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Abstract

Matchings and T'-joins are fundamental and much-studied concepts
in graph theory and combinatorial optimisation. One important appli-
cation of matchings and T-joins is in the computation of strong lower
bounds for Arc Routing Problems (ARPs). An ARP is a special kind
of vehicle routing problem, in which the demands are located along
edges or arcs, rather than at nodes. We point out that the literature
on applying matchings and T-joins to ARPs does not fully exploit the
structure of real-life road networks. We propose some ways to exploit
this structure. Computational results show significant running time
improvements, without deteriorating the quality of the lower bounds.
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1 Introduction

Matchings are a fundamental concept in graph theory and combinatorial
optimisation, with a wide array of applications (see, e.g., [20, 26, 30]). Given
an undirected graph G = (V, E), with |V| even, a perfect matching is a set
of edges that meets each vertex exactly once. If we are also given a weight
we for each e € E, the minimum-weight perfect matching problem (WPM for
short) calls for a perfect matching of minimum total weight. Edmonds [13]
showed that this problem can be solved in polynomial time, and a variety
of efficient algorithms are now available (e.g., [12, 19, 26]).

A closely related concept is that of a T-join. Given a graph G as before,
and a set T C V with |T| even, a T-join is a set of edges that meets each
vertex in 1" an odd number of times, and each other vertex an even number
of times. Given edge weights as before, the minimum-weight T-join problem
(WTJ) calls for a T-join of minimum total weight.
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(a) Graph G with nodes in 7T indicated (b) Graph with minimum weight 7-join

Figure 1: An example of the original graph

Figure 1 illustrates the concept of a T-join. On the left is a graph G,
with nodes in T represented by red hollow circles, and weights on the edges.
On the right is the same graph, with the MW J solution indicated with thick
red lines.

Edmonds and Johnson [14] showed that any WTJ instance can be trans-
formed into a WPM instance, and thereby solved efficiently. (For details,
and alternative algorithms, see Subsection 2.1.) They also pointed out that
T-joins can be used to solve a problem that they called the Chinese postman
problem (CPP), in honour of Mei-Gu Guan [23].

In the CPP, G represents a road network, and the weight of an edge
represents the time taken to traverse the corresponding road. A postman
wishes to traverse every road at least once, as quickly as possible, starting
and finishing at the same node. Any CPP instance can be reduced to a
WTJ instance by setting T to the set of vertices that are incident on an odd
number of edges. The edges in the optimal T-join then represent roads that
need to be traversed twice.

The CPP is an example of an arc routing problem (ARP). An ARP is a
special kind of vehicle routing problem, in which the demands are located
along edges or arcs, rather than at nodes (e.g., [10]). Whereas the CPP
can be solved in polynomial time, most ARPs of interest are A/P-hard.
Matchings have been used to compute useful lower bounds for such ARPs
(e.g., [2, 3, 7, 22, 27, 32, 33, 34, 35, 37, 38]).

In a recent project with real-life instances, we encountered large-scale
ARPs, with over ten thousand edges. For these particular ARPs, matching
techniques gave acceptable lower bounds, but used an excessive amount of
both time and memory. The purpose of this paper is to show that one can
dramatically reduce the amount of computational effort needed by matching
techniques, by exploiting the structure of real-life road networks. For ease
of presentation, we focus on the CPP and another prominent ARP, the



so-called capacitated arc routing problem or CARP [22].

The paper has a simple structure. The key literature is reviewed in
Section 2. Some observations concerning road networks are given in Section
3. In Section 4, we show how to solve the CPP more quickly. In Section
5, we show how to compute lower bounds for the CARP more quickly. In
Section 6, we make some remarks about possible extensions of our technique
to other ARPs.

Throughout the paper, all graphs are undirected, simple and loopless,
unless otherwise specified. We let n and m denote |V| and | E|, respectively.
We also let deg(i) denote the degree of node i in G. We also assume that,
in any WTJ instance, all weights are non-negative.

2 Literature Review

We now briefly review the relevant literature. Subsection 2.1 covers algo-
rithms for WPM and WTJ. Subsection 2.2 deals with the application of
matchings and T-joins to ARPs. Subsection 2.3 deals with planar graphs.

