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Abstract: One of the most important effects of ionospheric modification by high power, high fre-

quency (HF) waves is the generation of ultra low frequency/extremely low frequency/very low fre-

quency (ULF/ELF/VLF) waves by modulated heating. This paper reviews the scientific achieve-

ments of the past five decades regarding the main mechanisms of excitation of ULF/ELF/VLF waves 

and discusses their characteristics, such as their electrojet dependency, the location of the source 

region, continuous and discontinuous waves, the number of HF arrays, and the suitable range of 

the modulation frequency for different proposed mechanisms. Finally, the outlook for future re-

search in this area is presented. 
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1. Introduction 

Ultra low frequency (ULF, below 3 Hz)/extremely low frequency (ELF, 3-3000 

Hz)/very low frequency (VLF, 3-30 kHz) [1] waves are important not only for the naviga-

tion, communication, and detection of underground targets, but also for the precipitation 

of energetic electrons in radiation belts, in order to protect astronauts and spacecrafts op-

erating in these regions [2]. This is because, firstly, ULF/ELF/VLF waves can travel thou-

sands of kilometers in the Earth-ionospheric waveguide. Secondly, ULF/ELF/VLF waves 

can propagate upwards, into the magnetosphere. The magnetosphere is a large, natural 

plasma laboratory that is filled with a large number of high-energy electrons. The energy 

of these high-energy electrons ranges from about ~100 keV to several MeV, and electrons 

with a higher energy (>2 MeV) are called “relativistic electrons” or “killer electrons”, 

which can damage or even “kill” satellites. These “killer electrons” can be precipitated 

through the process of wave-particle interactions with ULF/ELF/VLF waves. This effect is 

of great practical significance with regards to eliminating the natural radiation belts or 

artificial radiation belts caused by high-altitude nuclear explosions [3–5]. However, there 

are some disadvantages of directly transmitting ULF/ELF/VLF waves by ground-based 

antenna arrays, such as the very large floor space, poor flexibility, low radiation efficiency, 

and high costs of use and maintenance, so there are difficulties in building such antenna 

arrays [6,7]. For example, the US Navy’s VLF antenna (as shown in Figure 1) consists of 

26 towers and the height of each is 850 to 1000 ft. Moreover, the power of 18 MW con-

sumed by the antenna is obtained from a dedicated power plant [8]. Furthermore, in the 

1960s, the US Navy devised a plan to build an ELF antenna called Project Sanguine, which 

would have taken up 41 percent of the area of Wisconsin, but this project never came to 

fruition, mainly due to its overwhelming cost and the potential environmental impact [9]. 

Based on the above reasons, alternate methods are in demand. 
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Figure 1. Very low frequency (VLF) antenna of the US Navy. 

Ionospheric heating by high power, high frequency (HF, 3-30 MHz) [10] radio waves 

is a method of artificially modifying the ionosphere by transmitting high frequency radio 

waves that can interact with ionospheric plasma and excite a series of non-linear physical 

processes. The study of ionospheric heating by high power high frequency radio waves is 

an interdisciplinary field of radio wave propagation, space science, and plasma physics. 

It has always been an important research direction of space physics and radio physics. 

The theoretical study of ionospheric heating includes two kinds of non-linear effects: 1) 

The thermal effect dominated by Ohmic heating and 2) parametric instability and electron 

acceleration due to the electric wave field. 

Ionospheric modulated heating by high power HF waves is carried out by transmit-

ting HF waves modulated by ULF/ELF/VLF waves into the ionosphere, so that the iono-

sphere radiates expected ULF/ELF/VLF waves under a series of non-linear effects. With 

the continuous improvement of theoretical and experimental research, modulated heating 

has become one of the most significant applications of ionospheric heating, consisting of 

a series of modulation methods based on different mechanisms. Streltsov et al. [11] re-

viewed the various modulation methods and provided an excellent summary of experi-

mental and theoretical investigations regarding the different ULF/ELF/VLF wave genera-

tion mechanisms. This review paper is focused on the characteristics of each modulation 

method and discusses topics that have not been covered in previous reviews, such as the 

controversy of Beat Wave Modulation and the new theory of Thermal Cubic Non-Linear-

ity. In particular, the characteristics of various modulation methods are summarized and 

compared and two possible methods for resolving the controversy of Beat Wave Modula-

tion are proposed. 

The idea of generating ULF/ELF/VLF waves by ionospheric modulated heating was 

first proposed by Willis and Davis [12], and was soon tested successfully for the first time 

by Getmantsev et al. [13]. Its basic principle is that the high frequency, high power transmit-

ter “heater” is switched on and off with the frequency of the desired ULF/ELF/VLF waves, 

giving rise to increases and decreases of the local electron temperature with the modulation 

frequency. Such periodic changes in the electron temperature cause corresponding changes 

in the electron density and conductivity, generating the modulation current. In the presence 

of an electrojet in the ionosphere, the modulated current enhances the current and radiates 

the low frequency signal (as shown in Figure 2 [14]). This method is called Amplitude Mod-

ulation (AM). Several other modulation methods that have the same basic principle as AM 

have been categorized as improved methods based on AM and are introduced in Section 

2.1. The physical mechanism of AM (as well as other improved methods based on AM) is 

based on Ohmic heating, whose essence is that ionospheric electrons obtain energy under 
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the action of high frequency radio waves, and transfer the energy by colliding with ions and 

neutral particles, which causes the heating of ions and neutral particles in the ionosphere. 

