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We present a method for assigning a statistical significance to detection candidates in targeted
searches for continuous gravitational waves from known pulsars, without assuming the detector noise
is Gaussian and stationary. We take advantage of the expected Doppler phase modulation of the
signal induced by Earth’s orbital motion, as well as the amplitude modulation induced by Earth’s
spin, to effectively blind the search to real astrophysical signals from a given location in the sky.
We use this “sky-shifting” to produce a large number of noise-only data realizations to empirically
estimate the background of a search and assign detection significances, in a similar fashion to the
use of timeslides in searches for compact binaries. We demonstrate the potential of this approach
by means of simulated signals, as well as hardware injections into real detector data. In a study
of simulated signals in non-Gaussian noise, we find that our method outperforms another common
strategy for evaluating detection significance. We thus demonstrate that this and similar techniques
have the potential to enable a first confident detection of continuous gravitational waves.

I. INTRODUCTION

In addition to short-lived gravitational waves (GWs)
from compact-binary coalescences like those observed so
far [1–8], ground-based detectors like the Advanced Laser
Interferometer Gravitational-Wave Observatory (aLIGO)
[9] and Virgo [10], are also expected to detect persis-
tent, almost-monochromatic signals [11–17]. The primary
potential source of such “continuous waves” (CWs) are
rapidly-spinning neutron stars with an asymmetry in
their moment of inertia [18]. This includes galactic pul-
sars known from electromagnetic observations, which are
a main target for searches for continuous signals in LIGO
and Virgo data [16, 19, 20]. The detection of gravita-
tional waves from any of these sources would provide a
new wealth of astrophysical information, as well as invalu-
able opportunities to learn about fundamental physics
(see, e.g., [21] for a recent review).

There exist a number of efforts to detect gravitational
waves from known pulsars [15, 16, 22, 23]. However, an
outstanding problem affecting all of these searches is the
lack of a well-defined procedure to establish the statistical
significance of potential detections without making the
assumption that the instrumental noise is Gaussian and
(semi-)stationary. Consequently, if evidence for a con-
tinuous wave from a known pulsar was found today, we
would be unable to establish, with certainty, the probabil-
ity for this to have arisen from a spurious noise artifact.
The need for a systematic and robust way of computing
detection significance in the presence of non-Gaussian
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noise has already become apparent with the appearance
of hard-to-diagnose outliers in recent searches in actual
aLIGO data [16, 24].

Establishing a robust procedure to assign significance
is challenging because the noise artifacts that limit the
searches are intrinsically unpredictable and cannot be
modeled from first principles. Given this, we may in-
stead attempt to empirically determine the response of
the different searches to real detector noise in the absence
of astrophysical signals. Armed with such knowledge,
we would then be able to analyze actual data, or “fore-
ground”, and produce empirical likelihood ratios (or other
measures of detection confidence, like p-values) for the
presence of an astrophysical signal vs just instrumental
noise, Gaussian or otherwise. This requires several in-
stances of “background”—that is, instrumental data that
are known to contain no astrophysical signals, while still
retaining all statistical properties representative of real
instrumental noise.

Ideally, one would obtain background distributions by
physically isolating the instruments from the environment
to shield them from actual signals. Because this is impossi-
ble in the case of gravitational waves, we must attempt to
replicate this shielding digitally after the data have been
recorded. Several techniques exist to do this when looking
for gravitational-wave transients, the most straightfor-
ward of which is probably the use of “time slides”: the
outputs of different detectors are shifted relative to each
other by time offsets longer than the light-travel time
between them [25, 26]. This ensures the spuriousness of
any signal candidate left in the multi-detector data thus
produced, hence allowing us to estimate how likely it is
for noise to mimic a signal.

The direct analog of time slides in the context of contin-
uous waves would be “frequency slides”: a misalignment
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of the frequency-domain data of different detectors. How-
ever, our ability to effect such frequency shifts is limited
by the frequency resolution of the searches (of the order
of inverse observation time), and the fact that the prop-
erties of actual instrumental noise are heavily dependent
on frequency—not only due to a frequency-dependent
power spectral density, but also to varying populations
of narrow-band noise features. By the same token, time
slides themselves would not be feasible in transient analy-
ses if the noise properties of the detectors changed rapidly
compared to the duration of a typical signal.

In light of this, here we propose a simple method for
estimating the background of searches for continuous grav-
itational waves by analyzing data assuming an incorrect
sky location for the targeted source. This “sky-shifting”
takes advantage of the expected Doppler modulation of
the signal due to the relative motion of detector and
source to effectively blind the search to real astrophysical
signals. Similar methods have been developed for pulsar
timing arrays [27]. We can use this to produce a large
number of noise-only instantiations of data, so as to em-
pirically estimate the background of a search and assign
detection significances in the presence of actual detector
noise. We demonstrate that this method can outperform
another common strategy for estimating the background
in realistic situations.

We begin by providing relevant background about con-
tinuous waves and targeted searches in Sec. II. We then
introduce the sky-shifting method and explore its appli-
cability in Sec. III. We demonstrate the efficacy of the
strategy in Sec. IV with the aid of several examples based
on both synthetic and actual detector noise. We conclude
in Sec. V.

II. BACKGROUND

In this section, we review the basic morphology of
continuous gravitational waves as measured by differential-
arm detectors, with an emphasis on the timing corrections
on which we will rely for sky-shifting (Sec. II A 1). We also
make a special point of discussing the relation between
the frequency resolution at which a signal is sampled
and the ability to localize the source in the sky (Sec.
II A 2). We next describe the key properties of noise
in existing ground-based instruments as it pertains to
searches for persistent signals (Sec. II B). Finally, we
provide an overview of three staple search methods for
these signals in LIGO and Virgo data (Sec. II C): the
Bayesian time-domain method, and the frequentist 5-
vector and F–statistic methods.

A. Continuous waves

1. Morphology

Continuous waves are nearly monochromatic gravita-
tional perturbations with constant intrinsic amplitude
that are expected to be sourced by some rapidly spinning
bodies, like neutron stars. Within the context of standard
physics, there are several ways in which a neutron star
could emit CWs, but the most favored is the presence of
a nonaxisymmetry in the star’s moment of inertia [28].
For this type of triaxial, nonprecessing source, such a GW
will induce a strain in a differential-arm (quadrupolar)
detector, like LIGO or Virgo, which can be written as:

h(t) = h0
1

2
(1 + cos2 ι)F+(t;ψ) cosφ(t)

+ h0 cos ιF×(t;ψ) sinφ(t) , (1)

where the F+(t;ψ) and F×(t;ψ) factors respectively give
the instrument’s response to the plus (+) and cross (×)
GW polarizations, ι is the inclination angle between the
spin axis of the source and the observer’s line-of-sight, φ(t)
is the phase of the signal, and h0 is an overall amplitude
related to the properties of the source by:

h0 =
16π2G

c4
εIzzf

2
rot

r
, (2)

where r is the source distance, frot its rotation frequency
around the principal axis z, I the moment-of-inertia tensor
and ε ≡ (Ixx − Iyy)/Izz the equatorial ellipticity [18].

The antenna patterns, F+(t;ψ) and F×(t;ψ), encode
the amplitude modulation of the signal due to the local
geometric effect of a GW acting on a given detector.
Thus, they implicitly depend on the relative location
and orientation of source and detector by means of the
source’s right-ascension α, declination δ, and polarization
angle ψ. The latter gives the orientation of the frame in
which the polarizations are defined, and we set it to be
the angle between the line of nodes and the projection
of the celestial North onto the plane of the sky. While α
and δ are always well known, ψ generally is not, which is
why we show this argument explicitly. Importantly, the
antenna patterns acquire their time dependence from the
rotation of Earth on its axis, and consequently have a
characteristic period of a sidereal day (∼10−5 Hz).

