Subspace Clustering and
Active Learning with

Constraints

Hankui Peng, B.S., M.S., M.Res

Lancaster
University © °

Submitted for the degree of Doctor of Philosophy

at Lancaster University

September 2020

STOR-i

BRZA B AR, B URAT]— B LIRAEBGE RFIR BB i _ETE 50T H

To my parents, for their unwavering support in my pursuit of knowledge.

Abstract

Data representations can often be high-dimensional, whether it is due to the large
number of collected / recorded features or due to how the data sources (e.g. images, texts)
are processed. It is often the case that the main structure of the data can be summarised
well in a lower dimensional subspace or multiple lower dimensional subspaces. Sub-
space clustering addresses the problem of simultaneously uncovering multiple subspace
structures in the data and grouping the data according to their underlying subspace
structures.

The first contribution of this thesis is the development of a Subspace Clustering with
Active Learning (SCAL) framework that is designed for K -Subspace Clustering. This
framework allows clustering performance to improve in an effective and efficient manner
over time, with the need to query only a small amount of labelling information. It also
has the potential to be applied to more general subspace clustering methods, which has
been further explored and developed in our next methodological contribution.

The second contribution of this thesis is a unified active learning and constrained
clustering framework for spectral-based subspace clustering methods. In this work, we
propose a spectral-based subspace clustering methodology named Weighted Sparse Sim-
plex Representation (WSSR). It has been demonstrated to have favourable performance
against state-of-the-art spectral-based subspace clustering methods on both synthetic
and real data. We also propose a flexible weighting scheme that can incorporate exter-
nal information into the problem formulation, which leads to a constrained clustering
extension of WSSR. We show that it can be applied in conjunction with our previously
proposed SCAL strategy when labelling information can be queried sequentially.

The third contribution of this thesis is the development of an algebraic subspace
clustering methodology — Minimum Angle Clustering (MAC). It is motivated by the ap-
plication of clustering Amazon products based on their titles when represented using the
TF-IDF matrix, which is both sparse and high-dimensional. The proposed methodology

is composed of two stages. In the first stage, it identifies a large number of subspaces

II

in the data through the Reduced Row Echelon Form technique. In the second stage,
we propose a new subspace proximity measure to construct an affinity matrix for the
formed subspaces before spectral clustering is applied to obtain the final cluster labels.
The proposed methodology has been shown to enjoy competitive performance against a
number of well-established subspace clustering and document clustering techniques on

the application of clustering Amazon product names.

III

Acknowledgements

This work would not have been made possible without the help and support of many
great people around me. First and foremost, I am mostly indebted to and tremendously
grateful for my main advisor Dr. Nicos Pavlidis, who played an absolutely essential and
hugely instrumental role in my PhD. Nicos, it was my great pleasure to work with you,
and have you as my mentor and mainstay throughout the whole journey. Thank you for
your thorough guidance with insightful questions and suggestions during our meetings,
which always led me to a deeper understanding of my work. Secondly, I would like to
thank my advisor Professor Idris Eckley. Thank you for always reminding me of the
importance of the big picture, for keeping me on track at times of need, and for providing
your words of wisdom on academic matters and otherwise.

I have been incredibly lucky and privileged to have had the opportunity to collaborate
with the Data Science Campus (DSC) within the Office for National Statistics (ONS). It
was a truly wonderful and unique experience that I relish very much. Special thanks to
Ian and Thanasis for introducing me to your interesting projects and for providing me
with helpful feedback throughout the whole process.

I would also like to thank all the directors and administrative team of STOR-i, for
creating and fostering such a fantastically vibrant and supportive community. Thank
you for providing me with the financial support and the opportunity to grow, I could not
imagine a better place to do my PhD. In particular, I cannot overstate my gratitude for
Professor Jonathan Tawn, who is not my official ‘advisor’, but fully fulfils every sense of
the word. Jon, thank you for your invaluable time and patience during all the one-to-one
tutoring sessions in the MRes year; thank you for being so extremely attentive, supportive
and personable throughout the whole time, despite how crazily busy you always are.

I have been incredibly lucky to cross paths with some truly wonderful people at
STOR-i and even more lucky to befriend them. I would like to thank my year group for
all the good times we have spent together. I am also grateful for the friends I have made

in other year groups. The list is long, but the following people cannot be omitted. Edwin

v

— thank you for being the cohesive glue in our squad, and for your hospitality during all
the fun times we have had at yours. Georgia — thank you for being a tremendously caring
friend. I cherish our numerous cathartic complaining sessions as much as all our culinary
adventures. Livia — thank you for your support through all my driving related frustrations,
and for the much needed catch-ups during the crazy times this year. Srshti — thank you
for making me believe I am more qualified than I thought, for our joint endeavours to
attempt Kaggle challenges, attend PyData events, and take on responsibilities at RSS.
Thank you for helping me grow, and for growing with me. I would also like to thank my
special friends and family outside STOR-i, ¥ and Z8e, FrA AR T —#L ok B~FFf
N ERFHIRYEE LT AR E K | Having both of you as my friends has been a true
blessing in my life for the past few years. I cherish our countless hours of invigorating
conversations during so many lovely home-made meals and pleasant walks. Thank you
for making my days so much more bright and colourful than they would have been.

An extra special acknowledgement goes to Euan, for being the sunshine in my life.
I cannot stop wondering how lucky I am to have you by my side. Your love and belief
in me have made me a stronger person. Thank you for being my music curator, gig
organiser, film recommender, game teacher, quiz master, and thesis proofreader. Thank
you for reminding me how to have fun at times when I might have forgotten. Your sense
of humour always has the magic power to lighten my heart. This journey would not have
been anywhere near as good without your love and company, certainly not without all
the delicious, comforting, and homely meals you have made.

My final acknowledgement of gratitude goes to my parents, without whom I would
not have had the opportunity to undertake the path I have taken and become the person I
am today. I am immensely grateful for my mother, for always instilling in me endless
positive energy, and for constantly reminding me to be grateful for how much I have
achieved thus far. I owe my gratitude to my father, for always pushing me to test my
mettle and discipline myself; for teaching me how to persevere through difficult times,

and how to stay humble when the days are rosy.