However, the changes of temperature of ions and neutral particles are negligible compared 

to the change of temperature of electrons because the mass of electrons is negligible com-

pared to the mass of ions and neutral particles. 

 

Figure 2. Schematic diagram of Amplitude Modulation (reprinted from Journal of Atmospheric 

and Terrestrial Physics, 44, Ferraro, A.J., Lee, H.S., Allshouse, R., Carroll, K., Tomko, A.A., kelly, 

F.J., Joiner, R.G., VLF/ELF radiation from the ionospheric dynamo current system modulated by 

powerful HF signals, 1113–1122, Copyright (1982), with permission from Elsevier [14]). 

The emergence of AM gave people a new perspective, and on this basis, scientists 

have carried out numerous theoretical investigations and experiments in Russia, Europe, 

and the United States for decades [11]. Information on the most representative heaters in 

the world carrying out modulated heating is shown in Table 1 [11,15,16]. 

Table 1. Information on three heaters (HAARP (High-frequency Active Auroral Research Pro-

gram, US facility), EISCAT (European Incoherent SCATter Scientific Association, European facil-

ity), and SURA (Russian facility)) [11,15,16]. 

Heater 
Geographic 

Coordinates 
Basic Information 

HAARP 
62.39° N, 

145.15° W 

The most powerful and sophisticated heater in the world. 

The primary transmitter contains a phased array of 180 HF 

crossed dipole antennas and radiating electromagnetic waves 

in the frequency range of 2.8 to 10 MHz, with a net power of 3.6 

MW. The HF beams can be scanned between elevation angles 

of 30° and the zenith. 

EISCAT 
69.6° N, 

19.2° E 

The heater contains 12 vacuum tube transmitters of 100 kW (ac-

tually 80 kW because of ageing of the facility) radiating electro-

magnetic waves in the frequency range of 3.85 to 8 MHz. Each 

transmitter can be connected to one of three arrays. 

Array-1 (destroyed by a storm in 1985 and rebuilt in 1990) co-

vers 5.4–8.0 MHz and the HF beams can be steered about ±20° 

from vertical, with the exact angle depending on the frequency. 
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Array-2 and Array-3 cover 3.85–5.6 and 5.4–8.0 MHz, respec-

tively, allowing steering of the HF beams in the north-south 

plane out to about ±30° from vertical. 

SURA 
56.13° N, 

46.1° E 

The heater contains three HF broadcast transmitters. Each 

transmitter has a maximum output power of 250 kW, and is 

connected to a sub-array containing 4 × 12 crossed dipoles. It al-

lows radiating electromagnetic waves from 4.3 to 9.5 MHz. The 

HF beam can be steered in a geomagnetic meridian plane 

within ±40° from the vertical. 

Based on these heaters, many important experiments have been carried out in con-

junction with observations of satellites (such as FAST (Fast Auroral Snapshot Explorer) 

[17,18] and DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earth-

quake Regions) [19–21]). 

However, both theoretical and experimental investigations have illustrated that the 

efficiency of Amplitude Modulation is very low. Moore et al. [22] carried out experiments 

in HAARP which adopted sinusoidal Amplitude Modulation to generate 2125 Hz ELF 

waves and found that the transformation efficiency (HF to ELF) is only ~0.0004–0.0032%. 

Stubbe et al. [23] found that Amplitude Modulation can only be used for generating waves 

whose frequency is less than 23 kHz, which is caused by the insufficient change of the 

electron temperature during short periods of modulated heating. Improving the genera-

tion efficiency and expanding the frequency range of generated low frequency waves have 

been the focus of research. In addition, as shown in Figure 3, which presents an amplitude 

spectra of the ELF signals generated by AM during an experiment at EISCAT [24], it is 

also important to reduce the harmonic component of generated low frequency waves to 

improve the signal quality. 

 

Figure 3. Amplitude spectra of the extremely low frequency (ELF) signals received at Lycksele 

(500 km south of the Tromsø heating facility), 17 November 1990, while the transmitter at Tromsø 

was operating in the Amplitude Modulation (AM) mode with a 565 Hz modulation frequency 

(reprinted from Journal of Atmospheric and Solar-Terrestrial Physics, 59, Barr, R., Stubbe, P., ELF 

and VLF wave generation by HF heating: A comparison of AM and CW techniques, 2265–2279, 

Copyright (1997), with permission from Elsevier [24]). 

