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Abstract

We present some Markovian approaches to prove universality results for some functions on the
symmetric group. Some of those statistics are already studied in [Kammoun, 2018, 2020] but not the
general case. We prove, in particular, that the number of occurrences of a vincular patterns satisfies a
CLT for conjugation invariant random permutations with few cycles and we improve the results already
known for the longest increasing subsequence. The second approach is a suggestion of a generalization
to other random permutations and other sets having a similar structure than the symmetric group.

1 The ping-pong method

Let Sn be the group of permutations of [n]. For σ ∈ Sn, we denote by #(σ) the number of cycle of σ.
Now let

S
0
n := {σ ∈ Sn : #(σ) = 1}.

In this section, we are interested in proving universality for conjugation invariant random permutations
with few cycles. A sequence of random permutations (σn)n≥1 is said to be conjugation invariant if σn is
supported on Sn and

∀n ≥ 1, ∀σ ∈ Sn, σn
d
= σ−1σnσ. (Hinv)

For α ≥ 1 and p ∈ [1,∞], we say that the sequences of random permutations (σn)n≥1 satisfies HP
inv,α

if

(σn)n≥1 is conjugation invariant and
#(σn)

n
1
α

P−−−→
n→∞

0, (HP
inv,α)

and we say that it satisfies HL
p

inv,α if

(σn)n≥1 is conjugation invariant and
#(σn)

n
1
α

L
p

−−−→
n→∞

0. (HLp

inv,α)
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Figure 1: The directed graph GS3

1.1 Rebound on the Ewens zero distribution

Given n ≥ 1 and E ⊂ Sn, we define

next(E) := {ρ ◦ (i, j); ρ ∈ E, #(ρ ◦ (i, j)) = #(ρ)− 1} ∪ {ρ ∈ E;#(ρ) = 1}

and

final(σ) :=

{
next#(σ)−1({σ}) if #(σ) > 1

{σ} otherwise
.

In other words, next(E) is the set of permutations obtained by concatenating, if possible, two cycles of
some σ ∈ E, and final(σ) is the set of permutations obtained by concatenating all the cycles of σ. In
particular,

final(σ) ⊂ S
0
n := {σ ∈ Sn; #(σ) = 1}.

Let GSn
be the directed graph with vertices Sn and edges {(σ, ρ);σ ∈ Sn, ρ ∈ next({σ})}. We represent

GS3 in Figure 1. GSn
can be seen as a directed version of the Cayley graph of Sn generated by transpositions

where the edges are oriented toward the permutations with fewer cycles (the further from the identity
according to the graph distance), for which we added loops at the permutations of S0

n. In this first part
of this section, we will examine the uniform random walk on GSn

.

Let f be a function defined on S∞ := ∪∞
i=1Sn and taking its values in some metric space (F, dF ),

for example Z, R, R
d or C 0(R). It turns out that the uniform distribution on S0

n, also known as the
Ewens distribution1 with parameter 0, is useful to obtain universality results for conjugation invariant
permutations if f does not change too much by merging two cycles. More precisely, we define for 1 ≤ k ≤ n,

ε′n,k(f) := max
σ∈Sn,#(σ)=k

max
ρ∈final(σ)

dF (f(σ), f(ρ)).

We present now our main result.

1See Appendix A for more details.
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Theorem 1. Assume that (σn)n≥1 and (σref,n)n≥1 satisfy (Hinv). Suppose that there exists x ∈ F such
that

f(σref,n)
P−−−→

n→∞
x, (1)

ε′n,#(σref,n)
(f)

P−−−→
n→∞

0 (2)

and that ε′n,#(σn)
(f)

P−−−→
n→∞

0. (3)

Then

f(σn)
P−−−→

n→∞
x. (4)

Moreover, if the assumptions (1)–(3) hold true for the L
p convergence for some p ≥ 1 instead of the

convergence in probability, then so does (4).

When F = R
d, we obtain also the convergence in distribution.

Theorem 2. Assume that F = R
d and that (σn)n≥1 and (σref,n)n≥1 satisfy (Hinv). Suppose that (2) and

(3) hold true and that there exists a random variable X supported on F such that

f(σref,n)
d−−−→

n→∞
X.

Then

f(σn)
d−−−→

n→∞
X. (5)

Let σunif,n and σEw,0,n be uniform random permutations respectively on Sn and S0
n. The idea of the

proof is to compare both f(σn) and f(σref,n) with f(σEw,0,n). In general, the choice σref,n
d
= σunif,n is

interesting since, the convergence in (1) is known for many statistics. Moreover, using Proposition 45, we
have immediately the following result.

Corollary 3. If σref,n
d
= σunif,n, in both theorems 1 and 2, the hypothesis (2) can be replaced by the

existence of κ > 0 such that

max
∣

∣

∣

k
log(n)

−1
∣

∣

∣

<κ

ε′n,k(f)
P−−−→

n→∞
0.

We chose to give a very simple version that can be checked easily for many statistics. For almost sure
convergence, one can obtain similar results after defining properly the spaces. We will not discuss here
this type of convergence. We will give many applications using the following observation.

Remark 4. By the triangle inequality, we have

ε′n,k(f) ≤
k∑

i=2

εn,i(f) ≤ (k − 1)εn(f),

where
εn,k(f) := max

σ∈Sn,#(σ)=k
max

ρ∈next({σ})
dF (f(σ), f(ρ)) and εn(f) := max

1≤k<n
εk,n(f).
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Consequently, if there exists some α ≤ 1 such that

εn(f) = O

(
1

n
1
α

)

then (HP
inv,α) implies (3) and (HL

p

inv,α) implies the equivalent hypothesis in L
p. Moreover, if

σref,n
d
= σunif,n, then Proposition 48 implies (2). We will give some direct applications of this obser-

vation in the next subsection.

1.2 Some applications

In the next corollary, we will give some applications. The first column of Table 1 contains the function
to study. We apologize to the reader because those statistics are not defined yet. One can check the
corresponding result in the fifth column for more details.

Corollary 5. For the functions f the distribution X and the real α in Table 1, if (HP
inv,α) is satisfied,

then

f(σn)
d−−−→

n→∞
X

except for the sixth example where the convergence holds in probability.2 For the first and the forth examples
the convergence holds also in L

p under (HL
p

inv,α). For the fifth example please check the corresponding
theorem for more details about the type of convergence.

Note that:

• We give in the third column the inequality we used to obtain our results. Except for the cases where
we study the RSK image of the permutation, the longest alternating subsequence and the descent
process, the inequality is trivial, but we will prove all the inequalities in the sequel.

• We want to emphasize that these results are just a direct application of theorems 1 and 2. Using
more sophisticated controls of the error, one could obtain larger classes of universality as we will
detail in the sequel.

• For all our examples, the special case of the Ewens distribution satisfies the hypothesis.

1.3 Proof of theorems 1 and 2

Let ρn be a conjugation invariant random permutation. To prove theorems 1 and 2, the idea is to modify
ρn to obtain a conjugation invariant random permutation supported on S0

n. We define the following
Markov operator T associated to the uniform random walk over GSn

. Another way to see it is the
following:3

2In the space of continual diagrams i.e. the set of 1-Lipschitz real functions f such that outside one compact, f(x) =
|x − a|. One can see [Kerov, 1993, Sodin, 2017] for more details for continual diagrams. We will use as distance, dF (f, g) =
supx∈R

|f(x)− g(x)| which is finite since both functions are continuous and outside one compact of R, f − g is constant.
3Slightly different Markov operators have already been studied in [Kammoun, 2018, 2020], we modify a little the two

operators presented in the cited papers to obtain a uniform random walk easy to generalize to other sets. The three
operators coincide when n ≤ 3.
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f(σ) X Error Hypotheses Theorem

LIS(σ)√
n

, LDS(σ)√
n

2 εn ≤ 2√
n

(HP

inv,2)

(HLp

inv,2)
Theorem 8

LISC(σ)√
n

, LDSC(σ)√
n

2 εn ≤ 2√
n

(HP
inv,2) Corollary 13

LIS(σ)−2
√
n

n
1
6

,

LDS(σ)−2
√
n

n
1
6

Tracy-Widom εn ≤ 2

n
1
6

(HP

inv,6) Corollary 10

λi(σ)√
n

2 εn ≤ 4√
n

(HP
inv,2)

(HLp

inv,2)
Proposition 17

(
λi(σ)−2

√
n

n
1
6

)
1≤i≤d

Airy ensemble εn ≤ 4

n
1
6

(HP

inv,6) Theorem 15

s → Lλ(σ)(s
√
2n)√

2n
Ω ε′n,k ≤ 2

√
k−1√
n

(HP
inv,1) Theorem 18

Kj(σ)
nj

1
j!2

εn ≤ 2j
n

(HP
inv,1) Corollary 29

Kj(σ)− nj

(j!)2√
n

N
(
0,

(4j−2
2j−1)−2(2j−1

j )
2

2((2m−1)!)2

)
εn ≤ 2j√

n
(HP

inv,2) Corollary 29

Nexc(σ)
n

1
2 εn ≤ 4

n
(HP

inv,1) Corollary 29
Nexc(σ)−n

2√
n

N (0, 1
12 ) εn ≤ 4√

n
(HP

inv,2) Corollary 29

1D(σ)⊂A Ber(det([k0(j − i)]A)) Proposition 32 (HP
inv,1) Corollary 34

N(τ,X)(σ)− np−q

p!(p−q)!

n
p−q+1

2
N (0, Vτ,X) εn ≤ C√

n
(HP

inv,2) Proposition 31

The results below are fully understood in the conjugation invariant case.
ND(σ)

n
1
2 εn ≤ 4

n
(HP

inv,1) Corollary 29
ND(σ)−n

2√
n

N (0, 1
12 ) εn ≤ 4√

n
(HP

inv,2) Corollary 29
Npeak(σ)

n
1
3 εn ≤ 6

n
(HP

inv,1) Corollary 29
Npeak(σ)−n

2√
n

N (0, 2
45 ) εn ≤ 6√

n
(HP

inv,2) Corollary 29
LAS(σ)

n
2
3 εn ≤ 6

n
(HP

inv,1) Corollary 25
LAS(σ)− 2n

3√
n

N (0, 8
45 ) εn ≤ 6√

n
(HP

inv,2) Corollary 25

Table 1: Some examples
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Id

(1, 2) (2, 3)(1, 3)

(1, 2, 3) (1, 3, 2)

1
31

3

1
3

1
2

1
2

1
2

1
2 1

2

1
2

11

Figure 2: The transition probabilities of T for n = 3

• If the realization σ of ρn has one cycle, σ remains unchanged (T (σ) = σ).

