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"Good acts nor fair institutions cannot exist if life is not reaffirmed first.

The universal principle of ethics, politics, economics and all sciences is the

acknowledgement of life."

. . .

The model of boundless progress adopted by the modern civilisation has

assumed the existence of unlimited resources and energy that ultimately negates

the material conditions for development and reproduction of life on Earth and,

consequently, the human life.

. . .

A critical deconstruction of the principles and foundations of all human

activities is needed, if humanity is willing to survive and live in dignity. (Dussel,

1998) 1 2.

1In Spanish Dussel, E., 1998. Ética de la liberación en la edad de la globalización y de la exclusión,
Segunda ed. Simancas Ediciones, S.A., Valladolid.

2English version: Dussel, E., 2013. Ethics of Liberation. Duke University Press. doi:10.2307/j.ctv1131d8k
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ABSTRACT

Understanding the mechanisms that determine and differentiate the establishment of

organisms in space is an old and fundamental question in ecology. The emergence of life’s

spatial patterns is guided by the confluence of three forces: the environmental filtering,

which unbalances the probability of establishment for organisms given their evolutionary

adaptations to local environmental conditions; the biological interactions, which restrict

their establishment according to the presence (or absence) of other organisms; the diver-

sification of organisms’ strategies (traits) to migrate and adapt to changing environments.

The main hypothesis in this research is that the accumulated knowledge of biodiversity

occurrences, the species taxonomic classification and geospatial environmental data can

be integrated into a unified modelling framework to characterise the joint effect of these

three forces and, thus, contribute with more general, accurate and statistically sound

species distributions models (SDM)s.

The first part of this thesis describes the design and implementation of a knowledge

engine capable to synthesise and integrate environmental geospatial data, taxonomic

relationships and species occurrences. It uses semantic queries to instantiate complex

data structures, represented as networks of concepts (knowledge graphs). Local taxo-

nomic trees, distributed over a hierarchical spatial system of regular lattices are used as

knowledge graphs to perform data synthesis, geoprocessing, and transformations. The

implementation uses efficient call-by-need evaluations that facilitates spatial and scale

analysis on large datasets.
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The second part of the thesis corresponds to the statistical specification and imple-

mentation of two modelling frameworks for species distribution models (one for single

species and other for multiple species). These models are designed for presence-only

observations; obtained from the knowledge engine. The common specification of these

models are that presence-only observations are the joint effect of two latent processes:

one, that defines the species presence (ecological suitability); and other, that defines the

probability of being sampled (sampling effort). The single species framework uses an

informative sample, chosen by the modeller, to account for the sampling effort. Three

modelling strategies are proposed for accounting the joint effect of the ecological and sam-

pling process (independent processes, a common spatial random effect and correlated

processes). The tree models were compared to the maximum entropy model (MaxEnt),

a popular algorithm used in SDMs. All models showed a better predictive performance

than MaxEnt.

The multi-species modelling framework is a generalisation of the single species frame-

work for developing a joint species distribution model for presence-only data. The spec-

ification is a multilevel hierarchical logistic model with a single spatial random effect,

common to all species of interest. The sampling effort is modelled as a complementary

sample obtained by complementary observations from the taxa of interest using a regional

taxonomic tree. The model was tested against simulated data. All simulated parameters

were covered by the credible intervals of the posterior sampling. A study case in Easter

Mexico was presented as an application of the model. The results obtained in the case

study were consistent with the macroecological theory. The model showed to be effective

in removing bias and noise given by the sampling effort. This effect was particularly im-

pressive in in urban areas, where the sampling intensity is greater. The research presented

here provides an interdisciplinary approach for modelling joint species distributions aided

by the automated selection of biological, spatial and environmental context.
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obtained by MCMC following 1000 iterations with a burn-in of 500. The β

parameters correspond to the fixed effects of the species Pi for covariates 1

and 2. The parameters α correspond to the mixture between the Pi (proba-

bility of occurrence of species i and the sampling effort S). The parameters

related to the variance are τ2 for the spatial random effect and σ2
q for the

unstructured random effect. All simulated parameters are within the 95%

credible intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191



List of tables xxxi

4.4 [ Binary observations ] Comparison between simulated and inferred param-

eters sampled from the posterior joint probability distribution (see equation

4.1 for binary observations (presence / absence) distributed as independent

Bernoulli variables when conditioned to the latent random effect G . The in-

ference was obtained from MCMC following 40000 iterations with a burn-in

of 20000. The β parameters correspond to the fixed effects of the species Pi

for covariates 1 and 2. The parameters α correspond to the mixture between

the Pi (probability of occurrence of specie i and the sampling effort S). The

parameters related to the variance are τ2 for the spatial random effect. . . . 192





LIST OF SYMBOLS

• G : spatial autocorrelated process (latent variable) (chapter 4)

• PX : latent variable for the sampling effort process (chapter 3)

• PY : latent variable for the ecological process (chapter 3)

• Pi : ecological suitability process for taxon (chapter 4)

• Qi : A process that mixes the ecological suitability for taxon i and the sampling

effort process (chapter 4)

• RX : random effect of the sampling effort process (chapter 3)

• RY : random effect for the ecological process (chapter 3)

• S : sampling effort process (chapter 4)

• SX : spatial random effect for the sampling effort process (chapter 3)

• SY : spatial random effect for the ecological process (chapter 3)

• Xk : observation of the sampling effort in the cell k (chapter 3)

• Yk : observation of an occurrence (presence) in the cell k (chapter 3)

• ZX : unstructured random effect for the sampling effort process (chapter 3)

• ZY : unstructured random effect for the ecological process (chapter 3)



xxxiv List of symbols

• Ω : the totality of occurrences in a given database or, theoretically, all organisms in

Earth.ToL : the (taxonomic) tree of Life (chapter 4)

• R̂ : A convergence diagnostic for Markov chains (Gelman et al., 1992). (chapter 4)

• W : the spatial lattice. Its corresponding adjancency matrix is denoted as W . (chap-

ter 3 and 4)
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CHAPTER 1

INTRODUCTION

The research integrated in this thesis is an attempt to contribute to the development of

computational and statistical methods for answering an old ecological question:

How is life distributed on Earth?

This question has been a central problem in ecology at least since the beginning of the

XIX century. Some answers to this question appeared in the natural history voyages of von

Humboldt and Bonpland (1807) and in the influential evolutionary theories of Darwin

(1859) and Wallace (1876). During the mid XX century, novel ideas like the continental drift

theory (Wegener, 1923) and the classification of climates (Köppen, 1918) inspired early

works to explain the adaptations and needs of organisms, given an environmental con-

text. Examples of these are the paleontological works of Simpson (1953), the descriptions

of botanical distributions of Cain (1944) and, specially, the influential theory of island

biogeography by MacArthur and Wilson (1967). The influx of these novel ideas allowed

the synthesis of a study field in its own right. As such, the study of how organisms relate

to each other and their environment, and how these relationships explain spatial statis-

tical patterns of diversity, abundance, richness, evenness and community composition,

became known as Macroecology (Brown et al., 1995).
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Since the industrialization era of the early XIX century, the global natural environment

has been altered profoundly by human activities (Stocker et al., 2013). The accelerating

rate of land and ecosystems degradation induced by anthropogenic changes on land cover

are provoking fast increasing rates in species extinctions (Foley, 2005). A consequence

of this is the observed loss in biodiversity, a truly irreversible environmental change that

Earth faces today (Dirzo and Raven, 2003). At the current pace, and without significant

changes in society’s standards for development and growth, humankind will witness

the sixth mass extinction in the history of the planet (Ceballos et al., 2015). This will

have devastating effects on life-sustaining processes on global biogeochemical cycles

(Cavicchioli et al., 2019; Díaz et al., 2009; Ehrlich and Ehrlich, 2013; Hooper et al., 2012;

Millennium Ecosystem Assessment, 2005; Pereira et al., 2010). It has been demonstrated

that the current human-dominated epoch is impacting the global environment at such

a magnitude that its effects will persist in the geologic record. Some authors like (Lewis

and Maslin, 2015; Steffen et al., 2011) had promoted the use of the name Antropocene to

refer to this contemporary geologic epoch. As such, it is a priority to produce methods

and techniques to accurately describe the spatial distribution of the species using all the

available information.

The growth of research in macroecology has been influenced by the need to advance

the knowledge in applications related to the management, adaptation and mitigation

of the society’s impacts on the biosphere (Ferrier et al., 2016; Foden and Young, 2016;

Intergovernmental Panel on Climate Change, 2014). With the development of formal

ecological and statistical methods, aided with computational advances, predicting the

spatial distribution of species have become an active research field, both theoretical and

applied. See Elith and Leathwick (2009); Guisan et al. (2017); Guisan and Zimmermann

(2000) and (Araújo et al., 2019) for a review. Sound statistical models for regression and

classification have been developed for these purposes. Nevertheless, they often require
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ad-hoc sampling designs to account for unbiased observations of the species under study.

That is, these methods often rely on presence-absence or abundance (count) data, thus,

limiting the synthesis and use of datasets to particular sites, research questions and

objectives. As such, this thesis also tries to answer the question of:

How to integrate biodiversity data from different sources to infer species geographic

distributions?

Paradoxically, the anthropocene has diversified technologically, opening opportunities

to find solutions to some of the environmental problems it is causing. In particular, the

revolution of information technologies (IT) has expanded the capacity to compute, store

and transfer massive amounts of data. Environmental sciences have been benefited of this

with the expansion of reliable and diverse data to measure natural phenomena, covering

a wide range of essential biodiversity variables (EBVs) (Kissling et al., 2017) across diverse

spatial and temporal scales. Examples of these are the remote sensing imagery from

Earth observation systems like NASA’s Joint Polar Satellite System (National Aeronautics

and Space Administration et al., 2020) and the ESA’s Copernicus programme (European

Space Agency, 2014), for weather forecasting, natural disaster monitoring, etc. This IT

era is opening opportunities for collecting data in many different forms. For example,

ubiquitous Internet connectivity has made possible the transfer of data across large

distances in a short time; and the multifunctional capabilities of mobile and smart devices

has enabled the management and deployment of collaborative surveys at low costs with

the collective help of communities of enthusiasts and volunteers. Geospatial citizen

science is now possible with the use of methodologies for collecting, annotating and

curating these new sources of spatial data (Goodchild, 2007), (Heipke, 2010) and (Kamel

Boulos et al., 2011). Examples of these are (crowd-based) platforms like OpenStreetMap

(OpenStreetMap Contributors, 2019) for geographic maps and the platform iNaturalist

(ina, 2020) for registering species occurrences. This exponential growth of data brings
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new challenges for storage, access, integration and analysis. To solve this, new theoretical

methods and technologies (defined under the umbrella term of Big Data) are being

developed to extract meaningful information from very large, complex and heterogeneous

data collections (Chen et al., 2014) and (Mikalef et al., 2018). See (Li et al., 2016) for a

review on theoretical and practical challenges involving big geospatial data. The advances

in computational methods for big data and the expansion of environmental data had

open the opportunity for integrating multiple sources of geospatial data. The challenge to

develop novel data structures for representing ecologically meaningful data to support

the analyses of species distributions is still open. As such, the integration and synthesis of

heterogeneous environmental and biological data requires answering the question on:

How to formalise a comprehensive data structure to unify and synthesise hetereogeneous

data sources ?

1.0.1 A constructivistic representation of knowledge

To answer the above question, a formal computational approach for representing knowl-

edge with semantic and spatial networks is proposed. This approach is inspired on Piaget’s

constructivistic epistemology (1952) to model the acquisition of knowledge as a aggregated

and interrelated concepts. In this theory, new concepts are built from the confrontation of

previously recalled schemes with reality. A scheme, in this sense, is a network of associa-

tions between previous experiences and conceptual models of reality. As such, knowledge

is the collection of schemes that associates concepts with real objects; a network of rela-

tionships between learned concepts. According to Piaget (1952), the acquisition of new

knowledge can assimilated by established by knowledge schemes. However, when the real

nature of the object contradicts the internal knowledge structures previously constructed,

a critical process called disequilibrium occurs. When this happens, new evidence and

cognitive processes need to occur in order to create a new knowledge scheme which can
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interpret the new object, a process known as accommodation. Piaget’s constructivistic

epistemology is in some way similar to Popper’s "Three Worlds" paradigm (1966), his

views on open theory and falsifiability in science. For a theory to be open it must allow

continuous testing and modifications when its previous propositions contradict the reality.

Falsifiability in science is, therefore, the property of being subjected to critical analyses

and rejecting false knowledge schemes when new evidence is presented.

Relational structures for representing knowledge have been used before in information

sciences to analyse and integrate information from heterogeneous datasets through the

concept of ontologies (Chandrasekaran et al., 1999; Guarino, 1995). Ontologies standardise

knowledge schemes from a common domain of knowledge. For example, Bard and Rhee

(2004) and (Smith et al., 2007) reviewed the applications and challenges for unifying

standardised ontologies in the biological and medical sciences, while Madin et al. (2008)

reviewed several proposals in ecology for integrating heterogeneous datasets. The research

on these areas involves multiple organisation scales, going as far as phylogenetics in plant

sciences (Walls et al., 2012).

The knowledge specifications developed in this research supports the use of stan-

dardised ontologies, as they are also defined as semantic networks. However, from a

constructivistic approach (sensu Piaget (1952)), the term knowledge scheme is more ap-

propriate than ontology, as our proposed schemes (networks) are non-definite. That is,

the knowledge schemes are subject to constant redefinitions caused by the disequilibrium

with previously assimilated schemes and the accommodation of new information. In this

sense, the knowledge schemes are always subject to change in light of new evidence (data

but also theories), rather than describe an inherent structure of a domain of knowledge,

as the philosophical definition of ontology suggests (see (Guarino, 1995; Wielinga et al.,

1993) for a similar argument).
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1.1 Aim of the thesis

The research in this thesis tries to apply the aboved-mentioned ideas into concrete com-

putational and statistical frameworks. First, by representing biodiversity, geospatial and

environmental data as a unified connected network of knowledge schemes, called knowl-

edge graph; and second, using these schemes to test ecological hypotheses using formal

statistical methods. The thesis is a compendium of three research articles. The basic

concepts for understanding the thesis are explained in this section, leaving further expla-

nations, proofs, computer programs and discussions to the following research chapters.

The central assumption in the presented research is that the available recorded evi-

dence of biological occurrences contribute to inform, to some extent, about the ecological

mechanisms that drive organisms to occupy a given geographic area. We test the hy-

pothesis that meaningful observations, together with appropriate spatial model-based

specifications, describe the stochastic processes that generate these observations. More-

over, the characterisation of these processes can help to describe the species’ responses to

their environment and, ultimately, the presence (and absence) of other species. To for-

mally address this hypothesis we must elaborate precise definitions of concrete statistical

and computational specifications and their corresponding implementations. We begin

with the definition of biological diversity agreed by the United Nations’ Commission for

Biological Diversity :

"The variability among living organisms from all sources, including, inter-

alia, terrestrial, marine, and other aquatic ecosystems, and the ecological com-

plexes of which they are part: this includes diversity within species, between

species and of ecosystems"

– UN-CBD,(1992)
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A biodiversity occurrence is, therefore, any recorded observation of an organism on a

given time and location frame. In this thesis, an occurrence is considered to be a point in

space-time that has associated attributes like: unique id, species name and collection id.

By definition, an occurrence represents only the presence of a single organism. We can

generalise the concept of species to include other taxonomic ranges (also called levels)

like: genus, family, order, class, phylum (or division in case of plants) and kingdom. In this

thesis, the term taxon ( plural taxa) is used to denote an arbitrary taxonomic group. As

such, an occurrence is a type of presence-only datum that has information about, when (t )

and where (x, y) a member of a certain species, or any other taxon, (s) has been recorded.

The phrase available recorded evidence of biodiversity data implies an arbitrary collec-

tion of occurrences composed of independent surveys taken at different times, locations

and sampling designs. The occurrence data is represented as a node in the knowledge

graph with spatio-temporal coordinates. As said before, occurrence data only give infor-

mation about presences of taxa. However, the statistical framework requires presence and

absence observations for total identifiability of the model (Ward et al., 2009). One of the

most fundamental concepts of the proposed statistical framework is the use of knowl-

edge schemes to model absences using the informative occurrences (i.e. presence-only

observations).

1.2 Structure of the thesis

This thesis is structured in two parts. Part I describes the knowledge engine, that is,

the theoretical specification and software implementation of the knowledge graph for

representing knowledge schemes. Part II describes the statistical frameworks for modelling

the species distributions using the observations extracted from the knowledge schemes

implemented by the knowledge engine. The frameworks use these knowledge schemes
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to model absences and informative background data, necessary elements to identify the

presence-only models.

1.2.1 Part I: the knowledge system

The knowledge graph is built on simple data structures represented as nodes. The nodes

are linked with each other using relationships. These relationships have meaning and

they link different classes of nodes. For example, a node of the type occurrence is linked

to a node of the type cell to represent the concept of an occurrence is located in cell. As

such, nodes represent atomic data-objects and these objects are linked through semantic

predicates. In computational terms, a knowledge scheme is the abstraction of a pattern

through the knowledge graph. This abstraction, also called a graph traversal, selects

and visits nodes according to a given specification. A knowledge scheme is, therefore,

a computational type of a conceptual model that gives semantic meaning to a graph

traversal. It abstracts a scientific concept (e.g ecological niche) into a network of nodes and

predicates extracted from the knowledge graph (i.e. the universe of discourse). In this way,

these schemes are capable of integrating data generated (acquired) independently into a

complex structure that has scientific meaning, properties and actions. An example of this

is the generation of a local taxonomic tree constrained to the area determined by a cell. The

graph traversal receives as input the cell node. It selects the associated occurrences located

within the polygon determined by the chosen cell. The procedure starts in the occurrence

node and traverses the knowledge graph following the relationship Is_member_of until it

reaches the root of the tree of life. The resulting selection corresponds to the taxonomic

tree constrained to the occurrences located within the given cell.
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Chapter 2: The knowledge engine

The full description of the engine together with a tutorial on how to use the software

for basic analysis and data queries is located in Chapter 2. It presents how taxonomic

and topological predicates used to link biodiversity and environmental data. That is,

the graph traversals are specified to match heterogeneous data to create complex data

structures with taxonomic and spatio-temporal attributes. Examples of these schemes are

the taxonomic tree defined within a geographic area, the selection of neighbouring areas

given a central region, or the complementary groups given a set of taxa of interest. These

schemes were later used in a Bayesian statistical framework to model the distribution of

single to multiple taxa of interest (part II). This chapter was published as a research article

format in the journal GigaScience with the following reference: GigaScience,Volume 9,

Issue 5, May 2020,giaa039 DOI:10.1093/gigascience/giaa039 See Escamilla Molgora et al.

(2020a).

1.2.2 Part II: The statistical framework

The second part of the this thesis addresses the problem of modelling the spatial distribu-

tion of single and multiple taxa (e.g. species). The main assumption of this framework

is that the occurrence generating process is the joint effect of two processes, one of eco-

logical interest, driven by environmental explanatory variables (described as ecological

suitability) and the other related to the sampling effort, driven by anthropological explana-

tory variables. As such, for an occurrence event to happen, three other events need to

occur simultaneously:

1. taxon s is present in an area L, where (x, y) ∈ L,

2. Someone has gone to location L during time t and recorded the occurrence, and

3. the organism has been recognised as a member of taxon s.
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Events 1 and 2 constitute fundamental concepts of the presented statistical models. Fur-

ther explanations and discussions of these two events are addressed in chapters 3 and

4, when modelling the presence-only hierarchical logistic regression. Event 3 implies

that the classification process for the occurrence is perfect (i.e. there is no error in the

classification of an occurrence). We are aware that this is in practice impossible, as the

natural system of classification is subject to constant updates (De Queiroz and Gauthier,

1990; Futuyma, 2005; Woese et al., 1990). This assumption may not be valid for certain

groups of organisms. However, the error decreases with respect to the taxonomic range.

It is highest at the species rank and lowest at phylum. Nevertheless, for the purposes of

this research, the effect of incorrect classification of taxa is not relevant. Unless it is said

explicitly, we assume that this error does not exist.

The spatial random effect is another important component of the framework. Here

the hypothesis was that the effect of other species interactions in the occurrence of the

target species, can be statistically accounted with a spatial random effect. The test of

this hypothesis and its associated modelling framework is contained in chapter 3 while

chapter 4 explores a generalisation of this framework for multiple species. In both cases,

the spatial effect serves to exchange information between the ecological suitability process

and the sampling effort process.

Chapter 3

This chapter presents a modelling framework with three different spatial configurations for

accounting the joint effect of the ecological suitability process and the sampling effort. To

test the above-mentioned hypothesis, a comparison was done between the spatial models

and maximum entropy (MaxEnt) algorithm (Phillips et al., 2006a), a popular method for

predicting species occurrences using presence-only data. The results showed that the

proposed spatial framework is superior in terms of its goodness of fit measured by the
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receiver operator characteristic (ROC) curve and its area under the curve (AUC) (Fielding

and Bell, 1997). This chapter was submitted to the journal Ecography in September 2020

with positive feedback from the reviewers. At the moment (December 2020) the article is

under revision.

Chapter 4

Chapter 4 presents a generalisation of the modelling framework from chapter 3 to allow

multiple taxa. An important difference is that, instead of using an arbitrary chosen

informative sample as proxy for the sampling effort, the natural taxonomic classification

of life was used to define an intrinsic structure from which to model the absences. This is

based on previous results on joint species distribution models, where common species

are often used to inform about the presence of less frequent or observed species (Ferrier

and Guisan, 2006).

The proposed multiple species model is a novel and unique multilevel logistic hierar-

chical specification for modelling joint species distributions. It was implemented in the

STAN programming language (Carpenter et al., 2017) and tested using simulated data.

Additionally, a case study was presented showing results of ecological importance. This

chapter was submitted for publication in the journal Methods in Ecology and Evolution in

December 2020. The article is currently under review.

Chapters 5

This chapter discusses the general implications and limitations of this research, as well as

possible research lines for continuing in future.

Chapter 6

This chapter contains the general conclusions of the thesis.
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2.1 Introduction

The IT revolution has created the opportunity to compute, store and transfer massive

amounts of information. It is estimated that the volume of all digital information will

surpass 175 Zettabytes (ZB) ( 1 ZB = 1021 bytes) by 2020 (Reinsel et al., 2018). In addition,

the growth in data follows an exponential curve that doubles in volume every two years

((Kurzweil, 2004), (Hilbert and López, 2011) and (Gantz and Reinsel, 2011)). Moreover,

this expansion in data production has occurred in all human activities, including the

environmental sciences. Novel approaches for measuring natural processes are being

applied, adding more reliable and diverse data, and environmental measurements cover a

wide range of spatial and temporal scales ranging, for example, from long-term ecological

experimental plots (Weigelt et al., 2010), (Borer et al., 2014) to near-real time imagery

from Earth observation satellites systems like NASA’s Joint Polar Satellite System (National

Aeronautics and Space Administration et al., 2020) and ESA’s Copernicus programme

(European Space Agency, 2014). This IT era is opening new opportunities for greater

understanding of nature. For example, pervasive Internet connectivity has made possi-

ble the transfer of data across large distances in a short time; and the multifunctional

capabilities of mobile and smart devices has enabled the management and deployment

of collaborative surveys at low marginal costs. Geospatial sciences have benefited in

particular. Methodologies for collecting, annotating and curating these new sources of

spatial data have been proposed by (Goodchild, 2007), (Heipke, 2010) and (Kamel Boulos

et al., 2011) under the term citizen-science; where data are collectively assembled by a

community of enthusiasts and volunteers. Some iconic examples of these (crowd-based)

platforms are OpenStreetMap (OpenStreetMap Contributors, 2019) for geographic maps

and the Global Biodiversity Information Facility (GBIF), an international consortium of
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research and governmental institutions that gathers and publishes information of all types

of biodiversity occurrences (GBIF Secretariat, 2015).

The exponential growth of data imposes new challenges for storage, access, integration

and analysis. In recent years, new theoretical methods and technologies are being devel-

oped to tackle these problems. The name Big Data is now an umbrella term for methods

dealing with huge, complex, and heterogeneous datasets that cannot be handled with

traditional methods. See (Chen et al., 2014) and (Mikalef et al., 2018) for a review of the

field and (Li et al., 2016) for theoretical and practical challenges involving big geospatial

data.

A fundamental goal in ecology is the understanding of the relationships between living

beings and the environment. A requirement to achieve this goal is the integration of inde-

pendent studies and measurements to validate hypotheses on potential causal relations.

To test the existence of these causalities, a substantial number of inputs in terms of theory,

methods and data is needed. Moreover, reliable, reproducible, and easy to access methods

are especially important given the urgency in addressing ongoing environmental crises

(e.g. rapid ecosystem degradation, global climate change, accelerated extinctions and

biodiversity loss) (Stocker et al., 2013),(Brondizio et al., 2019). Ecology is thus adapting

rapidly to these critical challenges and is starting to adopt and develop novel theoretical

and computational methods to answer a central problem: How to synthesise and integrate

ecological theory with big ecological data? Answering this question requires an interdisci-

plinary approach that touches many fields, including: theoretical ecology, mathematical

modelling, statistics, computer science and information sciences. For example, (Loreau,

2010) proposed a conceptual framework for integrating ecological theory by centering

evolution as the link to unify ecology; and (Pavoine and Bonsall, 2011) proposed a seman-

tic and mathematical formalization for unifying traits, species and phylogenetic diversity.

The two approaches exemplify how evolutionary (ancestry) relationships between biologi-
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cal objects constitute a solid base to unify distant branches of ecology. From a statistical

perspective, meta-analysis has been effective in synthesizing research evidence across

independent studies, including unveiling general relations through a statistically sound

framework(Koricheva et al., 2013).

Geospatial data constitute a crucial component for data fusion and harmonization; see

(Wiemann and Bernard, 2016) for a review of methods for heterogeneous spatial big data

fusion, and (Wang et al., 2016) in order to remove bias by using spatial data stratification

methods. A clear example of geospatial data fusion is the building of Essential Biodiversity

Variables (EBVs) to identify biodiversity and ecosystem change (Pereira et al., 2010). EBVs

constitute a minimal set of critical variables aimed to standardize and harmonize global

biodiversity variables. Originally proposed by the Group on Earth Observations Biodi-

versity Observation Network (GEO BON) to assess biodiversity change globally (Navarro

et al., 2017); EBVs are now being used to predict global species distributions and potential

scenarios for policy options (Pereira et al., 2013). EBVs integrate data in a standardised

framework that describes spatial, temporal and biological organization (Schmeller et al.,

2017). Recently, methodologies for building EBVs are drawing the attention of interdisci-

plinary research for reliability and data quality (Kissling et al., 2018). System designs and

infrastructures for integrating heterogeneous big ecological data are emerging. Examples

of these are the citizen-based bird observation network (eBird (Sullivan et al., 2009)), the

TRY database for plant traits (Kattge et al., 2011), the PREDICTS project (Projecting Re-

sponses of Ecological Diversity In Changing Terrestrial Systems) (Hudson et al., 2014) and

the Botanical Information and Ecology Network (Enquist et al., 2016). Despite the data

heterogeneity and biased information against real absences (a consequence of oppor-

tunistic sampling), these types of infrastructures are able to collect sufficient quantities of

data to perform statistical inference ((Hartig et al., 2012) and (Kelling et al., 2015)). The

use of high performance computational technologies with novel statistical methods for
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representing and modelling big ecological data can provide deeper understanding of bio-

diversity evolution and its dynamics in a changing world (La Salle et al., 2016) , (Navarro

et al., 2017) and (Schmeller et al., 2017). Moreover, its implications can be extended to

other branches of ecology and Earth sciences. For example, a process-based approach

by (Scheiter et al., 2013) showed how community assemblages can be integrated into

dynamic vegetation models to increase the precision of climatic and Earth System models.

From a technical perspective, environmental and ecological data often come in matrix

form such that they can be stored and analysed efficiently with a relational database

management systems (RDBMS) or other tabular data structure. RDBMS are reliable and

sophisticated tools. An important feature is the possibility to extend their functional-

ity with programming languages such as: C, Java, Python, R-Cran, etc.. This allows the

combined use of an efficient data management system with a broad range of statistical

libraries and programming methodologies. An example of this is the integration of spatial

analysis tools into the RDBMS through the Postgis project (Ramsey et al., 2018); a set

of compiled functions written in the Postgresql Procedural Language (PostgresPL) that

interfaces with high level geospatial libraries (e.g. (GDAL/OGR Contributors, 2018), (Ge-

ometry Engine Open Source (Contributors), 2019) and (PROJ Contributors, 2019)). Postgis

adds GIS capabilities to the database engine, giving superior performance for querying

information with geometric and topological features in space.

Integrating large datasets using only relational methods is computationally intensive.

For example, matching data by a common feature involves the definition of join clauses

plus computing the joined lookup between the pair of tables. The resulting product is

often stored in volatile memory, a limiting factor when integrating large datasets. In a

typical database design, table indices cost O(log (n)) in time, where O(·) is the classic Big

O, a measure of computational complexity and n the size of the input dataset. A query

involving multiple joins (from multiple data tables) can involve reverse and recursive



2.1 Introduction 21

lookups, that can increase the load from O(n) to O(nk ), where k is the number of data

tables to join. Although this issue may be addressed with database design techniques

such as normalization (Harrington, 2009) or caching (Altinel et al., 2002), the solution

likely obfuscates the comprehension of the relational schema by adding unintuitive ta-

bles and other auxiliary information. It also requires a learning curve and expertise for

implementation as well as increasing complexity when more datasets are added.

Data structures based on direct acyclic graphs (DAGs) are advantageous in relation

to the above approaches. Traversing a relationship in a graph database has constant

cost (O(1)) (Celko, 2014) if the relations are defined explicitly for every node. Whenever

a new dataset is added, a new link can be created to relate it with an existing record.

Graph databases, however, are not as efficient at processing geospatial queries or handling

simultaneous queries (Vicknair et al., 2010). In this sense, hybrid data management

systems, capable of handling both paradigms (relational tables and DAGs), were proposed

to overcome the limitations of both systems. However, to the best of our knowledge, these

proposals have not been yet implemented (Grund et al., 2013), their code is closed (van

Iersel et al., 2010) or their scope is not suited for environmental and spatial datasets, as is

the case of the Reactome Database (Fabregat et al., 2018).

In this paper we propose an implementation of an open source knowledge engine (i.e.

a hybrid database system) that stores, accesses and processes geospatial and temporal

information, to integrate, analyse and visualise heterogeneous environmental, EBVs and

big ecological data. The engine, named Biospytial (composed by the words biodiversity,

Python and spatial and pronounced Biospatial) incorporates semantic relations that

integrate data in a web of semantic knowledge able to represent complex graph (network)

data structures.

Biospytial can be considered a component of traditional Spatial Data Infrastructure

(SDI) because we simplify access and analysis of big datasets while satisfying the need of
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producing information for scientists and policy makers, among others (Hendriks et al.,

2012). This is possible due to the engine’s capability to identify intrinsic and extrinsic

relationships within environmental and socio-economic processes. Therefore, the devel-

oped engine is aimed to serve SDI-based decision making frameworks, as for example the

European project INSPIRE.

The engine serves as a multi-purpose platform for modelling complex and heteroge-

neous data relationships using the power of graph theory. The current implementation

uses the occurrences data from the GBIF and their updated systematic classification

(GBIF Secretariat, 2017) to build the acyclic graph of the Tree of Life. To exemplify the

geospatial capabilities, some EBVs like: mean monthly temperature, elevation and mean

monthly precipitation are also included in the engine. The paper is structured as follows:

The specification and general description of the engine is given in section 2. Section 3

proposes a methodology and software implementation for accessing biodiversity records

arranged in a taxonomic tree. The graph of the Tree of Life is explained with examples

for traversing and extracting spatial and taxonomic sub-networks. Section 4 explores

the capabilities of the engine with a practical demonstration. It shows the syntax and

discusses ways to interpret and traverse the knowledge graph. Finally, section 5 includes

general conclusions, and future research directions.

2.2 An Open Source graph-based engine for geospatial anal-

ysis

The engine is able to import, organise, analyse and visualise big ecological datasets using

the power of graph theory. It performs geospatial and temporal computations to synthe-

sise information in different forms. The data can be queried and aggregated according

to customised specifications defined by structural patterns called graph traversals (Ro-

https://inspire.ec.europa.eu
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driguez, 2015). The software has been developed with object-relational and object-graph

mappings (ORM and OGM, respectively) that use the object-oriented paradigm to ab-

stract interrelated data into class instances (Celko, 2014; Juneau, 2018). In this sense,

every record is represented as an instance of a certain class with its attributes mapped

one-to-one to entries in a particular table (if it is stored in a relational database) or in a

key:value hash table (if it is stored in a graph-based database). This approach allows the

building of complex and persistent data structures that can represent different aspects of

the knowledge base. It also allows the assemblage of automatic methods for exploring,

filtering, aggregating and storing information.

2.2.1 System architecture

The engine is composed of three interconnected modules : i) A Relational Geoprocessing

Unit (RGU), ii) the Biospytial Computing Engine (BCE) and iii) a Graph Storage and Pro-

cessing Unit (GSPU) (see figure 2.1). Each module is arranged in virtual containers isolated

as standalone applications (Docker Inc., 2019) running a common Linux image (Debian

8) as the base operating system. The virtual container technology creates a common

environment for each module disregarding the complications of working with heteroge-

neous computer infrastructures (Pahl and Lee, 2015). Its design allows the replication of

several instances of the same module in a single computer or in a distributed network.

Containerised applications are easier to replicate and migrate compared to large data

volumes and databases, which often involve resource intensive tasks in terms of energy,

computing, network bandwidth and management. The idea behind containerization is:

move the processes not the data and especially in the geospatial context, to perform spatial

analysis where the data is located.
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The Relational Geoprocessing Unit (RGU)

The RGU module undertakes the storage and raster-vector processing. It relies on high-

level abstractions that represent geospatial data stored in relational tables. The supported

geometric features are (multi)points, (multi)lines, (multi)polygons and multiple band

raster data. It features a fully operational Postgresql (9.4.9) server (port: 5241) with geospa-

tial extension (Postgis 2.3.1)(Ramsey et al., 2018) and libraries for handling geospatial data

(GDAL, OGR 1.10.1)(GDAL/OGR Contributors, 2018), transformation between different

geographic projections (PROJ 4.8, (PROJ Contributors, 2019)), and computation of geo-

metric operations (GEOS 3.6)(Geometry Engine Open Source (Contributors), 2019) (figure

2.1 b). The RGU image can be downloaded from:

https://hub.docker.com/r/molgor/postgis_biospytial/

The Graph Storage and Processing Unit (GSPU)

This module hosts a graph database that stores data on nodes and their relations in a

network structure called the knowledge-base (figure 2.1 a). The graph database system

is an instance of Neo4J (3.1.3), an open source ACID-compliant transactional database

management system with native graph storage and processing (Celko, 2014). It includes

a web-based interface located in http://<urlofhost>:7474. The interface allows the in-

spection and visualisation of queries (subgraphs) using the Cypher interpreter (a No-SQL

type declarative language for interrogating graph databases). The module also includes

a plugin for spatial and topological lookups1 and the Awesome Procedures on Cypher

(APOC) 2. ; an extension library with more than 300 procedures for data integration, graph

algorithms or format conversion procedures. The GSPU image can be downloaded from:

https://hub.docker.com/r/molgor/neo4j_biospytial/.

1https://neo4j-contrib.github.io/spatial/0.24-neo4j-3.1/index.html
2https://neo4j-contrib.github.io/neo4j-apoc-procedures/index31.html

h
http://<url of host>:7474
h
https://neo4j-contrib.github.io/spatial/0.24-neo4j-3.1/index.html
https://neo4j-contrib.github.io/neo4j-apoc-procedures/index31.html
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The Biospytial Computing Engine (BCE)

This module provides the interface and processing toolbox for accessing, exploring and

analysing data structures through the Object Mapping design. The container hosts a

virtual environment and an Anaconda package manager (ANACONDA, 2016) that includes

all the dependencies required by the engine. The core code of the engine is contained

in a new Python package called Biospytial 3 (figure 2.1 c). The engine structure includes

a drivers module to communicate with the graph database, the modules for accessing

each dataset in the relational database; the module for graph traversals, data ingestion,

griding systems, vector sketching, Jupyter notebooks; and external plugins like spystats,

a Python port of GeoR (Diggle et al., 2002). The image can be downloaded from:

https://hub.docker.com/r/molgor/biospytial/

Other features

Scalable The implementation includes scripts for automating the engine’s deployment

in a single host or in cluster mode. This mode provides a granular configuration for the al-

location of resources and services in a distributed manner. For example, The BCE module

can be hosted in a computer with high performance architectures or multiprocessing (e.g.

MPI) capabilities.

Message broker The engine includes a messaging service (Redis (Labs, 2012)) that de-

livers information between the different components. It also serves as an in-memory

data structure storage and message broker. The storage is useful for interchanging data

between different platforms and languages. For example, it allows export of the results

into intermediary files (e.g. CSV or DBF) for use in other software (e.g. (Team and R

Development Core Team, 2016) and (Hornik, 2012)).

3https://github.com/molgor/biospytial

h
https://github.com/molgor/biospytial
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Open Source - Open Contributions The software used in all the modules has been

released with Open Source and Free Software licenses which allow users to reproduce,

modify and publish their research source code. The engine was developed using best prac-

tices for scientific computing (Wilson et al., 2014a),data transparency and reproducibility

(Perkel, 2018).

Access to the engine

There are two ways of accessing the engine. One is through a command-line interpreter

based on the iPython console (Perez et al., 2007). The other is with an online Jupyter

notebook server (Kluyver et al., 2016) (localhost:8888). The Jupyter notebook is a web-

based interactive Python interpreter that renders MarkDown documents, plots and images

in the browser . Analysts can create files in a notebook format (.ipdb) and share the results

on-line. Peers can visit the notebook’s url, read the document, run the code, replicate the

analysis, access the variables, import other libraries, modify the analysis and export it into

different formats (e.g. PDF, Latex or HTML).

2.2.2 Knowledge representation

The engine uses two database paradigms to store and represent data: a relational system

with tables connected by primary and foreign keys and directed acyclic graphs (DAGs)

where the data are stored as nodes (with associated attributes) and edges representing

relations between nodes. Each node can belong to one or many classes. In our implemen-

tation, the relationships are semantic phrases that refer to location (e.g. "IS IN"), ancestry

( "IS PARENT OF") or topological features ( "IS CONTAINED IN" or "IS NEIGHBOUR OF").

Thus, the engine uses explicit semantic relations between nodes to build a network of

semantic information. The union of all these relationships is what we call knowledge

graph.

localhost:8888
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Table 2.1 Principal software components of the Biospytial Knowledge Engine System

Software name Version Description

Biospytial Computing Unit Debian GNU/Linux 8.6 Container OS image

Conda 4.3.30 Package manager opti-
mized for Data Science

Python 2.7.11 Programming language
(scheduled update for
v.3.x)

R-base 3.2 Language and software en-
vironment for statistical
computing

Jupyter 1.0.0 Interactive web applica-
tion for reproducible com-
putational workflows

Scipy 1.01 Python library for numeri-
cal and scientific computa-
tion

Pandas 0.19 Python library for data
structures and data analy-
sis

Geopandas 0.3 Extension of Pandas to sup-
port geospatial data

GDAL 2.1 Library for converting and
processing geospatial data

Shapely 1.5.16 Python library for manipu-
lation and analysis of geo-
metric objects in the Carte-
sian plane

Django 1.8.4 ORM, web framework and
standalone server

Py2neo 3.11 A client python library and
toolkit for working with
Neo4j

Pymc3 3.4,1 A Python based Probabilis-
tic Programming Frame-
work

Patsy 0.4.1 A Python library for de-
scribing statistical models

Relational Geoprocessing
Unit

Debian GNU/Linux 8.6 Container OS image

Postgresql 9.4.9 Relational database man-
agement system

Postgis 2.3 Spatial extension for Post-
gresql

GDAL 1.10.1 Library for converting and
processing geospatial data

GEOS 3.6 Geometric and Topological
library

Proj4 4.8 Coordinate transformation
software

Graph Stor. and Process.
Unit

Alpine Linux 3.5 Container OS image

OpenJDK IcedTea 3.3 Open Source Java compiler
and virtual machine

Neo4J 3.1.3 (C.E) Graph Database Manage-
ment System

APOC 3.1.3 Utilities, graph algorithms
and common procedures
for Neo4j

Message Broker Redis 5.0.3 a Key-value data structure
store
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Fig. 2.1 The Biospytial System with the three interconnected modules. a) The GSPU, where
semantic queries and graph traversals take place. b) The BCE, where object mappings, web
services and the modelling framework takes place. It includes several libraries for performing
exploratory analysis as well as Bayesian statistical inference and prediction using the probabilistic
programming language: PYMC3; c) All the components can be allocated in the cloud and are
connected using virtual and physical networks. d) The RGU, where the geoprocessing and spatial
indexing occurs, storing efficiently any raster and vector data sources. e) Interactive access is
possible in two ways: using an online web notebook (Jupyter) or an interactive console (iPython).

The event of a species s being recorded at location l can be represented as a node of

the class Species connected to a node l of class Cell using the relation IS_IN. The Cell nodes

are contained in a regular lattice (grid) and are instantiated by a class that implements a

geospatial type defined by a polygon that acts as a geometric border. As an example, figure

2.2 shows this diagram for the bird family of quetzales (Trogonidae) found in southeast

Mexico. The node in red represents the species: Pharomachrus mocinno. The nodes in

blue are two Cell types that associate the locations where P.mocinno was found. The arrows

indicate the directional relationships between the nodes. The graph database allows easy

manipulation of these nodes, their relations and combinations. At the same time, the



2.2 An Open Source graph-based engine for geospatial analysis 29

selected pattern can be filtered by chosen attribute values to generate customized design

matrices.

Fig. 2.2 The graph showing the connection between a Species node and two Cell nodes. Here:
the species is Pharomachrus mocinno (Quetzal) and the number shown in each Cell node is its
respective ID number. This is an actual visualisation taken from data stored in our Knowledge
Graph.

2.2.3 Integrating data with graph structures and object mappings

The Object Mapping approach serves to communicate different database management

systems (relational or graph-based). A high level Python-based Object Relational Mapping

(ORM) library (Django (dja, 2018)) was used to communicate with the RDBMS and the

other components of the engine. It includes a high level interface to translate sentences

from the SQL declarative language into method calls from the object-oriented paradigm.

Vector and raster operations are possible via the Open Source Geographic Information

System (OSGIS) for Postgresql (Postgis (Ramsey et al., 2018)). Currently, all the spatial and

tabular data are stored in the RDBMS.

The object mapping on the graph database system is achieved with py2neo, a client

library and toolkit for communicating with the Neo4j database management system 4

within the Python programming language(Small, 2017). Topological information like

neighbouring cells and nodes contained within cells are stored as semantic relations.

4https://neo4j.com

https://neo4j.com


30 Biospytial: graph-based geospatial computing

Some preprocessed information is stored in the knowledge graph. This includes some

parameter estimates, aggregated data, summary statistics and associated raster metadata.

The procedure for adding data into the engine varies according to the data format

(tables or linked data) and requires a new class to be created. The class is responsible

for accessing and managing data in both database systems. It includes specifications

for storage, conversion between formats and analysis. A simple implementation would

include: the name and type of the attributes; the name of the table (for the case of RDBMS),

the node type and incoming and outgoing relations between nodes (for graph-based

datasets). Detailed information on all these procedures is given in the supplementary

materials.

