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Abstract

A pharmacokinetic-pharmacodynamic (PK-PD) approach is developed for modelling re-
current bleeding events in patients with severe haemophilia to investigate the relationship
between factor VIII plasma activity level and the instantaneous risk of a bleed. The model in-
corporates patient-level pharmacokinetic (PK) information obtained through measurements
taken prior to the study which are used to fit a non-linear mixed effects two-compartment
PK model. Dosing times within the study are combined with the PK model to provide the
estimated factor VIII plasma level for all patients, which is used as a time dependent covari-
ate within the recurrent events model. Methods are developed to correct the attenuation
in covariate effects that would otherwise arise due to the discrepancy between estimated
and true factor VIII. In contrast to existing methods proposed for such data, such as count
data regression or time-to-event analysis, the new method allows all the bleeding times to
be used to investigate the relationship between current factor VIII and risk of a bleed. The
performance of the proposed estimators are assessed via simulation and found to outperform
the naive estimator, which treats the estimated factor VIII levels as if they were measured
without error, both in terms of bias and mean squared error.

Disclaimer: This manuscript is currently under review and may undergo further revisions
before final publication.



1 Introduction

1.1 Background

Patients with haemophilia suffer recurrent bleeding events due to deficiency of factor VIII (FVIII)
clotting agent in their blood. An established treatment for the prevention or reduction in oc-
currence of bleeds is through regular administration of FVIII into the blood. It is known that
patients whose natural level of FVIII is higher than 1 IU/dL have fewer spontaneous bleed events
(den Uijl, Fisher et al., 2011). This has led to treatments which aim to set the dosage and dosing
interval in order to keep the minimum, or trough, level of plasma FVIII above 1 TU/dL. After
an intravenous infusion, FVIII activity levels peak immediately and then rapidly decrease over
time. The volume of the blood which is completely cleared of FVIII per unit time by means of
an elimination process (clearance) of FVIII varies considerably between individuals and hence
there is potential benefit in using individual pharmacokinetic (PK) data to determine the dosing
regimen (Gringeri et al., 2005; McEneny-King et al., 2016). However, there is limited evidence
for whether 1 IU/dL is indeed the optimal target value.

Within clinical drug-development there are two broad approaches taken to assist decision
making; exposure-response analysis, which seeks to model the relationship between a summary
variable (e.g. area under the curve) and a clinical endpoint (e.g. total number of bleeds), and
pharmacokinetic/pharmacodynamic (PK/PD) modelling where the concentration timecourse is
linked directly to the timecourse of the response (Overgaard et al., 2015). While both approaches
have their merits, in this article a PK/PD modelling approach is adopted.

1.2 Motivating dataset

Data from 71 patients with severe haemophilia A (subset of subjects with an endogenous level of
FVIII < 1IU/dL) treated in the pivotal (069901) Advate clinical study were used to illustrate the
introduced method. The patients were aged between 10 and 59 years (mean 22 years). Directly
prior to commencement of treatment patients received a controlled dose of FVIII. The level of
FVIII in the blood at up to ten time points during the following 48 hours were taken.

Patients were subsequently followed up for a duration of around a year during which time
they received multiple doses of FVIII, typically at 48 hour intervals. Among these 71 subjects
considered, there were 112 spontaneous bleeding events during the study where more information
on patient outcomes of this study can be found for example in Collins et al. (2009), Fischer et al.
(2011), Bjorkman et al. (2012) and Shapiro et al. (2015). The distribution of bleeds by patient
is given in Table 1. Assuming the rate of bleeds was constant and the population homogeneous,
the counts would be Poisson with mean proportional to the time of follow-up. However, the
counts are clearly overdispersed with a coefficient of variation of 4.0.

Table 1: Frequency of observed spontaneous bleeds per patient during the study period

Bleeds | 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Frequency |31 18 7 4 4 3 2 0 0 0 0 0 1 1

Baseline explanatory factors are available for the patients including age, BMI, regimen of the
patient immediately prior to the study (prophylaxis, on demand or combined).



1.3 Approaches to modelling haemophilia bleeds data

Previous analyses of data of this type have analysed the count data directly, for instance using
zero-inflated Poisson or negative binomial regression (den Uijl, Fisher et al., 2011). (Wang,
2019, Chapter 5) considered the use of survival analysis techniques to model the time to first
event. The effect of past doses is included as time dependent covariates which may be given a
PK model form, for instance a two-compartment model. The parameters of the PK model are
inferred from the pattern of events themselves rather than external PK data. In this article,
a recurrent events modelling approach is proposed for the analysis of the haemophilia bleeding
data. Recurrent events modelling is an extension of survival analysis to accommodate outcomes
which can occur multiple times for the same patient (Lawless and Cook, 2007, Chapter 1). The
intensity of bleeding events is modelled as a function of FVIII activity, taken as a time dependent
covariate, and other time-fixed or time-dependent covariates. The FVIII activity level can be
inferred by combining information on dosing times with PK model parameters estimated from
PK measurements taken prior to a study. However as a result, the values of FVIII activity taken
in the model are subject to error and estimates of the effect of FVIII activity will be subject
to attenuation bias. Recently, Abrantes et al. (2019) used a recurrent events approach in the
context of Bayesian forecasting of bleeding events, but did not account for measurement error.
An aim of this paper is therefore to both investigate the degree of bias which results from a
naive recurrent events analysis, where error in the time-dependent covariate is ignored, and also
develop methods which can account for the error which arises due to the uncertainty in the
predicted FVIII activity level.

The remainder of the article is organized as follows. In Section 2, the pharmacokinetic mod-
elling used to estimate FVIII plasma levels is described. Section 3 develops the recurrent events
model, including methods to account for uncertainty in the FVIII time-dependent covariate. In
Section 4 the methods are applied to a study of patients with haemophilia. Section 5 presents a
simulation study to investigate the extent to which naive estimates of covariate effects are biased
and the performance of the proposed approach. The paper concludes with a discussion.