On the basis of traditional Amplitude Modulation, Rietveld et al. [25] established a 

theoretical model by combining experimental results and concluded that the electron 
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heating time constant is shorter than the electron cooling time constant when modulating 

the Hall conductivity in the D region. Papadopoulos et al. [26] proposed two methods for 

improving the efficiency of AM: (1) Sweeping the antenna beam over an area on a time 

scale faster than the cooling rate at the heating altitude, which is an application of the 

difference between the electron heating time constant and electron cooling time constant 

mentioned above, and (2) modulating the Pedersen conductivity in the E region (90-100 

km), which can be achieved by beating two HF waves at the local plasma frequency, or 

using short pulse HF waves. Cohen et al. found that the efficiency of AM decreases with 

an increase of the incident HF wave frequency and increases with an increase of the effec-

tive radiated power (ERP), beam width, and heating area, which is consistent with the 

first method proposed by Papadopoulos et al. [26] mentioned above and was verified by 

experiments at HAARP [10]. Larchenko et al. [27] found that there is a strong correlation 

between the strength of ELF/VLF waves generated by AM and the equivalent current, 

which is an infinitely thin sheet of current located at an altitude of 100 km. Yang et al. [28] 

pointed out that AM with an X wave is more efficient than that with an O wave; in order 

to obtain better ELF/VLF generation, the optimal frequency of HF waves was found to be 

0.8~0.9 and 0.75~0.85 times for the O wave and X wave, respectively. 

2. Mechanisms of Modulating ULF/ELF/VLF Waves  

In general, the methods employed for modulating low frequency waves can be di-

vided into several categories. 

2.1. Improved Methods Based on Traditional Amplitude Modulation 

2.1.1. Beam Painting 

Beam Painting (BP) was proposed by Papadopoulos et al. [29]. The idea of this ap-

proach is that the time constants of electron heating and cooling in the ionosphere caused 

by switching on and off the heater are different and in most cases, the heating time con-

stant is much lower than the cooling time constant [25]. The narrow beam HF waves are 

therefore made to heat each point in the larger ionospheric region, which is expected to 

be heated with a constant heating time, and the HF beam is quickly moved to the next 

point and returns to the first point before it cools completely (that is, t < cooling constant 

time). Therefore, this method can effectively expand the heating area to achieve the pur-

pose of improving the modulation efficiency, which means that the key aspect of BP is 

that the heating time constant is much smaller than the cooling time constant. Barr et al. 

[30] studied the modulation efficiency of BP and found that the source of fundamental 

frequency and odd harmonics of ELF waves is located in a higher ionosphere, where the 

heating time constant is approximate to the cooling time constant, so the modulation effi-

ciency of BP is not significantly improved compared with AM. On the other hand, the 

source of even harmonics of ELF waves is located in a lower ionosphere, where the heat-

ing time constant is more than an order of magnitude lower than the cooling time con-

stant, so BP can significantly improve the modulation efficiency in the lower ionosphere. 

2.1.2. Geometric Modulation 

Cohen et al. [31] reported a method called Geometric Modulation (GM). This method 

is based on controlling the incidence direction of the HF wave, which causes the HF beam 

to scan the ionosphere in certain geometric patterns (such as circle sweep, line sweep, 

sawtooth sweep, and so on), in order to modulate the electrojet. Unlike BP, GM adopts a 

continuous wave (CW), the geometric motion of the CW in space replaces the periodic on-

off of the heater, and the period in which a scan is completed matches the frequency of 

the modulated low frequency wave. On the basis of experiments at HAARP, Cohen et al. 

[31] found that GM is less efficient than AM when the modulated frequency is lower than 

2 kHz, but significantly more efficient when the modulated frequency is higher than 3 

kHz. In particular, the enhancement effect of ELF/VLF signals generated by GM compared 
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to AM is more obvious (7-11 dB) for long distance observations. Furthermore, Cohen et 

al. [31] pointed out that GM has directional dependence. For example, the low frequency 

signals generated along the scanning direction were significantly stronger than those gen-

erated perpendicular to the scanning direction under line sweep. 

In 2009, Moore and Rietveld [32] illustrated that GM is essentially the oblique AM 

modulation mentioned by Barr et al. [33]. In response to this, Cohen et al. [34] explained 

the difference between GM and oblique AM modulation in terms of the generation effi-

ciency and geometric effects, and argued that the mechanism of GM is close to the two-

element phased array modulation mentioned by Barr et al. [35]. Furthermore, by utilizing 

the new upgrade ability at HAARP, it has been proven that GM is more complicated than 

both oblique AM and two-element phased array modulation [34]. Therefore, Cohen et al. 

[34] emphasized that GM is an “unprecedented technique”. 

As mentioned in Section 2.1.1, BP is also a technique employed for modulated heat-

ing by controlling the movement of HF beams, so Cohen et al. quantitatively compared 

AM, BP, and GM through experiments and theoretical models and found that, compared 

with AM, BP is suitable for modulating waves in a lower frequency range, and the en-

hancement of excitation is mainly concentrated near the heating site; in contrast, GM can 

be more efficient at longer distances from the heating site [36,37]. The characteristic “a 

level of directionality” of Geometric Modulation was also verified. Recently, Robinson 

and Moore [38] proposed a method called the “optimized beam painting algorithm 

(OBP)”, which changes the azimuth and zenith angles of the heater to construct a phased 

array of the ELF/VLF source in the ionosphere. On the basis of experimental results per-

formed over 1200 times at HAARP, they concluded that, compared to vertical AM, oblique 

AM, and GM, OBP can increase the received signal amplitudes of ELF/VLF waves. A sche-

matic comparison of AM, BP, and GM is shown in Figure 4. 