2.2.4 Graph Traversals

As explained above, the Knowledge Graph is the totality of nodes and relationships stored

in the database. Each node represents a type (defined by a class) of data or a more abstract

concept that generalises certain sets of data. Each node has associated edges to other

nodes, as well as a list of attributes. In the example given in figure 2.2, the node is of type

Species and one of its attributes is name with the associated value P.mocinno.

The graph engine can search and extract information from the knowledge graph using

recursive rules based on semantic predicates. Typically, the search selects one, or several,

nodes and continues visiting (traversing) other connected nodes that match the specified

criteria until the relationship is exhausted or a depth threshold has been reached. The

resulting selection of relationships and nodes is a subgraph of the knowledge graph. We

call this structure a pattern and the set of rules that select a pattern is a graph traversal.

Graph traversals can be translated into data matrices that can be analysed within

the scope of model-based geostatistics (Diggle et al., 2002) or areal unit modelling in

lattice systems using Gaussian Markov Random Fields (Besag, 1974; Besag et al., 1991;
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Rue and Held, 2005). Also, they can be analysed with network theory to answer questions

about resilience, connectedness, modularity or invariants across scales. The objects are

compatible with the open source libraries for statistical inference and network analysis.

Libraries already included in the engine are: NetworkX (Hagberg et al., 2008), StatsModels

(Seabold and Perktold, 2010) and PyMC3 (Salvatier et al., 2016).

Complex queries

Our implementation enforces the use of lazy evaluations, in which the evaluation of an

expression is delayed until the value is needed and not directly upon the instantiation

(Hudak and Paul, 1989). This helps in the creation of data primitives that can be composed

into higher level graph traversals without the need to load in all the data. The design allows

the request on demand of partial evaluations for a given traversal. This abstraction helps to

explore, design and automate the discovery of relevant patterns and structures. A concrete

example of this design is showed in section 2.3 with the analysis of local taxonomic trees,

when the tree object is instantiated, it exists only as an abstract data container with no

data requested to the database. As such, if an analyst is interested in studying the different

species of bats (Order:Chiroptera) within this tree, she will need only to consider the

descendant (children) nodes of the node Chiroptera of type Order (See section 2.5.1 for a

practical example).

Some traversals are exclusive of certain node classes and, therefore, have associated

special methods. This is the case for nodes of type Cell which include a method for

extracting neighbouring cells. Figure 2.3 shows an example of this where a selection of

cells was obtained first by requesting all the occurrences of the Family Culicidae and then

traversing through the associated cells and their corresponding neighbours using the

method getNeighbouringCells() twice.
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Fig. 2.3 A subgraph from the Knowledge Engine that shows the second order degree of neighbour-
ing cells where at least one occurrence of any type of mosquito (family Culicidae) was registered.
This query exemplifies the use of recursive lookups. In this case the relationship "IS_NEIGH-
BOUR_OF" is traversed twice.

2.2.5 Geospatial management and processing

The engine supports and processes geospatial information using the GDAL/OGR library

(GDAL/OGR Contributors, 2018).The default Coordinate Reference System (CRS) is the

WGS84 with geographic coordinates. However, it is possible to use and reproject the data

into any other CSR. This feature is supported by the Proj4 library (PROJ Contributors,

2019). See section 2.5.8 for a concrete example of this.

Vector data

Vector data are represented with tabular data structures. These tables should include the

following information: at least one column with a unique identifier (id) for each record,

one column for each type of feature, and at least one geographic column to represent

the geometric shape of each record. The available geometric types are: points, multiple

points, polylines, multiple polylines, polygons and multiple polygons. Each type of dataset

corresponds to both a vector layer and a table in the RDBMS. A mapping between the
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table structure and the engine needs to be created in the same way as described in section

2.2.3. For large datasets the engine uses indexing methods for optimal performance on

accessing and querying the data. Additional information is provided in the supplementary

material. 2.14.4

Raster data

Raster data are represented as a table stored in the RDBMS together with its corresponding

metadata. The table has three columns: a primary key (id); a Binary Large Object (BLOB)

data type (encoding a stack of matrices) that represent a multiband image; and a reference

to a file where the metadata is stored. The metadata includes: projection type, affine

parameters, datatype for entries (binary, integer, float) and other information related to

provenance.

Ingesting raster data into the engine involves two steps, i) the dataset is partitioned in

to regular tiles; and ii) each tile is converted into a BLOB string and inserted into the table.

Data ingestion scripts can be found in the supplementary materials.2.14.7

The Object Mapping design is used to specify the definition of a RasterData type and its

associated operations. The implemented class includes methods for clipping, downscal-

ing, aggregating, exporting to image formats (Geotif and PNG), visualising, intersecting

vector data, extracting metadata and conversion to arrays. An extended class for Digital

Elevation Models (DEM) is also implemented to generate on the fly aspect, slope and

shaded relief (figure 2.4), without requiring the datasets (derived DEM products) to be

stored directly in memory.

On instantiation, a RasterData object requires the definition of a boundary object

passed as argument. This object should be a polygon type django.gis.contrib.GEOS.Polygon

or a text string defining a polygon in the Well Known Text (WKT) format. The resulting

selection can be transformed to a dataframe or n-array for statistical modelling. As in the
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Fig. 2.4 Raster manipulation in the knowledge engine. a) a multipolygon selection corresponding
to Mexico, an instance from the class Country that maps into the WorldBorders dataset. b) An
Elevation object (class RasterData) instantiated with a customized polygon, in this case a
subregion of the object Mexico. c), d) and e) are RasterData objects derived from the Elevation
object. The data and visualisations were produced using the engine’s raster API. The code for
generating these figures are in supplementary materials.

other data structures, whenever a new raster model is added a new model class should be

included (See Supplementary Materials) 2.14.7.

2.3 Using Biospytial to analyse the Tree of Life

In this section we propose a process for integrating spatio-temporal data together with

graph traversals to represent tree structures using taxonomic and topological relationships

within the knowledge engine. The graph traversals use biodiversity occurrences and

environmental data to build complex structures to analyse, visualise and caracterize

biological occurrences in different forms. The structure restricted to the taxonomic

classification is an acyclic graph (tree) in which all the species occurrences constitute leaf
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nodes. We call this structure the Tree of Life (ToL) and propose a set of graph traversals to

retrieve subsets of the ToL constrained to arbitrary taxonomic groups, spatial regions or

temporal ranges. Several class definitions for handling taxonomic trees are implemented,

making it possible to automate tasks for unveiling patterns. For a detailed definition of

terms and computational structures see suplementary materials II.

2.3.1 Study Area

The study site selected was restricted to Mexico since (i) Mexico is in the list of Megadiverse

countries (UNEP/CBD, 2002, 2016); (ii) the territory contains a diverse range of the world’s

climatic regions (Rzedowski, 2006; Vidal Zepeda, 2005); (iii) the country has policies for

publishing open environmental data, including centralized repositories of curated data

related to biodiversity, conservation, ecosystem services, land cover and satellite sensor

imagery (Sarukhán et al., 2009). The data in the study area provide a concrete example of

the engine’s capabilities.

2.3.2 Data used

The species occurrences were obtained from a snapshot taken from the global GBIF

database on September 2016 (GBIF Secretariat, 2015). The data was filtered to only include

the occurrences located within the Mexican borders. The total number of occurrences

is 3,242,746 distributed in 54,828 species, 10,781 genera, 2,300 families, 543 orders, 113

classes and 42 phyla, with acquisition years ranging from 1819 to 2016. The taxonomic

classification was taken from the GBIF Taxonomy Backbone (GBIF Secretariat, 2017).

Each occurrence record has information of species name, location (point coordinates in

WGS84) and acquisition date, and represents the observed presence of a certain species,

therefore it is only based on presence-only records.
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The digital elevation model (DEM) ETOPO1 1 Arc-Minute Global Relief Model (Amante

and Eakins, 2009) was used at a spatial resolution of 1 minute. Precipitation, temperature

(maximum, mean and minimum), solar radiation, wind speed and vapor pressure were

obtained from the World Climatic Data WorldClim version 2 dataset (Fick and Hijmans,

2017). Each variable is a 12 band raster model with 1 km2 spatial resolution that aggregates

monthly average values from the years 1970 to 2000 per month, each band corresponding

to each month. The data license for WorldClim restricts the redistribution of the data.

Therefore, users need to download it and import it into the engine via an automated script:

raster_api.bash_raster_tools.migrateToPostgis.bash

The engine includes functions for generating grid systems at different spatial resolu-

tions. When the grid system is created it stores a vector representation in the RGU and a

network representation in the GSPU. The functions for generating the grid systems are

located in the library: mesh.tools.py.

2.3.3 Traversals on the Knowledge Graph

The taxonomic tree structure was built with the relation: IS_PARENT_OF5 following the

taxonomic classification of the occurrence data and the GBIF Backbone Taxonomy(GBIF

Secretariat, 2017). Each occurrence had a location attribute matched with environmental

data (e.g. elevation or WorldClim) using a point in polygon query to the RGU. The spatial

structure was built using the relations IS_IN and IS_CONTAINED_IN in accordance with

topological relationships based on the DE-9IM model (Clementini et al., 1993; Egenhofer

and Franzosa, 1991) (standardised by (Herrig, 2011)).

The main travesal structure is defined in the TreeNeo class. Each instance comprised

of an area defined by a spatial polygon and a list of occurrences contained on it. The graph

traversal was built recursively using the systematic classification of organisms, starting

5Conversely, Has_Children
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from the GBIF occurrences as leaf nodes and progressing through the parent nodes until

the traversal reaches the node with no parent. That is, it begins by the species level and

finalises in the root node. On each step, the algorithm fetches the available nodes and

group them by their corresponding parent node, generating a set of parent nodes and

their associated children. Each of these duples (parent,children) are incorporated into a

LocalTree object that parses the relevant information into several attributes. This process

is applied recursively on each derived parent node of the previous step. The recursion

is terminated when the set of parent nodes is empty, generating the desired tree data

structure. When this happen the LocalTree object is wrapped into a TreeNeo instance

that extends some additional methods like: manipulating and querying trees, nodes and

multiple taxonomic groups as well as graph analysis and exportation to common exchange

formats (e.g. graphml, data frames, png, geotif or shapefiles). In addition, all the spatial

structures were implemented with Open Source Geospatial(OSGEO) standards (Kemp and

Haklay, 2014) to facilitate the migration to other language and platforms. A visualisation

of this traversal is showed in figure 2.5.

2.4 Worked examples

This section is a case study for analysing the frequency of coexistent taxonomic groups

in all the available datasets restricted to arbitrarily chosen branches of the Tree of Life

(ToL) and included in a list of threatened species. These types of analyses are important in

conservation studies, where the characterisation of umbrella (or other surrogate) species

constitute the basis for protecting a significant number of associated species (Andelman

and Fagan, 2000; Drever et al., 2019). To account for this effect, we chose the jaguar

(Panthera onca) as the species of interest. This due to its preference for undisturbed

ecosystems (Thornton et al., 2016) and its wide geographic required range; 181±4km2 for

females and 431±152km2 males (de la Torre et al., 2017).
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Fig. 2.5 A visualisation of a Local Taxonomic Tree built with the relationship: IS_PARENT_OF. The
rectangles show zoomed areas in different sections of the tree (upper region for Birds (Order Aves),
lower for plants (Order Magnoliopsida)). Colored nodes indicate distinct taxonomic levels (red :
species, yellow: genera, grey: families, green orders, purple: classes).
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2.4.1 Additional data used

We use the IUCN Red List of Threatened Species (Red List) (IUCN, 2019) in Mexico to

account for the proportion of species (critically endangered, endangered or vulnerable)

associated with the presence of jaguars. For aggregating the data into taxonomic trees (i.e

TreeNeo objects), as well as for extracting their corresponding environmental covariates,

we used a 0.05◦ (c. 5km) resolution grid intersected with the terrestrial regions of Mexico

and Central America. The used grid is included in the default installation of the engine

and therefore, all the analysis performed in this example is reproducible.

2.4.2 Methodology

We first obtain the grid cells with at least one occurrence of jaguar. As these cells are

Cell objects, it is possible to extract associated neighbouring cells using the method:

getNeighbours. We can apply the same method recursively four times to obtain a list of

neighbouring cells within a 4 degree neighbourhood. For each cell, we obtain the local

taxonomic tree. The resulting trees are merged into a single tree that contains the union

of all the nodes of all the local trees. Therefore, the aggregated tree contains all the known

co-occurrences of jaguar in a neighbourhood of degree 4. The resulting tree is filtered to

select only the nodes that match the Red List of threatened species. A new tree object is

created using the selected nodes, an operation know as trimming.

To provide an estimate of which nodes co-occur more often with jaguars, we rank

all the nodes in the merged tree using the frequency of presence of each node at each

neighboring cell. To show the raster querying capabilities, we contrast these results

with environmental ranges of: jaguars, threated species and the entire country using the

raster_api module. Finally, we provide methods for interactive visualisations of the

extracted spatial data and the network structure.
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2.4.3 Results of the worked example

The taxonomic analysis of the most abundant families across all neighbouring cells where:

Muridae (rodents, 29%), Phyllostomidae (a family of bats, 23%) and Cervidae (deers,

15%) for the case of mammals. For of parrots (Order Psittaciformes) the most frequent

species was Ara militaris (military macaws, 2%) and several species of the genus Amazona,

accounting for 16% in total. Although the order Psittaciformes was abundant (23%) in the

group of vertebrates, the most abundant taxon (A. militaris) only co-occurred 2% of the

time with the jaguar’s neighbouring cells. This result shows the great diversity of species

within the group of parrots. This is consistent with natural history records, where it has

been described that these species inhabit humid forests, wooded foothills and canyons in

elevation ranges between 500 and 1,500 metres above sea level EOL.

The same analysis applied to plants showed that the most abundant genera were: the

epiphyte Tillandsia (19%), the Coussapoa oligocephala (6%) , Pouteria (several species, 9%),

Cedrela odorata (3.2%), which are tropical trees, and other trees not typical from tropical

rain forests like Oreopanax (9%) and Quercus (6%). Longer lists of the most abundant taxa

detailed in the worked example as well as their interactive version in the Jupyter notebook

are provided in the file examples/Official Demo Co-occurrences.ipynb located in

the Biospytial repository. A visualization of the threatened taxa tree is shown in figure 2.9

for: kingdoms, phyla, classes and orders.

From an environmental perspective there is a clear concordance between jaguars’

habitat and threatened taxa, when compared to all Mexico, for mean temperature (fig

2.6a), annual rainfall (fig 2.6b and wind speed (fig 2.6d). In fact, threatened species and

jaguars show environmental modalities distinct from all Mexico. To create the plots we

used the library seaborn. Detailing the process for creating these graphs is out of the

scope of the present tutorial. However, the snippet has been included in the interactive

notebook.

https://eol.org/pages/45510824/article
https://seaborn.pydata.org://seaborn.pydata.org/
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(a) Mean temperature (b) Precipitation

(c) Water vapor pressure (d) wind speed

Fig. 2.6 Comparison of mean annual environmental ranges between treatments: All Mexico,
threatened taxa and cells with occurrences of jaguars. See next section for more details.

2.4.4 Discussion

The latter example gives a glimpse of the general capabilities of the system in terms of:

traversing the knowledge graph, extracting relations and performing geospatial queries

and processing. The analysis was performed on a grid of approximately 4km of spatial

resolution, a sensible choice, given the jaguars’ body size and nomadic habits. However, it

is a justified concern the applicability of a similar grid in analyses where the species under

consideration are either too small or too large for that chosen spatial resolution. Take for

example studies on ant colonies or even soil microbiota. Therefore, an adequate spatial

resolution is critical to the research question and, consequently, any multi-purpose spatial
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knowledge engine (as the one proposed in this chapter) should allow the implementation

of various spatial grids at arbitrary resolutions to satisfy the research needs.

In the current implementation, the 4 km grid is the one with the finest resolution.

However, the design of the system supports the integration of grids with finer resolutions.

This is achieved by an abstract implementation of the geospatial data structures that

define the grids as a connected acyclic graph (i.e. tree) that links cells through different

scales (i.e spatial resolutions), similarly to the taxonomic tree structure.

In the spatial case, each unit area (i.e cell) of a grid can be subdivided in n (currently n =

4) different areas. This process induces a tree structure in which the original cell (i.e parent

cell) assigns the link (IS_CONTAINED_IN) to each of the newly formed cells (children). This

process can be executed recursively to fit any arbitrary spatial resolution. As such, each cell

in the system is connected to other cells by two relationships (IS_CONTAINED_IN and IS_-

NEIGHBOUR_OF. This method for specifying grids of arbitrary size is an implementation

of a Hierarchical Discrete Global Grid (Sahr et al., 2003). Additionally, the complete

hierarchical structure that accounts for all grids at multiple spatial resolutions is part of

the engine’s knowledge graph. In this sense, the root of this spatial aspect of the knowledge

graph corresponds to a cell that covers the whole Earth. The current version of the engine

needs the existence of the specific grid cell (i.e. location and spatial resolution) in the

database for performing operations. In the future we would like to allow the creation of

new spatial grids on demand (i.e dynamically) to satisfy the user needs.

Clustered occurrences

Another aspect for consideration is the case where the research question involves the

analysis of organisms at an organisation level distinct from the species level. That is,

studies where the taxonomic aggregation of species is not enough to capture the nuances

required for answering the research question involved. Examples of this could be: the
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selection of different herds of elephants within the same species or the analysis of different

populations of sahuaros Carnegiea gigantea (Britton and Rose) across the Sonoran desert.

New aggregation levels could be added into the taxonomic tree by linking them to the

existing hierarchical structure, in a similar approach as the global spatial grid mentioned

before. This added information is relevant for metapopulation studies, where the main

concern is the prevalence and dynamics of spatially separated populations of the same

species. Ecological synthesis can also be benefited by this approach. With this aid, meta-

analysis studies can group occurrences by type of survey or collection to represent random

effects.

2.5 Tutorial

The time for executing the following example varies considerably depending on the group

of interest, the size of the neighbourhood and the computer platform. A quick workaround

to speed up the processes is to reduce the number of neighbouring cells (order of the

neighbourhood), for example a degree of 1.

A reproducible version of this tutorial is included in the Biospytial source code (inside

the folder examples/) in an interactive jupyter notebook file named:

Official Demo Co-occurrences_jaguar.ipynb

The following section is a static version and is subject to minor modification to fit the

layout and format of this PDF version.

2.5.1 Selecting the node Jaguar

We begin by selecting the node in the ToL corresponding to the genus Panthera. This

node is linked to some Species and Family type nodes and also has links to Occurrence
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nodes, where the information of location and time is stored. To start the traversal we need

to first select this node. To do so we use the function pickNode using the following syntax:

pickNode(<Type of Node>,'name of the node')

In the example below we see how to load the pickNode function and the appropriate node

class (in this case Genus).

from drivers.graph_models import Genus, pickNode

jaguars = pickNode(Genus,"Panthera")

The variable jaguars is now an instance of the class Genus. As such, it has associated

attributes and methods. Its string representation is the following:

jaguars : <TreeNode type: Genus id = 2435194 name: Panthera>

We proceed to traverse through all the cells where any occurrence of the Panthera

genus was registered. To do so we call the attribute cells. This attribute is abstracted with

lazy evaluation. Therefore, to fetch all the associated data we need to convert the object

into a list (or a partial list using an iterator).

cells = list(jaguars.cells)

print("cells has %s elements"%len(cells))

cells has 62 elements

The resulting list has cell instances, each one connected to other cells by the relation:

’IS NEIGHBOUR OF’. Accessing their related cells is achieved by the method:

cell.getNeighbours(with_center=[Boolean],order=[Int])
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where the parameter with_center returns the center of the neighborhood, and the

parameter order the size (in number of cells) of the neighborhood (this value can be

reduced to 1 for faster computation). In our case, we apply this method for each cell using

a map function with a lambda expression.

neighbours = map(lambda cell :

cell.getNeighbours(with_center=True,order=4),

cells)

Lambda expressions are part of the Python syntax and are used to create anonymous

functions. The map-lambda technique allows the definition of statements that are applied

to all the elements of a list, returning a new list of objects obtained by evaluating the

lambda expression on every element of the given list. Along this tutorial, the use of

the map-lambda technique is frequently used. Whenever this expression comes it is

recommended to read the form:

map(lambda x : <something involving x> , some_list)

As, "for all x in some_list, do something involving x". In the example above, the object

neighbours is a list of neighbouring cells obtained from the method getNeighbours

available on each cell instance (i.e. each element of the cells list).

As this list is composed of list-type elements (i.e. it is a nested list), we need to reduce

it into a single list composed of only cell instances, a process known as flattening. To do

this simply reduce the list as this.

# the + operator between two list instances merges them together.

neighbours = reduce(lambda list_a , list_b : list_a + list_b, neighbours)

The reduce function is a Python standard function that receives a two parameter function

(in this case a lambda expression receiving parameters list_a and list_b) and the

https://docs.python.org/3/reference/expressions.html#lambda
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nested list neighbours. The reduce function applies the lambda expression to the first

pair of elements of the list and iteratively applies the result to the next element. As the sum

operation between lists (+) merges the elements of both lists into a single list, performing

this operation across the entire nested list neighbours result in a flattened list.

The resulting neighbours list now has 2497 Cell nodes. In the current implementation

the name of the Grid (where all the Cells are contained) is called mex4km. We can display

the first three elements as:

neighbours[:3]

[< Cell-mex4km id = 234686 >,

< Cell-mex4km id = 234685 >,

< Cell-mex4km id = 234684 >]

2.5.2 Converting cells to local taxonomic trees

We obtain the ToL inside each Cell node by extracting the occurrences inside each cell

(using the method occurrencesHere) and plugging them into the TreeNeo constructor.

The name TreeNeo is used because the storage backend is the Neo4j graph database.

from drivers.tree_builder import TreeNeo

cell_1 = neighbours[1]

tree_1 = TreeNeo(cell_1.occurrencesHere())

print(tree_1)

<LocalTree Of Life | Root: LUCA - n.count : 1062- >

The n.count value indicates the number of total occurrences. We can generate all the

trees iteratively using a mapping from the TreeNeo(cell.occurrencesHere()) through

all neighbouring cells. This may take some time depending on the number of cells and

occurrences on each cell. For reducing this time go to subsection 2.5.1.
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sample_trees = map(lambda cell : TreeNeo(cell.occurrencesHere()),neighbours)

As in the last example, we can see basic information as object description. Here the

first four elements are shown.

sample_trees[:4]

[<LocalTree Of Life | Root: LUCA - n.count : 3- >,

<LocalTree Of Life | Root: LUCA - n.count : 1062- >,

<LocalTree Of Life | Root: LUCA - n.count : 151- >,

<LocalTree Of Life | No record available: - n.count : 0- >]

The value n.count indicates the number of occurrences found for the present node. It

is possible to have empty trees, when no occurrences were found. This is shown with the

text No record available.

2.5.3 Exploratory analysis on a single Tree

We select a tree in this example and explore informative data.

tree = sample_trees[1]

The object tree wraps the entire tree structure. All tree objects have as their starting

node the root of the Taxonomic Tree, representing all known life.

root = tree.node

root node is similar to Family node, Genus node, etc. They all belong to the class:

TreeNode. We can access a specific child node with the prefix to_[name of taxon].

For example, accessing the node ‘Animalia’ can be done with:

animalia = root.to_Animalia

animalia

<LocalTree | Kingdom: Animalia - n.count : 742- | AF: 0.05>
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Traverse by children nodes

We can concatenate this method until the children attribute is empty. If running Biospytial

in an interactive session (like a Jupyter notebook or iPython) we can use the key [TAB] to

autocomplete and show the available nodes. For example, the family of rodents Muridae.

root.to_Animalia.to_Chordata.to_Mammalia.to_Rodentia.to_Muridae

<LocalTree | Family: Muridae - n.count : 34- | AF: 0.05>

Tree traversal by taxonomic level

The taxonomic levels (e.g., families, orders, etc.) are stored as atributes of the TreeNeo

class. For example, to see the available phyla in this tree do:

print(tree.phyla)

[<LocalTree | Phylum: Chordata - n.count : 740- | AF: 0.05 >,

<LocalTree | Phylum: Arthropoda - n.count : 2- | AF: 0.05 >,

<LocalTree | Phylum: Bryophyta - n.count : 99- | AF: 0.05 >,

<LocalTree | Phylum: Magnoliophyta - n.count : 175- | AF: 0.05 >,

<LocalTree | Phylum: Mycetozoa - n.count : 46- | AF: 0.05 >]

and for some families inside this tree:

print(tree.families[:5]

[<LocalTree | Family: Menispermaceae - n.count : 3- | AF: 0.05 >,

<LocalTree | Family: Piperaceae - n.count : 7- | AF: 0.05 >,

<LocalTree | Family: Lauraceae - n.count : 2- | AF: 0.05 >,

<LocalTree | Family: Acanthaceae - n.count : 7- | AF: 0.05 >,

<LocalTree | Family: Plantaginaceae - n.count : 1- | AF: 0.05 >]
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2.5.4 Tree operations

Tree objects allow symbolic operations for adding (merging) and intersecting other tree

objects. These operations are currently implemented as sum (+) and intersection (&).

These operations can be applied to arbitrary number of trees and it is useful in compar-

ative studies that require the calculus of (α,β,γ)-diversity using a combination of these

operations (Whittaker, 1972). Mathematically, these operations are equivalent theoretic

set operations acting at the occurrence level. As an example consider the following: let t1

and t2 be two trees from the list of sampled_trees, i.e.

t1 = sample_trees[1]

t2 = sample_trees[2]

Addition

Adding trees is equivalent to merging them. That is, making the union of all the nodes

(inter nodes and leaves). The tree objects (TreeNode and TreeNeo classes) allow the use

of the + operation. For example, the merge tree of t1 and t2 is obtained with:

t3 = t1 + t2

We can see the effect of this by selecting the nodes of a certain taxonomic level, for example,

the classes of t1 and t2 are:

print(t1.classes)

[<LocalTree | Class: Myxomycetes - n.count : 46- | AF: 0.05 >,

<LocalTree | Class: Bryopsida - n.count : 99- | AF: 0.05 >,

<LocalTree | Class: Amphibia - n.count : 1- | AF: 0.05 >,

<LocalTree | Class: Aves - n.count : 667- | AF: 0.05 >,

<LocalTree | Class: Reptilia - n.count : 2- | AF: 0.05 >,
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<LocalTree | Class: Mammalia - n.count : 70- | AF: 0.05 >,

<LocalTree | Class: Liliopsida - n.count : 36- | AF: 0.05 >,

<LocalTree | Class: Magnoliopsida - n.count : 139- | AF: 0.05 >,

<LocalTree | Class: Insecta - n.count : 2- | AF: 0.05 >]

print(t2.classes)

[<LocalTree | Class: Protosteliomycetes - n.count : 2- | AF: 0.05 >,

<LocalTree | Class: Myxomycetes - n.count : 112- | AF: 0.05 >,

<LocalTree | Class: Agaricomycetes - n.count : 4- | AF: 0.05 >,

<LocalTree | Class: Liliopsida - n.count : 8- | AF: 0.05 >,

<LocalTree | Class: Magnoliopsida - n.count : 25- | AF: 0.05 >]

print(t3.classes)

[<LocalTree | Class: Protosteliomycetes - n.count : 2- | AF: 0.05 >,

<LocalTree | Class: Myxomycetes - n.count : 158- | AF: 0.05 >,

<LocalTree | Class: Agaricomycetes - n.count : 4- | AF: 0.05 >,

<LocalTree | Class: Bryopsida - n.count : 99- | AF: 0.05 >,

<LocalTree | Class: Amphibia - n.count : 1- | AF: 0.05 >,

<LocalTree | Class: Aves - n.count : 667- | AF: 0.05 >,

<LocalTree | Class: Reptilia - n.count : 2- | AF: 0.05 >,

<LocalTree | Class: Mammalia - n.count : 70- | AF: 0.05 >,

<LocalTree | Class: Liliopsida - n.count : 44- | AF: 0.05 >,

<LocalTree | Class: Magnoliopsida - n.count : 164- | AF: 0.05 >,

<LocalTree | Class: Insecta - n.count : 2- | AF: 0.05 >]

Intersection

Intersection is applied through the & operation and it is equivalent to the intersection of

sets with the difference that it is only applied to the leaf nodes, that is, the Occurrence
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nodes. Once the leaf nodes are selected, the algorithm propagates through the parent

nodes until it reaches the root node. To see the formalization of the data structure go to

supplementary materials II. To obtain the intersection of two trees do:

t = t1 & t2

print(t)

<LocalTree Of Life | No record available: - n.count : 0- >

In this case, the intersection is empty because the Occurrences are overlaid in a regular

lattice that partitions the space (i.e. the cells are disjoint). See supplementary materials II

for a formal definition.

Efficient addition of trees from a list of cells

We can use the sum iteratively in a folding sum to obtain a Tree object representing all the

areas defined in a list of Cells.

big_tree = reduce(lambda a , b : a+b , sample_trees)

However, this method is not efficient. In each step, a new tree is created and the

internal logic to generate the union of all the intermediate nodes can result in redundant

calculations. It is much faster to select first the occurrences for all the trees inside a list

and then plug them into the TreeNeo constructor, as in the example below.

# Faster version

ocs = map(lambda s : s.occurrences,sample_trees)

## ocs is a nested list.

## We need to flatten this into a single list of occurrences

ocs = reduce(lambda a,b : a + b, ocs)

big_tree = TreeNeo(ocs)

print(big_tree)
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<LocalTree Of Life | Root: LUCA - n.count : 374731- >

The resulting tree could be very large. In this case, the obtained tree (big_tree)

comprises 374731 occurrences. Remember that this tree is the resulting union of all the

local taxonomic trees obtained from the neighbourhood of degree 4 around the cells

where jaguars occurred.

2.5.5 Selecting nodes from the Red List

We filter the Species nodes from the big_tree that are present in the Red List of threatened

species. To do this we simply match the names using regular expressions. Using more

sophisticated methods for data matching are out of the scope of the present example. We

assume that the Red List data (a CSV file) have been loaded into a data frame with the

name redlist.

## Filter critically endangered species

critical_sps = redlist[

(redlist.redlistCategory == 'Critically Endangered')

| (redlist.redlistCategory == 'Endangered')

| (redlist.redlistCategory == 'Vulnerable')

].scientificName.apply(str.lower)

protected_by_jaguar = map(lambda critical_sp :

filter(lambda sp : critical_sp in sp.name.lower(),

big_tree.species),

critical_sps)

## Remove empty lists
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protected_by_jaguar = filter(lambda l :

l != [], protected_by_jaguar)

## flatten lists

threatened_species = reduce(lambda a,b : a + b ,protected_by_jaguar)

## remove species repetitions

threatened_species = list(set(threatened_species))

## Extract all corresponding occurrences and flatten list

t_ocs = reduce(lambda l1,l2 : l1 + l2 ,

map(lambda l : l.occurrences, threatened_species))

## Instantiate new tree

threatened_tree = TreeNeo(t_ocs)

The threatened_tree is now a taxonomic tree that includes only the occurrences

that match the species names of the Red List. To calculate the percentage of threatened

species contained in the selected tree we can do:

## total number of critical endangered species

ncrit = len(critical_sps)

len(threatened_tree.species) / float(ncrit) * 100

13.49 %

That is, 13.49% of the threatened species are contained in the neighbouring regions where

jaguars had been registered. To see if this result is relevant we calculate the percentage of

the covered area with respect to the whole country. Before doing so, it is convenient to

transform the selected geometries in a projected coordinate system with metric units.

Reprojecting data

The default coordinate reference system (crs) in the data used is in geographic coordinates

with WGS84 datum (EPSG:4326). The units of this crs is in degrees, therefore the calculated
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area is defined in squared degrees. In order to account for areas and distances in meters

(or kilometers) we need to project the selected geometries into an appropriate projected

coordinate system. To achieve this, we need to import some extra functions.

from shapely.ops import transform

from shapely import wkt,wkb

import pyproj

from functools import partial

Here we used the Alberts Equal Area Conic projection to account for an accurate area

representation. This projection is specified in a string using the Proj4 syntax.

projection_string = """+proj=aea +lat_1=14.5 +lat_2=32.5 +lat_0=24

+lon_0=-105 +x_0=0 +y_0=0 +ellps=GRS80

+datum=NAD83 +units=m +no_defs;

"""

mex_eq_area_proj = pyproj.Proj(projection_string)

## The WGS84 crs is defined as EPSG:4326

proj_in = pyproj.Proj(init='epsg:4326')

## function to project using the parameters of the

## original projection and the mexican equal area.

project = partial(

pyproj.transform,

proj_in,

mex_eq_area_proj)

## Transform all cells to calculate area.

projected_neighbours_cells = map(lambda cell :

transform(project,
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cell.polygon_shapely),

neighbours)

For calculating the average cell size and the total area in square kilometers (1,000,000 m2)

we do:

tokm2 = 1000000 # to convert to sq. kilometers

areas = map(lambda cell : cell.area,

projected_neighbours_cells)

total_cell_area = sum(areas)

## calculate the mean

np.mean(areas) / tokm2

## standard deviation

np.std(areas)/ tokm2

The calculated average area of all cells is 27±3 km2 and the total area is 8,509.81 km2.

2.5.6 Trimming trees

In certain situations we need to select a particular branch of a tree. We can cut (trim) this

branch by simply selecting a node and converting it into a TreeNeo instance to produce a

full feature tree. The method (function) for converting a TreeNode into a full feature tree

is: plantTreeNode. We focus our attention on four branches of the threatened tree that

co-occurrs with the presence of jaguars. These branches are: mammals (class Mammalia),

parrots (order Psittaciformes) amphibians (class Amphibia) and plants (kingdom: Plantae).

Select the branch of interest

Trimming the tree is achieved by first selecting the nodes of interest and then converting

all the descendant branches into fully featured trees. There is no restriction for selecting
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the taxonomic type of the node (mammals and amphibians are Class type while parrots

are Order type).

mammals = threatened_tree.to_Animalia.to_Chordata.to_Mammalia

parrots = threatened_tree.to_Animalia.to_Chordata.to_Aves.to_Psittaciformes

amphibians = threatened_tree.to_Animalia.to_Chordata.to_Amphibia

plants = threatened_tree.to_Plantae

The method plantTreeNode() converts the TreeNode and resulting descendants into a

full featured tree (TreeNeo object).

mammals = mammals.plantTreeNode()

birds = birds.plantTreeNode()

amphibians = amphibians.plantTreeNode()

plants = plants.plantTreeNode()

We can add all these trees together using the sum operation.

vertebrates = mammals + parrots + amphibians

However, as explained earlier, an optimized version for summing more than two trees is

achieved by instantiating a TreeNeo with all the occurrences.

vertebrates = TreeNeo(mammals.occurrences +

parrots.occurrences +

amphibians.occurrences)

print(vertebrates)

The total number of occurrences contained in the vertebrates tree is:

<LocalTree Of Life | Root: LUCA - n.count : 2056- >
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Ranking the most frequent nodes in the selected list of cells

We proceed now to rank some groups according to their frequency of occurrence within

the cells of the study area (i.e. the jaguar’s neighbouring cells). The ranking analysis

calculates this frequency for each node in a tree given a referential list of trees. That

is, assuming that we have n different trees (e.g. one per cell), and a tree of interest (in

this case threatened_tree) how frequently each node appears in the global tree (e.g

threatened_trees) with respect to the list of n trees? Figure 2.9 shows these frequencies

visualised as the size of each node. In our implementation, this analysis is performed with

the method: countNodesFrequenciesOnList(list_of_trees) That is:

vertebrates.countNodesFrequenciesOnList(list_of_trees=sample_trees)

mammals.countNodesFrequenciesOnList(list_of_trees=sample_trees)

parrots.countNodesFrequenciesOnList(list_of_trees=sample_trees)

amphibians.countNodesFrequenciesOnList(list_of_trees=sample_trees)

plants.countNodesFrequenciesOnList(list_of_trees=sample_trees)

We can therefore rank by taxonomic level. In this example we show the procedure for

family and species level in the different branches. Here, we show the corresponding top

five nodes.

mammals.rankLevels()

mammals.families[:5]

[<LocalTree | Family: Muridae - n.count : 8 | AF: 0.30>,

<LocalTree | Family: Phyllostomidae - n.count : 8 | AF: 0.29>,

<LocalTree | Family: Cervidae - n.count : 14 | AF: 0.16>,

<LocalTree | Family: Heteromyidae - n.count : 3 | AF: 0.15>,

<LocalTree | Family: Tayassuidae - n.count : 158

| AF: 0.15>]
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parrots.rankLevels()

parrots.species[:5]

[<LocalTree | Specie: Ara militaris (Linnaeus, 1766) - n.count : 27->,

<LocalTree | Specie: Amazona finschi (P. L. Sclater, 1864) - n.count : 23- >,

<LocalTree | Specie: Amazona auropalliata (Lesson, 1842) - n.count : 3- >,

<LocalTree | Specie: Amazona oratrix Ridgway, 1887 - n.count : 2- >,

amphibians.rankLevels()

amphibians.families[:3]

[<LocalTree | Family: Hylidae - n.count : 128- | AF: 0.083>,

<LocalTree | Family: Plethodontidae - n.count :

160 | AF: 0.05>,

<LocalTree | Family: Eleutherodactylidae -

n.count : 1- | AF: 0.016>]

plants.rankLevels()

plants.genera[:3]

[<LocalTree | Genus: Tillandsia - n.count : 3- | AF: 0.2>,

<LocalTree | Genus: Lonchocarpus - n.count : 5- | AF: 0.18>,

<LocalTree | Genus: Eugenia - n.count : 1- | AF: 0.15>]

2.5.7 Associated raster (environmental) information

Here, we demonstrate how to access raster data associated with a taxonomic tree TreeNeo.

The raster data used are related to environmental variables stored in the RGU. Currently

there are two forms for accessing this information: i) as a table with columns corre-

sponding to environmental variables and rows defined by each occurrence (a point-based
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method); ii) as a raster object sampled from the associated geometry of each tree or, in

general, any (multi) polygon object. The raster object features methods for visualisation,

geoprocessing and data exchange.

Extracting raster information as table

To extract the data in this format use the method (function):

TreeNeo.associatedData.getEnvironmentalVariablesPoints()

The output is a Pandas dataframe with the associated values of climatic covariates.

See the following example:

table = vertebrates.associatedData.getEnvironmentalVariablesPoints()

print(table[:1])

Here we only show the first record.

Table 2.2 Output for environmental variables. Here showing only mean values for some variables
on a single record.

MinTemperature . . . Precipitation Vapor SolarRadiation WindSpeed

0 22.25 . . . 21.16 1.33 16466.25 2.33

The geometric object of each tree is determined by the Occurrence nodes of the tree.

In the graph database, each Occurrence node is linked to the Cell node that geograph-

ically contains the occurrence’s location. One of the attributes of the Cell object is the

geographic polygon that defines its border. The union of all the corresponding Cell

nodes is what determines the geometric feature of the tree TreeNeo. As such, the raster

extraction process is performed on each of the tree’s associated cells.

Extracting Raster objects from TreeNeo instances

To extract the associated raster object of a TreeNeo instance use the method (function):
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TreeNeo.associatedData.getAssociatedRasterAreaData([name of variable])

To obtain several environmental variables use:

associatedData.getEnvironmentalVariablesCells()

For example, information for a single variable can be obtained with:

meantemp_data = vertebrates.associatedData.

getAssociatedRasterAreaData(

'MeanTemperature')

The raster object is automatically added to the TreeNeo object after the method is called.

The raster objects are appended to the attribute associatedData.

2.5.8 Extracting raster objects from arbitrary polygons

The extraction of raster objects is performed by the raster_api library, a Biospytial

module for reading, writing and processing raster objects using the RGU as backend.

The raster_api can use natively any object stored in the knowledge engine that has

at least a two dimensional geometric feature (attribute). This includes the basic operations

for querying, reading and writing. For using external geometric objects like Shapefiles,

GeoPackages, GeoJSON, etc the objects need to be transformed to their corresponding WKT

or WKB (Well Known Binary) representation. Examples of these are described extensively

in the Jupyter notebooks and in the documentation.

In this example we use the polygon defined by the border of Mexico to extract several

raster objects (RasterData instances) using the raster_api module. We use these objects to

compare the environmental ranges of: the threatened species, the Jaguars’ habitat and the

entire area of the country to conclude if the environmental niche of the threated species

are covered by the habitat of the Jaguars’ and how these ranges are different with respect

to the whole country.
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Importing the polygon for Mexico

The first step in this is to import the polygon for Mexico. The default installation of

Biospytial includes the WorldBorders dataset (https://thematicmapping.org). Assuming

that this dataset is installed, we can import the polygon of Mexico with the API provided

by the class Country located in sketches.models. Country is a vector dataset stored in

the RDBMS. The geometric feature is stored as the geom column.

from sketches.models import Country

## The syntax follows the Django Query Set API

mexico = Country.objects.filter(name='Mexico').first()

mex_area = mexico.geom.area

## For reprojecting the area of Mexico we similarly do:

mex_shapely = wkt.loads(mexico.geom.wkt)

mex_projected= transform(project,mex_shapely)

To calculate the percentage of area covered by all the cells with respect with the total area

of Mexico we can do:

total_cell_area / mex_projected.area * 100

3.42%

For example, we can display simple visualisations invoking the method: display_-

field(). See figure 2.7.

vertebrates.associatedData.raster_MeanTemperature.display_field()

https://thematicmapping.org/downloads/world_borders.php
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Fig. 2.7 The output of the method: display_field(), an easy way to visualise RasterData objects.

Interactive visualisation

As an alternative, we can export the raster object as an xarray (http://xarray.pydata.org )

instance for interactive visualisation using the Geoviews (http://geoviews.org ) package.

To export the associated raster data to an xarray object do:

meantemp = vertebrates.associatedData.raster_MeanTemperature.to_xarray()

The following code gives an example on how to generate an interactive visualisation

using the vertebrates’ associated mean temperature data and the locations of the observed

threatened species associated with the presence of Jaguars. We used the elevation data for

Mexico (extracted before) as basemap. Figure 2.8 shows this visualisation at two different

scales.

import geoviews as gv

from cartopy import crs

import geoviews.feature as gf

from geoviews import opts

gv.extension('bokeh')

h
h
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sample_pt = gv.Points((env_threated_occurrences.x,env_threated_occurrences.y),

label='ocurrences').opts(

fill_color = 'orange',

line_color = 'black',

line_width = 0.5,

line_alpha = 0.4,

fill_alpha = 1.0,

size = 5,

)

elevation = all_mex_datasets[0].to_xarray()

elevds = gv.Dataset(elevation,crs=crs.PlateCarree())

elevimg = gvds.to(gv.Image,['Longitude','Latitude']

).opts(cmap=plt.cm.gist_earth)

temp = meantemp.where(((meantemp.Longitude > -95) &

(meantemp.Longitude < -89) &

(meantemp.Latitude > 15) &

(meantemp.Latitude < 19)),

drop=True)

temp.name = meantemp.name

tempds = gv.Dataset(temp,crs=crs.PlateCarree())

tempimg = tempds.to(gv.Image,['Longitude','Latitude']).opts(cmap=plt.cm.magma)
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## Display the map

map_ = (elevimg * gf.ocean * gf.coastline * gf.borders * tempimg * sample_pt )

Fig. 2.8 A composite figure showing two states of the interactive visualisation. Orange dots repre-
sent occurrences of threated species associated with the presence of jaguars (P. Onca). The inland
red square shows the zoomed-in area depicted in the left side of the figure. The colored squares in
the zoomed area shows the mean temperature associated with threatened vertebrates (phylum
Chordata). The base map shows the elevation for all the country. See section 2.3.2 for information
regarding the data used.