2.1 Matchings and T-joins

For surveys of WPM algorithms, see [12, 19, 20, 26, 30]. At present, the
fastest strongly polynomial algorithm is that of Gabow [18, 19], which runs
in O(n(m + nlogn)) time. Among the algorithms that are only weakly
polynomial, we mention the one of Duan et al. [12]. It assumes that all
weights are integers, and it runs in O(my/nlog(nW)) time, where W =
max {|we| : e € E}.

Software for matching has lagged behind the theory to some extent. At
present, the most effective available routines for WPM are those of Mehlhorn
and Schéfer [31] and Kolmogorov [25]. They perform very well in practice,
but run in O(nmlogn) and O(n?m) time, respectively.

As for WTJ, Edmonds and Johnson [14] showed that it can be reduced
to WPM as follows. First, compute shortest paths between all pairs of nodes
in 7. Then construct a complete undirected “auxiliary” graph, say G, with
T as its node set. Set the weight of each edge in G* to the length of the
corresponding shortest path in G. Solve WPM in G, and then replace
each edge in the matching with the corresponding shortest path in G. We
call this approach “Ed-Jo”. Figure 2 shows how Ed-Jo works for the WTJ
instance on the left of Figure 1.

We remark that Dijkstra’s single-source shortest path algorithm can be
implemented to run in O(m + nlogn) time [17], and therefore the shortest-
path phase in Ed-Jo takes O(|T| (m + nlogn)) time. The matching phase
takes O(|T|?) time, since G* is complete.

Korte & Vygen [26] presented an alternative approach to WTJ, which
we will call “Ko-Vy”. Like Ed-Jo, Ko-Vy involves the solution of WPM in



(a) Auxiliary graph G* (b) An optimal WPM solution

Figure 2: Ed-Jo transformation

(a) Auxiliary graph (b) WPM solution

Figure 3: Ko-Vy transformation

an auxiliary graph. However, the auxiliary graph is different. Consider a
given node v € V. If deg(v) is odd and v € T', or deg(v) is even and v ¢ T,
then v is replaced with a clique on deg(v) nodes. We call the new nodes
“clones”. If v does not satisfy the stated condition, it is replaced by a clique
on deg(v)+1 nodes. We call the additional node a “parity correction” node.
The new edges are given a weight of zero.

Figure 3 shows how Ko-Vy works for the WTJ instance in Figure 1. The
auxiliary graph is shown on the left, with parity correction nodes represented
as green diamonds. An optimal WPM solution is shown on the right.

Ko-Vy is very easy to implement, with no need for shortest-path calcula-
tions. On the other hand, the auxiliary graph has O(m) nodes and O(nm)
edges. As a result, constructing the auxiliary graph takes O(nm) time and
solving the WPM takes O(n?m?) time. More efficient reductions from WTJ
to WPM, which use auxiliary graphs with only O(m) nodes and edges, ap-
pear in [4, 8]. These reductions enable one to solve WTJ in only O(m?logn)
time. They are however more tricky to implement.



At the time of writing, the fastest known WTJ algorithm is that of
Gabow [19], which runs in O(|T|(m + nlogn)) time. It is based on a con-
version of WTJ into a capacitated b-matching problem. We omit details for
brevity.

2.2 Applications to arc routing

We mentioned above that the CPP can be converted to WPM or WTJ.
Authors have also used WPM and/or WTJ to compute lower bounds for
NP-hard ARPs (e.g., [2, 3, 27, 33, 34]). For brevity, we focus here on the
CARP [22], which has received the most attention.

In the CARP, we are given a graph G = (V, E) and a set Er C F of
required edges. Node 0 represents the depot. For each e € E, we are given
a positive cost c.. For each e € Eg, we are given a positive demand ¢e.
An unlimited fleet of identical vehicles, each of capacity @, is located at the
depot. The task is to find a minimum-cost set of routes, each starting and
ending at the depot, such that each required edge is serviced on exactly one
route, and the total demand on each route does not exceed Q.