2 Pharmacokinetic model

A two-compartment pharmacokinetic (PK) model is assumed for the pharmacokinetic data in
terms of a macro constant parametrization. Let d; denote the dose taken, Yo" denote the jth

measurement taken by patient ¢ which occurred at time ¢;; after administration of the drug, then
log Y;?-O” = IOg dz + 10g [ali exp{—kutij} + ag; exp{—kgitij}] + €ij,

where €;; ~ N(0,0?) and ay;,a2; > 0,k1; > ko; > 0,4 = 1,...,n are individual level macro
constants. Note that in practice the error structure of the model could be more complicated
where the method can be adapted to other forms to model the residual unexplained variability
where we considered a constant proportional error for simplicity.

Potentially, estimates of a patient’s parameters, 0; = (a1;, as;, k14, k2;)’, can be found by
fitting separate non-linear fixed effects regression models, fitted separately to each patient’s FVIII
activity levels, using maximum likelihood. However, here a non-linear mixed effects model is
considered where individual patients’ PK parameters are assumed to be random effects (Davidian
and Giltinan, 1995, Chapter 9). To accommodate the constraints on 6;, it is assumed that

(log(a1s), log(azi),log(kii — ka;),log(k2i))" ~ N (v, %) (1)

where v is a vector of fixed effects and X is an unstructured 4 x 4 variance-covariance matrix.
Note that a clearance parametrization is often used in PK analyses, such that the clearances



and volumes for an individual are taken to be log-normally distributed. Accommodating such a
structure would be relatively straightforward via fitting a system of differential equations whereas
here we use a parametrization in terms of macro constants for simplicity.

The population parameters v and 3 can be jointly estimated using restricted maximum like-
lihood (REML) estimation. The individual level parameter estimates, 6;, may then be obtained
using the mode of the conditional distribution of 8; given the observed data. Moreover, estimates
of the uncertainty in 6; can also be inferred based on the second derivatives of the conditional
distribution of 6;.

The model can be fitted in R using the nlme or 1me4 packages (Pinheiro et al., 2018; Bates
et al., 2015). Estimates of the individual random effects and their conditional variances may
be obtained using the method in Lindstrom and Bates (1990) and implemented in the ranef
function. These estimates are based on the mode and second derivative of the mode of the
posterior log density of each random effect with v and 3 set to their REML estimates.

The pharmacokinetic model can be used to estimate the FVIII activity level of a patient at
any time during the study follow up period. Let z;(¢;0;) > 0 represent the true level of FVIII
activity at time t. On the premise of linear pharmacokinetics this level is a deterministic function
of the patient’s dosing history through a pharmacokinetic (PK) model. Specifically

2i(t,0:) = > dijlari exp{—k;(t — tij)} + ag exp{—kai(t — t;;)}] (2)

Jitij <t

where ¢;; is the time of an infusion of dose level d;;.

3 Bleeding events model

Patients are assumed to be continuously observed up to some right censoring time C;, which
is independent of the bleeding events process. It is assumed that the dosing times are non-
informative of bleeding events in the sense that knowledge of the timings of doses provides no
additional information on the future rate of bleeds beyond the dose’s influence on z;(¢, ;). In
addition there may be other, possibly time-dependent, covariates w;(t) which are assumed to be
observed without error.

The intensity of bleeding events for a subject ¢ at time ¢ and past history H; (encompassing
the number and times of previous bleeding events) is assumed to be of the form

it He) = Xo(t) Zi exp [f{@i(t; 0:); 9} B + wilt)' 7],

meaning the covariates are assumed to act proportionally on the intensities, where Z; is an
individual level frailty and f(z;%) is a known function up to possible unknown parameters
1. Note that it is assumed that conditional on the frailty, the timing of previous bleeding
events has no direct bearing on the future intensity of bleeds. For mathematical convenience,
it is assumed Z; ~ I'(1/£,1/€). Under this formulation, the bleeding events arise as a Poisson
process conditional on the time dependent covariates and the unobserved random effect, while
the distribution of counts given the covariates, but marginalizing over Z; has a negative binomial
distribution.
A model of possible clinical interest is of the form

f(@i(t;0:);0) = I(zi(t;0;) < ), (3)

such that 8 then represents the log-hazard ratio associated with the FVIII activity level going
below a threshold, . If it can be shown that the hazard of bleeds is much higher below some



particular FVIII activity level then it would indicate that the dosing regime should be devised to
ensure maintenance of FVIII activity greater than or equal to ¢). While the model in (3) assumes
it is the current FVIII activity that governs the bleed risk, the premise of an instantaneous effect
could easily be relaxed through a lagged version of the model,

f(xi(t;0:);4) = I(i(t — u; 0;) <),

for some lag u.

3.1 Analysis ignoring uncertainty in predicted FVIII activity levels

Naively, we can consider estimating the primary parameter(s) of interest, B, by ignoring the
uncertainty in our estimates, éi7 and replacing x;(t; 6;) with x;(¢; él)

If 2, (¢; OAl) is assumed to be observed without measurement error then standard methods for
survival and recurrent events data with time-dependent covariates can be applied (Lawless and
Cook, 2007).

A semi-parametric model where Ao(t) is taken to be a non-parametric function of time,
and incorporating the Gamma distributed random effect, can be fitted using penalized partial
likelihood (PPL) (Therneau et al., 2003). Under this approach, let 7(yy,...,7(,) be the ordered
set of times at which a bleed occurred and Ry = {i : Yi(7(x)) = 1} the set of patients at risk of a
bleed at time 7(;), where Y;(t) is an indicator variable of whether patient i is under observation at
time ¢. Typically we would take Y;(¢) = I(t < C;). Evaluation of the PPL requires evaluation of
J{wi(7(r); 0:), ¢} for all i € Ry at k =1,..., Ny. To avoid time consuming and computationally
wasteful repeated calculation of (2), a matrix of values of x;(7(x); 8;) can be stored upfront.

In this article we instead pursue models with a parametric form for Ag(t). A simple way
of permitting flexibility is to let Ag(¢) be piecewise-constant between pre-specified cut-points.
If desired, the estimates will approach those of the semi-parametric model as the number of
pieces increases. In practice, the cut-points would be chosen to ensure a roughly equal amount
of patient-years of follow-up for each piece.