 

 

Figure 4. Schematic comparison of AM, Beam Painting (BP), and Geometric Modulation (GM). 

(top) The progression of the high frequency (HF) beam at five points during an ELF/VLF period 

(which is 0.4 ms for f = 2.5 kHz). Bottom panel indicates the cases of AM and BP when the HF 

transmitter is turned ON and OFF with a duty cycle of 50%. In the GM case, no power modulation 
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is involved; instead, the constant beam results in a slower sweep along a geometric shape, in this 

case, a circle (reproduced with permission from Cohen, M.B., Inan, U.S., Gołkowski, M., McCar-

rick, M.J., ELF/VLF wave generation via ionospheric HF heating: Experimental comparison of am-

plitude modulation, beam painting, and geometric modulation; published by John Wiley and 

Sons, 2010 [36]). 

2.1.3. Preheating 

The generation efficiency of ULF/ELF/VLF waves can be significantly improved by 

“preheating” the modulation region using HF waves before modulated heating, for two 

reasons. Firstly, preheating reduces the electron-ion recombination coefficient, resulting 

in an increased electron density and current density in the ionosphere, and secondly, pre-

heating reduces low altitude self-absorption to sharpen the density profile, which leads to 

more efficient heating. This method was proposed by Milikh and Papadopoulos [39], who 

demonstrated that preheating could increase the signal intensity of low frequency waves 

generated by modulated heating by up to 7 dB. 

2.1.4. Dual-Beam HF Modulation 

Moore and Agrawal [40] proposed a method using continuous waves and HF waves 

modulated by the ELF/VLF frequency simultaneously to generate corresponding 

ELF/VLF waves, and this method is called Dual-Beam HF Modulation (as shown in Figure 

5). On the basis of experiments at HAARP and the establishment of a theoretical model, 

Moore and Agrawal [40] found that continuous waves led to a decrease in the modulation 

efficiency, so this is not a preferable way of generating ELF/VLF waves compared to AM. 

On the other hand, further analysis [41] indicated that the intensity of ELF/VLF waves is 

sensitive to the altitude distribution of the electron density and electron temperature in 

the D region, so Dual-Beam HF Modulation could be an applicable D-region diagnostic. 

Gołkowski et al. [42] found that dual HF beams with AM (both beams are modulated HF 

waves at ELF/VLF with a phase offset) can also be a potential diagnostic method for the 

D region; that is, when two HF beams are both transmitted vertically, the net modulation 

of the electrojet is that of the sum of the power envelopes of both beams of the first order. 

Deviation from the power envelope sum as a function of the phase is caused by the char-

acteristics of the D-region plasma gradients. The deviations can be modeled and used as 

a D region diagnostic, although this may require experiments with finer and more rapid 

ELF phase stepping guided by comprehensive modeling. This conclusion is supported by 

Maxworth et al. [43]. 

 

Figure 5. Schematic of the Dual-Beam HF heating experiment. The 3.25 MHz continuous wave 

(CW) beam is broader than the 4.5 MHz modulated beam (reproduced with permission from 
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Moore, R.C., Agrawal, D., ELF/VLF wave generation using simultaneous CW and modulated HF 

heating of the ionosphere; published by John Wiley and Sons, 2011 [40]). 

In addition, there are several other methods relevant to AM. Gołkowski et al. [44] pro-

posed that cross modulation could be used to generate waves in the range of 630 Hz~37 

kHz. The intensity of ELF/VLF waves generated by this method is an order of magnitude 

weaker than AM, although it is able to produce waves with a wider frequency range than 

AM (>30 kHz). Furthermore, the authors mentioned that the harmonics modulated by AM 

can also generate waves higher than 30 kHz with a similar intensity to cross modulation. 

Villaseñor et al. [45] compared traditional AM with a method called the demodulation mode 

(DM). The process of DM is to conduct vertical heating during the former half time of a 

modulation period, and the beam is then separated into heat regions on either side of the 

vertical position, subdividing the array into two sub-arrays during the latter half time of a 

modulation period. The experimental results indicated that the intensity of ELF/VLF waves 

generated by DM is only about half that of AM. The main reason why the modulation effi-

ciency of DM is lower than that of AM is because of the smaller disturbance amplitude of 

the electron temperature. Therefore, DM is no longer accepted as an effective method of 

modulated heating and is not reported in previous reviews. However, DM illustrates the 

importance of maximizing the efficiency of electron temperature perturbation during the 

electrojet modulation process, which includes three aspects: Firstly, the increase of the elec-

tron temperature should be improved as much as possible during the heating process; sec-

ondly, the electron temperature should be restored to the initial state as far as possible dur-

ing the cooling process; and finally, the duty cycle should be set as a suitable value to avoid 

stable states of the electron temperature during the heating or cooling process. 