• Otherwise, we choose a couple (i, j) uniformly from the nonempty set

{(i, j) : j /∈ Ci(σ)}

and we take T (σ) = σ ◦ (i, j). Here Ci(σ) is the cycle of σ containing i.

For example, for n = 3, transition probabilities of T are given in Figure 2.

We denote by T k(ρn) the random permutation obtained after applying k times the operator T . It is
the random permutation obtained after k steps of the uniform random walk on GSn

with initial state
ρn. Table 2 sums up the evolution of the random walk if we start from the uniform distribution on S3.
Remark that the condition j /∈ Ci(σ) guarantees that #(σ ◦ (i, j)) = #(σ)− 1 since the cycles containing
i and j are merged and the remaining of cycles are the same for σ and σ ◦ (i, j).

In particular,
#(T i(ρn))

a.s
= max(#(ρn)− i, 1). (6)

The invariant measure of this walk (for conjugation invariant permutations) is trivial.

Lemma 6. If ρn is a conjugation invariant random permutation of Sn then the law of T n−1(ρn)
4 is the

uniform distribution on S0
n i.e.

T n−1(ρn)
d
= σEw,0,n.

4After all, a drunk and lost man who is driving on a two-way road (the Cayley graph of Sn) needs n log(n) steps to be
close to his destination and will never attend it but if he drives in a one-way road, he needs at most n step to be sure to
arrive to destination. In both cases, it is dangerous for a drunk man to drive.
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σunif,3 T (σunif,3) T 2(σunif,3)

Id 1/6 0 0

(1, 2) 1/6 1/18 0

(1, 3) 1/6 1/18 0

(2, 3) 1/6 1/18 0

(1, 2, 3) 1/6 5/12 1/2

(1, 3, 2) 1/6 5/12 1/2

Table 2: Transitions for the σunif,3

Proof. First, by construction, if ρn is conjugation invariant then T (ρn) is also conjugation invariant.
Indeed, one can see that T (ρn) is conjugation invariant since the construction depends only on the cycle
structure of ρn and all the integers between 1 and n play a symmetric role. By iteration, T n−1(ρn) is
conjugation invariant. Moreover, using (6),

#(T n−1 (σn))
a.s
= 1. (7)

Knowing that all the elements of S0
n belong to the same conjugacy class, they are equally distributed and

Lemme 6 follows from (7).

We now prove theorems 1 and 2.

Proof of theorems 1 and 2. Equality (6) implies that

T n−1(ρn)
a.s
= T#(ρn)−1(ρn).

Therefore, almost surely,

dF (f(T
n−1(ρn)), f(ρn)) = dF (f(T

#(ρn)−1(ρn)), f(ρn)) ≤ ε′n,#(ρn)
.

Thus, if ε′
n,#(ρn)

P−−−→
n→∞

0, then for any ε > 0,

P
(
dF
(
f(T n−1(ρn)), f(ρn)

)
> ε
)
−−−→
n→∞

0. (8)

According to Lemma 6, T n−1(ρn) does not depend on the law of ρn. By choosing at first ρn = σref,n, (2)
then yields

f(σEw,0,n)
P−−−→

n→∞
x.

By choosing at a second step ρn = σn, we obtain (4) for any σn satisfying the hypothesis of Theorem 1.
One can prove Theorem 2 using the same argument.

2 Proof of Corollary 5

2.1 First application: Longest Increasing Subsequence

Given σ ∈ Sn, a subsequence (σ(i1), . . . , σ(ik)) is an increasing (resp. decreasing) subsequence of σ of
length k if i1 < · · · < ik and σ(i1) < · · · < σ(ik) (resp. σ(i1) > · · · > σ(ik)). We denote by LIS(σ) (resp.
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LDS(σ)) the length of the longest increasing (resp. decreasing) subsequence of σ5. For example,

if σ =

(
1 2 3 4 5
5 3 2 1 4

)
, LIS(σ) = 2 and LDS(σ) = 4.

The study of the limiting behavior of LIS(σunif,n), where σunif,n is a uniform random permutation on Sn,
is known as the Ulam’s problem (or the Ulam-Hammersley problem): Ulam [1961] conjectured that the
limit as n goes to infinity of

E(LIS(σunif,n))√
n

exists. Using a subadditivity argument, Hammersley [1972] proved this conjecture. He also proved that
this convergence holds in probability. Vershik and Kerov [1977] and Logan and Shepp [1977] proved that
this limit is equal to 2. An alternative proof is given by Aldous and Diaconis [1995]. The asymptotic
fluctuations were studied by Baik, Deift and Johansson. They proved the following result:

Theorem 7. [Baik, Deift, and Johansson, 1999] For all s ∈ R,

P

(
LIS(σunif,n)− 2

√
n

n
1
6

≤ s

)
−−−→
n→∞

F2(s),

where F2 is the cumulative distribution function (CDF) of the GUE Tracy-Widom distribution.

For historical details, full proofs and applications, we strongly recommend [Romik, 2015]. Apart
from the uniform case, Mueller and Starr [2013] studied the longest increasing subsequence for Mallows’
distribution. The case of random involutions is studied by Baik and Rains [2001] who showed that the
limiting distribution depends on the number of fixed points and in some regimes, the GOE/GSE Tracy-
Widom distributions appear. They also showed the appearance of a family of probability distributions
that interpolate between the GOE and the GSE Tracy-Widom distribution. Mueller and Starr showed
that for Mallows’ distribution, there is a phase transition between the Gaussian and the Tracy-Widom
regimes. In this section, we prove universality results for conjugation invariant random permutations.

Theorem 8. Under (HP

inv,2),

LIS(σn)√
n

P−−−→
n→∞

2 and
LDS(σn)√

n

P−−−→
n→∞

2.

Moreover, for any p ∈ [1,∞), under (HLp

inv,2),

LIS(σn)√
n

L
p

−−−→
n→∞

2 and
LDS(σn)√

n

L
p

−−−→
n→∞

2.

The convergence in probability is stated without proof in [Kammoun, 2018] as it is similar to the proof
of [Kammoun, 2018, Theorem 1.2]. For the fluctuations, we have the following result.

Theorem 9. Assume that (σn)n≥1 is conjugation invariant and

1

n
1
6

min
1≤i≤n






i∑

j=1

#j(σn)


+

√
n

i

n∑

j=i+1

#j(σn)


 P−−−→

n→∞
0. (9)

5There is a language abuse here: a longest increasing subsequence may not be unique but its length is always defined.
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Then for all s ∈ R,

P

(
LIS(σn)− 2

√
n

n
1
6

≤ s

)
−−−→
n→∞

F2(s) andP

(
LDS(σn)− 2

√
n

n
1
6

≤ s

)
−−−→
n→∞

F2(s). (TW)

Here, #j(σ) is the number of cycles of σ of length j.

The idea of the proof we give in Subsection 3.3 is to construct a coupling between any distribution
satisfying these hypothesises and the uniform distribution in order to use Theorem 7 to obtain first the
lower bound then the upper bound. This theorem generalizes the following result.

Corollary 10. [Kammoun, 2018, Theorem 1.2] If (HP
inv,6) is satisfied then (TW) holds.

The key argument of our proofs is the following lemma:

Lemma 11. For any permutation σ and for any transposition τ ,

|LIS(σ ◦ τ)− LIS(σ)| ≤ 2, |LDS(σ ◦ τ)− LDS(σ)| ≤ 2.

Proof. Let σ be a permutation. By definition of LIS(σ), there exists i1 < i2 < · · · < iLIS(σ) such that
σ(i1) < · · · < σ(iLIS(σ)). Let τ = (j, k) be a transposition and i′1, i

′
2, . . . , i

′
m be the same sequence as

i1, i2, . . . , iLIS(σ) after removing j and k if needed. We have σ(i′1) < · · · < σ(i′m). In particular, LIS(σ)−2 ≤
m ≤ LIS(σ). Knowing that ∀i /∈ {j, k}, σ ◦ τ(i) = σ(i), then

σ ◦ τ(i′1) < · · · < σ ◦ τ(i′m).

Therefore,

LIS(σ)− LIS(σ ◦ τ) ≤ 2. (10)

We obtain the second inequality by replacing σ by σ ◦ τ in (10). For LDS(σ) the proof is similar.

Proof of Theorem 8 and Corollary 10 . The main functions we want to study are

fLIS1(σ) :=
LIS(σ)√

n
and fLIS2(σ) :=

LIS(σ)− 2
√
n

n
1
6

.

Using Lemma 11, we have for all n ≥ 3,

εn(fLIS1) =
2√
n

and εn(fLIS2) =
2

n
1
6

,

and one can conclude using theorems 1 and 2 with σref,n = σunif,n since the uniform case is already
studied. Indeed, one can see [Vershik and Kerov, 1977, Logan and Shepp, 1977] for the convergence of
fLIS1 in probability, [Baik, Deift, and Suidan, 2016] for the convergence in L

p of fLIS1 and [Baik et al.,
1999] for the convergence of fLIS2 in probability. For the LDS(σ), the proof is similar.

A similar application is the length of the longest increasing (resp. decreasing) circular subsequence.

