
A compact reformulation of the two-stage robust

resource-constrained project scheduling problem

Matthew Bold1 and Marc Goerigk2

1STOR-i Centre for Doctoral Training, Lancaster University, United Kingdom
2Network and Data Science Management, University of Siegen, Germany

Abstract

This paper considers the resource-constrained project scheduling problem with

uncertain activity durations. We assume that activity durations lie in a budgeted

uncertainty set, and follow a robust two-stage approach, where a decision maker must

resolve resource conflicts subject to the problem uncertainty, but can determine ac-

tivity start times after the uncertain activity durations become known.

We introduce a new reformulation of the second-stage problem, which enables us to

derive a compact robust counterpart to the full two-stage adjustable robust optimisa-

tion problem. Computational experiments show that this compact robust counterpart

can be solved using standard optimisation software significantly faster than the cur-

rent state-of-the-art algorithm for solving this problem, reaching optimality for almost

50% more instances on the same benchmark set.

Keywords: project scheduling; robust optimisation; resource constraints; budgeted un-

certainty

1 Introduction

The resource-constrained project scheduling problem (RCPSP) consists of scheduling a set

of activities, subject to precedence constraints and limited resource availability, with the

objective of minimising the overall project duration, known as the makespan. Given its

practical relevance to a number of industries, including construction (Kim, 2013), manufac-

turing (Gourgand et al., 2008), R&D (Vanhoucke, 2006), and personnel scheduling (Drezet

and Billaut, 2008), the RCPSP and many of its variants have been widely studied since a

first model was introduced by Pritsker et al. (1969). The vast majority of this research, how-

ever, has examined the RCPSP under the assumption that the model parameters are known

deterministically (for a survey of the deterministic RCPSP, see Artigues et al. (2008)), but

clearly, in practice, large projects are subject to non-trivial uncertainties. For instance,

poor weather might delay construction times, uncertain delivery times of parts may delay

manufacturing activities, and the duration of research activities are inherently uncertain.

1

As a result, in recent years, increasing attention has been given to the uncertain RCPSP,

where scheduling decisions must be made whilst activity durations are unknown.

There exist two main approaches for solving the uncertain RCPSP. The first is to view

the problem as a dynamic optimisation problem where scheduling decisions are made each

time new information becomes available according to a scheduling policy (Igelmund and

Radermacher, 1983a,b; Möhring and Stork, 2000). Most recently, Li and Womer (2015)

use approximate dynamic programming to find an adaptive closed-loop scheduling policy

for the uncertain RCPSP.

The second approach aims to proactively develop a robust baseline schedule that pro-

tects against delays in the activity durations. Zhu et al. (2007) present a two-stage stochas-

tic programming formulation for building baseline schedules for projects with a single re-

source. Bruni et al. (2015) present a chance-constraint-based heuristic for constructing

robust baseline schedules and Lamas and Demeulemeester (2016) introduce a procedure

for generating robust baseline schedules that is independent of later reactive scheduling

procedures. For a review of both dynamic and proactive project scheduling, see Herroelen

and Leus (2005).

Although frequently referred to as robust, none of the scheduling methods described

above make use of robust optimisation in the sense of Ben-Tal and Nemirovski (1998, 1999,

2000). Over the last 20 years, robust optimisation has emerged as an effective framework

for modelling uncertain optimisation problems. Unlike stochastic programming, robust

optimisation does not require probabilistic knowledge of the uncertain data. Instead, the

robust optimisation approach only assumes that the uncertain data lie somewhere in a

given uncertainty set, and then aims to find solutions that are robust for all scenarios that

can arise from that uncertainty set.

The applicability of robust optimisation as a method for solving uncertain optimisation

problems has increased following the introduction of adjustable robust optimisation (Ben-

Tal et al., 2004; Yanıkoğlu et al., 2019). Adjustable robust optimisation extends static

robust optimisation into a dynamic setting, where a subset of the decision variables must be

determined under uncertainty, whilst other variables can be adjusted following observations

of the uncertain data. As well as accurately modelling the decision process undertaken

by many real-world decision-makers, adjustable robust optimisation overcomes the over-

conservativeness that restricts the applicability of static robust optimisation models. For

extensive surveys on robust optimisation, see Ben-Tal et al. (2009); Bertsimas et al. (2011);

Gorissen et al. (2015); Goerigk and Schöbel (2016).

Despite the successful application of robust optimisation in many different fields (see

Bertsimas et al. (2011)), few papers have directly applied robust optimisation in the con-

struction of robust baseline project schedules. Balouka and Cohen (2019) consider the

multi-mode RCPSP under the framework of robust optimisation, and present a solution

approach based on Benders’ decomposition (Benders, 1962). Artigues et al. (2013) consider

the RCPSP under uncertain activity durations and present an iterative scenario-relaxation

algorithm, with the objective of minimising the worst-case absolute regret (Kouvelis and

Yu, 1997).

2

Bruni et al. (2017) introduce the two-stage adjustable robust RCPSP that we con-

sider in this paper. For the case of budgeted uncertainty, they solve this problem using a

Benders’-style decomposition approach. Bruni et al. (2018) extend this work and present a

computational study of solution methods for solving the two-stage adjustable RCPSP. An

additional Benders’-style algorithm is compared against a primal decomposition algorithm,

as well as the algorithm presented in Bruni et al. (2017). The primal decomposition algo-

rithm is shown to be the best performing algorithm for solving the two-stage adjustable

RCPSP. At the same time, only 767 of 1440 instances could be solved to optimality, which

means that a large gap of unsolved instances remains.

Simultaneously and independently of this work, Pass-Lanneau et al. (2020) have stud-

ied a related problem known as the anchor-robust RCPSP, where baseline schedules are

developed such that the start times of the activities in a given subset are guaranteed to

remain unchanged upon the realisation of the uncertain data. Examining their problem,

they independently obtain a similar formulation to the one we present in Section 3.2.

The contributions of this paper are as follows. We present a new compact reformula-

tion of the two-stage adjustable robust RCPSP with budgeted uncertainty. This is the first

compact formulation for this problem, allowing us to solve it directly using standard op-

timisation software. As a result, and as computational experiments confirm, our compact

reformulation can be solved significantly faster, and for a much greater number of instances

than the current best algorithm for solving this problem.

The remainder of this paper is organised as follows: Section 2 introduces the two-stage

adjustable robust RCPSP in detail, before Section 3 derives a compact reformulation of this

problem and computational experiments are presented in Section 4. Concluding remarks

are made in Section 5.

2 The two-stage robust RCPSP

A project consists of a set V = {0, 1, . . . , n, n+1} of non-preemptive activities, where 0 and

n + 1 are dummy source and sink activities with duration 0. Each activity i ∈ V requires

an amount rik ≥ 0 of resource k ∈ K, where K is the set of project resource types. Each

resource k ∈ K has a finite availability Rk in each time period. Each activity i ∈ V has

a nominal duration given by θ̄i, and a worst-case duration given by θ̄i + θ̂i, where θ̂i is

its maximum deviation. In addition to resource constraints, the project activities must be

scheduled in a manner that respects a set E of strict finish-to-start precedence constraints,

where (i, j) ∈ E enforces that activity i must have finished before activity j can begin.

A project can be represented on a directed graph G(V,E). An example project involving

seven non-dummy activities and a single resource is shown in Figure 1.