2.5.9 Network visualisation and analysis

Each tree instance induces an acyclic graph. We can convert the tree into a networkx

object to visualise and analyse its network properties. To do this, we simply need to use
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the method: tree.toNetworkx(depth_level=[k]) where k is the taxonomic level to

reach in the tree, 0 for root 7 for species level.

Visualisation

A method for interactive visualisation has been developed using the Holoviews (https:

//holoviews.org) framework. To do this we need to invoke the method:

## Plot the Tree

from drivers.tools import to_interactivePlot

network = to_interactivePlot(threatened_tree,label_depth=8)

The output is a dictionary with two key-items: one for labels and the other for the actual

graph (nodes and edges). To plot the whole graph we need to overlay both items.

network['labels'] * network['graph']

Analysis with standard graph algorithms

The TreeNeo structures are particular cases of graph traversals. As such, they can be

analysed with graph theoretic methods. The library NetworkX (https://networkx.github.

io/) is a Python package designed for analysing structure, dynamics and functions of

complex networks. It includes standard graph algorithms and analysis measures as well

as tools for import and export to other standard formats. We can convert a TreeNeo using

the method: toNetworkx(depth_level ). where depth_level is the depth of the graph

to be generated. In the next example we convert the threatened_tree to a NetworkX object

and use this to calculate its corresponding adjacency matrix.

threatened_graph = threatened_tree.toNetworkx(depth_level=7)

from networkx import adjacency_matrix

https://holoviews.org
https://holoviews.org
https://networkx.github.io/
https://networkx.github.io/
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Fig. 2.9 A tree visualization for the merged tree corresponding to threatened taxa, showing up to
Order level. The size of the nodes is proportional to the taxonomic level (the largest is the root of
the tree, the smallest are orders). The node colouring indicates the frequency of occurrence with
respect to all the neighbouring cells (neighbours of jaguars) being the brightest the highest ranked
and the darker the lowest ranked.
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M = adjacency_matrix(threatened_graph)

# uncomment this to plot the matrix

#plt.imshow(M.todense())

Representing TreeNeo objects into NetworkX graphs brings new possibilities for analysis

and modelling. We hope this example will awake the spirit of the reader to explore the

potential of representing data as complex graph structures.

2.6 Conclusions

Biospytial uses open source standards to integrate geospatial ecological big data as a tool

for ecological niche modelling and the analysis of species distributions. This integration

creates a complex network of data with enormous potential for data mining, information

retrieval and visualisation. At the core, a web of semantic-wise relationships constitutes

a corpus of taxonomic and environmental knowledge that opens up new ways to query

and unveil complex ecological relations. To our knowledge, there is no other Open Source

system with the design and capacity of achieving this including: i) storing information in

a hybrid relational-graph system and ii) performing geospatial processes in vector and

raster scalable databases.

A practical example provided a glimpse into how to query and manipulate taxonomic

tree structures, as well as how to extract data, conduct frequency analysis and visualise

results. The example demonstrated a new procedure to rank co-occurring taxonomic

groups in an arbitrary size neighbourhood of pixels.

The GBIF occurrence data includes information only on location and taxonomy and in

this sense the data are limited. However, the engine’s design allows the capture, extension

and exploration of semantic interpretation of the data by adding other types of relations.

For example, linking information on trophic networks to the taxonomic backbone can
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help in analysing spatial patterns of trophic groups and dependant species, a key question

in conservation biology.

The development of Biospytial has followed best practices in scientific programming

(Wilson et al., 2014b). We recognise that spatial analyses are often not generalisable

and therefore replicable. However replicability and reproducibility can be enhanced by

increasing openness and documentation transparency and completeness (Barba, 2019;

Shannon and Walker, 2018; Teytelman, 2018). In fact, Biospytial’s source code is open and

can be accessed at: https://github.com/molgor/biospytial.git while this manuscript is

Open Access. In the future, Biospytial can be further developed into a system not only for

integration and distribution of datasets, but also as a tool for collaboration, experimenta-

tion, validation and reproduction of results in the era of Open Science, satisfying also the

requisites of second generation SDI.

2.7 Availability of supporting source code and requirements

• Project name: Biospytial

• Project home page: https://github.com/molgor/biospytial

• Operating System(s): Platform independent (not tested in Windows)

• Other requirements: Docker 1.13 or higher

• License: GNU General Public License version 3.0 (GPLv3)

• Memory requirements: 40GB in HD for installing the database and at least 16GB in

RAM for running the example.

• RRID:SCR_018226

• biotools:biospytial

https://github.com/molgor/biospytial.git
https://github.com/molgor/biospytial
https://scicrunch.org/resources/about/registry/SCR_018226
https://bio.tools/biospytial
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The current example is located inside the folder examples with the name: [Official

Demo] Co-occurrences_Jaguar.ipynb. The example has been modified only in the

neighbourhood order, changing from 4 to 1. This modification reduces the data to process

and the executing time.

2.8 Availability of supporting data

Snapshots of our code and other supporting data are openly available in the GigaScience

repository, GigaDB (Escamilla Molgora et al., 2020b). The container images can be down-

loaded automatically using the script installEngine.sh . Instructions for installing and

running the engine are located in the project’s homepage.

Table 2.3 Corresponding URLs for source code and container images for the Biospytial engine. The
modules and the source code do not include data. These should be installed separately or loaded
independently.

Module name URL

Graph Storage and Processing Unit https://hub.docker.com/r/molgor/postgis_biospytial
Biospytial Computing Engine https://hub.docker.com/r/molgor/biospytial
Relational Geoprocessing Unit https://hub.docker.com/r/molgor/neo4j_biospytial
Source code https://github.com/molgor/biospytial
Data http://dx.doi.org/10.5524/100723

2.9 Abbreviations

BCE: Biospytial Computing Engine; BLOB: binary large object; CONABIO: National Com-

mission for the Knowledge and Use of Biodiversity; CRS: coordinate reference system;

CSV: comma separated value; DAG: directed acyclic graph; DEM: digital elevation model;

EBVs: Essential Biodiversity Variables; EPSG: European Petroleum Survey Group; GBIF:

Global Biodiversity Information Facility; GDAL: Geospatial Data Abstraction software

Library; GSPU: Graph Storage and Processing Unit; MPI: Message Passing Interface; OGM:

https://hub.docker.com/r/molgor/postgis_biospytial
https://hub.docker.com/r/molgor/biospytial
https://hub.docker.com/r/molgor/neo4j_biospytial
https://github.com/molgor/biospytial
http://dx.doi.org/10.5524/100723
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object-graph mapping; ORM: object-relational mapping; RDBMS: Relational Database

Management System; RGU: Relational Geoprocessing Unit; SDI: spatial data infrastruc-

ture; ToL: Tree of Life; WKT: well known text;

2.10 Funding

This project was jointly sponsored by the Doctoral Scholarships Program from the Mexican

Science and Technology Council (CONACYT), the Faculty of Science and Technology

from Lancaster University (FST-LU) and the GBIF Consortium through the GBIF Young

Researchers Award (2016).

2.11 Authors’ contributions

J.E. and P.A. conceived the original idea, which was further refined by all authors. The

semantic structures and graph traversals were designed by J.E. with the mentorship of L.S.

for integrating datasets. The software and system’s design was developed by J.E. under the

supervison of P.A. and L.S. The writing of the original draft was done by J.E with reviewing

and editing from P.A. and L.S.

2.12 Competing interests

The authors declare that they have no competing interests.

2.13 Acknowledgments

We thank the effort of many researchers, students, public servants and citizen scientists

that had contributed to sample, register and curate all the biodiversity occurrences data



2.13 Acknowledgments 71

contained in the GBIF database. We want to thank specially Raúl Jiménez Rosenberg from

CONABIO for facilitating a complete snapshot of the GBIF database (2016) and the Free

and Open Source Software community whose effort in developing software made possible

the creation of this software.



72 Biospytial: graph-based geospatial computing

Supplementary material I for Biospytial: spatial graph-based

computing for ecological big data

2.14 Adding data in Biospytial

Biospytial is a Knowledge Engine that merges different data using graph theory in order to

model ecological big datasets using geostatistical, graph and other frameworks. Biospytial

has reached a snapshop stage for initial release and will undergo further development.

2.14.1 Aims of this tutorial

This tutorial provides a simple guide on how to install new data sources. As an example,

two data sources are installed: a vector-based data source called: global_ecoregions

and raster based data source: World Population for Latin America.

2.14.2 Assumptions

A fully installed and running Biospytial Suite. This mean the three modules are running.

• Geoprocessing-Backend (GBP)

• Graph-Computing-Engine (GCE)

• Biospytial-Client. (BPE)

In addition, the datasources are downloaded and allocated in an accessible path from

the Biospytial Client.
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2.14.3 Converting the data to a Django Model

For data handling, Biospytial uses the ORM model for accessing geospatial data stored

in the Geoprocessing-Backend. To achieve this, a Class called Model is specified using a

given datasource. That is, each datasource has a class specification for communicating

with the Relational Database manager.

2.14.4 Vector data

We make use of the tool ogrinspect to generate the model definition for a shapefile file

and follow these steps.

1. Login to Biospytial-Client session (the bash shell and not the iPython environment).

2. Locate the path where the data are stored. In this case we are interested in adding

the datasource ’terr-ecoregions-TNC’ which has an ESRI-Shapefile format.

Ingest the shapefile into the GPB

We make use of the LayerMapping utility. Use the tool ogrinspect described in the

manage.py module inside the folder apps where all the Biospytial sources are located. The

general syntax of this command is:

| python manage.py ogrinspect [options] [options]|

For this example:

python manage.py ogrinspect path_to/tnc_terr_ecoregions.shp TerrEcoregions \

--srid=4326 --mapping --multi

where the:
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• –srid option sets the SRID for the geographic field.

• –mapping option tells ogrinspect to also generate a mapping dictionary for use with

LayerMapping.

• –multi option is specified so that the geographic field is a MultiPolygonField instead

of just a PolygonField.

More information is provided in: (https://docs.djangoproject.com/en/2.0/ref/contrib/

gis/tutorial/)

The command prints in the standard output format the class definition for this dataset.

If we decided to use the –mapping option a dictionary is also included with a standarized

format for the column names.

2.14.5 Export Shapefile into the Database (Geoprocessing Container)

We use the LayerMapping utility to make this process faster. The first action is to edit or

create the file load_shapefiles.py inside the ecoregions app.

We define here the mapping names dictionary (see above) and the necessary code to

insert the shapefile into the database.

This is the content of the file load_shapefile.py

!/usr/bin/env python
-- coding: utf-8 --

from future import absolute_import, division, print_function, unicode_literals
import os from django.contrib.gis.utils
import LayerMapping from .models
import TerrEcoregions from biospytial
import settings

""" Functions for exporting shapefiles into the Postgis Database. """

(https://docs.djangoproject.com/en/2.0/ref/contrib/gis/tutorial/)
(https://docs.djangoproject.com/en/2.0/ref/contrib/gis/tutorial/)
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author = "Juan Escamilla Molgora"
copyright = "Copyright 2018, JEM"
license = "GPL"
mantainer = "Juan"
email ="molgor@gmail.com"

#Generated by ogrinspect

terrecoregions_mapping = { 'eco_id_u' : 'ECO_ID_U',
'eco_code' : 'ECO_CODE',
'eco_name' : 'ECO_NAME',
'eco_num' : 'ECO_NUM',
'ecode_name' : 'ECODE_NAME',
'cls_code' : 'CLS_CODE',
'eco_notes' : 'ECO_NOTES',
'wwf_realm' : 'WWF_REALM',
'wwf_realm2' : 'WWF_REALM2',
'wwf_mhtnum' : 'WWF_MHTNUM',
'wwf_mhtnam' : 'WWF_MHTNAM',
'realmmht' : 'RealmMHT',
'er_update' : 'ER_UPDATE',
'er_date_u' : 'ER_DATE_U',
'er_ration' : 'ER_RATION',
'sourcedata' : 'SOURCEDATA',
'geom' : 'MULTIPOLYGON', }

file_shp = os.path.abspath( os.path.join(settings.PATH_RAWDATASOURCES,
'terr-ecoregions-TNC',
'tnc_terr_ecoregions.shp'), )

def run(verbose=True):
lm = LayerMapping( TerrEcoregions, file_shp,

terrecoregions_mapping, transform=False, )
lm.save(strict=True, verbose=verbose)

To load the layer, one must log into the Biospytial iPython environment with:

| python manage.py shell |

Inside the BCE module (e.g. ssh) and using the iPython console, run the following:
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from ecoregions import load_shapefiles

load_shapefiles.run()

2.14.6 Example 2: Adding vector data

Download the roads shapefile from: http://www.conabio.gob.mx/informacion/gis/maps/

geo/carre1mgw.zip

Using the ogronspect tool we have the following:

#This is an auto-generated Django model module created by ogrinspect.

from django.contrib.gis.db import models

class MexRoads(models.Model):
fnode_field = models.BigIntegerField()
tnode_field = models.BigIntegerField()
lpoly_field = models.BigIntegerField()
rpoly_field = models.BigIntegerField()
length = models.FloatField()
cov_field = models.BigIntegerField()
cov_id = models.BigIntegerField()
geom = models.MultiLineStringField(srid=4326)

#Auto-generated LayerMapping dictionary for MexRoads model

mexroads_mapping = { 'fnode_field' : 'FNODE_',
'tnode_field' : 'TNODE_',
'lpoly_field' : 'LPOLY_',
'rpoly_field' : 'RPOLY_',
'length' : 'LENGTH',
'cov_field' : 'COV_',
'cov_id' : 'COV_ID',
'geom' : 'MULTILINESTRING'
}

http://www.conabio.gob.mx/informacion/gis/maps/geo/carre1mgw.zip
http://www.conabio.gob.mx/informacion/gis/maps/geo/carre1mgw.zip
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2.14.7 Add raster data

As before, this process involves two steps: i) loading the datasource into the database and

ii) creating a Class definition for the datasource, intepreted by the engine.

Add the data to the database

We use the raster support from Postgis. We use the script: migrateToPostgis.bash

located in: /apps/raster_api/bash_raster_tools/bash_scripts

However, the tools for ingesting data into the database are stored in the Geospatial

Processing Container. We need to log into this container and run the above file. You can

copy the bash_raster_tools inside this container and run the command migrateTo-

Postgis.bash.

Example Running the following line will load the dataset into the database.

| migrateToPostgis.bash [RasterData.tif ] |

Create a class definition for Raster Data

We need to add the Model Class definition inside the file: raster_api/models.py

The base class is GenericRaster. We need to extend this class into a new definition

according to the type of data we are loading.

The following code describes a generic template for creating a class definition.

class myNewModel(GenericRaster):
"""
..
Description of the model in plain words.
Attributes
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==========
Default attributes given by the raster2pgsql
id : int Unique primary key

This is the id number of each element in the mesh.

"""
number_bands = 1
neo_label_name = 'name of node class'(optional)
link_type_name = 'name of associated edges'(optional)
units = 'The measurment units name'

class Meta:
managed = False
db_table = 'name of table in DB'

def __str__(self):
c = "< String representation: %s >"
return c

The last step is to add this new model into the raster_models_dic in the set-

tings.py file.

raster_models_dic = {
'WindSpeed' : raster_models[7],
'Elevation' : raster_models[0],
'Vapor' : raster_models[6],
'MaxTemperature' : raster_models[5] ,
'MinTemperature' : raster_models[4] ,
'MeanTemperature' : raster_models[3] ,
'SolarRadiation' : raster_models[2],
'Precipitation' : raster_models[1],
'WorldPopLatam2010' : raster_models[8] ,
'myNewModel' : raster_models[9],
}
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Suplementary materials II for the paper: Biospytial: spatial

graph-based computing for ecological big data

2.15 Mathematical formalisms

This section gives a brief description of the mathematical and biological terms used in the

paper. It also includes formalization of the data specification and some conceptual and

theoretical consequences.

2.15.1 Mathematical definitions

Definition 1 (Equivalent class) Let Ω be a set. An equivalent relation on Ω is a subset

R ⊆Ω×Ω that satisfies the following three properties:

• Reflexivity: For all x ∈Ω, (x, x) ∈ R

• Symmetry: For all x ∈Ω and y ∈Ω, if (x, y) ∈ R then (y, x) ∈ R

• Transitivity: For all x, y, z ∈Ω if (x, y) ∈ R and (y, z) ∈ R then (x, z) ∈ R

The equivalent class of an element x ∈Ω is denoted as the set:

[x]R = {x ∈Ω|(x, y) ∈ R, y ∈Ω} (2.1)

Given that x and y are elements ofΩ it follows that if (x, y) ∈ R then [x]R ⊆Ω.

Definition 2 (Partition) Let Ω be a set and A = {A1, A2, ..., An}. A is called a partition of

Ω if and only if:

• ∪n
i=1 Ai =Ω
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• Ai ̸= ;

• Ai ∪ A j =; for all i ̸= j

Definition 3 (Modulus) Let F = {[x]R |x ∈Ω} that is, the family of all equivalent classes in

Ω defined by the relationship R. This set (F ) is denoted asΩ\R and is called the quotient

set ofΩ by R orΩmodulo R.

Ω\R is a partition ofΩ if and only if R is an equivalence relation. Therefore, any pair

of elements Ai , A j inΩ\R (subsets ofΩ) are mutually exclusive. A feature that, with the

right caveats, eases the computation of probabilities using the rule of total probability.

For example conditional autoregressive models use spatial lattices that partitions space

in mutually exclusive areas, the aggregated measurements on each area simplifies the

computing of spatial correlations in large areas (Besag, 1974).

Definition 4 (Graph or Network) Let V (G) be a set and E(G) ⊆V (G)×V (G). A graph G is

a duple given by (V (G),E(G)). V (G) is the set of vertices of the graph and E(G) is the set of

edges. An example of a graph is drawn in figure: 2.1.

Definition 5 (Subgraph) Let G be a graph. G ′ is a subgraph of G (G ′ ⊆ G) if and only if

V (G ′) ⊆V (G) and E(G ′) ⊆ E(G).

Definition 6 (Connected and acyclic graph) If for every u, v ∈ V (G) there exists a path

that connects them, then G is said to be connected. If that path is unique for every u, v then

G is acyclic (without cycles).

Definition 7 (Tree) A graph T which is connected and non-cyclic is called a Tree. An

example is given in figure 2.2.

Definition 8 (Subtree) Let T be a tree. A subtree T ′ is a subgraph of T such that is also a

tree (i.e. contains no cycles).
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2.15.2 Biological definitions

Definition 9 (Biological Species) The following definitions are equivalent:

• Groups of actually or potentially interbreeding natural populations which are repro-

ductively isolated from other such groups ((Mayr, 1940)).

• An inclusive Mendelian population; it is integrated by the bonds of sexual reproduc-

tion and parentage ((Dobzhansky and Dobzhansky, 1970): 354).

• A species is a group of interbreeding natural populations that is reproductively iso-

lated from other such groups ((Mayr and Ashlock, 1991))

Definition 10 (Taxonomic concept of species) ’... a species consists of all the specimens

which are, or would be, considered by a particular taxonomist to be members of a single

kind as shown by the evidence or the assumption that they are as alike as their offspring

or their hereditary relatives within a few generations. When there is no evidence of the

hereditary relationship, the taxonomist will rely on distinctions that have been found to

be effective in segregating species among other groups’. ((Blackwelder, 1967) : 164)

The concept of species is mostly biased by the data used. In the practical case is based

in natural museum records around the world (See section on Data used and GBIF page:

35). Therefore, a more restrictive definition should be used in order to support further

argumentations on evolution and ecology.

2.16 Theoretical consequences

Lemma 1 There is a unique Taxonomic Tree of all life on Earth. This tree is called The Tree

of Life.
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Proof 1 All organisms have Common Ancestor. Because of this is possible to build taxo-

nomic relationships based on this comparison. The Uniqueness of this common ancestor

and the existence of LUA implies that: i) there is just one path that connects any pair of

species (vertices) and ii) the graph is connected.

Lemma 2 (Local Tree) For any area in Earth it is possible to derive a unique Taxonomic

Tree.

Proof 2 Because Life is Conspicuous it is possible to find organisms in any place. By the

axioms of Common Ancestor and Taxonomic Relationship it is possible to build a taxonomic

hierarchy between the group of organisms within that place. Because Axiom of LUA there is

only one tree that represents these taxonomic /ancestry relationships.

Proposition 1 For a given area6 in Earth, the taxonomic tree derived from it is a subtree of

the Tree of Life.

Proof 3 Let T be the Tree of Life and T (A) the local tree in the area A. A ⊆ E ar th. T (A) is

a tree because of lemma 1.14. T (A) is based on the same taxonomy given by the species in

A (which are leaves in the tree) therefore all the edges of T (A) are in T . The species in A is

a subset of all the species in the E ar th otherwise the E ar th would not be the E ar th and

there exist another greater set that could be called E ar th.

Corollary 1 If A = E ar th then T (A) = Tree of Life.

Proof 4 Let A = E ar th. This implies that all species in A are in E ar th and vice versa.

V (T (E ar th)) = V (Tr eeo f Li f e) and the taxonomic chain (path) of V (T (E ar th)) is the

same as in V (Tr eeo f Li f e) because it is unique. Therefore, Tr eeo f Li f e = T (E ar th)
6Any open set contained in the surface Earth. Earth can be considered as a compact surface embedded

in R3
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2.17 Formal data specification

This section explains the mathematical formalities of the model. For the purposes of this

treatment we will call Ω the total sample. In the current implementation the GBIF dataset

is the only source of information for occurrences, therefore Ω = GBIF for an arbitrary

chosen snapshot (version). In general, Ω⊂B where B is the totality of living beings in

Earth (the biosphere) for a given time t 7.

Raw Occurrence Data Let o ∈Ω be called an Occurrence. o has attached a set of prop-

erties P (o). In the case of the GBIF database, P (o) consists (but not exclusively)

of:

• Species

• Genus

• Family

• Order

• Class

• Phylum (or Division)

• Kingdom

• Location (lat/long) (point)

• time-stamp of collection

• Unique Id

The first eight properties are called taxonomic properties.

7If it would be necessary to clarify further we will write this asΩt
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Towards integrated modelling

The concept of equivalence class is foundational because the set of properties P give a

direct classification for living beings. In any ecological study, the sample (e.g. GBIF) will

always be a subset of the universal set of Life in Earth. Each element in the sample has

certain properties like acquisition time, location and, of course, the ontological properties

of each particular study (e.g. individuals within a population; plant traits within an

ecosystem; pollinators and plants, vectors and diseases, etc.)

A general modelling of properties derived by equivalence relations can model different

representations of the same phenomenon in a generic way. For example, all occurrences

have the attribute Species Name. If the relation (x, y) is: x is the same species as y ; we

have that the relation is indeed an equivalence relation. Continuing through this line

of thought we have that the following relations are equivalent relations and each one

defines as well a quotient set.

Relation Quotient Set (notation)

x:has_the_same_id_as:y [I d ]

x:is_the_same_species_as:y [Sp]

x:is_the_same_genus_as:y [Gns]

x:is_the_same_family_as:y [F am]

x:is_the_same_order_as:y [Or d ]

x:is_the_same_class_as:y [C l s]

x:is_the_same_phylum_as:y [Phy]

x:is_the_same_kingdom_as:y [K ng ]

x:is_a_living_being_as:y [Root ]

By recursion, ifΩ is a partition of a larger set say, Γ, any partition (equivalence relation)

withinΩ is also a partition of Γ. The models forΩwill be valid for Γ also.
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For example: suppose that every occurrence is an organism. Every organism is con-

stituted by cells. If Γ is the set of all cells then clearly Ω will be a partition under the

equivalence relation: x is a cell of the same organism as y.

The above formalization of taxonomic objects can continue indefinitely. An unbounded

object like this will always be in a state of definition but not fully defined. A theory or

methodological framework needs to be able to add-up new possible properties in which

the objects could be partitioned.

Adding more properties

Suppose that a new property P is added to each element ofΩ. The new property P could

be any type, e.g. binary, categorical or continuous, and determines a new equivalence

relation such that a new quotient setΩ\P can be derived. Any new property that splitsΩ

in a partition is an equivalence relation.

Partial orders and semi-lattice systems

The hierarchical ordering of: kingdom, phylum, class, order, family, genus and species is

based on the natural system. If this order acts on the entire set of species on Earth (the

biosphere B), with the inclusion of LUA (Axiom 1.5) it defines a partial order set 8.

A consequence of being a partial order set is that, for every species s there exists a

unique chain of ordered elements that join s with a genus g n, a family f , ..., a kingdom

k.e.g., The species Homo sapiens (L. 1758) has an ordered chain of: H. sapiens 6 Homo

6 Hominidae 6 Primates 6 Mammalia 6 Chordata 6 Animalia. A partial order set

induces a semi-lattice data structure compatible with ontology specifications and the

spatial lattices framework. Using both types of relations is a first approach to define

graph traversals based on spatial and evolutionary relationships. This can help to analyse

8Ergo, the bi ospher e is a partial ordered set. For formal definition see: (Skornyakov, 2014)
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species distributions, co-occurrence relationships and statistical modelling of ecological

properties.



Part II

The statistical framework
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Species distribution models (SDM)s are essential tools for predicting biodiversity loss and select-
ing areas for habitat restoration or conservation. Their reliability depends on the available pres-
ence and absence data. While presence data is widely available, absence data is difficult and
expensive to obtain. SDMs for presence-only data have been designed to address this problem.
However, they require additional assumptions about absences, which are often unrealistic or not
flexible enough to reduce the bias given by the presence-only observations.
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only SDM model, Maximum Entropy (MaxEnt) in two examples: one for prediction of pines (Class:
Pinopsida) using botanical records as sampling observations and another for prediction of Fly-
catchers (Family: Tyranidae) using bird sightings as sampling records. In both examples, all mod-
els achieved higher predictive accuracy than MaxEnt. Model III fit best when the sampling effort
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process informed by the accumulated observations of independent and heterogeneous surveys.
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3.1 Introduction

Species distribution models (SDMs) are statistical and computational methods for char-

acterising the distribution of organisms across space (Elith and Leathwick, 2009; Guisan

and Zimmermann, 2000). The predictive capabilities of these models allow forecasting

changes in species distribution under different environmental scenarios, providing mean-

ingful insights with which to assess biodiversity loss (Pereira et al., 2010), adaptation to

climate change (Wiens et al., 2009), ecosystem management and conservation (Navarro

et al., 2017) and the risk of invasive species (Jiménez-Valverde et al., 2011), amongst others.

Predicting the spatial distribution of species subject to different environmental conditions

is crucial for developing strategies for the management, adaptation and mitigation of

human-induced impacts to the biosphere (Ferrier et al., 2016; Foden and Young, 2016;

Intergovernmental Panel on Climate Change, 2014). Although this field is relatively new

(see Elith and Leathwick (2009); Guisan and Zimmermann (2000) and Guisan et al. (2017)

for a review) it has developed quickly in both theoretical and applied studies (Araújo et al.,

2019).

SDMs use occurrence observations as the response variable(s) and environmental fea-

tures (covariates) as explanatory variables. The methodological frameworks for prediction

are, however, diverse. For example, generalised linear models (GLMs) and generalised

additive models (GAMs) have been demonstrated to characterise natural distributions

accurately if presence-absence records are available (Guisan et al., 2002) and (Keating and

Cherry, 2004).

Methods based in machine learning, specifically supervised classification algorithms,

have also been used to model species distributions (e.g Elith et al. (2006); Peterson et al.

(2011); Segurado and Araújo (2004)). These methods include boosted regression trees

(BRT, Friedman (2001)), multivariate adaptive regression spline (MARS, Friedman (1991))
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and artificial neural networks (ANN, Rosenblatt (1958)). The R package sdm includes

an exhaustive list of machine learning methods for fitting species distribution models.

One of the critiques of using machine learning methods in SDMs is that they reduce the

species’ ecological processes into a mere classification problem and does not describe the

stochastic process that generates the observations, limiting their scientific interpretability

(Gelfand and Shirota, 2019; Haegeman and Loreau, 2008).

In this sense, model-based statistical methods are better fit to describe the underlying

mechanisms of species distributions. In particular, joint stochastic modelling and hierar-

chical Bayesian models have recently been proposed to account for uncertainties in the

parameters estimations and for defining more flexible random effects. For example, in

cases where spatial autocorrelation is present, the use of Gaussian Processes (Golding

and Purse, 2016) or Gaussian Markov Random Fields (GMRF) (Illian et al., 2013) have

been shown to increase predictive accuracy. Although these models are statistically sound,

their major limitation is their reliance on presence-absence data, which generally are not

available. In cases where the goal is the modelling of species distributions across large

geographic regions, the creation of presence-absence records requires a careful sampling

design with possibly hundreds of experts deployed in the field for data collection. Surveys

of this kind are atypical and usually are developed by governments or similar sized insti-

tutions that can afford full inventory or census data (e.g. forest Inventory and analysis

(Smith, 2002) and Inventario Nacional Forestal (CONAFOR, 2018)).

The widespread use of opportunistic observations has been favoured by citizen science

initiatives and the availability of large and open repositories like: The Global Biodiversity

Information Facility GBIF (GBIF Secretariat, 2015), eBird for bird sightings (Hudson et al.,

2014) and the PREDICTS database (Sullivan et al., 2009)). These records are often derived

from museums, herbaria collections or unstructured citizen observations. As such, the

data are often limited to presence-only observations and, therefore, do not include infor-
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mation on where or when a given species was not found (i.e. absences). In addition, the

information related to sampling design is frequently lost, or does not exist, and the data

itself are prone to several sources of bias in space, time, and detectability among species

and habitats (Beck et al., 2014; Dickinson et al., 2010; Franklin et al., 2016; Isaac and

Pocock, 2015). Despite the inevitable problem of their sampling bias, presence-only obser-

vations contain valuable information about species distributions and, therefore, several

modelling frameworks for presence-only data have been proposed for such purposes.

With the exception of some unrealistic assumptions about the absences on presence-

only models (e.g. assuming that absence of evidence is equivalent to evidence of absence),

estimating the probability for species occurrence using solely presence-only observations

involves a problem of model identification (Ward et al., 2009). That is, the model has

multiple solutions and is not possible to make reliable inferences. This problem has lead

to recognise the importance of incorporating other sources of information into SDMs

based on presence-only data.

One of the earliest methods is the Maximum Entropy (MaxEnt) algorithm (Phillips

et al., 2006b) for predicting occurrences based on the density of environmental covariates

conditional to the known species presences using background data that serves as pseudo-

absences. The MaxEnt algorithm reduces predictions to an optimal density distribution

calculated with a constrained optimization algorithm, denying accountability for uncer-

tainties related to the optimised distribution and the specification of other random effects.

Despite this, it has shown to perform well in practice (Elith et al., 2006) and is still one of

the most widely used methods for predicting species distributions (> 2600 articles in Web

of Science at the time of writing).

Phillips et al. (2009) recognised the effect of the sampling bias in presence-only distri-

bution models and proposed the use of occurrence records of other species that are have

been collected using the similar methods (called a "target group" in the sense of Phillips
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et al. (2009)). In their work, they proposed a joint model for accounting the sampling bias

and implemented their methodology in three generic types of models: GAMs, MARS, BRTs

and Maxent. Their conclusion was that using and informed background data (one that

potentially shares same characteristics of the sampling process) significantly improves

the models’ accuracy.

The use of joint modelling methods for accounting sampling bias has been addressed

by other authors. For example, the expectation maximization algorithm for estimating

underlying presence-absence processes (Ward et al., 2009) aims to infer the underlying

presence-absence logistic signal of the data used as presence-only observations. This

approach does not account for spatial dependencies. The occupancy model proposed

by Royle and Kéry (2007) specifies a hierarchical Bayesian model for accounting the joint

effect of two components, one for partially observed occupancy and other for the observa-

tions conditional on that process. Inconveniently, their model is suited for longitudinal

data (i.e. time series) and does not account for any spatial effect.

In this regard, the framework developed by Pacifici et al. (2017) accounts spatial depen-

dencies in both components, one for presence-only data and other based on presence-

absence. Both proposals do not allow the explicit modelling of the preferential sampling

(i.e sampling effort process), with fixed and random effects. Another modelling framework

that integrates sampling effort and an ecological process was proposed by Croft et al.

(2019) to model future scenarios of distribution models. These models had advance the

presence-only SDMs in many aspects. However, a unified spatial statistical framework

for species distributions using presence-only data for spatial lattices (i.e. data aggregated

on a grid), has not been proposed yet. We consider that a framework of this kind with the

capability for jointly modelling the sampling effort and the ecological processes using a

flexible design for defining missing data can contribute to a greater predictive accuracy by

exploiting citizen science effort.
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We present a statistical framework for modelling species distributions using presence-

only data. We assume that the registered occurrences of a taxon of interest (ToI) are

incomplete observations of a bivariate process that includes information about the eco-

logical suitability (i.e. where the ToI can live) and complementary occurrence data that

serve as a proxy for sampling effort, providing information on how the observations were

recorded. The framework specifies three hierarchical bayesian models that jointly speci-

fies the ecological and sampling processes. The approach provides a full description of

the data generating process, giving a more direct interpretation of the parameters as well

as giving explicit estimates of their uncertainties. The presented model assumes that the

species populations are static in time and in equilibrium with the environment (in the

sense of Guisan and Zimmermann (2000)). Therefore, this model does not differentiate

between sink populations or populations with sustained growth.

The paper is structured as follows. Section 3.2 describes the general specification of

the frameworks. Here, we develop a logistic hierarchical model defined as a bivariate

process that accounts for spatial random effects. Our most general model (full description

in appendix: 3.9.3) includes a latent bivariate spatial process with correlated components.

We also consider two extreme special cases: in model I (appendix: 3.9.3) the two compo-

nent processes are independent; in model II (appendix: 3.9.3) they are proportional. In

section 3.3 we propose two study cases for predicting presences of Pines (class: Pinopsida)

and Flycatchers (family: Tyrannidae). The prediction analysis is described in sections 3.4.1

and 3.4.2, respectively. We compared the framework using the three models with the Max-

Ent algorithm as a standard benchmark. Finally, section 3.5 discusses the methodology,

caveats and future research.
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3.2 Materials and Methods

As presence-only data lack real absences, there exists no knowledge on whether the

absence of data is due to the inaccessibility of a potential sampling location or the real

absence of the taxon of interest (ToI). This ambiguity suggests that presence-only data

provide incomplete evidence of two underlying processes acting together. A process PY

that generates the ecological phenomenon of a taxon’s occurrence, and a process PX

associated with the sampling effort or survey. As such, locations with no records of the

ecological phenomenon or sampling effort indicates incomplete or missing information.

Our proposal is an attempt to model these two processes using a hierarchical Bayesian

framework with the aim to predict probability of occurrence for a ToI using presence-only

data under different configurations of the spatial autocorrelation of X and Y .

3.2.1 Model summary

In general, the framework specifies a Bayesian hierarchical model that accounts for the

joint effect of two components; an ecological process (PY ), that drives the occurrence of

species of interest in the study region, and a sampling effort process (PX ) that models

how the occurrence data were sampled. Each stochastic process include a structural

component (fixed effect) and a random effect that includes the specification of spatial

autocorrelation. The model is defined in a discrete spatial lattice. Consequently the

estimations are also discrete and are defined in each area element of the lattice. The

support of the model is the area element.

The presence-only data is assumed to represent realizations of a bivariate stochastic

binary process (Bernoulli) separable in two components: one relative to an ecological

process PY that drives the environmental suitability for the ToI, and another process

PX related to the sampling effort. PX and PY are modelled according to the following
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equations:

log

(
py

1−py

)
= d t

Y βY + ry (3.1)

log

(
px

1−px

)
= d t

XβX + rx (3.2)

where dX and dY represent vectors of explanatory variables and rX and rY the random

effects for X and Y , respectively. Specifically, dY is suited for environmental variables

of ecological importance, while dX should account for variables that help explain the

sampling process.

The data used to fit both processes includes information on known occurrences of

the ToI, the sampling effort and missing observations. To predict the probability for sites

with missing data, we use the data augmentation scheme proposed by Tanner and Wong

(1987) and implemented by Lee (2013) in the R-Cran package CARBayes. The approach

generates posterior samples of X and Y as well as the latent variables related to processes

PY and PX in all locations, including the ones with missing observations (i.e. X̃ and Ỹ ).

The full model specification is explained in the supplementary materials 3.9.

Three models for spatial variation

The proposed framework assumes that the ecological process PY and the anthropogenic

sampling process PX are conditionally independent given the random effects RY and

RX . Figure 3.1 show the model structure while a detailed description of the framework

specification is in the supplementary materials 3.9.

The spatial random effect are described by components SY (ToI) and SX (sampling

effort). The only source of dependency between RY and RX is the dependency between

these spatial components. In addition, each random effect incorporates an independent

component for modelling unstructured variation, namely variables ZY and ZX , corre-
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sponding to RY and RX respectively. The framework assumes that the observations of

presence for the ToI and the existence of the survey (sampling) are independent when

conditioned to the spatial effect. As such, the spatial autocorrelation structure is responsi-

ble for informing both processes. To test for this effect we designed three possible models

in which the spatial processes SY and SX inform RY and RX . Model I where SY and SX

are independent, model II with one shared spatial process (SX = SY ) and model III where

SX and SY are correlated components. Schematics of the directed acyclic graphs (DAG)

describing the three models are reported in figure 3.1, while the full description of the

framework is described in supplementary materials 3.9.

We are aware that estimating real probability of occurrence using presence-only data

is not possible given the inherently sampling bias of these type of data (e.g Guillera-Arroita

et al. (2014)). Along this text, we refer to ecological suitability as the spatial variation

across space that determines a species to live, settle or occupy a given area. This definition

disregards the scale of the given value for a particular area. In other situations, we use the

term probability of occurrence to account for the spatial variation of the ecological process

(i.e. ecological suitability) in a probabilistic context, that is, where the spatial variation

ranges in values from 0 to 1. To exemplify this compare the range in values of the latent

variable SY (spatial effect) to those of the ecological process PY . Values in PY are range

only within the [0,1] interval.

Selection of explanatory variables

Our framework is based on the Grinnellian definition of ecological niche, that is, a niche de-

fined by non-interactive and non-consumable (scenopoetic) variables with environmental

conditions changing smoothly and coarsely in space (Soberón, 2007). The selection of

these explanatory variables (covariates) are crucial for the interpretability of the model

and, although, the general specifications for PX and PY are mathematically similar (eqs.
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3.10 and 3.11), they describe very different processes. PY models the ecological suitability

for a ToI to occupy the area under study. Therefore, its associated explanatory variables

(dY ) should be of ecological interest. Examples of these variables are: temperature, precip-

itation, evapotranspiration, elevation, slope and vegetation cover. On the other hand, PX

models the probability of a ToI to be sampled, given that it has been observed. This process

is assumed to be independent from the ecological suitability and it is fully determined by

anthropic variables such as: distance to closest road, population density, infrastructures,

political borders or land use type. The selection of covariates depends on the nature and

specificities of each problem and research question. Therefore, the classification between

anthropic and ecological variables is not necessarily mutually exclusive.

3.2.2 A Choosing Principle for obtaining presences, relative absences

and missing observations

Estimating the probability of occurrence using solely presence-only observations neces-

sarily requires additional assumptions about non-existent absences (Ward et al., 2009).

Thus, any non recorded presence of the taxon of interest (ToI) can potentially be a real

absence (i.e. the area is not inhabited by the ToI) or an unobserved presence (i.e. the ToI

inhabits the area but there is not record about it). The fundamental concept of this work

is to use occurrence records of other taxa that are considered to share a similar sampling

pattern as the ToI. These occurrences are used to model a sample effort process that

informs about the presence and absence of the taxon of interest.

Models I, II and III specify a joint bivariate process that uses two vectors of observations

as inputs; one (Y ) for fitting the ecological process (PY ) and other (X ) for fitting the

associated sampling effort process (PX ). These input vectors (hereafter called response

vectors) are composed of k entries, one for each area element of the spatial lattice. Each

entry has assigned one of three possible values: 1, for defining the presence, 0 for defining
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an absence, relative to a surrogate taxa that informs about the sampling effort (hereafter

called relative absence), and (N.A) for missing data (also called missing observations);

where there is no information about the presence of the ToI nor the surrogate taxa. As

such, each of these values correspond to a presence-absence state on each area element

of the spatial lattice.

As we are using exclusively occurrence data we need an algorithm for deriving response

vectors X and Y from presence-only records. We call this algorithm the choosing principle

and receives two lists as inputs: target (ṫtt ) and background (ḃbb)). These lists are obtained

by checking the existence of an occurrence on each area element of the spatial lattice.

That is, if on a given area, there exists at least one record inside, assign a 1, otherwise

assign a 0. This procedure is repeated on all the areas of the spatial lattice, therefore ṫtt ,

ḃbb and consequently, X and Y have k elements. The lists ṫtt and ḃbb are transformed by the

choosing principle into a response vector with presence, relative absences and missing

observations. The resulting response vector (X or Y ) would depend on the selection of ṫtt ,

ḃbb. To put it simply, the choosing principle defines the missing data for X and Y , given a

list of presences and absences of records.

There are many possibilities to define a choosing principle. Here we use one that

assigns: missing data (N.A.) to locations where neither the background nor target obser-

vations are present, 0 to locations where there is no presence of a target observation (i.e.

ttt i = 0) but has a background observation (i.e. bbbi = 1), and 1 to locations where presences

of both, target and background exist. Algorithm 1 describes this particular case of the

choosing principle.

Obtaining response variables X and Y

The response vector X is obtained, first, by defining the list of occurrences to be used as

the target list in algorithm 1. That is, the observations of the surrogate taxa that inform
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Algorithm 1 Choosing principle: Obtaining a response vector R using background ḃbb and
target observations ṫtt over a spatial lattice composed of K area elements. Binary values
are: 1 if there is at least one registered occurrence, and 0 otherwise. The symbol N .A (Not
a number) is assigned to missing values.

Require: ḃbb and ṫtt
for (i := 1 to i == K ; i ++) do

if ḃ[i ] == 1 then
if ṫ [i ] == 1 then

R[i ] ← 1
else

R[i ] ← 0
end if

else
R[i ] ← NaN

end if
end for

about the sampling effort of the taxon of interest (ToI). We define this list of observations

as the informative sample (ẋxx). It accounts for the presence of a taxon (or group of taxa)

different from the ToI but known to be associated with its presence. The informative

sample should be chosen accordingly to the particularities of the ToI, that is, one that

gives meaningful information related to the real presence of the ToI. The background

observations for X (i.e. ḃbb, input of algorithm 1) are defined as all known presence-only

records of any taxonomic group in the spatial lattice. In this sense, X also supports missing

data, corresponding to areas that have never been sampled.

The response vector Y is obtained similarly by assigning the presence observations of

the ToI (ẏyy) to the target ṫtt and using the informative sample of X (i.e. ẋxx) as background (ḃbb).

Along this text we refer to ẏyy and ẋxx to differentiate between the target lists (i.e ṫtt) used by

Y and X respectively. Additionally, we refer to set of missing data for X and Y with the

symbols X̃ and Ỹ . Table ?? includes definitions of all the terms and symbols used in the

methods and application sections.

The selected choosing principle is reasonable from an ecological view. If, on average,

the existence of X informs the occurrence of Y , we can argue that: if a site i has no
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background information, the probability of X and Y is unknown and it is informed only

by nearby sites. If on the other hand, the background information exists, but there is no

known occurrence (i.e. a relative absence ) of Y at area i , the probability of occurrence for

Y will depend on the presence of X as well as its nearby areas. In this sense, the probability

of occurrence of a taxon (e.g. species) depends on the presence, its relative absence, its

sampling effort and the nearby areas where the taxon is present. The next section shows

two practical examples.

