MAURER-CARTAN MODULI AND THEOREMS OF
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ABsTRACT. We study Maurer-Cartan moduli spaces of dg algebras and associated
dg categories and show that, while not quasi-isomorphism invariants, they are
invariants of strong homotopy type, a natural notion that has not been studied
before. We prove, in several different contexts, Schlessinger-Stasheff type
theorems comparing the notions of homotopy and gauge equivalence for Maurer-
Cartan elements as well as their categorified versions. As an application, we
re-prove and generalize Block-Smith’s higher Riemann-Hilbert correspondence,
and develop its analogue for simplicial complexes and topological spaces.
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1. INTRODUCTION

The simplest version of the Riemann-Hilbert correspondence is the statement,
known for many decades, that the category of flat vector bundles on a smooth
manifold M is equivalent to the category of representations of its fundamental
group m1(M). Recently Block and Smith [7] developed a higher generalization
of this statement. In it, the category of representations of 7;(M) was replaced by
a differential graded category of infinity local systems on M and the category of
flat vector bundles by a differential graded (dg) category of certain modules, called
cohesive modules, over Q(M), the de Rham algebra of M. The correspondence was
given by a certain Ao, functor.

The proof in loc.cit. is technically complicated and our original motivation was
to understand it in simple terms, particularly keeping in mind that one side of the
equivalence — the category of infinity local systems — is essentially the same as
the more classical notion of a cohomologically locally constant (clc) complex of
sheaves, i.e. a complex of sheaves whose cohomology forms an ordinary (graded)
locally constant sheaf. An obvious approach to proving the desired result is based
on the observation that Q(M) is the global sections of the sheaf of de Rham algebras
on M and the latter is a soft resolution of the constant sheaf R. Similarly, a
dg module N over (M) could be sheafified and viewed as a module over the
sheaf of de Rham algebras. Imposing suitable restrictions on M, one could hope
that the resulting sheaf of modules would be quasi-isomorphic to a clc sheaf and
that this procedure establishes an equivalence between the derived category of clc
complexes of sheaves on M and a suitable homotopy subcategory of dg Q(M)-
modules (such as cohesive Q(M)-modules). Taking into account that the category
of clc sheaves makes sense for spaces more general than manifolds, e.g. simplicial
complexes, one could further ask whether this programme can be carried out in this
more general context. Next, one could try to achieve a similar result working with
the singular cochain complex of a topological space or a simplicial set, with values
in rings other than R, e.g. Z. Finally, one should study the functorial properties
of this construction, in particular its liftability to the suitable homotopy category
of spaces that are being considered (manifolds, simplicial complexes, topological
spaces or simplicial sets).

Somewhat surprisingly, this naive approach does work and eventually produces
all the results one would initially hope to obtain (and, in fact, quite a bit more).
The main difficulty in implementing the strategy outlined above is proving, in
different contexts, that the associated complex of sheaves of a dg QQ(M)-module
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N is clc. To show this, one needs to work with Maurer-Cartan (MC) elements
in dg algebras and their moduli spaces. MC elements and their moduli arise in
deformations of various geometric and algebraic objects (flat connections in vector
bundles, complex analytic manifolds [26]], associative algebras [31]]), models of
function spaces in rational homotopy theory [33]] and innumerable other contexts
of differential and algebraic geometry, homological and homotopical algebra. MC
elements are also known as ‘twisting cochains’, particularly in algebro-topological
literature [11]].

A priori there are different notions of equivalence for MC elements and it is
both necessary for our applications and generally desirable to compare them. We
establish various versions of the classical Schlessinger-Stasheff theorem [45]] which
states that, under appropriate conditions, homotopy equivalent MC elements must
be gauge equivalent, and vice-versa. This result is usually formulated in the context
of dg (pro)nilpotent Lie algebras but we need it for dg associative algebras.

Schlessinger-Stasheff type results are established in this paper in two different
contexts: analytical (for dg algebras such as the smooth de Rham algebra of a
manifold) and algebraic (for dg algebras without any topology or with a pseudo-
compact topology such as the singular cochain algebra of a topological space).

The algebraic version of the Schlessinger-Stasheft theorem is particularly inter-
esting and has ramifications far beyond higher Riemann-Hilbert correspondence;
some of them have been explored in the present paper but others await further
study.