We assume that the duration of each activity i ∈ V lies somewhere between its nominal

value θ̄i and its worst-case value θ̄i + θ̂i. Additionally, we follow Bertsimas and Sim (2004)

and assume that only a subset of all activities can simultaneously attain their worst-case

values. Hence, the set in which we assume durations can lie, known as the uncertainty set,

3

0

1 3

8

2

4

5

6

7

5;0;0

3;2;1

2;3;2

2;5;3

1;4;2

3;3;2

4;1;1

2;4;2

5;0;0

i
ri;θi;θi

Figure 1: Example project involving seven non-dummy activities and a single resource with
R1 = 5.

is given by

U(Γ) =

{
θ ∈ R|V |+ : θi = θ̄i + δiθ̂i, 0 ≤ δi ≤ 1∀i ∈ V,

∑
i∈V

δi ≤ Γ

}
,

where Γ determines the robustness of the solution by controlling the number of activities

that are allowed to reach their worst-case duration simultaneously. For Γ = 0, each activity

takes its nominal duration and the problem reduces to the deterministic RCPSP. At the

other extreme, when Γ = n, every activity can take its worst-case duration, and this

uncertainty set becomes equivalent to interval uncertainty.

The robust RCPSP lends itself naturally to a two-stage decision process, where resource

allocation decisions need to be made at the start of the project before the uncertain ac-

tivity durations become known, but the activity start times can be decided following the

realisation of the activity durations. Hence, resource allocation decisions constitute the

set of first-stage decisions, whilst the activity start times constitute the set of second-stage

decisions.

More specifically, the first-stage resource allocation decisions consist of determining a

feasible extension of the project precedence relationships E so that all resource conflicts

are resolved. A forbidden set (Igelmund and Radermacher, 1983a) is any subset F ⊆ V of

non-precedence-related activities such that
∑
i∈F rik > Rk for at least one k ∈ K, i.e. the

activities of F cannot be executed simultaneously without violating a resource constraint.

A minimal forbidden set is a forbidden set that does not contain any other forbidden set

as a subset. We denote the set of minimal forbidden sets by F . For the example project in

Figure 1, F =
{
{1, 5}, {2, 6}, {5, 6}, {6, 7}, {3, 4, 5}

}
. The resource conflict represented by

each minimal forbidden set can be resolved by adding an additional precedence relationship

to the project network. Bartusch et al. (1988) show that solving the RCPSP is equivalent

to finding an optimal choice of additional precedence relationships X ⊆ V 2 \ E, such that

4

the extended project network G′(V,E ∪X) is acyclic and contains no forbidden sets. Such

an extension X to the project precedence network is referred to as a sufficient selection.

Hence, a solution to the first-stage problem corresponds to the choice of a sufficient selection

X. Figure 2 shows the extended project network for a sufficient selection to the example

project shown in Figure 1 (arcs in X are dashed).

0

1 3

8

2

4

5

6

7

5;0;0

3;2;1

2;3;2

2;5;3

1;4;2

3;3;2

4;1;1

2;4;2

5;0;0

Figure 2: An extension of the example project shown in Figure 1, corresponding to the
sufficient selection given by the dashed arcs.

Given the extended project network resulting from the choice of sufficient selection made

in the first stage, the second stage problem consists of determining activity start times in

order to minimise the worst-case makespan in this extended network. Since all resource

conflicts have been resolved in the first-stage problem, the second stage problem contains

no resource constraints.

Hence, the two-stage robust RCPSP under budgeted uncertainty is given by:

min
X∈X

max
θ∈U(Γ)

min
S∈S(X,θ)

Sn+1 (1)

where X is the set of sufficient selections, and S(X, θ) is the set of feasible activity start

times given the activity durations θ ∈ U(Γ) and choice of sufficient selection X. That is,

S(X, θ) =

{
S ∈ R|V |+ : S0 = 0, Sj − Si ≥ θi ∀(i, j) ∈ E ∪X

}
.

To solve this problem we propose a mixed-integer programming formulation, outlined in

the following section.

3 A compact reformulation

In this section, we present a reformulation of the two-stage robust RCPSP. Unlike existing

formulations for the two-stage adjustable RCPSP, the formulation we propose is compact,

i.e. it contains polynomially many constraints and variables. We begin by first examining

5

the adversarial sub-problem of maximising the worst-case makespan for a given sufficient

selection.

3.1 The adversarial sub-problem

Suppose the solution to the first-stage problem provides a sufficient selection X ∈ X , and

is given by a vector y ∈ {0, 1}V×V where

yij =

1 if (i, j) ∈ E ∪X
0 otherwise.

The second-stage sub-problem that arises can be considered from the point of view of an

adversary who wishes to choose the worst-case scenario of delays for the given first-stage

solution. Following the adversary’s choice of delays, we can determine the start time of

each activity in order to minimise this worst-case makespan.

Let us assume a fixed scenario θ ∈ U(Γ) given by the vector δ ∈ [0, 1]|V |. In this case,

the inner minimisation problem becomes

min Sn+1 (2)

s.t. S0 = 0 (3)

Sj − Si ≥ θ̄i + δiθ̂i −M(1− yij) ∀(i, j) ∈ V 2 (4)

Si ≥ 0 ∀i ∈ V, (5)

whereM is some number greater than or equal to the maximum possible minimum makespan.

By taking the dual of (2)-(5), and then introducing the adversarial delay variables δi, i ∈ V ,

we obtain the following non-linear mixed-integer programming formulation for the adver-

sarial sub-problem, first introduced in Bruni et al. (2017):

max
∑

(i,j)∈V 2

(
θ̄i + δiθ̂i −M(1− yij)

)
αij (6)

s.t.
∑

(i,j)∈V 2

αij −
∑

(j,i)∈V 2

αji = 0 ∀j ∈ V (7)

∑
(0,i)∈V 2

α0i = 1 (8)

∑
(i,n+1)∈V 2

αi,n+1 = 1 (9)

∑
i∈V

δi ≤ Γ (10)

0 ≤ δi ≤ 1 ∀i ∈ V (11)

αij ∈ {0, 1} ∀(i, j) ∈ V 2. (12)

Observe that (6)-(9) correspond to the dual of (2)-(5), where the dual variables αij are

continuous. Note also how the delay variables δi, i ∈ V , are related to the dual variables

6

αij through the objective (6). The dual variables αij determine a longest path through

the network defined by the first-stage variables yij . Hence, when αij = 1, edge (i, j) is

included in this longest path, and the duration of activity i, which determined by its delay

variable δi, contributes to its length. Therefore, with the addition of the delay variables

δi, i ∈ V , this adversarial sub-problem can be thought of as a non-linear longest-path

problem through the network determined in the first-stage problem, where up to Γ units of

delay can be distributed among activities in order to further maximise this longest path.