Declaration

I declare that the work in this thesis has been done by myself and has not been
submitted elsewhere for the award of any other degree.

A version of Chapter 3 has been published as Peng, H., and Pavlidis, N. G. (2019).
Subspace Clustering with Active Learning. In 2019 IEEE International Conference
on Big Data (pages 135-144). IEEE.

A version of Chapter 5 has been published as Peng, H., Pavlidis, N. G., Eckley, I. A.,
and Tsalamanis, . (2018). Subspace Clustering of Very Sparse High-Dimensional

Data. In 2018 IEEE International Conference on Big Data (pages 3780-3783). IEEE.

Hankui Peng

Contents

Abstract

Acknowledgements

Declaration

Contents

List of Figures

List of Tables

1 Introduction

1.1 Notation o o e e

1.2 Motivation

1.3 Thesis Contributions e

2 Background

2.1 K-Means Clustering v

2.2 Graph Partitioning Problem oL

221

222

Similarity Graphs oL oL

Graph Cut Objectives v v e

2.3 Spectral Clustering

23.1
232
233
234

Graph Laplacians oL
The Ratio CutProblem
The Normalised Cut Problem

Spectral Clustering - An Example

VI

11X

VI

XII

CONTENTS VII

24 Subspace Clustering. i 25
24.1 TIterative Methods Lo 27

242 SpectralMethodso oo 31

243 AlgebraicMethods 35

244 Statistical Methodso oo 43

2.5 Clustering Performance Measures 48
2.5.1 Purity & Clustering Error 49

2.5.2 Adjusted Rand Index (ARI) 50

2.5.3 Normalised Mutual Information NMI) 52

2.A Appendix: Connection between Graph Cuts and Graph Laplacians . . . 54
2.A.1 The Ratio Cut and the Un-normalised Graph Laplacian 54
2.A.2 The Normalised Cut and the Normalised Graph Laplacians . . . 56

3 Subspace Clustering with Active Learning 59
3.1 Introduction 60
32 RelatedWork 61
3.3 Active Learning Framework 63
33.1 K-SubspaceClustering 63

332 QueryProcedure L. 64

3.3.3 Update Procedure, 71

34 Experimental Results 74
34.1 SyntheticData 75

342 RealData 77

3.5 Extension to Spectral Clustering 80
3.6 Conclusions & Future Work 83
3.A AppendixX e 84
3.A.1 Proof of Proposition1 84
3.A.2 Proof of Proposition2 85

4 Weighted Sparse Simplex Representation 87

VIII CONTENTS
4.1 Introduction 88
4.2 Literature Review L oL o 91

4.2.1 Subspace Clustering 91
422 Constrained Clustering 98
4.3 Weighted Sparse Simplex Representation (WSSR) 103
4.3.1 Sparse Simplex Representation (SSR) 103
4.3.2 Weighted Sparse Simplex Representation (WSSR) 104
44 Propertiesof WSSRo Lo 108
4.4.1 KKT Conditions for Optimality 109
4.42 Solving the Full WSSR Problem 110
4.4.3 Necessary Condition for the Trivial Solution 113
4.4.4 Sufficient Condition for the Trivial Solution 114
4.5 Constrained Clustering and Active Learning with WSSR (WSSR+) . . . 116
4.5.1 Constrained Clustering 117
452 Activelearning. L oo 118
4.6 Experiments on SyntheticData 120
4.6.1 Varying Angles between Subspaces 121
4.6.2 VaryingNoiseLevels 122
4.6.3 Varying Subspace Dimensions 125
477 ExperimentsonRealData 127
4.7.1 WSSR Experiments on MNIST Data 127
472 WSSR Experimentson USPSData 132
4773 WSSR+Experiments 133
4.8 Conclusions & Future Work 136
4.A Appendix 138
4.A.1 WSSR+ Experiments on UCI Benchmark Data 138
4.A.2 WSSR+ Experiments on Cancer Gene Data 140

5 Clustering the Amazon Web-Scraped Text Data 143

5.1 Introduction 144

CONTENTS

IX

5.2 Vector Space Representation

5.2.1 Document Term Matrix (DTM)

5.2.2 Term Frequency - Inverse Document Frequency (TF-IDF)

5.3 Document Clustering Methods

5.3.1 Principal Direction Divisive Partitioning (PDDP)

5.3.2 Latent Dirichlet Allocation (LDA)

5.4 Minimum Angle Clustering MAC)

5.5 Experimental Results

5.6 Conclusions & Future Work

6 Conclusions & Future Work

Bibliography

146
147

. 148

151
151
153
156
160
163

165

169

List of Figures

1.2.1

2.1.1

2.1.2

2.3.1

232

24.1

34.1

34.2

43.1

A collection of points sampled in a three-dimensional ambient space

from a union of three subspaces.

An example of applying /-means clustering to two data sets both
with convex clusters. Also shown are the location updates of cluster
centres for a total number of 10 iterations. Left: A -means successfully
identifies three clusters that are of the same size. Right: K -means fails
when the cluster sizes are very imbalanced.
Visualisation of /K'-means clustering results with varying K applied to
two data sets with non-linearly separable clusters.
Histograms of the degree distribution based on the affinity matrix. . . .
A visualisation of the two eigenvectors corresponding to the two small-
est eigenvalues of Ly, (first and second row), and the data points
coloured in the assigned cluster labels (third row).

Data points drawn from a union of two subspaces in R3.

Performance results measured by NMI on six motion segmentation data
sets with KSC initialisation.
Performance results measured by NMI on Yale Faces data sets with

KSC initialisation. e

An illustration of the effect of the data normalisation step, which pro-
vides the rationale for the use of the inverse cosine similarity. Left: The
original data points. Right: The data points that have been normalised

tolieontheunitsphere.