Conditional on the frailty Z;, the likelihood for a patient with bleeding events at times
Tily - - -, Tin;, 1S given by

L;=2z" H Ao(Tij) exp [f{ai(7ij;0:); 9} B+ wi(7i;)'v]
=1 .
x exp{—2Z; /0 Yi(u)ho(u) exp [f{z;i(u;0;); 9} + wy(u)'v] du}.
The marginal likelihood, integrating out the frailty term is then
Li= [~ (ZZL [T, Xo(7ig) exp [£{zi(7i5; 0:); 9} B + wi(7i;)'v] eXP{—ZiGi(Oz‘)}> f=(Z:)dZ;

I(ni+1 1/6)@/9 n; .
= (1"(1/55) (G,i(e(i)/fi/f)"ﬁl/i X Hj:l{/\O(Tij)} x B;(0;;7;)

where G;(60;) = foci Yi(u)Ao(u) exp [f{zi(u; 0;); ¥} + w;(u)'~] du and
Bi(0;;7;) = exp if{xi(ﬂ'ﬁ 0:); 9} B+ wi(7i;) v | - (4)
j=1

The principal computational difficulty in evaluating the likelihood is in evaluating the terms
G;(0;) since they involve analytically intractable integrals of a function of (2). Two methods for
approximating these integrals are considered.



3.1.1 Grid approximation

The grid approach involves approximating the integral required for G;(0;) by using the trape-
zoidal rule on a fine grid of points, g, g1,...,9x where g = k x §, for some small value 6. On
this basis

[«

K
*ZYZ Gr—1)Xo(gr—1) exp [f{z;(gk—1;6:); ¥} B + w;(gr—1)"]
k=1

[\)

+ Yi(gr) Mo (gr) exp [f{zi(gr; 0:); ¥} B + wilgr) ] -

As before, to avoid repeated evaluation of z;(t;8;), the levels of the time dependent covariate
at the grid of points may be computed and stored in an n x (K + 1) matrix X where {X};; =
x;(gj—1;0;). It may also be computationally advantageous to also store the relevant values of
any time dependent elements of w;(t).

The advantage of the grid approximation approach is that it can be applied to a wide range
of functions f(.), including the cases where f(.) depends on unknown parameters, .

3.1.2 Crossing point approximation

An alternative approach to calculating G;(6;) is possible when f(z(t); %) is a vector of binary
indicators. Of primary interest is the case given in (3), but the method could be extended to
situations where there is a series of threshold values. Numerical pre-processing can be used to
find all the times satisfying z;(t) = ¢, 0 < ¢ < C;. Let m; = (0i1, M2, - - -, Mim, )’ be the set of
such crossing times for patient ¢, then

di  ptige1 AT
Z/t v Yi(u)Ao(u) exp(w;(u)'y)du
- : (5)

my

> / Yi(u)ho(u) exp(B + wi(u)'4)du,

k=1

where j(k) = argmin{¢;; : t;; > ni} and k(j) = argmin{ng : 9 > t;}. The crossing times, 7,
can also be used to establish which observed bleed times occurred when the FVIII activity level
was above or below ©. Let u;(6;) be the number of bleeding events for subject i below v given
0;, then

B;(6;; 1) = exp{fu;(0;) + Z wi(7i;) (6)

A drawback of this method is that the crossing times must be recalculated for each candidate
value of .

3.2 Accounting for uncertainty in predicted FVIII activity levels

There is a well-developed literature on methods for adjusting for measurement error in covariates
for survival and event history data. For survival data, the regression-calibration approach (Car-
roll et al., 1995, Chapter 3) involves using an estimate of the conditional expectation of the true
covariate value given the observed value, as the covariate value within the Cox partial likelihood
function. Hu et al. (1998) considered a likelihood-based approach. In the context of misclassifed
binary covariates, Zucker and Spiegelman (2008) developed a corrected score approach, while
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Figure 1: Example partial sequence of true and estimated FVIII activity levels for a patient.
The estimated periods of time in which the patient is below the threshold ¥ = 5 are longer than
the true lengths.

Wan et al. (2019) considered an EM algorithm. Andersen and Liestol (2003) considered the
attenuation bias arising from intermittent updating of time-dependent covariates.

Relatively little consideration has been given to recurrent events data with misclassification er-
ror and in all cases, normally distributed errors are assumed with time fixed covariates. Turnbull
et al. (1997) and Jiang et al. (1999) obtained consistent estimators of the model parameters by
adjusting the naive estimates using the asymptotic bias, in the parametric and semi-parametric
cases, respectively. Yi and Lawless (2012) developed a ‘corrected likelihood’ function whose con-
ditional expectation is the same as the likelihood with respect to the true covariate values. Yu et
al. (2016) extended semi-parametric estimators to accommodate informative censoring in addi-
tion to covariate measurement error. In the context of clustered survival data, Li and Lin (2000)
allowed the measurement error of covariates from the same cluster to be correlated through a
linear mixed model.

For the haemophilia model, the attenuation arises due to the discrepancy between the true
PK parameters of the patient and those estimated from the PK data. Suppose, that the risk of
a bleed is elevated when the FVIII activity level is below some threshold as given in (3). Figure
1 illustrates that if 6; differs from @;, the periods in which f(z;(t; 6;); 1) = 1 are misidentified.
Depending on the direction of the error, this leads to a systematic over- or under-estimation of
the time at elevated risk and misclassification of the risk category for observed bleeds.

It is assumed, based on the population PK model considered in Section 2, that

9(6;) ~ N(;, 2),

where D; is the posterior mode estimate of the random effect and f]i is the conditional variance of
the random effect, where each are obtained by plugging in the REML estimates of v and 3. While
this assumption is somewhat similar to assumptions made about the the conditional distribution
of the true covariates given the measured covariates in previous treatments of measurement errors
in recurrent events data, the complexity of the relationship between 6; and the intensity function



A (t) makes existing methods non-applicable.

The error in the time dependent covariate resulting from uncertainty in 6; is akin to the
presence of an additional frailty term within the model that has a known (or assumed known)
distribution. Note that 3 depends on the number and timing of observations for patient i, the
residual error variance of individual observations, o2 and the variance of the macro constants,
3. As such the method accounts for the greater uncertainty (and larger attenuation bias of the
uncorrected estimate) when the residual errors, €;;, have a higher variance and when there is
greater population heterogeneity.