For fixed choice of δ, it is possible to find an optimal solution to this problem where each

αij is binary. The advantage of binary variables αij is that products δiαij can be easily

linearised with the introduction of additional variables. As shown by Bruni et al. (2017),

this linearised model is given as follows:

max
∑

(i,j)∈V 2

(
θ̄iαij + θ̂iwij −M(1− yij)αij

)
(13)

s.t.
∑

(i,j)∈V 2

αij −
∑

(j,i)∈V 2

αji = 0 ∀j ∈ V (14)

∑
(0,i)∈V 2

α0i = 1 (15)

∑
(i,n+1)∈V 2

αi,n+1 = 1 (16)

wij ≤ δi ∀(i, j) ∈ V 2 (17)

wij ≤ αij ∀(i, j) ∈ V 2 (18)∑
i∈V

δi ≤ Γ (19)

0 ≤ δi ≤ 1 ∀i ∈ V (20)

αij ∈ {0, 1} ∀(i, j) ∈ V 2 (21)

wij ≥ 0 ∀(i, j) ∈ V 2. (22)

It is claimed in Proposition 4 of Bruni et al. (2017) that this problem is equivalent to its

linear relaxation, where αij ∈ [0, 1] for all (i, j) ∈ V 2. This, however, is not the case, as

the following counter-example demonstrates.

Figure 3 shows a project with three non-dummy activities, each with a nominal duration

of θ̄i = 1, and a maximum deviation of θ̂i = 1, i = 1, 2, 3. Suppose a feasible first-stage

solution has been found, resulting in the network shown in Figure 3. We consider this

problem from the point of view of the adversary, who wishes to distribute up to Γ = 1

units of delay, in order to maximise the minimum makespan. If (13)-(22) is equivalent to

its linear relaxation, then the adversary gains no advantage by choosing α ∈ (0, 1) and

splitting the unit flow on its route from the source-node 0 to the sink-node 4. However, as

can be seen with this example, the adversary does in fact obtain an advantage.

In Figure 3a, αij ∈ {0, 1} for each (i, j) ∈ V 2, and hence the adversary is limited

to routing the unit flow through the network via a single path. A worst-case delay in

this scenario is that the unit of available delay is entirely assigned to activity 2. Hence,

7

0 1

2

3

4

0;00;0

1;1

1;1

1;1

αij; wij
i j
δi δj

θi;θi θj;θj

1;
0

1; 0

1; 1
1

0 0

0

0

(a) αij ∈ {0, 1} ∀(i, j) ∈ V 2

1;1

0 1

2

3

4

0;00;0 1;1

1;1

0.5; 0.250.5
; 0

.5

0.5
; 0

.25
0.5; 0.5

0.25

0.5

0.25

0 0

1; 0

(b) αij ∈ [0, 1] ∀(i, j) ∈ V 2

Figure 3: Counter-example showing that model (13)-(22) is not equivalent to its linear
relaxation.

δ2 = 1, whilst δ1 = δ3 = 0. Minimising the worst-case makespan in this scenario, we get

(θ̄1α12 + θ̂1w12) + (θ̄2α24 + θ̂2w24) = (1 + 0) + (1 + 1) = 3.

In Figure 3b, αij ∈ [0, 1] for each (i, j) ∈ V 2, and the adversary is able to split the

unit flow into multiple fractional paths on its route through the network. In this case, the

adversary can distribute the unit of delay so that δ1 = 0.5, δ2 = 0.25, and δ3 = 0.25. In this

scenario, the minimum makespan is (θ̄1α12 + θ̂1w12) + (θ̄1α13 + θ̂1w13) + (θ̄2α24 + θ̂2w24) +

(θ̄3α34 + θ̂3w34) = (0.5 + 0.5) + (0.5 + 0.5) + (0.5 + 0.25) + (0.5 + 0.25) = 3.5, showing that

problem (13)-(22) is not equivalent to its linear relaxation.

Note that Bruni et al. (2017) attempt to prove that model (13)-(22) is equivalent to its

linear relaxation, and therefore polynomially solvable, by showing that the corresponding

constraint matrix is totally unimodular. In Appendix A, we identify an error with this proof

and show that the constraint matrix is not totally unimodular. This result is consistent

with the above counter-example.

Since problem (13)-(22) is not equivalent to its linear relaxation, we cannot apply strong-

duality to get an equivalent minimisation problem. Therefore, in order to obtain a compact

8

reformulation of the two-stage robust RCPSP, an alternative reformulation of the adver-

sarial sub-problem is required.

A dynamic programming procedure for solving problem (13)-(22) when Γ ∈ Z is pre-

sented in Bruni et al. (2017). This procedure works by considering Γ + 1 paths from the

source node 0 to node i, for each i ∈ V , where each path πγi , γ = 0, . . . ,Γ, is characterised

by the inclusion of exactly γ delayed activities. Given a path πγi , its extension to each

successor node j ∈ Succi is evaluated by considering two possibilities: either the succes-

sor activity j is delayed, resulting in the path πγ+1
j , or it is not delayed, resulting in the

path πγj . Hence, the dynamic programming algorithm has a state ST (j, γ) for each node

j at level γ, and the value of each state V (ST (j, γ)) is computed through the following

recursion:

V (ST (0, 0)) = 0, (23)

V (ST (j, γ)) = max
i:(i,j)∈E∪X

{
max

(
V (ST (i, γ)), V (ST (i, γ − 1)) + θ̄i + θ̂i

)}
,

∀j ∈ V \ {0}, γ = 1, . . . ,Γ

(24)

V (ST (j, 0)) = max
i:(i,j)∈E∪X

{
V (ST (i, 0)) + θ̄i

}
. (25)

This dynamic programming algorithm can be viewed as finding the critical path through

the augmented project network built from Γ + 1 copies of the original project network (an

example of such a network is shown in Figure 4). The inclusion of an inter-level arc, e.g. a

dashed arc in Figure 4, in the critical path corresponds to the delay of the activity at the

origin of that arc.

Since the second stage problem is simply a longest-path problem on this augmented

network, it can be recast into the following mixed-integer linear program:

max
∑

(i,j)∈V 2

Γ∑
γ=0

(θ̄i −M(1− yij))αijγ +
∑

(i,j)∈V 2

Γ∑
γ=1

(θ̄i + θ̂i −M(1− yij))βijγ (26)

s.t.
∑

(j,i)∈V 2

αjiγ +
∑

(j,i)∈V 2

βji,γ+1 −
∑

(i,j)∈V 2

αijγ −
∑

(i,j)∈V 2

βijγ = 0

∀j ∈ V, γ = 1, . . . ,Γ− 1 (27)∑
(j,i)∈V 2

αji0 +
∑

(j,i)∈V 2

βji1 −
∑

(i,j)∈V 2

αij0 = 0 ∀j ∈ V (28)

∑
(j,i)∈V 2

αjiΓ −
∑

(i,j)∈V 2

αijΓ −
∑

(i,j)∈V 2

βijΓ = 0 ∀j ∈ V (29)

∑
(0,i)∈V 2

α0i0 +
∑

(0,i)∈V 2

β0i1 = 1 (30)

∑
(i,n+1)∈V 2

αi,n+1,Γ +
∑

(i,n+1)∈V 2

βi,n+1,Γ = 1 (31)

αijγ ∈ {0, 1} ∀(i, j) ∈ V 2, γ = 0, . . . ,Γ (32)

βijγ ∈ {0, 1} ∀(i, j) ∈ V 2, γ = 1, . . . ,Γ (33)

9

0 1

2

3

4 5

0 1

2

3

4 5

0 1

2

3

4 5

γ=0

γ=1

γ=2

α010

β
121

α
130 α 34

0

α 120
α
240

α
241

α450

β
131

β
241

β
341

α 121

α
131

α011 α451

α 34
1

β
242β

342

β
122

β
132

α012

α 122
α
242

α
132 α 34

2

α452

β
451

β
011

β
452

β
012

β
551

β
552

Figure 4: Example augmented graph for a project with four non-dummy activities, and
where up to Γ = 2 activities can reach their worst-case durations.