For a simple triaxial source, the GW frequency f is
twice the rotational value frot, so we can write:

φ(t) = 2φrot(t) + φ0, (3)

where φrot is the rotational phase as measured via elec-
tromagnetic (EM) observations and φ0 is a fiducial phase
offset. The rotational frequency itself is almost constant,
with a small spin-down due to energy loss into the envi-
ronment (via GWs and other mechanisms), which means
that the phase evolution can be well described by a sim-
ple Taylor expansion on τ , the time measured by a clock
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inertial with respect to the source:

φ(t) = 2π

N∑
j=0

∂
(j)
t f0

(j + 1)!
[τ(t)− T0]

(j+1)
. (4)

Here ∂
(j)
t f0 is the jth time derivative of the GW frequency

measured at the fiducial time T0, and N is the order of the
series expansion (1 or 2 suffices for most sources). Timing
solutions are generally obtained through the pulsar timing
package TEMPO2 [29]. These solutions have exquisite
precision (frequency uncertainty of 10−12 . δfrot . 10−8

Hz for most pulsars) and are the cornerstone of targeted
searches for continuous waves from known pulsars.

The inertial time, τ in Eq. (3), is usually taken to
be the time measured by a clock at the Solar System
barycenter (SSB), which is itself assumed to be inertial
with respect to the pulsar. In that case, τ can be written
as a function of detector time, t, by taking into account
some well-known, time-dependent offsets:

τ(t) = t+ ∆E(t) + ∆S(t) + ∆binary(t) + ∆R(t) . (5)

Here ∆E is the Solar-System Einstein delay; ∆S is the
Solar-System Shapiro delay; ∆binary is the delay originat-
ing from the motion of the pulsar in its binary (a term
that vanishes for isolated sources) [30]; and ∆R is the
kinematic delay due to the relative motion of the detector
with respect to the source.

The timing correction of Eq. (5) is heavily dependent
on the sky-location of the targeted pulsar and will be the
key to the sky-shifting method presented in Sec. III. The
dependence on sky location is dominated by the last term
in Eq. (5), ∆R. This is sometimes known as the “Rømer
delay” and encodes the Doppler modulation of the signal:

∆R(t) = − Ω̂ · ~r(t)
c

, (6)

where ~r(t) is a vector joining the SSB and the detector

at any given time, Ω̂ is a unit vector pointing from the
SSB in the direction of the source,1 and c is the GW
speed. For practical purposes, ~r is usually computed by
first splitting it into three components:

~r = ~r� + ~r⊕ + ~R , (7)

with ~r� joining the SSB with the Sun’s center, ~r⊕ joining

Sun and Earth, and ~R going from the Earth’s center to the
detector on the surface. One can then use Solar System
ephemerides, together with knowledge of the location
of the detector on Earth and the source in the sky, to
compute the Rømer correction at any given time.

The timing correction of Eq. (5) can be understood
as inducing extrinsic frequency shifts to the signal, as

1 The source-location vector, Ω̂, can be treated as constant over
the timescale of our observations.

seen by the detector. This is dominated by the Rømer
term, ∆R(t), which results in a modulation at the fre-
quency of Earth’s orbital rotation, ωorb ≈ 2× 10−7 rad/s,
as well as subdominant daily effects due to its spin,
ωsid = 2π/(sidereal day) ≈ 7 × 10−5 rad/s. In the fre-
quency domain, the effect of this correction is to spread
the signal power across a narrow band centered on its
intrinsic GW frequency, with a characteristic width of
∆f/f ≈ ωorbr⊕/c ≈ 10−4 (see e.g. [31]). This frequency
modulation will be the key to our approach.

2. Frequency and sky resolution

The sky resolution is the minimum angular separation
in the sky at which two, otherwise equal, sources could
be distinguished. This is a function of the frequency
resolution at which the signal is sampled, namely:

δf = 1/T , (8)

for an observation time T . This frequency bin is related to
a sky-bin by the sky-location–dependent frequency mod-
ulation of Eq. (5). Thus, the angular resolution will be
roughly given by the separation in the sky corresponding
to a Rømer frequency shift of ∆f = δf . In other words,
we may define a bin around any point in the sky by the
maximum angular distance one can move away from that
point before the frequency shift caused by the modulation
of Eq. (6) reaches a magnitude of 1/T . Thus, the char-
acteristic size of a bin defined this way will necessarily
depend on the integration time.

Proceeding as above, we may cover the sky with a
series of such bins to obtain a “sky grid” representing
the resolvability of points in the sky as a function of
angular location. Because the timing correction of Eq. (5)
is dominated by ∆R, which is itself mostly due to Earth’s
orbital motion, such a sky grid will be most naturally
defined in ecliptic coordinates to yield bin sizes given
approximately by [32]

δβ =
1

Nd| sinβ|
, δλ =

1

Nd| cosβ| (9)

where β and λ are respectively the ecliptic latitude and
longitude, and the scale factor (that represents the total
number of Doppler bins) is

Nd = ∆f · f · T =
f ωorbr⊕T

c
(10)

for Earth’s orbital radius r⊕. As demonstrated in Fig.
1, the sky-grid can be easily computed using ecliptic
coordinates (left panel) and then rotated to equatorial
coordinates (right panel). This is a conservative sky-grid
for an integration time of Tcoh = 1024s that implicitly
assumes the power of the signal may be split over at most
two frequency bins as a result of the timing correction—in
practice, the characteristic size of the sky bins may be
reduced, but the scaling with f and T will always be as
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in Eq. (10). In a full-coherent search that uses 1 year of
data, the sky-bins size are significantly reduced.

B. Detector noise

The output of ground-based gravitational-wave detec-
tors is vastly dominated by instrumental noise [33, 34].
For this reason, the weak continuous signals discussed in
Sec. II A are expected to become visible only after long
periods of coherently-integrated observation. Understand-
ing the statistical properties of the noise is critical to
successfully detecting these signals.

For the most part, the noise in a given detector is well
described as a Gaussian random process with a frequency-
dependent (colored) power spectral density [33, 34]. Gaus-
sian noise has numerous convenient statistical properties
that would drastically simplify many of LIGO and Virgo’s
analyses. However, this idealization is far from perfect:
the data are plagued with uncountable non-Gaussian
features with a range of spectral properties and dura-
tions. Among these, the most-often discussed are probably
the noise transients (“glitches”) that haunt searches for
compact-binary coalescences [35]. Yet, searches for con-
tinuous waves are most affected not by these short-lived
glitches, but rather by persistent narrow-band features
(“lines”) [36]. Many of these spectral lines only become ap-
parent after long-periods of coherent observation, making
their identification and eradication especially challenging.
Noise-spectral lines could also be accompanied by side-
bands which affects the sensitivity in a narrow-frequency
region [37]. Furthermore, their distribution over the sen-
sitive frequency band of the detectors is highly irregular
and changes with time as the instruments evolve.

Fully-coherent searches for continuous waves tend to
have very high frequency resolution (of order δf ∼ 10−7–
10−8 Hz), scaling directly with the integration time
(δf ∼ 1/T ). This fine resolution means that such analyses
can fall victim to very narrow (and weak) noise lines. Fur-
thermore, as mentioned at the end of Sec. II A 1, a pulsar
signal will be spread over a band of width ∆f ≈ f · 10−4

Hz around its central GW frequency f . This means that
attempts to find such a signal will be affected by noise
over a range of frequencies, broad with respect to the
typical resolution of the search. A persistent departure
from Gaussianity in that frequency range (e.g. a wander-
ing instrumental line that happens to intermittently cross
the targeted band) will confound most searches, poten-
tially yielding false positives (“outliers”). Naturally, the
number of outliers due to unmodeled noise found by the
pipelines will increase with the searched CW parameter
space, as well as with observation time (which increases
the frequency resolution and the sensitivity to unmodeled
noise sources).

As is the case with the glitches affecting searches for
compact binaries, lines and other non-Gaussian features
would not be an issue for continuous-wave searches if there
existed a robust way to model them and directly incorpo-

rate that knowledge into the statistical analyses (cf. Sec.
II C below). However, the noise artifacts in the set that
interests us are, by definition, impossible to fully model
from first principles: any particular noise source that
is well-understood can usually be physically or digitally
removed, so that they are no longer of concern [36, 38–
40]; the remaining artifacts are, therefore, those that are
intrinsically unpredictable or so-far not understood. Con-
sequently, we are left to try to find ways to empirically
estimate the true statistical background (i.e. the proba-
bility distribution of false-positives) of a search in order
to assign significances to potential detection candidates.