Definition 12. Given σ ∈ S∞, a subsequence is said to be increasing (resp. decreasing) circular if it is
increasing (resp. decreasing) up to a circular permutation. One can see [Albert et al., 2007] for rigorous
definition and more details.

We denote by LICS(σ) (resp. LDCS(σ)) the length of the longest increasing (resp. decreasing) circular
subsequence.

9



Corollary 13. If (HP
inv,2) is satisfied then

LICS(σn)√
n

P−−−→
n→∞

2 and
LDCS(σn)√

n

P−−−→
n→∞

2.

Proof. The uniform case is proved in [Albert et al., 2007, Theorem 1] for the LICS and the case of the
LDCS can be obtained by composition by the permutation i 7→ n − i + 1. Moreover, using the same
argument as for the LIS in Lemma 11, we have

|LICS(σ ◦ τ)− LICS(σ)| ≤ 2 and |LDCS(σ ◦ τ)− LDCS(σ)| ≤ 2,

which concludes the proof using Theorem 1.

We will give now a generalization for the universality for the LCS. Given σ ∈ Sn, let (λi(σ))i≥1 and
(λ′

i(σ))i≥1 be respectively the shape of image of σ by the RSK correspondence and its transpose. One way
to define it is the following. Let

I1(σ) : = {s ⊂ {1, 2, . . . , n}; ∀i, j ∈ s, (i− j)(σ(i) − σ(j)) ≥ 0},
D1(σ) : = {s ⊂ {1, 2, . . . , n}; ∀i, j ∈ s, (i− j)(σ(i) − σ(j)) ≤ 0},

Ik+1(σ) : = {s ∪ s′, s ∈ Ik, s
′ ∈ I1},

Dk+1(σ) : = {s ∪ s′, s ∈ Dk, s
′ ∈ D1}.

For example, for

σex,3 :=

(
1 2 3
2 3 1

)
, I1(σex,3) = {∅, {1}, {2}, {3}, {1, 2}}

and
I2(σex,3) = D2(σex,3) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

The RSK image is defined as follows. For any permutation σ ∈ Sn,

max
s∈Ii(σ)

card(s) =

i∑

k=1

λk(σ), max
s∈Di(σ)

card(s) =

i∑

k=1

λ′
k(σ). (11)

In particular,

max
s∈I1(σ)

card(s) = λ1(σ) = LIS(σ), max
s∈D1(σ)

card(s) = λ′
1(σ) = LDS(σ).

We strongly recommend [Sagan, 2001] equivalent constructions.
A more general version of the result of Theorem 7 is the following.

Theorem 14. [Borodin et al., 2000, Theorem 5][Johansson, 2001, Theorem 1.4] For all real numbers
s1, s2, . . . , sk,

lim
n→∞

P

(
∀i ≤ k,

λi(σunif,n)− 2
√
n

n
1
6

≤ si

)
= F2,k(s1, s2, . . . , sk).

For the permutations satisfying the same assumptions as in Theorem 9, we have the same asymptotic
as in the uniform setting at the edge.
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Theorem 15. Assume that (σn)n≥1 is conjugation invariant and

1

n
1
6

min
1≤i≤n






i∑

j=1

#j(σn)


+

√
n

i

n∑

j=i+1

#j(σn)


 P−−−→

n→∞
0. (12)

Then for all positive integer k, for all real numbers s1, s2, . . . , sk,

lim
n→∞

P

(
∀i ≤ k,

λi(σn)− 2
√
n

n
1
6

≤ si

)
= lim

n→∞
P

(
∀i ≤ k,

λ′
i(σn)− 2

√
n

n
1
6

≤ si

)

= F2,k(s1, s2, . . . , sk). (Ai)

Before proving this result, we recall first an already known weaker version.

Proposition 16. [Kammoun, 2018] If (HP
inv,6) is satisfied then (Ai) holds true.

Under weaker assumptions, one can still prove the first order convergence.

Proposition 17. If (HP
inv,2) is satisfied then for any i ≥ 1

λi(σn)√
n

P−−−→
n→∞

2 and
λ′
i(σn)√
n

P−−−→
n→∞

2.

Moreover, for any p ∈ [1,∞), under (HLp

inv,2),

λi(σn)√
n

L
p

−−−→
n→∞

2 and
λ′
i(σn)√
n

L
p

−−−→
n→∞

2.

Corollary 10 (resp. Theorem 8) is a direct application of Proposition 16 (resp. Proposition 17) for
k = 1 (resp. i = 1). We will prove first in the next subsection propositions 16 and 17 as they are direct
applications of Theorem 1.
The typical shape of (λi(σunif,n))i≥1 seen as young diagram was studied separately by Logan and Shepp
[1977] and Vershik and Kerov [1977]. Stronger results are proved by Vershik and Kerov [1985]. In 1993,
Kerov studied the limiting fluctuations but did not publish his results. See [Ivanov and Olshanski, 2002]
for further details. Let Lλ(σ) be the height function of λ(σ) = (λi(σ))i≥1 rotated by 5π

4 and extended
by the function x 7→ |x| to obtain a function defined on R. For example, if λ(σ) = (7, 5, 2, 1, 1, 0) the
associated function Lλ(σ) is represented by Figure 3. A direct application of Theorem 1 is the following.

Theorem 18. [Kammoun, 2018] Under (HP
inv,1),

sup
s∈R

∣∣∣∣
1√
2n

Lλ(σn)

(
s
√
2n
)
−Ω(s)

∣∣∣∣
P−−−→

n→∞
0, (VKLS)

where,

Ω(s) :=

{
2
π
(s arcsin(s) +

√
1− s2) if |s| < 1

|s| if |s| ≥ 1
.

11
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Figure 3: L(7,5,2,1,1,0)

Proof. We wan to apply Theorem 1. Let now F be the set of continual diagrams i.e. the set of 1-Lipschitz
real functions g from R to R+ such that ∃a, b > 0 s.t. ∀x /∈ [−b, b], g(x) = |x− a|. For g, h ∈ F , we denote

by dF (g, h) = supR |h− g|. For σ ∈ Sn, f(σ) is the function s → Lλ(σ)(s
√
2n)√

2n
. So that f is a function from

S∞ taking values in the metric space (F, dF ). If we choose σref,n = σunif,n and x to be the function Ω,
the convergence

f(σref,n)
P−−−→

n→∞
x

is proven by Logan and Shepp [1977] and Vershik and Kerov [1977]. Using [Kammoun, 2018, Lemma 3.7.],
for any 1 ≤ k ≤ n,

ε′n,k(f) ≤ 2

√
k − 1

n
. (13)

So that Theorem 1 gives the conclusion.

2.2 Proof of propositions 16 and 17

Lemma 19. For any permutation σ and any transposition τ ,
∣∣∣∣∣

i∑

k=1

λk(σ)− λk (σ ◦ τ)
∣∣∣∣∣ ≤ 2 and

∣∣∣∣∣

i∑

k=1

λ′
k(σ)− λ′

k (σ ◦ τ)
∣∣∣∣∣ ≤ 2. (14)

Moreover,
|λi(σ)− λi (σ ◦ τ)| ≤ 4 and

∣∣λ′
i(σ)− λ′

i (σ ◦ τ)
∣∣ ≤ 4. (15)

Proof. Let σ be a permutation and τ = (l,m) be a transposition. We have then for all integer i,

{s \ {l,m}, s ∈ Ii(σ)} ⊂ Ii(σ ◦ τ)

12



and similarly
{s \ {l,m}, s ∈ Di(σ)} ⊂ Di(σ ◦ τ).

Consequently, using (11),

i∑

k=1

λk(σ)− λk(σ ◦ τ) ≥ −2,
i∑

k=1

λ′
k(σ)− λ′

k(σ ◦ τ) ≥ −2.

Using the same argument with σ ◦ τ instead of σ, (14) follows. Moreover, since

λi+1 =
i+1∑

k=1

λk −
i∑

k=1

λk, λ′
i+1 =

i+1∑

k=1

λ′
k −

i∑

k=1

λ′
k,

the triangle inequality yields (15).

Using (15), Propositions 16 and 17 are direct applications of Theorem 1.

2.3 Second application: Longest Alternating Subsequence

A more tricky application is the length of the Longest Alternating Subsequence. This is a special case
of a large class of statistics we will present in the next subsection.

Definition 20. Given σ ∈ Sn, (σ(i1), σ(i2), . . . , σn(ik)) is said to be an alternating subsequence of σ of
length k if i1 < i2 < · · · < ik and σ(i1) > σ(i2) < σ(i3) > . . . σ(ik). We denote by LAS(σ) the length of
the longest alternating subsequence of σ.

The uniform case is already studied in [Stanley, 2010, Romik, 2011]. We have the two following results.

Proposition 21. [Stanley, 2010, Page 17] For n ≥ 2,

E(LAS(σunif,n)) =
2n

3
+

1

6

and for n ≥ 4,

Var(LAS(σunif,n)) =
8n

45
− 13

180
.

Proposition 22. [Romik, 2011, Proposition 4]

LAS(σunif,n)− 2
3n√

n

d−−−→
n→∞

N
(
0,

8

45

)
.

Here, N (m,σ2) is the normal distribution. We also make use of the following result.

Proposition 23. [Romik, 2011, Corollary 2]

LAS(σ) = 1 +

n−1∑

i=1

Mk(σ),

where
M1(σ) = 1σ(1)>σ(2)

and for 1 < k < n,
Mk(σ) = 1σ(k−1)>σ(k)<σ(k+1) + 1σ(k−1)<σ(k)>σ(k+1).

13



This yields the following.

Lemma 24. For any σ ∈ Sn and 1 ≤ i, j ≤ n,

|LAS(σ)− LAS(σ ◦ (i, j))| ≤ 6.