26

LIST OF FIGURES XI

4.3.2
4.4.1
4.6.1

4.6.2

4.6.3

4.6.4

4.7.1

4.A.1

5.2.1
5.2.2
54.1

A geometric illustration of the necessity for stretching pointsin Y. . . 107
A geometric interpretation for when the trivial solution is obtained. . . 116
Three illustrations of data from two clusters under varying angles be-

tweenthe two. 121
Three illustrations of data from two clusters with varying noise levels. 123
Visualisation of the affinity matrix in the noise-free scenario. 124
Performance results of three methods across varying subspace dimen-
sions. For each subspace dimension ¢, 20 trials are conducted with
randomly chosen neighbourhood size k. 126
Median running times (in log-scale of seconds) of different algorithms
on the MNIST handwritten digits data. 131
The clustering accuracy (min, median, max) of various constrained

clustering algorithms over 20 trials. 140

Word clouds containing the most frequent words in the Amazon data. . 147
An illustration of the subspace structure of the US Amazon data. . . . 150
Histogram of the number of points in each subspace identified through

the Reduced Row Echelon Form (RREF) of the TF-IDF matrix. 158

List of Tables

2.1

3.1

3.2

33

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Notation for comparing two set of labels on the same data set.

The percentage of points queried before perfect cluster performance (as
evaluated by NMI) is reached on synthetic datasets.
Cluster performance of various active learning strategies on motion
segmentation data sets.o

Cluster performance on Yale Faces datasets.

Accuracy of various subspace clustering algorithms on synthetic data
with varying angles between subspaces.
Accuracy of various subspace clustering algorithms on synthetic data
with varying noise levels.,
Accuracy of various subspace clustering algorithms on synthetic data
with varying subspace dimensions.
Median clustering accuracy along with the standard deviations on the
MNIST handwritten digits data across 20 trials with P = 200.
Median clustering accuracy along with the standard deviations on the
MNIST handwritten digits data across 20 trials with P = 500.
Median clustering accuracy along with the standard deviations on the
USPS dataacross 20 trials.
Clustering accuracy of various constrained clustering methods on the

MNIST data. The initial affinity matrix for all methods is produced by

XII

LIST OF TABLES XTI
4.8 Clustering accuracy of various constrained clustering methods on the
USPS data. The initial affinity matrix for all methods is produced by

WSSR. . e 135

4.9 A summary of the UCI benchmark datasets. 138
4.10 Clustering accuracy of various spectral-based constrained clustering

methods on UCI benchmark datasets. 139

4.11 Summary information on the gene expression data sets. 141
4.12 Performance comparison (using accuracy) with state-of-the-art (con-

strained) subspace clustering methods. 142

5.1 A summary of the five categories in the Amazon web-scraped data. . . . 146
5.2 Alist of the ten most highly weighted words within each product category

according to the TF-IDF representation. 149

5.3 A summary of notations for LDA. 154
5.4 Clustering performance and runtime comparison (in seconds) on the

Amazon data set using TF-IDF representation. 162

Chapter 1

Introduction

The early history of cluster analysis dates back to Driver and Kroeber (1932) where it was
first applied in anthropology. Clustering is the art of grouping a collection of unlabelled
data points (usually represented as a vector of measurements in a multidimensional space)
into a number of clusters, such that data points lie in the same cluster are more similar to
each other compared to data points in different clusters (Jain et al., 1999). Myriad appli-
cations of clustering can be found across many fields, for example biological sequence
analysis, medical imaging, social network analysis, and recommender systems (Guo,
2013).

Due to the growing computational capacity in recent years, many applications in
the aforementioned fields are able to collect and process data in gigantic amounts and
with a large number of features. Classical clustering methods such as K -means cluster-
ing (MacQueen, 1967) can still be applied to large-scale problems, whilst maintaining
a similar level of cluster performance. However when the number of features is much
larger than the number of data points, it becomes less straightforward and potentially
ineffective to directly apply the existing clustering methodologies due to the curse-of-
dimensionality (Bellman, 1966). It refers to the fact that the volume of space increases
exponentially as the dimensionality increases, which means that the amount of data
that can densely fill a low-dimensional space would become extremely sparse in higher
dimensions. As a result, the Euclidean distances among all pairs of points become more

and more similar to each other with the increase of dimensions.

2 CHAPTER 1. INTRODUCTION

As such, it is desirable to have methods that can handle high-dimensional data ef-
fectively and efficiently. A large amount of research has emerged in recent years to
tackle the challenges of high-dimensionality in clustering, for example in gene sequenc-
ing (McWilliams and Montana, 2014), motion segmentation (Rao et al., 2010), and image
recognition (You et al., 2016). It has been observed that high-dimensional data often
lie in lower dimensional linear / affine subspaces or non-linear manifolds, rather than
uniformly distributed in a high-dimensional ambient space (Elhamifar and Vidal, 2013).

Some previous work have approached problems in motion segmentation and image
recognition with manifold clustering techniques (Saul and Roweis, 2003; Souvenir and
Pless, 2005; Goh and Vidal, 2007; Elhamifar and Vidal, 2011). Many of these methods
utilise the fact that points that lie in the same local neighbourhood of a manifold can be
well approximately by a low-dimensional affine subspace (Saul and Roweis, 2003). As
such, subspace properties can be used to obtain pairwise proximity between points and
to ultimately obtain the data segmentation. The type of methods that model a collection
of high-dimensional data as a union of lower dimensional subspaces is referred to as

subspace clustering (Vidal, 2011), which is the main focus of this thesis.

1.1 Notation

We aim to use a consistent notation throughout this thesis. However, it means that our
adopted notations may at times deviate from some of the conventions used in the related
literature. Scalars are denoted by lowercase letters, such as z € R. Vectors are denoted
by lowercase bold letters, such as € RP. All vectors are assumed to be column vectors.
Mathematical sets are denoted by uppercase calligraphic letters, such as X' = {wl}fvzl
Matrices are denoted by uppercase letters, such as X = [x1,..., @ N]T € RY*P The
i-th row of X is denoted as X;. (€ {1,..., N}), and the j-th column of X is denoted
as X; (je{l,...,P}.

The P by P identity matrix is denoted by Ip, which is abbreviated to / when there
is no ambiguity about its dimensionality. We denote 1p = diag (Ip) = [1,...,1]" as

the P-dimensional vector with all ones, which corresponds to the vector that contains

CHAPTER 1. INTRODUCTION 3

the diagonal entries of /. We abbreviate 1p to 1 when there is no ambiguity about its
dimensionality. We use e; to denote the basis vector with appropriate dimensionality, in

which it takes the value one at the i-th location and zero everywhere else.