The above methods can be classified as improvements to AM because they are essen-

tially the same as AM, which changes the electron temperature in the D region and lower 

E region periodically by switching on and off the heater or other equivalent methods that 

can achieve the same effect, thus inducing periodic changes of conductivity and superim-

posing them on the electrojet to produce ELF/VLF waves. 

In this context, it can be seen that the modulation efficiency of AM and its improved 

methods are inevitably affected by the strength of the background electrojet and the heat-

ing and cooling time constants. The heating time constant can usually be shortened by 

increasing the power of the heater, but the strength of the electrojet in the background and 

cooling time constant are difficult to control artificially. The strength of the electrojet limits 

the time and location of modulated heating: Ionospheric currents at mid-latitudes are 

weak in general, so AM is more suitable for modulated heating in the polar and equatorial 

regions. However, the polar electrojet does not exist all the time and is hard to predict. 

Furthermore, at present, there is not a suitable facility for carrying out experiments in 

equatorial regions. In addition, as the frequency of modulation increases, the deficiency 

of the cooling time becomes more and more obvious, resulting in a serious attenuation of 

the signal strength [46]. Therefore, scientists have proposed several other modulation 

mechanisms that are independent or less dependent on the electrojet, as well as the heat-

ing and cooling time. 

2.2. Beat Wave Modulation 

VLF, ELF, and ULF waves can be modulated by utilizing two continuous waves with 

a frequency difference of 
1f  (

1f  is the ELF/VLF modulated frequency) transmitted by 

two sub-arrays [24,47], and this mechanism is called Beat Wave Modulation (BW). The 

main difference between Dual-Beam HF Modulation and Beat Wave Modulation is that 

the two sub-arrays of Dual-Beam HF Modulation emit continuous waves and discontinu-

ous waves modulated by ELF/VLF, respectively, and the carrier frequency of these two 

waves can be the same. On the other hand, the two sub-arrays of Beat Wave Modulation 

emit two continuous waves with different frequencies. Villaseñor et al. [45] demonstrated 

that the low frequency signals excited by AM are stronger than those excited by BW at 
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almost all the modulated frequencies, although BW can produce a more stable low fre-

quency signal in some cases. In addition, the excitation efficiency of the X-mode wave is 

higher than that of the O-mode wave by a factor of two, either using AM or BW modula-

tion. The experimental observations of Barr and Stubbe [24] confirmed the conclusion of 

Villaseñor et al. [45]. Furthermore, Barr and Stubbe [24] also predicted that the modulation 

efficiency of BW might be higher than that of AM by adjusting the receiver position, dis-

tance of heating arrays, modulation frequency, and other parameters. 

On these bases, Kuo et al. [47,48] proposed that inducing disturbance of the pondero-

motive force in the F region by BW may be an electrojet-independent modulation tech-

nique, and VLF waves were successfully modulated when the ionospheric current was 

weak. According to numerical simulation and experimental verification, Kuo et al. [48] 

concluded that BW is an electrojet-independent modulation method. They also concluded 

that BW is more suitable for modulating VLF waves with a higher frequency, and modu-

lation by the X-mode wave is more effective than that by the O-mode wave. However, Jin 

et al. [49] demonstrated that the weak intensity of the electrojet sometimes does not mean 

that low frequency waves are not generated in the D region, because the intensity of mod-

ulated low frequency waves is also affected by the D region electron density profile. Sub-

sequently, Kuo et al. [47] further determined that the source region of VLF waves gener-

ated by BW was located in the F layer, and pointed out that the modulation effect of un-

derdense heating (i.e., the frequency of the HF wave is greater than the maximum iono-

spheric plasma frequency in a layer during the process of ionospheric heating) was better 

than that of overdense heating (i.e., the frequency of the HF wave is lower than the maxi-

mum ionospheric plasma frequency in a layer during the process of ionospheric heating). 

Moore et al. [50] used the time-of-arrival (TOA) analysis method proposed by Fujimaru 

and Moore [51] to infer that the source region of BW was located in the D layer instead of 

the F layer and the theoretical model established by Cohen et al. [10] for D region colli-

sional absorption confirmed this conclusion. However, Cohen et al. [10] also pointed out 

that the F layer BW modulation theory proposed by Kuo et al. [47,48] could not be ruled 

out at present, and needs to be further tested and verified. Therefore, it is still controversial 

whether the source region of ELF/VLF waves generated by BW modulation is located in 

the D layer [52–56] or F layer [57–60]. 

2.3. Thermal Cubic Non-Linearity Method 

Thermal Cubic Non-Linearity was first proposed by Ginzburg [61]. This mechanism 

was initially used as a modulation method for generating ELF/VLF waves by Kotik and 

Ermakova [62]. In this method, two HF waves with frequencies 
1f  and 

2f , respectively, 

where fff  12 2  ( f  is the frequency that needs to be modulated), are injected into the 

ionosphere [62,63]. Moore et al. [64] applied TOA analysis to experimental observations 

to determine whether the source of the thermal cubic ELF and VLF is located in the colli-

sional D region. 