10

where αijγ is the flow from node i to node j in level γ and βijγ is the flow from node i in

level γ − 1 to node j in level γ. The constraints model a unit flow through the augmented

network from node 0 in level 0 (Constraint (30)) to node n+ 1 in level Γ (Constraint (31)).

Constraints (27) are flow-conservation constraints that ensure that for node each in level

γ = 1, . . . ,Γ− 1, the incoming flow from levels γ and γ − 1 must be equal to the outgoing

flow to levels γ and γ + 1. Constraints (28) and (29) conserve flow over the nodes in the

special cases of the first and last level, respectively.

Note that this formulation includes more αijγ and βijγ variables than indicated in

Figure 4, with the edges shown in Figure 4 corresponding to the edges for which yij = 1.

The edges that are not shown are penalised by constant M in the objective (26) when

yij = 0. To ensure that it is always possible to find a path from node 0 in level 0 to node

n + 1 in level Γ in the augmented network (if Γ is larger than the number of activities

included in the longest path from node 0 to node n+1 in the original project network, such

a path may not be possible), the final sink nodes of each layer are connected by enforcing

yn+1,n+1 = 1 (see dotted arcs in Figure 4). Since θ̄n+1 + θ̂n+1 = 0 these additional edges

can be traversed at no extra cost to reach node n+ 1 in level Γ.

3.2 Compact reformulation

Since the second-stage problem (26)-(33) is simply a longest-path problem over an aug-

mented project graph, it is equivalent to its linear relaxation where αijγ ∈ [0, 1] for all

(i, j) ∈ V 2, γ = 0, . . . ,Γ, and βijγ ∈ [0, 1] for all (i, j) ∈ V 2, γ = 1, . . . ,Γ. Hence, we can

take the dual of this problem to get an equivalent minimisation problem.

The first-stage problem aims determine a sufficient selection X ∈ X that minimises

the second-stage objective value. This first-stage problem can be modelled with a flow-

based formulation, as proposed by Artigues et al. (2003). This formulation makes use

of continuous resource flow variables fijk, which determine the amount of resource type

k ∈ K that is transferred upon the completion of activity i to activity j. Additionally,

binary variables yij capture the choice of sufficient selection by representing precedence

relationships of the extended project network.

Thus, having dualised the second-stage problem (26)-(33) into a minimisation problem,

the first and second-stages can be combined to obtain the following reformulation of the

full two-stage robust RCPSP with budgeted uncertainty:

min Sn+1,Γ (34)

s.t. S00 = 0 (35)

Sjγ − Siγ ≥ θ̄i −M(1− yij) ∀(i, j) ∈ V 2, γ = 0, . . . ,Γ (36)

Sj,γ+1 − Siγ ≥ θ̄i + θ̂i −M(1− yij) ∀(i, j) ∈ V 2, γ = 0, . . . ,Γ− 1 (37)

yij = 1 ∀(i, j) ∈ E ∪ {(n+ 1, n+ 1)} (38)

fijk ≤ Nkyij ∀(i, j) ∈ V 2, ∀k ∈ K (39)∑
i∈V

fijk = rjk ∀j ∈ V, ∀k ∈ K (40)

11

∑
j∈V

fijk = rik ∀i ∈ V, ∀k ∈ K (41)

Siγ ≥ 0 ∀i ∈ V, γ ∈ 0, . . . ,Γ (42)

fijk ≥ 0 ∀(i, j) ∈ V 2, ∀k ∈ K (43)

yij ∈ {0, 1} ∀(i, j) ∈ V 2, (44)

where M , as before, is chosen to be greater than or equal to the maximum possible mini-

mum makespan, and Nk is some number greater than or equal to Rk. Constraints (35)-(37)

are the dual constraints of the second-stage problem (26)-(33), and correspond to makespan

constraints that ensure that activity start times respect the project precedence relation-

ships. Constraints (38) capture the original project precedences, whilst constraints (39)-

(41) are resource flow constraints. Constraints (39) ensure that the resource flows respect

the precedence relationships, and constraints (40) and (41) conserve flow into and out of

each node, respectively. Hence problem (34)-(44) can be seen as a extended makespan

minimisation problem, in which a feasible project network must be constructed with the

objective of minimising the overall makespan on the corresponding augmented network.

With polynomially many constraints and variables (specifically, O(|V |2 · |K| + |V | · Γ)

many variables and O(|V |2(|K| + Γ) + |E|) many constraints), this formulation can be

passed directly to standard optimisation software for solving, and the results of doing so are

presented in the following section. This is the first formulation of the two-stage adjustable

RCPSP for which this is the case. In comparison, the formulation from Bruni et al. (2018)

makes use of O(|V |2|K|+ |V |∆) many variables and O(|V |3 + |V |2(|K|+ ∆) + |E|) many

constraints, where ∆ =
(|V |

Γ

)
is an exponential number in Γ.

It is important to note that this basic formulation does not enforce the transitivity of

the y-variables. Instead, the formulation captures the extended project network in terms of

the y-variables with constraints (38) and (39), and ensures the feasibility of activity start-

times with respect to this extended network through constraints (36) and (37). In Section

4 the computational benefits of extending model (34)-(44) to include explicit transitivity

constraints on the y-variables is examined.

4 Computational experiments

This section compares results obtained by solving the compact robust counterpart (34)-

(44), and three slight extensions to this method, with the current state-of-the-art approach

to solve the two-stage robust RCPSP proposed in Bruni et al. (2018). Before outlining the

proposed extensions to the basic model detailed in the previous section, we introduce the

test instances used in this computational study.

The complete sets of results from these experiments as well as Python implementations

of each of the four methods we propose can be found at https://github.com/boldm1/

two-stage-robust-RCPSP.

12

https://github.com/boldm1/two-stage-robust-RCPSP
https://github.com/boldm1/two-stage-robust-RCPSP

4.1 Instances

The test instances used in this computational study have been converted from deterministic

RCPSP instances involving 30 activities, taken from the PSPLIB (Kolisch and Sprecher

(1997), http://www.om-db.wi.tum.de/psplib/). The difficulty of these instances is mea-

sured and controlled by the following three parameters:

1. Network complexity NC ∈ {1.5, 1.8, 2.1}. This measures the average number of non-

redundant (i.e. non-transitive) arcs per activity.

2. Resource factor RF ∈ {0.25, 0.5, 0.75, 1}. This measures the average proportion of

resource types for which a non-dummy activity has a non-zero requirement.

3. Resource strength RS ∈ {0.2, 0.5, 0.7, 1}. This measures the restrictiveness of the

availability of the resources, with a smaller RS value indicating a more constrained

project instance.

The PSPLIB contains a set of 10 instances for each of the 48 possible combinations of

instance parameters.

The maximum deviation of the duration of each activity is set to be θ̂ =
⌈
θ̄/2
⌉
, where

θ̄ is the nominal duration as specified in the original instance file. For each of the 480

deterministic RCPSP instances in the PSPLIB, three robust counterparts have been gener-

ated by considering Γ ∈ {3, 5, 7}, resulting in a total of 1440 test instances. The sets of 30

robust counterparts for each combination of instance parameters are labelled J301, J302,

. . . , J3048. Note that the instances used in this computational study are identical to the

instances used in Bruni et al. (2017) and Bruni et al. (2018).