1.2 Motivation

An example of clustering data that contain groups of points from varying subspaces is
shown in Figure 1.2.1. Some data points drawn from two one-dimensional subspaces
S1 and S,, and other data points lie on a two-dimensional plane S3. In general, given
a collection of data points {z; € R” }Z]il drawn from a union of K linear or affine
subspaces {Sk}szl with dimensions ¢, = dim(Sy), 0 < g, < P, a subspace Sy can be

defined as follows (Vidal, 2011)
Sy={xeR z=p,+Viy}, ke{l,....K}. (1.2.1)

In Eq. (1.2.1), p;, € R is an arbitrary point in S, that is chosen as y;, = 0 for linear
subspaces. The columns of V}, € R”*4 are the orthonormal basis vectors for subspace
Sy which need not to be unique, and y € R% is the low-dimensional representation of .
The goal of subspace clustering is to find the number of subspaces K, the displacements
{ g}, , their subspace dimensions {q; }r_, and bases {V} }+_,, along with the partition
of points according to the subspaces.

Two common dependence structures between subspaces are independent and disjoint
subspaces, which we provide the definitions for as follows (Soltanolkotabi and Candes,

2012).

Definition 1.2.1. A collection of subspaces {Sk}szl is said to be independent if the
dimension of the union of subspaces is equal to the sum of the subspace dimensions, i.e.
dim(®E ,S;) = Son | dim(S}), where @ denotes the direct sum operator.

Definition 1.2.2. A collection of subspaces {Sk}szl 1s said to be disjoint if every pair
of subspaces S; and S; intersect only at the origin, i.e. dim(S; ¢ S;) = dim(S;) +
dim(S;), Vi,je{l,...,K}.

4 CHAPTER 1. INTRODUCTION

n

Figure 1.2.1: A collection of points sampled in a three-dimensional ambient space from
a union of three subspaces.

When K = 1, the above quantities can be obtained through Principal Component
Analysis (PCA) (Jolliffe, 2011). The problem reduces to one of finding a few principal
components that can capture most of the variability in the data. However when K > 1,
there are a number of challenges that make the subspace clustering problem difficult to

solve. Below are some of the well-known challenges (Vidal, 2011):

* It is often difficult to choose or design an appropriate measure of similarity /

distance among the high-dimensional data points.

» The existence of noise and potentially outliers in the data from many real world

applications require the development of robust subspace estimation techniques.

* The position and orientation of different subspaces can be arbitrary, and the
existence of dependence structure between subspaces makes the problem more

difficult to solve.

On top of all the aforementioned issues, a general challenge in clustering real world
data lies in the difficulty of validating the cluster performance due to the scarcity of
labelling information. In practice, it is often feasible to obtain some form of external
information either as labels, or in the form of ‘must-link’ and ‘cannot-link’ constraints
which indicate whether pairs of points belong to the same cluster or not. The model

performance could then be improved by both satisfying the constraints imposed by the

CHAPTER 1. INTRODUCTION 5

external information, and taking advantage of the external information on the labelled
points to improve the cluster performance on the unlabelled points. The problem of
clustering while utilising a fixed amount of labelling information is called constrained
clustering (Basu et al., 2008).

However, randomly labelling a small amount of the data would not necessarily
guarantee that the cluster performance would improve the most if at all (Wagstaft, 2006).
This is because the information contained in partial labels or pairwise constraint set does
not necessarily get propagated to the unlabelled points. Setting the pairwise similarity to
zero for points that are known to have ‘cannot-link’ relationships does not mean that they
will definitely get assigned to different clusters (Li et al., 2009). Therefore, it is desirable
to query the external information in an active manner, so that the cluster performance
would improve effectively and efficiently over time. The problem of iteratively querying
informative and potentially misclassified data so as to maximally improve the model

performance is known as active learning (Settles, 2009).

1.3 Thesis Contributions

Our research creates a unified framework for subspace clustering, constrained clustering,
and active learning. This thesis contains three main methodological contributions.

In Chapter 3, we propose a Subspace Clustering with Active Learning (SCAL)
framework (Peng and Pavlidis, 2019) for the K -subspace clustering (KSC) algorithm
(Agarwal and Mustafa, 2004). KSC is a K-means-like iterative algorithm that alternates
between subspace estimation and cluster assignment. Although the algorithm usually
converges in a few iterations, it is only guaranteed to converge to a local optimum. Our
proposed framework consists of two stages that sequentially improve the performance of
KSC in an effective and efficient manner.

In the first stage, our proposed active learning strategy exploits the structure of the
current subspaces and queries the most informative and potentially misclassified points.
In the second stage, we propose a constrained subspace clustering algorithm which

updates the cluster labels and subspace structure based on the queried information whilst

6 CHAPTER 1. INTRODUCTION

satisfying the constraints imposed by the queried points. The proposed framework is
designed for iterative subspace clustering methods. However, it can also be applied
to other types of subspace clustering methods, for example, spectral-based subspace
clustering.

In Chapter 4, we design a unified framework of active learning and constrained
clustering for spectral-based subspace clustering methods. We propose a spectral-based
subspace clustering methodology, named Weighted Sparse Simplex Representation
(WSSR). It has been shown to enjoy excellent performance in a range of synthetic and
real data sets. In the presence of a fixed amount of labelling information or pairwise
constraints, we show that our proposed methodology is flexible enough to incorporate
them into the problem formulation and satisfy the constraints, thus leading to effective
improvement in the cluster performance. Finally we show that our proposed active
learning strategy in Chapter 3 can be naturally incorporated in the spectral-based setting.

In Chapter 5, we develop an algebraic subspace clustering methodology named Mini-
mum Angle Clustering (MAC) (Peng et al., 2018). It is motivated by the application of
clustering Amazon product names, which are mostly composed of very short texts. The
resulting TF-IDF representation for the text data are both sparse and high-dimensional.
However, most of the variability for each category can be captured well with a much
lower dimensional subspace. MAC first utilises the Reduced Row Echelon Form (RREF)
technique to identify a large number of subspaces that each contains very few points.
We propose a subspace proximity measure based on principal angles (Drmac, 2000),
which is used to merge the large number of subspaces into meaningful clusters. On
the application of clustering Amazon product names, MAC has been shown to perform
favourably against other well-established document clustering and subspace clustering

methods.