Under the parametric approach the likelihood contribution for an individual then becomes

I(n,; /6 i A
Juers SR i e % (T oliy)) % Bilvim) fu(vi 60, S)dv - (7)

Li=
n; 1 @76 n;+1 Bi(v;Ti) fv V;éz‘,ﬁi
Li = Hj:1 AO(Tij) X (a/e) F(l/(g) /£) fve]Rp (G(i(v)ij]c_/(f)nfrl/g) dVa

where p is the dimension of 6; and B;(v; ;) is the quantity as defined in (4) applied at 8; = v.

The integral over 6; is intractable, but can be approximated using multivariate Gaussian
quadrature where the integral is approximated by a weighted sum over N, quadrature points.
Note that since the distribution of 8; is fixed, the quadrature points for a given subject, v;1, ..., vin,,
are also fixed. As such to avoid unnecessary computation, the matrix of values of x;(t, ;) consid-
ered in Section 3.1 can be expanded into a n x (K +1) x N, array where {X}ir = 2:(g-1; Vix)-

Hence
o 1 a/ar n;+1 Yo B (vig; Ti)w;
i [ polry) x LTt VS i e ©
i I(1/¢) 2 (Gilva) + 1/6)
for quadrature weights w1, ..., wip,.

3.2.1 Approximation for threshold models

Under the model in (3), and for a given 6; the likelihood can be characterized in terms of the
crossing times where x;(t; 0;) = 1. As such, the variability in 0; is only relevant through its effect
on those crossing times. Moreover, if the dosing schedule is fairly regular and the dose fixed, the
activity level curves will approach an approximate equilibrium such that z(t+t; 0) =~ z(t+tx; 0)
for any dose times ¢ and t;r and 0 < ¢ < tp41 — tx. Specifically, under (2) and assuming a long
sequence of doses of size d, spaced u apart, z(t + tx; 6) would approach

ay exp(—kat) as exp(—kat)
1—exp(—kju) 1 — exp(—kou)

D(t;0):d{

}70<t<tk+1_tko

Let v satisfy D(v;8) = v, then o2 = Var(v(f)) gives an approximation to the variance of the
crossing times. Hence the crossing times, 7%, will all have approximately the same dependence
on 0. Again using the assumption g(6;) ~ N(g(6;),3;), the delta method may be used to
approximate o2. For each dose time t;, j = 0,1,...,d;, let §;41 > t; be the time at which z(¢; éz)
would next cross ¢ assuming no further doses after ¢;. As such, ; = (15,72 - . -, 7d,+1,i)" can
be thought of as the vector of potential crossing times for patient 7.

Assuming v itself is approximately normal, then the potential crossing times for 8; can be

expressed as ny, ~ M, +w for k =1,...,m where w ~ N(0,02).



Table 2: Fixed effect estimates for the non-linear mixed effects model.

Parameter Est SE
V1 -0.081 0.070
Vo 0.362 0.048
V3 -1.687 0.109
Vs -2.770 0.024

The expression for G;(6;) in (5) can then be adapted to account for the possibility that the
patient received a new dose before the next crossing time,

di Nijr1+wAtj11 d;+1 t;
Gi(w) = / Y;(u)Ao(w)du + > / Y (u) Ao (u) exp(B)du. (9)
Jj=0 tj j=1 Nij+wAL;

In addition, the crossing times can again be used to establish the number of bleeds that occurred
below 7, denoted u;(w), which can be used to determine B;(w) = exp{SBu;(w)+ > 1", wi(7i) v},
the analogous quantity to (6).

The overall likelihood contribution for subject i may then be be approximated by a one-
dimensional integral

~ n; 1/6) MO (n;+1/¢ oo B;
L; =~ szl Xo(Tij) % /9 F(l/g /8) o f_oo (Gi(w)+1(/bg))"i+1/5 \/271“7@ eXp(—wQ/QUgi)dw
~ mi 1/ 9T (ni+1/€) Ny B (vik)
Li~= Hj:l )‘O(Tij) x T(1/6) x Zk:1 (Gi(vik)+1/2)ni+l/f Wik,
where vy, and wi, kK = 1,..., N, are the Gauss-Hermite quadrature nodes and weights for an

integral with respect to N (0, ogi) variable.

The observed interval between doses or the doses themselves will not be fixed for a patient,
however it may be reasonable to take the mean dose and mean dosing interval to estimate
Jgi. In principle, more sophisticated approximations can be considered that adjust the variance
associated with a given crossing time on the basis of the precise past dosing regime. For the
example dataset, the enhanced approximation gave almost identical results, but this would not
necessarily be the case if the dosing schedules were more variable.

4 Application

The non-linear mixed effects model specified in Section 2 is fitted to the PK data for the 71
patients. Fixed parameter estimates from the model are given in Table 2 and the variance com-
ponent estimates in Table 3. Note that the estimate of 02 = 0.017 corresponds to a percentage
coefficient of variation of 13%.

Corresponding parameter estimates in terms of a clearance parametrization obtained from
the model fitted in terms of the macro-constant parametrization were 2.1 dL/h for clearance, 1.1
dL/h for inter-compartmental clearance, 23.7 dL for the central volume of distribution and 6.3
dL for the peripheral volume of distribution, which is in-line with other publications of FVIII
models (Bjorkman et al., 2012).

The marginal cumulative intensity function estimated using the Nelson-Aalen estimator is
shown in Figure 2. Pointwise 95% confidence intervals are obtained using the robust variance
estimator in Lawless and Nadeau (1995). The constant gradient of the curve indicates that it



Table 3: Variance-covariance estimates of the random effects for the non-linear mixed model.

by
vy 0.098 -0.025 -0.033 0.003
vy 0.027  0.049 -0.068
123 0.173 -0.120
vy 0.238
Residual (02) 0.017
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Figure 2: Nelson-Aalen estimate of the mean count of cumulative bleeds per patient over the
study period. Pointwise 95% confidence intervals are indicated by the dashed lines.

may be reasonable to assume that the baseline intensity, \o(t), is constant, rather than piecewise
constant, over the study period.