We associate to any dg algebra A several dg categories, of which the most important
is the category of twisted A-modules Tw(A). A version of this category (in
the context where A itself is a dg category) was first introduced by Bondal and
Kapranov in the seminal paper [[9] where it was called the category of (two-
sided) twisted complexes and denoted by Pre-Tr(A) (in fact, Tw(A) is obtained
from Pre-Tr(A) by adding infinite direct sums of objects). The homotopy category
HO(Tw(A)) is superficially similar to D(A), the derived category of A, but is a finer
invariant; in particular it is not, generally, a quasi-isomorphism invariant of A,
unlike D(A) (as pointed out by Drinfeld [15, Remark 2.6]). It turns out that the
correct notion to use in this context is that of strong homotopy equivalence of
dg algebras. This is a chain homotopy equivalence that takes into account the
multiplicative structure and it was not studied before, as far as we know. We
show that two strongly homotopy equivalent dg algebras have quasi-equivalent dg
categories of twisted modules.

Furthermore, the notion of strong homotopy and strong homotopy equivalence
exists also for dg coalgebras (equivalently, pseudo-compact dg algebras), such
as the normalized chain complex of a simplicial set, and we show that two
weakly equivalent Kan simplicial sets give rise to strongly homotopy equivalent
dg coalgebras. This is an important ingredient in the proof of the singular version
of the higher Riemann-Hilbert correspondence, but it also has philosophical
significance as it shows that the singular chain coalgebra on a simplicial set that
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is not Kan (or fibrant) might have the wrong homotopy type. The simple example
of a non-fibrant model of the circle S ' shows that this indeed happens, cf. Remark
[6.4 below. This phenomenon also showed up in the recent paper by Rivera and
Zeinalian [44] where a generalization of Adams’ cobar-construction to the non-
simply connected case was established.

Denoting by C*(X) the normalized cochain algebra of a Kan simplicial set X, we
show that the homotopy category of twisted C*(X)-modules is equivalent to the
derived category of clc complexes of sheaves on |X|, the geometric realization of
X. If X is not Kan, the category Tw(C*(X)) has no homotopy invariant meaning,
but one could speculate that it is related to the category of sheaves on |X]| that are
constructible with respect to some stratification. A related idea is contained in
Kontsevich’s preprint [30, pp. 3-4].

The paper is organized as follows. Section [2] introduces the notion of an MC
element in a dg algebra as well as concomitant concepts: gauge equivalence,
MC twisting and a notion of homotopy gauge equivalence EI that is, as the name
suggests, a relaxation of familiar gauge equivalence to an up to homotopy notion.

Section [3] introduces twisted modules, and gives a comparison with Block’s
cohesive modules [6]. In Section f] we study smooth homotopies of topological
algebras and their MC elements, and prove an appropriate analogue of the
Schlessinger-Stasheff theorem, its categorified version and show that homotopic
maps of manifolds give rise to isomorphic functors between the corresponding
categories of twisted modules over their de Rham algebras. In Section [5] we
introduce the notions of a strong homotopy of dg algebra morphisms and of a strong
homotopy equivalence. A comparison is given with various weaker notions, of
which the notion of derivation homotopy has been previously known, particularly
in the context of rational homotopy theory. We obtain a suitable version of the
Schlessinger-Stasheff theorem that implies that strongly homotopy equivalent dg
algebras have quasi-equivalent dg categories of twisted modules and obtain a
similar result for pseudo-compact dg algebras. In Section [6| we apply our results
to normalized cochain algebras of simplicial sets and show that weakly equivalent
Kan simplicial sets give rise to quasi-equivalent categories of twisted modules.

In Section[7|we consider complexes of sheaves on a locally ringed space and, using
our Schlessinger-Stasheff theorems, show that, under suitable assumptions, the
homotopy category of perfect (i.e. finitely generated up to homotopy retractions)
twisted modules over the dg algebra of global sections is equivalent to the
derived category of perfect complexes. This is applied in Section [§] to produce
versions of the higher Riemann-Hilbert correspondence for smooth, possibly non-
compact, manifolds and finite-dimensional simplicial complexes, thus generalizing
the results of Block and Smith [7]. We also consider the case of the Dolbeault
algebra and coherent sheaves on a complex manifold, slightly strengthening the

1t was pointed out to us by the referee that the notion of a homotopy gauge equivalence was
already present in [5]] where it was called ‘quasi-invertible Maurer-Cartan element’ and Proposition
8.4 in op.cit. is essentially equivalent to our Theorem
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result of Block [6]]. Finally, we treat the most interesting case, that of the singular
cochain algebra on a topological space and the corresponding higher Riemann-
Hilbert correspondence. The latter is obtained under very general assumptions,
i.e. we consider any locally contractible topological space and its dg category of
possibly infinitely generated and unbounded clc sheaves over any ring of finite
homological dimension.

The paper contains an appendix where relevant facts from the theory of nuclear
spaces are collected.

