural support from the walls allows a lower density internal gyroid pat-
tern. The walled PLA sample was found to have a thermal conductivity of
κ = (4.45± 0.05)× 10−5T1.64±0.02 Wm−1K−1. The mechanical properties of
3D-printed plastic structures can be custom engineered and fine-tuned to
match the required specifications beyond that which traditional machining
can achieve.

The LEGO system contains a huge number of different compatible elements,
so is an excellent basis for a versatile and customisable insulator solution.
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LEGO elements are moulded with remarkable precision, so reproducing struc-
tures accurately is very easy. However 3D printed structures are even more
customisable and effective as insulators. The building of cryogenic refriger-
ators, specifically plastic mixing chambers and sample containers, could be
improved with solid-void walls, reducing unwanted heat leak from the walls
while maintaining mechanical reliability. They could also be useful for space
technology, where the insulators can be manufactured in-orbit.

Looking to the future, a comprehensive comparison of the thermal proper-
ties of 3D printed materials with their respective bulk solids is needed to
determine which factors contribute the most to the insulation properties of
the measured samples. All the samples discussed in this thesis also need to
be subject to multiple strength tests to quantify their practicality as a support
structure. Gyroid structures appear to be strong and effective insulators, but
with 3D printing an infinite number of possible designs can be tested. There-
fore another future goal is to choose a new sample geometry that further
minimises the thermal conductivity whilst maintaining good compressive
and tensile strength.
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