Assuming a threshold model with ) = 1 and without covariates, the ratio of rates of bleeds
when FVIII activity is below 1% compared to above is estimated to be 4.00 95 % CI: (2.64 —
6.05) ignoring the attenuation bias, 4.31 (95 % CI: 2.83 — 6.56) if the bias is adjusted for using
the approximate approach in Section 3.2.1 based on 10 point unidimensional quadrature and
4.31 (95 % CI: 2.82 —6.58) if the bias is adjusted for using four dimensional Gaussian quadrature
with 256 node points. Hence under the assumption of normally distributed PK parameters and
independent normal errors on the log-scale, ignoring uncertainty in the estimated FVIII activity
levels has a small, but discernible effect in this case. In addition, the approximate method agrees
quite well with the more computationally intensive full quadrature method, including giving a
similar value for the deviance (—2log L). The model parameters for each of the analyses is given
in Table 4.

Table 5 presents the estimated effect of explanatory variables on the intensity of bleeding
events based on a multi-variable model including all variables together. The estimates presented
are based on the unidimensional approximation for correction, but the estimates using the other
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Table 4: Comparison of parameter estimates for a threshold model with 1) = 1 % based on a naive
analysis and an analysis correcting for uncertainty in the individual PK parameter estimates.
‘Uncorrected’ = Estimates ignoring measurement uncertainty, ‘Approx correct’ = Estimates
using the approximation in Section 3.2.1, ‘Full correct’ = method using 4-d Gaussian quadrature.

Uncorrected Approx corrected Full corrected
Parameter Est SE 95% CI | Est SE 95% CI | Est SE 95% CI
log Ao -8.639  0.188  (-9.01, -8.27) | -8.665 0.190 (-9.04, -8.29) | -8.665 0.190  (-9.04,-8.29)
B 1.386 0.213 (0.97, 1.80) 1.461 0.215 (1.04, 1.88) 1.460 0.216 (1.04, 1.88)
log & 0.404 0.287 (-0.16, 0.97) 0.400 0.288 (-0.17, 0.96) 0.398 0.288 (-0.17,0.96)
—2log L 1968.02 1964.82 1965.22

Table 5: Estimated effects of explanatory variables using the unidimensional approximation
approach.

Covariate log HR  SE 95% CI D
Current FVIIT < 1% 1.479  0.215 (1.057,1.901) < 0.001
Age (yrs) 0.018 0.018 (-0.017, 0.052) 0.313
BMI -0.087  0.048 (-0.180, 0.007) 0.069
Previous: Prophylaxis 0 - - -
Previous: On Demand | 0.350  0.437 (-0.506, 1.206)  0.423
Previous: Combined 0.747  0.399 (-0.035, 1.529) 0.061

methods are broadly similar. The inclusion of other covariates has little effect on the estimated
effect of a current FVIII activity below 1%, with B increasing from 1.461 to 1.478. There is
some indication of a lower incidence of spontaneous bleeds in patients with higher BMI. In
addition, patients who were on a combined therapy before the start of the study had a higher
rate of bleeds than those who were on prophlyaxis. Calculation of the gradient function (Verbeke
and Molenberghs, 2013) suggested the assumption of a Gamma distributed patient-level random
effect for the bleeds is reasonable, although the relative small sample size makes it difficult to
diagnose the random effects distribution.

4.1 Spline effect model

While the threshold model considered in (3) is clinically interesting, it does not reflect the
observed pattern of bleeds within the data. An alternative model assumes that the rate of bleeds
is a smooth function of the FVIII activity level. For instance, f(z;(t;0;)) may be taken to
be a set of natural spline basis functions, such that the log-hazard is a piecewise polynomial
function over the range of values of z;(t; 8;). Since it is reasonable to assume that the incidence
of bleeds will not increase with increasing FVIII activity level, a monotone spline is applied by
using I-splines with non-positive coefficients (Ramsay, 1988). A cubic I-spline is chosen with
internal knot points at FVIII activity levels 1, 5 and 25. The grid approximation approach is
used to compute the likelihood and four dimensional Gaussian quadrature with 256 nodes used
to integrate over the distributions of 6; for the corrected method.

Figure 3 gives the estimated intensity curves as a function of FVIII activity for the corrected
analyses. The spline model suggests the rate of bleeds continues to increase for decreasing
FVIII activity below 1%. Qualitatively the estimated relationship is similar to the estimated
relationship between bleed rate and baseline FVIII activity in den Uijl, Mauser Bunschoten et
al. (2011), who considered patients with mild, moderate and severe haemophilia but did not
adjust for the effect of treatments.

11



(@ (b)

—— Estimate —— Estimate
'''' Pointwise 95% CI i ----- Pointwise 95% Cl

12
|
12
|

Rate of bleed per yr
Rate of bleed per yr

e T T T T T T T T e T T T T T T T 1

0.125 0.25 0.5 1 2 4 8 16 32 0 5 10 15 20 25 30 35 40

FVIII activity (1U/dI) FVIII activity (1U/dI)

Figure 3: Estimated rate of bleeds by FVIII activity based on a monotonic I-spline using the
corrected method based on Gaussian quadrature. Panel (a) presents the estimates with a log
axis for FVIIT activity, and panel (b) is on the natural scale.

For the spline effect model, the naive estimates almost entirely coincided with the corrected
estimates and are therefore not presented. The similarity of estimates suggests that neglecting the
uncertainty in estimated FVIII activity has considerably less effect for smooth models compared
to threshold models.

5 Simulation study

5.1 Performance of the threshold model estimators

The procedures proposed in Section 3.2 increase the complexity of modelling. It is therefore
of interest to determine under which circumstances failure to account for uncertainty in 8; will
lead to a practical level of bias and also to investigate the effectiveness of the proposed corrected
likelihood.

We again focus on the case where the influence of FVIII activity on bleeding events is through
a known threshold value 9 > 0 such that f(z;8) = I(x < ¥)g.