3.3 Applications

To show the capabilities of the framework we chose two examples for predicting presences.

The first involves predicting the presence of pines, that is, occurrences of the class Pinop-

sida as the process PY (Pines) using the available botanical records and occurrences of the

kingdom Plantae as the sampling process PX (Plants). The second example predicts the

presence of a relatively abundant family of flycatchers (family: Tyrannidae) as the process

PY (Tyranids), using the available records of birds (class Aves) as the sampling process PX

(Birds). In both cases we chose Elevation and Precipitation as the scenopoetic variables for

process PY and Distance to roads and Population density as the anthropological variables

for process PX . Following the model specification in equations 3.10 and 3.11 (supplemen-

tary materials 3.9) The model for the examples of Pines and flycatchers is defined as the

joint Bernoulli process.


logit(ToI)k =βY0 +βY1 (Elevation)k +βY2 (Precipitation)k +SY +ZY

logit(Sample)k =βX0 +βX1 (Population density)k +βX2 (Distance to roads)k +SX +ZX

(3.3)
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Table 3.1 Definitions of the used terms and symbols

Symbol / term Definition
response vector vector input, each entry could be a presence,

absence or missing data
occurrence a presence entry (1) in a response vector

relative absence entry for absence (0), relative to the presence
of an external response vector

missing observation an entry (N.A) in a response vector with no
information about presence or relative ab-
sence

Y response vector of the taxon of interest
X response vector of sample observations
Ỹ missing observations contained in the re-

sponse vector (Y ). These values are param-
eters and are sampled by the MCMC proce-
dure

X̃ missing observations contained in the re-
sponse vector (X ). These values are param-
eters and are sampled by the MCMC proce-
dure

PY latent variable for ecological process
PX latent variable for sampling effort process

rY or (RY ) random effect (latent process) for the ecolog-
ical process

rX or (RX ) random effect (latent process) for the sam-
pling process

S spatial process, a component of the random
effect

Z unstructured random effect, normal dis-
tributed

target (ṫtt ) input (presence-only) data, used by the
choosing principle to derive the response
vector of the ecological process (Y )

informative sample (ẋxx) input (presence-only) data, used by the
choosing principle to derive the response
vector of the sample process (X )

background (ḃbb) input (presence-only) data used by the
choosing principle to define entries of rel-
ative absence or missing data
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Where ToI indicates that the equation is used for the taxon of interest (i.e. pines or

flycatchers) and Sample indicates that the equation is valid for the sampling effort (i.e.

plants or birds).

3.3.1 Study region

Both models were fitted to data from the same study region. The region comprises the

inland area of a circular polygon centered in central-eastern Mexico at 19N −97E with

radius of 2◦ (ca.∼ 200 km). The area covers approximately 112,000 km2 and intersects sev-

eral Mexican states including: Veracruz, Puebla, Tlaxcala, Hidalgo, Mexico City, Morelos

and Oaxaca (see figure 3.2 (i)). It includes heterogeneous landscapes with variability in

biodiversity, geomorphological and climatic features. The region also includes distinct

biomes such as: coastal dunes, chaparrales, mesophyl forests, evergreen rainforest, grass-

lands, mangroves, broad leaf forests and coniferous forests (Rzedowski, 2006) and (INEGI,

2015). The circular polygon was intersected on a grid of 4 km spatial resolution to obtain a

latticeW composed of 4061 areal units. This lattice was used to define the spatial structure

in models I, II and III.
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(c) Model III: Correlated spatial effects

Fig. 3.1 Directed acyclic graphs for the three model specifications. Variables in squares account for
observations: Y : presence of a taxon of interest (e.g. species) and X : presence of sample. Circles
in blue correspond to latent variables while circles in grey correspond to parameters. Variables
PX and PY correspond to the latent processes of the sampling effort and ecological suitability,
variables RX and RY correspond to the random effect for the sampling effort and the ecological
suitability processes respectively. Variables βX and βY represent the parameters of the fixed effects
(linear components) of the latent processes PX and PY respectively. Squares in salmon colour
indicate environmental (dY ) and anthropic (dX ) explanatory variables. The variables inside the
dark grey block define the random effects component; different in the three models. Variables
S,SX and SY describe the spatial component defined as Gaussian Markov Random Fields, while
variables ZX and ZY represent unstructured variability within an area.
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Fig. 3.2 A map showing the study area (overlaid semicircular polygon) over central Mexico. Impor-
tant cities are shown as grey polygons scattered across the area. Greener areas represent higher
vegetation cover. The basemap used as background was obtained from the ESRI topographic tiling
service.
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3.3.2 Occurrence data

For the presence-only data we used the available GBIF occurrence data (GBIF Secretariat,

2015) registered before January 2015, constrained to the region W. The raw data was

downloaded from the GBIF portal with the catalog id: DOI:10.15468/dl.oflvla . Upon

downloading, we performed a minimal data cleansing to remove records with missing

information in any of the seven taxonomic ranks (i.e. kingdom, phylum, class, order,

family, genus and species), acquisition date and collection code. We kept occurrences

with identical coordinates as, historically, these occurrences might represent distinct

different records collected in a common study area. Further information of this dataset,

including all data attributions can be found in (GBIF.org, 2016).

We aggregated the occurrence data following the choosing principle described in sub-

section 3.2.2 to obtain response variables ẏyy , ẋxx according to each example. The aggregation

was by the class Pinopsida and kingdom Plantae, in the Pines example and, by the family

Tyrannidae and class Birds for the Tyrannids case. Both examples used all known living

records (Life) as background signal ḃbb. The taxonomic classification structure used was the

GBIF Taxonomic Backbone (GBIF Secretariat, 2017).

3.3.3 Treatments for missing data

To assess the impact of using missing information in the prediction accuracy of the frame-

work, we established two different treatments for fitting each model on each example.

These treatments are defined as follows:

• treatment i: response vectors for the ToI (Y ) and the sample (X ) have missing data

(i.e. X̃ ̸= ; ̸= Ỹ ).

• treatment ii: only the sample response vector (X ) has missing data. That is, X̃ is the

only source of missing information.
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The motivation of using treatments is that they can serve as a middle hypothesis to assess

the performance of the framework under scenarios with different proportions of missing

data. The recommended scenario for use in practical applications is to use treatment i. The

chosen measure of model performance within treatments is the ROC-AUC estimate. Using

this estimate as an absolute measure between models may lead to wrong conclusions. For

example, treatment ii implies that all the absences of Y are real and the sample X provides

no information in the data augmentation methodology and therefore resulted in lower

variance. This may lead to the conclusion that treatment ii performed better, and has

greater predictive accuracy than treatment i. This conclusion would be true only under the

assumption that the absences of the sampling effort are in fact true absences, which, in the

case of presence-only data is false. Therefore, the comparison of presence-only models

using the AUC-ROC estimate is only valid as a relative measure within models that used

the same data, as it penalises models that estimate potential distributions (e.g treating

absences as missing information) whilst favouring those that model realised distributions

those where absences are informative) (Jiménez-Valverde, 2012). Comparing the AUC

makes sense only when they are conditioned to a specific treatment and not between

treatments.

3.3.4 Explanatory variables

The elevation data used were obtained from the Global Relief Model ETOPO1 at 1 arc-

minute resolution (Amante and Eakins, 2009). The precipitation data were obtained from

the World Climatic Data WorldClim version 2 (Fick and Hijmans, 2017). The data are

composed in a 12 band raster model with c.a 1 km spatial resolution averaged in monthly

values from the years 1970 to 2000 (each band corresponds to a month). Note that the cells

in the spatial lattice do not have the same resolution as the climatic data and a process for

data homogenisation was required. To get a scalar value on each grid cell of the lattice
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we first, extracted all the raster values contained within the grid cell (a layer stack) and

then performed the average across all 12 bands. A similar approach was used for the

rest of the raster data. The distance to road dataset was generated in two steps. First we

rasterised the National Road Network for Mexico (Red Nacional de Caminos (RNC) INEGI,

Instituto Mexicano del Transporte and Gobierno de Mexico (2014), scale: 1 : 250000) at

1 km spatial resolution. Later, we used this raster dataset to calculate its proximity to

the closest road (pixels flaged as road) using the function gdal_proximity delivered

as a standalone command-line utility from (GDAL/OGR Contributors, 2018). The road

network data were obtained from: Vázquez (2018). The population dataset was obtained

from the WorldPop project (Sorichetta et al., 2015) for the year 2010. The dataset consists

of population counts on each areal unit, each with a spatial resolution of 3 arc-seconds

(c.a 100 m).

3.3.5 Data preprocessing

The occurrences, scenopoetic and anthropological data were spatially overlaid and ag-

gregated on each areal unit of W. The aggregation method differed according to the

data type. Mean and standard deviation were used for continuous variables, mode

for categorical variables and the logical AND for binary data (ẏyy , ẋxx and ḃbb). The data

pipeline for processing the data was undertaken with Biospytial (Escamilla Molgora

et al., 2020a) a geospatial knowledge engine for processing environmental data https:

//github.com/molgor/biospytial.

3.3.6 Inference and prediction

We used a customised version of the R package CarBayes (Lee, 2013) and adapted it to fit

models I, II and III. It includes a wrapper for easily fitting SDMs using one of the three

models proposed using any type of fixed effects. The code is available from: https://github.

https://github.com/molgor/biospytial
https://github.com/molgor/biospytial
https://github.com/molgor/CARBayeSDM
https://github.com/molgor/CARBayeSDM
https://github.com/molgor/CARBayeSDM
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com/molgor/CARBayeSDM. The package fits the model with a Markov Chain Monte Carlo

(MCMC) method using a combination of Gibbs sampling and the Metropolis-adjusted

Langevin Method (MALA), (Roberts and Tweedie, 2006). The posterior distributions were

sampled by running 10000 iterations (using 5000 for burn-in) and a thinning interval

of 5. Prediction for sites with missing information was done by sampling the posterior

distributions of X̃ and Ỹ . This same configuration was used in models I, II and III.

3.3.7 Comparison between models

Models I, II and III were compared with the Deviance Information Criterion (DIC) (Spiegel-

halter et al., 2002). The DIC accounts for the number of parameters used and the likelihood

of the observed data, given the statistical model assumed to be generating the data. The

DIC is a generalisation of the Akaike information criterion (AIC) for hierarchical models,

both measure the quality of the models in terms of their accuracy and parsimony. The

DIC also serves as a Bayesian-based model selection tool. Model A is preferred to model

B if its DIC value is lower than the one for B (i.e DICA < DICB ).

3.3.8 Comparison against Maxent

As mentioned in the introduction, we used the maximum entropy (MaxEnt) algorithm

(Phillips et al., 2006b) as a benchmark to compare the prediction accuracy of the proposed

models. Contrary to models I, II and III, MaxEnt does not have a hierarchical specification

and, therefore, calculating a DIC for model comparison is not possible. To address this

limitation, we used a seven-fold cross-validation methodology for measuring the quality

of the predictions of all models. That is, on each fold, 1/7-th of the data was excluded from

the fitting process and used as testing data to be compared against the corresponding

predictions. This procedure was performed seven times, until every observation had a

corresponding predicted value. We then used the receiver operator characteristic (ROC)

https://github.com/molgor/CARBayeSDM
https://github.com/molgor/CARBayeSDM
https://github.com/molgor/CARBayeSDM
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curve and its area under the curve (AUC) (Fielding and Bell, 1997) as a measure of predic-

tion accuracy. The same seven-fold cross validation was performed for models I, II and III

with the difference that the excluded data were treated as missing data. The ROC / AUC

values were calculated with the R package pROC (Turck et al., 2011).

Recalling that the proposed models are based on a spatial lattice structure (i.e. a CAR-

based model), the spatial variation is modelled on a finite set of areal units. In the following

case studies, these units were defined as square cells on a regular grid of approximately 4

km of spatial resolution. To make a fair comparison, we used the same spatial resolution

and environmental values for fitting the MaxEnt models. Additionally, the background

data (i.e. pseudo-absences in the MaxEnt jargon) used for fitting MaxEnt were obtained

from locations with sampling observations but with no record of the taxon of interest,

similarly to the sample selection bias for background data proposed by (Phillips et al.,

2009). In other words, the choosing principle was also applied to the MaxEnt models

resulting in the same input for all models (only valid for component Y (presence) of

models I, II and III).

MaxEnt optimisation

MaxEnt allows different configurations for model fitting. The most important are: the

regularisation factor (reg) and the composition of mathematical transformations of the

covariates, so-called features (see: Merow et al. (2013)). These features are equivalent to

functions of the trend (i.e. they modify the fixed effect). To optimise the predictions of

MaxEnt, we ran the 7-fold cross validation using different combinations of regularisation

factors (reg ∈ (0.1,150)) and feature functions. In the case of the features, we used single

and paired combinations of each of the following types: linear (l), quadratic (q), product(p),

threshold (t) and hinge (h). The total number of different combinations (i.e models) for

MaxEnt was 2250. The model was fitted with the R package maxnet (Phillips et al., 2017).
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3.4 Results

3.4.1 Presence of Pines

We performed the methods described in section 3.2.2 to obtain response variables for

Pines (Pines) and the botanical sample (Plants) using a geographical latticeW composed

of 4060 cells (or unit areas). For the presence observations, 341 (8.4%) cells have known

occurrences (class Pinopsida), 2559 (63%) have relative absences and 1160 (28.6%) are

unknown (locations with missing observations). For the sample observations (botanical

records), 2900 (71.4%) cells have known occurrence, 430 (8.4%) have relative absence and

730 (18%) unknown information (missing data).

The optimal MaxEnt, in terms of its higher predictive accuracy measured by the AUC-

ROC was the one with a hinge feature type (nknots=50) and regularisation factor of 0.5.

This combination, however, achieved the lowest predictions AUC of 0.67 ±(0.64,0.7)95%

confidence interval (CI), when compared with models I, II and III (see figure 3.4a). Results

from the best MaxEnt model and Models I, II and III are described in table 3.2.

For the treatment i (i.e. with both sources of missing information, see section 3.3.3),

Model III (the one with correlated spatial structures) resulted to be the best ranked, that

is, it achieved the lowest Deviance Information Criterion (DIC of 3440.2, see table 3.2).

The predictive accuracy of this model, measured as the area under the ROC curve (i.e.

AUC-ROC) was the highest of all three models (see figure 3.4a). The AUC of the three

models fell within a common 95% credible interval of [0.8,0.86], that is, the predictive

accuracy of models I, II and III was not significantly different.

Treatment ii (i.e. the one with no missing data in the sample effort component)

produced slightly different results. In this case, Model I (independent spatial effects)

was the best ranked by achieving the lowest DIC value (3421.2). The AUC in all models

was higher than those on treatment i. However, in a similar way all of these values fell
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within a common 95% credible interval of [0.85, 0.89] (see supplementary materials fig:

3.11). Possible reasons for this effect are explained in the next section. Additionally,

the ROC curves in all models show similar variance described as the envelope of the

ROC curve. Figures of this has been left to the supplementary materials (fig: 3.11). The

Table 3.2 Comparison of the presence-only models: Independent Spatial Components (Model 1),
Common Spatial Component (Model 2), Correlated Spatial Components (Model 3) and Maximum
Entropy (MaxEnt) for the presence of Pines (class Pinopsida) using botanical records (kingdom:
Plantae) as sample effort. A 7-fold cross validation was performed to calculate the area under the
receiver-operating characteristic curve (ROC-AUC) as a measure of quality for each model. Models
with the ⋆ symbol were fitted using only missing data from X (sample), i.e. treatment ii.

DIC ROC-AUC 95% C.I DIC⋆ ROC-AUC⋆ 95% C.I⋆
Model I 3517.6 0.835 [0.81, 0.86 ] 3421.2 0.874 [0.85,0.89]
Model II 3665.9 0.826 [0.8,0.85] 3647.9 0.877 [ 0.86, 0.89]
Model III 3440.2 0.832 [0.80,0.85] 3505.9 0.876 [0.86,0.89]
MaxEnt – – – – 0.67 [0.64,0.7]

framework allows testing the significance the model’s parameters, in the same form as

a Bayesian linear regression. In this sense, the variable distance to road was found to be

the only significant covariate common to models I, II and III. That is, the zero is out of

the 95% credible intervals (CI) of its posterior distribution. The scenopoetic variables

(elevation and precipitation) were only significant in Model II. The selection of these

specific covariates was based solely to demonstrate the capabilities of the model. As such,

other covariates with stronger significance may be used further applications.

Spatial results

Figure 3.3 shows the mean predicted latent surfaces for the presence of Pines PY and

sampling effort PX in all three models (left and right columns resp.). PX shows higher

probability of occurrence than PY across all the region. This is consistent in the three

models. In contrast, the presence PY revealed clustered patterns of high probability (figure

3.3). Of particular interest is the central zone that shows a high probability of occurrence.

This area corresponds to the contact between the Eastern Sierra Madre and the Volcanic
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Axis and is of high elevation and high precipitation. In contrast, the MaxEnt model (fig:

3.3, bottom left panel) produced a smoother surface. The orographic features are more

defined and the clustered patterns for presence are lost. Visual comparison between the

models is difficult because of their similarity. However, in treatment ii (only one source

of missing observations), Model II shows the compromise of estimating the sample PX

to satisfy a common spatial component with PY . In Model III, the median correlation

obtained from the cross variance (Σ), between the presence of pines (PY ) and the sampling

effort (PX ), was 0.97 with (0.9,0.99) 95% credible interval. This result is consistent with

the fact that the taxon of interest (i.e. pines) is totally contained in the sampling effort (i.e.

plants). The complete estimates summary can be checked in supplementary section 3.10.

3.4.2 Results for the Presence of Flycatchers (family Tyrannidae)

This example was performed in the same study region (i.e., across the latticeW). However,

the data availability was significantly different and, therefore, the results were also different.

In this example we obtained 596 (14.6%) cells with known occurrences of flycatchers, 368

(9.1%) with relative absences and 3096 (76.2%) of unknown or missing information. The

occurrences for the sample (birds in general) was composed of: 990 (24.4%) known

occurrences, 2340 (57.6%) relative absences and 730 (18%) missing data.

The optimal MaxEnt, in terms of its higher predictive accuracy measured by the AUC-

ROC was the one with a combination of feature type of linear and threshold (nknots=50),

and a regularisation factor of 0.7. The resulting optimal combination achieved a ROC-AUC

of 0.61 ±(0.59,0.63)95% confidence interval (CI). The optimal parameter combination

resulted to be equivalent to models I and III in terms of its predictive accuracy. That

is, all the MaxEnt models are covered by the 95% confidence intervals of the ROC-AUC

estimation for models I, II and III. Nevertheless, Model II (the one with a common spatial

random effect) resulted to be significantly more accurate than the rest of the models.
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Fig. 3.3 Comparison of models I, II and III against the maximum entropy algorithm (bottom left
panel). The maps displayed here corresponds to the posterior mean probability for the three
models using observations of pines as presence (panels on left) and botanical records (panels
on right) as the sampling process. The bottom right panel shows the observations used to fit the
models.
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(a) Pines example (b) Birds example

Fig. 3.4 Area under the receiver operating characteristic curve (AUC-ROC) for the different models
of the pines example (left panel) and the birds example (right panel). The dots in colours represent
a MaxEnt models using different parameters of regularisation (x-axis) and feature type (vertical
legend). The values in the y-axis correspond to the resulting AUC-ROC value according to that
specific pair of parameters. The AUC-ROC values of models I (red), II (green) and III (blue) are
shown as horizontal lines. Solid lines represent the mean AUC-ROC values for models I, II and
III, while dotted and dashed lines represent their respective lower and upper (95%) confidence
intervals.
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Figure 3.4b shows a comprehensive view of the aforementioned results. Additionally, a

quantitative summary of these results is described in table 3.3.

In treatment i (i.e. missing data in both response vectors, the one for presence and

the one for sample), Model III (correlated spatial components between the ecological

process and the sampling effort) was the best ranked, achieving the lowest DIC value

(3905), similarly to the Pines example. However, its accuracy in terms of ROC-AUC was

close to random classification, reaching an AUC of 0.54 with ±(0.45,0.62) at 95% CI. Model

I (independent spatial effect for the ecological and the sampling components) obtained

similar values of ROC-AUC (0.56± (0.47,0.64) at 95% CI). In contrast, Model II obtained

the highest predictive accuracy ( 0.77± (0.71,0.84)) with a DIC of 3905, second in rank.

(see figure 3.4b); In addition, models I and III achieved a low predictive power compared

to the benchmark model (MaxEnt).

Treatment ii, (i.e only one response vector (X ) with missing information) showed

contrasting results. Although model III (correlated components) ranked best, in terms

of a lowest DIC (3331.1), its AUC was 0.95± (0.94,0.96). Model I (independent spatial

components) followed with an AUC of 0.89± (0.88,0.91). Model II, could not obtain valid

posterior distributions, as its log-likelihood diverged to −∞. We discuss possible reasons

and circumventing strategies in the next section.

All results are shown in table 3.3. Based solely on the DIC, Model III was ranked first in

both treatments. However, in cases with large proportions of missing data (as in treatment

i with 76.2% cells) the prediction accuracy (ROC-AUC) was low. This effect highlights

the importance of selecting informative missing data as well as the type of model to use.

These issues are explored further in the discussion section.

The covariate Distance to roads was found to be significant in models I and III. The rest

(elevation, precipitation and population count) were not significant in all three models.
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The selection of these specific covariates was based solely to demonstrate the capabilities

of the model. As such, other covariates with stronger significance may be used.

Table 3.3 Comparison of the presence-only models: Independent Spatial Components (Model 1),
Common Spatial Component (Model 2), Correlated Spatial Components (Model 3) and Maximum
Entropy (MaxEnt) for the presence of the family Tyrannidae using birds as sample (class: Aves). A
7-fold cross validation was performed to calculate the area under the receiver-operating charac-
teristic curve (ROC-AUC) as a measure of quality for each model. Models with the ⋆ symbol were
fitted using only missing data from X (sample), i.e. treatment ii.

DIC ROC-AUC 95% C.I DIC⋆ ROC-AUC⋆ 95% C.I⋆
Model I 4445.8 0.556 [0.47, 0.64 ] 5607.3 0.89 [0.88 ,91]
Model II 4251.1 0.77 [0.71, 0.84] N.A. N.A. N.A.
Model III 3905.0 0.54 [0.45, 0.62] 3331.1 0.95 [0.94,0.96]
MaxEnt – – – – 0.61 [0.59,0.63]

Spatial results

Figure 3.5 shows the mean predicted latent surfaces for the presence of flycatchers PY

(Tyranids) and relative sample PX (Birds) in all the three models (left and right columns

resp.). Model I presents a clear difference between PY and PX (figure 3.5, first row). In this

case, PY appears more smooth with patches of lower probability, although always with

probability higher than 0.2. The surface PX in model I (fig: 3.5, top right panel) has clear

shaped patterns with contrasting probabilities between interior regions (pocket shapes).

This feature is present in both surfaces of model II (fig:3.5, second row) and model III

(fig:3.5, third row) The fixed effects (covariates) for PX and PY are close to zero, therefore,

the spatial variation is driven only by the common structure S. In the case of model III,

the sample surface PX presents greater connectivity and higher probabilities in places

with known observations. Both surfaces, however, present a similar structure in shapes

and patterns.

In contrast, the MaxEnt prediction lacks the random spatial effect component. The

resulting probability surface is determined exclusively by the features used by the covari-

ates. Although is possible to distinguish spatial patterns within the region, the predicted
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probability is in general close to uniform random classification (i.e. 0.5). This effect is

supported by the obtained AUC-ROC value of the cross-validation analysis (0.6) (fig: 3.4b

(a)). In Model III, the median correlation, obtained from the cross variance (Σ )between

the presence of flycatchers (PY ) and the sampling effort (PX ), was 0.996 with (0.993,0.998)

95% credible interval. As in the latter example, this result is consistent with the fact that

the taxon of interest (i.e. flycatchers) is totally contained in the sampling effort (i.e.birds).

The complete estimates’ summary can be checked in 3.11.
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Fig. 3.5 Comparison of models I, II and III against the maximum entropy algorithm (bottom left
panel). The maps displayed here corresponds to the posterior mean probability for the three
models using observations of flycatchers as presence (panels on left) and observations of birds
records (panels on right) as the sampling process. The bottom right panel shows the observations
used to fit the models.
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3.5 Discussion

We proposed a framework for predicting the probability of occurrence of a given taxon us-

ing presence-only data. Our contribution is the design of a bivariate CAR framework that

uses an additional source of information, apart from the presences of the target species.

This extra information comes from sampling observations related to other species and

other taxa that, according to the modeller, give complementary information relative to the

occurrence of the taxon of interest (ToI). The framework relies on three fundamental con-

cepts: i) the sampling effort as complementary information for inferring the probability of

presence, ii) the spatial autocorrelation structure for determining the variability and oc-

currences likelihood across the landscape, and iii) the choosing principle, a mechanism for

determining presences, relative absences and missing data from presence-only records.

Both examples showed that, at least one of the three proposed models outperformed

MaxEnt. The results in tables 3.2 and 3.3 show that the models’ goodness-of-fit statistic

(i.e. DIC) and predictive accuracy increased in treatment ii, that is, when the absence of

records were treated as real absences. This is expected because assuming missing data as

real absences reduces uncertainty.

These results show that the proportion of missing data plays a fundamental role in the

predictive capability of the model. This effect is recognised in the flycatchers example,

where the proportion of missing observations is much higher (76% of the total number

of regions) compared to presences and relative absences. In this case, models I and III

produced low predictive accuracy, similarly to MaxEnt, with an AUC-ROC of near 0.6 (i.e.,

close to random classification). In contrast, model II, although ranked second in terms of

DIC, achieved the highest predictive accuracy (AUC-ROC). This result is also supported

by by the high number of missing data (increased uncertainty) and reduced number of

spatial parameters to fit. In terms of models’ parsimony, one shared spatial latent effect
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(model II) has less parameters to fit compared with two spatial effects in the case of models

I and II.

The three proposed models impose different restrictions on how the spatial autocorre-

lation structure affects the probability of a species to occur. The more complex the spatial

structure is, the more presence-only observations (and less missing data) are needed. This

can be modulated by the amount of missing data with respect to the relative absences

determined by the sampling effort observations and the choosing principle. Consequently,

using an appropriate informative sample becomes crucial for obtaining accurate infer-

ences and predictions. This finding highlights interesting paths for future research: one

related to the selection of informative observations for the sampling effort process, and

the other for different choosing principles.

Model II may be a better alternative for taxa with sparse spatial distributions and large

proportion of missing data. Nevertheless, model II presented problems with identifiability

in treatment ii (i.e. missing data only in the ToI observations and assumed real absences

in the sampling process). A possible reason is that the inference method could not find a

suitable compromise in accounting for a common spatial effect that had two constraints.

One, the accountability of residuals of both processes (PY and PX ) and two, the restrictions

imposed by the intrinsic CAR model specification. That is, the sum of the random effect

on all the lattice areas should sum one. A possibility to circumvent this last restriction is

to specify, instead, a proper CAR model (e.g (Leroux et al., 2000)). The package CARBayes

(Lee, 2013) allows this specification. We recommend the practitioner to compare the three

models accordingly to fit specific needs.

3.5.1 The role of the choosing principle

When presence-only data are used, any choosing principle is inevitably a source of poten-

tial bias. Thus, the research question and the selection of the sampling effort observations
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play a fundamental role in determining the accuracy of predictions. The way relative

absences and missing data are derived implies ecological assumptions that should be kept

in mind when one tries to model species (taxon) distributions. For example, following

the biotic, abiotic, movements (BAM) diagram proposed (Soberon and Nakamura, 2009),

if the objective is to model the realised distribution, (i.e., places where the species lives

in reality) absences become informative. If on the other hand, the objective is to model

the species’ potential distribution (i.e. places where it can survive and thrive due to suit-

able environmental conditions) absences may constitute missing data. See equivalent

concepts from a SDM approach Jiménez-Valverde et al. (2008).

In our framework, we used the sample observations X together with the choosing

principle to discriminate between informative absences and missing data. If the sampling

effort is chosen to be informative it can increase significantly the accuracy of predictions

(see table 3.2).

The current choosing principle assumes that for every location k, if the ToI (e.g.

species) is not present, but the sample observation exists (Xk = 1), then the ToI is as-

sumed to be absent (Yk =0). In some applications this assertion may be incorrect and, if

the sample observations X consist as well of presence-only data, the bias in false absences

can propagate in both processes. This problem is present in all presence-only methods

that tries to account for the sampling bias using pseudo-absences (e.g. target-background

approach of Phillips et al. (2009)), given the intrinsic bias of the collected data. Ideally,

the best way to rank distinct choosing principles, given a ToI, is using presence-absence

data. The proposed choosing principle is not intended to be a general rule for all species

and problems. An it is worth for the modeller to consider other choosing principle in

which relative absences and missing data can be specified from presence-only data. For

example, another type of choosing principle can incorporate information on other species

features. For example movement, since the accessibility of an area can be indicative of
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poor sampling and its use has been shown to reduce bias in occurrence data (Monsarrat

et al., 2018).

We would like also to explore further the role of the taxonomic structure in determining

informative samples. In the examples we used broad and generic groups, jumping from

class Pinopsida to kingdom Plantae, in the case of Pines, and from family Tyranidae to

class Aves, in the case of the flycatchers. We hypothesise that using the immediate parent

node of the ToI, according to its taxonomical classification, could give more accurate

models for certain groups. An example of this could be the use of the family (of the ToI) as

sample, if the ToI is a type of genus.

In recent years, spatial point process (SPP) models have been proposed to model

presence-only occurrences (see Velázquez et al. (2016) for review).

This is a sensible choice of modelling giving that these models are able to represent

discrete events in a continuous space. Recently, authors like (Renner et al., 2015, 2019)

proposed a combined likelihood approach for modelling the spatial dependence using a

latent log Gaussian Cox process (Møller et al., 1998). Although these models are sound and

have been used satisfactory, the assumptions about the required sample design restrict

their application to only specific cases (Gelfand et al. (2013), Chp. 20 ). Additionally, in SPP

models, all information is contained in the location of the occurrences and separating the

sampling effort from the ecological process, can lead to confounding and identifiability

problems. In our opinion the use of spatial lattices (i.e. Gaussian Markov random fields) for

modelling spatial autocorrelation presents a more appropriate alternative for modelling

generic species.

3.5.2 Advantages in using this framework

The model is defined in a spatial lattice. The observations occurred on a given area

element can be aggregated to reflect presences or abundances. That is, the model support
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repeated measurements within areas. In addition, the probabilities for presence in areas

that have not been sampled can be inferred by the neighbouring areas. The method is

able to infer places where data availability is limited. The model specifies a Bayesian

hierarchical model and accounting uncertainties of the parameters is possible. This brings

the possibility to perform hypotheses testing on the posterior sample. As it is a hierarchical

model it is possible to perform model selection using the DIC statistic. The structural

components of the models, that is, the ecological process and the sampling effort can be

explicitly modelled using different covariates and even feature classes, as the ones used

by MaxEnt. Lastly, the choosing principle provides a flexible form to assign absences and

missing data.

3.5.3 Limitations

Manipulating the spatial random component of the model implies greater computational

complexity on the order of O(n3) (in its worse scenario). Although, the matrix is sparse

and the inference uses optimised numerical methods that can reduce the computational

complexity, the numerical methods involved are more intensive than MaxEnt or other

models that are not based on hierarchical Bayesian inference. This is a limitation for

studies that requires extended regions involving hundreds of thousands of area elements.

Another limitation is that the specification of the spatial effect is based on discrete

spatial distributions. This implies that, once the model is fitted, it is not possible to

make predictions on observed regions or data (as opposed to geostatistical models). Also,

depending on the specification, a modeler may need the spatial random effect to be

continuous in space, instead of over a discrete lattice. If this is the case we recommend

the use of SPP-based models like (Renner et al., 2015, 2019).
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3.6 Conclusions

The proposed framework was demonstrated to be superior than the benchmark model

(i.e. MaxEnt). All models within the framework achieved better predictive accuracy

when compared to MaxEnt. Additionally, as this is a statistical model it accounts for

true parameter uncertainties allowing robust statistical analysis; a missing feature in the

algorithmic MaxEnt approach. Additionally, MaxEnt does not account for missing data

and spatial autocorrelation structure. This highlights the importance of modelling these

sources of variation to increase the accuracy of the spatial prediction of species.

In the studied cases, the likelihood of the sampling effort informed the presence

process PY in all models. This was true even for the independent model I, where the

information from the sampling effort is informed only by the choosing principle and

relative absences. In both examples, at least one of the three models achieved high

predictive accuracy (AUC ≥ 0.7); bringing attention to the use of informative observations

in the likelihood of the sampling effort and its role in determining accurate predictions.

Overall, model III (i.e. correlated spatial effects) obtained the highest goodness of fit

measure, that is, it was the one that lost the least information. Model II, however, was

more suitable in terms of accuracy when the missing data were significantly larger than

the relative sample. In cases like this, where the proportion of missing information is large,

it is appropriate to consider a single source of spatial autocorrelation for both processes.

3.7 Data and source code availability

Currently the code and data are stored in the following repository: https://github.com/

molgor/CARBayeSDM. We intend to put the code and data in a long term curated reposi-

tory such as Dryad or FigShare.

https://github.com/molgor/CARBayeSDM
https://github.com/molgor/CARBayeSDM
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3.9 Supplementary materials I: Framework specification

We begin by defining a grid inside a region of interest located somewhere on the Earth’s

surface. Mathematically this is a spatial latticeW= {k1, ...,kK } that partitions a compact

set A ⊂ S2 ⊂ R3 into K non-overlapping compact subregions. Let X = {xk |k ∈ W} be

the recorded presence of a certain sample (or survey) and Y = {yk |k ∈W} the presence

of a taxon (e.g. species) of interest (ToI). As such, xk and yk are two binary random

variables corresponding to the events of: a sample xk has been registered in location k and

taxon yk is present at location k. Missing observations are defined in the same lattice as:

X̃ = {x̃k |k ∈W∧Rx(k)} where Rx(k) is the predicate of: there is no recorded evidence of

x in k and similarly, Ỹ = {ỹk |k ∈W∧Ry (k)} where Ry (k) is the predicate of: there is no

recorded evidence of the presence of y in k. The data augmentation methodology (Tanner

and Wong, 1987) implemented in CARBayes (Lee, 2013) generates posterior samples of

X̃ and Ỹ . We opted to omit any further specification for the variables X̃ and Ỹ here, to

simplify the description of the framework.

The general specification of the framework factorises the joint probability distribution

in the following form:

[Y , X ,PY ,PX ,RY ,RX ,βY ,βY ;dY ,dX ,W] = [Y |PY ][X |PX ] (3.4)

[PY |RY ,βY ][PX |RX ,βX ] (3.5)

[βY ;dY ][βX ;dX ] (3.6)

[RY ,RX ;W] (3.7)

Equations 1 to 3 are consistent across the framework while the specification for equation

4 (i.e. random effects) vary according to three different assumptions of spatial autocorrela-

tion; independent components (model I), a common spatial component (model II) and
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correlated spatial components (model III). We start by defining equations 1 and 2. That

is, the probability of presence for a ToI (Yk ) given the latent variable PY (k) in a cell k and

similarly, the probability of a sample Xk to be present given its respective latent variable

PX (k). These binary random variables are modelled as following:

[Y |PY = py ] ∼ Bernoulli(py ) (3.8)

[X |PX = px] ∼ Bernoulli(px) (3.9)

3.9.1 Latent variables PY and PX

We assume that the presence-only data represent realizations of a joint stochastic process

separable in two components: one relative to an ecological process PY that drives the

environmental suitability for the ToI, and another process PX related to the sampling

effort. We, therefore, model [PY = py |RY = ry ,βY ;dY ] and [PX = px |RX = rx ,βX ;dX ] (eqs.

3.5) according to the following specification:

log

(
py

1−py

)
= d t

Y βY + ry (3.10)

log

(
px

1−px

)
= d t

XβX + rx (3.11)

where dX and dY represent vectors of explanatory variables and rX and rY the random

effects for X and Y respectively. Specifically, dY is suited for environmental variables

of ecological importance, while dX should account for variables that help explain the

sampling process. The prior distributions for βY and βX (eq: 3.6) are defined, as default,

as uninformative zero-mean normal distributions with default variance 100,000. We

acknowledge that the use of uninformative priors can yield to skewed parameter estimates

and negate the advantage of using Bayesian methods over frequentist analyses (Gelman

and Shalizi, 2013; Hobbs and Hooten, 2015). These hyperparameter values are default
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options in CarBayes (Lee, 2013) and, consequently, in our modelling framework. As such,

they can be changed according to the user needs. See (Lemoine, 2019) for a concise guide

on using informative and weakly informative priors in ecological models. In the following

section we present the three alternatives for modelling RX and RY .

3.9.2 Random effects

The general form of the random effects component for PY (and PX ) is defined as an inde-

pendent zero-mean random variable RY (RX ). This variable accounts for the combined

effect of a spatial process SY (SX ) that models the spatial variation across the lattice W

and an independent normally distributed random variable ZY (ZX ) with variance σ2
Y (σ2

X )

that accounts for unstructured noise inside each cell of the lattice.

Specifically, these random effects are defined as follows:

RY = SY +ZY

RX = SX +ZX (3.12)

where ZY ∼ N (0,σY ) and ZX ∼ N (0,σX ) and the spatial components SY and SX are

modelled as intrinsic conditional autoregressions (ICAR) (Besag, 1974; Besag et al., 1991)

with parameters τ2
Y and τ2

X respectively, over the lattice W. In the rest of this work we

represent W in its matrix form, that is, the adjacency matrix W of its graph represen-

tation; defined as a k ×k symmetric matrix with entries: wi , j = 1 = w j ,i if cells i and j

are neighbours, otherwise wi , j = 0. Modelling the spatial autocorrelation as an ICAR

eases significantly the computation of W −1 with the aid of optimised methods for sparse

matrix algebra (Rue and Held, 2005). This approach simplifies significantly the inference,

prediction and posterior sampling, a great advantage in applications with large datasets.
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3.9.3 Three models for spatial autocorrelation

The proposed framework assumes that the ecological process PY and the anthropogenic

sampling process PX are independent when conditioned to the random effects RY and RX

(see figure 3.1 and eq: 3.5). This assumption implies that the only source of dependency

between RY and RX is the dependency between the spatial effects SY and SX , this by the

assumption of independence between variables ZY and ZX . Moreover, the framework

assumes that the observations of presence for the ToI and the existence of the survey

(sampling) are independent when conditioned to the spatial effect. As such, the spatial

autocorrelation structure is the component responsible for informing both processes. In

order to test for this we designed three possible models in which the spatial processes

SY and SX inform RY and RX . Model I in which the spatial components SY and SX are

independent, Model II with a unique spatial component shared between both processes

PX and PY (i.e. SX = SY ) and Model III in which the spatial components SX and SY are

correlated. Below we give the full description of each model.

Model I: Independent Spatial Components (ISC)

This model assumes that the spatial random effects on both processes (RX ,RY ) are inde-

pendent. By equations 3.12 the joint distribution is given by

[RY ,RX ;W] = [SY ,SX , ZX , ZY ,τ2
Y ,τ2

X ,σ2
Y ,σ2

X ;W ]

and, given the assumptions on independence, it can be factorised into:

[SY ,SX , ZX , ZY ,τ2
Y ,τ2

X ,σ2
Y ,σ2

X ;W ] = [SY |τ2
Y ;W ][SX |τ2

X ;W ] (3.13)

[ZX |σX ][ZX ,σ2
X ] (3.14)

[τ2
Y ][τ2

X ][σ2
Y ][σ2

X ] (3.15)
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where the term [Sl |τ2
l ;W ] (l being X or Y ) is modelled as an ICAR (Besag, 1974; Besag

et al., 1991) with a full conditional form of:

[Slk |Sl−k ,τ2
l ;W ] ∼ N

(∑K
i=1 wk,i Sli∑K

i=1 wk,i
,

τ2
l∑K

i=1 wk,i

)
(3.16)

for each process l ∈ {Y , X } on each cell k (i.e. Slk ). The prior distributions for parameters

τ2
l and σ2

l are defined as inverse gamma(1,0.01), default values in the package CARBayes.

Figure 3.1a (in the main text) shows a general DAG structure for this model.

Model II: Common Spatial Component (CSC)

This model assumes that the random effects RX and RY share the same spatial compo-

nent S (i.e. SX = SY ). By equations 3.12 the joint distribution is given by [RY ,RX ;W ] =

[S, ZY , ZX ,τ2,σ2
Y ,σ2

X ;W ] and, given the assumptions on independence, it can be fac-

torised as:

[S, ZY , ZX ,τ2,σ2
Y ,σ2

X ;W ] = [S|τ2;W ] (3.17)

[ZY |σ2
Y ][ZX |σ2

X ] (3.18)

[σ2
Y ][σ2

X ] (3.19)

Similarly to model I, the spatial effect [S|τ2;W ] is modelled as an ICAR (Besag, 1974; Besag

et al., 1991) in full conditional form on each cell k ∈W.

[Sk |S−k ,τ2;W ] ∼ N

(∑K
i=1 wk,i Si∑K

i=1 wk,i
,

τ2∑K
i=1 wk,i

)
(3.20)

The prior distributions for parameters τ2
l and σ2

l are defined as inverse gamma(1,0.01),

default values in the package CARBayes. Figure 3.1b (in the main text) shows a general

DAG structure for this model. Model II is specified as a two-level model where each areal
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unit k has two response variables, Xk and Yk . The individual level variation is split into

two groups: ZX and ZY . Figure 3.1b shows the DAG describing the model.

Model III: Correlated Spatial Components (CSC)

This model specifies the joint random effect [RY ,RX ;W ] as a combined effect of the

spatial processes, SY and SX . To model this effect, both spatial effects are ensembled as

a bivariate conditional autoregresive (BCAR) process that accounts for both SY and SY

simultaneously. To improve the identifiability of the model, the unstructured random

effect (i.e. ZX and ZY in models I and II) is integrated into the spatial effect using a more

relaxed specification of the spatial autocorrelation structure. This specification, proposed

by Leroux et al. (2000), adds a new parameter ρ that models the strength of the spatial

dependency. When ρ = 1 the spatial dependency is maximum and the spatial process is

equivalent to an intrinsic CAR model. On the other hand, if ρ = 0 there is no evidence of

spatial autocorrelation and therefore, the observations are spatially independent. To make

the comparison between models I and II consistent, we have restrictedρ = 1. However, this

restriction can be removed according to the needs of the users. Following the equations

3.12 and the DAG specification shown in figure 3.1c (in the main text) the joint distribution

[RY ,RX ;W ] can be factorised as:

[RY ,RX ;W ] = [SY X |Σ,ρ;W ][Σ][ρ] (3.21)

The combined random effect SY X is defined as the Kronecker product between the Leroux

et al. (2000) CAR model and a 2×2 covariance matrix Σ that accounts for the cross variable

effect between both processes. The correlation between both variables can be calculated

as:

Cor r (X ,Y ) = Σ1,2

Σ1,1Σ2,2
(3.22)
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The BCAR model is a particular case of the multivariate model (MCAR) proposed by

Gelfand and Vounatsou (2003) and it has been implemented in the R package CARBayes

(Lee, 2013) following the proposal of Kavanagh et al. (2016). SY X is a realization of the

following multivariate normal distribution:

SY X ∼ N
(
0,

[
Q(W,ρ)⊗Σ−1]−1

)
(3.23)

The autocorrelation function Q(W,ρ) is defined by the precision matrix:

Q(W,ρ) = ρ[D −W ]+ (1−ρ)I (3.24)

where D is a k × k diagonal matrix in which each entry di ,i is equal to the number

of neighbours of each unit area i ∈ {1, ..,k}. The prior for Σ is distributed as Inverse-

Wishart(3,Ω) with three degrees of freedom andΩ= I2x2 as scale matrix. The prior [ρ] is a

non-informative uniform (0,1) distribution. The DAG describing the model is described

in figure 3.1c.
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3.10 Supplementary materials II

This section contains the summary statistics of the fitted posterior distributions of the

parameters corresponding to models I, II and III, described in summary in the main text

(section: 3.2) and extensively in the supplementary materials 3.9. The summary statistics

corresponding to the presence of pines (using plants as sampling effort) is showed first.