Chapter 2

Background

In this chapter, we first provide a review of the two most fundamental algorithms in
clustering, which are the building blocks of our work in later chapters. In Section 2.1,
we introduce K -means clustering algorithm (Forgy, 1965; MacQueen, 1967), which
groups data points into a pre-specified number of clusters by assigning each data point
to its closest centroid in an iterative manner. However, K -means clustering can only
identify clusters with spherical shapes. One approach to overcome this limitation is by
first building a similarity graph of the data, and then solving a graph partitioning problem.
In Section 2.2, we discuss how to build a similarity graph of the data before introducing
two types of graph partitioning problems. These problems are NP-hard to solve, but
their relaxations can be solved via the eigen-decomposition of the graph Laplacian
matrices. We introduce two popular spectral clustering algorithms in Section 2.3, and
discuss their connections to graph cut problems. In Section 2.4, we review the relevant
literature for each of the four main categories of subspace clustering methods: algebraic,
iterative, spectral, and statistical methods. Finally, we introduce the most commonly
used external performance measures for clustering in Section 2.5 — Purity (Zhao and
Karypis, 2001), Adjusted Rand Index (ARI) (Hubert and Arabie, 1985), and Normalised
Mutual Information (NMI) (Cover and Thomas, 2012). When the ground truth labels are
available, these measures can be used to evaluate the agreement between the assigned

cluster labels and the ground truth labels.

8 CHAPTER 2. BACKGROUND

2.1 K-Means Clustering

K-means clustering is one of the most fundamental and well-known algorithms in
clustering. The term ‘K -means’ is first used in MacQueen (1967), though it is also
known as Lloyd-Forgy since Forgy proposed essentially the same method (Forgy, 1965).
It groups data into a predefined number of clusters such that the points that lie in the
same cluster are closer to each other, most commonly in terms of the Euclidean distance,
as compared to points in different clusters. It is an iterative algorithm that alternates
between: (a) calculating the cluster centres given the cluster labels; and (b) updating
the cluster labels given the cluster centres. Given a data set X = {x;,...,xx} with N
points, K -means clustering minimises the following objective function (See Section 9.1

in Bishop (2006)):
K
1 2
L2 =30 3 e . @.L1)

k=1 ;€02

where {p1,..., i} denotes the set of K cluster centres and 2 = {(2y,..., 2k}

denotes a partitioning of the data into K clusters. The aim is to minimise the sum of

squared Euclidean distances between all data points and their corresponding cluster
centres.

Finding a global minimum to the objective in Eq. (2.1.1) is NP-hard (Aloise et al.,

2009). K-means clustering is the most common algorithm to minimise the objective

through iterative refinement. The algorithm in procedural form is stated as follows:

1. Given the number of clusters K, randomly select K distinct points as the initial

cluster centres p\”, ..., ,u,gg). !

2. Assignment step: For each data point x;, calculate the distance from x; to all

cluster centres. Assign x; to the cluster whose centre it is closest to

w(t)—ar 1 ‘
/= arg min

1
ke{177K}

(t—1)

2
T, — Wy, , Vie{l,...,N}, (2.1.2)

where t (t = 1,2,3,...) is the iteration number.

! K-means clustering is very sensitive to initialisation. Different initialisations can lead to very different
results.

CHAPTER 2. BACKGROUND 9

3. Update step: Recalculate the cluster centres by averaging over all data points that

lie in the same cluster

py!) =

1
— > o=, (2.1.3)

n(t
k wGQ](Ct_l)

where n,(f_l) = |(2,(:_1)| denotes the cardinality of cluster k in iteration (¢t — 1).

4. Iterate between step 2 and 3 until a stopping criterion is reached. The standard

criterion is to stop if there is no further change to the cluster labels.

Although K-means clustering monotonically decreases the objective in Eq. (2.1.1), it is

only guaranteed to converge to a local minimum.

61 1
08
5r "
/ 08
/ 3
A / sl 10
0.2
ar 0 ety
]
02T &:Il
al :
» 04t % e
1t 10 : 6f
08
o 1 t
-1 0 1 2 3 4 5 6 7 8 9 1 0.8 0.6 0.4 0.2 o 02 04 06 08 1
(a) Balanced clusters. (b) Imbalanced clusters.

Figure 2.1.1: An example of applying K -means clustering to two data sets both with
convex clusters. Also shown are the location updates of cluster centres for a total number
of 10 iterations. Left: K -means successfully identifies three clusters that are of the same
size. Right: K-means fails when the cluster sizes are very imbalanced.

Figure 2.1.1 provides a visualisation of how K -means clustering updates the cluster
centres over iterations. Each figure shows the path of each cluster centre at every iteration
for a total number of 10 iterations for both data sets. The initial cluster centres of the
data example in (a) are randomly initialised, whereas the initial cluster centres of the
data example in (b) are chosen such that each cluster centre lies within their true class.
We see that K '-means clustering fails to recover the correct cluster labels in data example
(b), in which one cluster is ostensibly larger than the other two. It is generally the case

that K -means algorithm tends to generate similar-sized clusters.

10 CHAPTER 2. BACKGROUND

In addition, K -means clustering is very sensitive to the locations of the initial cluster
centres. Hence, either multiple initial cluster centres should be used or a sensible
initialisation strategy should be adopted. There are numerous advanced initialisation
strategies. For example, K -means++ (Arthur and Vassilvitskii, 2006) picks points as
cluster centres in a sequential manner, which takes into account the Euclidean distance
between each point to all of the existing cluster centres. The main idea is that the initial
centroids should be far away from each other. It has been shown that this strategy
improves both the speed and accuracy of K'-means clustering.

Another drawback of the classical K-means clustering is that it cannot handle non-
convex clusters. Shown in Figure 2.1.2 are the results of applying K-means to two
data sets with non-convex clusters. Since none of these clusters is linearly separable,
K-means algorithm struggles to recover the correct grouping regardless of the chosen

number of clusters K.