In contrast to the previous conclusion [62,63], which suggests that the 
1f  wave in-

duces a collision frequency oscillation at 
12 f  and the oscillation then mixes with the po-

larization current density of the 2f  wave to produce an ELF/VLF source current density 

at frequency 
12 2 ff  , Moore et al. [64] proposed that the ELF and VLF source is mainly 

induced by the interaction between collision frequency oscillations at frequency 
12 ff   

and the polarization current density associated with the HF wave at frequency 
1f .  

In addition, ELF/VLF waves generated by Thermal Cubic Non-Linearity are signifi-

cantly weaker than AM in the 1–5 kHz range [65] and 16–20 kHz range [50]. ELF/VLF 

waves generated by Thermal Cubic Non-Linearity are also weaker than the Ionospheric 

Current Drive mechanism, which will be introduced in Section 2.4, especially at a lower 

frequency (<100 Hz) [66], but cubic generation is stronger at higher frequencies (>10 kHz) 
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[64]. Moreover, Thermal Cubic Non-Linearity may be used to generate ELF waves em-

ploying VLF waves [67] because VLF waves are more effective than HF waves when heat-

ing the ionosphere. 

2.4. Ionospheric Current Drive 

The Ionospheric Current Drive (ICD) was proposed by Papadopoulos et al. [66] and 

verified by experiments for the first time [68] as a method for generating low ELF/ULF 

frequency waves without relying on the presence of electrojets, so this mechanism can be 

used to modulate ELF/ULF waves in the mid-latitude region. The effect relies on modu-

lated F region HF heating to form a local diamagnetic current, which then generates Mag-

neto-Sonic (MS) waves that modulate Hall currents when they reach the D-E region. The 

modulated Hall currents inject ELF waves downward, into the Earth-ionosphere wave-

guide, as well as Shear Alfvén Waves (SAW) upward, into the magnetosphere (as shown 

in Figure 6). Based on the cold plasma model, Eliasson et al. [69] constructed the numerical 

model of ELF/ULF waves excited by the ICD method, as well as the propagation model 

of MS waves and ELF/ULF waves. By considering the characteristics of the magnetic field 

and radio wave propagation in the mid-latitude ionosphere, Sharma et al. [70] studied the 

excitation of ELF waves by the ICD method in the mid-latitude region and its propagation 

in the ionosphere and magnetosphere. Xu et al. [71] studied the generation and propaga-

tion of ULF waves modulated by the ICD mechanism under different background iono-

spheric parameters and modulation frequencies through numerical simulation. Streltsov 

et al. [72] found that the intensity of ELF waves was significantly enhanced when modu-

lated with the frequency of Schumann resonance. They suggested that the ELF waves gen-

erated in their experiments may be the result of conductivity modulation in the lower 

ionosphere and ICD in the F region, but the respective contribution of the two mechanisms 

cannot be quantitatively analyzed due to the lack of high resolution altimeter data. More-

over, the experiments of Papadopoulos et al. [68] adopted O wave heating, while subse-

quent experiments at HAARP [72] and EISCAT [73,74] have proved that the X wave can 

cause significant disturbance of the electron temperature and electron density in the F 

layer, so X wave heating can also effectively trigger the ICD mechanism. 

 

Figure 6. Schematic of the Ionospheric Current Drive (ICD) mechanism. Periodic heating of the F 

region leads to an oscillatory diamagnetic current and an associated field-aligned magnetic mo-

ment M that radiates isotropic Magneto-Sonic (MS) waves. Then, the MS waves drive the Hall 

current in the E region and couple them with Shear Alfvén Waves (SAW). The process injects ELF 
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waves and SAW in the Earth-ionosphere waveguide and magnetosphere, respectively (repro-

duced with permission from Papadopoulos, K., Chang, C., Labenski, J., Wallace, T., First demon-

stration of HF-driven ionospheric currents; published by John Wiley and Sons, 2011 [66]). 

2.5. LH-to-Whistler Mode Conversion 

At the upper hybrid (UH) height ( 222

0 cepe fff  , where 
0f  is the frequency of the elec-

tromagnetic wave, 
pef  is the plasma frequency, and 

cef  is the electron gyrofrequency), 

ordinary HF waves can stimulate thermal parametric instability, i.e., the HF wave decays 

into high frequency plasma waves and low frequency plasma waves or the small scale field-

aligned irregularity. The thermal parametric instability includes (1) thermal oscillating two-

stream instability, where the HF wave decays into two UH waves with opposite propaga-

tion directions and small scale field-aligned irregularities, and (2) thermal parametric decay 

instability, where the HF wave decays into a high frequency UH wave and a low frequency 

lower hybrid (LH) wave [75]. Vartanyan et al. [20] analyzed two heating experiments at 