Proof. Let 1 ≤ k < n. If min(|k − i|, |k − j|) ≥ 2, then Mk(σ) = Mk(σ ◦ (i, j)) and consequently,

|LAS(σ)− LAS(σ ◦ (i, j))| =

∣∣∣∣∣∣

∑

k∈({i−1,i,i+1}∪{j−1,j,j+1})∩{1,...,n−1}
Mk(σ) −Mk(σ ◦ (i, j))

∣∣∣∣∣∣

≤
∑

k∈({i−1,i,i+1}∪{j−1,j,j+1})∩{1,...,n−1}
|Mk(σ)−Mk(σ ◦ (i, j))|

≤
∑

k∈({i−1,i,i+1}∪{j−1,j,j+1})∩{1,...,n−1}
1

= card(({i − 1, i, i + 1} ∪ {j − 1, j, j + 1}) ∩ {1, . . . , n− 1})
≤ 6.

Consequently, we have the next corollary.

Corollary 25. • Under (HP
inv,1), we have

LAS(σn)

n

P−−−→
n→∞

2

3
(16)

and

E(LAS(σn)) =
2

3
n+ o(n). (17)

• Under (HP

inv,2), we have

LAS(σn)− 2
3n√

n

d−−−→
n→∞

N
(
0,

8

45

)
. (18)

Proof of Corollary 25. Let fLAS1 and fLAS2 be the two functions defined on S∞ by:
For σ ∈ Sn,

fLAS1(σ) :=
LAS(σ)

n
and fLAS2(σ) :=

LAS(σ) − 2
3n√

n
.

By Lemma 24, we obtain εn(fLAS1) ≤ 6
n

and εn(fLAS2) ≤ 6√
n
. Thus (16) and (18) follow from theorems 1

and 2. Moreover, since LAS(σn)
n

∈ (0, 1], (17) is a direct consequence of (16).
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2.4 Local statistics

Definition 26. Given k ≥ 1, we call a function f defined on S∞ a local function of type k, and we write
f ∈ Lock, if there exist a positive integer m ≥ 1, a Boolean function g defined on N

(m+1)k such that, for
any n ≥ k +m− 1 and any σ ∈ Sn,

f(σ) =
∑

1≤i1<···<ik≤n

g(i1, . . . , ik, σ(i1), σ(i1 − 1), . . . , σ(i1 −m+ 1), σ(i2), . . . , σ(ik −m+ 1)).

We used the convention σ(i) = 0 when i ≤ 0.

Here are some examples of local statistics.

• The number of fixed points:
By choosing k = m = 1 and g(x, y) = 1x=y, we obtain that tr ∈ Loc1.

• #k ∈ Lock and σ 7→ tr(σk) ∈ Lock.

• The number of j-exceedances6:
For j ∈ N fixed, we define for σ ∈ Sn and, we define

Nexcj(σ) := card({i, σi ≥ i+ j}).

We choose again k = m = 1 and g(x, y) = 1x+j≤y and we obtain again Nexcj ∈ Loc1.

• Longest alternating subsequence (LAS):
LAS ∈ Loc1. This is a direct application of Proposition 23. Here, k = 1,m = 3 and

g(i, y1, y2, y3) =





0 if i = 0

1 if i = 1

1y2>y1 if i = 2

1l<k>j + 1y3>y2<y1 if i > 2

.

• Number of peaks:
For σ ∈ Sn, we define

Npeak(σ) := card({1 < i < n, σ(i− 1) < σ(i) > σ(i+ 1)}).

We choose again k = 1,m = 3 and g(x, y1, y2, y3) = 1x≥31y1<y2>y3 and we obtain again Npeak ∈
Loc1.

• Number of j-descents:
For j ≥ 1, σ ∈ Sn, we define

NDj
(σ) := card{1 ≤ i ≤ n− 1, σ(i + 1) + j ≤ σ(i)}.

We choose k = 1,m = 2 and g(x, y1, y2) = 1x≥21y2≥y1+j and we obtain again NDj
∈ Loc1.

When j = 1, the 1−descents are known as the descents. We also set

ND(σ) := card{1 ≤ i ≤ n− 1, σ(i + 1) < σ(i)} = ND1(σ).
6In the literature, j-exceedances is sometimes defined by the condition σi ≥ i+ j and othertimes by σi = i+ j. In both

cases, the number j-exceedances is a local statistic but only the first case is in interest for our purpose.
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• Number of inversions and m−clicks of the permutation graph:

Definition 27. Let σ ∈ Sn. Let G(σ) = (VG(σ), EG(σ))
7 be the permutation graph of σ defined by

VG(σ) = {1, . . . , n} and EG(σ) = {(i, j) ∈ {1, 2, . . . , n}; (σ(i) − σ(j))(i − j) < 0}.

For example, EG(σ) = ∅ if and only if σ = Idn and for the permutation σ : i 7→ n − i + 1, G(σ) is
the complete graph with n vertices.

Given j ≥ 2, we denote by

Kj(σ) := card({(i1, i2, . . . , ij); 1 ≤ i1 < · · · < ij ≤ n, σ(i1) > · · · > σ(ij)})

the number of j-clicks of G(σ)8. In particular, K2(σ) is the number of inversions of σ. One can
easily check that with Kj ∈ Locj . Here,

g(x1, . . . , xj , y1, . . . , yj) = 1y1>y2>···>yj .

• Let dk(σ) := card({i; (i, k) ∈ EG(σ)}) be the degree of the vertex k in G(σ). We have dk(σ) ∈ Loc2.

Proposition 28. Given k ≥ 1, f ∈ Lock, a random real variable X, k − 1 < γ ≤ k and (an)n≥0 ∈ R
N

such that

f(σunif,n)− an
nγ

d−−−→
n→∞

X,

if (HP

inv, 1
γ−k+1

) holds then

f(σn)− an
nγ

d−−−→
n→∞

X.

Proof. By counting the number of possible choices of 1 ≤ i1 < i2, · · · < ik ≤ n such that {i, j}∩{i1, . . . , i1−
m + 1, i2, . . . , ik −m + 1} 6= ∅, it is easy to see that for any permutation σ ∈ Sn and any transposition
(i, j) we have

|f(σ(i, j)) − f(σ)| ≤ 2km(n − 1)!

(k − 1)!(n − k)!
≤ 2kmnk−1.

Consequently for h = f−an
nγ , εn(h) ≤ 2knk−γ−1m and one can conclude using Remark 4.

One can then easily apply this result combined with the discussion in the previous subsection to our local
statistics.

7Fun fact 1: the application σ 7→ G(σ) is injective.
8This a special case of the number of occurrences of a pattern in a permutation. In general, the number of occurrences of

any pattern is a local statistic.

16



Corollary 29. Under (HP
inv,1), we have for any j ≥ 2,

NDj
(σn)

n

L1

−−−→
n→∞

1

2
,

ND(σn)

n

L
1

−−−→
n→∞

1

2
,

Kj(σn)

nm

L
1

−−−→
n→∞

1

(m!)2
,

Nexcj(σn)

n

L1

−−−→
n→∞

1

2
,

Npeak(σn)

n

L
1

−−−→
n→∞

1

3
.

Moreover, under (HP
inv,2), we have for any j ≥ 2,

NDj
(σn)− n

2√
n

d−−−→
n→∞

N
(
0,

1

12

)
,

ND(σn)− n
2√

n

d−−−→
n→∞

N
(
0,

1

12

)
,

Kj(σn)− nj

(j!)2

nj− 1
2

d−−−→
n→∞

N (0, vj),

Nexcj(σn)− n
2√

n

d−−−→
n→∞

N
(
0,

1

12

)
,

Npeak(σn)− n
2√

n

d−−−→
n→∞

N
(
0,

2

45

)
,

where

vj =

(4j−2
2j−1

)
− 2
(2j−1

j

)2

2((2m− 1)!)2
.

The uniform case for ND, Npeak,Kj and Nexc1 has already been studied. One can find a proof re-
spectively in [Kim and Lee, 2020], [Fulman et al., 2019], [Gürerk et al., 2019] and [Féray, 2013]. For the
conjugation invariant case, as we explained before, ND and Npeak are fully understood but, to the best
knowledge of the author, it is not the case for Kj and Nexc1. For Nexc1, the special case of the Ewens
distribution is studied in [Féray, 2013]. Moreover, the results for NDj

and Nexcj are direct consequences
of respectively ND and Nexc1 since for any conjugation invariant random permutation σn,

0 ≤ E(ND(σn)−NDj
(σn)) =

(j − 1)(n − j − 1)(1 − P(σn(1) = 1))

n− 1
≤ j − 1

and
0 ≤ E(Nexc1(σn)−Nexcj(σn)) ≤ j − 1.

2.5 Number of occurrences of a vincular permutation pattern

Vincular Patterns also known as dashed patterns are introduces by Babson and Steingrímsson [2000]. We
use the same definition as in [Féray, 2013].
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Definition 30. A vincular pattern of size p is a couple (τ,X) such that τ ∈ Sp and X ⊂ [p− 1]. Given
σ ∈ S∞, an occurrence of (τ,X) is a list i1 < · · · < ip such that

• ix+1 = ix + 1 for any x ∈ X.

• (σ(i1), . . . , σ(ip)) is in the same relative order as (τ(i1), . . . , τ(ip)).

We denote by N(τ,X)(σ) the number of occurrences of (τ,X) in σ.

When X = ∅, (τ,X) is said to be a classic pattern. Here is some examples of vincular patterns:

• N(21,∅) = Ninv

• N(21,{1}) = ND

• N(j...21,∅) = Kj

• N(132,{1,2}) +N(231,{1,2}) = Npeak.

Remark that for any (τ,X), N(τ,X) ∈ Locp ∩ Locp−card(X).
For the uniform case, Bóna [2010], Janson, Luczak, and Rucinski [2011] and Hofer [2017] proved respec-
tively a CLT for monotone, classic and vincular patterns. Féray [2013] gives a generalization for the Ewens
distribution. In particular, Hofer [2017] proved that for any τ ∈ Sp and any X ⊂ [p− 1],

N(τ,X)(σunif,n)− np−q

p!(p−q)!

np−q− 1
2

d−−−→
n→∞

N (0, Vτ,X).