K=2 K=3 K=5
1.00 SRR 1.00 ..'i *?' 1.00 SR
& 5,)
. . ’
075) 075 ", 075 -
. . ;4: -

-1.0 -05 00 05 1.0 15 20 -1.0 -05 00 05 1.0 15 20 -1.0 -05 00 05 10 15 20

K=2
10 10
05 05
-
0.0 2 Q"", 0.0
[’
g e
N o
'3 3%. s h".'
ate)
RS
. % .‘.,\;I
798 ,onde
e, g~ - .
-1.0 LR pil -1.0

Figure 2.1.2: Visualisation of /K'-means clustering results with varying K applied to two
data sets with non-linearly separable clusters.

In order to handle non-linearly separable clusters, one could use kernel /K'-means
clustering (Girolami, 2002; Dhillon et al., 2004; Filippone et al., 2008). It maps the

data to a higher-dimensional inner product feature space. The data vector in /{-means

CHAPTER 2. BACKGROUND 11

is replaced with the projected data vector in kernel K-means. The distance from the
projected data to their corresponding cluster centroids can be calculated through the use
of kernel functions.

Another way of handling non-linearly separable clusters is by first building a suitable
similarity graph / matrix of the data, then solving a graph partitioning problem to obtain
the final cluster labels. This type of approach is called Spectral Clustering (Shi and
Malik, 2000; Ng et al., 2002). Dhillon et al. (2004) have shown that a generalisation
of the kernel K -means algorithm is equivalent to the normalised cut spectral clustering
algorithm proposed in Ng et al. (2002). In the next two sections, we will familiarise the
reader with graph partitioning problems, and provide a detailed introduction to spectral

clustering.

2.2 Graph Partitioning Problem

A similarity graph uses nodes and edges to conceptually represent data points and the
pairwise similarities between them. The problem of partitioning a graph mimics that of
clustering data points into groups. In clustering, the aim is to keep points that are similar
in the same group and points that are dissimilar in different groups. In graph partitioning,
the aim is to partition a graph such that the resulting sub-graphs are well-connected by
edges with high weights indicating high similarity between corresponding nodes. At
the same time, the edges between different sub-graphs should have low weights. In
this section, we first introduce different similarity graphs before introducing the graph
partitioning problem. A thorough discussion on this topic and spectral clustering can be

found in Von Luxburg (2007).

2.2.1 Similarity Graphs

Given a set of N data points X = {x,...,zy} and the pairwise similarity values
w;; € RT, we can represent a data set and the connectivity information among the

points through a similarity graph. A graph G = (V, £) is composed of a set of nodes

12 CHAPTER 2. BACKGROUND

V and edges £. Each node i corresponds to a data point x;, and each edge represents
a connection between two data points. There are two types of graphs: directed and
undirected. Each edge in a directed graph is pointed towards a node, and the two edge
weights w;; and w;; between node 7 and j are not necessarily the same. Here we restrict
our attention to undirected graphs, with w;; = w;; for all pairs of 7, j. The edge weights
correspond to the pairwise similarity values between data points, with a zero edge weight
indicating no connection. By default, we consider there is no connection between x; and
itself, i.e. w;; = 0.

We introduce a few notions here to better characterise a similarity graph. An adja-
cency matrix A is an N x N matrix in which A;; denotes the edge weight / similarity
w;; between node 7 and j. The connectivity of a node x; is formally called the degree, d;,
which is calculated as the sum of all edge weights attached to the node, d; = Zjvzl Wij.
A degree matrix D is an N x N diagonal matrix, in which the ¢-th diagonal entry D;;
represents the degree of node 7. Given a subset of vertices S C V), the complement of the
subset is denoted as S = V\S.

A subset S of a graph is connected if any pair of nodes in S can be connected by
a sequence of edges whose corresponding nodes also lie in the set S. In graph theory,
a connected component of an undirected graph is a sub-graph in which there exists a
path between any pair of nodes that are connected by a sequence of edges. Additionally,
this sub-graph is connected to no additional nodes in the graph (Chung, 1997). For the
purpose of clustering, we first introduce a few ways of constructing a similarity graph
before discussing how to solve a graph cut problem.

The ¢ neighbourhood graph. This type of graph is constructed in such a way that
two nodes x; and x; are connected if the distance between them is less than a certain
threshold . Similarly, there exists an edge between two nodes x; and x; if the pairwise
similarity is above a certain threshold <. In the £ neighbourhood graph, the pairwise
relationship between nodes are either connected or not connected, thus it is usually

considered as a type of unweighted graph.

The k nearest neighbour (k£-NN) graph. The £-NN graph creates an edge between

CHAPTER 2. BACKGROUND 13

each node to its k£ nearest neighbours. In particular, we call it a mutual k nearest
neighbour graph if an edge exists only if both nodes are in each other’s k nearest
neighbourhood. Another version of this graph is to allow an edge between a pair of data
points as long as one of the nodes is in the other’s £ nearest neighbourhood. In both
cases, a symmetric similarity matrix can be obtained. The k-NN graph is one of the most
commonly used graphs in spectral clustering.

The fully connected graph. All pairwise edge weights are non-zero in this type
of similarity graph. The edge weight is calculated either using a similarity function or

distance measure. A common choice for a similarity function is the Gaussian similarity

—|lzi—=; 13
202

function: w;; = exp { }, in which o is called the bandwidth parameter that
controls the size of the neighbourhood. The choice of o is crucial to the quality of
the resulting partitioning of the graph. We can consider the € neighbourhood graph

as a pruned version of the fully connected graph, as it can be obtained from the fully

connected graph after a threshold level ¢ is specified.

2.2.2 Graph Cut Objectives

Once a similarity graph is constructed, the next problem to be addressed is how to
partition the graph into a number of sub-graphs. Ideally, one would want to cut through a
small number of edges with low weights in order to obtain a well-connected and balanced
partition. Well-connected in the sense that edges within each sub-graph should have
relatively high weights, and balanced in the sense that the sizes of different sub-graphs
are not too different from each other. Both of these are desirable properties in many real-
world applications. For example, parallel computing involves the problem of assigning
and processes evenly across processors whilst minimising communication (Andreev and
Racke, 2006).