1.1. Notation and conventions. We work in the category of Z-graded dg modules
over a fixed commutative ring k; an object in this category is a pair (V, dy) where
V is a graded k-module and dy is a differential on it; it will always be assumed
to be of cohomological type (so it raises the degree of a homogeneous element).
Unmarked tensor products and Homs will be understood to be taken over k. The
shift of a graded k-module V is the graded k-module V[1] with V[1] = Vi*1,

A pseudo-compact relative graded k-module is a a projective limit of finitely
generated free k-modules; it is thus complete and separated with respect to the
projective limit topology. The adjective ‘relative’ pertains to the discrete ground
ring k; note that in the original definition of Gabriel [[17] the ground ring is itself
supposed to be topological and pseudo-compact modules considered were more
general, i.e. not necessarily topologically free. Later on, we shall omit the adjective
‘relative’ as no other pseudocompact modules will be considered. Pseudo-compact
k-modules form a category where maps are required to be continuous. The category
of pseudo-compact k-modules is anti-equivalent to that of (discrete) free k-modules
Via k-linear duality. The category of pseudo-compact k-modules is monoidal: if

= 1im Veand U = El Up are two pseudo-compact k-modules represented as

inverse 11m1ts of finitely generated free k-modules, then VU := hm (V(, ® Up).

Later on, the hat will always be omitted (but understood) for the tensor product
of two pseudo-compact k-modules. We will also need to form the tensor product
of a pseudo-compact k-module V = {21 V. and a discrete k-module U; such a
tensor product will be defined as VU := @a(Va ® U) and, as before, the hat
will be omitted but understood. Note that the tensor product of a pseudo-compact
and discrete k-modules has a topology but is not, in general, pseudo-compact.
Overviews of this monoidal structure can be found, e.g. in [21] (where pseudo-
compact modules are called profinite) and in [51].

A dg algebra is an associative monoid in the dg category of dg k-modules and in the
examples we consider its underlying k-module is free. A (right) dg module over a
dg algebra A is a dg k-module V together with a map V® A — V of dg k-modules
satisfying the usual conditions of associativity and unitality. Similarly a pseudo-
compact dg algebra is a monoid in the monoidal category of pseudo-compact k-
modules. Via continuous linear duality a pseudo-compact dg algebra becomes
a dg coalgebra, and the two notions are therefore equivalent. We, however,
will work consistently with pseudo-compact algebras rather than coalgebras. An
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important example of a pseudo-compact dg algebra over Z is the singular integer-
valued cochain complex C*(X, Z) of a topological space X (or, more pertinently, its
normalized version); it is pseudo-compact as dual to the dg coalgebra C.(X, Z) of
singular chains on X.

We will consider dg contramodules over dg pseudo-compact algebras, cf. [411/42];
a (right) contramodule over a pseudo-compact algebra A is a discrete k-module V
supplied with a ‘contra-action’ map V ® A — V satisfying the usual conditions of
associativity and unitality. Note that in loc.cit. a contramodule M over a coalgebra
C is defined via a structure map Hom(C, V) — V satisfying suitable conditions;
this definition is equivalent, via dualization A := C*, to ours.

We reiterate that V ® A is a completed tensor product so a contramodule is not
merely an A-module where the topology on A is disregarded; at the same time the
contra-action map V ® A — V is not required to be continuous. Importantly,
a contramodule cannot be viewed as a module over a monoid in a symmetric
monoidal category in same way as discrete modules or pseudo-compact modules
can; this subtlety makes the category of contramodules quite peculiar. Prominent
among contramodules are those of the form V ® A with the A-(contra)action given
by the right multiplication. These contramodules are free in the sense that if U
is another A-contramodule, then Homa(V ® A, U) = Homg(V, U) just as it is in
the case of usual free A-modules. Contramodules encountered in this paper will
only be free (and so we will steer clear of various peculiar phenomena alluded
to above). For example, X is a topological space and V is a (possibly infinitely
generated) free abelian group then C*(X, V) = V ® C*(X, Z), the singular cochain
complex of X with coefficients in V is a free C*(X, Z)-contramodule.

If M is a dg object (such as a dg module, dg algebra etc), we will write M* for its
underlying graded object (i.e. graded module, graded algebra etc).

A dg category in this paper will be understood to be a category enriched over dg
k-modules. For example, if A is a dg algebra then the category of dg A-modules is
a dg category; similarly the category of contramodules over a pseudo-compact dg
algebra is also a dg category. The dg k-module of homomorphisms in a dg category
C will be denoted by Hom(—, —) and similarly for endomorphisms. The homotopy
category H(C) of the dg category C has the same objects as C and for two objects
01,07 in C we have Homyo(( (01, 02) := HO[Ho_mC(Ol, 0y)].