4.2 Implementations

The following section compares the performance of model (34)-(44) with that of three slight

extensions. Here, we outline these extensions and clarify details regarding the practical

implementation of these models.

The first variant of the basic model (34)-(44) includes the following transitivity con-

straints on the y-variables:

yij + yji ≤ 1 ∀(i, j) ∈ V 2 \ {(n+ 1, n+ 1)} (45)

yij ≥ yil + ylj − 1 ∀(i, l, j) ∈ V 3. (46)

As explained in Section 3.2, these transitivity of the y-variables is not strictly necessary

to ensure the feasibility of the activity start-times. We include them as an extension to

model (34)-(44) in order to assess their impact on the computational performance.

The second extension involves the provision of a heuristic warm-start solution to the

solver software. This heuristic solution is obtained with the following procedure:

13

http://www.om-db.wi.tum.de/psplib/

1. Given an uncertain RCPSP instance, a heuristic solution is found to the correspond-

ing deterministic instance using the latest-finish-time (LFT) priority-rule heuristic

(Kolisch, 1996).

2. From this solution, a feasible set of y-variables is obtained by setting

yij =

1 if sj ≥ fi
0 otherwise,

where sj is the start time of activity j, and fi is the finish time of activity i.

3. These y variables are passed to the basic model (34)-(44), which is solved to provide

a feasible warm-start solution.

A detailed example of this warm-start procedure is given in Appendix B. This warm-

start solution can be used to tighten the big-M constraints (36) and (37), and thereby

further improve the basic model. This is achieved by setting Mij = LFi − ESj for each

(i, j) ∈ V 2, where ESj is the earliest start time of activity j, and LFi is the latest finish

time of activity i, calculated relative to the makespan of the warm-start solution. As before,

these values are computed recursively via a forward-pass and backward-pass of the project

network, respectively.

Note that, although the S-variables of formulation (34)-(44) are in general continuous,

for the purposes of this computational study, the S-variables have been set to be integer.

Since θ̂ =
⌈
θ̄/2
⌉
∈ Z for the instances solved in this study, the correctness of the formulation

is unaffected by this specification.

In summary, the following section presents results from the following five solution ap-

proaches:

1. Basic model (34)-(44),

2. Basic model with transitivity constraints, i.e (34)-(46),

3. Basic model with warm-start,

4. Basic model with warm-start and transitivity constraints,

5. Primal method from Bruni et al. (2018). This is the strongest existing approach for

solving the two-stage robust RCPSP.

All the models proposed in this paper have been solved using Gurobi 9.0.1, running on

4 cores of a 2.30GHz Intel Xeon CPU, limited to 16GB RAM. Note that the specifications

of this machine have been chosen to be as similar as possible to that of the CPU used in the

experiments performed in Bruni et al. (2017) and Bruni et al. (2018). A limit of 20 minutes

was imposed on the solution time of each model, the same as used for the experiments

performed in Bruni et al. (2017) and Bruni et al. (2018). Results for the primal method

have been reproduced from Bruni et al. (2018).

14

4.3 Results

In this section, we first present and analyse results from solving model (34)-(44) and the

three variants proposed in the previous section, before we compare these results with those

from the current best iterative algorithm presented in Bruni et al. (2018).

We start by considering the performance profile (Dolan and Moré, 2002) plot shown in

Figure 5. The performance profile uses the performance ratio as a measure by which the

different solution methods can be compared. The performance ratio of method m ∈M for

problem instance i ∈ I is defined to be

pim =
tim

minm∈M tim
,

where tim is the time required to solve instance i using method m. If method m is unable

to solve instance i to optimality within the 20 minute time-limit, then pim = P , where

P ≥ maxi,m rim. The performance profile of method m ∈M is defined to be the function

ρm(τ) =
|{pim ≤ τ : i ∈ I}|

|I| ,

i.e. the probability that the performance ratio of method m is within a factor τ of the best

performance ratio. The performance profile in Figure 5 has been plotted on the log scale

for clarity.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

τ

0.0

0.2

0.4

0.6

0.8

1.0

P
(l

og
(p
im

)
≤
τ
)

basic model

incl. transitivity

incl. warm-start

incl. warm-start & trans.

Figure 5: Performance profile of relative solution times.

It is clear from Figure 5 that the provision of a heuristic warm-start solution improves

15

solution time, with the model that make use of a warm-start solution being faster to solve

for a greater proportion of instances that their respective models without a warm-start.

It can also be seen that the models that make use of transitivity constraints are slower to

solve to optimality for a greater proportion of instances than their respective models that

do not use transitivity constraints. However, the inclusion of transitivity constraints does

increase the proportion of instances that can be solved to optimality, by 5.3% for the basic

model, and by 5.2% for the model with warm-start.

Figure 6 plots the cumulative percentage of instances solved to within a given optimality

gap within the 20 minute time-limit. Note that the left-hand y-intercept of this figure gives

the same information as the right-hand y-intercept in Figure 5, that is, the proportion of

instances solved to optimality using each method. Looking at Figure 6, it can be seen

that as well as increasing the proportion of instances that can be solved to optimality,

the inclusion of transitivity constraints increases the proportion of instances that can be

solved to within a given optimality gap. Of the 255 instances for which an optimal solution

was unable to be found with any model, but for which a feasible solution was found using

all models, the average optimality gap was 24.53% for the basic model, 22.80% with the

inclusion of transitivity constraints, 24.71% with the inclusion of a warm-start solution,

and 22.36% with the inclusion of both a warm-start solution and transitivity constraints.

Note however that the basic model fails to find a feasible solution for only 3 instances,

whilst the model that includes transitivity constraints fails to find a feasible solution for 24

instances. The other two variants find feasible solutions to all 1440 instances.

0 10 20 30 40 50

Gap (%)

75

80

85

90

95

100

%
of

in
st

an
ce

s

basic model

incl. transitivity

incl. warm-start

incl. warm-start & trans.

Figure 6: Cumulative percentage of instances solved to within given gap of optimality
within time-limit.

16

basic model (34)-(44) incl. trans
Γ time gap #solv time gap #solv

3 318.33 5.18 362 285.28 4.99 388
5 327.37 5.37 361 303.23 5.37 377
7 334.58 5.79 359 308.92 7.05 374

326.76 5.45 1082 299.14 5.80 1139

incl. warm-start incl. warm-start + trans.

Γ time gap #solv time gap #solv

3 312.77 5.29 366 283.74 4.49 386
5 319.83 5.22 361 292.14 4.60 383
7 329.24 5.49 359 310.07 4.87 373

320.61 5.33 1086 295.32 4.65 1142

Table 1: Comparison of the variants of model (34)-(44) for different values of Γ.

From Figures 5 and 6, we can see that the inclusion of a warm-start solution and

transitivity constraints in model (34)-(44), is the best performing variant: it solves the

greatest number of instances to optimality, is the strongest performing model over the

instances which no model can solve to optimality, and is significantly faster to solve than

the transitive model without a warm-start.