The second case study is showed in the next section. The structure of every table is the

same for all models in both examples. The rows describe the parameters corresponding to

each model (on each table). The first three columns describe the median, upper and lower

bounds of the 95% credible intervals. The n.effective column indicates an estimate

for the size of independent samples (taking into account autocorrelations within each

chain of the MCMC sampler). The column % accepted refers to the proportion of times a

proposed value was accepted by the Metropolis updating step as a new value of the poste-

rior sample (see (Lee, 2013)). The column Geweke.diag refers to Geweke’s convergence

diagnostic (Geweke, 1992) which compares the means calculated from distinct parts of the

Markov chain to test for convergence of the stationary distribution (default first 10% and

last 50%). If the chains reached a stationary distribution, then the two means are equal

and Geweke’s statistic has an asymptotically standard normal distribution. All models can

be fitted in CARBayes (Lee, 2013), which uses the R package Coda (Plummer et al., 2006)

for calculating n.effective and Geweke.diag.

3.10.1 Estimates for the predicted presence of Pines using botanical

records as sample



136 A framework for modelling species distributions with presence-only data

Table 3.1 Posterior summaries of all the parameters in Model I with the associated 95% credible
intervals for the example of pines. Parameters τ2

Y and τ2
X correspond to the variance of the spatial

effects of the presence (Y) and the sample process (X) (i.e. SY and SX ) respectively. Likewise,
σ2

Y and σ2
X correspond to the variance of the unstructured processes ZY and ZX respectively.

Significant parameters are shown in bold. For further information see section: 3.3

Median 2.5% 97.5% n.sample %accept n.effective Geweke.diag
(Intercept of Y ) -1.1871 -4.0872 0.9928 10000 64.2 16.0 -7.8
Elevation 0.0002 -0.0002 0.0006 10000 64.2 299.9 -2.0
Precipitation 0.0002 -0.0001 0.0005 10000 64.2 206.4 0.4
τ2

Y 19.6638 13.2754 45.1344 10000 - 8.5 -1.3
σ2

Y 0.3658 0.0357 0.7923 10000 - 3.1 1.8
(Intercept of X ) 3.0309 2.4178 3.9749 10000 61 24.3 -0.9
Dist. to road -0.0002 -0.0004 -0.0001 10000 61 1294.1 0.5
Population 0.0000 -0.0001 0.0001 10000 61 1320.2 0.4
τ2

X 5.2708 2.7058 9.5806 10000 - 8.7 -1.1
σ2

X 0.1818 0.0637 0.3250 10000 - 7.9 -1.1

Table 3.2 Posterior summaries of all the parameters in Model II with the associated 95% credible
intervals for the example of pines. The parameter τ2 represents the variance of the common spatial
effect. Parameters σ2 and σ2 correspond to the variance of the unstructured process ZY and ZX .
Significant parameters for the fixed effect are shown in bold. For further information see section:
3.3

Median 2.5% 97.5% n.sample %accept n.effective Geweke.diag
(Intercept) -0.7085 -1.0766 -0.3426 5000 51.6 80.5 -4.9
Dist. to road -0.0002 -0.0004 -0.0001 5000 51.6 170.9 -1.2
Population 0.0000 -0.0001 0.0001 5000 51.6 150.2 -0.2
Elevation 0.0002 0.0000 0.0004 5000 51.6 79.7 1.6
Precipitation 0.0003 0.0001 0.0004 5000 51.6 85.9 3.5
τ2 6.8838 4.7169 11.8695 5000 - 5.5 5.1
σ2 9.7797 2.8682 72.7988 5000 - 5000.0 1.1
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Table 3.3 Posterior summaries of all the parameters in Model III with the associated 95% credible
intervals for the example of pines. Parameters σ2

Y and σ2
X correspond to the variance for the

presence (Y ) and the sample (X ). The term corrX ,Y indicates the correlation between these two
processes. Significant parameters for the fixed effect are shown in bold. For further information
see section: 3.3

Median 2.5% 97.5% n.sample %accept n.effective Geweke.diag
(Intercept of Y ) -7.7938 -9.2851 -6.3099 5000 55.6 60.5 6.4
Elevation Y 0.0003 -0.0001 0.0007 5000 55.6 102.6 -3.0
Precipitation Y 0.0002 -0.0002 0.0005 5000 55.6 82.7 0.7
(Intercept of X ) 3.4115 2.7572 4.4384 5000 55.6 58.4 5.7
Dist. to road X -0.0002 -0.0004 -0.0001 5000 55.6 387.9 -3.3
Population X 0.0000 -0.0001 0.0002 5000 55.6 437.5 -0.3
σ2

Y 31.8726 21.3638 44.6661 5000 - 8.2 -3.5
σ2

X 6.8778 4.3181 15.4775 5000 - 5.1 2.2
corrY ,X 0.972 0.906 0.994 - - - -
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3.10.2 Maps of posterior variables for the presence of Pines
(a) Model I

(b) Model II

(c) Model III

Fig. 3.6 Mean probability and 95% C.I. for Presence, Sample, and Joint presence and sample for
Models I, II and III predicting presence of Pines (Class: Pinopsida) using Plants (Kingdom: Plantae)
as sample.
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(a) Model I

(b) Model II

(c) Model III

Fig. 3.7 Latent variable PY (Presence) for Models I, II and III predicting presence of Pines. The
central column corresponds to the mean value. The columns on the left and right correspond to
quantiles: 0.025 and 0.975, respectively.
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(a) Model I

(b) Model II

(c) Model III

Fig. 3.8 Spatial random effect SY . The Gaussian Markov random field (GMRF) corresponding to
the latent variable PY (Presence) for Models I, II and III predicting presence of Pines. The central
column corresponds to the mean value, The column on the left and right corresponds to quantiles:
0.025 and 0.975, respectively.
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(a) Model I

(b) Model II

(c) Model III

Fig. 3.9 Latent variable PX (Sample) for Models I, II and III predicting presence of Pines using all
plants as sample. The central column corresponds to the mean value. The columns on the left and
right correspond to quantiles: 0.025 and 0.975, respectively.
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(a) Model I

(b) Model II

(c) Model III

Fig. 3.10 Spatial random effect SX . The Gaussian Markov random field (GMRF) corresponding to
the latent variable SX (Sample) for Models I, II and III predicting presence of Pines. The central
column corresponds to the mean value. The column on the left and right corresponds to quantiles:
0.025 and 0.975, respectively.
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(a) MaxEnt (b) Model I

(c) Model II (d) Model III

Fig. 3.11 Area under the receiver operating characteristic curve (AUC-ROC) for the different models
of Pines. The three models (b,c and d) perform significantly better than MaxEnt.
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3.11 Estimates for the predicted presence of tyranids using

birds records as sample

Table 3.4 Posterior summaries of all the parameters in model I with the associated 95% credible
intervals for the example of flycatchers. Parameters τ2

Y and τ2
X correspond to the variance of the

spatial effects of the presence and the sample process (SY and SX ) respectively. Likewise, σ2
Y and

σ2
X correspond to the variance of the unstructured processes ZY and ZX respectively. Significant

parameters for the fixed effect are shown in bold. For further information see section: 3.3

Median 2.5% 97.5% n.sample %accept n.effective geweke.diag
(Intercept X ) -1.2410 -2.7526 0.0656 10000 59 7.7 3.0
Dist.to road -0.0001 -0.0002 0.0000 10000 59 1329.3 1.7
Population 0.0000 -0.0001 0.0001 10000 59 1242.7 0.1
τ2

Y 9.8274 5.3185 13.8716 10000 100 13.2 0.0
σ2

X 0.0063 0.0014 0.0196 10000 100 4.3 6.4
(Intercept Y ) -0.4842 -1.4833 0.6361 10000 57.9 20.3 8.6
Elevation 0.0000 -0.0002 0.0002 10000 57.9 309.5 0.5
Precipitation 0.0001 -0.0001 0.0003 10000 57.9 143.8 -3.4
τ2

Y 1.9098 1.0779 3.6263 10000 - 8.6 -0.4
σ2

Y 0.5745 0.0867 1.8564 10000 - 3.4 -4.8

Table 3.5 Posterior summaries of all the parameters in Model II with the associated 95% credible
intervals for the example of flycatchers. The parameter τ2 represents the variance of the common
spatial effect. Parameters σ2 and σ2 correspond to the variance of the unstructured process ZY

and ZX . Significant parameters for the fixed effect are shown in bold. For further information see
section: 3.3

Median 2.5% 97.5% n.sample %accept n.effective Geweke.diag
(Intercept) -1.6937 -2.1358 -1.3629 10000 47.6 68.7 4.7
Dist to road -0.0001 -0.0002 0.0001 10000 47.6 443.7 -0.8
Population 0.0000 -0.0001 0.0001 10000 47.6 300.6 -1.4
Elevation -0.0001 -0.0003 0.0001 10000 47.6 175.3 1.6
Precipitation 0.0000 -0.0001 0.0002 10000 47.6 192.1 2.4
τ2 10.1800 7.3033 14.9518 10000 - 18.8 -3.8
σ2 0.0089 0.0022 0.0829 10000 - 1552.6 0.4
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Table 3.6 Posterior summaries of all the parameters in Model III with the associated 95% credible
intervals for the example of flycatchers. Parameters σ2

Y and σ2
X correspond to the variance for the

presence (Y ) and the sample (X ). The term corrX ,Y indicates the correlation between these two
processes. Significant parameters for the fixed effect are shown in bold. For further information
see section: 3.3

Median 2.5% 97.5% n.sample %accept n.effective Geweke.diag
(Intercept Y ) -0.9374 -1.6520 -0.2057 5000 53.3 110.0 1.0
Elevation 0.0000 -0.0002 0.0002 5000 53.3 88.5 -1.2
Precipitation 0.0001 -0.0001 0.0003 5000 53.3 150.2 -2.0
(Intercept X ) -1.4153 -1.9346 -0.9441 5000 53.3 85.2 0.4
Dist. to road -0.0001 -0.0002 0.0000 5000 53.3 523.5 0.5
Population 0.0000 -0.0001 0.0001 5000 53.3 232.1 -1.0
σ2

Y 3.5179 2.7614 6.0832 5000 - 5.6 -0.7
σ2

X 7.3840 5.9431 12.1276 5000 - 7.1 -0.6
corrY ,X - - - - - - -
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3.11.1 Maps of posterior probabilities for Tyranids
(a) Model I

(b) Model II

(c) Model III

Fig. 3.12 Mean probability and 95% C.I. for Presence, Sample, and Joint presence and sample for
Models I, II and III predicting presence of flycatchers (Family: Tyrannidae) using birds (Class: Aves)
as sample.
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(a) Model I

(b) Model II

(c) Model III

Fig. 3.13 Latent variable PY (Presence) for Models I, II and III predicting presence of flycatchers
(Family: Tyrannidae). The central column corresponds to the mean value. The columns on the left
and right correspond to quantiles: 0.025 and 0.975, respectively.
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(a) Model I

(b) Model II

(c) Model III

Fig. 3.14 Spatial random effect SY . The Gaussian Markov random field (GMRF) corresponding to
the latent variable PY (Presence) for Models I, II and III predicting presence of flycatchers (Family:
Tyrannidae). The central column corresponds to the mean value. The columns on the left and
right correspond to quantiles: 0.025 and 0.975, respectively.
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(a) Model I

(b) Model II

(c) Model III

Fig. 3.15 Latent variable PX (Sample) for Models I, II and III predicting presence of flycatchers
(Tyrannidae) using all birds as sample. The central column corresponds to the mean value. The
columns on the left and right correspond to quantiles: 0.025 and 0.975, respectively.



150 A framework for modelling species distributions with presence-only data

(a) Model I

(b) Model II

(c) Model III

Fig. 3.16 Spatial random effect SX . The Gaussian Markov random field (GMRF) corresponding to
the latent variable PX (Sample) for Models I, II and III predicting presence of flycatchers (Tyran-
nidae). The central column corresponds to the mean value. The columns on the left and right
correspond to quantiles: 0.025 and 0.975, respectively.
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(a) MaxEnt (b) Model I

(c) Model II (d) Model III

Fig. 3.17 Area under the receiver operating characteristic curve (AUC-ROC) for MaxEnt and models
I, II and III of flycatchers. MaxEnt and models I and III achieved low AUC. Although, on average
models I and III outperformed MaxEnt, their variances show that these models are not appropriate
when the proportion of missing data is significantly higher than the presences. See the discussion
section for a more detail explanation.
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Abstract

• Species distribution models (SDMs) are essential tools for assessing a variety of ecological
problems (e.g. mapping species, assessments of biodiversity loss and conservation plan-
ning). In general, SDMs assume that the presence of a species is determined fully by en-
vironmental conditions, disregarding dependencies between different species. Modelling
these dependencies is achieved by joint species distribution models (JSDMs) that simulta-
neously inform multiple species with their associated occurrences. Recently, several frame-
works for JSDMs have been proposed. However, all of them require information on species
presence and absence. No extension for JSDM using presence-only data has been published.

• Here, we propose a JSDM for presence-only data using a multilevel hierarchical model that
combines two components: an ecological suitability process that models the probability of a
given taxon to occur within certain environmental conditions, and a sampling effort process
that models the probability of a site to be sampled based on anthropological covariates. Both
components inform each other through a common spatial random effect that captures the
unobserved effect of biotic interactions. The absences of the target species were modelled
with a taxonomic-based algorithm that uses surveyed places unlikely to contain the taxa of
interest.

• The model was validated with simulated data and later applied to a case study in central
Mexico focusing on five taxa: oaks (genus Quercus), pines (family: Pinacea), leadtrees (genus
Leucena), leafnose bats (family: Phyllostomidae) and woodpeckers (family: Picidae)

• The model was able to identify (and remove) the influence of the sampling effort from the
ecological process that determines the presence of a taxon. The removal of this effect was
surprisingly effective in urban areas, were the high abundance of observations bias the esti-
mates of presence. Additionally, the spatial patterns of the ecological process were consis-
tent with the theoretical biogeographical patterns of the investigated taxa. Our model can be
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used to infer the presence of multiple species across space in cases were the only available
information are species occurrences. It can also determine the degree of contribution of the
sampling effort in the overall estimation of the species presence.

Keywords: Species Distribution Models, Presence-only data, Tree of life, Multivariate conditional

autorregresive models,

2
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4.1 Introduction

Estimating the geographic distribution of species, conditioned to their ecological niche

is crucial for risk assessments of species extinctions, conservation planning, habitat

restoration and forecasting the effects of climate change on biodiversity (Benito et al.,

2009; Elith et al., 2006). Species distribution models (SDMs) are quantitative tools designed

for these purposes and have become essential tools for decision and policy-making in

regional to global biodiversity assessments (Araújo et al., 2019).

SDMs have been shown to be effective in characterising the natural distributions of

species when the sampling has been properly designed to fit the model’s assumptions

(Elith and Leathwick, 2009; Guisan and Zimmermann, 2000). SDMs are often limited to

the use of presence-absence observations to predict single species under two theoretical

assumptions: i) that the probability for a target species S occupies a given area is inde-

pendent from other species (Gelfand et al., 2006; Guisan and Thuiller, 2005) and ii) S is at

equilibrium with their environment. That is, the species S occurs in all environmentally

suitable areas and is absent in unsuitable environments (Hutchinson, 1957).

Although existing SDMs are statistically sound, their reliance on presence-absence

observations reduces the application to surveys where there is certainty about absences

which represent unsuitable environments for the target species to exist. As such, obtain-

ing presence-absence data is a hard and expensive task. Additionally, the content and

uncertainties depends on several factors like the study design, its extension and species of

interest, among others. In this regard, presence-only occurrence data are far more widely

available and accessible. An increasing number of centralised and open repositories such

as: the Global Biodiversity Information Facility GBIF (GBIF Secretariat, 2015), eBird for

bird sightings (Hudson et al., 2014),the PREDICTS global database on terrestrial biodiver-



4.1 Introduction 157

sity (Sullivan et al., 2009) and the Disease Vector Database (Moffett et al., 2009), have been

released to aid the endeavour of mapping life in Earth.

Although valuable ecological information exists in presence-only records, they are

prone to several problems related to heterogeneous sampling design, bias in space and

time, and detectability among species (Beck et al., 2014; Dickinson et al., 2010; Franklin

et al., 2016; Isaac and Pocock, 2015). Specifically, presence-only observations do not

inform on real absences or missing observations. Thus, failure in specifying absences

adequately can result in models that are not identifiable (see Phillips and Elith (2013);

Ward et al. (2009)). Approaches to solve this problem for single (univariate) SDMs involves

the use of informative background data as a proxy to model absences (see (Croft et al.,

2019; Renner et al., 2019; Ward et al., 2009)).

Another limitation of SDMs relates to the assumption of being in equilibrium with

the environment. Extrapolating species habitat to new environmental conditions (e.g.

affected by climate change or by invasive species) violates the assumption of equilibrium

(Elith and Leathwick, 2009). This implies that, using only environmental predictors

for modelling species distributions without the support of existing knowledge of the

species’ ecology is not enough to extrapolate the targeted species distribution, exposing

the limitations of using single SDMs to infer the probability of occurrence outside the

observed environmental range.

Araújo et al. (2005); Chase and Myers (2011); De Marco et al. (2008); Dormann (2007);

Elith and Leathwick (2009) have shown the importance of integrating elements of eco-

logical community theory, such as: the effect of biotic interactions, intrinsic phenotipic

plasticity and evolutionary relationships in a new generation of SDMs capable of support-

ing multiple species out of environmental equilibrium. A primer for this was reviewed

by Ferrier and Guisan (2006) in an influential synthesis. They described three modelling

strategies for combining data from multiple species to produce information on spatial
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distributions integrated in a collective community-level model. Broadly, these strategies

are: assemble first, predict later where biodiversity data are first analysed and processed

to obtain a community-level attribute used for prediction (e.g. a measure of richness);

predict first, assemble later where species occurrences are first predicted using classic

univariate SDMs and then integrated as a predicted output as a community-level variable;

and assemble and predict together in which all the species of interest are modelled simul-

taneously using community-level information. From a statistical perspective, this last

strategy is achieved, with the modelling of the joint probability distribution of multiple

species occurrences and is therefore called: joint species distribution models (JSDM).

Disregarding the effect of species interactions can lead to inconsistent results Clark

et al. (2014). In contrast, JSDMs can use the information contained in the implicit de-

pendencies between species, considering other effects not explained by the predictor

variables. This is has been shown to be effective in the modelling of rare species, where

the observations of other more conspicuous co-occurring species inform the likelihood

of the rarest ones (Hui et al., 2013; Ovaskainen and Soininen, 2011). For these reasons,

JSDMs provide more flexibility for simultaneously assembling multiple species supported

in ecological theory, resulting in models with greater inferential and predictive power

(Warton et al., 2015).

Multivariate generalised linear mixed models (GLMMs) and latent variable models

(LVM) have been used to model a wide range of JSDMs (see review by Warton et al. (2015))

From a statistical perspective, both GLMMs and LVMs can be specified as hierarchical

models, using different levels of random effects to capture correlations between distinct

taxa and ecological relationships, demonstrating to be effective in modelling uncertainty

(Cressie et al., 2009). For example, Aderhold et al. (2012) proposed a model for recon-

structing species interaction networks using Bayesian changepoint frameworks, and Jamil
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et al. (2013) used GLMMs to incorporate the effect of species traits in response to the

environment and other species occurrences.

Spatial autocorrelation is acknowledged to be an important random effect that cap-

tures the geographic variation not explained by environmental predictors (Elith and

Leathwick, 2009; Legendre, 1993). Several spatial modelling approaches have been pro-

posed in the literature (Gelfand et al., 2006; Golding and Purse, 2016; Illian et al., 2013;

Lichstein and Simons, 2002).

Recent advances in high performance computing and computational statistics have

opened the possibility for inferring complex statistical models using Markov chain Monte

Carlo (MCMC) methodologies. These advances have led to the development of novel

methods in JSDMs. One of the first attempts was developed by Latimer et al. (2009) using

a hierarchical approach for binary responses (presence-absence) and a geostatistical

model for co-regionalization (Wackernagel, 2003) to model a spatial effect per species.

Later, Clark et al. (2014) proposed a hierarchical model for abundances and presence-

absence for multispecies using a zero-inflated Poisson process to account for the bias in

the number of zeros related to abundance data. An approach by Thorson et al. (2015) and

later independently by Ovaskainen et al. (2016) used latent factors to model the whole

community level, with a single parameter exponential spatial covariance function for

each latent factor. This research has been improved recently in Tikhonov et al. (2020)

using Gaussian predictive processes a nearest neighbour Gaussian process as spatial

latent factors. Although, these approaches provide deeper understanding of the ecological

processes at different scales (i.e from community to species), they do not support presence-

only data. To our knowledge, joint species distributions models for presence-only data

have received relatively little attention.

Here, we propose a hierarchical multilevel model for multiple species distributions

using presence-only data. Our approach uses the taxonomic tree of the taxa of interest



160 A taxonomic-based joint species distribution model for presence-only data

to obtain an intrinsic informative sample (i.e. independent from external information)

to inform the likelihood of all taxa jointly. The intrinsic informative sample serves as

background information (in the sense of Ward et al. (2009)) to define an identifiable JSDM

based on presence-only data using the evolutionary (taxonomic) structure of the natural

classification (De Queiroz and Gauthier, 1990).

The paper is structured as follows. A description of the model is presented in section

4.2. Section 4.3 tests the model performance on simulated data. The model was applied

to a case study using occurrence data from central Mexico in section 4.4. Finally, section

4.5 discusses the implementation, findings in the study case, and future research which

builds on the fundamental approach introduced here.

4.2 Methods

Inference on species distribution models using presence-only data require the use of

additional data to specify an identifiable model (Ward et al., 2009). Here, we propose

the use of taxonomically-related observations as auxiliary data for modelling a preferen-

tial sampling process (an extended case of (Escamilla Mólgora et al., 2020) for multiple

species). Preferential sampling arises when the assumption of independence between

the sampling process and the process of interest (in this case the ecological suitability)

is not valid. That is, either the sampling process (S) is stochastically dependent on the

ecological process (P ) or, vice versa, the ecological process is influenced by the sampling.

In statistical terms, preferential sampling implies that the joint process [P,S] ̸= [P ][S]. As

we are dealing with presence-only observations the information of the sampling effort and

the ecological process is intertwined in the data. As such, the data provide no evidence for

assuming independence between S and P and, therefore, the presence-only data present,

intrinsically, a preferential sampling.
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Our model assumes that the observed records of organisms are determined by the joint

effect of an ecological suitability process for each taxa (e.g. species) to settle (or occupy) a

place, and a preferential sampling process that biases the occurrence of observed records

with respect to their true ecological occurrences. To account for this effect, the model

defines explicitly a mixed latent variable that expresses the proportional effect of the

ecologically suitability for presence and the preferential sampling process. The model

is able to infer the presence of multiple taxa simultaneously. Multiple species models

involve extensive computational power.

Another important aspect to account for is the variability across space. This phe-

nomenon is commonly known as the First Law of Geography and states that: "everything

is related to everything else, but near things are more related than distant things" (Tobler,

1970). This law refers to the empirical evidence that nature varies differently across space.

Acknowledging that it is the norm, rather than the exception, that nearby observations

are more correlated to each other than to the more distant ones. Statistically speaking,

the ubiquity of variability in space implies that the assumption of homoskedasticity (i.e.

constant variance between all observations) is not satisfied and, by the Gauss-Markov

theorem, the linear estimators of the model are not guaranteed to be unbiased, making the

use of ordinary linear regression inappropriate. To account for this effect, we introduce a

spatial process (G) that assigns correlations between observations based on neighbouring

relationships to characterise the residual spatial heterogeneity (spatial random effect).

The spatial process incorporates a parameter (λG ) that modulates the proportion of the

spatial variability This parameter give the capability to identify spatial and unstructured

variability that arises from interactions between taxa and bias within the preferential

sampling.

To reduce the computational complexity of the model, we specified a unique spatial

process common to all taxa, including the preferential sampling process. Additionally,
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the process is specified as a proper conditional autoregressive model (CAR) (Besag, 1974).

In this sense, the inference is performed efficiently with sparse numerical methods that

greatly reduce the processing power for matrix inversion. For more information of how

this model is specified refer to the supplementary materials 4.11.

The model introduces a novel approach for addressing the problem of preferential

sampling. It uses the natural taxonomic classification of life, a classification based on the

evolutionary relationships between organisms, to determine a set of informative taxa. This

set, called complementary taxa, and their corresponding observation records (hereafter

called intrinsic sample observations) constitute an informative sample relative to the

closest common ancestral node of the taxa of interest. The intrinsic sample observations

are different from the observations of the taxa of interest and constitute informative

records used for fitting the preferential sampling process. In this sense, the likelihood

of the sampling effort uses observations derived from the union of the complementary

groups relative to the selected taxa. The directed acyclic graph representing the model is

pictured in figure 4.1.
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Fig. 4.1 Directed acyclic graph representing the multi-species model. Nodes in squares indicate
data. Blue squares are observed records. yi are the presences of species i and yc are the com-
plementary records of

⋃n
i=1 yi , i.e. the records that are not from species 1, ... nor n, relative to the

available dataset and an arbitrary taxonomic branch (Ω). Orange squares are covariates, ei for
environmental based and as for anthropological based, associated with the sampling effort (dark
blue block). Nodes in blue circles represent latent variables where: Qi is the mix between the
sampling effort S and the corresponding ecological suitability process Pi . The node G represents
the spatial random effect (CAR) shared between both the sampling effort components (dark blue
block) and the ecological components (green block). Circular grey nodes represent the parameters
used by the latent variables.

The model specification in figure 4.1 factorises the joint probability distribution in:

[y,Q,P,S,G ,α,βp ,βs ,τ2,λG ;de ,da ,W] =
n∏

i=1
[yi |Qi ][Qi |Pi ,S,αi ] (4.1)

[Pi |G ,βpi ;dei ][S|G ,βs ;da][βpi ][βs] (4.2)

[G|λG ,τ2;W][λG ][τ2] (4.3)



164 A taxonomic-based joint species distribution model for presence-only data

Data-related variables are written in lower case letters while latent variables are written

in upper case. In this sense, y represents the observations of all (n) taxa of interest. Latent

variables Q,P,S and G correspond to the mixing process, ecological suitability, sampling

effort and spatial random effect, respectively. The terms in 4.1 refer to the distributions

of likelihood and mixture (Qi ) between the latent variables P and S. Terms in 4.2 refer

to these two processes and the corresponding prior distribution of their parameters

(βs). Terms in 4.3 define the spatial autocorrelation process (G). The parameters in

Greek letters are properties of the latent variables. The variables de ,da andW represent

data for environmental and anthropological covariates and the spatial lattice structure,

respectively. The full description of the model is detailed in the supplementary materials

4.11.

4.2.1 Support for missing data

The model allows inference on locations where information about the presence or absence

of a given taxa (or sampling effort) is unknown. This approach treats missing observations

as additional parameters to the model. The approach is similar to the data augmentation

scheme proposed by Tanner and Wong (1987). It uses the information provided by the

latent variables (Q,P,S and G) to sample posterior distributions at the locations with

missing information. The scheme is incorporated into the MCMC-based inference, along

with the rest of the parameters. Aided by the spatial autocorrelation structure (G) and the

data from nearby areas, the fitted posterior distribution can provide information about

the presence (or absence) at sites with missing data. Refer to supplementary materials

4.11 for a formal specification of the posterior distribution on sites with missing data.
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4.2.2 Obtaining the sampling effort with complementary taxa

We propose to use the systematic classification of life to derive informative observations

for the sampling effort process. This methodology aims to generate information related to

absence and, thereby, reduce the bias in presence-only data by including taxonomically

related taxa sampled in the same region. The informative sample is obtained from the

taxonomic tree of life (ToL) and represents an intrinsic informative sample that models

the likelihood of the sampling effort (S) and the ecological suitability (P) processes by

providing complementary information relative to the taxa of interest and the rest of the

available dataset. The response vector corresponding to the intrinsic informative sample is

called the complementary sample and it is a binary (presence-absence) vector aggregated

per location (unit area). In the reminder of this research we assume that there is only one

taxonomic tree of life (unique) and it does not change in space-time (static).

Obtaining the complementary sample

Let Nyi be a node in the ToL corresponding to taxon yi , for example, a particular type

of family (Asteracea) or phylum (Chordata). In this sense, Ny = {Ny1 , ..., Nyn } is the set

of all nodes corresponding to each taxon of interest yi . By the properties of the ToL

(Chapter 2, supplementary materials), with the exception of the root node (i.e. all life),

there exists a node Ñy ∈ ToL which is an ancestor to all nodes in Ny . If we consider the

subtree generated 1 by Ñy (hereafter defined as T (Ñy )), then Ny is contained in the nodes

of T (Ñy ) (i.e. Ny ⊆ Nodes(T (Ñy ))). On the other hand, it is possible that Nodes(T (Ñy ))

includes nodes that are not elements of Ny . We denote this set of nodes as N c
y , that

is, the complement of Ny . Although Ny and N c
y have no common nodes, all of them

are taxonomically related; by construction all share the same ancestor Ñy . The derived

1All the paths connecting Ñy to the leaves of the ToL.
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taxonomic subtree T (Ñy ) contains the nodes of interest Ny and its complement N c
y given

the taxonomic structure.

From a practical perspective, the content of T (Ñy ) is subject to the available data,

hereafter referred as Ω (data universe). In this sense, the content of T (Ñy ) depends on

each user and case study. For example, if the user has access to a local database with a

handful of taxa;Ωwill be small, whereas, if the user has access to a massive repository of,

say, biodiversity records, the size ofΩ could potentially reach millions of nodes.

For large datasets Ω and, therefore, T (Ñy ) could be previously filtered by any relevant

restriction R such as: the spatial extent of the area under study (i.e. the latticeW), dates

of data acquisition or ecological relationships like membership to an ecosystem type,

community or functional group. In this sense, the nodes of T (Ñy ) constitute a total set

with respect to the taxa of interest, Ny and ΩR (i.e. the Ω restricted by R). N c
y can be

defined as:

N c
y = {ni ∈ Nodes(T (Ñy ))|ni ∉ Ny ∧R(Ny )} (4.4)

That is, the nodes of the subtree generated by Ñy (ancestor of all the taxa of interest) that

are not taxa of interest and satisfy the restriction R(·). In this sense, the observations

(records) of N c
y can support the likelihood of the sampling effort S with informative data

derived intrinsically by the taxonomic classification of the natural classification. Algorithm

2 describes the procedure for obtaining an intrinsic complementary sample yc givenΩR

and Ny .

4.2.3 Model Implementation

The model was implemented in STAN (Carpenter et al., 2017), a Turing complete prob-

abilistic programming language for specifying statistical models. STAN performs full

Bayesian inference using Markov chain Monte Carlo methods such as Hamiltonian Monte

Carlo sampling. It also includes the R̂ statistic (Gelman et al., 1992) as a robust diagnos-
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Algorithm 2 Obtaining the complementary sample yc from an intrinsic response vector
(y_c) for inferring the likelihood of the sampling effort process (S). For notation refer to
section: 4.2.2
Require: Ny ,ΩR ,ToL(Ω)

Get the ancestor node from all nodes in Ny

Ñy ← getAncestor(Ny )
Generate a subtree from the ancestral node
T (Ñy ) ← generateTree(Ñy )
Assign all the nodes of the subtree to a list
nodesTN ← nodes(T (Ñy ))
Find the lowest taxonomic level from Ny

lower_level ← min{n.level | ∀n ∈ Ny }
Filter nodes with same taxonomic level as lower_level
complement← [ ] {init. empty list}
for ( i := 0 ; i := size(nodesTN);i ++) do

Add the corresponding vector of records given the spatial latticeW
if (nodesTN[i ].level == lower_level) and (nodesTN[i ] not in Ny ) then
complement[ i ] ← getRecords(nodesTN[ i ],W))

end if
end for
Aggregate complementary observations
for (i := 0; i := size(complement); i ++) do

if sum(complement[i]) ≥ 1 then
y_c[i]← 1 {Assign 1 if there is at least one record}

else
y_c[i]← 0

end if
end for
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tic for chain convergence. The implementation code is located in the supplementary

materials 4.1.

4.3 Validation with simulated data

To validate the model implementation we generated a synthetic dataset following the

specification of the model. The model was fitted using Hamiltonian Monte Carlo ap-

proach that resulted in posterior samples for each model’s parameter. All the parameters

used for generating the synthetic dataset were inside the 95% credible interval of their

corresponding fitted posterior sample. The complete specification, analysis, results of

the simulation and work related to data acquisition are described in the supplementary

materials 4.12.

Geographic latticeW

The latticeW used in the simulation was obtained from a polygon intersected on a geo-

graphical grid of approximately 4 km spatial resolution. The region comprises the inland

area of a circular polygon centered in central-eastern Mexico at 19N −97E with radius

of 2◦ (ca.∼ 200 km). The area covers approximately 112,000 km2 and is composed of

4061 areal units (see figure 4.2l in supplementary materials I). To derive the associated

adjacency matrix W we performed a topological analysis on the grid to determine the

corresponding neighbours for each areal unit. To ease the processing work on data acqui-

sition and transformation to the adjacency matrix representation we used Biospytial, a

spatial graph-based computing engine for ecological data (Escamilla Molgora et al., 2020a).

The engine was also used to generate the complementary samples as it implements several

methods for selecting nodes and subtrees of the ToL as well as filtering queries by taxa

and geographic location. The same geographical lattice used in the simulation was also

used in the study case using real occurrence data (see section: 4.4).
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4.4 Application to biodiversity occurrences in eastern Mex-

ico

We now apply the multi-species model in a climatically and topographically diverse

region in central-eastern Mexico using a selection of five taxa obtained from the Global

Biodiversity Information Facility (GBIF).

4.4.1 Study region

The studied area has the same geographic extent and latticed tessellation as the one

for the simulation (see subsection: 4.3). The area covers approximately 112,000 km2

and intersects several Mexican states (e.g. Veracruz, Puebla, Hidalgo, Mexico City and

Oaxaca). It includes heterogeneous landscapes with variability in geomorphological and

climatic features as well as distinct biomes such as coastal dunes, chaparrales, mesophyl

forests, evergreen rainforest, grasslands, mangroves, broad-leaf forests and coniferous

forests (Rzedowski, 2006) and (INEGI, 2015). Figure 4.2-l shows the region over Mexico.

The region under study is of ecological importance due to the confluence of the two

biogeographic realms in the American continent; neartic and neotropical (Udvardy, 1975).

Consequently, the region is rich in biodiversity at several taxonomic levels and, therefore,

of high scientific interest. Additionally, the collection of GBIF records is highly abundant

facilitating the acquisition of informative complementary samples.

4.4.2 Explanatory variables

The covariates used as explanatory variables for the ecological process were elevation

and annual mean precipitation. The elevation data were obtained from the Global Relief

Model ETOPO1 at 1 arc-minute resolution (Amante and Eakins, 2009). The precipitation
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data were obtained from the World Climatic Data WorldClim version 2 (Fick and Hijmans,

2017). These data are distributed as a 12 band raster model with c.a 1 km spatial resolution

aggregated by monthly average values from the years 1970 to 2000. The anthropological

covariates used to explain the sample process were: distance to the closest road and

population counts. The distance to the closest road dataset was generated in two steps.

First, we rasterised the National Road Network for Mexico (Red Nacional de Caminos

(RNC) INEGI, Instituto Mexicano del Transporte and Gobierno de Mexico (2014), scale:

1 : 250000) at 1 km spatial resolution. Later, we used this raster dataset to calculate its

proximity to the closest road (pixels flagged as road) using the function gdal_proximity

(GDAL/OGR Contributors, 2018). The road network data were obtained from: Vázquez

(2018). The population dataset was obtained from the WorldPop project (Sorichetta et al.,

2015) for the year 2010. The dataset consists of population counts on each areal element,

each with a spatial resolution of 3 arc-seconds (c.a 100 m).

4.4.3 Occurrence and taxonomic data

The biodiversity data used were all the available GBIF occurrences (GBIF Secretariat, 2015)

registered before January 2015, constrained to the studied region (4.3). The raw data

were downloaded from GBIF (DOI:10.15468/dl.oflvla). For further information of this

dataset, including all data attributions see GBIF.org (2016). Each GBIF record includes

information on species name, location (coordinates in WGS84) and acquisition date. We

parsed all the occurrences contained inside each area into a taxonomic-tree structure

using the taxonomic classification of the GBIF Taxonomic Backbone (GBIF Secretariat,

2017). Therefore, for the 4061 area elements in the lattice (W) we obtained the same

number of taxonomic trees (hereafter referred as local taxonomic trees). To obtain the

complementary sample (section 4.2.2) all the local taxonomic trees were merged into a

single regional tree. The complementary sample was generated by applying algorithm
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2 using as input: all the local trees, the regional tree and the taxa of interest. Within this

framework, the taxa of interest are particular nodes of the regional tree.

4.4.4 Selection of taxa

We designed a gold standard selection of the taxa of interest by following the criteria

: i) Each taxon should be abundant and distributed widely across the region, this to

guarantee a fair number of observations. ii) The selected taxa should respond to known

environmental factors, in particular elevation and precipitation. iii) Documented mutual-

istic relationships between the taxa exist. iv) Taxonomic diversity of the taxa should be

preferred to ensure a diverse complementary sample.

To find a balance between the criteria, we decided to constrain the taxa at family or

genus ranks. An exploratory analysis showed that the most abundant genera and fami-

lies that satisfied the rest of the mentioned criteria were: Leadtrees (Genus: Leucaena,

Family: Fabaceae), a type of shrub associated with tropical semi-deciduous forests and

seasonal lowland forest. Leadtrees develop between sea level to 1400 m above sea level

(MASL) (Niembro-Rocas et al., 2010). Oaks (Genus: Quercus, Family: Fagales), this group

comprises trees and shrubs. They are frequently distributed between 1200 to 2800 MASL

and between 600 to 1200 mm of precipitation per year. Oaks are associated with Pines in

mixed forests. However, it is also common to find them in mesophyl forests, grasslands

and woodlands (Rzedowski, 2006). Pines (Family: Pinacea), this group has, in general,

affinity between temperate-to-cold dry climates, moderately moist and acid soils. They

are associated with Oaks in mixed forests, as well as cypresses and spruces. Pines develop

between 1500 to 3600 MASL and tolerate a wide range of precipitation conditions. Depend-

ing on the species this restriction can range from 350 mm to 1000 m (Rzedowski, 2006).

Leafnose bats (Family: Phyllostomidae), this group constitutes the most diverse family of

bats (Order: Chiroptera) and includes frugivorous, insectivorous and haematophagous.
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Bats, in particular Phyllostomidae, is a taxon of high ecological importance. They provide

key ecosystem functions like pollination, seed dispersal, nutrient cycling and arthropod

suppression (Kasso and Balakrishnan, 2013; Kunz et al., 2011). Woodpeckers (Family:

Picidae), this group was among the most abundant groups of birds. The selection of

this group was its strong association with woodland forests, in particular with Oaks and

Pines. The three groups of plants respond to gradients of elevation and precipitation while

the two selected animals respond to ecological relationships with the associated biomes

where the chosen plants are abundant. All the taxa have implicit ecological relevance as

they shelter and give life support to other species.

4.4.5 Data preprocessing

The explanatory variables were spatially overlaid and aggregated by mean on each areal

element. To obtain the vector of observations (Yi ) for each taxon of interest i a point in

polygon test was performed. That is: Yi (x) = 1 if taxon i is present in areal element x,

otherwise Yi (x) = 0. The test was applied to all taxa across all areal elements in the lattice.

The data processing pipeline, as well as the generation of local and regional taxonomic

trees was also undertaken with Biospytial (Escamilla Molgora et al., 2020a).

4.4.6 Model fitting

The response vectors together with their respective covariates were arranged in a design

matrix with shape (4061∗6)×(2∗2), where 4061 are the number of areal elements of the lat-

ticeW and 6 corresponding to the five taxa plus the sample. The 2∗2 columns correspond

to two columns for the ecological covariates and two columns for the anthropological

covariates.

For fitting the model we used our implementation in the STAN language (see suple-

mentary materials 4.1). We obtain posterior samples through MCMC using the NUTS
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sampler on four independent chains with default parameters of step size and tree depth.

The posterior sample was run for 100,000 iterations with a burn-in size of 50,000 and no

thinning. The prior distributions for βi∈{1,...,n} are distributed N (0,10000). The prior distri-

bution for parameters αi (mixing process Qi ) and λG (proper CAR model) are beta(5,5)

and the parameter τ2 is distributed as Inv. Gamma(1,0.01).

4.4.7 Cross validation with occurrence observations

We used k-fold (k = 10) cross-validation (Liu and Özsu, 2016) for evaluating the model’s

accuracy. This method partitions the data in k = 10 disjoint sets. On each iteration

(fold), k −1 sets are used to fit the model, while the remaining one is used to assess the

model’s discrepancies between its predicted outcomes (scores) and the excluded (missed)

observations. For a qualitative and quantitative assessment of the model’s performance

we used, respectively, the receiver operator characteristic curve (ROC) and its area under

the curve (AUC), as it is a standard validation method in SDMs (Fielding and Bell, 1997).

4.4.8 Results

The posterior means and credible intervals of the model’s parameters are shown in table

4.1. In all the MCMC chains (4), all parameters converged (R̂ < 1.05 (Vehtari et al., 2019)).

Analysis among taxa showed that Leadtrees (Leucaena) obtained significant negative

correlation with elevation and precipitation while leafnose bats (Phyllostomidae) showed

positive correlation for precipitation and negative correlation for elevation. Oaks (Quercus)

and pines (Pinacea) showed significant preference for higher elevations below the tree

line. however, pines also showed significant preference for precipitation. Woodpeckers

(Picidae) showed preference for higher precipitation but no significant preference for

elevation.
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The sampling effort was found to be significant for both covariates (i.e. distance to

closest road and population density) with an increasing probability for getting samples

in places close to roads (negative correlation) and with high population density (positive

correlation).

In relation to the ecological suitability associated to each taxon, we found that pines

obtained the largest contribution with respect to the sampling effort (mean 0.58 with

0.42,0.78 at 95% CI). This was followed by oaks (mean 0.51 with 0.35, 0.65 at 95% CI). Lead-

trees and bats obtained similar results (mean 0.44, 0.28,0.62 at 95% CI) while woodpeckers

obtain the smallest value (mean 0.2, 0.1, 0.3 at 95% CI).

The posterior means for the spatial effect showed low spatial dependence (λG ) of 0.13

ranged from 0.05 to 0.23 at 95% CI with an overall precision (τ−2) of 0.1 ranged from 0.09

to 0.12 at 95% CI.

To show the model’s capability to discriminate between the sampling effort process

(S) and the ecological suitability (Pi ) of each taxon, we compared side-by-side the spatial

process Pi with its corresponding mixed process (Qi , figure 4.2). It is remarkable that

all the ecological suitability processes show smoother (less noisy patterns) than their

corresponding mixed processes. Additionally, the probability of occurrences in urban

areas, specifically the metropolitan area of Mexico City (see largest grey polygon in figure

4.2l) are attenuated in the ecological process. This effect is different for each taxa and is

discussed in the next section. Leadtrees, bats and woodpeckers are mostly distributed

on the eastern side of the mountain ridge (Sierra Madre Oriental) while oaks and pines

overlap and are distributed in higher areas of the mountain ridges.