A dg functor F : C — C’ between two dg categories is quasi-essentially surjective
if HO(F) : H°(C) — H°(C’) is essentially surjective and quasi-fully faithful if F
induces quasi-isomorphisms on the Hom-spaces; if both conditions are satisfied
then F is called a quasi-equivalence. A stronger notion is that of a dg equivalence:
this is a dg functor F : C — C” admitting a quasi-inverse dg functor G : C’ — C, in
the sense that there exist natural closed isomorphisms F oG = 1 and Go F = 1.

A dg category is strongly pre-triangulated if it admits cones and shifts, and
has a zero object (precise definitions can be found in e.g. [15]]), and pre-
triangulated if it is quasi-equivalent to a strongly pre-triangulated category. A
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dg functor between pre-triangulated dg categories is a quasi-equivalence if and
only if it induces an equivalence on their homotopy categories. A category
dg-equivalent to a strongly pre-triangulated category is likewise strongly pre-
triangulated. Examples of strongly pre-triangulated categories are provided by dg
A-modules or dg A-contramodules where A is a dg algebra or a dg pseudo-compact
algebra respectively.

If X is a topological space, we denote by C.(X) its normalized singular chain
dg coalgebra with coefficients in k and by C*(X) its k-dual normalized cochain
(pseudo-compact) dg algebra; similarly if X is a simplicial set, C.(X) and C*(X)
will stand for its normalized chain dg coalgebra and normalized cochain (pseudo-
compact) dg algebra.

We will call a complex of sheaves on a topological space a dg sheaf. For a k-
module M we define by M the corresponding constant sheaf on a given topological
space. For two dg sheaves .7, ¥ the corresponding dg sheaf of homomorphisms is
denoted by #om(F,9).

We denote by Q(M) the de Rham algebra of a smooth manifold M. If K is
a simplicial complex, then we write Q(K) for its piecewise smooth de Rham
algebra. Recall that a smooth form on an n-simplex A" is a smooth form on
the interior of A" such that it and all its derivatives extend continuously to the
boundary of A”. It follows from Seeley’s extension theorem [46]] that such a form
restricts to piecewise smooth forms on the faces of A*. The elements of Q(K)
are collections of smooth forms on the simplices of K that are compatible with
restriction maps. We define the sheaf Q on |K]|, the geometric realization of K,
by setting Q(U) = limaneg @7 (JA"| N U) for U C |K|. Then it is clear that Q(K)
coincides with the global sections of Q).

When working with complete locally convex spaces U and V, we will write U @ V
for the completed projective tensor product of U and V; in the examples relevant to
us, U and V will be nuclear, for which this choice of a tensor product is isomorphic
to any other reasonable one.

1.2. Acknowledgements. The authors would like to thank Jonathan Block, Chris
Braun and Maxim Kontsevich for stimulating discussions, and the anonymous
referee for drawing our attention to the paper [5].

A substantial part of this paper was completed during the third author’s visit to
IHES, and he wishes to thank this institution for excellent working conditions.

2. MAURER-CARTAN ELEMENTS FOR ALGEBRAS: BASIC NOTIONS, DEFINITIONS AND
EXAMPLES

Let A be a dg algebra.
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Definition 2.1. An element x € A' is Maurer-Cartan or MC if it satisfies the
equation

(1) d(x) +x* = 0.
The set of Maurer-Cartan elements in A will be denoted by MC(A).

The group A* of invertible degree O elements in A acts on MC(A) by gauge
equivalences: for g € A, x € MC(A) set

g x=gxg ' —d(g)g

The Maurer-Cartan moduli set # € (A) is the quotient of MC(A) modulo gauge
equivalences.

We now introduce the notion of MC twisting.

Definition 2.2. For x € MC(A) the dg A module A has A as its underlying graded
space and the differential 4l :

d"(a) := d(a) + xa.

The right A-module structure on A is the ordinary right multiplication. We will
call AW the module twisting of A by x. Similarly define the algebra twisting A* as
the dg algebra having A as an underlying graded algebra and the differential d* :

d*(a) = d(a) + [x,a].

Note that the MC condition (1)) for x implies (in fact, is equivalent to) d*! squaring
to zero in A, Tt also implies that d* squares to zero in A*. With these definitions,
A becomes a dg (A*, A)-bimodule.