In Table 1, we consider the impact of the uncertainty budget Γ on the performance of

the basic model (34)-(44) and its three variants. For each method we report the average

CPU time in seconds (time), the average optimality gap in percent (gap), and the number

of instances solved to optimality (#solv). Note that in the case where a method was unable

to find a feasible solution to given instance, an optimality gap of 100% has been reported.

These results show that although the effect is limited, instances do appear to get more

difficult to solve as Γ increases for all four methods.

In Table 2, we now compare the performance of the basic model (34)-(44) and its

strongest extension, with the results of the strongest existing algorithm for the two-stage

robust RCPSP, the primal method (Bruni et al., 2018). For each set of test instances,

J301, . . . , J3048, Table 2 reports instance parameters (NC, RF, RS), as well as the same

measures that were reported in Table 1 (time, gap, #solv).

Of the 1440 test instances, 1160 have been solved to optimality within the time-limit

by at least one of the four variants of model (34)-(44) proposed in this paper. As seen in

Table 2, the primal method solves 767/1440 instance to optimality, whilst the basic method

solves 1082/1440 instances to optimality (∼41% more than the primal method), and the

strongest performing method, which includes the warm-start and transitivity constraints,

solves 1142/1440 instances to optimality (∼49% more than the primal method). Further-

more, our methods reduce the average gap (4.66% instead of 6.30%) and result in smaller

average solution times (295 seconds instead of 621 seconds).

There are only six out of 48 instance sets for which the primal method shows a slightly

better performance than the methods we propose (J309, J3013, J3025, J3029, J3041,

J3045). These contain some of the most difficult instances, for which all the methods

17

perform poorly. All three methods fail to find an optimal solution to almost all of the

instances in these sets, however the primal method achieves a smaller optimality gap in the

time limit. The iterative approach utilised by the primal method incrementally improves

upon a feasible solution by solving a series of subproblems. For the most challenging in-

stances, this iterative approach is more effective at reducing the optimality gap earlier in

the solution process than the methods that we propose, which attempt to solve the full

problem at once. It is important to note however that this does not necessarily mean that

the primal method is able to solve these instances more quickly than the methods we pro-

pose, and that the overall solution times of all three methods on these instances remain

unknown. Note also that the primal method solves some instances to optimality whilst

simultaneously reaching the maximum time-limit of 1200 seconds. It is therefore unclear

whether or not this is a numerical inaccuracy in the results presented in Bruni et al. (2018).

Overall, we find that the methods proposed in this paper considerably outperform the

previous best approach, solving almost 50% more instances in a considerably shorter com-

putation time. While the primal method has the drawback that several models have to be

solved subsequently in an iterative process, our reformulation makes it possible to solve the

two-stage adjustable RCPSP with a single mixed-integer program, utilising the strength of

current solvers such as Gurobi.

5 Conclusion

This paper has introduced a new mixed-integer linear programming formulation for the ro-

bust counterpart to the two-stage adjustable robust RCPSP. This new compact formulation

has been derived by considering a reformulation of the second-stage adversarial sub-problem

of maximising the worst-case delayed makespan for a project without resource conflicts.

The reformulation of this sub-problem is equivalent to a longest-path problem over an aug-

mented project network made from multiple copies of the original project network. Hence,

the dual of this longest-path problem can be inserted into the first-stage resource allocation

problem to obtain a compact minimisation problem for the full two-stage robust RCPSP.

The performance of this new formulation has been examined over 1440 instances of

varying characteristics and difficulty. Results show that the proposed formulation can be

solved by standard optimisation software significantly faster than the current best algorithm

for solving this problem. Using our approach, almost 50% more instances can be solved

to optimality within the same time-limit, while also achieving a smaller average gap and a

smaller average solution time.

Regarding future research on the two-stage robust RCPSP, the development of heuristic

approaches for solving larger and more-challenging instances of this problem would seem

to be a natural and worthwhile objective.

18

primal method
(Bruni et al., 2018) basic model incl. warm-start + trans.

NC RF RS time gap #solv time gap #solv time gap #solv

J301 1.50 0.25 0.20 497.83 1.66 21 6.96 0.00 30 19.69 0.00 30
J302 1.50 0.25 0.50 192.39 0.24 28 2.68 0.00 30 6.57 0.00 30
J303 1.50 0.25 0.70 52.61 0.15 29 1.11 0.00 30 2.42 0.00 30
J304 1.50 0.25 1.00 124.97 1.18 27 0.78 0.00 30 1.62 0.00 30
J305 1.50 0.50 0.20 1200.00 15.92 0 1182.58 16.32 1 1099.26 13.29 8
J306 1.50 0.50 0.50 1115.86 11.56 3 155.59 0.05 29 102.27 0.00 30
J307 1.50 0.50 0.70 605.15 3.01 19 8.10 0.00 30 10.74 0.00 30
J308 1.50 0.50 1.00 363.31 1.85 22 1.45 0.00 30 1.95 0.00 30
J309 1.50 0.75 0.20 1200.00 10.19 0 1200.00 35.81 0 1200.00 30.71 0
J3010 1.50 0.75 0.50 1140.87 20.71 2 791.62 2.04 13 646.61 1.86 20
J3011 1.50 0.75 0.70 974.32 9.84 7 167.99 0.10 28 130.60 0.09 28
J3012 1.50 0.75 1.00 272.53 0.65 26 1.89 0.00 30 2.38 0.00 30
J3013 1.50 1.00 0.20 1200.00 50.55 1 1200.00 40.09 0 1200.00 37.27 0
J3014 1.50 1.00 0.50 1149.39 18.94 2 988.55 4.40 7 853.59 3.44 12
J3015 1.50 1.00 0.70 853.66 5.60 12 129.14 0.37 27 132.07 0.37 27
J3016 1.50 1.00 1.00 207.71 0.74 27 1.33 0.00 30 2.79 0.00 30
J3017 1.80 0.25 0.20 227.35 0.15 28 4.20 0.00 30 7.47 0.00 30
J3018 1.80 0.25 0.50 18.26 0.00 30 1.31 0.00 30 2.20 0.00 30
J3019 1.80 0.25 0.70 65.78 0.35 29 0.80 0.00 30 1.59 0.00 30
J3020 1.80 0.25 1.00 87.68 0.38 28 0.40 0.00 30 1.28 0.00 30
J3021 1.80 0.50 0.20 1200.00 9.28 2 967.73 7.77 10 757.75 5.04 18
J3022 1.80 0.50 0.50 877.51 7.11 10 45.13 0.00 30 43.52 0.00 30
J3023 1.80 0.50 0.70 356.09 0.86 24 2.71 0.00 30 4.65 0.00 30
J3024 1.80 0.50 1.00 201.76 1.13 26 0.95 0.00 30 1.75 0.00 30
J3025 1.80 0.75 0.20 1200.00 13.15 0 1200.00 31.71 0 1200.00 29.77 0
J3026 1.80 0.75 0.50 987.24 6.64 9 271.10 0.39 26 155.52 0.05 29
J3027 1.80 0.75 0.70 628.61 3.51 16 3.29 0.00 30 4.15 0.00 30
J3028 1.80 0.75 1.00 177.53 0.61 27 0.91 0.00 30 1.28 0.00 30
J3029 1.80 1.00 0.20 1200.00 10.5 1 1200.00 42.12 0 1200.00 39.23 0
J3030 1.80 1.00 0.50 1200.00 19.98 0 1158.57 4.51 3 1086.47 3.73 8
J3031 1.80 1.00 0.70 866.16 7.94 9 245.13 0.96 24 236.46 0.63 25
J3032 1.80 1.00 1.00 199.45 1.47 26 1.00 0.00 30 1.16 0.00 30
J3033 2.10 0.25 0.20 28.35 0.00 30 1.58 0.00 30 2.01 0.00 30
J3034 2.10 0.25 0.50 50.02 0.08 29 0.66 0.00 30 0.79 0.00 30
J3035 2.10 0.25 0.70 144.88 1.10 27 0.54 0.00 30 0.65 0.00 30
J3036 2.10 0.25 1.00 20.52 0.00 30 0.29 0.00 30 0.44 0.00 30
J3037 2.10 0.50 0.20 1131.60 5.59 7 634.14 6.69 18 523.56 2.31 23
J3038 2.10 0.50 0.50 463.92 1.59 23 11.63 0.00 30 12.53 0.00 30
J3039 2.10 0.50 0.70 268.81 0.78 27 3.55 0.00 30 2.56 0.00 30
J3040 2.10 0.50 1.00 257.42 1.66 24 1.29 0.00 30 1.14 0.00 30
J3041 2.10 0.75 0.20 1200.0 7.12 1 1200.00 26.73 0 1193.00 20.67 1
J3042 2.10 0.75 0.50 886.16 7.42 10 282.54 1.43 26 169.89 0.38 27
J3043 2.10 0.75 0.70 823.56 4.69 12 171.58 0.13 27 30.39 0.00 30
J3044 2.10 0.75 1.00 481.39 3.38 19 1.56 0.00 30 1.44 0.00 30
J3045 2.10 1.00 0.20 1164.00 8.10 2 1200.00 34.92 0 1200.00 31.91 0
J3046 2.10 1.00 0.50 1200.00 16.45 0 971.15 4.47 7 836.19 2.79 16
J3047 2.10 1.00 0.70 866.38 7.79 9 259.45 0.35 26 80.91 0.00 30
J3048 2.10 1.00 1.00 181.33 0.83 26 1.33 0.00 30 1.59 0.00 30