C. Searches

Searches targeted at known pulsars make use of the
simple form of the expected signal, Eq. (1), to match-
filter the data and determine the likelihood that a signal
is present. There exist three standard approaches of
this kind: the time-domain Bayesian [22, 30, 41, 42] and
F/G-statistic [23, 43–45] methods, and the frequency-
domain 5n-vector method [46–48]. Due to the technical
details underlying each implementation, only the Bayesian
time-domain method has been broadly applied to a large
number of targets [16]. Although sky-shifting is applicable
to all three of these techniques, in the following sections
we will only use the Bayesian and 5-vector searches for
concrete examples. For completeness, here we provide a
brief overview of the basics of all three approaches.

1. Bayesian approach

Bayesian statistics provide a complete and straight-
forward framework for computing the probability that a
given set of data contain a signal vs Gaussian noise, and
for inferring the parameters that best describe the signal
if present. The implementation utilized for searches by
the LIGO Scientific Collaboration & Virgo Collaboration
[22] takes advantage of the fact that the phase evolution
φ(t) is known from electromagnetic observations to re-
move the high-frequency components of the signal early
in the process—this dramatically simplifies the Bayesian
inference step itself [30, 42].

First, the data are digitally heterodyned [30, 41], so
that the signal they putatively contain becomes:

h′(t) ≡ h(t)e−iφ(t) = Λ(t) + Λ∗(t)e−i2φ(t) , (11)

with ∗ indicating complex conjugation, and

Λ(t) ≡ 1

4
F+(t)h0(1 + cos2 ι)− i

2
F×(t)h0 cos ι . (12)

A series of low-pass filters are then applied to remove the
second term in Eq. (11), which enables the down-sampling
of the data by averaging over minute-long time bins. As
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FIG. 1. Left: Sky bins built using ecliptic coordinates for a search at a frequency of 60 Hz and an integration time of 1024 s.
Right: The same sky grid for the same sky configuration in equatorial coordinates.

a result, Λ(t) is the only contribution from the original
signal left in our binned data, B, which will now look like

Bexpected(tk) = Λ(tk) + n(tk), (13)

where n(tk) is the heterodyned, filtered and downsampled
noise in bin k, which carries no information about the
GW signal.

Eq. (13) implies that the quantity B(tk)−Λ(tk) should
have the statistical properties of noise, and that Eq. (12)
should be the template in our search. This knowledge
can be used to compute the marginalized-likelihood ratio
(Bayes factor) that the data contain a signal buried in
noise (HS), vs just Gaussian noise (HN):

BS
N =

P (B | HS)

P (B | HN)
. (14)

If the detector noise was indeed Gaussian, this single
quantity would suffice to define a detection criterion: a
value greater than unity would indicate the signal model is
favored by that factor (in terms of betting odds), and vice
versa. However, since actual noise cannot be guaranteed to
be Gaussian (and, generally, will not be), the probability
ratio of Eq. (14) does not inform us about the relative
likelihoods of a signal vs actual (non-Gaussian) noise. To
address this, one may attempt to capture instrumental
artifacts by defining a construction similar to Eq. (14)
but using signal-coherence across detectors to distinguish
spurious effects from actual astrophysical signals [16, 49,
50]. Nevertheless, it cannot be shown that any such
construction will always capture all the features of real
instrumental noise (in the language of formal logic, our
hypothesis set is never complete). Therefore, we would
benefit from a method to empirically test the efficacy
of our Bayesian constructions at actually distinguishing
signals from (non-Gaussian) detector noise.

2. 5-vector approach

The frequentist 5-vector method [46] builds a detection
statistic using the sidereal modulation given by the inter-
ferometer antenna response to the two CW polarizations,
encoded by F+/× in Eq. (1). Similarly to the procedure
outlined in Sec. II C 1, the first step is to remove all the
possible phase modulations, apart from the sidereal ones
caused by the antenna patterns. Depending on the type of
search, this may be achieved through different techniques,
including subheterodyning, nonuniform resampling, or
a combination thereof [51–53]. After this step, the sig-
nal can be modeled via two sidereal responses, A+/×(t)
, analogous to F+/×(t) but which do not depend on the
polarization angle ψ (see [46] for more details). Con-
cretely, it may be shown that A+(t) ≡ F+(t;ψ = 0) and
A×(t) ≡ F×(t;ψ = π/4). Doing this, the signal assumes
the complex-valued form:

h(t) = H0(η) [H+(ψ, η)A+(t) +H×(ψ, η)A×(t)] , (15)

where η is related to the ratio of the two polarization
amplitudes given in Eq. (1),

η = − 2 cos ι

1 + cos2 ι2
(16)

and with H+/× defined by

H+ =
cos(2ψ)− iη sin(2ψ)√

1 + η2
,

H× =
sin(2ψ)− iη cos(2ψ)√

1 + η2
.

Just as in the case of Λ(t) in Eq. (12), the frequency
components of a signal described by Eq. (15) are simply
those corresponding to the sidereal modulations encoded
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in A+/×(t). These frequency components (f i5-vec) are
integer multiples of the sidereal rotation frequency of
Earth, namely:

f i5-vec = fgw + 2πki ωsid , ~k = [−2,−1, 0, 1, 2] . (17)

Therefore, any signal like Eq. (15) may be described as
a vector in the space spanned by the five δ-functions
corresponding to the frequencies in Eq. (17).

To search for signals, the frequency domain GW data
can be projected onto the 5-vector space, to obtain a

set of projections ~X. This resulting vector now lives
in the same space as the sidereal templates, which can

be represented as 5-vectors ~A+/×. We may thus obtain
the matched-filter between the data and the antenna
patterns by taking a simple scalar product between ~X and
~A+/×. By maximizing this matched-filter, one obtains an
estimator for the GW polarization amplitudes:

Ĥ+/× =
~X · ~A+/×

| ~A+/×|2
, (18)

which can be in turn used to define a detection statistic:

S5 ≡ | ~A+|4|H+|2 + | ~A×|4|H×|2 . (19)

After carrying out the above procedure for templates
corresponding to different parameters, detection candi-
dates (i.e. values of the parameters for which might match
a potential signal) are identified by their value of S5. In
particular, the statistic is required to exceed a threshold
corresponding to a preset false alarm probability. To do
this, one must know or measure the distribution of S5 over
noise. Traditionally this has been computed analytically
by assuming purely Gaussian noise with known variance
[46].

Alternatively, since real data are not Gaussian, one
may try to approximate the background distribution by
computing S5 over frequency bands far from the expected
signal (“off-frequency” analysis). The frequency regions
should be far enough from a possible CW signal such that
only the noise contribution is present in the detection
statistic, and close enough to the analyzed band to share
its statistical properties. Given that the noise is strongly
frequency dependent, finding this sweetspot is far from
trivial (if at all possible) and one can never guarantee
that the conditions required for an unbiased estimation
of the background are being satisfied.

3. F-statistic

The F-statistic was first introduced in [23] for
gravitational-waves searches form neutron stars, and
was later extended for other astrophysical objects (e.g.,
[54, 55]). In the case of Gaussian noise, the F-statistic
is defined as the natural logarithm of the maximum-
likelihood ratio between the signal and noise hypotheses:

F = max

[
ln
P (d | ~θ,HS)

P (d | HN)

]
~θ

, (20)

where d are usually calibrated detector data, and the

maximization is over the signal-template parameters, ~θ.
It can be shown that the F statistic can be analytically
maximized over the “extrinsic parameters” (h0, ψ, ι and
φ0), thus reducing the dimensionality of the numerical
computations to the so-called “intrinsic parameters” (α,

δ, f and ḟ). Since in a targeted search the intrinsic pa-
rameters are supposed to be perfectly known, a targeted
search based on the F -statistic would reduce to the com-
putation of one value for F , that is later compared to
the expected noise-only distribution for Gaussian noise
in order to assign p-value.