Many lower bounds for the CARP have been proposed which use WPM
as a sub-routine [3, 7, 22, 32, 35, 37, 38]. For brevity, we review only one in
detail: the bound called “LB1” in [7]. To describe it, we need some more
notation. We let Vi and Vo denote the set of nodes in G that are incident
on at least one required edge, and on an odd number of required edges,
respectively. We also let K denote [ .., ¢e/Q], which is a lower bound
on the number of routes. Finally, for notational simplicity, we assume that
no required edges are incident on the depot. (If this is not the case, then we
can make it so by adding a dummy node to G, along with a dummy edge of
zero cost.)

LB1 works as follows. First, compute shortest paths from the depot to
each node in Vi. Let v; be the closest node to the depot, vy be the second
closest, and so on. Let r; be the number of required edges incident on node
v;. Let s be the smallest integer such that r; +--- +rs > 2K, and let V,
denote {v1,...,vs}. (The subscript ¢ is to remind us that the nodes in V,
are “close” to the depot). Let A consist of 2K “dummy” nodes, representing
copies of the depot. Let B contain r; “clones” of vertex v;, for i = 2,---,s.
Let S contain all nodes in Vo \ V., except the depot. Construct a complete
graph, say G, with node set AU B U S. The weight of each edge in G is
set to the cost of the shortest path between the corresponding nodes in G,
with one exception: edges between dummy nodes are given infinite weight.
Finally, solve the WPM in G. Then LB1 is the weight of the WPM solution
plus the cost of the required edges.

The above-mentioned procedure is illustrated in Figure 4. On the left,
we see a graph G, with required and non-required edges represented by red
lines and grey dashed lines, respectively. For each edge e € F, the cost c,



(b) WPM solution in auxiliary graph

Figure 4: LB1 approach

and demand ¢, are indicated. We suppose that () = 4 and that the depot
is node vg. Note that K = 2 and s = 3 for this instance. On the right,
we show the auxiliary graph G, with an optimal WPM solution indicated
by thick red lines. The weight of the matching is 37, which yields a lower
bound of 37 + 18 = 55.

Among the other matching-based bounds for the CARP, we mention
only the node duplication lower bound (NDLB) from [35]. The procedure is
very similar to the one for LB1, but the auxiliary graph is much larger than
G, with up to 2(|Eg| + K) nodes. Ahr [1] showed that NDLB is slightly
stronger than LB1, though this comes at the cost of a significantly increased
running time.

2.3 Planar graphs

Now we recall some facts concerned with planar graphs. The first is Euler’s
theorem, which states that, in a planar graph, m < 3n — 6. This implies
that, when G is planar, one can solve WPM in O(n?logn) time.

Lipton and Tarjan [29] showed that, in fact, it is possible to solve planar
WPM in only O(n?/?logn) time. Their algorithm exploits a famous result
in their earlier paper [28], which states that, in any planar graph, there
exists a set S C V such that (a) |S| = O(y/n) and (b) if S is removed from
G, each connected component in the resulting graph contains no more than
2n/3 nodes. A suitable S, called a separator, can be found in linear time
[28].

Henzinger et al. [24] gave an algorithm for single-source shortest-paths in
planar graphs, which runs in only O(n) time. This implies that the shortest-
path phase of Ed-Jo algorithm can be conducted in only O(n |T|) time in
the planar case. The matching phase, however, still takes O(|T|?) time.

It is also worth noting that the reduction from WTJ to WPM in Bara-
hona [4] preserves planarity. Together with the Lipton-Tarjan result, this



implies that planar WTJ can be solved in O(n3/ 2logn) time. A more direct
algorithm, with the same running time, is given in Barahona [5].

To close this section, we mention that road networks are often planar
and, even if not, they invariably contain small separators. Fast algorithms
for finding small separators in road networks, together with encouraging
computational results, are given in [11, 36].

3 On Road Networks

In this section, we make some observations regarding real-life road networks.
Our first observation is that road networks are not just sparse; they also have
bounded degree. Although this is obvious intuitively, we decided to compute
the degree distribution for a sample of twelve cities from across the world,
using the Python package 0SMnx [9]. For each city, we considered the closest
1000 nodes to a central landmark, and computed their degrees. The results
are shown in Table 1.