Example 2.1. Let X be a smooth manifold and £ — X be a flat vector bundle on X.
Consider End(E), the associated endomorphism bundle and set A = Q(X, End(E)),
the de Rham algebra of X with values in End(E). The given flat structure
determines a derivation d on A of square zero; if the bundle E is topologically
trivial then d could be taken to be the ordinary de Rham differential. Then an MC
element of A is an End(E)-valued 1-form x on X satisfying the MC equation (I).
The set MC(A) is the set of all flat connections on the bundle E and .#Z ¢’ (A) is the
set of gauge equivalence classes of such flat connections. The complexes Al and
A* are respectively one-sided and two-sided twisted de Rham complexes of X with
values in End(E).

Example 2.2. Let A := k[x],d(x) = —x%. Clearly x is a non-zero MC element of
A, and it is not gauge equivalent to 0. This algebra is universal in the sense that
an MC element y in a dg algebra B is equivalent to a dg algebra map A — B with
x — y. Note that A is quasi-isomorphic to k, which implies that the MC moduli set
is not quasi-isomorphism invariant.

Recall that the category of (right) A-modules is enriched over dg modules: for
any two right dg A-modules M and N, we have the dg module of homomorphisms
Hom(M, N) from M to N;; it is the graded vector space ED;OZ_OO Hom(M, N[n]) with
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the differential d( f)(m) := d f(m)— (=1 f(dm). Then we have the following result
whose proof is straightforward inspection.

Proposition 2.1. Let x,y € MC(A). The dg module A™>! of right A-module
homomorphisms A1 — AUl has A as its underlying graded space and the
differential d*>"

d™V(a) := d(a) + ya — (1) ax.

The operations of left and right multiplications determine a dg (A”, A*)-bimodule
structure on AW, O

Note that for two right A-modules M and N a map M — N of right A-modules is
precisely a zero-cocycle in Hom(M, N). Then M and N are homotopy equivalent if
there are maps of (right) A-modules f : M — N and g : N — M such that f o g is
cohomologous to 1 € Hom(N, N) and g o f is cohomologous to 1 € Hom(M, M).
The notion of a gauge equivalence of MC elements admits an important weakening
to a homotopy gauge equivalence.

Definition 2.3. Let MCyg(A) be the dg category whose objects are MC elements of
A and for x, y € A the dg module of morphisms Hom(x, y)mc a(A) = Hom(AM, ADY).
The correspondence A — MCgg(A) is a functor from dg algebras to dg categories.

Two MC elements x,y € A are called homotopy gauge equivalent if they are
homotopy equivalent as objects in MCgyg(A). The Maurer Cartan homotopy moduli
set M En(A) is the set of isomorphism classes of objects in HO(MCdg(A)), i.e. the
quotient of MC(A) modulo homotopy gauge equivalences.

Thus, x,y € MC(A) are homotopy gauge equivalent if there exist elements g, 1 € A°
such that

(1) dg+yg —gx=0;
) dh+ xh —hy = 0;
(3) hg is cohomologous to 1 in A¥;
(4) ghis cohomologous to 1 in A”.

Note that if g € A is invertible (i.e. x and y are isomorphic, as opposed to merely
homotopy equivalent in MCyg(A)) then we could take = ¢! and conditions (2),
(3) and (4) above are automatically implied by condition (1). In that case x and y
are gauge equivalent. However, the following example shows that the relation of
homotopy gauge equivalence is strictly weaker than that of gauge equivalence.

Example 2.3. Let A := k(x,y, g, h, 5, 1), the free algebra with two generators x, y in
degree 1, two generators g, /i in degree 0 and two generators s, ¢ in degree -1. The
differential in A is given by the formulae:

d(x) = —22, d@y) = —*,

d(g) = gx—y8. d(h) = hy — xh,
d(s) =—xs+gh—1, d(it) = —yt+ hg— 1.
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It is clear that x,y € MC(A) and that g and % provide maps of right dg A-modules
AP — ADT and ADT — A respectively that are homotopy equivalences with
homotopies given by s and f. As an aside, also note that A is the universal dg
algebra having two homotopy gauge equivalent MC elements in the sense that any
other such dg algebra B receives a unique map from A. Now A, being free, has no
non-scalar invertible elements, and it follows that the MC elements x and y are not
gauge equivalent, although they are homotopy gauge equivalent.

3. TWISTED MODULES AND COHESIVE MODULES

We will now introduce the notion of a twisted module over a dg algebra A.

Definition 3.1. A twisted A-module is a (right) dg A-module M such that M* is
free as an A*-module. A twisted A-module is finitely generated if M* is finitely
generated. Finally, any twisted module that is a homotopy retract of a finitely
generated twisted module is called a perfect twisted module.