Here, q = card(X) and Vτ,X > 0. Using Proposition 28, we have immediately the following.

Proposition 31. Under (HP
inv,2), for any τ ∈ Sp and any X ⊂ [p− 1]

N(τ,X)(σn)− np−q

p!(p−q)!

np−q− 1
2

d−−−→
n→∞

N (0, Vτ,X ).

Here, q = card(X) and Vτ,X > 0.

3 Further discussion and improved bounds

3.1 Universality for L̃oc
We denote by L̃oc the set of local functions f of any type associated with a Boolean function g such that

card({i ∈ N
∗; max

I∈Nk−1
max
J∈Nmk

g(I, i, J) = 1}) < ∞. (19)

For this class, it is simple to obtain the convergence of the expectation. It can be seen as a macroscopic
universality result.
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Let A ⊂ N
∗ be finite, n > max(A) and (σn)n≥1 satisfying (Hinv). Using again the random walk

associated to T and seeing that

P(∃i ∈ {i1 − i2; i1 ∈ A, 0 ≤ i2 < m− 1}, (T n−1(σn))(i) 6= σn(i)) ≤
2#(σn)card(A)m

n
,

we obtain the following.

Proposition 32. Given f ∈ L̃oc and assuming that (σn)n≥1 and (σref,n)n≥1 satisfy (HP

inv,1) we have

E(f(σn))− E(f(σref,n)) −−−→
n→∞

0.

Moreover, if f(σref,n) converges in distribution then f(σn) does also converge to the same limit.

We give now an application: Let n be a positive integer and σ ∈ Sn, we define

D(σ) := {i ∈ {1, . . . , n− 1}; σ(i+ 1) < σ(i)}. (20)

When σ is random, D(σ) is known as a descent process.

Given A ⊂ N
∗ finite, if we introduce

DA(σ) := 1A⊂D(σ), (21)

then DA ∈ Loc|A| ∩ L̃oc. Here,

g(x1, x2, . . . , x|A|, y1, y
′
1, y2, . . . , y|A|, y

′
|A|) = 1A={xi−1,1≤i≤|A|}

|A|∏

i=1

1yi<y′i
.

We further investigate the descent process. First, the descent process is well understood in the uniform
case.

Theorem 33. [Borodin et al., 2010, Theorem 5.1] For any positive integer n and any A ⊂ {1, 2, . . . , n − 1},

P(A ⊂ D(σunif,n)) = det([k0(j − i)]i,j∈A),

where,

∑

i∈Z
k0(i)z

i =
1

1− ez
.

We say that the descent process is determinantal with kernel K0(i, j) := k0(j − i).

In the non-uniform setting, the descent process is already studied for the Mallows law with Kendall
tau metric: it is also determinantal with different kernels, see [Borodin et al., 2010, Proposition 5.2]. We
showed in [Kammoun, 2018] that for a large class of random permutations, the limiting descent process is
determinantal with the same kernel as the uniform setting. We will detail a weaker result than [Kammoun,
2018].
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Corollary 34. Under (HP
inv,1), for any finite set A ⊂ N

∗,

lim
n→∞

P(A ⊂ D(σn)) = det([k0(j − i)]i,j∈A). (DPP)

Proof. Just apply Proposition 32 for the statistic DA defined in (21).

The same argument can be applied for other local statistics but not necessarily in L̃oc. For example,
we have similar results for the degree of vertices of the permutation graph.

Proposition 35. Under (HP

inv,1),

dk(σn)

n

P−−−→
n→∞

1

2
,

dn
2
(σn)

n

P−−−→
n→∞

1

2
,

dn(σn)

n

P−−−→
n→∞

1

2
.

Moreover, under (HP

inv,2),

dn
2
(σn)− n

2

2
√
n

d−−−→
n→∞

N (U, 1− U),
dn(σn)− n

2√
n

d−−−→
n→∞

N (0, 6),
dk(σn)− n

2√
n

d−−−→
n→∞

N (0, 6),

where U is a uniform random variable on [0, 1].

Note that dk is a local statistic for fixed k but it is not the case for dn. The uniform case is already studied
by Gürerk et al. [2019]. The problem for dn is that for any 2 < k < n, εn(dn) = n− 1 since dn(Idn) = 0
and dn((n, 1)) = n− 1 and thus we cannot apply directly our previous approach. The idea of the proof is
the following. If we condition on the event

En = {T 1, T 2, . . . , T n do not change σn(n)},

then dn changes at most by 2 every time we apply T and one concludes easily since

P(En) ≥ 1− 2
E(#(σn))

n
.

3.2 A lower bound for fluctuations

For some statistics, one can obtain a better lower bound by using a different way to go from σEw,0,n to
σn. Unlike the previous examples, the control of the error may depend on the statistic. Our first example is
the longest increasing subsequence. We give a lower bound for the fluctuations for a conjugation invariant
random permutation. Using this inverse walk one can obtain the following results.

Proposition 36. If (HP

inv, 3
2

) is satisfied, then for any k ≥ 1, for any s1, . . . , sk ∈ R,

lim sup
n→∞

P

(
∀i ≤ k′,

λi(σn)− 2
√
n

n
1
6

≤ si

)
≤ F2(s1, s2, . . . , sk).

In particular,

lim sup
n→∞

P

(
LIS(σn)− 2

√
n

n
1
6

≤ s

)
≤ F2(s).
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Figure 4: The transition probabilities of Tσunif,3

To do so, we define a new Markov operator. Let σ ∈ S0
n, λ ∈ Yn and i ∈ {1, . . . , n}9. We define

Ti,λ(σ) :=
(
σλ1+1(i), . . . , σλ1+λ2(i)

)
. . .

(
σ
∑ℓ(λ)−1

j=1 λj (i), . . . , σn(i)

)
. Now let σn be a conjugation invariant

random permutation and let Tσn be the Markov operator defined on S0
n as follows. Starting from σ ∈

S0
n, choose i uniformly in {1, . . . , n} and λ randomly according to the distribution of λ̂(σn)

10 and then
Tσn(σ) returns Ti,λ(σ).

11 For example, the transition probabilities of Tσunif,3
. are shown in Figure 4. By

construction, λ̂(Tσn(σ)) = λ and thus, for any cyclic permutation σ ∈ S0
n,

λ̂(Tσn(σ))
d
= λ̂(σn).

This yields,

λ̂(Tσn(σEw,0,n))
d
= λ̂(σn).

Finally, since the construction depends only on the cycle structure, Tσn(σEw,0,n) is conjugation invariant
and

Tσn(σEw,0,n)
d
= σn. (22)

Our main argument is the following lemma.

9We recall that S
0
n is the set of cyclic permutations.

10λ̂(σ) is the cycle structure of σ.
11Here we define a different Markov operator for every distribution.
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Lemma 37. For any permutation ρ ∈ S0
n, for any conjugation invariant random permutation σn, for any

positive integer k, almost surely

E



(

k∑

i=1

λj(Tσn(ρ))− λj(ρ)

)

−

∣∣∣∣∣∣
#(Tσn(ρ))


 ≤ #(Tσn(ρ))

n

k∑

j=1

λi(ρ)

d
=

#(σn)

n

k∑

i=1

λi(ρ).

Proof. Let i1 < i2 < · · · < i∑k
i=1 λi(ρ)

such that
{
i1, i2, · · · < i∑k

i=1 λi(ρ)

}
⊂ Ik(ρ). We have then for any

permutation ρ′, {
i1, i2, · · · < i∑k

i=1 λi(ρ)

}
∩ {i, ρ′(i) = ρ(i)} ⊂ Ik(ρ

′)

and then 


k∑

j=1

λj(ρ
′)− λj(ρ)




−

≤ card

{
j ≤

k∑

i=1

λi(ρ); ρ(ij) 6= ρ′(ij)

}
. (23)

Consequently, almost surely

E






k∑

j=1

λj(Tσn(ρ))− λj(ρ)




−

∣∣∣∣∣∣
#(Tσn(ρ))


 ≤

∑k
i=1 λi(ρ)∑

j=1

E(1ρ(j)6=ρ′(j)|#(Tσn(ρ)))

=

k∑

i=1

λi(ρ)
#(Tσn(ρ))

n
.

Proof of Proposition 36. For any ε > 0 there exists n0 such that

P

(
k∑

i=1

λi(σEw,0,n) < 9k
√
n

)
≥

√
1− ε

and by hypothesis for any ε′ > 0 there exist n1 > such that for any n > n1

P

(
#(σn) < ε′

n
2
3

9k

)
>

√
1− ε.

Consequently,

P



E

((∑k
j=1 λj(Tσn(σEw,0,n))− λj(σEw,0,n)

)
−

∣∣∣∣#(Tσn(σEw,0,n))

)

n
1
6

< ε′


 > 1− ε.

This yields
(∑k

j=1 λj(Tσn(σEw,0,n))− λj(σEw,0,n)
)
−

n
1
6

P−−−→
n→∞

0,

which concludes the proof since Tσn(σEw,0,n)
d
= σn.
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3.3 Proof of Theorems 9 and of Proposition 15

Since Theorems 9 is the particular case k = 1 of Proposition 15, we will prove only Proposition 15.
Moreover (HP

inv, 3
2

) implies clearly (12) and consequently, the first bound of Proposition 15 is a direct

application of Proposition 36. So it is sufficient to prove that under (Hinv) and (12), we have

lim inf
n→∞

P

(
∀i ≤ k′,

λi(σn)− 2
√
n

n
1
6

≤ si

)
≥ F2(s1, s2, . . . , sk). (24)

Sketch of proof. We will not go trough all the details since we have already presented similar techniques
many times. The idea is to modify the random walk associated to T as following. Given 1 ≤ j ≤ n−1, we
define T̂j the Markov operator as following. T̂j(σ) is a permutation chosen uniformly at random among
the permutations obtained by merging all cycles of length less than j to (one of) the biggest cycles of σ to
obtain a permutation with cycles of length more than j. Since this construction depends only on the cycle
structure, under (Hinv), T̂j(σn) is conjugation invariant. Therefore T n(T̂j(σn)) is distributed according to
Ew(0). Similarly to the previous proofs, we have

E



(

k∑

i=1

λj(T
n(T̂j(σn)))− λj(T̂j(σn)))

)

−

∣∣∣∣∣∣
#(T̂j(σn))


 ≤ #(T̂j(σn))

j

k∑

i=1

λi(T̂j(σn)).