This leads one to ask the following two questions: (a) How many edges should we

cut? (b) Which edges should we cut? To begin with, the cut for a K -partitioning on a set

14 CHAPTER 2. BACKGROUND

of nodes S is defined as

K
cut(Sy, . .., Sk 12W (S, Sk), (2.2.1)
k=1

[\]

where W (S, Sk) = >, ¢ Spw;e8, Wij- Note that this is simply the sum of weights for
all edges that need to be cut in order to obtain the partition. It does not take into account
the sparsity of the cut, in that two different graph partitions that cut through different
number of edges could achieve the same value according to Eq. (2.2.1). Furthermore, it
also does not consider whether the sizes of the sub-graphs are similar or not.

We introduce two common graph cut objectives that include these two criteria: ratio
cut (Hagen and Kahng, 1992) and normalised cut (Shi and Malik, 2000). The main
difference between the two lies in how the size of a set is measured. Ratio cut measures
the size of a set S through its cardinality, |S|, and normalised cut measures the size of a
set through the total edge weights contained in a set, vol(S) = >, d;. Explicitly, these

two criteria can be expressed as follows

K 5 K &

. 1 W(Sk,Sk) cut(Sk,Sk)
RatioCut(Sy, ..., Sk) == Y —— Tk N~ 2T Tk 222
A P P T P Y 222

1 W (S S e cut(Sy, S)

— =\ 0wk N PR Ok)
NCut(Sy, ..., Sk) ._2; Yol(S0) ; ol(S0) (2.2.3)

Both of these criteria can be optimised through minimising cut(S;, S;) and maximising
the size of each subset simultaneously. Algorithmically, these objectives that incorporate
both considerations are NP-hard to solve (Wagner and Wagner, 1993). One heuristic
approach that solves a relaxation of the graph cut problem guided by these two criteria is

spectral clustering, which we will introduce next in Section 2.3.

2.3 Spectral Clustering

In this section, we introduce different spectral clustering algorithms that solve a relaxed

version of the graph cut problem as discussed in Section 2.2. A relaxation of the graph

CHAPTER 2. BACKGROUND 15

cut problems can be solved through the eigen-decomposition of a graph Laplacian matrix,
which can be obtained from a similarity graph. Ideas are borrowed from spectral graph
theory (Chung, 1997) to circumvent the complexity of directly optimising the graph cut
objectives.

We first discuss the most common forms of graph Laplacians and their properties in
Section 2.3.1. We demonstrate the connection between spectral clustering and the graph
cut problem with ratio cut and normalised cut objectives in Section 2.3.2 and Section 2.3.3.
A working example is provided in Section 2.3.4 to illustrate the mechanism of spectral

clustering on a synthetic data set.

2.3.1 Graph Laplacians

A graph Laplacian matrix contains information about the connectivity within a graph.
Spectral graph theory (Chung, 1997) is a field that studies the properties of different
graph Laplacian matrices.

Un-normalised graph Laplacian. There are different forms of graph Laplacian ma-
trices. The most simple un-normalised graph Laplacian L is defined as follows (Cvetkovi¢
et al., 1980)

L=D-A, (2.3.1)

where D € RV*V is the degree matrix and A € RV*¥ is the weighted adjacency matrix,
as previously introduced in Section 2.2.1. The weighted adjacency matrix A can also be
called the affinity matrix. We use these two terms interchangeably in this thesis.

Many properties of the un-normalised graph Laplacian provide useful insights into
the graph partitioning problem. For example in a bi-partitioning problem, the data are
well separated when represented using the eigenvector corresponding to the second
smallest eigenvalue of the graph Laplacian matrix. In a graph partitioning problem
with A connected components (clusters), the data points (nodes) represented using the
eigenvectors corresponding to the K zero eigenvalues of the graph Laplacian matrix
are well separated in the K-dimensional eigen space. As such, the partitioning can be

trivially detected through a simple clustering algorithm such as the /K'-means clustering.

16 CHAPTER 2. BACKGROUND

We state the relevant properties here that will be useful for our illustration of spectral
clustering later. Firstly, the un-normalised graph Laplacian is a symmetric positive
semi-definite matrix, and its eigenvalues satisfy 0 = Ay < Ay < ... < Ay. Secondly, the
smallest eigenvalue is always zero and the corresponding eigenvector is 1.

Normalised graph Laplacian. There are two well-known forms of the normalised
graph Laplacian matrix (Chung, 1997). The first one is a symmetric matrix, which is
defined as

Lym=D"2LD 3 =1 —D 2AD 3. (2.3.2)

The second one is closely related to a random walk on a graph, which is defined as
Lw=D'L=1-D"1A (2.3.3)

A random walk on a graph is a stochastic process which jumps from node to node. The
transition probability of jumping from node ¢ to j can be expressed in terms of the edge
weight w;; as p;; = % The transition matrix P can thus be expressed as P = D' A,
which is equivalent to I — Lyy,.

Many properties of the normalised graph Laplacian matrix share with the properties
of the un-normalised version. For example, zero is an eigenvalue of both forms of
the graph Laplacian matrix with the constant one eigenvector 1 up to a multiplying
constant. In addition, both forms of the normalised graph Laplacian matrix are positive

semi-definite, and have eigenvalues 0 = A\; < Ay < ... < Ay,

2.3.2 The Ratio Cut Problem

Previously, we introduced the ratio cut objective in Section 2.2.2 Eq. (2.2.2). In this
section, we first restate the objective in terms of the un-normalised graph Laplacian
matrix L. In the case of bi-partitioning and more generally K -partitioning, we show how
a relaxation of the ratio cut problem can be solved, and demonstrate the equivalence of
this relaxation to un-normalised spectral clustering (Von Luxburg, 2007).

The aim of the ratio cut problem in the bi-partitioning setting is to find two subsets

CHAPTER 2. BACKGROUND 17

{81, S-} that minimises

cut(S1,82) cut(Sy, S)

RatioCut (S5, Ss) = Sl S|
1 2

(2.3.4)

suchthat S, US, = Sand S; NS, = . Let f = [f1,..., fv]" be an indicator vector

defined as
/1S2]
. ‘S_?P x; < 817
fi = (2.3.5)
|S1]
V& %€ Sa,
fori € {1,..., N}. One can show that minimising the ratio cut objective in (2.3.4) is

equivalent to minimising f' L f subject to some constraints, which can be expressed as a

discrete minimisation problem as follows

. T
511,2‘223 Ly
s.t. fL1a,

£z =V, 236

fi as defined in (2.3.5),

S1US =S8, &SNS =0.