621.09 6.30 767 326.76 5.24 1082 295.32 4.66 1142

Table 2: Comparison of primal method (Bruni et al., 2018), basic model (34)-(44), and
extended model including warm-start and transitivity constraints.

19

Acknowledgements

The authors are grateful for the support of the EPSRC-funded (EP/L015692/1) STOR-i

Centre for Doctoral Training.

References

Artigues, C., Demassey, S., and Neron, E., editors (2008). Resource-Constrained Project
Scheduling: Models, Algorithms, Extensions and Applications. ISTE/Wiley.

Artigues, C., Leus, R., and Nobibon, F. T. (2013). Robust optimization for resource-
constrained project scheduling with uncertain activity durations. Flexible Services and
Manufacturing Journal, 25(1-2):175–205.

Artigues, C., Michelon, P., and Reusser, S. (2003). Insertion techniques for static and
dynamic resource-constrained project scheduling. European Journal of Operational Re-
search, 149(2):249–267.

Balouka, N. and Cohen, I. (2019). A robust optimization approach for the multi-mode
resource-constrained project scheduling problem. European Journal of Operational Re-
search.

Bartusch, M., Möhring, R. H., and Radermacher, F. J. (1988). Scheduling project networks
with resource constraints and time windows. Annals of Operations Research, 16(1):199–
240.

Ben-Tal, A., El Ghaoui, L., and Nemirovski, A. (2009). Robust Optimization, volume 28.
Princeton University Press.

Ben-Tal, A., Goryashko, A., Guslitzer, E., and Nemirovski, A. (2004). Adjustable robust
solutions of uncertain linear programs. Mathematical Programming, 99(2):351–376.

Ben-Tal, A. and Nemirovski, A. (1998). Robust convex optimization. Mathematics of
Operations Research, 23(4):769–805.

Ben-Tal, A. and Nemirovski, A. (1999). Robust solutions of uncertain linear programs.
Operations Research Letters, 25(1):1–13.

Ben-Tal, A. and Nemirovski, A. (2000). Robust solutions of linear programming problems
contaminated with uncertain data. Mathematical Programming, 88(3):411–424.

Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik, 4:238–252.

Bertsimas, D., Brown, D. B., and Caramanis, C. (2011). Theory and applications of robust
optimization. SIAM Review, 53(3):464–501.

Bertsimas, D. and Sim, M. (2004). The price of robustness. Operations Research, 52(1):35–
53.

Bruni, M. E., Beraldi, P., and Guerriero, F. (2015). The stochastic resource-constrained
project scheduling problem. In Handbook on Project Management and Scheduling, vol-
ume 2, pages 811–835. Springer.

Bruni, M. E., Pugliese, L. D. P., Beraldi, P., and Guerriero, F. (2017). An adjustable
robust optimization model for the resource-constrained project scheduling problem with
uncertain activity durations. Omega, 71:66–84.

20

Bruni, M. E., Pugliese, L. D. P., Beraldi, P., and Guerriero, F. (2018). A computational
study of exact approaches for the adjustable robust resource-constrained project schedul-
ing problem. Computers & Operations Research, 99:178–190.

Dolan, E. D. and Moré, J. J. (2002). Benchmarking optimization software with performance
profiles. Mathematical Programming, 91(2):201–213.

Drezet, L.-E. and Billaut, J.-C. (2008). Employee scheduling in an IT company. In Artigues,
C., Demassey, S., and Neron, E., editors, Resource-Constrained Project Scheduling: Mod-
els, Algorithms, Extensions and Applications, pages 243–255. ISTE/Wiley.

Ghouila-Houri, A. (1962). Caractérisation des matrices totalement unimodulaires. Comptes
Redus Hebdomadaires des Séances de l’Académie des Sciences (Paris), 254:1192–1194.

Goerigk, M. and Schöbel, A. (2016). Algorithm engineering in robust optimization. In
Algorithm Engineering, pages 245–279. Springer.

Gorissen, B. L., Yanıkoğlu, İ., and den Hertog, D. (2015). A practical guide to robust
optimization. Omega, 53:124–137.

Gourgand, M., Grangeon, N., and Norre, S. (2008). Assembly shop scheduling. In Artigues,
C., Demassey, S., and Neron, E., editors, Resource-Constrained Project Scheduling: Mod-
els, Algorithms, Extensions and Applications, pages 229–242. ISTE/Wiley.

Herroelen, W. and Leus, R. (2005). Project scheduling under uncertainty: Survey and
research potentials. European Journal of Operational Research, 165(2):289–306.

Igelmund, G. and Radermacher, F. J. (1983a). Algorithmic approaches to preselective
strategies for stochastic scheduling problems. Networks, 13(1):29–48.

Igelmund, G. and Radermacher, F. J. (1983b). Preselective strategies for the optimization
of stochastic project networks under resource constraints. Networks, 13(1):1–28.

Kim, J.-L. (2013). Genetic algorithm stopping criteria for optimization of construction
resource scheduling problems. Construction Management and Economics, 31(1):3–19.

Kolisch, R. (1996). Serial and parallel resource-constrained project scheduling methods re-
visited: Theory and computation. European Journal of Operational Research, 90(2):320–
333.