The analysis proceeds by match-filtering the data
against four different templates, each of them correspond-
ing to a particular combination of intrinsic phase evolution
and sidereal modulation. The outcome of these four filters
is the F-statistic, for which, if the data are composed
purely of Gaussian noise, it can be shown that the value
2F follows a χ2-distribution with 4 degrees of freedom [23].
Detection candidates (“outliers”) are selected according
to their false alarm probability, which can be computed
analytically if one assumes Gaussian noise. However, false-
positive outliers arise when the noise is not Gaussian, and
thus not properly handled by Eq. (20). If this is the
case and one cannot trust the background distribution of
the statistic to be simple χ2, this distribution must be
estimated empirically by producing sets of data known
with certainty to contain no astrophysical signals.

III. METHOD

Having reviewed the basics behind targeted searches
for continuous waves, including the difficulties inherent
to non-idealized instrumental noise, we here introduce
sky-shifting as way to empirically assign detection signifi-
cances. In Sec. III A we describe the basic ideas behind
this simple procedure and explain how it can be easily ap-
plied to the Bayesian and 5-vector searches. In Sec. III B,
we heuristically explore the limits of applicability of this
technique, concluding that sky-shifting is a viable method
for estimating the background distribution of detection
statistics, as long as a few simple conditions are satisfied.
This will be demonstrated in the following section (Sec.
IV) with concrete examples.

A. Sky-shifting

Lacking a satisfactory way to model all noise artifacts
and their effect on CW searches from first principles,
we may instead attempt to empirically determine the
distribution of the different search statistics in response
to real detector noise and in the absence of astrophysical
signals. As discussed in Sec. I, a naive attempt at blinding
the data to astrophysical CWs using methods analogous
to those used for CBCs is doomed to failure. Therefore,
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we may instead look for a solution in specific properties
exclusive to real gravitational signals, as opposed to noise.

One example of such a feature is the requirement of
consistency between the phase evolution observed by EM
astronomers, and the sky location of the source: while
the two properties, as encoded in the signal itself, must
necessarily agree in the case of a real GW, there is no
special link between them in the case of noise artifacts.
Furthermore, as explained in Sec. II A, the location of
the source is independently imprinted in the morphology
of the signal twice: in the amplitude modulation due
to the antenna patterns, Eq. (1), and in the frequency
modulation due to Rømer and other timing delays, Eq.
(5). Since these three properties (frequency, amplitude
modulation, and phase modulation) must all agree for an
astrophysical signal, we may ask: how likely is it for an
instrumental artifact to randomly satisfy this condition
and thus mimic a real signal from a given source?

A priori, an instrumental artifact with frequency close
to that expected from a given source is no more likely
to also show the amplitude and phase modulations corre-
sponding to the true location of the pulsar than those of
any other arbitrary sky location. In other words, there is
no reason for instrumental noise at the target frequency
to “know” what the true sky location of the source is.
By carrying out our analysis assuming incorrect sky lo-
cations, we may blind ourselves to astrophysical signals
and empirically estimate the probability that instrumental
artifacts in the narrow frequency region corresponding to
a given source also present the modulation matching its
location in the sky.

The above idea may be rephrased in the language of
function spaces. Continuous signals observed for a finite
period of time can be represented as vectors in the space
of square-integrable functions (L2) or, after discretization,
the space of square-summable sequences (`2). We would
like to estimate the overlap between the subspace of L2

(or, rather, `2) occupied by noise features and the much
narrower one spanned by the signal template, Eq. (1).
We attempt to empirically achieve this by computing an
inner product (defined by the detection statistic itself)
between the data and signal templates (basis elements)
corresponding to different sky locations. We expect this to
work partly because templates for different sky locations
will be morphologically very similar to the true template,
while the same is not true for any arbitrary function. This
also allows us to explore the statistical properties of the
noise in the same region of frequency space occupied by
the expected signal. (See also [56].)

An alternative to sky-shifting would be to simply ran-
domly shuffle the time series data used in the analysis;
this would be easy to do for the time-domain data B
used in the Bayesian analysis, and is similar to previ-
ously implemented strategies (e.g. [57]). Such a shuffling
would completely decohere any real signal in the data and,
given the huge number of permutations of the shuffling,
any random shuffling would be extremely unlikely to be
correlated with any other. This approach would be the

simplest way to proceed if the data were purely Gaussian
and stationary across an observation run. However, for
real data that contains contaminating instrumental lines
and a time-varying noise level, it would also scramble
these components. Therefore, any statistic produced with
the scrambled data would not be a fair comparison to
the unshuffled foreground. Shuffling would also be com-
plicated to perform for a search method that begins with
data that has already been transformed into the frequency
domain. Sky-shifting, as described above, does not suffer
from these limitations.

Implementation examples

Background distributions may be estimated via sky-
shifting in the context of any of the searches described
in Sec. II C. This is true regardless of whether the search
is carried out in the time or frequency domains, for one
or several detectors, maximizing or marginalizing over
nuisance parameters. This generality stems from the fact
that sky-shifting is largely insensitive to the specific details
behind the computation, as long as the sky location and
phase evolution are assumed to be known.

Let us first illustrate this by using the time-domain
Bayesian search as a concrete example. As outlined in
Sec. II C 1, this approach is split into two stages: (i)
heterodyning of the data to put the signal in the shape
of Eq. (12); and (ii) Bayesian inference to compute the
relative likelihood of a signal being present, Eq. (14). It
is important for our purposes that information about the
location of the pulsar is only needed in the first step,
making it straightforward to apply our suggested strategy.
In particular, we may intentionally heterodyne the data
assuming an off-source (shifted) sky location, and then
carry out the inference stage as usual, assuming the true
(on-source) sky location. Rather than being indicative
of a signal, a large Bayes factor obtained this way would
necessarily reveal the presence of a noise artifact. This
process may be repeated for different sky locations to
obtain an estimate of how likely noise is to mimic a signal
from this pulsar.

As another example, consider the frequency-domain
5-vector approach of Sec. II C 2. In that case, we may
also resample or reheterodyne the data assuming a shifted
sky-location during a preprocessing stage. This procedure
is expected to spread the power of a possible GW signal
over many different frequency bins, making it too weak to
be detectable and thus blinding the analysis to it. Next,
we compute the S5 statistic by using the 5-vector sidereal
function A+/×(t) computed for the on-source sky position.
We can then repeat these steps for many different sky
locations to obtain a collection of background values for
the S5 statistic. This yields a noise-only distribution
for the S5 statistic that quantify the probability for a
noise disturbance to mimic the sidereal antenna patterns
corresponding to the true sky location.
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B. Blinding and draw-independence

In order for the method above to work, we need to
make sure that the different sky locations used are actually
distinct, so that there is no leakage of a possible GW signal
in the draws used for building the noise-only statistic
distribution. In order for the method above to work, we
need to make sure that: (i) the different sky locations used
are actually distinct, so that the results can be treated
as distinct draws from the probability distribution we are
trying to estimate; and (ii) sky-shifting really does blind
the data to foreground signals. The first requirement is
easy to satisfy and translates into the need for picking sky
locations with angular separations greater than the worst
(largest) sky bin resolvable by the search, as explained in
Sec. II A 2. As we show below, the second requirement can
also be satisfied by picking off-source locations far-enough
away from the true position of the source.