Let (jn)n>1 be such that

1

n
1
6



(

jn∑

k=1

#k(σn)

)
+

√
n

jn

n∑

k=jn+1

#k(σn)


 P−−−→

n→∞
0.

We have then (Tjn(σn))n≥1 satisfies (HP
inv,6),

∑k
i=1 λi(T̂jn(σn))√

n

P−−−→
n→∞

2k

and

E

((∑k
i=1 λj(T

n(T̂j(σn))) − λj(T̂j(σn)))
)
−

∣∣∣∣#(T̂j(σn))

)

n
1
6

P−−−→
n→∞

0.

This yields (24).

3.4 Lower bound for the longest increasing subsequence

Proposition 38. If (σn)n≥1 is conjugation invariant then for any ε > 0,

P

(
LIS(σn) > (2

√
13− 6− ε)

√
n
)
−−−→
n→∞

1.

This yields the following lower bound

lim inf
n→∞

E(LIS(σn))√
n

≥ 2
√
13− 6 ≃ 1.21 . . .
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Motivated by a conjecture of Bukh and Zhou [2016], the author tried in a previous work to prove an
asymptotic lower bound on the expectation of the longest increasing subsequence of a conjugation invariant
random permutation without cycle conditions. In particular, under the same hypothesis, it was proved in
[Kammoun, 2020] that

lim inf
n→∞

E(LIS(σn))√
n

≥ 2
√
θ ≃ 0.564 . . . , (25)

where θ is the unique solution of G(2
√
x) = 2+x

12 ,

G := [0, 2] →
[
0,

1

2

]

x 7→
∫ 1

−1

(
Ω(s)−

∣∣∣s+ x

2

∣∣∣− x

2

)
+
ds, (26)

and

Ω(s) :=

{
2
π
(s arcsin(s) +

√
1− s2) if |s| < 1

|s| if |s| ≥ 1
.

Sketch of the proof of Proposition 38. The proof is an adaptation of the proof of [Kammoun, 2020, Thm 1]
Before we start, let

θ′ := 4−
√
13 and θ′′ := 2(1 − θ′) = 2

√
6θ′ − 2 = 2

√
13− 6 = 1.21 . . . .

In this proof, we use the following convention. Let A,B ⊂ Sn and f : Sn → R. If P(σn ∈ A) = 0, we
assign P(σn ∈ B|σn ∈ A) = 0 and E(f(σn)|σn ∈ A) = 0.

We have

E(LIS(σn)) = E
(
LIS(σn)

∣∣#1(σn) < θ′′
√
n
)
P
(
#1(σn) < θ′′

√
n
)

+ E
(
LIS(σn)

∣∣#1(σn) ≥ θ′′
√
n
)
P
(
#1(σn) ≥ θ′′

√
n
)

≥ E
(
LIS(σn)

∣∣#1(σn) < θ′′
√
n
)
P
(
#1(σn) < θ′′

√
n
)

+ θ′′
√
nP
(
#1(σn) ≥ θ′′

√
n
)
.

Since the condition on the fixed points is conjugation invariant, it is sufficient to prove this result in
the case where almost surely #1(σn) < θ′′

√
n. Using the same argument and since the condition on the

number of cycles is conjugation invariant, it is sufficient to prove this result in the two particular cases.

• If almost surely #(σn) > nθ′.
We recall that

#1(σ
2) ≥ 6#(σ)− 3#1(σ)− 2n.

Consequently, under the condition #1(σn) < θ′′
√
n, almost surely,

#1(σ
2
n) > n(6θ′ − 2)− 3θ′

√
n.
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We can then conclude by [Kammoun, 2020, Proposition 15] that

lim inf
n→∞

E (LIS(σn))√
n(6θ′ − 2)− 3θ′

√
n
≥ 2.

Thus,

lim inf
n→∞

E (LIS(σn))√
n

≥ 2
√
6θ′ − 2 = θ′′.

• If almost surely #(σn) ≤ nθ′. Using Lemma 37 for k = 1, we obtain that for any ε, ε′ > 0 there
exists n0 such that for any n > n0, for any conjugation invariant random permutation σn such that
almost surely #(σn) ≤ nθ′,

P(LIS(σn) > 2
√
n(1− θ′ − ε)) > 1− ε′.

Consequently,

lim inf
n→∞

E (LIS(σn))√
n

≥ 2(1 − θ′) = θ′′.

This concludes the proof.

4 Other groups

4.1 General idea and main results

The same technique of proof we presented in Section 1 can be applied to other sets having a similar
structure to the symmetric group. We will give applications in the next subsection. In general, one
can apply the same techniques when there exists a "nice" sequence of undirected graphs G := (Gn =
(Vn, En))n≥1

12 such that 13.

∀n ≥ 1, Gn is locally finite. (27)

∀n ≥ 1, there exists a countable set In and finite sets (V i
n)i∈In such that Vn = ⊔i∈InV

i
n. (28)

For any n ≥ 1, for any i, j ∈ In, for any σ1, σ2 ∈ V i
n,

card({σ′ ∈ V j
n ; (σ

′, σ1) ∈ En}) = card({σ′ ∈ V j
n ; (σ

′, σ2) ∈ En}) =: ej,i. (29)

i.e. the number of neighbors in V j
n of any element of V i

n only depends on (i, j); we denote it by ei,j . We

denote by Ẽn := {(i, j) ∈ I2n; ei,j > 0} and by G̃n := (In, Ẽn) the classes graph. We need moreover in the
sequel of this Section 1 that

∀n ≥ 1, the classes graph G̃n is connected. (30)

In the sequel of this section, we assume (27)– (30).
For example, if Gn is the Cayley graph of the symmetric group generated by transpositions we have

12We use the usual notations i.e. Vn is the set of vertices and En is the set of edges.
13We use ⊔ to denote disjoint union.
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Figure 5: The classes graph for the Cayley graph of Sn generated by transpositions for n = 4

• Vn = Sn

• En = {(σ, σ ◦ (i, j));σ ∈ Sn, i 6= j}

• In=Yn (the set of Young diagrams of size n).

• V i
n = {σ ∈ Sn; λ̂(σ) = i},

• Ẽn the set of couples of Young diagrams such that one can obtain one from the other by concatenating
two arrows. For example, for n = 4, we obtain the classes graph in Figure 5.

With analogy with Section 1, we will now construct a new directed graph for which we will consider the
uniform random walk. Let dGn be the usual graph distance and for σ ∈ Vn, we denote by Class(σ) the
unique i ∈ In such that j ∈ V i

n.

Let (i∗n)n≥1 ∈ ∏
n≥1 In be a "nice" sequence of classes. We denote by d(σ) := min

ρ∈V i∗n
n

dGn(σ, ρ).

The random walk we use to prove universality will be the uniform random walk on the directed graph
G′

n := (Vn, E
′
n) where

E′
n = {(σ1, σ2) ∈ En ; d(σ2) = d(σ1)− 1} ∪ {(σ, σ), σ ∈ V i∗n

n }.

Back to the example of the Cayley graph of the symmetric group generated by transpositions we have

• Class(σ) = λ̂(σ),

• i∗n = (n, 0) is the Young diagram with a unique row of length n,

• (Vn, E
′
n) = GSn

14,

• d(σ) = #(σ)− 1.

With analogy with the symmetric group, let TG′
n

be the Markov operator associated to the uniform
random walk on G′

n, V∞ := ∪n≥1Vn and f be a function defined on V∞ and having values on some metric
space (F, dF ). With analogy with Section 1 , for S ⊂ Vn and σ ∈ Vn, let

next(S) := {σ2;σ1 ∈ S and (σ1, σ2) ∈ E′
n},

14GSn
is defined in Section 1
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final(σ) :=

{
nextd(σ)({σ}) if d(σ) > 1

{σ} otherwise

and for i ∈ In and p ≥ 1, we define

εn,i,p(f) :=


∑

σ∈V i
n

∑

ρ∈next({σ})

(dF (f(σ), f(ρ)))
p

card(V i
n)card(next({σ}))




1
p

εn,p(f) := sup
i∈In

εn,i,p(f)

εn,i,∞(f) := max
σ∈V i

n

max
ρ∈next({σ})

dF (f(σ), f(ρ))

εn,∞(f) := sup
i∈In

εn,i,∞(f)

ε′n,i,p(f) :=


∑

σ∈V i
n

∑

ρ∈final(σ)

(dF (f(σ), f(ρ)))
p

card(V i
n)card(final(σ))




1
p

ε′n,i,∞(f) := max
σ∈V i

n

max
ρ∈final(σ)

dF (f(σ), f(ρ)).

Finally, let (σn)n≥1 be a sequence of random variables such that σn is supported on Vn. We say that σn
is Gn invariant (with respect to the partition {V i

n}i∈In)15 if for any i ∈ In and any σ, ρ ∈ V i
n

P(σn = σ) = P(σn = ρ),

and we say that (σn)n≥1 is G-invariant if σn is Gn-invariant ∀n ≥ 1.