City 1 2 3 4 5 6 7
Barcelona 38 5 527 418 12 0 0
Hanoi 208 15 635 140 2 0 O
Istanbul 34 29 700 235 2 0 O
Johannesburg 51 14 542 38 5 2 0
Karachi 33 4 733 226 4 0 O
London 111 34 649 202 4 0 O
Madrid 68 12 682 234 4 0 O
Mexico City 68 18 598 312 4 0 O
Moscow 51 51 734 183 8 1 1
New York 10 6 261 709 12 2 0
Paris 50 21 646 261 29 2 1

Seoul 8 6 78 116 5 0 1

Table 1: Number of nodes having a given degree for twelve cities.

As one might expect, the vast majority of nodes have degree 3 or 4. We
expected the maximum degree to be 5, but we see instead that it is 7. On
the other hand, only 3 nodes (out of 12,000) have degree 7. We remark that
the average degree ranged from 2.71 (Hanoi) to 3.71 (New York).

The reason that this is relevant is that, in Ko-Vy, a node of degree d
in G becomes a clique of size d in the auxiliary graph (or d + 1 if a parity
correction node is needed). If G has bounded degree, the size of each clique
in the auxiliary graph will be O(1), and the auxiliary graph will have only
O(n) nodes and edges. Not only that, but Ko-Vy is much easier to implement
than either Ed-Jo or the methods in [4, 8]. Thus, for road networks, Ko-Vy



may be an attractive alternative to those methods. We will see in the next
section that this is indeed the case.

Next, we considered the issue of planarity. For each city, we computed
the graph induced by the given 1000 nodes. We then tested planarity using
a package called Python Planarity.'. We were surprised to find that none
of the graphs were planar. Closer inspection revealed that all of them could
be made planar by deleting a very small number of edges (corresponding to
over- or under-passes).

Finally, we decided to test the claim made in [11, 36] that road networks
tend to have small separators. We found that, indeed, all twelve graphs
contained separators of size O(y/n). Moreover, such separators can be found
easily. One way is as follows. Let G = (V, E) be the graph in question, and
let G~ be a planar subgraph obtained by deleting some edges corresponding
to over- or under-passes. Compute a separator S C V in G~ using the
linear-time algorithm in [28]. By definition, removing S from V causes G~
to become disconnected. Let F' be the set of edges in F that have end-nodes
in different connected components. If F' = (), we are done. Otherwise, use a
greedy algorithm to construct a minimal set of nodes 7' C V'\ S that covers
the edges in F'. By definition, S UT is a separator in G.

We conjecture that the planar WTJ algorithm of Barahona [5] could be
modified, using the small separators mentioned, to solve the CPP in road
networks in O(n*?logn) time.

4 The Chinese Postman Problem in Road Net-
works

Armed with the facts mentioned in the previous section, we can now analyse
the theoretical running times of various approaches to the CPP in road
networks:

1. Ed-Jo. The number of shortest-path calls is |Vp|, and each call takes
O(nlogn) time. So the shortest-path phase takes O(|Vp|nlogn) time.
The auxiliary graph is complete and has |Vp| nodes, so the matching
phase takes O(|Vp|?) time.

2. Ko-Vy. Given that road networks have bounded degree, Korte and
Vygen’s auxiliary graph takes only O(n) time to construct. Moreover,
the auxiliary graph contains only O(n) nodes and edges. As a result,
the matching phase takes O(n?logn) time.

3. The approaches in [4, 8]. These also yield auxiliary graphs with O(n)
nodes and edges. Thus, they take the same time (asymptotically) as
Ko-Vy.

"https://anaconda.org/conda-forge/python-planarity



The above analysis suggests that Ko-Vy should be faster than Ed-Jo
when applied to large-scale CPP instances on road networks. To test this,
we created 18 CPP instances, with cities selected from Paris, London and
Moscow, and with n selected from 1000, 2000, 5000, 10000, 20000 and 50000.
The nodes were selected as in the previous subsection, and all edges having
both end-nodes in the given set of nodes were put into the graph. Note
that none of the resulting 18 graphs were planar. The cost of each edge was
set to the length of the corresponding road, rounded to the nearest meter.
The data for each instance, along with the optimal solution values, is made
available at the Lancaster University Data Repository?.

We remark that some of the graphs contained loops (edges that connect a
node with itself). Most of these loops represented small areas, near entrances
of hotels, where taxis can change direction. We removed them, for simplicity
of implementation.