1. Signal contribution to sky-shifted statistic

Let us first examine the conditions under which sky-
shifting effectively removes contributions from real con-
tinuous waves. For simplicity, consider a signal of fixed
frequency (f) originating from some known location (Ω̂on).
Now imagine heterodyning the data containing it by using
a mismatched timing correction corresponding to some
shifted sky location (Ω̂off), as proposed in Sec. III A. In
full analogy to Eq. (13), we would then obtain binned
data like:

B(t) = Λ(t)e2πif∆τ(t) + n(t) ≡ Λ′(t) + n(t) , (21)

where we no longer assume the instrumental noise n(t) is
normally distributed, and where

∆τ(t; ∆Ω̂) ≡ τ(t; Ω̂on)− τ(t; Ω̂off) (22)

represents the timing-correction mismatch between the
two sky locations with angular separation ∆Ω̂ = Ω̂off−Ω̂on

[cf. Eq. (5)]. As a proxy for a generic search statistic,
consider the evaluation of a simple inner product between
the data and the expected template:

〈B(t) | Λ(t)〉 = 〈n(t) | Λ(t)〉+ 〈Λ′(t) | Λ(t)〉 . (23)

Our goal is to estimate the distribution of the over-
lap between the noise and the template, 〈n(t) | Λ(t)〉,
by studying our proxy statistic, 〈B(t) | Λ(t)〉. Conse-
quently, we would like the contribution of the true signal,
〈Λ′(t) | Λ(t)〉, to Eq. (23) to be sufficiently small to be
effectively undetectable.

Explicitly, the contribution of the signal to the inner
product of Eq. (23) can be written in terms of a time
integral over the observation time T ,

〈Λ′(t) | Λ(t)〉 =

∣∣∣∣∣
∫ T

0

Λ2(t) e2πif∆τ(t;∆Ω̂)dt

∣∣∣∣∣ , (24)

where Λ2(t) ≡ Λ∗(t)Λ(t). The first key feature of this
result is that a signal with greater signal-to-noise ratio
(SNR) will tend to contaminate the sky-shifted statistic
more strongly. This is not at all surprising: a strong
signal can be detected even if there is a small error in
its assumed sky location, because enough coherent power
can remain even after the timing correction spreads it
over several frequency bins. In fact, Eq. (24) is bounded
from above by the squared-norm of the signal template,

〈Λ′(t) | Λ(t)〉 ≤ 〈Λ(t) | Λ(t)〉 =

∣∣∣∣∣
∫ T

0

Λ2(t) dt

∣∣∣∣∣ , (25)

which, for a flat power spectrum, is directly proportional
to the square of the SNR.

The second relevant feature of Eq. (24) is that the
dependence of 〈Λ′(t) | Λ(t)〉 on sky location will be de-
termined solely by the angular structure of ∆τ , and how
well that can be resolved given f and T (see Sec. II A 2).
The inequality of Eq. (25) is, of course, saturated if and

only if the shifted location is such that ∆τ(t; ∆Ω̂) = 0 at
all times: this takes place, for instance, if the “shifted”
location is really just the original location of the source
(∆Ω̂ = 0). On the other hand, for most other values

of ∆Ω̂ and for the range of f ’s we are interested in, the
exponential term in Eq. (24) is highly oscillatory—this
means that we should expect 〈Λ′(t) | Λ(t)〉 to quickly van-
ish as we move away from the true location of the source.
This is consistent with the sky-bin definition given in Sec.
II A 2, from which it is possible to see that the sky-bin
size decreases with increasing frequency. In other words
Eq. (24) is representative of the templates density lattice
for a GW search [58–60].

Angular pattern and magnitude

The detailed angular structure of our proxy sky-shifted
statistic is represented in Fig. 2. To produce this plot,
we began with a set of binned data, Eq. (13), containing
Gaussian noise and a very strong (SNR = 70) simulated
signal from an arbitrary sky location on the ecliptic plane
(indicated by a magenta circle). We then reheterodyned
these data assuming different (sky-shifted) locations cov-
ering the whole sky, and for each instantiation computed
the overlap (normalized cross-correlation),

Overlap =
〈B′(t) | B(t)〉
〈B(t) | B(t)〉 ≈

〈Λ′(t) | Λ(t)〉
〈Λ(t) | Λ(t)〉 , (26)

between the sky-shifted data, B′(t), and the on-source
data, B(t). This quantity (shown in color in Fig. 2)
represents the normalized contribution of the injected
signal to the sky-shifted statistic for different sky locations,
as desired. This is because 〈n′(t) | n(t)〉 ≈ 0 for Gaussian
noise, yielding the approximate equality in Eq. (26).

As expected, the contribution of the signal falls off
steeply as we move away from the source location: while
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FIG. 2. Value of the reheterodyned correlation overlap of Eq.
(26) over the entire sky, as a function of right ascension (α)
and declination (δ). The data contain a simulated signal with
SNR = 70 located at α = 22h35m40.73s, δ = 39◦40′44.76′′

(magenta circle).

the normalized overlap of Fig. 2 equals unity if ∆Ω̂ = 0
(center of the magenta circle), it is orders of magnitude

smaller for all other choices of Ω̂off . The rest of the
structure in this plot reflects the symmetries of the timing
correction Eq. (5), which are themselves dominated by
the Rømer term in Eq. (6): locations across lines of fixed
ecliptic latitude remain somewhat correlated to the on-
source location, and the whole pattern is symmetric under
reflections through the ecliptic (see Sec. II A 2 for more
details). This important observation means that, for any
given on-source location, we will want to sample our sky-
shifted points from only one of the ecliptic hemispheres.
This may be achieved by laying out a grid in the sky, or
by picking sky locations randomly. In either case, one
must ensure uniqueness of the chosen point by enforcing
a minimal separation set by the overlap function in Fig.
3.

For a sufficiently loud signal, sky bins neighboring the
source will yield contaminated sky-shifted data (i.e. data
that still contains measurable coherent power due to the
on-source signal). Unlike the angular dependence, the
overall magnitude of this contamination will be deter-
mined by the SNR of the signal and, as such, will depend
on the integration time and intrinsic amplitude. For the
same example as in Fig. 2, Fig. 3 shows the rate at which
the overlap with the on-source location decreases as one
moves at constant ecliptic latitude away from the source
and for different integration times.

Because latitude is held constant in this plot, Fig. 3
represents the slowest-possible decrease in the contam-
ination by this source (cf. Fig. 2). Furthermore, this
example was chosen to have very high SNR and to lie
on the ecliptic plane, where the sky resolution is poorest
(cf. Sec. II A 2)—all of which makes this close to a worst-
case scenario. In spite of this, the overlap vanishes quite

quickly, plateauing far away from the source at a value
of the order 0.01. For realistic (low SNR) CW signals a
1% overlap is small enough to make the signal term in
Eq. (23) negligible with respect to the noise. Hence for 1
month of data integration or more, setting sky-shifting
separation to 1 deg is enough to remove any measurable
correlation between sky bins in any realistic situation.
Examples of this are given in Sec. IV below.

2. Contaminated backgrounds

An analysis that draws part of the background from a
measurably contaminated region may underestimate the
significance of the true signal, but never overestimate it.
This is because a contaminated background will show arti-
ficial tails towards higher values of the detection statistic,
due to coherent power left over after sky-shifting in some
of the “noise-only” instantiations. Thus, in a sense, such
an analysis would, at worst, be conservative. Yet, as we
will show in Sec. IV, a signal that is sufficiently loud to
cause such contamination over a non-negligible region of
the sky will itself yield an on-source detection statistic
that is significantly higher than any of the contaminated-
background tails. Therefore, the significance (e.g. p-value)
assigned to such a signal will be the same with or without
the tails.

In any case, sky bins in the immediate vicinity of the
source may always be removed from the background esti-
mation to prevent contamination. However, the excision
of a large area of the sky will have the detrimental con-
sequence of effectively reducing the number of sky bins
available for background estimation. Furthermore, such
procedure is only justified if we (implicitly) assume that
the on-source data do contain an astrophysical signal. In
a way, this is analogous to how a very loud CBC signal
may pollute the time-slid background in searches for tran-
sient gravitational waves (e.g. see caption to Fig. 3 in [61],
or Fig. 7 in [62]). In that case, the standard procedure
has been to first compute significances with the “polluted”
background to determine whether the zero-lag detection
candidate is a real signal, and only if that is the case
remove it from the background.2 The same can be done
here if necessary.