Definition 39. For α > 0 and p ∈ [1,∞], we say that (σn)n≥1 satisfies HP

G−inv,α if

(σn)n≥1 is G-invariant and
d(σn)

n
1
α

P−−−→
n→∞

0, (HP

G−inv,α)

we say that it satisfies HLp

G−inv,α if

(σn)n≥1 is G-invariant and
d(σn)

n
1
α

Lp

−−−→
n→∞

0. (HLp

G−inv,α)

Interesting results can be obtained if the graph satisfies an additional symmetry property:

For any σ1 ∈ Vn, for any σ2, σ3 ∈ final(σ1), the number of paths in G′
n of length d(σ) from σ1 to σ2

is equal to that from σ1 to σ3 i.e. AG′
n

the adjacency matrix of G′
n satisfies the following:

∀σ1 ∈ Sn,∃ cσ1 ∈ N such that ∀ρ ∈ Sn, A
d(σ)
G′

n
(σ1, ρ) = cσ11ρ∈final(σ1). (31)

In particular, we have the following:

Lemma 40. Under (27)–(31), for any (σn)n≥1 G-invariant, for any P ∈ [1,∞[,

E

((
dF

(
f(σn), f

(
T
d(σn)
G′

n
(σn)

)))p)
= E((ε′n,Class(σn),p

)p).

15we omit this precision when it is clear from the context.
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Proof. For any random variable σn, we have

E

((
dF

(
f(σn), f

(
T
d(σn)
G′

n
(σn)

)))p)
= E

(
E

((
dF

(
f(σn), f

(
T
d(σn)
G′

n
(σn)

)))p∣∣∣σn
))

=
∑

i∈In

∑

σ∈V i
n

P(σn = σ)E
((

dF

(
f(σn), f

(
T
d(σn)
G′

n
(σn)

)))p∣∣∣σn = σ
)
.

If (σn)n≥1 is G-invariant, then P(σn = σ) = 1
card(Class(σ))P(Class(σn)Class(σ)). Moreover, under (31),

E

((
dF (f(σn), f

(
T
d(σn)
G′

n
(σn)

))p∣∣∣σn = σ
)
=

∑
ρ∈final(σ)(dF (f(σ), f(ρ)))

p

card(final(σ))
.

Consequently, one can conclude since

E((ε′n,Class(σn),p
)p) =E

(
E((ε′n,Class(σn),p

)p)
∣∣∣Class(σn)

)

=
∑

i∈In
P(Class(σn) = i)(ε′n,i,p)

p

=
∑

i∈In
P(Class(σn) = i)

∑

σ∈V i
n

∑

ρ∈final(σ)

(dF (f(σ), f(ρ)))
p

card(V i
n)card(final(σ))

.

Similarly, one can prove the following.

Lemma 41. Under (27)–(30), (σn)n≥1 is G-invariant, for n ≥ 1, for any P ∈ [1,∞[,

E
((
dF (f(σn), f(TG′

n
)(σn))

)p)
= E((εn,Class(σn),p)

p).

This gives as a universality result.

Theorem 42. Assume that (27)–(30) and that (σn)n≥1 and (σref,n)n≥1 are G-invariant. Suppose that
there exists some deterministic x ∈ F and p ∈ [1,∞[ such that

f(σref,n)
P−−−→

n→∞
x ( resp. f(σref,n)

L
p

−−−→
n→∞

x),

εn,Class(σref,n),∞(f)
P−−−→

n→∞
0 ( resp. εn,Class(σref,n),∞(f)

Lp

−−−→
n→∞

0) (32)

and

εn,Class(σn),∞(f)
P−−−→

n→∞
0 ( resp. εn,Class(σn),∞(f)

Lp

−−−→
n→∞

0). (33)

Then

f(σn)
P−−−→

n→∞
x (resp. f(σn)

L
p

−−−→
n→∞

x).

Moreover, under (31), (32) and (33) can be replaced by

ε′n,Class(σref,n),1
(f)

P−−−→
n→∞

0 ( resp. ε′n,Class(σref,n),p
(f)

Lp

−−−→
n→∞

0)

and

ε′n,Class(σn),1
(f)

P−−−→
n→∞

0 ( resp. ε′n,Class(σn),p
(f)

L
p

−−−→
n→∞

0).
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Idea of the proof. The proof is identical to that of theorems 1 and 2. Indeed, (29) guarantees that under
the G-invariance, for any n ≥ 1, TG′

n
(σn) is Gn invariant and by construction almost surely

d(TG′
n
(σn)) = max(0, d(σn)− 1).

Consequently, by induction, T
d(σn)
G′

n
(σn) is distributed according to the uniform distribution on V

i∗n
n and

almost surely

dF (f(T
d(σn)
G′

n
(σn)), f(σn)) ≤ εn,class(σn),∞(f).

Similarly to Remark 4, by the triangle inequality and using that the arithmetic mean is smaller than
the p-mean, we have 16

(εn,k,p(f))
p ≤

d(k)∑

i=1

max
j;d(j)=i

(εpn,j,p(f)) ≤ d(k)εpn,p(f).

Consequently, if there exists α > 0 such that

εpn,p(f) = O

(
1

n
1
α

)
,

then one can obtain (32) and (33) for the equivalent classes of (HP

G−inv,α) (resp.(HLp

G−inv,α)).

4.2 Some examples of finite graphs

In general, Cayley graphs are good candidates. An interesting case is when there exists (i∗n)n≥1 ∈
∏

n≥1 In
such that

1

card(Vn)

∑

σ∈Vn

min
σ′∈V i∗n

n

dGn(σ, σ
′) = o

(
max

σ1,σ2∈Vn

dGn(σ1, σ2)

)
,

in this case, the comparison with the uniform distribution can be done for reasonable statistics. The first
four examples we give are different ways to apply our results to the symmetric group. The other four
examples are different graphs. Our eight examples satisfy (27)– (31). In the first two examples we will
give in details the different objects, for the other we will give only Gn, In V i

n and i∗n. The others can be
obtained easily by applying the definitions.

• The Cayley graph of symmetric group generated by transpositions: We recall that

– (Vn, E
′
n) = GSn,

– In=Yn,

– V i
n = {σ ∈ Sn; λ̂(σ) = i},

– Class(σ) = λ̂(σ),

– i∗n = (n, 0) the Young diagram with a unique row of length n,

– d(σ) = #(σ)− 1,

16There is here a notation abuse. Since d is constant in any class, we denote by d(k), d(σ) for some σ ∈ k.
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We have then the following.

1

card(Vn)

∑

σ∈Vn

min
σ′∈V i∗

n

dGn(σ, σ∗) = E(#(σunif,n)− 1)

=

n∑

k=2

1

k
= o(n− 1) = o

(
max

σ1,σ2∈Vn

dGn(σ1, σ2)

)
.

• Even permutations: A permutation σ ∈ Sn is said to be even if n−#(σ) is even. Cycles of length
3 are a generator of Sn. When n is odd, S0

n is a subset of the set of even permutations. One can
choose for example.

– Gn the Cayley graph of S2n+1 generated by cycles of length 3

– In={λ ∈ Y2n+1; ℓ(λ) ≡ 1 (mod 2)},
– V i

n = {σ ∈ S2n+1, λ̂(σ) = i},
– Class(σ) = λ̂(σ),

– i∗n = (2n + 1, 0),

– d(σ) = #(σ)+1
2 .

• Sn seen as a Coxeter group: Here we take the right (or the left) Cayley graph generated by trans-
positions of type (i, i + 1). 17 In this case we have:

– Gn the right (or the left) Cayley graph of Sn generated by {(i, i + 1); 1 ≤ i ≤ n− 1}.
– In = {0, 1, . . . , n(n−1)

2 },
– V i

n = {σ;K2(σ) = i}, where we recall that K2(σ) is the number of inversions of σ.

– Class(σ) = K2(σ),

– i∗n = ⌈n2

4 ⌉ ,

– d(σ) = |⌈n2

4 ⌉ − K2(σ)|.

For example, G′
3 is represented in Figure 6. Corollary 29 guarantees that i∗n = ⌈n2

4 ⌉ is a good
candidate if we want to compare with the uniform distribution. But also it is possible to choose
i∗n = 0 when looking for universality results for random permutations close to the identity. For this
graph, the Mallows law with Kendall tau distance is Gn-invariant and one can obtain a first order
universality for all local statistics we already studied in the previous sections and for the limiting
shape18. The second order fails.

• Using the same previous graph (same Gn) but with only two classes even and odd permutations19

i.e. In = {even, odd} we obtain that, if f(σn) converges in probability (or L
1) when σn follows one

of these three distributions

– Uniform law of Sn

17Fun fact 2: depending on the choose of the right or the left composition, one can obtain a different universality theorem.
The classes are the same but the graph (and consequently error controls) are different.

18We apologize again to the reader because it is not defined yet.
19Here, the choice of i∗n is not important but the reader can take i∗n = even.
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Id3

(1, 2) (2, 3)

(1, 2, 3) (1, 3, 2)

(1, 3)

Id3

(1, 2) (2, 3)

(1, 3, 2) (1, 2, 3)

(1, 3)

Figure 6: G′
3 obtained by the transpositions (1, 2) and (2, 3)

– Uniform law of even permutations

– Uniform law of odd permutations

it converges also for the two others as soon as

min
(∑

σ∈Sn,1≤i<n dF (f(σ ◦ (i, i+ 1)), f(σ));
∑

σ∈Sn,1≤i<n dF (f((i, i+ 1) ◦ σ), f(σ))
)

n!(n− 1)
= o(1).

• Another possible application is the hypercube (Z/2Z)2n. In this case, we set

– Gn = (Z/2Z)2n

– In = {0, 1, . . . , 2n}
– V i

n is the set of edges of the graph such that the graph distance from (0, . . . , 0) is i.

– i∗n = n.