We will denote the dg category of twisted A-modules by Tw(A), and its full
subcategories of finitely generated and perfect twisted A-modules by Twg,(A) and
Twperf(A) respectively.

Remark 3.1. If A is a dg ring, then a dg A-module M is sometimes called perfect
if it represents a compact object in the derived category of A. This is not the same
as a perfect twisted A-module, in particular the latter need not represent a compact
object in a triangulated category. Later on, we will also use the notion of a perfect
dg sheaf of modules. In all cases, our terminology will always be clear from the
context and unambiguous.

Remark 3.2. A twisted A-module can be written as (V ® A*, Dy) where V is a
free k-module and Dy is a differential on the free A-module V ® A* compatible
with the A-module structure. This is further equivalent to that of an MC element
x € End(V) ® A: for such an element Dy = 1 ® ds + x gives a differential Dy on
V ® A compatible with that of A and any compatible differential on V ® A must be
of this form. We will often slightly abuse notation and write V®A for (V®A*, Dy).

It is easy to see that Tw(A), Twes(A) and Twper(A) are strongly pre-triangulated
dg categories. Shifts are induced by the shift functor on V and the cone on
f 1 (V®ADy) - (W®A,Dy) is given by the complex (V & W[1]) ® A with
f

. . . [(Dy
differential .
ifferentia ( D[l

The following result shows that the categories Tw(A) and Twper(A) are closed
with respect to taking retracts up to homotopy, i.e. their homotopy categories are
idempotent complete.

Proposition 3.1. Any idempotent morphism in H(Tw(A)) or HO(TWperf(A)) is split.
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Proof. Since H'(Tw(A)) is a triangulated category with direct sums, all idempo-
tents in it split by [8, Proposition 3.2]. The statement about Twpe£(A) follows
directly. O

Remark 3.3. We defined the category Twpef(A) as a certain subcategory of Tw(A).
We see that Tw(A) is pre-triangulated, with HY(Tw(A)) being idempotent complete;
it is thus Morita fibrant, cf. [48| regarding this notion. Moreover, the inclusion of
the category Twyg(A) of finitely generated twisted A-modules into Twper(A) is a
Morita morphism. Thus, Twpe£(A) is a Morita fibrant replacement of Twg,(A) and
could be defined, up to a quasi-equivalence, independently of the category Tw(A).

The notion of a twisted A-module is closely related to that of a cohesive A-module
cf. [6].

Definition 3.2. A right dg A-module M is cohesive if M* is of the form E ® 0 A*
for a graded right A%-module E that is projective, finitely generated in every degree
and bounded. We will denote the dg category of cohesive A-modules by £2,.

The following result shows that any cohesive A-module is, up to a homotopy, a
perfect twisted A-module.

Proposition 3.2. Any cohesive A-module is a retract of a free cohesive A-module.

Proof. The forgetful functor A-Mod — A*-Mod has a left adjoint sending a (right)
A*-module L to the A-module G(L) consisting of formal symbols x+dy for x,y € L
with A-action given by

(x +dy)a = xa + d(ya) — (-1)"yda

and differential d(x + dy) = dx, see e.g. the proof of Theorem 3.6 in [41]]. The unit
map L — G(L) is injective with cokernel isomorphic to L[—1]. In particular, if L is
projective, then G(L)* is isomorphic to L & L[-1].

Let P be a dg A-module and assume that P* is projective. Let L be a (projective)
A*-module such that P* @ L is free. Then P is a retract of F := P® P[-1] ® G(L)
and F* is isomorphic to P* @ P*[-1]@® L& L[-1], which is a free A*-module. Note
that if P* is finitely generated then F can be chosen so that F* is of finite rank.

In particular a cohesive module M is a retract of a module F such that F* is a free
A*-module of finite rank. But then we can write F¥ = F’ ®,0 A* for some graded
A%-module F’ that is bounded and free of finite rank in every degree, i.e. F is a free
cohesive module. O

Under mild assumptions cohesive modules and perfect twisted modules agree.

Lemma 3.3. IfA is concentrated in non-negative degrees and A is flat over A° then
idempotents split in the homotopy category of cohesive modules.
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Proof. We call a bounded complex of finitely generated projective modules over
AV strictly perfect; any dg-module A°-module quasi-isomorphic to a strictly perfect
will be called perfect.

Leth : ' ®p0 A —> E’ ®40 A be a homotopy idempotent. We can construct a
splitting in the homotopy category of all A-modules by the well-known telescope
trick. Writing E = E’ ® 40 A we define a map o, : ®yE — @nE defined by sending
the i-th copy of E to the (i+ 1)-st copy using 4 and to the i-th copy using 1 —#A. Then
the cone of o7, splits £, i.e. there is an equivalence E ~ cone(o,) @ cone(o—p).