Kolisch, R. and Sprecher, A. (1997). PSPLIB - A project scheduling problem library: OR
software - ORSEP operations research software exchange program. European Journal of
Operational Research, 96(1):205–216.

Kouvelis, P. and Yu, G. (1997). Robust discrete optimization and its applications (noncon-
vex optimization and its applications). In Nonconvex Optimization and Its Applications,
volume 14. Kluwer Academic Publishers.

Lamas, P. and Demeulemeester, E. (2016). A purely proactive scheduling procedure for
the resource-constrained project scheduling problem with stochastic activity durations.
Journal of Scheduling, 19(4):409–428.

Li, H. and Womer, N. K. (2015). Solving stochastic resource-constrained project schedul-
ing problems by closed-loop approximate dynamic programming. European Journal of
Operational Research, 246(1):20–33.

Möhring, R. H. and Stork, F. (2000). Linear preselective policies for stochastic project
scheduling. Mathematical Methods of Operations Research, 52(3):501–515.

21

Pass-Lanneau, A., Bendotti, P., and Brunod-Indrigo, L. (2020). Exact and heuris-
tic methods for Anchor-Robust and Adjustable-Robust RCPSP. arXiv preprint
arXiv:2011.02020. https://arxiv.org/abs/2011.02020.

Pritsker, A. A. B., Waiters, L. J., and Wolfe, P. M. (1969). Multiproject scheduling with
limited resources: A zero-one programming approach. Management Science, 16(1):93–
108.

Vanhoucke, M. (2006). Scheduling an R&D project with quality-dependent time slots. In
Gavrilova, M., Gervasi, O., Tan, C. J. K., Taniar, D., and Laganá, A., editors, Interna-
tional Conference on Computational Science and Its Applications - ICCSA 2006, volume
3982 of Lecture Notes in Computer Science, pages 621–630. Springer.

Yanıkoğlu, İ., Gorissen, B. L., and den Hertog, D. (2019). A survey of adjustable robust
optimization. European Journal of Operational Research, 277(3):799–813.

Zhu, G., Bard, J. F., and Yu, G. (2007). A two-stage stochastic programming approach for
project planning with uncertain activity durations. Journal of Scheduling, 10(3):167–180.

A Non-integrality of the adversarial sub-problem

Here, we show that the constraint matrix of model (13)-(22) is not totally unimodular,

contrary to the claim made in Bruni et al. (2017). In the following, we define E := E ∪X.

The constraint matrix of (13)-(22) can be written in matrix notation as:

C =

α w δ


A 0 0 Group 1 (14)-(16)

0 IE −B Group 2 (17)

−IE IE 0 Group 3 (18)

0 0 eTV Group 4 (19)

0 0 IV Group 5 (20)

where A is a |V | × |E| arc-node incidence matrix, B is a |E| × |V | matrix where B(i,j),i = 1

for each (i, j) ∈ E , and 0 otherwise, IV and IE are identity matrices of dimension |V | and

|E| respectively, and eTV is a |V | × 1 vectors of 1’s. The rows of this matrix have been

grouped according to the constraints that they represent, and similarly, the columns have

been grouped by the variables that they represent.

Ghouila-Houri (1962) showed that a matrix A is totally unimodular if and only if for

every subset of rows R, there exists a partition of R into two disjoint subsets R1 and R2

such that ∑
i∈R1

aij −
∑
i∈R2

aij ∈ {−1, 0, 1}, ∀j = 1, . . . , n.

Therefore, finding a subset of rows of matrix C for which this condition cannot hold will

prove that C is not totally unimodular.

Consider the constraint matrix of the example shown in Figure 3:

22

https://arxiv.org/abs/2011.02020

α δw

Group 1

Group 2

Group 3

Group 4 + Group 5

Take R to be the subset of rows consisting of the first row of Group 1, and first two rows

of Groups 2 and 3. We will refer to these rows as R1, . . . , R5. To ensure that the sum

of column C9 is in {−1, 0, 1}, R2 and R3 must be assigned opposite signs. R4 and R5

must have opposite signs to R2 and R3, respectively to ensure that the sum of columns

C5 and C6 are in {−1, 0, 1}. Then, whatever the choice of sign for R1, the sum of column

C1 and the sum of column C2 cannot both be in {−1, 0, 1}. Hence, there exists a subset

of rows for which the Ghouila-Houri characterisation of total unimodularity does not hold,

thus proving that matrix C is not totally unimodular, and that model (13)-(22) is not

equivalent to its linear relaxation.

B Example of the warm-start procedure

As an example, we apply the warm-start procedure from Section 4.2 to the project given in

Figure 1. We set Tmax = 20 as an arbitrary upper bound on the minimum makespan of the

corresponding deterministic project. The earliest-start-times ESi, i ∈ V are calculated via

a forward-pass of the project precedence network, whilst the latest-finish-times LFi, i ∈ V
are calculated relative to Tmax via a backward-pass of the project precedence network.

These values are shown in Figure 7.

The LFT priority-rule heuristic orders the project activities according to increasing

latest-finish-times to get σ = (0, 2, 1, 4, 5, 3, 6, 7, 8), and then obtains a feasible schedule by

scheduling these activities one-at-a-time in the order that they appear in σ using the serial

schedule generation scheme (Kolisch, 1996). This results in the following feasible schedule:

S0 = 0, S1 = 0, S2 = 0, S3 = 6, S4 = 3, S5 = 3, S6 = 11, S7 = 12, S8 = 16.

From this schedule, the set of feasible y-variables obtained is shown in Table 3. Formu-

lation (34)-(44) is solved with y-variables fixed to these values to obtain feasible values for

the S-variables and f -variables. The resulting solution is the feasible warm-start solution

we use.

23

0

1 3

8

2

4

5

6

7

5;0

3;2

2;3

2;5

1;4

3;3

4;1

2;4

5;0

i
ri;θi

ES0=0
LF0=9

ES1=0
LF1=14

ES2=0
LF2=12

ES3=2
LF3=19

ES4=3
LF4=16

ES5=3
LF5=16

ES6=7
LF6=20

ES7=7
LF7=20

ES8=11
LF8=20

Figure 7: Earliest-start-times and latest-finish-times for the deterministic project corre-
sponding to the example project shown in Figure 1. Latest-start-times have been calcu-
lated relative to an arbitrary upper bound on the minimum project makespan given by
Tmax = 20.

j
0 1 2 3 4 5 6 7 8

i

0 1 1 1 1 1 1 1 1 1
1 0 0 0 1 1 1 1 1 1
2 0 0 0 1 1 1 1 1 1
3 0 0 0 0 0 0 1 1 1
4 0 0 0 0 0 0 1 1 1
5 0 0 0 1 0 0 1 1 1
6 0 0 0 0 0 0 0 1 1
7 0 0 0 0 0 0 0 0 1
8 0 0 0 0 0 0 0 0 1

Table 3: The set of feasible y-variables corresponding to the solution found by the LFT
priority-rule heuristic for the example project in Figure 7. The ij-th element of this table
gives the value of variable yij .

24

	Introduction
	The two-stage robust RCPSP
	A compact reformulation
	The adversarial sub-problem
	Compact reformulation

	Computational experiments
	Instances
	Implementations
	Results

	Conclusion
	Non-integrality of the adversarial sub-problem
	Example of the warm-start procedure