The PK model fitted to the example dataset in Section 4 is used to devise potential degrees
of estimation uncertainty in the parameters 6. It is assumed that the distribution of true PK
parameters is the same as those estimated in the population PK model. The level of uncertainty
is varied by increasing the variance in the observation errors for the PK observations, or alter-
natively by decreasing the number of PK observations per patient. Three cases are considered,

1. Ten PK observations and the observation error has standard deviation equal to that esti-
mated in the actual dataset.

2. Ten PK observations and the observation error has double the observed standard deviation
estimated in the actual dataset.

12



3. Six PK observations and the observation error has standard deviation equal to that esti-
mated in the actual dataset.

In each case constant proportional residual error is assumed, as was also assumed in Section
2. In addition, two values are considered for the critical threshold, v» = 1 and ¥ = 5. In all
cases there is assumed to be a hazard of ratio of 20/3 between low and high FVIII activity
levels, meaning the true § = 1.897. In each simulation, a non-linear mixed effects model is fitted
to the simulated PK data to gain the estimated PK parameters and estimates of the associated
uncertainty. In some samples the full model with four random effects does not converge, in which
case the best fitting model with three random effects, and the fourth treated as a fixed effect,
is used instead. This aims to automatically emulate what an investigator might do when faced
with non-convergence of the proposed PK model. However, in practice, one should try different
starting values and ensure any simplified model is still biologically plausible.

As an additional benchmark, we also consider the case where the true individual PK param-
eters are known.

To investigate the performance of the proposed estimators, the approach proposed in Section
3.2.1 are applied to each of the scenarios. Total sample sizes of N = 100 and N = 200 patients
are considered. For each scenario, 5000 replicate datasets are simulated.

Table 6 gives a summary of the results for the six scenarios. Since the true log-hazard ratio
is positive, the attenuation bias is negative in this case. In all scenarios the adjusted estimator is
less negatively biased than the naive unadjusted estimate and also has lower mean squared error.
There is a higher degree of attenuation bias in the unadjusted estimates when ¥ = 1 compared
to when 1 = 5, reflecting a greater degree of uncertainty in the true FVIII activity level crossing
times. The adjusted estimator also retains some bias in the case where ¢ = 1, which is perhaps
due to a violation of the assumption that the crossing times are normally distributed. Increasing
the standard deviation of individual PK measurements appears to have a greater impact than
reducing the number of PK measurements in terms of the degree of attenuation bias. It is
notable that for the models with higher residual error or fewer PK measurements the full four
dimensional mixed effects model fails to converge a high proportion of the time and a simplified
model is fitted instead. This is most likely due to the occurrence of boundary estimates (i.e.
where the estimated variance matrix of the random effects is singular). The good performance
of the adjusted estimates despite this indicates some robustness to misspecification of the precise
PK model.

Table 7 gives the corresponding standard deviation of the estimates, average standard errors
and empirical coverage of nominal 95% confidence intervals for each method for the six scenarios.
In most cases the adjusted estimator results in intervals with close to 95% coverage. The only
exceptions are when ¢ = 1 and the residual standard deviation of the PK measurements is
higher.

5.2 Performance under model misspecification

Since the proposed method makes various assumptions about the PK model, a further set of
simulations are carried out to assess the robustness of the method to model misspecification.
Some key assumptions of the PK model are;

1. An underlying multivariate normal random effects distribution for the patient’s individual
PK parameters based as defined in (1).

2. Normally distributed errors with homogeneous variance with respect to the measured
logged FVIII activity levels.
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Table 6: Simulation results for impact on the bias and mean squared error (MSE) for six scenarios
with varying levels of measurement error in the PK model. Prop converge displays the percentage
of samples for which the full four dimensional random effects model did not converge and a
simplified model was used instead.

Bias MSE Prop
N ¢ Case | Unadj Adj No error | Unadj Adj No error | converge
100 5 (a) |-0.0855 -0.0076  0.0055 | 0.0424 0.0388 0.0371 94.6%
200 5 (a) |-0.0842 -0.0077 0.0065 | 0.0238 0.0180 0.0172 96.3%
100 5 (b) |-0.1435 -0.0329 0.0118 | 0.0543 0.0390 0.0363 39.1%
200 5 (b) |-0.1467 -0.0370 0.0061 | 0.0382 0.0202 0.0180 47.0%
100 5 (c) |-0.0883 -0.0022 0.0189 | 0.0421 0.0382 0.0371 65.4%
200 5 (¢) |-0.1008 -0.0162 0.0054 | 0.0271 0.0190 0.0181 72.4%
100 1 (a) |-0.1603 -0.0578 -0.0133 | 0.0907 0.0702 0.0615 95.3%
200 1 (a) |-0.1540 -0.0518 -0.0097 | 0.0537 0.0334 0.0285 97.0%
100 1 (b) |-0.2516 -0.1057 -0.0106 | 0.1280 0.0794 0.0612 61.2%
200 1 (b) |-0.2411 -0.0986 -0.0086 | 0.0889 0.0419 0.0284 51.6%
100 1 (¢) [-0.1774 -0.0523 -0.0087 | 0.0972 0.0714  0.0605 35.4%
200 1 (c) |-0.1681 -0.0497 -0.0051 | 0.0607 0.0353 0.0301 28.2%

Table 7: Simulation results for impact on uncertainty estimates for six scenarios with varying

levels of measurement error in the PK model

SD SE Coverage
N ¢ Case | Unadj Adj No error | Unadj Adj No error | Unadj Adj No error

(c) |0.2564 0.2621  0.2459 | 0.2506 0.2551  0.2432 | 0.9078 0.9486  0.9538
(c) |0.1800 0.1813 0.1735 | 0.1742 0.1774 0.1703 | 0.8521 0.9417  0.9495

100 5 (a) [ 0.1873 0.1968 0.1926 | 0.1841 0.1924 0.1890 | 0.9122 0.9492 0.9544
200 5 (a) |0.1295 0.1339 0.1311 | 0.1295 0.1353 0.1328 | 0.8870 0.9466  0.9496
100 5 (b) | 0.1835 0.1946 0.1901 | 0.1813 0.1930 0.1890 | 0.8518 0.9436 0.9534
200 5 (b) |0.1291 0.1371  0.1340 | 0.1274 0.1355 0.1328 | 0.7739 0.9356  0.9558
100 5 (c) |0.1852 0.1954 0.1918 | 0.1834 0.1924 0.1888 | 0.9024 0.9472  0.9504
200 5 (c) |0.1302 0.1370 0.1343 | 0.1289 0.1352 0.1327 | 0.8574 0.9466  0.9490
100 1 (a) | 0.2549 0.2585  0.2477 | 0.2462 0.2506 0.2431 | 0.9146 0.9454  0.9458
200 1 (a) ]0.1731 0.1753 0.1686 | 0.1721 0.1751 0.1701 | 0.8731 0.9455 0.9534
100 1 (b) | 0.2543 0.2611 0.2472 | 0.2505 0.2560 0.2438 | 0.8380 0.9306 0.9514
200 1 (b) |0.1753 0.1794 0.1683 | 0.1740 0.1780 0.1703 | 0.7251 0.9152  0.9511

1

1
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3. No inter-occasional variability (IOV), meaning an individual’s PK parameters are not dif-
ferent at different dosing occasions (Karlsson et al., 1993).