By construction cone(o,) is of the form (N ®40 A, Dy) for some graded A°-
module N’. Moreover, inspecting the construction we see that (N’, D?V) is equal to
cone(o), which is the complex obtained by going through the above construction
with (E’, h%) in place of (E,h). To check this note that the underlying complex
of cone(o,) consists of a direct sum of copies of E’ ® A with some degree shifts.
Writing the differential as a matrix each coefficient is given by 1, Dg or . Dividing
out by A=! leaves a direct sum of shifted copies of E’ with differential given by a
matrix of 1, DY and h°, which is exactly cone(o ).

The complex cone(oy) is a quasi-cohesive module in the sense of [6] (i.e. a
cohesive module without the assumption of finite generation) and we assumed that
A is in non-negative degrees and is flat over A°. In this situation Theorem 3.2.7 of
loc. cit. states that cone(o,) is cohesive if cone(o) is perfect.

But as A is in non-negative degrees we can check that 4° is a homotopy idempotent
for (E’, DY) in A°>-Mod. In fact assuming K is a homotopy from 4 to h?* then K°
is a homotopy from A° to (h°)?. Thus cone(cp) is a direct summand of E’ in the
homotopy category. We claim that this implies it is perfect. Following [43] we
say a map is algebraically nuclear if it factors through a strictly perfect complex.
Then a complex is homotopy equivalent to a strictly perfect complex if and only
if the identity is homotopy equivalent to a nuclear map, see [43l Proposition 1.1].
Since the identity of cone(o ) factors through E’ it is algebraically nuclear up to
homotopy. This proves the claim and the lemma. O

Corollary 3.4. If A is concentrated in non-negative degrees and flat over A° then
the dg categories Twpef(A) and Py are quasi-equivalent.

Proof. The inclusion of the dg category of finitely generated twisted modules
J 1 Twge(A) — Py is quasi-fully faithful by construction; moreover it induces, by
Proposition [3.2] and Lemma [3.3] an equivalence on idempotent completions of its
homotopy categories. It follows that J is a Morita morphism and since by Lemma
P4 is Morita fibrant, it could be viewed as a Morita fibrant replacement of
Twig(A). It is, thus, quasi-equivalent to Twpe£(A), cf. Remark@ O

Example 3.1. Let A = Q(X), the de Rham algebra of a smooth manifold X, and
E — X be a flat vector bundle over X. Then I'(X, E), the sections of the bundle E,
form a finitely generated projective module over A? and the given flat connection
form on E determines the structure of a cohesive A- module (and thus, of a perfect
twisted A—module) on I'(X, E) ®40 A.
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The notions described in this and the previous sections make sense when A is a
pseudo-compact dg algebra. The definitions of .#Z 6 (A), # €'1(A), MCqyg(A), TW(A)
and Twper(A) are repeated verbatim. One slight subtlety is that the notions of
twisted module over A as a pseudo-compact dg algebra and as a discrete dg al-
gebra (i.e. forgetting its pseudo-compact structure) are different, in general. This
is because the tensor product of a pseudo-compact algebra and a (discrete) vector
space is understood to be completed. A twisted A-module in this case is the same
as a free A-contramodule.

Remark 3.4. In good cases the homotopy category of twisted modules also agrees
with Positselski’s derived category of the second kind [41]]. It follows from
the proof of Proposition [3.2] that twisted A-modules agree up to homotopy with
Positselski’s projective A-modules A-Mod,,j. Under certain conditions on A¥,
the underlying graded algebra of A, there is an equivalence HO(A-Modpmj) =
D"(A-Mod). See Sections 3.8, 3.9 and 4.4 of [41].

Thus, for any dg algebra or pseudo-compact dg algebra A, we associated several
invariants: the dg categories MCyg(A), TW(A) and Twper£(A) as well as moduli sets
ME(A) and A En(A). These are not quasi-isomorphism invariants of A as, e.g.
Example demonstrates. Later on we will show that they are, nevertheless,
homotopy invariants in two different contexts: analytic and algebraic.

4. SMOOTH HOMOTOPIES FOR DG ALGEBRAS

In this section we will consider dg Arens-Michael (AM) algebras. These are
complete, Hausdorff, locally m-convex topological dg algebras over R. For a
detailed introduction see [40]. A special case of a dg AM algebra is a nuclear
dg algebra, e.g the de Rham algebra Q(X) where X is a smooth manifold or a
simplicial complex.

For our purposes it is enough to know that any dg AM algebra is an inverse limit
of dg Banach algebras. There is a natural notion of smooth homotopy between dg
AM algebras.