In summary, we conclude that sky-shifting, as described
in Sec. III A, is a viable method for estimating the back-
ground distribution of detection statistics in targeted
searches for continuous waves, as long as the shifted sky-
locations are chosen such that: (i) they are distributed
over only half the sky; (ii) the angular distance between
them is no shorter than the sky-resolution of the search
(cf. Sec. II A 2). This will guarantee that the different
draws from the background distribution (obtained from

2 These two kinds of background are known colloquially as with
and without “little dogs”, since this distinction first arose during
the analysis of an injection in the direction of Canis Major [63].
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FIG. 3. Left panel: overlap, Eq. (26), computed for a software injection with the same parameters as Fig. 2 for 1 year of
integration time and sky locations close to the source; the overlap drops very rapidly over an angular distance of ∼5× 10−4 deg
from the source, keeping ecliptic latitude fixed. Central panel: same as in the first panel but for 6 months of integration; the
overlap drops over a greater distance than for 1 year of integration. Right panel: overlap functions for various integration times,
as indicated by the legend; shorter integration times induce correlations over greater angular scales. The on-source overlap (null
distance) is not identically 1 due to the presence of noise.

different shifted sky locations) are distinct and uncontam-
inated by a true signal, if present.

IV. ANALYSIS

We study the efficacy of sky-shifting (Sec. III A) as a
viable method to empirically estimate the background
distribution of detection statistics in targeted searches for
continuous gravitational waves from known pulsars. We
do this in the context of both the Bayesian (Sec. II C 1)
and frequentist 5-vector (Sec. II C 2) analyses, to demon-
strate the generality of the approach. We discuss specific
case-studies in Sec. IV A, and systematically compare
to different methods by computing false-dismissal and
false-alarm rates in Sec. IV B.

The following results make use of both simulated and
actual noise from interferometric detectors. In all cases,
we begin with a set of data representing the (synthetic or
actual) output of a detector after applying the preprocess-
ing required to target some chosen pulsar (e.g. filtering
and downsampling)—these are the on-source data. We
then proceed as described in Sec. III A to generate mul-
tiple new sets of sky-shifted data, and then evaluate the
distribution of the detection statistic over all such instan-
tiations (excluding the original, on-source data). We can
then compare the value of the on-source statistic to the
sky-shifted background, as we would in a real analysis.

A. Case studies

Here we provide several concrete examples of sky-
shifting at work in the presence of pure noise, realistic
signals and strong signals, as summarized in Table I.
Background distributions are estimated from 104 shifted
locations in the hemisphere of the source. The simulations
of Gaussian noise (Sec. IV A 1) were carried out assuming
an observation time of 6 months and PSDs corresponding
to the aLIGO and Virgo design sensitivities. With the
exception of Fig. 4, the simulated data for LIGO Hanford
(“H”), LIGO Livingston (“L”) and Virgo (“V”) detectors
were then analyzed coherently with the Bayesian method
of Sec. II C 1, to obtain the signal vs noise Bayes factors
of Eq. (14) as our detection statistic.

The examples with real instrumental noise correspond
to LIGO’s first observation run (O1). The data streams
start on 2015 Sep 11 at 01:25:03 UTC for Hanford and
18:29:03 UTC for Livingston, and finish on 2016 Jan 19
at 17:07:59 UTC at both sites. The first example consists
of data prepared for the pulsar PSR J1932+17, for which
search results were presented in [16]. All analysis settings
are the same as in [16], except for a log-uniform prior
in the signal amplitude (same as in [65]). The second
example is for a hardware injection presented in [64].
Both these examples are offered merely to demonstrate the
performance of sky-shifting under realistic circumstances—
we present no new observational results.
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TABLE I. Parameters for the case-study signals (Sec. IV A).

fGW (Hz) α δ Figs. Data Comment

J0534+2200 59.33 5h34m31.97s 22◦00′52.07′′ 5, 6 Gauss. design (H,L,V) Assumed ι = 61.3◦, ψ = 124.0◦

J1932+17 47.81 19h32m07.17s 17◦56′18.70′′ 7 Real O1 (H,L) Published in [16]
P03 108.86 11h53m29.42s −33◦26′11.77′′ 8 Real O1 (H,L) Hardware injection [64]
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FIG. 4. Histogram of the noise-only distribution obtained
using the sky-shifting method in case of Gaussian noise (no
signal). Red line: best fit given by a Γ distribution with
a = 1.95. In this test case the hypothetical source was assumed
at a frequency f ≈ 108.85 Hz with a spin-down ḟ ≈ 10−17

Hz/s. The on-source position was chosen on the ecliptic plane
(α = 22h35m40.73s, δ = 39◦40′44.76′′) as in Fig. 2. The search
assumed a single detector at the LIGO Hanford site.

1. Pure Gaussian noise

We first demonstrate that sky-shifting works as ex-
pected in pure Gaussian noise and in the absence of
signal. In this case, the on-source data are just a set of
samples from a Gaussian distribution with zero-mean and
standard deviation given by the value of the detector PSD
at the GW frequency expected from the targeted pulsar.
The sky-shifting process should correspondingly produce
multiple instantiations of independent Gaussian noise, a
fact that should be reflected in the resulting background
distribution of the detection statistic. This distribution is
shown in Fig. 4 for an example using the 5-vector statistic
of Eq. (19). When computed over Gaussian noise, it can
be shown that this statistic must follow a Γ distribution
with 2 degrees of freedom [46]. Fig. 4 shows that this is the
case, in agreement with our expectation that sky-shifting
should produce independent draws from the background
distribution.

2. Injections in Gaussian noise

Ideally, the background distribution should be unaf-
fected by the presence of a signal: while the value of the
on-source statistic should rise to reveal it, the sky-shifted
values should be insensitive to it. We demonstrate that
this is the case by injecting signals of different amplitudes
in Gaussian noise. We simulate a signal from the Crab
pulsar (PSR J0534+2200) as seen by three advanced de-
tectors (H, L, V) at design sensitivity over 6 months, and
recover it using the Bayesian method of Sec. II C 1.

We first choose a realistic signal amplitude of h0 =
10−26, which is weak enough to be consistent with the
latest upper limits for this source [20], but strong enough
to yield a nonnegligible network-SNR = 5 for the chosen
PSDs and observation time. The data containing the
injected signal are then reheterodyned for 104 shifted sky-
locations to yield the survival function in Fig. 5, i.e. the
complement of the cumulative density function (CDF),
1 − CDF. Each colored trace in this figure represents
the distribution of sky-shift background computed from
the Northern celestial hemisphere, excluding any points
closer to the source than the indicated angular distance,
i.e. excluding points with (α, δ) such that |α− α?| < ∆
and |δ − δ?| < ∆ with a “?” indicating the true location
of the Crab and ∆ one of the values given in the legend
of Fig. 5: 0◦ (blue), 10◦ (green), 30◦ (yellow) or 90◦ (red).
In particular, the blue curve corresponds to background
from points sampled over the whole hemisphere, while
the red curve corresponds to points sampled over the
half-hemisphere not containing the source.

In this case, the choice of sky-region does not have a
strong effect on the background: we may take advantage
of the whole hemisphere, getting quite close to the source
(as allowed by the frequency resolution of this search). In
fact, note that the blue and green curves in Fig. 5 are
essentially identical. For reference, the distribution of the
sky-shift statistic over the whole Northern sky (0◦ curve
on the left) is represented on the right panel of Fig. 5 via
a stereographic map, with the true location of the source
indicated by magenta crosshairs.

As expected, the background produced via sky-shifting
is practically indistinguishable from results in pure Gaus-
sian noise (gray, thin histogram). Indeed, these two sam-
ples yield a Kolmogorov-Smirnov (KS) p-value of 0.77,
favoring the hypothesis that they were both drawn from
a common distribution. This agreement is in spite of the
fact that the on-source statistic (dark gray-dashed line)
takes a significantly-increased value, revealing the pres-
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FIG. 5. Realistic Crab signal in Gaussian noise. We simulate a 6-month-long signal with h0 = 10−26 (network SNR 5) and
parameters consistent with the Crab pulsar (PSR J0534+2200), inject it in Gaussian noise for aLIGO and Virgo design PSDs,
and recover it using the Bayesian analysis of Sec. II C 1 (see Table I). The left panel shows the survival function (1 − CDF)
of log10 BS

N, Eq. (14), for the sky-shifted background produced from the injected data for different excision areas around the
source (different colors, blue and green overlap almost perfectly), as well as from pure Gaussian noise (gray, thin histogram); the
on-source statistic for the injection is log10 BS

N = 2.5 (thick dashed line), higher than any of the 104 sky-shifted instantiations.
The right panel shows the distribution of the sky-shift statistic over the sky in a North-polar stereographic projection, with the
Crab’s location marked by the magenta crosshairs; the color of each hexagon gives the average of log10 BS

N over several sky bins.

ence of the injection. Completely ignoring the intrinsic
probabilistic meaning of BS

N, a background like the blue
curve in the left panel of Fig. 5 would allow us to place a
p-value of at most 10−4 on the null hypothesis that the
on-source data are noise.