To investigate the sensitivity to each of these assumptions, the first case of the simulations
in the main simulation (¢ = 5, 10 PK observations and residual standard error as that in the
illustrative dataset) is adopted but with varying forms of misspecification with respect to each
of the assumptions in turn.

To create a skewed, non-normal distribution, data are generated from a two-point mixture
distribution that matches the mean and variance. The degree of skewness is varied by altering
the mixture probability, we consider 7 = 0.5, 7 = 0.35 and 7 = 0.2, corresponding to symmetric,
moderately skewed and heavily skewed distributions.

To investigate the assumption of homogeneous error variance, we generate PK data from a
model where the measurement error depend on the log-mean response. Specifically, let p;; =
E(log Y;5°") then

i
(L4 &piz)*
where £ and ¢ controls the strength of the mean-variance relationship. We consider cases where
& =1and £ =2 and ( = 1, corresponding to mild and moderate dependence, and a further case
where ¢ = 0.2 and ( = 2, giving a more severe scenario. In each case o is chosen to ensure the
average error variance is similar to in the original study.

To investigate IOV, the data for the PK measurements and also the subsequent bleeding
events are generated based on a model that assumes a three-level structure for the PK model.
The PK parameters governing the clearance of the dose d;; for patient ¢ at occasion j are assumed
to be governed by

Var(eij) =

8ij = 8o +b; +uy;

where g;; = (log(aisj),log(a2i;), log(kii; — kaij), log(k2;))’, bi ~ N(0,2*) and u;; ~ N(0,Q) are
independent random effects. For simplicity we assume X* = p¥ and Q = (1—p)X, where ¥ is the
random effects variance used in the other simulations. As such p controls the proportion of the
total variance which is common to all dose occasions. We consider cases where p = 0.95,p = 0.9
and p = 0.8.

The results, shown in Table 8, indicate that non-normality of the distribution of PK parame-
ters has the least impact on the proposed method, with the results in each of the three scenarios
being comparable to the first scenario in Table 6. The presence of heterogeneity of variance with
respect to the logged FVIII activity levels in the PK data has a greater impact. While the ad-
justed method reduces the bias and mean squared error compared to the unadjusted method, the
estimates are somewhat more biased than the comparable results when the residual error model
is correctly specified. The presence of inter-occasional variability (IOV) has the greatest impact
on the performance of the model. Both the unadjusted and adjusted estimates are more biased,
with the bias increasing when the IOV accounts for a higher proportion of the total variance.

5.3 Continuous effect models

In Section 4.1 it was notable that the naive and adjusted estimates of the spline model were
almost identical, which indicates that bias in the naive method may be less of a problem for
models that assume a continuous effect of FVIII activity level on the intensity of events. To
investigate this further, PK data are generated from scenario (a) from Section 5.1, using n = 100
but with the bleeding events simulated using a monotone spline effect (as in Section 4.1). The
averaged estimates over 500 simulations under the naive method, compared to the true effect

15



Table 8: Simulation results for nine scenarios with varying levels of model misspecification of the
PK or PD model. ‘No error’ estimates for the IOV sceanrios are absent due to no clear method
f estimation.

Bias SD MSE

N Case Par Unadj Adj No error | Unadj Adj No error | Unadj Adj No error
100 (a) ©=0.5 -0.0827 -0.0020 0.0087 | 0.1832 0.1966 0.1930 | 0.0422 0.0386  0.0373
200 (a) ©=0.5 -0.0845 -0.0053 0.0056 | 0.1299 0.1353 0.1329 | 0.0240 0.0183 0.0177
100 (a) m = 0.35 -0.0815 -0.0043 0.0084 | 0.1845 0.1926  0.1892 | 0.0407 0.0371  0.0359
200 (a) m = 0.35 -0.0835 -0.0062 0.0059 | 0.1295 0.1348 0.1328 | 0.0238 0.0182  0.0177
100 (a) T =0.2 -0.0824 0.0028  0.0151 | 0.1832 0.1968 0.1919 | 0.0422 0.0387  0.0370
200 (a) T =0.2 -0.0922 -0.0068 0.0056 | 0.1292 0.1359 0.1339 | 0.0252 0.0185 0.0180
100 (b) ¢&=1,(=1 |-0.1272 -0.0335 0.0093 | 0.1835 0.1902 0.1879 | 0.0499 0.0373  0.0354
200 (b) £=1,{(=1 |-0.1334 -0.0379 0.0054 | 0.1317 0.1375 0.1354 | 0.0351 0.0203 0.0184
100 (b) £=2,(=1 |-0.1388 -0.0421 0.0109 | 0.1842 0.1937 0.1920 | 0.0532 0.0393  0.0370
200 (b) §=2,(=1 |-0.1431 -0.0475 0.0036 | 0.1289 0.1349 0.1330 | 0.0371 0.0204 0.0177
100 (b) £=0.2,(=2-0.1025 -0.0151 0.0099 | 0.1848 0.1921 0.1889 | 0.0447 0.0371  0.0358
200 (b) €¢=0.2,(=2]-0.1072 -0.0215 0.0047 | 0.1263 0.1330 0.1312 | 0.0275 0.0181 0.0172
100 (c) p = 0.95 -0.1732 -0.0792 - 0.1818 0.1919 - 0.0630 0.0431 -
200 (c) p = 0.95 -0.1777 -0.0844 - 0.1276 0.1347 - 0.0479 0.0253 -
100  (c) p=0.9 -0.2218 -0.1276 - 0.1806 0.1888 - 0.0818 0.0519 -
200 () p=0.9 -0.2283 -0.1349 - 0.1271 0.1327 - 0.0683 0.0358 -
100 (c) p=20.8 -0.3052 -0.2114 - 0.1786 0.1872 - 0.1250 0.0801 -
200  (c) p=0.38 -0.3057 -0.2149 - 0.1244 0.1300 - 0.1089 0.0631 -

curve and compared to the estimator using the true individual PK parameter values is given in
Figure 4.