For Ed-Jo, we implemented our own version of Dijkstra’s single-source
shortest path algorithm. We used a binary heap, since it is much easier to
code than a Fibonacci heap, yet its running time is O(nlogn) for sparse
graphs. To solve the WPM instances, we used the open-source software
package Blossom V [25]. Although it runs in O(n?m) time in theory, it per-
forms extremely well in practice, as we will see below. For all experiments,
we used a Lenovo ThinkPad laptop with an i5-8250U processor, running
under Windows 10 at 1.6 GHz with 16GB of RAM.

Table 2 shows the results obtained when transforming each of the 18
CPP instances into WPM instances. For each instance, we show the name
of the city, the number of nodes (n) and the number of edges (m). Then,
for each approach, we show the number of nodes (n) and edges (m) in the
resulting auxiliary graph. It is clear that Ed-Jo leads to auxiliary graphs
with far fewer nodes than Ko-Vy. On the other hand, the number of edges
is drastically bigger.

Table 3 shows, for each instance and each approach, the time taken to
construct the auxiliary graph (T1) and the time taken to solve the WPM
instance (T2). All times are reported in seconds. A dash indicates that
Blossom V had to be aborted due to memory limitations.

It is clear that the traditional approach, Ed-Jo, is to slow to be used
for large-scale instances. In particular, the shortest-path phase is time-
consuming. In principle, one could obtain a speed-up by computing the
shortest paths in parallel. Nevertheless, the matching phase of Ed-Jo is
itself rather slow. Moreover, we found that the matching phase consumed a
great deal of memory for these instances.

We were surprised to find that the other approach, Ko-Vy, is orders of
magnitude faster. Indeed, it takes less than one second for every instance.
This is no doubt due to the fact that road networks have bounded degree.

Zhttp://www.research.lancs.ac.uk/portal/en/datasets/search.html



Original Graph Ed-Jo Ko-Vy

City n m n m n m

1000 2016 432 93096 4032 9294

- 2000 4209 812 329266 8418 20052
é 5000 11197 1658 1373653 22394 56941
S 10000 22833 2712 3676116 45666 118800
20000 46948 4214 8876791 93896 251351
50000 118345 7584 28754736 236690 642368
1000 1872 564 158766 3744 7746

. 2000 3848 1084 586986 7696 16334
3 5000 10136 2606 3394315 20272 45925
§ 10000 20773 4948 12238878 41546 96736
20000 42410 8900 39600550 84820 203976
50000 115464 12180 74170110 230928 616878
1000 1992 576 165600 3984 8878
2000 3951 1140 649230 7902 17412

'é 5000 9780 2878 4140003 19560 42291
A~ 10000 19707 5638 15890703 39414 85957

20000 40499 10096 50959560 80998 182386
50000 105791 21352 227943276 211582 503268

Table 2: Effect of transformations on graph size.

For interest, we also implemented a third reduction from WTJ to WPM,
due to Barahona [4]. The resulting auxiliary graphs were a bit larger than
the ones that we obtained with Ko-Vy. As a result, the WPM phase took
about twice as long to solve. We omit details for brevity. The main conclu-
sion from this section is that, for large-scale CPP instances on road networks,
Ko-Vy is preferable to Ed-Jo.

5 The Capacitated Arc Routing Problem in Road
Networks

We now move on to consider the CARP. We start by analysing the time
taken to compute LB1 in the case of road networks. The procedure begins
by solving |Vo| shortest-path problems in G. Since G is sparse, this takes
O(|Vo|nlogn) time. The next step is to construct the auxiliary graph,
which we will call G. Note that G has O(|Vp| + K) nodes, and therefore
solving the WPM takes O(|Vo |3+ K?) time. This is O(n3) in the worst case.