In this case,

1

card(Vn)

∑

σ∈Vn

min
σ′∈V i∗n

n

dGn(σ, σ∗) =
∑2n

k=0 |
(2n
k

)
(k − n)|

4n

≤

√∑2n
k=0

(2n
k

)
(k − n)2

4n

=

√
n

2

= o(n) = o

(
max

σ1,σ2∈Vn

dGn(σ1, σ2)

)
.
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• (Z/dZ)nd : Let Rn be the equivalent relation defined as follows: For any

x = (xi)1≤i≤nd, y = (yi)1≤i≤nd ∈ (Z/dZ)nd, xRny ⇔ ∃σ ∈ Snd, y = (xσ(i))1≤i≤nd.

Rn define naturally the classes of the vertices. The central limit theorem guarantees that the class
i∗n where we have exactly n coordinates equal to k for any k in Z/dZ. is a good candidate20.

• Let (Hn)n≥1 be a sequence of non-commutative and finite groups and (An)n≥1 such that An is a
conjugation invariant subset of Hn

21.

– Gn be the Cayley graph generated by Hn.

– In is the set of conjugacy classes

– V i
n = i

In this case, G-invariant random variables are conjugation invariant variables. The choice of i∗n is
specific to the choice of Gn.

• Dihedral group D2n
22 with n ≥ 3: The Dihedral group D2n is defined via its representation <

σ, µ|σ2, µ2, (µσ)n >23. This representation shows that D2n is a Coxeter group. For our study, one
can admit that

D2n = {s0, . . . , sn−1, r0, . . . , rn−1}
and

ri rj = ri+j, ri sj = si+j, si rj = si−j, si sj = ri−j.

Here, (i, j) are in Z/nZ. One can choose either

– Gn: the Cayley graph generated by {si, 0 ≤ i ≤ n},
– In = {r,s},
– V s

n = {si, 0 ≤ i ≤ n} is the set of transpositions and V r
n = {ri, 0 ≤ i ≤ n} is the set of rotations,

– i∗n = r

or keep the same graph and choose conjugacy classes as classes (as in the previous examples)24. In
the second case, we require that f(σn) convergences for any sequence of rotations and a transposition
does not change a lot the statistic.

• Colored permutations: A less trivial example is the set of signed permutations and more generally
the set of colored permutations. Given two positive integers n and m, a colored permutation is a map
π = (σ, φ) such that σ ∈ Sn and φ ∈ {1, . . . , n}{1,...,m}. A subsequence π(x1), . . . , π(xk) of π is called
increasing of length m(k−1)+p if σ(x1) < σ(x2) < · · · < σ(xk) and φ(x1) = φ(x2) = · · · = φ(xk) = p.
We denote by LIS(π) the length of a longest increasing subsequence.

20Fun fact 3: by choosing fixed and different proportions of every element of Z/dZ for i∗n, one can obtain different
universality result.

21i.e. if σ ∈ An then σ̄ ⊂ Hn.
22This is a typical "bad" Cayley graph since its diameter is bounded (equal to 2) and consequently the universality result

is trivial.
23This notation is classic to define groups. It means in our case that D2n is isomorphic to the group generated by σ and µ

such that σ2 = µ2 = (µσ)n = 1
24There are n+ 1 or n+ 2 depending on the parity of n.
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Theorem 43. Let (πn = (σn, φn))n≥1 be a sequence of random colored permutations and assume
that:

– σn is independent of φn,

– φn is distributed according to the uniform distribution,

– σn is conjugation invariant,

–
#σn

n
1
6

P→ 0.

then,

P

(
LIS(πn)− 2

√
nm

m
2
3 6
√
nm

< s

)
→ Fm

2 (s). (34)

Proof. The uniform case is proved by Borodin [1999]. To apply our theorem, choose the graph where
two colored permutations are related by an edge if only the first components differ by a transposition
i.e.

– En := {((σ, φ), (σ ◦ (i, j), φ)); i 6= j},
– In = Yn,

– V i
n = {(σ, φ); σ̄ = i},

– i∗n = (n, 0).

For our examples, a trivial example of G−invariant elements is the uniform measure, or the uniform
measure on a given class. Since d is constant in classes, a natural way to generalize Ewens measures is the
following. Given q ∈ R+, the probability measure satisfying

P(ρG,q,n = σ) =
qd(σ)∑

σ′∈Vn
qd(σ′)

is G−invariant and for any statistic f such that f(ρG,0,n) converges, one can obtain a non-empty univer-
sality result around ρG,0,n since

errn := q 7→ E(dF (f(T
d(ρG,q,n)(ρG,q,n), f(ρG,q,n))))

is continuous and errn(0) = 0. In fact, in the case of permutations, Ewens and Mallows measures with
Kendall tau distance are particular case of ρG,q,n.

4.3 Infinite case

We take now Gn = G an infinite graph. Example of "nice graphs":

• The infinite d-regular tree Td.

• The set of words of a finite alphabet of length d.

• The free group Fd with its natural Cayley graph.
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• The Cayley graph of Bd, the Artin Braid group.

• The Cayley graph of an infinite and finitely generated group H =< x1, x2, . . . , xn >.

The classes here are indexed by N according to the distance to the root (or the identity). Let G be such
that

0 < lim inf
n→∞

log(card({x; d(x) = n}))
n

= lim sup
n→∞

log(card({x; d(x) = n}))
n

= log(λ) < ∞.

It is the case for the first three examples. Let f be a statistic such that f(σn) convergences for the uniform
law on V n = V n

n and
∑∞

i=1 ε
′
n,i,∞(f) < ∞. We obtain then that f(σn) converges for the Mallows law when

its parameter goes to λ. More generally, it converges for any distribution such that Class(i) converges in
probability to infinity.
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A Ewens measures

Definition 44. Let θ be a non-negative real number. We say that a random permutation σEw,θ,n follows
the Ewens distribution with parameter θ if for all σ ∈ Sn,

P(σEw,θ,n = σ) =
θ#(σ)−1

∏n−1
i=1 (θ + i)

. (35)

Note that when θ = 1, the Ewens distribution is just the uniform distribution on Sn, whereas when
θ = 0 we have the uniform distribution on permutations having a unique cycle. For general θ, the Ewens
distribution is clearly conjugation invariant since it only involves the cycle structure of θ.

We want to recall the interpretation of the Ewens distribution via a nice stochastic process known as
"the Chinese restaurant process". Suppose that there are an infinite number of circular tables with infinite
capacity.

• At t = 0, all tables are empty.

• At t = 1, the person ”1” comes and sits in the first table.

1

• At t = 2, the person ”2” comes and sits in the table near person 1 with probability 1
1+θ

21

and sits alone in a new table with probability θ
1+θ

.

1 2

• At t = n, the person ”n” comes, she/he chooses to sit alone in a new table with probability θ
θ+n−1

and in an occupied table i with probability |Bi|
θ+n−1 , where Bi is the number of persons at the table

i. In this case, she/he chooses her/his position uniformly in gaps between two persons.

For example, if we have the following configuration25,

1

4

2

3

25we omitted empty tables
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at t = 5, the probability to switch to each of the following configurations

1

4

5

2

3

,

5

4

1

2

3

,

1

4

2

5

3

,

1

4

2

5

3

is 1
θ+4 and the probability to switch to

1

4

2

3 5

is equal to θ
4+θ

.
To obtain the associated permutation to a configuration one reads the elements on each non-empty

circle counterclockwise to get a cycle. For example, to the configuration

1

4

2

5

3

,

we associate the permutation (1, 4, 2)(3, 5).

Using the Chinese restaurant process description of the Ewens distribution, it is obvious to see that
the number of cycles #(σEw,θ,n) is the sum of n independent Bernoulli random variables with parameters{

θ
θ+i

}
0≤i≤n−1

. For further reading, we recommend [Aldous, 1985, McCullagh, 2011, Chafaï et al., 2013].

In particular, we have the following classic result.

Proposition 45.

E(#1(σEw,θ,n)) =
nθ

n− 1 + θ
and E(#(σEw,θ,n)) = 1 +

n∑

i=2

θ

i− 1 + θ
≤ 2 + θlog(n).

In particular, for uniform distribution, we have

#(σunif,n)

log(n)

P−−−→
n→∞

1. (36)

Proof. Since the number of cycles of the uniform law is the sum of n independent random Bernoulli
variables of parameters 1, 12 , . . . ,

1
n

and using Chebyshev’s inequality, we obtain

P

(∣∣∣∣
#(σunif,n)

log(n)
− 1

∣∣∣∣ > α

)
≤

∑n
i=1

i−1
i2

log(n)2

(
α+ 1−

∑n
i=1

1
i

logn

)2 = O

(
1

log(n)

)
.
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Remark 46. This convergence holds almost surely. The proof uses martingale techniques. One can find
a proof of this result in [Chafaï et al., 2013].

One can now apply our results using the following two results.

Corollary 47. Let (θn)n≥1 be a sequence of non-negative real numbers such that:

lim
n→∞

θn log(n)

n
1
α

= 0. (37)

Then (σEw,θn,n)n≥1 satisfies (HP

inv,α).

Proposition 48. For any θ ≥ 0, α > 0 and p ≥ [1,∞[ , (σEw,θ,n)n≥1 satisfies (HL
p

inv,α).

Proof. Using Bernstein inequality, if θ ≥ 1,

P(#(σEw,θ,n) > (3p+ 1)θ log(n) + 2) ≤ P(#(σEw,θ,n) > E( #(σEw,θ,n)) + 3pθ log(n))

≤ exp

(
−9

2θ
2p2 log(n)2

var(#(σEw,θ,n)) +
3p
3 θ log(n)

)

≤ exp

(
−9

2θ
2p2 log(n)2

(p + 1)θ log(n) + 2

)
= O

(
n
− 9

4
θ

p2

p+1

)
= O

(
n− 9p

8

)
.

Consequently,

E(#(σEw,θ,n)
p) ≤ ((3p + 1)θ log(n) + 2)p + npO(n− 9p

8 ) = O(logp(n)).

When θ < 1, one can conclude since E(#(σEw,θ,n)
p) < E(#(σEw,1,n)

p).
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