In the case of the simulated data, the posterior distribution of the estimated parameter

converged (R̂ < 1.01). In all cases, the value used for generating the synthetic data was

contained within the credible interval (95%) range. See 4.12 for more information on

analysis and results.
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Table 4.1 Posterior means, 95% credible intervals and convergence diagnostic R̂ for the case-study
of biodiversity records in the eastern part of Mexico. Ecological Suitability and Sampling Effort
corresponds to the processes P and S defined in the main text. The Contribution to Ecological
Suitability row describes the parameter αi defined in the mixing process Qi , for each taxon i

Credible intervals
mean 2.5% 50% 97.5% n.eff R̂

E
co

lo
gi

ca
lS

u
it

ab
il

it
y

(P
)

Intercept

Leucaena -9.06 -15.39 -8.64 -5.23 725 1.0
Phyllostomidae -10.13 -16.42 -9.67 -6.39 900 1.01
Picidae -30.35 -57.26 -28.07 -15.59 218 1.02
Quercus -11.84 -17.67 -11.46 -8.16 1176 1.0
Pinacea -18.0 -26.15 -17.48 -12.82 1172 1.0

Elevation

Leucaena -1.7e-3 -2.9e-3 -1.6e-3 -9.3e-4 1185 1.0
Phyllostomidae -8.0e-4 -1.4e-3 -7.7e-4 -3.6e-4 1675 1.0
Picidae 4.9e-4 -3.8e-4 4.5e-4 1.6e-3 1068 1.0
Quercus 1.9e-3 1.3e-3 1.9e-3 2.8e-3 1453 1.0
Pinacea 3.5e-3 2.5e-3 3.5e-3 5.1e-3 1194 1.0

Precipitation

Leucaena -0.01 -0.03 -0.01 -4.0e-3 2770 1.0
Phyllostomidae 9.8e-3 3.1e-3 9.5e-3 0.02 1487 1.0
Picidae 0.04 0.02 0.03 0.07 243 1.01
Quercus -3.6e-3 -0.01 -3.5e-3 3.8e-3 4234 1.0
Pinacea 0.03 0.02 0.03 0.04 1375 1.0

Sampling
effort

(S)

Intercept 2.56 2.37 2.56 2.76 309 1.02
Distance to road -1.5e-4 -1.9e-4 -1.5e-4 -1.1e-4 976 1.01
Population density 4.3e-4 3.2e-4 4.3e-4 5.5e-4 858 1.01

Contribution to
Ecological
suitability

(α)

Leucaena 0.44 0.28 0.44 0.62 866 1.0
Phyllostomidae 0.44 0.29 0.44 0.6 1031 1.01
Picidae 0.2 0.1 0.2 0.33 331 1.01
Quercus 0.51 0.36 0.51 0.65 1350 1.0
Pinacea 0.58 0.42 0.59 0.74 1520 1.0

Spatial
effect

λg 0.13 0.05 0.12 0.23 1149 1.0
τ2 0.1 0.09 0.1 0.12 113.0 1.03
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(a) E.S. leadtrees (b) E.S. bats (c) E.S. woodpeckers

(d) M.E. leadtrees (e) M.E. leafnose bats (f ) M.E. woodpeckers

(g) E.S. oaks (h) E.S. pines (i) Sampling effort

(j) M.E. oaks (k) M.E. pines (l) Study area

Fig. 4.2 Comparison of each ecological suitability (E.S.) processes Pi (a,b,c,h and g) and its corre-
sponding mixing effect (M.E.) Qi (d,e,f,j and k) in the study area (l). Qi is the convex combination
of Pi with the sampling effort process S (i). All figures show the respective mean posterior on each
unit element of the latticeW in the study area (l).
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4.4.9 Cross-validation

The k-fold cross-validation resulted in high predictive accuracy with an AUC of 91.6% (91.14%−

91.16%). The resulting ROC curves are shown in figure 4.3.

Fig. 4.3 Receiver operator characteristic curve (ROC) obtained from the 10-fold cross-validation of
the model applied to the case-study data. The orange solid line represents the ROC curve of the
mean posterior prediction while the red and blue dashed lines represent the credible interval at
2.5% and 97.5% resp. The diagonal (identity) line represents the ROC curve of random classification
with constant 50% true positive rate.

4.5 Discussion

In this paper, we presented a model for predicting the occurrence of multiple taxa in a

spatial unit-area setting (i.e. lattice) using presence-only data and an intrinsic comple-

mentary sample derived from the taxonomic structure of the selected taxa of interest.

The model was tested using simulated data for binary and continuous observations with

all parameters contained between the corresponding 95% credible intervals (CIs) of the
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posterior distribution. The binary simulation (table: 4.4 in supplementary materials 4.12)

showed larger ranges of the CIs than for the Gaussian observations (4.3 sup. mat. 4.12).

Additionally, the number of iterations needed for reaching convergence of the Markov

chains during the MCMC inference (measured with the R̂ diagnostic) was significantly

lower for the continuous case (1000 iterations) than the binary case (c.a 40,000 iterations).

The analyses suggest that the variance of the model (driven by the parameters τ2 and λg )

is a determining factor for the precision of the model (range of the credible intervals) and

the greater the values of the parameters, the harder it is to identify accurately the spatial

effect. Although the results presented correspond to a single simulation, they indicate the

precision that may be expected for real data.

The findings in the case study showed that Leadtrees (Leucaena) have negative pref-

erence for elevation and precipitation. This result is consistent with ecological theory

as it is a plant that thrives in warm and semi-arid environments (Niembro-Rocas et al.,

2010; Rzedowski, 2006). Interestingly, pines and oaks obtained similar estimates for their

contribution to their respective ecological suitability (and sampling effort). These two

taxa are often considered a single type of vegetation due to their complex network of

dependencies and similar ecological niches (Rzedowski, 2006). The fact that both taxa

have similar contributions as well as an overlapping geographic space (i.e. middle to high

elevated areas of the Sierra Madre Oriental) is indicative of their common ecological niche

and suggests that the presence of one taxon is informative of the other.

Leafnose bats have a preference to roost in warm subtropical regions (Ceballos, 2013).

Consistent with ecological theory, areas with higher ecological suitability for bats were the

subtropical regions between the coast and the foothills of the Sierra Madre Oriental (figure

4.2b). Moreover, constrained to the study area, the highest levels of ecological suitability

coincide remarkably with the neotropical realm, suggesting that the model is capable of

capturing macroecological patterns.
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The fixed effect for the common sampling effort was significant for both covariates

(i.e. distance to closest road and population density) supporting the idea that these two

covariates are important for characterising the sampling process.

The low contribution to ecological suitability for Leadtrees, bats and woodpeckers, in

particular, suggests that the observations of these taxa are mostly biased by the sampling

process. This is consistent with the fact that birds and mammals are among the most

overrepresented taxa in biodiversity occurrence data (Troudet et al., 2017). Leadtrees,

however, have many agricultural and industrial uses such as: shade for coffee plantations,

forage for cattle seeds and resin for perfumes and soaps (Niembro-Rocas et al., 2010).

Their extensive use explains the strong contribution of the sampling effort, mostly driven

by anthropological covariates.

An interesting result was the attenuation of the ecological suitability process in large

urban areas, despite the mixed process (Q) showing higher probability. This effect can be

seen in all taxa (see figure: 4.2). The model suggests that the signal of scientific interest (i.e.

the ecological suitability) can be recovered from observations affected by the mixed joint

effect of the ecological and sampling signals. The signal recovery varies depending on the

taxon. For example, woodpeckers (fig: 4.2c) was less likely to occur in the metropolitan

area of Mexico City (middle western part of the study area), once the signal from the

sampling process was removed (see 4.2f for comparison). This result is consistent with

the reported preference for woodpeckers and other forest birds to nest in natural and

semi-urban areas rather than urban and densely populated areas (Sandström et al., 2006).

There are several potential routes for future research. An immediate limitation of

the model is that the spatial random effect (G) is shared between all the taxa of interest

and the sampling effort. Despite this reducing the model complexity while capturing

interactions between taxa, it is a strong assumption. We think that these interactions

could be more ecologically meaningful if the spatial effect is modelled jointly, accounting
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for correlated spatial components between the sampling process and one (or multiple)

ecological suitability(ies). A way to move forward in this direction is to specify a multivari-

ate CAR (MCAR) model (Gelfand et al., 2003) for the spatial effect (G) to account for joint

and marginal spatial effects for each Pi and S.

Another aspect to consider is that the selection of the taxa of interest (see section:

4.4.4) was focused on the available data and the capabilities of the model. As such, we gave

priority to widely distributed taxa whilst keeping ecological interest and diversity across

different branches of the tree of life. These criteria should not be considered pre-requisites

for the model as other taxa with greater scientific interest can be analysed with our model.

We acknowledge the limitations of the algorithm 2 for deriving the complementary

sample. Here, we assumed that the known presences of taxonomically related taxa increase

the likelihood for presences of the taxa of interest. Although this is a sensible approach

to model occurrences with presence-only data (see Croft et al. (2019); Ward et al. (2009)

for modelling examples), the assumption is not true in general. A central principle in

community ecology is that of "interspecific competition" in which closely phylogenetically

related species are more prone to share similar ecological niches resulting in stronger

competition between each other (Darwin, 1859; Elton, 1946) and (Hardin, 1960).

The above approach is problematic in two forms: If the taxa of interest are too phylo-

genetically distant, the complementary sample may not be representative. For example,

an ecologist surveying for woodpeckers may have strictly zero interest in any kind of tree

and thereby the presence of a woodpecker provides zero information on the presence or

absence of any kind of tree. Measuring this effect is difficult due to the high complexity of

phylogenetic, phenotypic and environmental relationships (See Aschehoug et al. (2016)

for a review and Cahill et al. (2008) for a direct test for measurement). As such, we suggest

caution when applying the complementary sample algorithm mindlessly on any group of
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taxa without analysing previously possible relations of spatial exclusion due to potential

competition.

Increasing the taxonomic resolution to subranks (e.g subfamilies, tribes, subgenera)

can be a first step in obtaining more informative complementary samples. However, an im-

proved algorithm aimed to integrate phylogenetic relationships in theoretically consistent,

assemblages of ecological communities should account for both spatial and phylogenetic

effects, of overdispersion and clustering (see Webb et al. (2002) for a conceptual definition

and Pavoine and Bonsall (2011) for a semantic methodology).

4.6 Conclusion

Here, we proposed a model for predicting the occurrence of multiple taxa using presence-

only data. The multivariate model separates the observations between two sets: taxa

of interest, modelled with an ecological suitability process of scientific interest, and a

complementary sample, modelled with a sampling effort process. The complementary

sample is used as a proxy for modelling the absences in the presence-only data and it

is based on the associated complementary taxonomic tree available in the region un-

der study. Although the model reduces the ecological relationships in a shared spatial

random effect, it is still capable of removing the sampling effort signal while recovering

the one of scientific focus. In this regard, the application showed preferential areas and

macroecological patterns relative to each taxon, showing its potential for future ecological

applications.
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4.11 Appendix: Model description

Let yxk = {y1
xk

, y2
xk

, ..., yn
xk

} be the presence observations for n different taxa (e.g. species)

at location xk in the spatial lattice W. The model is suited for aggregated data defined

on an areal lattice systemW in the sense of Besag (1974). That is, on each cell xk ∈W, an

observation for species i (i.e. y i
xk

) is the realisation of a binary-valued random variable

Yi (xk ), Bernoulli distributed and independent when conditioned to a mixing effect Qi

(not introduced yet). The conditional distribution of this variable is:

[Yi (xk ) = y i
xk
|Qi (xk )] ∼ Bernoulli(Qi (xk )) (4.5)

y i
xk

= 1 represents the event of: "taxon i has been observed in site xk ", while, y i
xk

= 0

represents the event of: "taxon i has not been observed in site xk ". Given that the model

uses presence-only data, unobserved taxa (i.e. y i
xk

= 0) imply two possibilities. Either the

site xk is not suitable for taxon i to be present, or taxon i has not been sampled in xk . The

role of the process Qi is to account for these two possibilities through a mixture of two

processes; one that conditions taxon i to live in location xk , (hereafter called ecological

suitability), and other, that represents a preferential sampling given surveying information

derived from the taxa of interest. This last process is described here as the sampling effort

process S. This process reduces the uncertainty for places with no available information

related to the taxa of interest.

Mixing process Qi

This process describes the quantifiable contributions of the ecological suitability (Pi ) and

the sampling effort (S). Mathematically, Qi is defined as the mixing process between the

Pi and S, for each taxon i . That is, Qi is the convex combination between Pi and S and
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has the form (eq: 4.6):

[Qi (xk )|Pi (xk ),S(xk ),αi ] =αi Pi (xk )+ (1−αi )S(xk ) (4.6)

where 0 ≤αi ≤ 1 and it is called the contribution to ecological suitability parameter (i ∈

{i , ...,n}) and xk ∈W.

Ecological Suitability process Pi

The ecological suitability process Pi explains the presence of the taxon i independently

from the sampling effort (see conditional dependencies in figure 4.1). Pi can be often

considered as the process of scientific focus, as it accounts for the environmental pressure

that determines the existence (or establishment) of a taxon (species) i in a given location.

We decided to characterise each Pi as a process with two components: a structural

fixed effect component that models the effect of environmental covariates (scenopoetic

variables); and a common spatial random effect G that depends on the spatial correlation

on the areal data. Recalling that the occurrences are measured as binary outcomes, the

latent processes should represent valid probability values (i.e. real values on the unit

interval). As such, the distribution of each Pi conditional to G (the common spatial

random effect) has a logistic form (see eq. 4.7).

logit
(
[Pi (xk )|G(xk ),βi ;dei ]

)=βt
Pi

dei (xk )+G(xk ) (4.7)

where βPi ∈ Rk is a vector of linear coefficients for the fixed effect and dei (xk ) ∈ Rk the

k-dimensional vector of covariates corresponding to location xk . In general, any pair of

taxa i , j may have different covariates and, thus, dei (xk ) and de j (xk ) are not necessarily

the same.
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Preferential Sampling Effort S

The sampling effort is modelled similarly to the ecological suitability process and math-

ematically both types of process are equivalent. From a conceptual perspective these

models are rather different. While the likelihood of each Pi depends directly on the pres-

ences of a specific taxon i , the likelihood of S relies on aggregated observations from the

complementary taxa. A full description on how to obtain intrinsic observations from these

taxa is explained in section 4.2.2, whereas equation 4.8 is a decomposition into fixed and

random effects.

logit
(
[S(xk )|G(xk ),βs ;da]

)=βt
sda(xk )+G(xk ) (4.8)

whereβs ∈Rk is a vector of linear coefficients for the fixed effect of the sample and da(xk ) ∈

Rk a k-dimensional vector of anthropological covariates corresponding to location xk . In

general, da(xk ) and de j (xk ) are likely to be different covariates.

Common spatial random effect G

To model the spatial interactions between the areal elements of the lattice (W), we propose

a stationary conditional autoregressive (SCAR) model (Gelfand and Vounatsou, 2003) and

(Rue and Held, 2005) common to each Pi and S. In this sense, Pi (xk ) and S(xk ) have the

same spatial effect for a given location of the lattice (i.e. xk ∈W). The SCAR model is a

generalisation of the intrinsic CAR (ICAR) model (Besag, 1974; Besag et al., 1991) that

enhances the scientific interpretability with an additional parameter λG that accounts,

for the proportional strength of the spatial dependence in relation to non-informative or

unstructured variability. In contrast to the ICAR model, the stationary CAR is specified

with a proper probability distribution and, therefore, no further constraints on its values

are needed, making the model fully identifiable.
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Here, we specify G in its full conditional form. Let (Gx1 , ...Gxm )T be a vector representa-

tion of G across the latticeW. That is, each areal element xk ∈W is mapped one-to-one

with an element Gxk . The conditional distribution of Gxk given the rest of the areal ele-

ments (G−xk ), an unknown variance (τ2
xk

) and a spatial dependence parameter (λG ), is

defined as a normal distribution of the form:

[Gxk |G−xk ,λG ,τ2
xk

;W] ∼ N

(
λG

m∑
j=1

bk, j Gxk ,τ−2
xk

)
(4.9)

Where: Gxk is equivalent to G(xk ), G−xk is a notational term for defining the rest of areal

elements, that it, {G(x ′), x ′ ∈W|x ′ ̸= xk }, λG is the spatial dependence parameter and bk, j

is a weight related to each areal element. The spatial dependency parameter λG varies

from [0,1]. If λG = 0, G has no spatial autocorrelation while if λG = 1, the random effect is

fully described by an intrinsic CAR model (Besag, 1974; Besag et al., 1991).

To simplify the model (eq. 4.9) we assumed that τ2
xk

and bk, j are quantities nor-

malised by the number of neighbours of each unit area xk ∈W That is: τ2
xk

= τ2∑n
j=1 wk, j

and
∑m

j=1 bk, j =
∑m

j=1 wk, j G j∑m
j=1 wk, j

. The term wk, j is the (k, j )-entry of the adjacency matrix of the

latticeW, hereafter referred to W . Using Brook’s lemma (Besag, 1974; Brook, 1964), the full

conditional specification in eq. (4.9) is equivalent to a zero-centred multivariate normal

distribution (MVN) of the form:

[G ,τ2,λG ;W ] ∼ MVN
(
0,τ2(D −λGW )−1) (4.10)

Where D is a mxm diagonal matrix built with the reciprocal of the number of neighbours

for each areal unit (i.e. Dk = (
∑m

j=1 wk, j )−1).
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4.11.1 Support for missing data

The model allows inference on locations where information about the presence or absence

of a given taxa (or sampling effort) is unknown. This approach treats missing observations

as additional parameters to the model. That is, let Ŷi (xk ) be a Bernoulli random variable

corresponding to the missing observation of taxa i in location xk , an areal element of the

spatial latticeW. The posterior distribution of [Ŷi (xk )|Qi (xk ),Yi (xk ) = y i
xk

] is obtained by

marginalisation. That is:

[Ŷi (xk )|Qi (xk )] = [Yi (xk ) = 1|Qi (xk )][Qi (xk )]+ [Yi (xk ) = 0|Qi (xk )][Qi (xk )] (4.11)
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4.12 Appendix: Simulation study

To validate the model implementation we generated a synthetic dataset following the

specification of the model. That is, we generated a random realisation of the processes

Qi ,Pi ,S and G as well as two types of observations: Continuous Ŷi (Gaussian) outcomes,

to validate the model at the last hierarchical latent surface, and binary Yi (i.e. presence-

absence) outcomes, to validate at the last level of observations. The observations were

sampled according to the distributions:

Ŷi ∼ Normal(Qi (xk ),σ2
q ) (4.12)

Yi ∼ Bernoulli(Qi (xk )) (4.13)

The simulated dataset consisted of five synthetic taxa and one sampling process. First

we simulated G , with a proper CAR model with parameters: λG = 0.7 and τ2 = 2.0. The

realization was obtained by sampling a MVN distribution, zero centered and with covari-

ance matrix given by equation: 4.10. The resulting realisation of this process is pictured in

figure 4.4a.

The ecological suitability processes were simulated by sampling n = 4061 × 5 × 2

independent standard normal values xi ; where 4061 are the number of regions in the

lattice W, 5 the number of different taxa (levels) and 2 the number of covariates. In a

similar way, the sampling effort process was sampled from 4061×2 independent standard

normal values. A design matrix of dimensions 4061×2 was arranged for each level (i.e.

ecological suitability plus sampling effort). Each design matrix was multiplied by an

arbitrarily chosen vector of coefficients to obtain the fixed effects for Pi and S. The fixed

effect of each level was summed to the spatial random effect G to account for the total

variation (as defined in eqs: 4.7 and 4.8). The values used as coefficients for simulating

the fixed effects are shown in table 4.2.
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Table 4.2 Chosen values used for simulating Qi , Pi and S, given a matrix of covariates (sampled
from a normal distribution) and a random effect G defined as a proper Gaussian Markov random
field.

Taxon 1 2 3 4 5 Sample
Covariate (β1) 1.0 2.0 3.0 4.0 5.0 6.0
Covariate (β2) 7.0 8.0 9.0 10.0 11.0 12.0

Mixture (α) 0.35 0.5 0.123 0.75 1.0 –

Having obtained all the values for Pi and S we proceeded to simulate the mixing

processes Qi using equation 4.6. To do this, we chose different values for αi , one for each

Qi and computed the corresponding convex combination. The values (α) used in this

stage are shown in table 4.2.

Finally, we proceeded to sample observations Yi according to equations 4.12 and 4.13

(with σ2
q = 00.1 for the continuous case). We performed the inference on both types of

observations: binary and continuous to assess the model more generally.

4.12.1 Model fitting

For fitting the model we used the no-U-turn sampler (NUTS) (Hoffman and Gelman,

2014), an adaptive variant of the Hamiltonian Markov chain Monte Carlo (HMCMC)

method. The NUTS algorithm was used with default parameters of step size and tree

depth. The posterior sample was run for 1000 iterations with a burn-in size of 500 for Ŷi

and 15000 iterations with 7500 of burn-in for the binary observation Yi . In both examples

we did not use any thinning. As we are working in a Bayesian setting, we defined prior

distributions for each parameter βi∈{1,...,n} ∼ N (0,10000). The parameters αi of the mixing

process Qi and λG of the proper CAR model were defined with non informative prior

distribution of beta(1,1) (equivalent to Uniform(0,1)). + The variance parameters σ2
q and

τ2 were sampled from an inverse-gamma(1,0.01). The inverse-gamma family is conjugate

with the conditional posterior distribution and it is frequently used to model variance

parameters, making the calculation of the posterior distribution easier.
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4.12.2 Results

The parameters used in the simulation were estimated accurately on both simulations

(i.e. Yi and Ŷ ), as all posterior means were almost identical to the real parameters and

located within the 95% credible intervals (CI). The summary statistics of the correspond-

ing marginal posterior distributions are shown in table 4.3 for the case of continuous

observations (Ŷi ) and table 4.4 for the binary ones Yi .

The inference in the Gaussian responses for the single simulation of Ŷi gave accurate

estimations in all parameters. In this case, the parameters used to generate the simulated

data were contained in the corresponding 95% credible intervals (CI)s of the posterior

sample. The range of theses CIs was short, suggesting good fit, despite the relatively small

number of iterations (1000). The parameters of the fixed effects gave a maximum range

of 0.05 for all processes, that is, ecological suitability βPi and sampling effort βS . The

posterior distribution of τ2 produced a small error range of 0.19, while the rest of the

parameters produced a CI less than 0.009. See table 4.3 for a complete list of parameters

and their corresponding summary statistics. A comparison between the simulated random

effect G and the mean surface of the posterior distribution of G is shown in figure 4.4.

The errors are close and centered in zero showing that the model is able to recreate the

landscape with a high level of accuracy. For the case of the Bernoulli simulation, we found

longer ranges of the CIs. Despite this, all the simulated parameters fell within the 95%

CIs of their corresponding posterior marginal distribution. The fixed effects estimates

obtained maximum and minimum CI ranges of 5.75 and 1.02, with an average size of 2.31

and a standard deviation of 1.41. The mixing proportions (αi ) between the ecological

suitability Pi and the preferential sampling S, obtained 95% CI of (0.15, 0.12, 0.16, 0.06

and 0.02) for each (P1, ...,P5), respectively. The ranges of the CI for the parameters of the

spatial random effect were: 3.43 for τ2 and 0.54 for λG . The complete list of parameters

with their corresponding summary statistics is described in table 4.4. Computing the
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posterior sample took approximately 25 minutes for the Gaussian observations Ŷi and 5

hours 30 minutes for the Bernoulli (binary) observations Yi using a 4-core Intel(R) Xeon(R)

CPU E5-2690 v2 at 3.00GHz and sampling two chains simultaneously.

Table 4.3 [ Continuous observations ] Comparison between simulated and inferred parameters
sampled from the posterior joint probability distribution (see equations 4.1 for normal (continuous)
observations (Ŷi ). The inference was obtained by MCMC following 1000 iterations with a burn-in
of 500. The β parameters correspond to the fixed effects of the species Pi for covariates 1 and 2.
The parameters α correspond to the mixture between the Pi (probability of occurrence of species
i and the sampling effort S). The parameters related to the variance are τ2 for the spatial random
effect and σ2

q for the unstructured random effect. All simulated parameters are within the 95%
credible intervals

.

Simulation Summary of posterior sample
mean 2.5% 25% 50% 75% 97.5% n.eff R̂

βP1,1 1.0 1.0 0.99 0.99 1.0 1.0 1.01 1300.0 1.0
βP2,1 2.0 2.01 2.0 2.01 2.01 2.01 2.01 691.0 1.0
βP3,1 3.0 3.03 3.0 3.02 3.03 3.04 3.05 1279.0 1.0
βP4,1 4.0 4.0 3.99 4.0 4.0 4.0 4.0 124.0 1.02
βP5,1 5.0 5.01 5.0 5.0 5.01 5.01 5.01 59.0 1.03
βS,1 6.0 6.01 6.0 6.01 6.01 6.01 6.01 50.0 1.04
βP1,2 7.0 7.01 7.0 7.0 7.01 7.01 7.02 221.0 1.0
βP2,2 8.0 8.01 8.0 8.01 8.01 8.01 8.02 66.0 1.03
βP3,2 9.0 9.02 8.98 9.01 9.02 9.03 9.06 1155.0 1.0
βP4,2 10.0 10.01 10.0 10.01 10.01 10.01 10.02 60.0 1.04
βP5,2 11.0 11.02 11.01 11.02 11.02 11.02 11.03 44.0 1.04
βS,2 12.0 12.01 12.01 12.01 12.01 12.02 12.02 39.0 1.06
αP1 0.35 0.35 0.35 0.35 0.35 0.35 0.35 87.0 1.02
αP2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 45.0 1.04
αP3 0.123 0.12 0.12 0.12 0.12 0.12 0.12 429.0 1.0
αP4 0.75 0.75 0.75 0.75 0.75 0.75 0.75 43.0 1.05
αP5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 34.0 1.06
τ2 2.0 1.96 1.86 1.93 1.96 1.99 2.05 1644.0 1.0
λG 0.7 0.72 0.67 0.7 0.72 0.73 0.77 1699.0 1.0
σ2

q 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1313.0 1.0

The difference on precision between the continuous and binary cases can be explained,

in by the difference in their signal-to-noise ratio. The results on the simulation suggest a

higher ratio for the continuous case compared with the binary one. While the variance in

Ŷ is constant (i.e. VAR[Ŷi (xk )|Qi (xk )] =σ2
q = 0.1), the variance of the binary case depends
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Table 4.4 [ Binary observations ] Comparison between simulated and inferred parameters sam-
pled from the posterior joint probability distribution (see equation 4.1 for binary observations
(presence / absence) distributed as independent Bernoulli variables when conditioned to the
latent random effect G . The inference was obtained from MCMC following 40000 iterations with a
burn-in of 20000. The β parameters correspond to the fixed effects of the species Pi for covariates 1
and 2. The parameters α correspond to the mixture between the Pi (probability of occurrence of
specie i and the sampling effort S). The parameters related to the variance are τ2 for the spatial
random effect.

Simulation Summary of posterior sample
mean 2.5% 25% 50% 75% 97.5% n.eff R̂

βP1,1 1.0 0.62 0.08 0.43 0.62 0.81 1.2 5512.0 1.0
βP2,1 2.0 2.38 1.92 2.22 2.37 2.54 2.85 4592.0 1.0
βP3,1 3.0 2.71 1.52 2.25 2.68 3.13 4.13 5030.0 1.0
βP4,1 4.0 4.19 3.77 4.04 4.18 4.33 4.63 3950.0 1.0
βP5,1 5.0 5.17 4.49 4.92 5.16 5.41 5.9 4157.0 1.0
βS,1 6.0 5.99 5.54 5.83 5.99 6.14 6.45 3685.0 1.0
βP1,2 7.0 6.65 5.68 6.3 6.63 6.97 7.69 4248.0 1.0
βP2,2 8.0 8.38 7.52 8.07 8.37 8.68 9.3 3638.0 1.0
βP3,2 9.0 9.66 7.43 8.71 9.53 10.47 12.73 5020.0 1.0
βP4,2 10.0 10.21 9.44 9.93 10.2 10.48 11.05 3007.0 1.0
βP5,2 11.0 10.95 9.75 10.51 10.92 11.38 12.28 3898.0 1.0
βS,2 12.0 12.36 11.56 12.07 12.35 12.64 13.2 3165.0 1.0
αP1 0.35 0.34 0.31 0.33 0.34 0.35 0.38 5014.0 1.0
αP2 0.5 0.48 0.45 0.47 0.48 0.49 0.51 4302.0 1.0
αP3 0.2 0.19 0.15 0.17 0.19 0.2 0.23 5106.0 1.0
αP4 0.75 0.76 0.74 0.75 0.76 0.77 0.78 4821.0 1.0
αP5 0.45 0.45 0.42 0.44 0.45 0.46 0.48 4720.0 1.0
λG 0.7 0.71 0.63 0.68 0.71 0.71 0.77 4912.0 1.0
τ2 0.01 0.0097 0.0084 0.0092 0.0096 0.01 0.01 2537 1.0
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on each value of Qi (xk ). As [Yi (xk )|Qi (xk )] ∼ Bernoulli(qi (xk )), its variance ranges from

0 to 0.25, reaching its maximum at Qi (xk ) = 0.5 when Pi (xk ) = 0 and S(xk ) = 0. In other

words, for the binary case, the variance associated with the error (noise) depends on the

each value of the latent variable (i.e Qi (xk ), for each xk ∈W), while in the continuous case,

this variance is constant. A possible explanation is that the relatively large variance of the

spatial parameters τ2 and λg made it difficult to identify accurately the effect of the spatial

effect.

(a)

(b)

Fig. 4.4 Errors of the spatial random effect G calculated as the difference between the mean
posterior sample and the simulated data. Left panel (a) shows the spatial arrangement while right
panel shows the histogram of the errors. The posterior mean was obtained through 1000 iterations
fitted with Gaussian observations Ŷi .
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4.13 Appendix: Implementation of the model in STAN

Listing 4.1 The multispecies model implementation in STAN

/* *
2The Multispecies model with common random e f f e c t

4This i s an implementation of the Multispecies model with mixing components for
ecological s u i t a b i l i t y and sampling e f f o r t using a common proper CAR model as

6s p a t i a l autocorrelation .

8This implementation assumes that the observations [ Y_i | Q_i ] are normal
distr ibuted with variance $\sigma_q$ . This was done to f i t simulated

10data described in the section : methods .

12To f i t presence−absence observation change the l ikel ihood [ Y_i | Q_i ]
accordingly , e . g . a bernoull i d i s t r i b u t i o n .

14

Author : Juan Escamilla Molgora
16Date : 05/10/2020

18Note : The ' sparse_car_lpdf ' function and the transformation of the adjacency
matrix into a sparse representation were adapted from Max Joseph ' s t u t o r i a l on

20CAR model in STAN: https : / /mc−stan . org / users /documentation/case−studies /mbjoseph−
CARStan . html

*/
22functions {

/* *
24* Return the log probabi l i ty of a proper conditional autoregressive (CAR)

prior

* with a sparse representation for the adjacency matrix
26*

* @param phi Vector containing the parameters with a CAR prior
28* @param tau Precision parameter for the CAR prior ( r e a l )

* @param alpha Dependence ( usually s p a t i a l ) parameter for the CAR prior (
r e a l )

30* @param W_sparse Sparse representation of adjacency matrix ( i n t array )

* @param n Length of phi ( i n t )
32* @param W_n Number of adjacent pairs ( i n t )

* @param D_sparse Number of neighbors for each location ( vector )
34* @param lambda Eigenvalues of D^{−1/2}*W*D^{−1/2} ( vector )

*
36* @return Log probabi l i ty density of CAR prior up to addit ive constant

*/
38r e a l sparse_car_lpdf ( vector phi , r e a l tau , r e a l alpha ,

i n t [ , ] W_sparse , vector D_sparse , vector lambda , i n t n , i n t W_n) {
40row_vector [n] phit_D ; // phi ' * D

row_vector [n] phit_W ; // phi ' * W
42vector [n] ldet_terms ;
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44phit_D = ( phi . * D_sparse ) ' ; // ' ;
phit_W = rep_row_vector ( 0 , n) ;

46for ( i in 1 :W_n) {
phit_W [ W_sparse [ i , 1 ] ] = phit_W [ W_sparse [ i , 1 ] ] + phi [ W_sparse [ i , 2 ] ] ;

48phit_W [ W_sparse [ i , 2 ] ] = phit_W [ W_sparse [ i , 2 ] ] + phi [ W_sparse [ i , 1 ] ] ;
}

50

for ( i in 1 :n) ldet_terms [ i ] = log1m ( alpha * lambda [ i ] ) ;
52return 0.5 * (n * log ( tau ) + sum( ldet_terms ) − tau * ( phit_D * phi −

alpha * ( phit_W * phi ) ) ) ;
}

54}

56data {
int <lower=0> N; // num obs .

58int <lower=0> J ; // number of l e v e l s
int <lower=0> N_ecological_covariates ; // number of covariates for the eco .

s u i t process .
60int <lower=0> N_sample_covariates ; // number of covariates for the sample

e f f o r t .
row_vector [ N_ecological_covariates + N_sample_covariates ] x [N] ; // Size of

design matrix
62int <lower =1 ,upper=J > l e v e l [N] ; // type of l e v e l ( spec )

int <lower =0 ,upper=2> y [N] ; // observations , in t h i s case i s
binary .

64// data for the s p a t i a l structure
int <lower=0> N_areas ; // number of areas in the region .

66int <lower=0> N_edges ; // Number of pairs
matrix <lower = 0 , upper = 1 >[N_areas , N_areas ] W; // adjacency matrix of

l a t t i c e
68

int <lower=0> N_miss ; // Number of missing information
70// int <lower=0> Y_miss_array [ N_miss ] ; // array of indexed missing

observations

72}

74transformed data {
// rename variables for better usage

76i n t L = N_ecological_covariates ;
i n t M = N_sample_covariates ;

78i n t K = L + M;
// Sparse representation of W

80int <lower=0> W_n = N_edges ; // j u s t to make i t compliant with the r e s t of
the models

i n t W_sparse [W_n, 2 ] ; // adjacency pairs
82vector [ N_areas ] D_sparse ; // diagonal of D (number of neigbors for each

s i t e )
vector [ N_areas ] lambda ; // eigenvalues of invsqrtD * W * invsqrtD

84

{ // generate sparse representation for W
86i n t counter ;
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counter = 1 ;
88// loop over upper t r i a n g u l a r part of W to i d e n t i f y neighbor pairs

for ( i in 1 : ( N_areas − 1) ) {
90for ( j in ( i + 1) : N_areas ) {

i f (W[ i , j ] == 1) {
92W_sparse [ counter , 1] = i ;

W_sparse [ counter , 2] = j ;
94counter = counter + 1 ;

}
96}

}
98}

for ( i in 1 : N_areas ) D_sparse [ i ] = sum(W[ i ] ) ;
100{

vector [ N_areas ] invsqrtD ;
102for ( i in 1 : N_areas ) {

invsqrtD [ i ] = 1 / sqrt ( D_sparse [ i ] ) ;
104}

lambda = eigenvalues_sym ( quad_form (W, diag_matrix ( invsqrtD ) ) ) ;
106}

108

}
110

112parameters {
// Mult i level f ixed e f f e c t

114

// The s p l i t t e d betas for the ecological processes
116vector [ L + M] beta_eco [ J ] ;

118// S p a t i a l e f f e c t
vector [ N_areas ] G; // s p a t i a l e f f e c t s

120real <lower = 0> tau ;
real <lower = 0 , upper =1> alpha_car ;

122

// Mixing e f f e c t for Q
124// The alpha parameter , one per l e v e l .

simplex [ 2 ] alpha_1 [ J − 1 ] ;
126

128}

130

transformed parameters {
132simplex [ 2 ] alpha [ J ] ;

vector [K] beta [ J ] ; // Each l e v e l has an assigend beta of K dimension .
134

136

// Define the l a s t l e v e l ( sampling e f f o r t ) with no mixing e f f e c t
138for ( j in 1 : J − 1) {
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alpha [ j ] = alpha_1 [ j ] ;
140}

alpha [ J ] [ 1 ] = 0 . 0 ;
142alpha [ J ] [ 2 ] = 1 . 0 ;

144for ( j in 1 : J − 1) { // Do t h i s for the multispecies l e v e l
for ( i in 1 : L ) {

146beta [ j ] [ i ] = beta_eco [ j ] [ i ] ;
}

148for ( i in L + 1 : L + M) {
beta [ j ] [ i ] = 0 . 0 ;

150}
}

152// Assign values to covariates of the sample .
for ( i in 1 :K) {

154i f (M == 0 && i <= L ) {
beta [ J ] [ i ] = beta_eco [ J ] [ i ] ;

156}

158else i f ( i > L ) {
// beta [ J ] [ i ] = beta_samp [ i − L ] ;

160beta [ J ] [ i ] = beta_eco [ J ] [ i ] ;
}

162

// i f number of covariates for sample e f f o r t i s 0 then assume both process
have

164// the same covariates
else {

166beta [ J ] [ i ] = 0 . 0 ;
}

168}

170

172}

174model {
// def variable

176vector [N] S ;
vector [N] P ;

178vector [N] Q;

180// Priors for mult i level f ixed e f f e c t s

182// Priors for the stat ionary CAR
tau ~ inv_gamma( 1 , 0 . 1 ) ;

184// a very informative one
alpha_car ~ beta ( 1 , 1 ) ;

186

// S p a t i a l prior
188G ~ sparse_car ( tau , alpha_car , W_sparse , D_sparse , lambda , N_areas ,

W_n) ;
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190// Model for priors in the mixing Qs
// For the betas in the mult i level

192for ( j in 1 : J − 1) {
// betas for ecological process

194beta_eco [ j ] ~ normal(0 ,10000) ;
alpha_1 [ j ] ~ beta ( 5 , 5 ) ;

196}
// parameters for the sample ( J i s the l a s t number of the l e v e l )

198beta_eco [ J ] ~ normal(0 ,10000) ;

200// The Qs
for ( i in 0 :N − 1) { // s t a r t s with 0 because we are using modulus

202// P and S with s p a t i a l random e f f e c t .
P[ i + 1] = x [ i + 1] * beta [ l e v e l [ i + 1 ] ] + G[ ( i % N_areas ) +1 ] ; //

This because the N_areas i s h a l f N, t h i s assures common component
204S [ i + 1] = x [ ( i % N_areas + 1) + (N − N_areas ) ] * beta [ J ] + (G[ ( i %

N_areas ) +1 ] ) ;
Q[ i +1] = ( alpha [ l e v e l [ i + 1 ] , 1 ] * P[ i + 1 ] ) + ( alpha [ l e v e l [ i + 1 ] , 2 ]

* S [ i + 1 ] ) ;
206}

208

// The parsing element to support missing data . ( prototype : missing−data =
2)

210for ( i in 1 :N) {
i f ( y [ i ] > 1) {

212

// The marginal of y
214t a r g e t += log_mix ( i n v _ l o g i t (Q[ i ] ) , bernoull i_ logit_lpmf (1 | Q[ i ] ) ,

bernoull i_ logit_lpmf (0 | Q[ i ] ) ) ;
216}

e lse {
218t a r g e t += bernoull i_ logit_lpmf ( y [ i ] | Q[ i ] ) ;

//Y [ i ] = y [ i ] ;
220}

}
222

224// y ~ b e r n o u l l i _ l o g i t (Q) ;
// t a r g e t += normal_lpdf ( y | Q, sigma_q ) ;

226

}
228

230generated quantit ies {
vector [ N_areas ] S ;

232vector [N] P ;
vector [N] Q;

234i n t y_imp [ N_miss ] ;
i n t k = 1 ;

236
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for ( i in 0 : N_areas − 1 ) {
238S [ i + 1] = x [ (N − N_areas ) + ( i + 1) ] * beta [ J ] + (G[ i + 1 ] ) ;

}
240

// The Qs
242for ( i in 0 :N − 1) {

P[ i + 1] = x [ i + 1] * beta [ l e v e l [ i + 1 ] ] + G[ ( i % N_areas ) +1 ] ;
244Q[ i +1] = ( alpha [ l e v e l [ i + 1 ] , 1 ] * P[ i + 1 ] ) + ( alpha [ l e v e l [ i + 1 ] , 2 ]

* S [ ( i % N_areas ) +1]) ;
}

246

// The missing values
248for ( i in 0 :N − 1) {

i f ( y [ i + 1 ] > 1) {
250y_imp [ k ] = bernoul l i_ logi t_rng (Q[ i + 1 ] ) ;

k += 1 ;
252}

}
254}
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4.14 Appendix: Visualisations of simulated data and asso-

ciated spatial structures
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(a) LatticeW (b) Adjancency matrix W

(c) Covariance matrix Q−1
(d) Simulated φ

Fig. 4.5 Adjancency matrix W of the latttice W. The precision matrix (Q = (D −αW )) and its
corresponding Covariance matrix Q−1 (right) corresponding to a simulated gaussian markov
random field (GMRF). The figures are restricted to the upper section of the matrices covering the
first 100 entries.Simulation, sampled from a multivariate normal with mean 0 and covariance
matrix Q−1





CHAPTER 5

GENERAL DISCUSSIONS AND RECOMMENDATIONS FOR THE FU-

TURE

The research presented in this thesis responded to the problem of inferring the probability

of biological taxa (e.g. species) to be present in geographical space using a large corpus

of environmental and biodiversity data. These data are presence-only observations and,

therefore, the information related to real absences is missing. The aim of the research

was the development of novel methodologies for modelling species distributions using all

available sources of information. Its achievement involved the development of two lines

of research. The first was the design and implementation of a knowledge-engine to store,

integrate and synthesise large volumes of heterogeneous biodiversity, environmental and

geospatial data. The second line of research developed statistical methods to design com-

prehensive model-based specifications of the stochastic processes that have generated

the observed biodiversity occurrences; as opposed to using machine-learning-based black

boxes that are, generally, complicated to interpret scientifically (Rudin, 2019).

To answer the first central question in the thesis (i.e How to formalise a comprehensive

data structure to unify and synthesise heterogeneous data sources?) I developed knowledge-

based computational methods for integrating heterogeneous environmental and biodi-

versity data. There are several more advanced proposals for integrating environmental
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data. Examples of these are Australia living Atlas (https://www.ala.org.au/), Ecocommons

virtual labs (La Salle et al., 2016) and especially, the Earth Observations Biodiversity Ob-

servation Network (GEOBON) platform for data homogenization and standarisation of

essential biodiversity variables (EVB)s (Navarro et al., 2017; Pereira et al., 2013; Scholes

et al., 2012). We contributed to this international effort presenting an open source engine

capable of storing information in a knowledge graph and abstracting complex ecological

concepts as knowledge schemes for traversing the knowledge engine. We applied these

concepts to assemble taxonomic trees distributed in space. The taxonomic tree includes

information on the ecological communities linked with environmental spatio-temporal

information. The object-oriented approach allowed the efficient abstraction of taxonomic

trees into complex data structures with algebraic operational support.