We now present a procedure that yields lower bounds of comparable
quality to those of LB1, but which exploits the properties of road networks.
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Ed-Jo Ko-Vy

City n T1 T2 T1 T2

1000 0.266 0.040 0.005 0.007

- 2000 1.237 0.267 0.004 0.010
—‘.; 5000 7.217 1.645 0.018 0.026
S 10000  24.316  10.162 0.065 0.056
20000  89.500  13.877 0.178 0.101
50000 466.152  55.507 0.456 0.216

1000 0.337 0.137 0.007 0.004

o 2000 1.652 0.564 0.005 0.015
§ 5000  11.325 3.886 0.023 0.023
§ 10000  48.196  16.587 0.030 0.056
20000 210.821  68.541 0.237 0.106
50000 788.479 142.496 0.463 0.197

1000 0.348 0.180 0.005 0.005

2000 2.061 0.712 0.004 0.013

Cé@ 5000  11.895 7.463 0.009 0.038
A 10000  54.263  38.424 0.098 0.105
20000 252.912 137.879 0.209 0.160
50000 1520.404 — 0.566 0.752

Table 3: Computing times for two approaches to the CPP.

The procedure incorporates concepts from both LB1 and Ko-Vy.
The first steps in our algorithm are identical to that of LB1. That is,
we compute K (the lower bound on the number of vehicles), the shortest

paths in G from the depot to each node in Vg, the values r1,...,7rs, and s
(the smallest integer such that r1 + -+ rs > 2K). We then let V. denote
{v1,...,vs}.

The next step is different. We take G and apply the Korte-Vygen proce-
dure with T set to Vp, the set of nodes that are incident on an odd number
of required edges. The resulting graph will be called G*. Figure 5 shows
the graph G for the CARP instance on the left of Figure 4. We remind
the reader that K = 2 and s = 3 for this example.

As before, we call the copies of the original nodes “clones”, and any ad-
ditional nodes “parity correction” nodes. If a clone is incident on a required
edge, it will be called an “R-clone”. Note that, if a node in G is incident on
t required edges, then ¢ of its clones will be R-clones. In particular, there
are 7; R-clones of node v;. Note also that, since G has bounded degree, G
has only O(n) nodes and edges.

For a given node v € V, we will call the corresponding set of nodes in

11



Figure 5: Graph G for the CARP instance in Figure 4.

Gt a “gadget”, and denote it by g(v). In Figure 5, each gadget is enclosed
in a circle. We also let ¢’(v) denote the corresponding set of nodes in é, the
auxiliary graph that is used for LB1 (see Subsection 2.2). Note that |g(v)| >
deg(v) > degr(v) > |¢'(v)] for every v € V. Moreover, |g(v)| — |¢'(v)] is
always even. (Indeed, degp(v) and deg(v) have the same parity if and only
if there is no parity correction node in g(v)).

We now create an even bigger graph, called GT*. We begin by taking
GT and adding 2K extra “dummy” nodes, representing copies of the depot.
We will call the dummy nodes D1, Do, -, Dog. We then add several sets
of edges:

e We connect Dj to the first R-clone of vy, Dy to the second R-clone
of v1, and so on. In this way, we connect each dummy node to its
own R-clone. The weight of each additional edge is the length of the
shortest path from the depot to the corresponding member of V.

e For each i € Vp\ V., we pick one R-clone as a “representative” of i. We
then add an edge between each dummy node and each representative.
The weight of each edge is the length of the shortest path from the
depot to the given node 1.

e Now let p =37 ,r; —2K. If p > 0, we have p R-clones of vs that
are not connected to any dummy nodes. We pick one of those as a
“representative”, and connect each dummy node to it. The weight of
each additional edge is the length of the shortest path from the depot
to vg.

Figure 6 shows the graph G for the same CARP instance as before.
Since K = 2, there are 4 dummy nodes. We have s = 3 and V. = {v1, v9, v3}.
Thus, two dummy nodes are connected to R-clones of vy, one is connected

12
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Figure 6: Graph G for the same CARP instance

to the R-clone of vy, and the other is connected to an R-clone of v3. We
also have Vo \ V. = {vs}. Thus, all dummy nodes are connected to a
representative of vs. Finally, we have p =5 — 4 = 1. Since p is positive and
s = 3, all dummy nodes are connected to a representative of vz (namely, the
unique R-clone of v3 that was not already connected to a dummy node).
Note that, when G is sparse and has bounded degree, G™ has only
O(n) nodes and O(n + K|Vp|) edges. We will show that the solution to the
WPM in G*+ yields a valid lower bound for the CARP. We will need the

following lemma.