As anticipated in Sec. III B, there is a limit to how loud
the injection can be without noticeably contaminating
nearby sky-bins and, therefore, biasing the background
distribution obtained through sky-shifting. However, this
threshold is quite high: for the same detector configu-
ration as above, we find that the injection must reach
h0 ∼ O

(
10−24

)
, or a network-SNR ∼700 at design sensi-

tivity, before sky-shifting is unable to effectively remove
it. We show an example of this in Fig. 6 for a signal from
the Crab pulsar with h0 = 1.4 × 10−24, which roughly
corresponds to the spin-down limit for this source [16].3

This time, as seen from the panel on the left, the full-
hemisphere sky-shifting distribution (blue curve) is visibly
inconsistent with a pure-Gaussian background (gray, thin
curve), and a KS p-value of 10−7 strongly disfavors a
shared distribution between the two sample sets. From
the right panel, it is clear that the culprits are noticeably-
contaminated sky locations in the neighborhood of the
source (magenta crosshairs). These polluted sky bins are

3 For an isolated pulsar (no accretion), the spin-down limit is the
maximum power that could possibly be emitted in gravitational
waves given the observed decay in the pulsar’s angular momentum.

arranged in the same pattern predicted in Fig. 2, although
under a different guise due to the logarithmic color scale.

As discussed in Sec. III B, background contamination
can at worst cause us to underestimate, never overestimate,
the significance of a detection. Yet, the background is
not underestimated in the example of Fig. 6 because the
signal is too loud (log10 BS

N = 9 × 104, off the scale of
the histogram in Fig. 6). This is a general feature: in
Gaussian noise, if a signal is loud enough to contaminate
a large region of the sky, it will also be louder than the
loudest background produced from it.

3. Real noise

The above behavior is replicated in the presence of
actual noise from LIGO and Virgo, with the difference
that the background naturally shows tails due to the
non-Gaussianities in the data. An example of this is
shown in Fig. 7, which was produced using actual data
from aLIGO’s first observation run, prepared for the
pulsar PSR J1932+17 and with both detectors analyzed
coherently using the Bayesian method of Sec. II C 1. As
before, the left panel show the sky-shifted background
distributions for different excision areas around the source
(different colors). Note that the excision process does not
have any significant impact on the distribution, which is
what one would expect in the absence of a very loud signal
at the on-source location. The presence of artifacts in the
data becomes apparent in the slower drop of the survival
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FIG. 6. Very loud Crab signal in Gaussian noise. We simulate a 6-month-long signal with h0 = 1.4 × 10−24 (network SNR
700) and parameters consistent with the Crab pulsar (PSR J0534+2200), inject it in Gaussian noise for aLIGO and Virgo
design PSDs, and recover it using the Bayesian analysis of Sec. II C 1 (see Table I). The left panel shows the survival function
(1− CDF) of log10 BS

N, Eq. (14), for the sky-shifted background produced from the injected data for different excision areas
around the source (different colors), as well as from pure Gaussian noise (gray, thin histogram); the on-source statistic for the
injection is log10 BS

N = 9× 104, which is vastly higher than any of the 104 sky-shift instantiations (off the scale). The right panel
shows the distribution of the sky-shifted statistic over the sky in a North-polar stereographic projection, and with the Crab’s
location marked by the magenta crosshairs; the color of each hexagon gives the average of log10 BS

N over several sky bins, in
semi-log scale linearly interpolated between (−1, 1).
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FIG. 7. Real O1 noise for J1932+17. Off-sourced background produced from real O1 LIGO data prepared for PSR J1932+17,
analyzed coherently with the Bayesian method of Sec. II C 1 (see Table I). The left panel shows the survival function (1−CDF) of
log10 BS

N, Eq. (14), for the sky-shifted background for different excision areas around the source (different colors); the on-source
statistic for this pulsar is log10 BS

N = 0.5 (vertical dashed line), which differs from the result in [16] only due to a log-uniform
prior on the signal amplitude. The right panel shows the distribution of the sky-shifted statistic over the sky in a North-polar
stereographic projection, with the true location marked by the magenta crosshairs; the color of each hexagon gives the local
average of log10 BS

N over several sky bins.
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FIG. 8. Real O1 noise for a loud hardware injection (P03). Off-sourced background produced from real O1 LIGO data prepared
for hardware injection P03 [64], analyzed coherently with the Bayesian method of Sec. II C 1 (see Table I). The left panel
shows the survival function (1− CDF) of log10 BS

N, Eq. (14), for the sky-shifted background for different excision areas around
the source (different colors); the on-source statistic for this pulsar is log10 BS

N = 504 (off-scale). The right panel shows the
distribution of the sky-shift statistic over the sky in a South-polar stereographic projection, with the true location marked by
the magenta crosshairs; the color of each hexagon gives the local average of log10 BS

N over several sky bins.
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function with respect to, e.g., Fig. 5. The on-source value
of the signal vs noise Bayes factor for this source was
published in [16], and is marked here by a vertical dashed
line—clearly, there is no evidence for a signal in the data.

To study the effectiveness of sky-shifting in detecting
a signal in real noise, we analyze data for the hardware
injection referred to as “P03” in [64]. Hardware injections
are produced by physically actuating on the test masses
to mimic the effect of a true gravitational wave, providing
a valuable end-to-end test of the instrumental calibration
and analysis pipelines. In the case of P03, the signal
was injected at 108.86 Hz with an amplitude of h0 =
8.2 × 10−25 (network-SNR = 50). As shown on the left
panel of Fig. 8, this signal seems to be sufficiently strong
to slightly contaminate the sky bins in its immediate
vicinity, but this pollution is easily removed via a narrow
excision (compare the blue trace to the rest in Fig. 8). In
any case, the value of the on-source Bayes factor for this
signal is log10 BS

N = 504, which is significantly louder than
the loudest background. Given that 104 sky-shifted noise
instantiations were used to estimate the background, this
implies that Fig. 8 would allow us to claim a detection
of P03 with p ≤ 10−4 (ignoring the intrinsic probabilistic
meaning of BS

N).

B. Comparison to other methods

In order to determine whether sky-shifting offers an
improvement over other strategies, we must go beyond
specific examples and study false-alarm and false-dismissal
rates. That is, respectively, how likely is sky-shifting to
conclude that a noise artifact is a signal (false alarm),
versus how likely is it to conclude that a signal is a noise
artifact (false dismissal), as a function of confidence level.
We estimate those rates from a large number injections in
simulated and actual noise, and use them to directly com-
pare with the standard background-estimation method for
the 5-vector search (Sec. II C 2). In our simulations, we
find that sky-shifting can outperform the usual methods
in real LIGO data.

1. False-dismissal rate

First, in order to study the false dismissal rate, for
a selection of SNRs, we simulate 250 signals over the
sky, with extrinsic parameters (ψ, η, φ0) picked randomly
over their allowed ranges. We then inject these in both
idealized (Gaussian) and actual O1 noise for the LIGO
Hanford and Livingston detectors (4 months observation
time). In the case of Gaussian noise, we pick the injection
frequency and spin-down to be equal to those of P03, a
choice that will only affect the specific size of the sky-
patches that required for sky-shifting per Eq. (9). When
using real detector data, we set the frequency of the injec-
tions to be 54.5 Hz with no spin-down. This is because
O1 data are known to be polluted by noise artifacts in

this frequency band, especially in the Livingston detec-
tor [66], making this a good frequency region to test the
performance sky-shifting under realistic circumstances.