HAARP with the observation from DEMETER and found that F region ionospheric heating 

by continuous waves could also generate VLF waves of certain frequencies, and the whole 

process is independent of the electrojet. This method is based on the mode conversion of LH 

waves, so it can only be used for generating VLF waves in the corresponding frequency 

range of LH and its harmonic, as shown in Figure 7 (7-10 and 15-19 kHz, respectively). The 

mechanism of this method can be described as follows: The HF continuous wave interacts 

with the plasma in the upper hybrid layer to excite LH waves, and the VLF wave is then 

generated by the mode conversion of LH waves. Vartanyan et al. [20] proposed two points: 

1) The VLF waves observed at the LH frequency are due to the interaction of the LH waves 

with meter-scale field-aligned striations, and 2) the VLF waves at twice the LH frequency 

are due to the interaction of two counter propagating LH waves. This mechanism was also 

verified experimentally by Kuo and Lee [76]. 

 

Figure 7. Spectrogram obtained by DEMETER during (a) Experiment 1 with CW heating and (b) 

Experiment 2 with 0.7 Hz square pulse modulated heating. In both cases, time = 0 corresponds to 

the closest approach of DEMETER to the magnetic zenith of HAARP (reproduced with permission 

from Vartanyan, A., Milikh, G.M., Eliasson, B., Najmi, A.C., Parrot, M., Papadopoulos, K., Genera-

tion of whistler waves by continuous HF heating of the upper ionosphere; published by John 

Wiley and Sons, 2016 [20]). 
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Furthermore, Gigliotti et al. [77] carried out an experiment using Large Plasma De-

vice (LAPD) at the University of California, Los Angeles (UCLA), to generate polarized 

SAW using a rotating magnetic field (RMF) source created via a phased orthogonal two-

loop antenna. This was the first time that RMF controlled by a special antenna was formed. 

Although this was not a method for generating ELF/VLF waves by modulating HF waves, 

it was another way to generate ELF/VLF waves, instead of them being transmitted directly 

by the ELF/VLF antenna. Gigliotti et al. [77] also proposed the prospect of using satellites 

to carry such antennas to form RMF in the space and inject SAW into radiation belts. Sub-

sequent three-dimensional numerical simulations and relevant experiments have demon-

strated that the RMF mechanism can effectively generate SAW and low frequency whis-

tler waves [78,79]. In recent years, the LAPD has further upgraded its devices [80,81] for 

further research in the future. Inspired by this method, De Soria-Santacruz et al. [82] the-

oretically designed a spaceborne antenna to excite low frequency waves. 

3. Concluding Remarks 

Over the past few decades, modulated heating has evolved from Amplitude Modu-

lation to a number of modulation methods, which have different characteristics (as shown 

in Figure 8). 

 

Figure 8. Classification of different modulation methods based on different characteristics (the dependence of the electro-

jet, the location of the source region, continuous or discontinuous waves, and the number of HF arrays). 

Firstly, according to the dependence of the electrojet, they can be divided into two 

methods. Amplitude Modulation, Beam Painting, Geometric Modulation, Preheating, and 

Dual-Beam HF Modulation all belong to electrojet-dependent modulation methods, 

which means that, in order to achieve better modulation effects, several strict spatio-tem-

poral conditions must be met. In contrast, electrojet-independent modulation methods, 

such as Thermal Cubic Non-Linearity, Ionospheric Current Drive, and LH-to-Whistler 

Mode Conversion, expand the time and space scope of modulated heating. In addition, 

the mechanism of Beat Wave Modulation is still controversial. 

Secondly, the different modulation methods can be divided into two types in terms 

of the source region of the modulated ULF/ELF/VLF waves. One is located in the D-E 

region, including Amplitude Modulation, Beam Painting, Geometric Modulation, Pre-

heating, Dual-Beam HF Modulation, and Thermal Cubic Non-Linearity, whilst the other 

is located in the F region, including Ionospheric Current Drive and LH-to-Whistler Mode 

Conversion. Just like the mechanism, the source region of Beat Wave Modulation is also 
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controversial. It is worth noting that although the source region of all electrojet-dependent 

modulation methods is located in the D-E region, it does not mean that all the modulation 

methods located in the D-E region are electrojet modulation methods because research in 

recent years has shown that Thermal Cubic Non-Linearity modulation is an electrojet-

independent modulation method whose source region is located in the D region [64]. 

In addition, for some modulation methods, the electron temperature is modulated by 

discontinuous HF waves, such as Amplitude Modulation, Beam Painting, and Iono-

spheric Current Drive. For other methods, the process of modulated heating is carried out 

by transmitting continuous waves into the ionosphere, among which Geometric Modula-

tion is a method that expands the modulation area by changing the elevation angle of HF 

waves. Therefore, it is a continuous wave modulation method for the whole modulation 

region, but a discontinuous wave modulation method for a certain spot in the modulation 

region; other continuous wave modulation methods are based on the frequency matching 

characteristics of HF waves, such as Beat Wave Modulation and Thermal Cubic Non-Lin-

earity, or natural frequency characteristics of the ionosphere, such as LH-to-Whistler 

Mode Conversion. In addition, there are methods that transmit both continuous and dis-

continuous waves, such as Preheating and Dual-Beam HF Modulation; however, they are 

essentially consistent with the discontinuous wave modulation. 