Lemma 1 Let p) = 2K — Zf;ll r;, and note that 1 < p’ < r,. In é, there
exists a minimum-weight perfect matching in which no more than p' dummy
nodes are matched with R-clones of vs.

Proof. Let M be a perfect matching in G that matches k& dummy nodes
with R-clones of vg, where k& > p/. We will show that we can construct
a perfect matching M’, of no larger cost, such that ¥ — 2 dummy nodes
are matched with R-clones of vs. Let j; and jo be two R-clones of vs that
are currently matched with dummy nodes. We assume w.l.o.g. that those
dummy nodes are D and Dy. Also let I denote the set of R-clones of nodes
in V. \ {vs} that are currently not matched with dummy nodes, and note
that |I| > k > 2. We consider two cases:

Case 1: there exist two R-clones in I, say i1, io, that were matched in M. We
obtain a matching of no larger cost by deleting the edges {D1, 71}, {Do2, j2}
and {i1,42}, and adding the edges {j1, j2}, {D1,i1} and {Da,is} (see Figure
7). To see why, note that the nodes in V, represented by i; and iy are no
further from the depot than vs.

Case 2: no pair of R-clones in I were matched in M. In this case, the R-
clones in I must be matched with R-clones of nodes in Vp \ V.. Let i1 be

13
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Figure 7: A matching M (left) and a matching M’ (right)

an R-clone in I, and i3 be an R-clone of a node in Vp \ V., such that i; and
1o are matched in M. As before, we obtain a matching of no larger cost
by deleting the edges {D1,j1}, {D2,j2} and {i1,i2} and adding the edges
{j1,J2}, {D1,i1} and {Ds,i2}. To see why, note that the cost of the shortest
path from the depot to the node represented by i9 is no larger than the cost
of any path that passes through the node represented by ;. O

Theorem 1 A valid lower bound for the CARP is obtained by solving WPM
in G, and then adding the cost of the required edges.

Proof. Recall that [g(v)| — [¢'(v)| > 0 and even for every v € V. Let M
be a perfect matching in G. We construct a perfect matching M’ in G,
as follows:

e We first match the dummy nodes. If k& R-clones of a given node v are
matched with dummy nodes in G , we match k corresponding R-clones
of v with dummy nodes in G™". We can apply this procedure until
all dummy nodes are matched since, by Lemma 1, there are no more
than 2K — Zf;ll r; R-clones of vy matched with dummy nodes in G.

e We then take the other edges in M, if any, and construct the corre-
sponding edges in M’. For a matched edge {4,j} in G, we match in
G pairs of clones of the nodes in the shortest path between the cor-
responding nodes in G. We can repeat this until all matched edges in
G are considered since, for any node v € V, the gadget g(v) contains
at least deg(v) clones.

e Finally, we check to see if there are any unmatched nodes in G,
Consider a node v € V. By construction, the number of unmatched
copies of v in G, if any, must be even. Thus, if such copies of v
exist, we can match pairs of them using edges in G of zero cost.

By construction, M and M’ have the same cost. O
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Figure 8: Graph G™" and an optimal matching

Figure 8 illustrates Theorem 1 for our CARP example. The graph GTF
is shown once more, but with an optimal WPM solution indicated by thick
red lines. The weight of the matching is 37, so the resulting lower bound is
37 + 18 = 55. We remark that LB1 has the same value for this example.

To test the new bounding procedure, we converted each of our 18 CPP
instances into CARP instances, as follows. The depot is located near the
center. Edges incident on the depot were made non-required. Each other
edge was made required with probability 1/2. The demand of each required
edge was set to a random integer between 1 and 10. To make the fleet
size (K) realistic, we set the vehicle capacity (@) in such a way that K is
|ERr|/500, rounded up to the nearest integer. The cost of traversing each
edge is set to be the length of the corresponding road, in metres, rounded up
to the nearest integer. The data for each instance is made at the Lancaster
University Data Repository as well.

As before, we used Blossom V to solve the matching problems. For the
largest instances, with 50,000 nodes, our PC ran into memory difficulties.
Accordingly, we used a workstation with Intel Xeon E5-2640 v3 processor
at 2.6 Ghz and 32 GB of RAM for those instances.