The idea of merging multiple taxonomic structures and phylogenies into a global tree

of life is not new. A successful example is the project Open Tree of Life (Hinchliff et al.,

2015) that synthesized published phylogenies, together with taxonomic classifications

to reconstruct a comprehensive global tree of life. Thus, the work is not an attempt to

compete with these projects but to show the potential to incorporate similar structures

to better inform species distribution models. In this respect, an innovative feature of

the engine is that instances of taxonomic trees can be algebraically operated, bringing

the possibility of concatenating intersections, differences or unions between other tree

instances. These operations make it possible to express complex data combinations for

selecting taxa and merging collections of taxonomic trees to study variation in scale and

time. A direct application is the aggregation of trees into biodiversity measures to analyse

changes in α, β and γ diversity (see Magurran (2004) and a full mathematical explanation

in appendix A.1).

The implemented spatial lattice is another aspect that deserves attention. It is com-

posed of nodes of the type cell linked with other cell nodes by the relationship IS_NEIGH-

https://www.ala.org.au/
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BOUR_OF. Each cell node has a geometric attribute that defines an area bounded by a

polygon. The complete set of nodes, conditioned to the same scale, tessellates the surface

as a regular grid (see chapter 2 figure 2.3). The tessellation and the neighbouring relations

induce a spatial lattice (2.15.1) that is used to define the spatial autocorrelation structure

(Chapters 3 and 4). That is, local taxonomic trees (i.e constrained by its linked cell node)

together with either: the choosing principle (Chp. 3 sec.3.2.2) or the complementary sam-

ple (Chp. 3 sec. 4.2.2), specifies contextual background data by aggregating the associated

occurrences into binary responses 1.

The second part of the thesis was the integration of the knowledge-engine with statis-

tical frameworks to answer the question of, "How to integrate biodiversity data from differ-

ent sources to infer species geographic distributions?" The data integration was obtained

through the modelling of informative background data using semantic graph traversals,

while the inference of species distributions was carried out with the specification (and

implementation in the case of chapter 4) of multilevel hierarchical logistic models for

describing the joint effect of an ecological suitability process and the sampling effort. As

discussed in chapter 3, several methodologies for modelling single species distributions

using presence-only records have been proposed. For example, the work of Renner et al.

(2019) suggested the use of a spatial latent factor to jointly model sampling effort and

ecological processes. Additionally, Croft et al. (2019) used an intrinsic conditional au-

toregressive (ICAR) model as the spatial dependency. This part of the research explored

and discussed the above proposals. It was found that they were limited to a single spatial

specification and a rigid use of the sampling effort process.

The research in this part of the thesis contributed to the field with a generalisation

of the spatial specification into three different types of spatial structures: independent

components (model I), common spatial component (model II) and correlated components

(model III). Additionally, this work proposed a flexible scheme to model absences through

1with missing data in the case of Chapter 2
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the use of the choosing principle. The development of this work brought novel statistical

and computational methods ( increased presence-only single species distribution model

accuracy, compared with the popular model MaxEnt), and gave ideas for extending the

presence-only framework to model multiple species (taxa) simultaneously.

In the proposed framework, all the models (i.e. I, II and III) performed more accurately

than benchmark (i.e. MaxEnt). However, the results given by the two examples showed

that the size of the informative sample plays an important role in choosing the appropriate

model accordingly with its spatial autocorrelation structure. That is, model III resulted to

achieve the highest predictive accuracy when the informative sample has a low proportion

of missing data, while model II was better suited for cases where the proportion of missing

data of the informative sample is larger than the presences or relative absences.

Single species distribution models have been criticised for not including interaction

between species (e.g Elith and Leathwick (2009)). In fact, species interactions have been

described as fundamental forces for determining the likelihood of organisms to occupy

an ecological niche (Chase and Myers, 2011; Leibold et al., 2004; Wisz et al., 2013). To

account for this effect, we decided to specify and implement a joint multispecies model

for presence-only occurrences. The field of joint species distribution modelling has been

actively growing in recent years. An earlier and influential work was the one developed

by Latimer et al. (2009) using a hierarchical approach for binary responses (presence-

absence). Later, Wackernagel (2003) used a geostatistical model for co-regionalization to

account for a multi-spatial effect. To account for the bias in the number of absences related

to abundance data, Clark et al. (2014) proposed a hierarchical model for multispecies

abundances using a zero-inflated Poisson process. Despite these efforts, to the best of

these authors’ knowledge, a joint species distribution model for presence-only data has

not been published yet.
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Chapter 4 describe an attempt to innovate in this respect by integrating the knowledge

engine with a multispecies presence-only spatial framework. To achieve this, a knowledge

scheme that traversed the taxonomic tree of co-occurring taxa in neighbouring regions

was proposed, to obtain a complementary sample given the selected taxa of interest. That

is, without the need of explicitly specifying an ad-hoc sample.

One of the main contributions of this thesis is the use of evolutionary-based structures

in the form of local taxonomic trees to model background data. In contrast to generic

one-fits-all heuristics for obtaining background observations (e.g. maximum entropy

(MaxEnt)), these structures have the potential to algorithmically generate knowledge-

based background information, adapted to the taxa of interest and their geospatial context.

This is done with graph traversals that select data following semantic patterns, for example,

the relationships of ancestry (i.e IS_PARENT_OF) and relationships of neighbouring cells

(IS_NEIGHBOUR_OF). The obtained background data determine the selected graph pattern,

that is, the context of the taxa of interest and their spatial distribution, given associate

data linked by semantic relationships. This methodology demonstrated to have a greater

predictive capacity than the generic alternative, MaxEnt (see chapter 3).

5.1 Spatial point processes as an alternative

Species distribution models have been a fertile field for the application and development

of spatial statistical models (e.g. Cressie et al. (2009); Fortin et al. (2012); Lichstein and

Simons (2002)). As it was explained in the introduction, several modelling approaches have

been used to address ecological phenomena with presence-only data. Considering that

the central objective of this thesis is the inference and prediction of species occurrences

in space, it is sensible to assume that these occurrences could be realisations of a random

process occurring continuously in space. In contrast to use aggregated observations on a

fixed grid of locations across the study area, as in the case of spatial lattices (i.e. Gaussian
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random Markov fields), the occurrences could be understood as point-wise realisations of

the process itself. This conceptualisation suits the specification of a spatial point model,

another branch of spatial statistics (sensu Cressie (1993)).

Spatial point processes (SPP) have gain popularity in ecological studies, particularly in

modelling species distribution using presence-only records (see Velázquez et al. (2016) for

review). The main components of SPP models are: the intensity function; the expected

density of points per unit area (i.e. a first moment quantity), and the interaction between

points; the spatial autocorrelation between the occurrences (i.e. second moment quantity).

Although these components are equivalent to the fixed and random effect of the models

proposed in chapters 3 and 4, their specification involves fundamental differences in

terms of their assumptions, computational complexity and model specification, specially

resolving confounding and identifiability conflicts.

An convenient approach for modelling SPP is the use of non-parametric methods for

testing hypotheses about spatial clustering or inhibition (Diggle, 2013). Although this

approach have showed great value in the ecological sciences, in this research we were

more interested in developing integrative frameworks on parametric models that could

account for inference, prediction and interpretability. In this regard, we consider the

Bayesian framework a fundamental base for such endeavours.

Certainly, methodologies for SPP that allow a Bayesian specification of parametric

models exist. An example is the log Gaussian Cox process (Møller et al., 1998) that spec-

ifies a (log) Gaussian process as a latent variable for modulating the intensity function.

Another example is the approach by (Hengl et al., 2009) that uses density estimations

and geostatistical methods. Although these models have been satisfactory used in the

ecology, the assumptions about the required study design restrict their application to

specific cases, hindering the application to generic taxonomic groups and data collections.

The study design assumptions for standard SPP models are:
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1. The locations of points are measured exactly.

2. No two points lie at exactly the same location.

3. The survey is exhaustive within the study region. That is, there are no errors in

detecting the presence of points of the random process within W.

Clearly, these assumptions restrict the possibility to model a variety of species, specially

in a multiple species scenario. For example, in relation to the first assumption, it is

impossible for the vast majority of terrestrial animals to have an exact location, as they

move constantly within an occupancy area. The second assumption is unsuitable for

jointly modelling overlapped species like parasites and hosts or birds perching in trees.

In this sense, both groups would probably share the same location (coordinates) and,

although, there are multivariate adaptations for SPP, their specification is complex and

may encounter methodological problems (Baddeley et al., 2015). Additionally, some

records locate the observations in a common geographical coordinate. This means that

the locations lack precision and are reliable only within a certain scale. It is very common

to find this feature in historical collections like museums and herbaria or where the

species under consideration have a high conservation status and their precise location is

confidential.

Lastly, the third assumption restricts the concept of modelling jointly the sampling

effort and the ecological process that determines the occupancy of an area. In SPP models,

all information is contained in the location of the occurrences and it is not possible to

separate the sampling effort from the ecological process, leading to confounding and

identifiability problems (Gelfand et al. (2013), Chp. 20 ).

Consequently, the use of spatial lattices (i.e. aggregated data by unit area) for modelling

spatial autocorrelation presents a more appropriate alternative. From an epistemological

aspect, it can be used to model a wider variety of organisms on an area. From a pragmatic



210 General discussions and recommendations for the future

aspect, it allows a broader use of the data by allowing the use of occurrences with com-

mon coordinates, a problem consistent in old datasets or species that, for conservation

purposes, their precise location is confidential.

From a methodological aspect, the spatial lattice is indeed a subgraph of the entire

knowledge-graph. As such, any selection of it can be represented directly as the adjacency

matrix of the selected subgraph. In this way, the spatial autocorrelation of the CAR models

(Besag, 1974) is by the adjacency matrix. As such, the complete definition of the input

data can be obtained from graph traversals; substructures of the knowledge graph. Lastly,

from a computational aspect, the spatial lattice has a great advantage in terms of its

computational efficiency, due to its sparse adjacency matrix representation. In this type of

matrix, most of the elements are zero. This property can be exploited by sparse numerical

methods to invert the matrices in a much reduced computational time (Trefethen and

Bau, 1997). This is a great advantage compared to other spatial statistical methods, like

geostatistical models (including the log Gaussian Cox process) where the inversion of

dense covariance matrices involves a high computational cost; exponential (O(n3)) with

respect to the number of data points.

5.2 Limits and recommendations for the future

5.2.1 Absence of rare species

The models presented in chapter 3 and 4 proposed two different sources of background

information, both based on the same principle: the use of other occurrences to model the

sampling effort associated with the taxa of interest. The modelling of absences, either by

the informative sample (chapter 3) or the complementary sample (chapter 4) assume that

the taxon of interest is absent when an occurrence of an informative sample is present.
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This assumption can be a limitation for modelling rare species, leading to possible biased

estimations of their prevalence.

Rare species are difficult to model using solely the proposed models because of their

low density across the landscape. As such, applying indiscriminately any choosing princi-

ple to rare species may hinder the inference of its likely prevalence. This is problematic for

analyses where absent species are the study objects. For example, studies related to dark

diversity (Pärtel et al., 2011), where the taxa expected to be present in the regional species

pool are in reality absent in the study area.

5.2.2 Limitations on the single species framework

The aggregated observations associated to the sampling effort process were derived by

applying a choosing principle to an informative set of sampled observations. The frame-

work requires an informative sample to be defined by the practitioner and, therefore, the

model’s fitness depends on the particular selection of the sample. Although this feature

gives flexibility to reduce the bias in presence-only SDMs, it may be troublesome for stud-

ies where the informative sample is unknown, difficult to define or impractical to handle

by the researchers. In the future, I would like to explore the effect of different informative

samples on the inference of the ecological process. We would like to also explore other

relations for deriving informative samples. For example, the use of co-occurring general

taxa, disregarding the taxonomic proximity.

5.2.3 Limitations of the multiple species model

In chapter 4, the knowledge scheme (graph traversal) was used to generate a comple-

mentary sample, given a set of taxa of interest. Although it is certainly an advancement

from models I, II and III (chapter 3) it does not provide all the flexibility of these models.

Specifically, this model lacks: support of missing observations and multivariate spatial
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random effects. Contrary to model III on single species, the multiple species model in-

cludes only a single spatial random effect, shared between the rest of the taxa and the

sampling effort. An implementation of the data augmentation scheme, similarly to the

one used in chapter 3 (i.e. (Tanner and Wong, 1987)), and the specification of multivariate

conditional autoregresive model (MCAR) (Gelfand and Vounatsou, 2003)) for modelling

multiple correlated spatial effects are left for future work. Arguably, the correlations be-

tween the random effects could give insights of ecological importance between taxa as

demonstrated by Thorson et al. (2015) and later, independently by Ovaskainen et al. (2016)

to model a whole community level with a combination of latent factors spatial covariance

function for each latent factor.

5.2.4 Computational limitations

The application of the statistical framework to large datasets (several thousands of areas)

involves a high computational cost, despite the reduction in complexity aided by the

sparse numerical methods used in the inference of the spatial random effect (CAR model).

The multispecies model is particularly costly. Its complexity increments proportionally

accordingly to the number of species and covariates.

This could be a practical limitation for global or fine spatial resolution studies or anal-

ysis that involve the simultaneous modelling of hundred of species. This problem opens

new research lines for using other computational methods, for example, approximation

methods like INLA or variational inference. A more pragmatic alternative is to change

the areal-based autocorrelation structure (CAR model) and use geostatistical models for

large datasets like: nearest neighbour Gaussian processes (Datta et al., 2016) or adaptive

Gaussian predictive processes (Guhaniyogi et al., 2011), although these methods are not

based on graphical models.
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5.2.5 Random effects as graph traversals

An interesting research line to develop in the future is the specification of other knowledge

schemes to add different random effects. These effects can be specified as graph traversals

selecting other relationships of interest, for example, ecological (e.g trophic networks) and

evolutionary relations (e.g. phylogenetic trees). The effect of scale can also be modelled in

a similar way.

As mentioned in chapter 2, neighbouring cells can be aggregated in a hierarchical

taxonomy using the topological relationship: Is_contained_in that induces another tree

structure. This time a 3-dimensional quad tree (Bentley, 1975; Worboys and Duckham,

2004). The network representations of the knowledge schemes can be unified using

probabilistic graphical models (Bishop, 2013). To continue expanding this research the

implementation could also be represented by the data generating process as a graph

embedded in the knowledge engine. The models presented in chapters 3 and 4 have

a functional parametric specification. That is, the data generating process is defined

as a family of parametric models. The addition of other sources of random effects and

correlation structures would change the structure of the model. As such, a different

implementation of the sampler should be built for each model specification. This would

result in different implementations for different arrangements of random effects. This

is the case for the models in chapter 3, implemented in CARBayes (Lee, 2013) and the

multi-species joint model (chapter 4), implemented with STAN (Carpenter et al., 2017)

An interesting route for future research is the extension of the knowledge-engine

to fully store the probabilistic graphical models directly in the knowledge graph with

automatic implementation of the posterior sampler. This can be achieved with the use of

differential programming languages and application programming interfaces (API)s with
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automatic differentiation and graph-based numerical computations like TensorFlow 2,

PyTorch 3 or PyMC3 (Salvatier et al., 2016).

5.2.6 The temporal dimension

Although the knowledge-engine supports the data querying and extraction of spatio-

temporal data, the statistical framework does not account (yet) for any correlation based

on time. The decision was taken to ease the specification and implementation of the

models. The need to also account for, say, seasonal to long-term variation across time is

real and important. Nevertheless, adding another dimension to the modelling framework

represents a serious technical challenge. From a computational aspect, the curse of

dimensionality shows the need to increase substantially the number of data required

for fitting the model properly. Consequently, as the data needed to fit is significantly

larger, further assumptions to the model need to be imposed to reduce the computational

complexity. Additionally, fitting the model with standard MCMC methods requires a much

higher computational cost than the spatial-only models. Some research lines following

this direction have been developed in recent years. Of importance to our research is

the use of integrated Laplace approximation (INLA (Lindgren and Rue, 2015)) to infer

spatio-temporal models based on Markov random fields (MRF) (Blangiardo et al., 2013).

2https://www.tensorflow.org/
3pytorch.org
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CONCLUSIONS

This thesis described novel computational and statistical methods for mapping the ge-

ographical distributions of organisms using synthesised information of presence-only

species records gathered from multiple biodiversity collections.

The knowledge-engine demonstrated the capability to homogenise and synthesise

heterogeneous environmental and biodiversity datasets. This was achieved with three

interconnected modules that integrate geospatial (raster and vector), temporal and tabular

data into graph structures. These structures store and connect different types of data

using semantic relationships between the data nodes, allowing the representation and

retrieval of data based on concepts. Contrary to other knowledge-engines, the presented

engine, supports geoprocessing functions, spatial analyses and efficient spatial querying;

as well as, graph-based algorithms for querying and analysing large network structures.

The system is also scalable to several terabytes of information. It has been released with an

open source license (GPLv.3), allowing its free use and contributions from the community.

The presented statistical framework for modelling species distributions contributed a

new approach based on the concept that presence-only occurrences are the joint effect of

two stochastic processes, one driven by environmental conditions (ecological suitability)

and the other by anthropological factors (sampling effort). In the single species setting
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(chapter 3), the framework showed superior predictive accuracy than MaxEnt, one of the

most popular methods for species distributions. Contrary to the algorithmic methodology

of MaxEnt, the presented framework is a statistical model and, therefore, accounts for

parameter uncertainties. The single species model served as a basis for generalisation to

the multiple taxa model. The multi-taxa model (chapter 4) represents a new contribution

in joint species distribution models. It is the first of its kind to jointly model multiple

species using presence-only data. This novel model involves the use of a complementary

sample for generating, automatically, the sampling effort. The approach benefits from a

full integration with the knowledge engine. It traverses the taxonomic tree of the selected

taxa to derive observations of the sampling effort based on the taxonomic and spatial

context of the selected taxa. The results from the case study showed promising results.

In particular, the ecological suitability process reduced the noise and bias influenced by

the sampling effort. Also, the ecological process was able to capture clear patterns of

macroecological importance. Opening exciting opportunities in future applications.

This thesis tried to contribute to the fields of macroecology and spatial statistics

by proposing an integrative approach for extract the intrinsic value of opportunistic

(presence-only) biodiversity records into a congruent knowledge-based graphical mod-

elling framework. It also showed the challenges and opportunities involved in the use of

big ecological data aimed at synthesising ecological knowledge. The use of knowledge

graphs to jointly model taxa using Markov graphical models (e.g. CAR models) showed

great potential for integrating other types of ecological processes. There is tremendous

potential to include other data sources like trophic webs, pollination or trait networks

to reach other fields of ecological importance while improving the modelling of species

distributions. �
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APPENDIX A

EXTRA MATHEMATICAL DEFINITIONS

A.1 Additional mathematical definitions

A.1.1 Network

Definition 11 (Graph or Network) Let V (G) be a set and E(G) ⊆V (G)×V (G). A graph G

is a duple given by (V (G),E (G)). V (G) is the set of vertices of the graph and E (G) is the set of

edges. An example of a graph is draw in figure: 2.1.

Definition 12 (Subgraph) Let G be a graph. G ′ is a subgraph of G (G ′ ⊆G) if and only if

V (G ′) ⊆V (G) and E(G ′) ⊆ E(G).

Definition 13 (Connected and acyclic graph) If for every u, v ∈ V (G) there exist a path

that connects them, then G is say to be connected. If that path is unique for every u, v then

G is acyclic (without cycles).

Definition 14 (Tree) A graph T which is connected and non-cyclic is called Tree. An exam-

ple in figure 2.2

Definition 15 (Subtree) Let T be a tree. A subtree T ′ is a subgraph of T such that is also a

tree (i.e. contains no cycles).
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A.1.2 Algebraic operations

The following definitions will give algebraic structure to the model meaning that it will be

possible to sum and take the difference of taxonomic tree structures in a similar way as

integer, real numbers or matrices operate arithmetically.

Mathematically, the tree data-structure is a semi-lattice and therefore, a partial or-

dered set and a semi-group (Clifford and Preston, 1961). As such, it is possible to define

arithmetic operations among trees to derive new trees. If, additionally, we allow a special

tree as an empty tree, containing only the root of the tree of life (LUCA) that can act as

an identity element, the set of all possible taxonomic trees and the arithmetic operation

constitute a monoid.

Definition 16 (Semigroup) Let T be a set and m : T ×T → T be an associative binary

operation1. The duple (T,m) is called a semigroup and T is called the underlying set of the

semigroup.

In this work s, t ∈ T , m(s, t ) will be written s + t and is called sum if m is defined as Sum or

s − t if m is defined as Difference.

Definition 17 (Identity element) Let e ∈ T and T a semigroup. e is called identity element

if and only if te = et for all t ∈ T . There can only be at most one identity element in a

semigroup.

Definition 18 (Monoid) A monoid is a semigroup with an identity element.

We will see that the sum and difference operator of taxonomic trees are monoids.

1Meaning that if t , p, q ∈ T then m(m(t , p), q) = m(t ,m(p, q))
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A.2 Deprecated software and the future of the engine

I want to finish with an anecdote of an unfortunate decision. The idea of the engine was

conceived during my masters in 2014. At that time, the design and development were

erratic, driven mostly by random explorations while analysing a big database of biological

occurrences; a single CSV file with more than 400,000,000 records. Due to time constraints,

my proficiency in the language and a library that ended not being used, I decided to

develop the engine in Python 2.

My masters dissertation ended with some interesting ideas worth to be continued in

the PhD. Specifically, that of representing local taxonomic trees on a grid of cells. In the

PhD, I continued working with the code developed before, this time with a more clear

design. Soon after, I knew that Python 2 was going to be deprecated in early 2020. The

limitations of time forced me to continue developing the engine, knowing that at some

point, I would need to translate the code to Python 3.

It is now July 2020 and Python 2 is no longer maintained. Newer and faster libraries

for data processing and numerical methods are constantly released for Python 3 and,

unfortunately, these new technologies are incompatible with the engine. There is a

great task ahead in revisiting the code to translate it to Python 3. If this is done, the

implementation of unit-testing modules should be a priority, together with succinct and

light container specifications, and a careful and standardised documentation. In my

opinion, the knowledge-modelling-engine has potential to grow and become a mature

and reliable platform. There is, though, a long way ahead �
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Abstract

Background: The exponential accumulation of environmental and ecological data together with the adoption of open data
initiatives bring opportunities and challenges for integrating and synthesising relevant knowledge that need to be
addressed, given the ongoing environmental crises. Findings: Here we present Biospytial, a modular open source
knowledge engine designed to import, organise, analyse and visualise big spatial ecological datasets using the power of
graph theory. The engine uses a hybrid graph-relational approach to store and access information. A graph data structure
uses linkage relationships to build semantic structures represented as complex data structures stored in a graph database,
while tabular and geospatial data are stored in an efficient spatial relational database system. We provide an application
using information on species occurrences, their taxonomic classification and climatic datasets. We built a knowledge graph
of the Tree of Life embedded in an environmental and geographical grid to perform an analysis on threatened species
co-occurring with jaguars (Panthera onca). Conclusions: The Biospytial approach reduces the complexity of joining
datasets using multiple tabular relations, while its scalable design eases the problem of merging datasets from different
sources. Its modular design makes it possible to distribute several instances simultaneously, allowing fast and efficient
handling of big ecological datasets. The provided example demonstrates the engine’s capabilities in performing basic graph
manipulation, analysis and visualizations of taxonomic groups co-occurring in space. The example shows potential
avenues for performing novel ecological analyses, biodiversity syntheses and species distribution models aided by a
network of taxonomic and spatial relationships.

Keywords: spatial data infrastructure; biodiversity informatics; ecological knowledge engine; big ecological data; open
science

Introduction

The IT revolution has created the opportunity to compute, store, and transfer massive amounts of information. It is estimated that the
volume of all digital information will surpass 175 zettabytes (ZB) (1 ZB = 1021 bytes) by 2020 [1]. In addition, the growth in data follows
an exponential curve that doubles in volume every 2 years ([2–4]). Moreover, this expansion in data production has occurred in all
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2 Biospytial: spatial graph-based computing for ecological Big Data

human activities, including the environmental sciences. Novel approaches for measuring natural processes are being applied, adding
more reliable and diverse data, and environmental measurements cover a wide range of spatial and temporal scales ranging, for ex-
ample, from long-term ecological experimental plots [5, 6] to near-real time imagery from Earth observation satellite systems such
as NASA’s Joint Polar Satellite System [7] and ESA’s Copernicus programme [8]. This IT era is opening new opportunities for greater
understanding of nature. For example, pervasive Internet connectivity has made possible the transfer of data across large distances
in a short time, and the multifunctional capabilities of mobile and smart devices have enabled the management and deployment
of collaborative surveys at low marginal costs. Geospatial sciences have benefited in particular. Methodologies for collecting, anno-
tating, and curating these new sources of spatial data have been proposed by [9–11] under the term “citizen science,” where data
are collectively assembled by a community of enthusiasts and volunteers. Some iconic examples of these (crowd-based) platforms
are OpenStreetMap [12] for geographic maps and the Global Biodiversity Information Facility (GBIF), an international consortium of
research and governmental institutions that gathers and publishes information of all types of biodiversity occurrences [13].

The exponential growth of data imposes new challenges for storage, access, integration, and analysis. Recent years have brought
new theoretical methods and technologies that are being developed to tackle these problems. “Big Data” is now an umbrella term for
methods dealing with huge, complex, and heterogeneous datasets that cannot be handled with traditional methods. See [14, 15] for
a review of the field and [16] for theoretical and practical challenges involving big geospatial data.

A fundamental goal in ecology is the understanding of the relationships between living beings and the environment. A requirement
to achieve this goal is the integration of independent studies and measurements to validate hypotheses on potential causal relations.
To test the existence of these causalities, a substantial number of inputs in terms of theory, methods, and data is needed. Moreover,
reliable, reproducible, and easy-to-access methods are especially important given the urgency in addressing ongoing environmental
crises (e.g., rapid ecosystem degradation, global climate change, accelerated extinctions, and biodiversity loss) [17, 18]. Ecology is thus
adapting rapidly to these critical challenges and is starting to adopt and develop novel theoretical and computational methods to
solve a central problem: how to synthesize and integrate ecological theory with big ecological data. Answering this question requires
an interdisciplinary approach that touches many fields, including theoretical ecology, mathematical modelling, statistics, computer
science, and information sciences. For example, Loreau [19] proposed a conceptual framework for integrating ecological theory by
centering evolution as the link to unify ecology; and Pavoine and Bonsall [20] proposed a semantic and mathematical formalization for
unifying traits, species, and phylogenetic diversity. The 2 approaches exemplify how evolutionary (ancestry) relationships between
biological objects constitute a solid base to unify distant branches of ecology. From a statistical perspective, meta-analysis has been
effective in synthesizing research evidence across independent studies, including unveiling general relations through a statistically
sound framework [21].

Geospatial data constitute a crucial component for data fusion and harmonization; see [22] for a review of methods for hetero-
geneous spatial Big Data fusion, and [23] in order to remove bias by using spatial data stratification methods. A clear example of
geospatial data fusion is the building of essential biodiversity variables (EBVs) to identify biodiversity and ecosystem change [24].
EBVs constitute a minimal set of critical variables aimed to standardize and harmonize global biodiversity variables. Originally pro-
posed by the Group on Earth Observations Biodiversity Observation Network (GEO BON) to assess biodiversity change globally [25],
EBVs are now being used to predict global species distributions and potential scenarios for policy options [26]. EBVs integrate data in a
standardized framework that describes spatial, temporal, and biological organization [27]. Recently, methodologies for building EBVs
have been drawing the attention of interdisciplinary research for reliability and data quality [28]. System designs and infrastructures
for integrating heterogeneous big ecological data are emerging. Examples of these are the citizen-based bird observation network
(eBird [29]), the TRY database for plant traits [30], the PREDICTS project (Projecting Responses of Ecological Diversity in Changing
Terrestrial Systems) [31], and the Botanical Information and Ecology Network [32]. Despite the data heterogeneity and biased infor-
mation against real absences (a consequence of opportunistic sampling), these types of infrastructures are able to collect sufficient
quantities of data to perform statistical inference ([33, 34]). The use of high-performance computational technologies with novel sta-
tistical methods for representing and modelling big ecological data can provide deeper understanding of biodiversity evolution and
its dynamics in a changing world [25, 27, 35]. Moreover, its implications can be extended to other branches of ecology and earth sci-
ences. For example, a process-based approach [36] showed how community assemblages can be integrated into dynamic vegetation
models to increase the precision of climatic and earth system models.

From a technical perspective, environmental and ecological data often come in matrix form such that they can be stored and
analysed efficiently with a relational database management system (RDBMS) or other tabular data structure. RDBMSs are reliable
and sophisticated tools. An important feature is the possibility to extend their functionality with programming languages such as
C, Java, Python, or R-Cran. This allows the combined use of an efficient data management system with a broad range of statistical
libraries and programming methodologies. An example of this is the integration of spatial analysis tools into the RDBMS through the
Postgis project [37], a set of compiled functions written in the Postgresql Procedural Language (PostgresPL) that interfaces with high-
level geospatial libraries (e.g., [38–40]). Postgis adds GIS capabilities to the database engine, giving superior performance for querying
information with geometric and topological features in space.

Integrating large datasets using only relational methods is computationally intensive. For example, matching data by a common
feature involves the definition of join clauses plus computing the joined lookup between the pair of tables. The resulting product
is often stored in volatile memory, a limiting factor when integrating large datasets. In a typical database design, table indices cost
O(log(n)) in time, where O( · ) is the classic “Big O,” a measure of computational complexity, and n is the size of the input dataset.
A query involving multiple joins (from multiple data tables) can involve reverse and recursive lookups, which can increase the load
from O(n) to O(nk), where k is the number of data tables to join. Although this issue can be addressed with database design techniques
such as normalization [41] or caching [42], the solution likely obfuscates the comprehension of the relational schema by adding
unintuitive tables and other auxiliary information. It also requires a learning curve and expertise for implementation as well as
increasing complexity when more datasets are added.
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Escamilla Molgora et al. 3

Data structures based on direct acyclic graphs (DAGs) are advantageous in relation to the above approaches. Traversing a relation-
ship in a graph database has constant cost (O(1)) [43] if the relations are defined explicitly for every node. Whenever a new dataset
is added, a new link can be created to relate it with an existing record. Graph databases, however, are not as efficient at processing
geospatial queries or handling simultaneous queries [44]. In this sense, hybrid data management systems, capable of handling both
paradigms (relational tables and DAGs), were proposed to overcome the limitations of both systems. However, to the best of our knowl-
edge, these proposals have not been yet implemented [45], their code is closed [46], or their scope is not suited for environmental and
spatial datasets, as is the case of the Reactome Database [47].

In this article we propose an implementation of an open source knowledge engine (i.e., a hybrid database system) that stores,
accesses, and processes geospatial and temporal information, to integrate, analyse, and visualize heterogeneous environmental,
EBV, and big ecological data. The engine, named “Biospytial” (composed of the words “biodiversity,” “Python,” and “spatial” and pro-
nounced “Biospatial”), incorporates semantic relations that integrate data in a web of semantic knowledge able to represent complex
graph (network) data structures.

Biospytial can be considered a component of traditional spatial data infrastructure (SDI) because we simplify access and analysis
of big datasets while satisfying the need of producing information for scientists and policy makers, among others [48]. This is pos-
sible owing to the engine’s capability of identifying intrinsic and extrinsic relationships within environmental and socioeconomic
processes. Therefore, the developed engine is aimed to serve SDI-based decision-making frameworks, such as, e.g., the European
project INSPIRE [49].

The engine serves as a multi-purpose platform for modelling complex and heterogeneous data relationships using the power of
graph theory. The current implementation uses the occurrences data from the GBIF and their updated systematic classification [50] to
build the acyclic graph of the Tree of Life (ToL). To exemplify the geospatial capabilities, some EBVs such as mean monthly tempera-
ture, elevation, and mean monthly precipitation are also included in the engine. The article is structured as follows: the specification
and general description of the engine is described in the next section followed by the methodology and software implementation for
accessing biodiversity records arranged in a taxonomic tree. The knowledge graph of the ToL is explained with examples for traversing
and extracting spatial and taxonomic sub-networks. A tutorial explores the capabilities of the engine with a practical demonstration.
This section shows the syntax and discusses ways to interpret and traverse the knowledge graph, ending with general conclusions
and future research directions.

An Open Source Graph-Based Engine for Geospatial Analysis

The engine is able to import, organize, analyse, and visualize big ecological datasets using the power of graph theory. It performs
geospatial and temporal computations to synthesize information in different forms. The data can be queried and aggregated accord-
ing to customized specifications defined by structural patterns called “graph traversals” [51]. The software has been developed with
object-relational and object-graph mappings (ORM and OGM, respectively) that use the object-oriented paradigm to abstract interre-
lated data into class instances [43,52]. In this sense, every record is represented as an instance of a certain class with its attributes
mapped one-to-one to entries in a particular table (if it is stored in a relational database) or in a key:value hash table (if it is stored
in a graph-based database). This approach allows the building of complex and persistent data structures that can represent different
aspects of the knowledge base. It also allows the assembly of automatic methods for exploring, filtering, aggregating, and storing
information.

System architecture

The engine is composed of 3 interconnected modules: (i) a Relational Geoprocessing Unit (RGU), (ii) the Biospytial Computing Engine
(BCE), and (iii) a Graph Storage and Processing Unit (GSPU) (see Fig. 1). Each module is arranged in virtual containers isolated as stand-
alone applications [53] running a common Linux image (Debian 8) as the base operating system. The virtual container technology
creates a common environment for each module, enabling the user to disregard the complications of working with heterogeneous
computer infrastructures [54]. Its design allows the replication of several instances of the same module in a single computer or in a
distributed network. Containerized applications are easier to replicate and migrate compared to large data volumes and databases,
which often involve resource-intensive tasks in terms of energy, computing, network bandwidth, and management. The idea behind
containerization is to move the processes not the data and, especially in the geospatial context, to perform spatial analysis where
the data are located.

The Relational Geoprocessing Unit
The RGU module undertakes the storage and raster-vector processing. It relies on high-level abstractions that represent geospatial
data stored in relational tables. The supported geometric features are (multi)points, (multi)lines, (multi)polygons, and multiple-band
raster data. It features a fully operational Postgresql (9.4.9) server (port: 5241) with geospatial extension (Postgis 2.3.1) [37] and libraries
for handling geospatial data (GDAL, OGR 1.10.1) [38], transformation between different geographic projections (PROJ 4.8 [40]), and
computation of geometric operations (GEOS 3.6) [39] (Fig. 1b). The RGU image can be downloaded from [55].

The Graph Storage and Processing Unit
This module hosts a graph database that stores data on nodes and their relations in a network structure called the knowledge base
(Fig. 1a). The graph database system is an instance of Neo4J (3.1.3), an open source ACID-compliant transactional database manage-
ment system with native graph storage and processing [43]. It includes a web-based interface located in http://< custom url >:7474
The interface allows the inspection and visualization of queries (subgraphs) using the Cypher interpreter (a No-SQL type declarative
language for interrogating graph databases). The module also includes a plugin for spatial and topological lookups [56] and the Awe-
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4 Biospytial: spatial graph-based computing for ecological Big Data

Figure 1: The Biospytial system with the 3 interconnected modules. (a) The GSPU, where semantic queries and graph traversals take place. (b) The BCE, where object
mappings, web services, and the modelling framework take place. It includes several libraries for performing exploratory analysis as well as Bayesian statistical
inference and prediction using the probabilistic programming language PYMC3. (c) All the components can be allocated in the cloud and are connected using virtual

and physical networks. (d) The RGU, where the geoprocessing and spatial indexing occurs, storing efficiently any raster and vector data sources. (e) Interactive access
is possible in 2 ways: using an online web notebook (Jupyter) or an interactive console (iPython).

some Procedures on Cypher (APOC) [57], an extension library with >300 procedures for data integration, graph algorithms, or format
conversion procedures. The GSPU image can be downloaded from [58].

The Biospytial Computing Engine
This module provides the interface and processing toolbox for accessing, exploring, and analysing data structures through the Object
Mapping design. The container hosts a virtual environment and an Anaconda package manager [59] that includes all the dependencies
required by the engine. The core code of the engine is contained in a new Python package called Biospytial [60] (Fig. 1c). The engine
structure includes a drivers module to communfoicate with the graph database; the modules for accessing each dataset in the
relational database; the module for graph traversals, data ingestion, gridding systems, vector sketching, and Jupyter notebooks; and
external plugins such as spystats, a Python port of GeoR [61]. The image can be downloaded from [62].

Other features
Scalable The implementation includes scripts for automating the engine’s deployment in a single host or in cluster mode. This mode
provides a granular configuration for the allocation of resources and services in a distributed manner. For example, the BCE module
can be hosted in a computer with high-performance architectures or multiprocessing (e.g., MPI) capabilities.

Message broker The engine includes a messaging service (Redis [63]) that delivers information between the different components.
It also serves as an in-memory data structure storage and message broker. The storage is useful for interchanging data between
different platforms and languages. For example, it allows export of the results into intermediary files (e.g., CSV or DBF) for use in
other software (e.g., [64, 65]).

Open Source—Open Contributions The software used in all the modules has been released with open source and free software licenses,
which allow users to reproduce, modify, and publish their research source code. The engine was developed using best practices for
scientific computing [66], data transparency, and reproducibility [67].

Access to the engine
There are 2 ways of accessing the engine. One is through a command line interpreter based on the iPython console [68]. The other is
with an online Jupyter notebook server [69] (localhost:8888). The Jupyter notebook is a web-based interactive Python interpreter that
renders MarkDown documents, plots, and images in the browser. Analysts can create files in a notebook format (.ipdb) and share the
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Escamilla Molgora et al. 5

Table 1: Principal software components of the Biospytial Knowledge Engine System

Software name Version Description

Biospytial Computing
Unit

Debian GNU/Linux
8.6

Container OS image

Conda 4.3.30 Package manager optimized for data science
Python 2.7.11 Programming language (scheduled update for v.3.x)
R-base 3.2 Language and software environment for statistical computing
Jupyter 1.0.0 Interactive web application for reproducible computational workflows
Scipy 1.01 Python library for numerical and scientific computation
Pandas 0.19 Python library for data structures and data analysis
Geopandas 0.3 Extension of Pandas to support geospatial data
GDAL 2.1 Library for converting and processing geospatial data
Shapely 1.5.16 Python library for manipulation and analysis of geometric objects in the

Cartesian plane
Django 1.8.4 ORM, web framework and stand-alone server
Py2neo 3.11 A client Python library and toolkit for working with Neo4j
Pymc3 3.4.1 A Python-based probabilistic programming framework
Patsy 0.4.1 A Python library for describing statistical models

Relational
Geoprocessing Unit

Debian GNU/Linux
8.6

Container OS image

Postgresql 9.4.9 Relational database management system
Postgis 2.3 Spatial extension for Postgresql
GDAL 1.10.1 Library for converting and processing geospatial data
GEOS 3.6 Geometric and topological library
Proj4 4.8 Coordinate transformation software

Graph Storage and
Processing Unit

Alpine Linux 3.5 Container OS image

OpenJDK IcedTea 3.3 Open source Java compiler and virtual machine
Neo4J 3.1.3 (C.E) Graph database management system
APOC 3.1.3 Utilities, graph algorithms, and common procedures for Neo4j

Message Broker Redis 5.0.3 A key-value data structure store

results online. Peers can visit the notebook’s url, read the document, run the code, replicate the analysis, access the variables, import
other libraries, modify the analysis, and export it into different formats (e.g., PDF, LaTeX, or HTML).

Knowledge representation

The engine uses 2 database paradigms to store and represent data: a relational system with tables connected by primary and foreign
keys and directed acyclic graphs (DAGs) where the data are stored as nodes (with associated attributes) and edges representing
relations between nodes. Each node can belong to 1 or many classes. In our implementation, the relationships are semantic phrases
that refer to location (e.g., “IS IN”), ancestry (“IS PARENT OF”), or topological features (“IS CONTAINED IN” or “IS NEIGHBOUR OF”).
Thus, the engine uses explicit semantic relations between nodes to build a network of semantic information. The union of all these
relationships is what we call a “knowledge graph.”

The event of a species s being recorded at location l can be represented as a node of the class “Species” connected to a node l of class
“Cell” using the relation “IS IN”. The Cell nodes are contained in a regular lattice (grid) and are instantiated by a class that implements
a geospatial type defined by a polygon that acts as a geometric border. As an example, Fig. 2 shows this diagram for the bird family of
quetzales (Trogonidae) found in southeast Mexico. The node in red represents the species: Pharomachrus mocinno. The nodes in blue
are 2 Cell types that associate the locations where P. mocinno was found. The arrows indicate the directional relationships between
the nodes. The graph database allows easy manipulation of these nodes, their relations, and combinations. At the same time, the
selected pattern can be filtered by chosen attribute values to generate customized design matrices.

Integrating data with graph structures and object mappings

The object mapping approach serves to communicate different database management systems (relational or graph-based). A high-
level Python-based Object Relational Mapping (ORM) library (Django [70]) was used to communicate with the RDBMS and the other
components of the engine. It includes a high-level interface to translate sentences from the SQL declarative language into method calls
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6 Biospytial: spatial graph-based computing for ecological Big Data

Figure 2: Graph showing the connection between a Species node and 2 Cell nodes. Here the species is Pharomachrus mocinno (quetzal) and the number shown in each

Cell node is its respective ID number. This is an actual visualization taken from data stored in our knowledge graph.

from the object-oriented paradigm. Vector and raster operations are possible via the Open Source Geographic Information System
(OSGIS) for Postgresql (Postgis [37]). Currently, all the spatial and tabular data are stored in the RDBMS.

The object mapping on the graph database system is achieved with py2neo, a client library and toolkit for communicating with the
Neo4j database management system [71] within the Python programming language [72]. Topological information such as neighbour-
ing cells and nodes contained within cells is stored as semantic relations. Some preprocessed information is stored in the knowledge
graph. This includes some parameter estimates, aggregated data, summary statistics, and associated raster metadata.

The procedure for adding data into the engine varies according to the data format (tables or linked data) and requires a new class to
be created. The class is responsible for accessing and managing data in both database systems. It includes specifications for storage,
conversion between formats, and analysis. A simple implementation would include the name and type of the attributes, the name
of the table (for the case of RDBMS), the node type, and incoming and outgoing relations between nodes (for graph-based datasets).
Detailed information on all these procedures is given in the supplementary materials: “Adding data in Biospytial”.

Graph traversals

As explained above, the knowledge graph is the totality of nodes and relationships stored in the database. Each node represents a
type (defined by a class) of data or a more abstract concept that generalizes certain sets of data. Each node has associated edges to
other nodes, as well as a list of attributes. In the example given in Fig. 2, the node is of type “Species” and one of its attributes is
“name” with the associated value P. mocinno.

The graph engine can search and extract information from the knowledge graph using recursive rules based on semantic pred-
icates. Typically, the search selects 1, or several, nodes and continues visiting (traversing) other connected nodes that match the
specified criteria until the relationship is exhausted or a depth threshold has been reached. The resulting selection of relationships
and nodes is a subgraph of the knowledge graph. We call this structure a “pattern,” and the set of rules that select a pattern is a
“graph traversal.”

Graph traversals can be translated into data matrices that can be analysed within the scope of model-based geostatistics [61] or
areal unit modelling in lattice systems using Gaussian Markov random fields [73–75]. Also, they can be analysed with network theory
to answer questions about resilience, connectedness, modularity, or invariants across scales. The objects are compatible with the
open source libraries for statistical inference and network analysis. Libraries already included in the engine are as follows: NetworkX
[76], StatsModels [77], and PyMC3 [78].