In terms of the number of HF heating arrays, some modulation methods can be car-

ried out using a single array, such as Amplitude Modulation, Beam Painting, Geometric 

Modulation, Preheating, Ionospheric Current Drive, and LH-to-Whistler Mode Conver-

sion, while other modulation methods require two separate HF heating arrays to work 

together, such as Dual-Beam HF Modulation, Beat Wave Modulation, and Thermal Cubic 

Non-Linearity. Considering that the effective radiation power will be greatly reduced 

when the heating array is divided into two subarrays, a higher performance of the heater 

is required for double array modulation methods. 

Finally, the suitable range of modulation frequency differs for different modulation 

methods (as shown in Table 2). AM is mainly suitable for the modulation of ELF and lower 

VLF waves, which are mainly determined by the time scale of ionospheric heating and 

cooling. The time scales of the change of the electron temperature in both heating and 

cooling processes in the D-E layer are~ms. Therefore, when the modulation frequency is 

in the ULF band, the electron temperature and the corresponding conductivity always 

reach stability within a period of time far shorter than the modulation period, which 

means that the ionosphere is essentially in its natural state for most of the modulation 

process. On the other hand, when the modulation frequency is at a very high VLF range, 

the electron temperature and the corresponding conductivity cannot reach a stable state 

within the modulation period, which indicates inadequate modulation. Compared with 

AM, BP is suitable for modulating waves in a lower frequency range, and GM is less effi-

cient than AM when the modulated frequency is lower than 2 kHz, but significantly more 

efficient when the modulated frequency is higher than 3 kHz. Preheating could increase 

the signal intensity of AM by up to 7 dB; however, the continuous wave of Dual-Beam HF 

Modulation would lead to a decrease in the modulation efficiency of AM. BW is more 

effective than AM in the VLF range. ELF/VLF waves generated by Thermal Cubic Non-

Linearity are significantly weaker than AM in the 1-5 and 16-20 kHz range. ICD is more 

suitable for the modulation of waves in the ULF range. LH-to-Whistler Mode Conversion 

can only be used for generating VLF waves in the corresponding frequency range of LH 

and its harmonic (7-10 and 15-19 kHz, respectively). 

Table 2. Suitable modulation frequency range for each modulation method. 

Modulation Method Suitable Modulation Frequency Range 

Amplitude Modulation ELF and lower VLF 

Beam Painting Lower ELF 

Geometric Modulation >3 kHz VLF 
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Preheating ELF and lower VLF (same as AM, but more effective) 

Dual-Beam HF Modulation ELF and lower VLF (same as AM, but less effective) 

Beat Wave Modulation VLF 

Thermal Cubic Non-Linearity 10~16 kHz VLF 

Ionospheric Current Drive ULF 

LH-to-Whistler Mode Conversion 7-10 and 15-19 kHz VLF 

4. Prospect 

Future research on the generation of ULF/ELF/VLF waves by ionospheric modulated 

heating using high power, high frequency waves needs to explore the development of a 

modulation method that is less dependent on the ionospheric environment, with a high 

modulation efficiency and stable signal. For this goal, the following aspects should be fo-

cused on: 

1. Investigate the controversy regarding the mechanism and source region of Beat 

Wave Modulation (two possible methods for solving this controversy are introduced in 

points 2 and 4), as well as new insight into the mechanism of Thermal Cubic Non-Linearity; 

2. Investigate the possibility of the combination of existing modulation methods to 

explore new modulation methods. For example, the influence of preheating on other mod-

ulation methods deserves to be studied according to the existing research conclusion that 

preheating can improve the modulation efficiency of Amplitude Modulation. In addition, 

preheating may become a useful localization method of the source region of BW modula-

tion because of its different effects on Beat Wave Modulation in different source regions; 

3. Explore the possibility of non-linearity effects as the theoretical basis of modulated 

heating. Recent studies have indicated that non-linear effects excited by parametric insta-

bility, such as ponderomotive force and mode conversion, are important in modulated 

heating. Therefore, the effects of other non-linear need to be investigated; 

4. Explore utilizing multiple observational means (research ships, such as Tangaroa 

[83,84], and satellites, such as RESONANCE [85,86]) simultaneously, for example, the lo-

calization method proposed by Demekhov et al. [87], which utilizes simultaneous ground 

and space observations, may be an effective method for resolving the controversy of the 

source region of Beat Wave Modulation; 

5. Investigate electrojet-independent modulation methods. It is important to carry 

out experiments using heaters at middle and low latitudes, such as SURA (56.13° N, 46.1° 

E) [11] and Arecibo (18° N, 67° W, no longer available, but expected for building and using 

other heaters at low latitudes like Arecibo in the future) [88], as well as receivers at middle 

and low latitudes, such as the WHU (Wuhan University) ELF/VLF receiver (30.54° N, 

114.37° E) [89,90]. 
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