Table 4 gives information concerning the size of the auxiliary graphs. It
is clear that our transformation leads to auxiliary graphs with more nodes,
but the number of edges is dramatically smaller.

Table 5 shows, for each instance and each approach, the time taken
to construct the auxiliary graph (T1), the time taken to solve the WPM
instance (T2), and the resulting lower bound. One can see that, for these
instances, our procedure is much faster than the one in [7]. Moreover, our
lower bound matches LB1 in 16 out of 18 cases, and is only slightly weaker
in the remaining two cases.

For interest, we also implemented NDLB from [35]. The resulting aux-
iliary graphs were much larger than the ones from either LB1 or our pro-
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Original Graph LB1 Our LB
City n |[Er| K Q n m n m

1000 1024 3 2708 498 123753 4524 14157

- 2000 2141 5 2777 1044 544446 9462 34670
é 5000 5594 12 2757 2522 3178981 24906 127586
S 10000 11461 23 2760 5150 13258675 50728 374675
20000 23327 4T 2747 10186 51872205 104058 1240173
50000 59276 119 2757 25628 328384378 262116 6758031
1000 986 2 2717 506 127765 4244 11587

. 2000 1870 4 2762 1046 546535 8694 28440
g 5000 5133 11 2738 2534 3209311 22790 110935
§ 10000 10518 22 2742 5080 12900660 46520 337427
20000 21220 43 2758 10052 50516326 94958 1098936
50000 57601 116 2747 25382 322110271 256068 6528654
1000 959 2 2735 500 124750 4490 12806
2000 1940 4 2760 1010 509545 8876 29212

-é 5000 4908 10 2754 2552 3255076 22016 102164
A~ 10000 9884 20 2760 5108 13043278 44530 307497
20000 20015 41 2758 10144 51445296 91138 1043119
50000 52712 106 2746 25350 321298575 236874 5905450

Table 4: Effect of transformation on graph size.

cedure, and they took much longer to compute. The lower bounds were
slightly better than LB1, by around 5% on average, but the WPM phase
took around ten times longer than it did for LB1. We also experienced even
more problems with memory. We omit details for brevity.

We close this section with a remark. In our approach, we use 2K dummy
nodes. It would be much more efficient to use just one dummy node, and
require it to have degree 2K. One would then have to solve a minimum-
weight f-factor problem in G*, instead of a WPM. Unfortunately, at the
time of writing, no efficient open-source f-factor code was available.

6 Concluding Remarks

We have shown that, by exploiting the special structure of road networks,
we can solve large-scale CPP instances in less than a second, and compute
strong lower bounds for large-scale CARP instances within a few seconds.
Our procedures are orders of magnitude faster than previous approaches in
the literature. Moreover, any future improvements in matching software will
make our procedures even better.
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LB1 Our LB

City n T1 T2 Result T1 T2 Result
1000 0.19 0.085 19802 0.015 0.007 19802

= 2000 0.895 0.549 41883 0.023 0.021 41753
—(..: 5000 6.866 3.787 109887 0.05 0.11 109887
S 10000 39.557  28.556 241669 0.182 0.762 241669
20000 196.482 190.093 507085 0.486 5.231 507085
50000 930.762 — 3.46  293.399 1479122
1000 0.268 0.085 37010 0.016 0.005 37010

o 2000 1.819 0.542 73604 0.037 0.016 73604
§ 5000 13.106 3.987 224397 0.077 0.1 224397
EO 10000 50.759  30.401 546161 0.145 0.856 546161
20000 207.967 163.09 1254144 0.552 6.312 1254144
50000 800.54 — 5.684  72.698 3929460
1000 0.194 0.073 23259 0.016 0.005 23259
2000 1.011 0.49 48370 0.024 0.022 48370

é 5000 7.318 4.916 118381 0.068 0.123 118381
&~ 10000 32.711  21.152 250189 0.167 0.69 250189
20000 145.326 201.194 539548 0.447 3.415 538600
50000 771.473 — 2.928  87.328 1523393

Table 5: Computing times and bounds for two approaches to the CARP.

We believe that our approach could be fairly easily adapted to other
ARPs, such as ARPs with multiple depots [15], time deadlines [16, 27] and
intermediate facilities [21], or ARPs on mixed graphs [6].
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