In each case, we use the method of Sec. II C 2 to obtain
the on-source value of the detection statistic, as well as
2 × 104 sky-shifted background values with a minimal
separation of 0.01 deg. We then compute the number of
detected signals as a function of false-alarm probability,
i.e. the number of injections recovered with a detection
statistic that is higher than or equal to the value cor-
responding to certain p-value, as established from the
empirically-estimated background. For comparison, we
repeat the above procedure but with a background gener-
ated via the standard “off-frequency” method (mentioned
in Sec. II C 2 and described in detail in [66]), instead of
sky-shifting. In both cases, the tails of the background
distributions are extrapolated for very large values of the
detection statistic using an exponential-decay fit.

The results of this study are summarized in the receiver
operating characteristic (ROC) curves of Fig. 9. Curves
in that figure represent the normalized detection rate
(detection probability) as a function of p-value (FAP) for
different choices of injected SNR (different colors and
traces) and different methods used to estimate the FAP.
The top panel shows the results from applying the sky-
shifting method to the case of Gaussian noise, the middle
panel from applying the off-frequency method to real
detector data, and the bottom panel from applying the
sky-shifting to the same real data as in the middle plot.
As expected, optimal ROCs are obtained in the case of
Gaussian noise, for which both methods are equivalent;
on real detector data, however, sky-shifting shows better
ROCs.

Non-Gaussian artifacts in real noise produce tails in the
background distribution, hurting our chances to detect
actual signals. This can be seen by comparing Fig. 5
to Fig. 8. This shows in Fig. 9 which indicates that,
with those settings, we are only 50% likely to detect an
SNR = 16 signal (green curve, down-pointing triangles)
with FAP = 10−6 (∼5σ) in real O1 noise, but we are 75%
likely to detect it with the same confidence in Gaussian
noise.

Nevertheless, Fig. 9 also shows that sky-shifting can
outperform traditional methods in the presence of actual
instrumental noise, as can be seen by comparing the cen-
ter and bottom panels. For instance, the off-frequency
method (middle panel) has essentially 0% chance of de-
tecting an SNR = 16 signal at FAP = 10−6, which is
dramatically less than the 75% chance of detecting it via
sky-shifting (bottom panel). In fact, for these settings,
sky-shifting is consistently superior at all SNRs.

2. False-alarm rate

Besides assigning high significance to real signals, sky-
shifting should also be able to robustly reject outliers
arising from non-Gaussianities in the data. In other words,
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FIG. 9. Top panel : Detection probability vs FAP threshold in Gaussian noise. Middle panel : Same but done in non Gaussian
noise using the off- frequency method. Bottom: Same again but this time using the sky-shift method.

it should have a low false-alarm rate at any given level of
confidence, rejecting artifacts with high probability. The
study of noise features is a very general problem due to the
wide morphological range of non-Gaussianities that can be
found in the data, which is the same reason why modeling
noise likelihoods from first principles is impossible in
the first place. This makes the benchmarking of noise-
rejection probability a challenging problem.

To address this, we use as proxy simulated monochro-
matic noise lines at frequencies close to the targeted pul-
sar frequency. The putative source for wich we were
looking for was again a pulsar with the rotational pa-
rameters of P03 and the sky position α = 22h35m40.73s,
δ = 39◦40′44.76′′. In particular, we produce 300 datasets
with noise lines added to 4 months of Gaussian noise with
varying SNRs. Each noise line is injected with a frequency
within 0.01 Hz of the targeted frequency, ensuring that
the Rømer correction will cause it to contaminate the
on-source analysis. This is because, for a putative source
at f = 108.85 Hz ((see Table I), the Rømer frequency
shift will be at most [51]

∆f = f · 10−4 ≈ 0.01 Hz . (27)

We pick the specific frequency and phase of the noise lines
from a uniform distribution. After doing this, for every
dataset we compute the significance of the noise-line out-
lier using sky-shifting through the 5-vector method (Sec.
II C 2. As above, we produce 104 background realizations
using sky patches separated with a minimal distance of
0.01 deg. For comparison with the traditional method, we
additionally evaluate the significance using the theoretical
formula assuming pure Gaussian noise (cf. Fig. 4) [46].

We evaluate our method’s ability to identify noise arti-
facts by studying the rejection probability as a function
of the confidence threshold set to claim a detection—that
is, how likely the analysis is to reject the artifact as we
decrease our tolerance for false alarms (FAP). Figure 10
shows the results obtained empirically with sky-shifting
(right panel) and analytically assuming Gaussian noise
(left panel). In the ideal case, we would be able to per-
fectly measure the significance of an outlier and the curves
in Fig. 10 would simply be a straight line with slope −1.
As we can see, strong (SNR > 256) noise lines produce
significant outliers if we assume the background to be
Gaussian; however, this is not true for sky-shifting.

These tests can be extended to a general noise back-
ground. In principle, we can model coherent instrumental
noise as a linear combination of monochromatic noise lines
like those injected above. Every noise line will couple con-
structively or destructively with the other noise lines after
Doppler corrections. If the lines combined constructively,
we would obtain a case very similar to the one presented
in Fig. 10 but with a larger noise-line SNR. On the other
hand, the noise lines combine destructively, then the SNR
would be lower than Fig. 10. The general case should lie
somewhere in between.

V. CONCLUSION

Sky-shifting can provide a much-needed efficient and
robust way to empirically estimate the background of
searches for continuous gravitational waves targeted at
known pulsars, enabling estimates of detection significance
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FIG. 10. Rejection probability of an outlier arising from persistent monochromatic noise lines in raw data. Significance for
selection estimated using a Gaussian model for the noise (left) and the sky-shift method (right). The ordinate shows the
percentage of noise lines that generate an outlier with a significance greater than or equal to the threshold corresponding to the
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that are valid in actual (non-Gaussian) instrumental noise.
This method has already been put into practice for diag-
nosing outliers in actual LIGO and Virgo searches [16, 24],
but a systematic study of its performance was lacking
from the literature. In this paper, we have filled in this
gap by introducing the rationale behind this strategy,
exploring its theoretical applicability and studying its
performance in real and simulated data.

The procedure is simple: the original gravitational-
wave data are time-corrected for multiple shifted sky
locations to obtain as many instantiations of noise-only
data, which are then analyzed by any of the usual searches
with the same settings as the on-source search (Sec. III A).
Under the right conditions, we show that the sky-shifted
data are blind to astrophysical signals while retaining
the statistical properties of the noise. This allows for the
direct empirical estimation of the background distribution
of the different search statistics.

Two conditions need to be satisfied for sky-shifting to
be effective: shifted sky locations must (i) be resolvably
different and (ii) be drawn from the same hemisphere as
the source. As long as this is true, sky-shifting will pro-
vide independent draws from the background distribution
(Sec. III B). Furthermore, for realistic signal amplitudes,
the distribution will be uncontaminated by the presence
of a signal at the true on-source sky location. This is
not true for extremely loud signals, but this is not a
problem because in those cases the on-source statistic is
always louder than the background (Sec. III B 2). The
phenomenon is analogous to that observed with strong
signals in searches for compact binaries [61, 62].

We illustrate the efficacy of sky-shifting with several
examples in real and synthetic data (Sec. IV A). This
includes simulated Gaussian noise in the absence of

signal (Fig. 4), as well as in the presence of realistic
(network-SNR = 5, Fig. 5) and strong (network-SNR =
700, Fig. 6) signals. We also demonstrate the method
in the presence of real LIGO O1 noise with data pre-
pared for PSR J1932+17 [16] and loud hardware injection
[64]. Source parameters for all these case studies are
summarized in Table I.

Finally, we systematically study the performance of
sky-shifting by looking at false-dismissal and false-alarm
rates (Sec. IV B). The former is quantified by the receiver
operating curve of Fig. 9 and the latter by the rejection-
probability vs confidence-level plot of Fig. 10. In the
cases we considered, we find that sky-shifting outperforms
the standard method for computing significances in the
context of the 5-vector search.
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