Definition 4.1. Let fy,fi : A — B be two continuous maps between dg AM
algebras A and B. A smooth homotopy between fy and fi isamap F : A —
B®QJ0,1] suchthat (1 ®evg)o F = fyand (14 ® evy) o F = fi.

Furthermore, A and B are called smooth homotopy equivalent if there are maps
f:A—> Band g : B — A suchthat f o g and g o f are smooth homotopic to 15
and 14 respectively.

Lemma 4.1. Any AM dg algebra A is smooth homotopy equivalent to A ® Q[0, 1].
Proof. 1t suffices to prove that Q[0, 1] is smooth homotopy equivalent to R. This,

in turn, would follow if we show that the map 1gjo,1] © evp : Q[0,1] — Q[O0,1]
is smooth homotopic to the identity map on Q[0, 1]. This last homotopy can be
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taken to be the diagonal map A : Q[0,1] — Q[0, 1] ® Q[0, 1] induced by the
multiplication [0, 1] X [0, 1] — [0, 1]. O

Proposition 4.2. The relation of smooth homotopy on morphisms between AM
algebras is an equivalence relation.

Proof. Reflexivity is obvious and symmetry follows from the existence of a auto-
diffeomorphism of [0, 1] swapping the endpoints. For transitivity consider a
homotopy F : A - B® Q[0,1] = B® Q[0, 1] such that (13 ® evg) o F = f;
and (1 ® ev%) oF = f,,and anotherone G : A - B Q[0,1] = B® Q[%, 1] such
that (1p ®ev%) oG = f, and (1g®evy) oG = f3, The homotopies F and G together
constitute a map

1 1
H:A— B (Q[O0, 5] XR Q[E, 1])

where the target of the last map could be viewed as B-valued forms on [0, 1] that
are not necessarily smooth at %

To remedy the non-smoothness issue at %, let h;: [O, %] - [0, %] be a smooth
function such that i#(0) = 0, h(%) = % and constant in small neighbourhoods of the
endpoints. The correspondence w — woh determines a homomorphism Q[0, %] -

Qol0, %] where Qg denotes differential forms constant near the endpoints. Note that
this homomorphism preserves the values of the differential forms at the endpoints.
Similarly, there is a homomorphism 4, : Q[%, 1] —» Qo[%, 1] preserving the values
at endpoints. The homomorphisms /4 and £, together constitute a map

1 1 1 1
(Q[0, 51 xg Q7. 1] = (00, 51 Xz o[ 5. 1]

5,
and we denote by % the composition of the latter map with the inclusion
(Q[0, 31 xr Qo[4,1]1 < Q[0, 1]; the maps & thus gets rid of a potential non-
smoothness at % Then

1p®h)oH:A—> B®Q[0,1]

is the desired homotopy between f; and f3. O

There are also obvious notions of a polynomial or real analytic homotopy, both of
which imply smooth homotopy. The relations of polynomial or analytic homotopy
are not necessarily transitive.

As in the discrete setting a MC element x in a dg AM algebra A is an element of
degree 1 such that dx + x> = 0 and we can define the gauge action etc. in the same
way.

Definition 4.2. Let A be a dg AM algebra. Two MC elements xg,x; € A are
called smoothly homotopic if there exists a MC element X € A ® Q[0, 1] such that
(14 ® evp)(X) = xp and (14 ® ev)(X) = x;1.

We have the following result that is a direct consequence of Proposition 4.2}
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Lemma 4.3. The relation of smooth homotopy on MC elements of an AM algebra
is an equivalence relation. O

Let X = x(2) + y(z)dz be a smooth homotopy as above. Then it is equivalent to the
system of equations

2) dx(z) + x(z)* = 0,
3) 9,x(2) = —dy(2) + [¥(2), X(2)].

Theorem 4.4. Tiwo MC elements xo and x| are smoothly homotopic if and only if
they are gauge equivalent via an element of A* in the path component of 1.

Proof. Note first that we can, without loss of generality, assume that A is a Banach
space. Indeed, having a MC element in A := lim A, where A, are Banach spaces,
is the same as having a compatible collection of MC elements in every A, (as MC
elements are just maps from the algebra R[x | dx + x> = 0]). The same is true for
gauge equivalences and also for homotopies since tensoring with the nuclear space
Q[0, 1] commutes with inverse limits by Theorem

The proof is similar to that in 13 Theorem 4.4]. Suppose that two MC elements
X0, X] € A are gauge equivalent; that means that there exists g € A* for which
gxog ! —dg - g7! = x;. By assumption, there exists a