Complex queries
Our implementation enforces the use of “lazy evaluations,” in which the evaluation of an expression is delayed until the value is
needed and not performed directly upon the instantiation [79]. This helps in the creation of data primitives that can be composed into
higher level graph traversals without the need to load in all the data. The design allows the request on demand of partial evaluations
for a given traversal. This abstraction helps to explore, design, and automate the discovery of relevant patterns and structures. A
concrete example of this design is shown in the next section with the analysis of local taxonomic trees; when the tree object is
instantiated, it exists only as an abstract data container with no data requested to the database. As such, if an analyst is interested
in studying the different species of bats (Order: Chiroptera) within this tree, she will need only to consider the descendant (children)
nodes of the node Chiroptera of type Order (see Tutorial section for a practical example).

Some traversals are exclusive of certain node classes and, therefore, have associated special methods. This is the case for nodes
of type Cell, which include a method for extracting neighbouring cells. Fig. 3 shows an example of this where a selection of cells was
obtained first by requesting all the occurrences of the family Culicidae and then traversing through the associated cells and their
corresponding neighbours using the method getNeighbouringCells() twice.

Geospatial management and processing

The engine supports and processes geospatial information using the GDAL/OGR library [38]. The default coordinate reference system
(CRS) is the WGS84 with geographic coordinates. However, it is possible to use and reproject the data into any other CRS. This feature
is supported by the Proj4 library [40]. See Tutorial section for a concrete example of this.
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Escamilla Molgora et al. 7

Figure 3: A subgraph from the knowledge engine that shows the second-order degree of neighbouring cells where ≥1 occurrence of any type of mosquito (family
Culicidae) was registered. This query exemplifies the use of recursive lookups. In this case the relationship “IS NEIGHBOUR OF” is traversed twice.

Vector data
Vector data are represented with tabular data structures. These tables should include the following information: ≥1 column with a
unique identifier (ID) for each record, 1 column for each type of feature, and ≥1 geographic column to represent the geometric shape of
each record. The available geometric types are points, multiple points, polylines, multiple polylines, polygons, and multiple polygons.
Each type of dataset corresponds to both a vector layer and a table in the RDBMS. A mapping between the table structure and the
engine needs to be created in the same way as described in engine’s specification section. For large datasets the engine uses indexing
methods for optimal performance on accessing and querying the data. Additional information is provided in the supplementary
material: “Adding data in Biospytial - Vector data”.

Raster data
Raster data are represented as a table stored in the RDBMS together with its corresponding metadata. The table has 3 columns: a
primary key (ID), a binary large object (BLOB) data type (encoding a stack of matrices) that represents a multiband image, and a
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8 Biospytial: spatial graph-based computing for ecological Big Data

Figure 4: Raster manipulation in the knowledge engine. (a) A multipolygon selection corresponding to Mexico, an instance from the class Country that maps into the
WorldBorders dataset. (b) An Elevation object (class RasterData) instantiated with a customized polygon, in this case a subregion of the object Mexico. (c–e) RasterData
objects derived from the Elevation object. The data and visualizations were produced using the engine’s raster API .

reference to a file where the metadata are stored. The metadata includes projection type, affine parameters, datatype for entries
(binary, integer, float), and other information related to provenance.

Ingesting raster data into the engine involves 2 steps: (i) the dataset is partitioned into regular tiles, and (ii) each tile is converted
into a BLOB string and inserted into the table. Data ingestion scripts can be found in the supplementary materials: “Adding data in
Biospytial - Add raster data”.

The object mapping design is used to specify the definition of a RasterData type and its associated operations. The implemented
class includes methods for clipping, downscaling, aggregating, exporting to image formats (Geotif and PNG), visualizing, intersecting
vector data, extracting metadata, and conversion to arrays. An extended class for Digital Elevation Models (DEM) is also implemented
to generate on-the-fly aspect, slope, and shaded relief (Fig. 4), without requiring the datasets (derived DEM products) to be stored
directly in memory.

On instantiation, a RasterData object requires the definition of a boundary object passed as argument. This object should be
a polygon type django.gis.contrib.GEOS.Polygon or a text string defining a polygon in the Well Known Text (WKT) format. The
resulting selection can be transformed to a dataframe or n-array for statistical modelling. As in the other data structures, whenever
a new raster model is added a new model class should be included (see Supplementary Materials: “Adding data in Biospytial - Add
Raster data”).

Using Biospytial to Analyse the Tree of Life

In this section we propose a process for integrating spatiotemporal data together with graph traversals to represent tree structures
using taxonomic and topological relationships within the knowledge engine. The graph traversals use biodiversity occurrences and
environmental data to build complex structures to analyse, visualize, and characterize biological occurrences in different forms. The
structure restricted to the taxonomic classification is an acyclic graph (tree) in which all the species occurrences constitute leaf nodes.
We call this structure the ToL and propose a set of graph traversals to retrieve subsets of the ToL constrained to arbitrary taxonomic
groups, spatial regions, or temporal ranges. Several class definitions for handling taxonomic trees are implemented, making it possible
to automate tasks for unveiling patterns. For a detailed definition of terms and computational structures see supplementary materials:
“Mathematical formalisms”.
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Escamilla Molgora et al. 9

Study area

The study site selected was restricted to Mexico because (i) Mexico is on the list of megadiverse countries [80,81]; (ii) the territory
contains a diverse range of the world’s climatic regions [82,83]; and (iii) the country has policies for publishing open environmental
data, including centralized repositories of curated data related to biodiversity, conservation, ecosystem services, land cover, and
satellite sensor imagery [84]. The data in the study area provide a concrete example of the engine’s capabilities.

Data used

The species occurrences were obtained from a snapshot taken from the global GBIF database in September 2016 [13]. The data were
filtered to only include the occurrences located within the borders of Mexico. The total number of occurrences is 3,242,746 distributed
in 54,828 species, 10,781 genera, 2,300 families, 543 orders, 113 classes, and 42 phyla, with acquisition years ranging from 1819 to
2016. The taxonomic classification was taken from the GBIF Taxonomy Backbone [50]. Each occurrence record has information of
species name, location (point coordinates in WGS84), and acquisition date, and represents the observed presence of a certain species;
therefore, it is entirely based on presence-only records.

The DEM ”ETOPO1 1 Arc-Minute Global Relief Model” [85] was used at a spatial resolution of 1 minute. Precipitation, temperature
(maximum, mean, and minimum), solar radiation, wind speed, and vapor pressure were obtained from the World Climatic Data
WorldClim version 2 dataset [86]. Each variable is a 12-band raster model with 1 km2 spatial resolution that aggregates monthly
average values from the years 1970 to 2000 per month, each band corresponding to 1 month. The data license for WorldClim restricts
the redistribution of the data. Therefore, users need to download it and import it into the engine via an automated script:

raster api.bash raster tools.migrateToPostgis.bash

The engine includes functions for generating grid systems at different spatial resolutions. When the grid system is created it
stores a vector representation in the RGU and a network representation in the GSPU. The functions for generating the grid systems
are located in the library mesh.tools.py.

Traversals on the knowledge graph

The taxonomic tree structure was built with the relation IS PARENT OF (conversely, Has Children) following the taxonomic classifi-
cation of the occurrence data and the GBIF Backbone Taxonomy [50]. Each occurrence had a location attribute matched with envi-
ronmental data (e.g., elevation or WorldClim) using a point-in-polygon query to the RGU. The spatial structure was built using the
relations IS IN and IS CONTAINED IN in accordance with topological relationships based on the DE-9IM model [87,88] (standardized
by [89]).

The main traversal structure is defined in the TreeNeo class. Each instance comprises an area defined by a spatial polygon and a
list of occurrences contained on it. The graph traversal was built recursively using the systematic classification of organisms, starting
from the GBIF occurrences as leaf nodes and progressing through the parent nodes until the traversal reaches the node with no
parent. That is, it begins at the species level and finalizes in the root node. At each step, the algorithm fetches the available nodes and
groups them by their corresponding parent node, generating a set of parent nodes and their associated children. Each of these duples
(parent, children) are incorporated into a LocalTree object that parses the relevant information into several attributes. This process
is applied recursively on each derived parent node of the previous step. The recursion is terminated when the set of parent nodes is
empty, generating the desired tree data structure. When this happens the LocalTree object is wrapped into a TreeNeo instance that
extends some additional methods such as manipulating and querying trees, nodes, and multiple taxonomic groups as well as graph
analysis and exportation to common exchange formats (e.g., graphml, data frames, png, geotif, or shapefiles). In addition, all the
spatial structures were implemented with Open Source Geospatial (OSGEO) standards [90] to facilitate migration to other languages
and platforms. A visualization of this traversal is shown in Fig. 5.

Worked Examples

This section is a case study for analysing the frequency of coexistent taxonomic groups in the entire available dataset restricted to
arbitrarily chosen branches of the ToL, included in a list of threatened species. These types of analyses are important in conservation
studies, where the characterization of umbrella (or other surrogate) species constitutes the basis for protecting a significant number
of associated species [91,92]. To account for this effect, we chose the jaguar (Panthera onca) as the species of interest. This is due to
its preference for undisturbed ecosystems [93] and its wide geographic required range: 181 ± 4 km2 for females and 431 ± 152 km2

males [94].

Additional data used

We use the International Union for Conservation of Nature Red List of Threatened Species (Red List) [95] in Mexico to account for the
proportion of species (critically endangered, endangered, or vulnerable) associated with the presence of jaguars. For aggregating the
data into taxonomic trees (i.e., TreeNeo objects), as well as for extracting their corresponding environmental covariates, we used a
0.05◦ (∼5 km) resolution grid intersected with the terrestrial regions of Mexico and Central America. The grid used is included in the
default installation of the engine, and therefore, all the analysis performed in this example is reproducible.
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10 Biospytial: spatial graph-based computing for ecological Big Data

Figure 5: A visualization of a local taxonomic tree built with the relationship IS PARENT OF. The rectangles show zoomed-in areas in different sections of the tree (upper
region for birds [Order Aves], lower for plants [Order Magnoliopsida]). Colored nodes indicate distinct taxonomic levels (red: species; yellow: genera; grey: families;

green: orders; purple: classes).

Methodology

We first obtain the grid cells with ≥1 occurrence of jaguar. Because these cells are Cell objects, it is possible to extract associated
neighbouring cells using the method getNeighbours. We can apply the same method recursively 4 times to obtain a list of neigh-
bouring cells within a 4-degree neighbourhood. For each cell, we obtain the local taxonomic tree. The resulting trees are merged into
a single tree that contains the union of all the nodes of all the local trees. Therefore, the aggregated tree contains all the known
co-occurrences of jaguar in a neighbourhood of degree 4. The resulting tree is filtered to select only the nodes that match the Red List
of threatened species. A new tree object is created using the selected nodes, an operation known as “trimming.”

To provide an estimate of which nodes co-occur more often with jaguars, we rank all the nodes in the merged tree using the
frequency of presence of each node at each neighbouring cell. To show the raster querying capabilities, we contrast these results with
the environmental ranges of the following: jaguars, threatened species, and the entire country using the raster api module. Finally,
we provide methods for interactive visualizations of the extracted spatial data and the network structure.

Results of the worked example

The taxonomic analysis revealed that the most abundant families across all neighbouring cells were Muridae (rodents, 29%), Phyllosto-
midae (a family of bats, 23%), and Cervidae (deers, 15%) for the case of mammals. For parrots (Order Psittaciformes) the most frequent
species was Ara militaris (military macaws, 2%) and several species of the genus Amazona, accounting for 16% in total. Although the
order Psittaciformes was abundant (23%) in the group of vertebrates, the most abundant taxon (A. militaris) only co-occurred 2% of
the time with the jaguar’s neighbouring cells. This result shows the great diversity of species within the group of parrots. This is con-
sistent with natural history records, where these species have been reported to inhabit humid forests, wooded foothills, and canyons
in elevation ranges between 500 and 1,500 m above sea level [96].

The same analysis applied to plants showed that the most abundant genera and species were the epiphyte Tillandsia (19%), Cous-
sapoa oligocephala (6%), Pouteria (several species, 9%), Cedrela odorata (3%), which are tropical trees, and other trees not typical from
tropical rain forests such as Oreopanax (9%) and Quercus (6%). Longer lists of the most abundant taxa detailed in the worked example
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Escamilla Molgora et al. 11

Figure 6: Comparison of mean annual environmental ranges between treatments: all Mexico, threatened taxa, and cells with occurrences of jaguars using violin plots.

White dots indicate medians, black bars the interquartile range and stretched black lines lower and upper adjacent values.

as well as their interactive version in the Jupyter notebook are provided in the file examples/Official Demo Co-occurrences.ipynb

located in the Biospytial repository. A visualization of the threatened taxa tree is shown in Fig. 9 for kingdoms, phyla, classes, and
orders.

From an environmental perspective there is a clear concordance between jaguars’ habitat and threatened taxa, when compared
to all Mexico, for mean temperature (Fig. 6a), annual rainfall (Fig. 6b), and wind speed (Fig. 6d). In fact, threatened species and jaguars
show environmental modalities distinct from all Mexico. To create the plots we used the Seaborn library [97]. Detailing the process for
creating these graphs is out of the scope of the present tutorial. However, the snippet has been included in the interactive notebook.

Tutorial

The time for executing the following example varies considerably depending on the group of interest, the size of the neighbourhood,
and the computer platform. A quick workaround to speed up the processes is to reduce the number of neighbouring cells (order of
the neighbourhood). For example using a degree of 1.

A reproducible version of this tutorial is included in the Biospytial source code (inside the folder examples/) in an interactive
Jupyter notebook file named :

Official Demo Co-occurrences jaguar.ipynb

The following section is a static version and is subject to minor modifications to fit the layout and format of this version.

Selecting the node “Jaguar”

We begin by selecting the node in the ToL corresponding to the genus Panthera. This node is linked to some Species and Family type
nodes and also has links to Occurrence nodes, where the information of location and time is stored. To start the traversal we need
to first select this node. To do so we use the function pickNode using the following syntax:

pickNode(<Type of Node>,’name of the node’)

In the next example we see how to load the pickNode function and the appropriate node class (in this case Genus).
from drivers.graph models import Genus, pickNode

jaguars = pickNode(Genus,’’Panthera’’)

The variable “jaguars” is now an instance of the class Genus. As such, it has associated attributes and methods. Its string repre-
sentation is the following:
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12 Biospytial: spatial graph-based computing for ecological Big Data

jaguars: <TreeNode type: Genus id = 2435194 name: Panthera>

We proceed to traverse through all the cells where any occurrence of the Panthera genus was registered. To do so we call the
attribute “cells.” This attribute is abstracted with lazy evaluation. To fetch all the associated data we need to convert the object into
a list (or a partial list using an iterator).

cells = list(jaguars.cells)

print(’’cells has %s elements’’%len(cells))

cells has 62 elements

The resulting list has cell instances, each one connected to other cells by the relation ”IS NEIGHBOUR OF”. Accessing their related
cells is achieved by the method:

cell.getNeighbours(with center=[Boolean],order=[Int])
where the parameter with center returns the center of the neighbourhood, and the parameter order the size (in number of cells)

of the neighbourhood (this value can be reduced to 1 for faster computation). In our case, we apply this method for each cell using a
map function with a lambda expression.

neighbours = map(lambda cell:

cell.getNeighbours(with center=True,order=4),
cells)

“Lambda expressions” are part of Python [98] and are used to create anonymous functions. The “map-lambda” technique allows
the definition of statements that are applied to all the elements of a list, returning a new list of objects obtained by evaluating the
lambda expression on every element of the given list. Along this tutorial, the map-lambda technique is frequently used. Whenever
this expression comes it is recommended to read the form:

map(lambda x: <something involving x> , some list)

as, ”“for all x in some list, do something involving x”. In the example above, the object neighbours is a list of neighbouring cells
obtained from the method getNeighbours , available on each cell instance (i.e., each element of the cells list).

Because this list is composed of list-type elements (i.e., it is a nested list), we need to reduce it into a single list composed of only
cell instances, a process known as flattening. To do this simply reduce the list as follows.

# the + operator between 2 list instances merges them together.

neighbours = reduce(lambda list a , list b: list a + list b, neighbours)

The “reduce” function is a Python standard function that receives a 2-parameter function (in this case a lambda expression re-
ceiving parameters list a and list b) and the nested list neighbours. The reduce function applies the lambda expression to the first
pair of elements of the list and iteratively applies the result to the next element. As the sum operation between lists (+) merges the
elements of both lists into a single list, performing this operation across the entire nested list neighbours results in a flattened list.

The resulting neighbours list now has 2,497 Cell nodes. In the current implementation the name of the Grid (where all the Cells
are contained) is called “mex4km”. We can display the first 3 elements as:

neighbours[:3]

[< Cell-mex4km id = 234686 >,

< Cell-mex4km id = 234685 >,

< Cell-mex4km id = 234684 >]

Converting cells to local taxonomic trees

We obtain the ToL inside each Cell node by extracting the occurrences inside each cell (using the method occurrencesHere) and
plugging them into the TreeNeo constructor. The name “TreeNeo” is used because the storage backend is the Neo4j graph database.

from drivers.tree builder import TreeNeo

cell 1 = neighbours[1]

tree 1 = TreeNeo(cell 1.occurrencesHere())

print(tree 1)

<LocalTree Of Life | Root: LUCA - n.count: 1062- >

The n.count value indicates the number of total occurrences. We can generate all the trees iteratively using a mapping from the
TreeNeo(cell.occurrencesHere()) through all neighbouring cells. This may take some time depending on the number of cells and
occurrences on each cell. For reducing this time see subsection: “Selecting the node Jaguar”.

sample trees = map(lambda cell: TreeNeo(cell.occurrencesHere()),neighbours)

As in the last example, we can see such basic information as object description. Here the first 4 elements are shown.
sample trees[:4]

[<LocalTree Of Life | Root: LUCA - n.count: 3- >,

<LocalTree Of Life | Root: LUCA - n.count: 1062- >,

<LocalTree Of Life | Root: LUCA - n.count: 151- >,

<LocalTree Of Life | No record available: - n.count: 0- >]

The value n.count indicates the number of occurrences found for the present node. It is possible to have empty trees, when no
occurrences were found. This is shown with the text No record available.

Exploratory analysis on a single tree

We select a tree in this example and explore informative data.
tree = sample trees[1]
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Escamilla Molgora et al. 13

The object tree wraps the entire tree structure. All tree objects have as their starting node the root of the Taxonomic Tree,
representing all known life.

root = tree.node

root node is similar to Family node, Genus node, etc. They all belong to the class TreeNode. We can access a specific child node
with the prefix to [name of taxon].

For example, accessing the node ”Animalia” can be done as follows:
animalia = root.to Animalia

print(animalia)

<LocalTree | Kingdom: Animalia - n.count: 742- | AF: 0.05>

Traverse by child nodes
We can concatenate this method until the children attribute is empty. If running Biospytial in an interactive session (like a Jupyter
notebook or iPython), we can use the key [TAB] to autocomplete and show the available nodes. For example, the family of rodents
Muridae:

print(root.to Animalia.to Chordata.to Mammalia.to Rodentia.to Muridae)
<LocalTree | Family: Muridae - n.count: 34- | AF: 0.05>

Tree traversal by taxonomic level
The taxonomic levels (e.g., families, orders) are stored as attributes of the TreeNeo class. For example, to see the available phyla in
this tree do the following:

print(tree.phyla)

[<LocalTree | Phylum: Chordata - n.count: 740- | AF: 0.05 >,

<LocalTree | Phylum: Arthropoda - n.count: 2- | AF: 0.05 >,

<LocalTree | Phylum: Bryophyta - n.count: 99- | AF: 0.05 >,

<LocalTree | Phylum: Magnoliophyta - n.count: 175- | AF: 0.05 >,

<LocalTree | Phylum: Mycetozoa - n.count: 46- | AF: 0.05 >]

and for some families inside this tree:
print(tree.families[:5]

[<LocalTree | Family: Menispermaceae - n.count: 3- | AF: 0.05 >,

<LocalTree | Family: Piperaceae - n.count: 7- | AF: 0.05 >,

<LocalTree | Family: Lauraceae - n.count: 2- | AF: 0.05 >,

<LocalTree | Family: Acanthaceae - n.count: 7- | AF: 0.05 >,

<LocalTree | Family: Plantaginaceae - n.count: 1- | AF: 0.05 >]

Tree operations

Tree objects allow symbolic operations for adding (merging) and intersecting other tree objects. These operations are currently im-
plemented as sum (+) and intersection (&). These operations can be applied to an arbitrary number of trees, and they are useful
in comparative studies that require the calculus of (α, β, γ )-diversity using a combination of these operations [99]. Mathematically,
these operations are equivalent to set operations acting at the occurrence level. As an example consider the following: let t1 and t2

be 2 trees from the list of sampled trees, i.e.,
t1 = sample trees[1]

t2 = sample trees[2]

Addition
Adding trees is equivalent to merging them. That is, performingunion of all the nodes (internodes and leaves). The tree objects
(TreeNode and TreeNeo classes) allow the use of the + operation. For example, the merged tree of t1 and t2 is obtained as follows:

t3 = t1 + t2

We can see the effect of this by selecting the nodes of a certain taxonomic level, e.g., the classes of t1 and t2 are as follows:
print(t1.classes)

[<LocalTree | Class: Myxomycetes - n.count: 46- | AF: 0.05 >,

<LocalTree | Class: Bryopsida - n.count: 99- | AF: 0.05 >,

<LocalTree | Class: Amphibia - n.count: 1- | AF: 0.05 >,

<LocalTree | Class: Aves - n.count: 667- | AF: 0.05 >,

<LocalTree | Class: Reptilia - n.count: 2- | AF: 0.05 >,

<LocalTree | Class: Mammalia - n.count: 70- | AF: 0.05 >,

<LocalTree | Class: Liliopsida - n.count: 36- | AF: 0.05 >,

<LocalTree | Class: Magnoliopsida - n.count: 139- | AF: 0.05 >,

<LocalTree | Class: Insecta - n.count: 2- | AF: 0.05 >]

print(t2.classes)

[<LocalTree | Class: Protosteliomycetes - n.count: 2- | AF: 0.05 >,

<LocalTree | Class: Myxomycetes - n.count: 112- | AF: 0.05 >,

<LocalTree | Class: Agaricomycetes - n.count: 4- | AF: 0.05 >,

<LocalTree | Class: Liliopsida - n.count: 8- | AF: 0.05 >,
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14 Biospytial: spatial graph-based computing for ecological Big Data

<LocalTree | Class: Magnoliopsida - n.count: 25- | AF: 0.05 >]

print(t3.classes)

[<LocalTree | Class: Protosteliomycetes - n.count: 2- | AF: 0.05 >,

<LocalTree | Class: Myxomycetes - n.count: 158- | AF: 0.05 >,

<LocalTree | Class: Agaricomycetes - n.count: 4- | AF: 0.05 >,

<LocalTree | Class: Bryopsida - n.count: 99- | AF: 0.05 >,

<LocalTree | Class: Amphibia - n.count: 1- | AF: 0.05 >,

<LocalTree | Class: Aves - n.count: 667- | AF: 0.05 >,

<LocalTree | Class: Reptilia - n.count: 2- | AF: 0.05 >,

<LocalTree | Class: Mammalia - n.count: 70- | AF: 0.05 >,

<LocalTree | Class: Liliopsida - n.count: 44- | AF: 0.05 >,

<LocalTree | Class: Magnoliopsida - n.count: 164- | AF: 0.05 >,

<LocalTree | Class: Insecta - n.count: 2- | AF: 0.05 >]

Intersection
Intersection is applied through the & operation, and it is equivalent to the intersection of sets applied only to the leaf nodes, i.e., the
“Occurrence” nodes. Once the leaf nodes are selected, the algorithm propagates through the parent nodes until it reaches the root
node. The formalization of the data structure is presented in the supplementary materials: “Mathematical formalisms”. To obtain
the intersection of 2 trees do the following:

t = t1 & t2

print(t)

<LocalTree Of Life | No record available: - n.count: 0- >

In this case, the intersection is empty because the Occurrences are overlaid in a regular lattice that partitions the space (i.e., the
cells are disjoint). See supplementary materials: “Mathematical formalisms” for a formal definition.

Efficient addition of trees from a list of cells
We can use the sum iteratively in a folding sum to obtain a Tree object representing all the areas defined in a list of Cells.

big tree = reduce(lambda a , b: a+b , sample trees)

However, this method is not efficient. In each step, a new tree is created and the internal logic to generate the union of all the
intermediate nodes can result in redundant calculations. It is much faster to select first the occurrences for all the trees inside a list
and then plug them into the TreeNeo constructor, as in the example below.

# Faster version

ocs = map(lambda s: s.occurrences,sample trees)

## ocs is a nested list.

## We need to flatten this into a single list of occurrences

ocs = reduce(lambda a,b: a + b, ocs)

big tree = TreeNeo(ocs)

print(big tree)

<LocalTree Of Life | Root: LUCA - n.count: 374731- >

The resulting tree could be very large. In this case, the obtained tree (big tree) comprises 374,731 occurrences. Remember that
this tree is the resulting union of all the local taxonomic trees obtained from the neighbourhood of degree 4 around the cells where
jaguars occurred.

Selecting nodes from the Red List

We filter the “Species” nodes from the big tree that are present in the Red List of threatened species. To do this we simply match the
names using regular expressions. Using more sophisticated methods for data matching is out of the scope of the present example.
We assume that the Red List data (a CSV file) have been loaded into a data frame with the name redlist.

## Filter critically endangered species

critical sps = redlist[

(redlist.redlistCategory == ’Critically Endangered’)

| (redlist.redlistCategory == ’Endangered’)

| (redlist.redlistCategory == ’Vulnerable’)

].scientificName.apply(str.lower)

protected by jaguar = map(lambda critical sp:

filter(lambda sp: critical sp in sp.name.lower(),

big tree.species),

critical sps)

## Remove empty lists

protected by jaguar = filter(lambda l:

l != [], protected by jaguar)

## flatten lists
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Escamilla Molgora et al. 15

threatened species = reduce(lambda a,b: a + b ,protected by jaguar)

## remove species repetitions

threatened species = list(set(threatened species))

## Extract all corresponding occurrences and flatten list

t ocs = reduce(lambda l1,l2: l1 + l2 ,

map(lambda l: l.occurrences, threatened species))

## Instantiate new tree

threatened tree = TreeNeo(t ocs)

The threatened tree is now a taxonomic tree that includes only the occurrences that match the species names of the Red List.
To calculate the percentage of threatened species contained in the selected tree we can do the following:

## total number of critical endangered species

ncrit = len(critical sps)

len(threatened tree.species) / float(ncrit) ∗ 100

13.49 %

That is, 13.49% of the threatened species are contained in the neighbouring regions where jaguars had been registered. To see
whether this result is relevant, we calculate the percentage of the covered area with respect to the whole country. Before doing so, it
is convenient to transform the selected geometries in a projected coordinate system with metric units.

Reprojecting data
The default CRS in the data used is in geographic coordinates with WGS84 datum (EPSG:4326). The units of this CRS are degrees;
therefore, the calculated area is defined in squared degrees. To account for areas and distances in metres (or kilometres) we need
to project the selected geometries into an appropriate projected coordinate system. To achieve this, we need to import some extra
functions.

from shapely.ops import transform

from shapely import wkt,wkb

import pyproj

from functools import partial

Here we used the Alberts equal area conic projection to account for an accurate area representation. This projection is specified
in a string using the Proj4 syntax.

projection string = ’’’’’’+proj=aea +lat 1=14.5 +lat 2=32.5 +lat 0=24
+lon 0=-105 +x 0=0 +y 0=0 +ellps=GRS80
+datum=NAD83 +units=m +no defs;

’’’’’’

mex eq area proj = pyproj.Proj(projection string)

## The WGS84 crs is defined as EPSG:4326

proj in = pyproj.Proj(init=’epsg:4326’)
## function to project using the parameters of the

## original projection and the mexican equal area.

project = partial(

pyproj.transform,

proj in,

mex eq area proj)

## Transform all cells to calculate area.

projected neighbours cells = map(lambda cell:

transform(project,

cell.polygon shapely),

neighbours)

To calculate the average cell size and the total area in square kilometers (1,000,000 m2) we do as follows:
tokm2 = 1000000 # to convert to sq. kilometers

areas = map(lambda cell: cell.area,

projected neighbours cells)

total cell area = sum(areas)

## calculate the mean

np.mean(areas) / tokm2

## standard deviation

np.std(areas)/ tokm2

The calculated average area of all cells is 27 ± 3 km2 and the total area is 8,509.81 km2.

Trimming trees

In certain situations we need to select a particular branch of a tree. We can cut (trim) this branch by simply selecting a node and
converting it into a TreeNeo instance to produce a full feature tree. The method (function) for converting a TreeNode into a full feature
tree is plantTreeNode. We focus our attention on 4 branches of the threatened tree that co-occur with the presence of jaguars. These
branches are mammals (class Mammalia), parrots (order Psittaciformes), amphibians (class Amphibia), and plants (kingdom Plantae).
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Select the branch of interest
Trimming the tree is achieved by first selecting the nodes of interest and then converting all the descendant branches into fully
featured trees. There is no restriction for selecting the taxonomic type of the node (mammals and amphibians are Class type while
parrots are Order type).

mammals = threatened tree.to Animalia.to Chordata.to Mammalia

parrots = threatened tree.to Animalia.to Chordata.to Aves.to Psittaciformes

amphibians = threatened tree.to Animalia.to Chordata.to Amphibia

plants = threatened tree.to Plantae

The method plantTreeNode() converts the TreeNode and resulting descendants into a full featured tree (TreeNeo object).
mammals = mammals.plantTreeNode()

birds = birds.plantTreeNode()

amphibians = amphibians.plantTreeNode()

plants = plants.plantTreeNode()

We can add all these trees together using the sum operation.
vertebrates = mammals + parrots + amphibians

However, as explained earlier, an optimized version for summing >2 trees is achieved by instantiating a TreeNeo with all the
occurrences.

vertebrates = TreeNeo(mammals.occurrences +
parrots.occurrences +
amphibians.occurrences)

print(vertebrates)

The total number of occurrences contained in the vertebrates tree is:
<LocalTree Of Life | Root: LUCA - n.count: 2056- >

Ranking the most frequent nodes in the selected list of cells
We proceed now to rank some groups according to their frequency of occurrence within the cells of the study area (i.e., the
jaguar’s neighbouring cells). The ranking analysis calculates this frequency for each node in a tree given a referential list of trees.
That is, assuming that we have n different trees (e.g., 1 per cell) and a tree of interest (in this case threatened tree), how fre-
quently does each node appear in the global tree (e.g., threatened trees) with respect to the list of n trees? Fig. 9 shows these
frequencies visualized as the size of each node. In our implementation, this analysis is performed with the following method:
countNodesFrequenciesOnList(list of trees). That is,

vertebrates.countNodesFrequenciesOnList(list of trees=sample trees)

mammals.countNodesFrequenciesOnList(list of trees=sample trees)

parrots.countNodesFrequenciesOnList(list of trees=sample trees)

amphibians.countNodesFrequenciesOnList(list of trees=sample trees)

plants.countNodesFrequenciesOnList(list of trees=sample trees)

We can therefore rank by taxonomic level. In this example we show the procedure for family and species level in the different
branches. Here, we show the corresponding top 5 nodes.

mammals.rankLevels()

mammals.families[:5]

[<LocalTree | Family: Muridae - n.count: 8 | AF: 0.30>,

<LocalTree | Family: Phyllostomidae - n.count: 8 | AF: 0.29>,

<LocalTree | Family: Cervidae - n.count: 14 | AF: 0.16>,

<LocalTree | Family: Heteromyidae - n.count: 3 | AF: 0.15>,

<LocalTree | Family: Tayassuidae - n.count: 158

| AF: 0.15>]

parrots.rankLevels()

parrots.species[:5]

[<LocalTree | Specie: Ara militaris (Linnaeus, 1766) - n.count: 27->,

<LocalTree | Specie: Amazona finschi (P. L. Sclater, 1864) - n.count: 23- >,

<LocalTree | Specie: Amazona auropalliata (Lesson, 1842) - n.count: 3- >,

<LocalTree | Specie: Amazona oratrix Ridgway, 1887 - n.count: 2- >,

amphibians.rankLevels()

amphibians.families[:3]

[<LocalTree | Family: Hylidae - n.count: 128- | AF: 0.083>,

<LocalTree | Family: Plethodontidae - n.count:

160 | AF: 0.05>,

<LocalTree | Family: Eleutherodactylidae -

n.count: 1- | AF: 0.016>]

plants.rankLevels()

plants.genera[:3]

[<LocalTree | Genus: Tillandsia - n.count: 3- | AF: 0.2>,

<LocalTree | Genus: Lonchocarpus - n.count: 5- | AF: 0.18>,

<LocalTree | Genus: Eugenia - n.count: 1- | AF: 0.15>]
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Table 2: Output for environmental variables

MinTemperature Precipitation Vapor SolarRadiation WindSpeed

0 22.25 21.16 1.33 16,466.25 2.33

Here showing only mean values for some variables on a single record.

Associated raster (environmental) information

Here, we demonstrate how to access raster data associated with a taxonomic tree TreeNeo. The raster data used are related to en-
vironmental variables stored in the RGU. Currently there are 2 forms for accessing this information: (i) as a table with columns
corresponding to environmental variables and rows defined by each occurrence (a point-based method) and (ii) as a raster object
sampled from the associated geometry of each tree or, in general, any (multi) polygon object. The raster object features methods for
visualization, geoprocessing, and data exchange.

Extracting raster information as table
To extract the data in this format use the method (function):

TreeNeo.associatedData.getEnvironmentalVariablesPoints()

The output is a Pandas dataframe with the associated values of climatic covariates. See the following example:
table = vertebrates.associatedData.getEnvironmentalVariablesPoints()

print(table[:1])

Here we only show the first record.
The geometric object of each tree is determined by the Occurrence nodes of the tree. In the graph database, each Occurrence

node is linked to the Cell node that geographically contains the occurrence’s location. One of the attributes of the Cell object is the
geographic polygon that defines its border. The union of all the corresponding Cell nodes is what determines the geometric feature
of the tree TreeNeo. As such, the raster extraction process is performed on each of the tree’s associated cells.

Extracting raster objects from TreeNeo instances
To extract the associated raster object of a TreeNeo instance use the following method (function):

TreeNeo.associatedData.getAssociatedRasterAreaData([name of variable])

To obtain several environmental variables use associatedData.getEnvironmentalVariablesCells()

For example, information for a single variable can be obtained with
meantemp data = vertebrates.associatedData.

getAssociatedRasterAreaData(

’MeanTemperature’)

The raster object is automatically added to the TreeNeo object after the method is called. The raster objects are appended to the
attribute associatedData.

Extracting raster objects from arbitrary polygons

The extraction of raster objects is performed by the raster api library, a Biospytial module for reading, writing, and processing raster
objects using the RGU as back end.

The raster api can use natively any object stored in the knowledge engine that has at least a 2D geometric feature (attribute). This
includes the basic operations for querying, reading, and writing. For using external geometric objects such as Shapefiles, GeoPackages,
or GeoJSON, the objects need to be transformed to their corresponding WKT or WKB (Well Known Binary) representation. Examples
of these are described extensively in the Jupyter notebooks and in the documentation.

In this example we use the polygon defined by the border of Mexico to extract several raster objects (RasterData instances) using
the raster api module. We use these objects to compare the environmental ranges of the threatened species, the jaguars’ habitat, and
the entire area of the country to conclude whether the environmental niches of the threated species are covered by the habitat of the
jaguars and how these ranges are different with respect to the whole country.

Importing the polygon for Mexico
The first step in this is to import the polygon for Mexico. The default installation of Biospytial includes the WorldBorders dataset
[100]. Assuming that this dataset is installed, we can import the polygon of Mexico with the API provided by the class Country located
in sketches.models. Country is a vector dataset stored in the RDBMS. The geometric feature is stored as the geom column.

from sketches.models import Country

## The syntax follows the Django Query Set API

mexico = Country.objects.filter(name=’Mexico’).first()
mex area = mexico.geom.area

## For reprojecting the area of Mexico we similarly do:

mex shapely = wkt.loads(mexico.geom.wkt)

mex projected= transform(project,mex shapely)

To calculate the percentage of area covered by all the cells with respect with the total area of Mexico we can do
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18 Biospytial: spatial graph-based computing for ecological Big Data

Figure 7: The output of the method display field(), an easy way to visualize RasterData objects.

total cell area / mex projected.area ∗ 100

3.42%

For example, we can display simple visualizations invoking the method display field(). See Fig. 7.
vertebrates.associatedData.raster MeanTemperature.display field()

Interactive visualization
As an alternative, we can export the raster object as an xarray [101] instance for interactive visualization using the Geoviews [102]
package. To export the associated raster data to an xarray object do the following:

meantemp = vertebrates.associatedData.raster MeanTemperature.to xarray()

The following code gives an example of how to generate an interactive visualization using the vertebrates’ associated mean tem-
perature data and the locations of the observed threatened species associated with the presence of jaguars. We used the elevation
data for Mexico (extracted before) as base map. Fig. 8 shows this visualization at 2 different scales.

import geoviews as gv

from cartopy import crs

import geoviews.feature as gf

from geoviews import opts

gv.extension(’bokeh’)

sample pt = gv.Points((env threated occurrences.x,env threated occurrences.y),

label=’ocurrences’).opts(
fill color = ’orange’,

line color = ’black’,

line width = 0.5,

line alpha = 0.4,

fill alpha = 1.0,

size = 5,

)

elevation = all mex datasets[0].to xarray()
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Figure 8: A composite figure showing 2 states of the interactive visualization. Orange dots represent occurrences of threated species associated with the presence
of jaguars (P. onca). The inset shows the area inside the red square in the main map. The colored squares in the inset show the mean temperature associated with
threatened vertebrates (phylum Chordata). The base map shows the elevation for all of Mexico. See section: “Data Used” for more information.

elevds = gv.Dataset(elevation,crs=crs.PlateCarree())
elevimg = gvds.to(gv.Image,[’Longitude’,’Latitude’]

).opts(cmap=plt.cm.gist earth)

temp = meantemp.where(((meantemp.Longitude > -95) &

(meantemp.Longitude < -89) &

(meantemp.Latitude > 15) &

(meantemp.Latitude < 19)),

drop=True)

temp.name = meantemp.name

tempds = gv.Dataset(temp,crs=crs.PlateCarree())
tempimg = tempds.to(gv.Image,[’Longitude’,’Latitude’]).opts(cmap=plt.cm.magma)
## Display the map

map = (elevimg ∗ gf.ocean ∗ gf.coastline ∗ gf.borders ∗ tempimg ∗ sample pt )

Network visualization and analysis

Each tree instance induces an acyclic graph. We can convert the tree into a networkx object to visualize and analyse its network
properties. To do this, we simply need to use the method tree.toNetworkx(depth level=[k]), where k is the taxonomic level to
reach in the tree, 0 for root 7 for species level.
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20 Biospytial: spatial graph-based computing for ecological Big Data

Figure 9: A tree visualization for the merged tree corresponding to threatened taxa, showing up to order level. The size of the nodes is proportional to the taxonomic
level (the largest is the root of the tree, the smallest are orders). The node colouring indicates the frequency of occurrence with respect to all the neighbouring cells
(neighbours of jaguars), ranging from brighter to darker for higher and lower ranked, respectively.

Visualization
A method for interactive visualization has been developed using the Holoviews [103] framework. To do this we need to invoke the
following method:

## Plot the Tree

from drivers.tools import to interactivePlot

network = to interactivePlot(threatened tree,label depth=8)
The output is a dictionary with 2 key items: 1 for labels and the other for the actual graph (nodes and edges). To plot the whole

graph we need to overlay both items.
network[’labels’] ∗ network[’graph’]

Analysis with standard graph algorithms
The TreeNeo structures are particular cases of graph traversals. As such, they can be analysed with graph theoretic methods. The
library NetworkX [104] is a Python package designed for analysing the structure, dynamics, and functions of complex networks. It
includes standard graph algorithms and analysis measures as well as tools for import and export to other standard formats. We can
convert a TreeNeo using the method toNetworkx(depth level ), where depth level is the depth of the graph to be generated. In the
next example we convert the threatened tree to a NetworkX object and use this to calculate its corresponding adjacency matrix.

threatened graph = threatened tree.toNetworkx(depth level=7)
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Table 3: Corresponding URLs for source code and container images for the Biospytial engine.

Module name URL

Graph Storage and Processing Unit https://hub.docker.com/r/molgor/postgis biospytial
Biospytial Computing Engine https://hub.docker.com/r/molgor/biospytial
Relational Geoprocessing Unit https://hub.docker.com/r/molgor/neo4j biospytial
Source code https://github.com/molgor/biospytial
Data http://dx.doi.org/10.5524/100723

The modules and the source code do not include data. These should be installed separately or loaded independently.

from networkx import adjacency matrix

M = adjacency matrix(threatened graph)

# uncomment this to plot the matrix

#plt.imshow(M.todense())

Representing TreeNeo objects into NetworkX graphs brings new possibilities for analysis and modelling. We hope this example
will awaken the spirit of the reader to explore the potential of representing data as complex graph structures.

Conclusions

Biospytial uses open source standards to integrate geospatial ecological Big Data as a tool for ecological niche modelling and the anal-
ysis of species distributions. This integration creates a complex network of data with enormous potential for data mining, information
retrieval, and visualization. At the core, a web of semantic-wise relationships constitutes a corpus of taxonomic and environmen-
tal knowledge that opens up new ways to query and unveil complex ecological relations. To our knowledge, there is no other open
source system with the design and capacity to achieve this including (i) storing information in a hybrid relational-graph system and
(ii) performing geospatial processes in vector and raster scalable databases.

A practical example provided a glimpse into how to query and manipulate taxonomic tree structures, as well as how to extract
data, conduct frequency analysi,s and visualize results. The example demonstrated a new procedure to rank co-occurring taxonomic
groups in an arbitrary size neighbourhood of pixels.

The GBIF occurrence data include information only on location and taxonomy, and in this sense the data are limited. However,
the engine’s design allows the capture, extension, and exploration of a semantic interpretation of the data by adding other types of
relations. For example, linking information on trophic networks to the taxonomic backbone can help in analysing spatial patterns of
trophic groups and dependant species, a key question in conservation biology.

The development of Biospytial has followed best practices in scientific programming [105]. We recognize that spatial analyses are
often not generalizable and therefore replicable. However replicability and reproducibility can be enhanced by increasing openness
and documentation transparency and completeness [106–108]. In fact, Biospytial’s source code is open and can be accessed at [109]
while this article is Open Access. In the future, Biospytial can be further developed into a system not only for integration and dis-
tribution of datasets but also as a tool for collaboration, experimentation, validation, and reproduction of results in the era of Open
Science, satisfying also the requisites of second-generation SDI.

Availability of Supporting Source Code and Requirements� Project name: Biospytial� Project home page: https://github.com/molgor/biospytial� Operating System(s): Platform independent (not tested in Windows)� Other requirements: Docker 1.13 or higher� License: GNU General Public License version 3.0 (GPLv3)� Memory requirements: 40GB in HD for installing the database and ≥16 GB in RAM for running the example.� RRID:SCR 018226� biotools:biospytial

The current example is located inside the folder examples with the name [Official Demo] Co-occurrences Jaguar.ipynb. The
example has been modified only in the neighbourhood order, changing from 4 to 1. This modification reduces the data to process and
the executing time.

Availability of Supporting Data and Materials

Snapshots of our code and other supporting data are openly available in the GigaScience repository, GigaDB [110]. The container images
can be downloaded automatically using the script installEngine.sh. Instructions for installing and running the engine are located
in the project’s home page.

Additional Files

“Jupyter notebook for the tutorial section”: [Official Demo]Co-ocurrences Jaguar.ipynb
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“Supplementary materials I”: Adding data in Biospytial (pdf file)
“Supplementary materials II”: Mathematical formalisms (pdf file)
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