There is no discernible difference in the mean estimate for the naive estimates, the corrected
estimates and the estimates assuming the true PK parameters. All estimates display some
negative bias in the estimated rate for low FVIII activity levels for both estimators. This is
presumably due to small sample bias and the limited amount of person-time spent at low FVIII
activity levels.

Additional simulations were performed for the other scenarios of PK data generation from
Section 5.1, without calculating the corrected estimate, but giving very similar results with
respect to the naive and true estimates. The naive estimator was observed to produce close
to unbiased estimates of the log-intensity function in a corresponding set of simulations which
instead assumed a log-linear effect of FVIII activity on bleeds.

6 Discussion

This paper has presented an approach to incorporating pharmacokinetic information about pa-
tients into a recurrent events model of bleeding events and proposed methods for adjusting the
analysis to avoid attenuation bias due to uncertainty in the PK parameter estimates. A limita-
tion of the example analysis in Section 4 is the size of the dataset. In particular, the degree of
patient heterogeneity potentially makes the results quite sensitive to the inclusion or exclusion
of patients who had a higher propensity for bleeds.

While the paper has concentrated upon a specific application, the methods have broad ap-
plication to any drug where the drug level is expected to be a covariate for the occurrence of
events. In addition, this approach might be also useful for the purpose of assessing a potential
impact of concentrations on the occurrence of adverse events.

The proposed method is able to account for uncertainty in the estimated FVIII activity levels
arising from the residual unexplained variation and the population heterogeneity. The methods
proposed make an assumption that the conditional distribution, 6; is multivariate normal, at
least on a transformed scale. This may be unreasonable in some situations due to the limited

16



(@ (b)

32
32

—— True rate —— True rate
'''' True PK ----- True PK
Naive Naive

- Corrected

- Corrected

16
|

Rate of bleed per yr
8
|

Rate of bleed per yr

0.125 0.25 0.5 1 2 4 8 16 32 0.125 4.000 8.000 16.000 32.000

FVIII activity (1U/dI) FVIII activity (1U/dI)

Figure 4: Average estimated rate of bleeds by FVIII activity based on 500 simulated datasets
assuming a monotone I-spline. (a) Displayed with FVIII activity on the log-scale, (b) FVIII
activity on the natural scale.

information about the parameters. An alternative approach would be to use MCMC techniques
to simulate from the posterior distributions of ;. In this case the form of the likelihood would
still be as in (8), but v;; would represent the kth sample from the posterior for patient i, N,
the number of posterior samples and the weights would be taken to be w;; = 1/N,. A greater
number of posterior samples may be required to get a similar degree of accuracy to the quadrature
points. The estimate of conditional variance of 8; assumed in our approach does not incorporate
the uncertainty about the fixed model parameters. In the motivating data example, the PK
model parameters were obtained from extensive sampling based on up to 8 measurement time
points per subject and as a result the intra-subject variability is the main driving factor of the
overall uncertainty. However, in other circumstances the PK parameters might be estimated from
sparse sampling or obtained from a population PK model built using external data and, as such,
PK parameter uncertainty may have a greater influence. Further accuracy could potentially be
gained through adopting a fully Bayesian approach to the PK modelling which could incorporate
the additional uncertainty from the fixed model parameters. Moreover, there could be additional
uncertainty in the specification of the PK model, which could in principle be accommodated
through model averaging approaches.

The simulations indicated that the threshold model can be well estimated by using a one
dimensional approximation to the dependence of the random effects. It may therefore be reason-
able to use this approximation rather than the full quadrature method, provided dosing schedules
are reasonably regular. The simulations also suggest the proposed method is reasonably robust
to violations of the model assumptions relating to the random effects distribution of the PK
parameters and to a lesser extent assumptions about the residual variance of the FVIII activity
levels in the PK data. However, if inter-occasional variability is present then the adjusted esti-
mate only removes a portion of the attenuation bias. Provided repeated PK data were available
to establish the IOV, the approximate method for threshold models in Section 3.2.1 could be
extended to accommodate the additional variability arising through IOV. Extending the general
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approach, for instance for spline effect models, is more challenging since the IOV would induce
a sequence of random effects for each patient, which in principle would require integrating out
to obtain the marginal likelihood.

The dataset considered in the paper considered only patients with severe haemophilia A, for
whom it might be plausible to assume their FVIII activity levels could go down to zero. To
include non-severe haemophilia A patients (i.e. those with an endogenous FVIII level greater
than 1 TU/dL) it would be necessary to adjust the PK model for FVIII activity to account for
each patients’ baseline endogenous level (Bauer and Wolfsegger, 2014).

Determining the optimal target FVIII activity threshold, which could be interpreted as the
level of v associated as the most significant increase in the hazard of a bleed, is of particular
clinical interest. In principle, ¢ may be treated like any other parameter within the model and
jointly maximized. However, although there are two parameters to be optimized, the likelihood
ratio between the full model and a null model where FVIII activity is assumed to have no
effect such that 3 = 0 does not have a standard asymptotic x3 distribution under the null,
due to 9 not being identifiable when 8 = 0 (Davies, 1987). There may be scope to extend
results for the simpler situation of an optimal cut-point for the dichtomization of a continuous
time fixed covariate (Lausen and Schumacher, 1992), to provide a test for an overall effect of
FVIII activity via a threshold. A further difficulty is in establishing standard error estimates
for the parameters which incorporate selection of 1, for which bootstrap may be a possible, if
time-consuming, solution.
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