The first two constraints follow from the definition of f. A deduction for this equivalence
can be found in Appendix 2.A.1.

The discreteness in the entries of f makes the problem in Eq. (2.3.6) NP-hard to
solve (Wagner and Wagner, 1993). One obvious relaxation of this problem is to allow
the entries in f to take arbitrary values in R. Recall that the smallest eigenvalue is zero
that corresponds to the eigenvector with all ones, 1. The solution of this relaxed problem
£ is given by the eigenvector that corresponds to the second smallest eigenvalue of L,
which is orthogonal to 1 (Liitkepohl, 1996). Thus, (f*)T L f* serves as an approximate
minimiser to the problem in Eq. (2.3.6).

In order to obtain a bi-partitioning of the graph GG, we need to transform the real-

valued entries in f* back to discrete-valued indicators. We can consider the entries in f*

18 CHAPTER 2. BACKGROUND

as points in R, and apply K'-means clustering to f* to obtain two clusters. This is exactly
the procedure for the un-normalised spectral clustering algorithm in the case of K = 2.

For a general K -partitioning problem, we can re-express the ratio cut objective in
terms of the un-normalised graph Laplacian L in the same vein as in the bi-partitioning
scenario. Given a partition of S into K sets {Sy, ..., Sk}, the ratio cut objective can be

expressed as
K

cut Sk Sk
RatioCut(Sy, ..., S .,
) = 3 S
We denote H € RV*K as an indicator matrix in which
1
x; € Sk;’
Hy = { VIS 2.3.7)
0 otherwise,

fori € {1,...,N}and k € {1,...,K}. Let hj, € R" be the k-th column in H, then we
have H = [hy, ..., hk|. One can show that the following holds

cut (Sk, Sk)

Vke(l,. . . K} (2.3.8)
|Sk|

= (hy)" Lhy = (H'LH),,,

A deduction for this equivalence can be found in Appendix 2.A.1. As such, we have that

K
RatioCut(Sy, ..., Sk) = Y _ (H'LH),, = tr (H'LH) . (2.3.9)

k=1

Therefore, we have transformed the ratio cut objective for general K into the follow-

ing discrete trace minimisation problem involving the un-normalised graph Laplacian:

min _ tr(H"LH)

S1,eeny Sk CS
s.t. H'H =1,
H as defined in (2.3.7), (2.3.10)
K
Usi=s
k=1

SZ'QSJ‘:(Z), VZ,]E{L,K}

CHAPTER 2. BACKGROUND 19

Again, we can relax the problem by allowing the entries in H to take arbitrary values in R.
According to the Rayleigh-Ritz theorem (Liitkepohl, 1996), the solution of the relaxed
problem is given by H*, whose columns are the K eigenvectors of L that correspond
to its K smallest eigenvalues. Since the entries in * are continuous approximations
of H which encodes the exact partitioning information by construction, we can obtain
the final partitioning by applying /K -means clustering to the rows of H* instead. This
is the procedure for the un-normalised spectral clustering algorithm for general K. An

algorithmic form for un-normalised spectral clustering is shown in Algorithm 1.

Algorithm 1: Un-normalised Spectral Clustering

Input :Data affinity matrix A € RV*¥V
Number of clusters &

1. Compute the un-normalised graph Laplacian: L =D — A
2. Compute the eigen-decomposition of L

3. Let V € RY*X be the matrix whose columns contain the eigenvectors
vy, ..., Vi corresponding to the K smallest eigenvalues

4. Apply K-means clustering to the rows of V' to obtain the final cluster labels
2 =A{w,...,wn}

Output : Clusters {Sy, ..., Sk} with Sy = {i|lw; =k} for k € {1,... K}

It is worth pointing out that there is no guarantee on how close the solution obtained
from spectral clustering is to that of the optimal solution of the ratio cut objective.
In addition, the aforementioned relaxation approach is not unique. The popularity of
this relaxation approach is mainly due to the simplicity in the resulting linear algebra

problem (Von Luxburg, 2007).

2.3.3 The Normalised Cut Problem

In the previous section, we have demonstrated the connection between the ratio cut
problem and the un-normalised spectral clustering algorithm. In this section, we further
discuss the connection between the normalised cut problem (see Section 2.2.2) and

two well-known normalised spectral clustering algorithms (Shi and Malik, 2000; Ng

20 CHAPTER 2. BACKGROUND

et al., 2002). Both of these spectral clustering algorithms solve an approximation of
the normalised cut problem involving the use of different normalised graph Laplacians,
which we previously introduced in Section 2.3.1.

The normalised spectral clustering algorithm proposed in Shi and Malik (2000) uses
the random walk graph Laplacian matrix L,,. We refer to this algorithm as the random
walk spectral clustering algorithm. The other normalised spectral clustering algorithm
proposed in Ng et al. (2002) uses the symmetric graph Laplacian matrix Lgy,,. We refer
to this version as the symmetric spectral clustering algorithm.

We first show how the normalised cut problem can be re-expressed as a discrete
optimisation problem involving the un-normalised Laplacian matrix L. Through change
of variables, we transform the optimisation problem into two different formulations in-
volving L, and Ly, respectively. We show that the relaxations of these two formulations
lead to the two different normalised spectral clustering algorithms.

In the bi-partitioning setting, the normalised cut objective can be expressed as follows

cut(Sy,8y) cut(Sy, Sy)
vol (&) vol (&)

NCut (81, 8;) = (2.3.11)

such that S; US, = S and S; NS, = (). The entries in the indicator vector f are defined

as
vol(S2)
v ’ T; € 817
fi=Q Ve (2.3.12)
[yol(51)
— z&(s;)’ €Z; € 82.
fori € {1,...,N}. Similar to the ratio cut scenario, one can show that fTLf =

vol (S) - NCut(S;,S,), (Df)'1 =0, and fTDf = vol (S). A detailed deduction for
this can be found in Appendix 2.A.2. As such, we can restate the normalised cut problem
as a discrete minimisation problem involving the un-normalised graph Laplacian as

follows

CHAPTER 2. BACKGROUND 21

: T
s, LE
s.t. Df 11,

F'Df =vol(S), (2.3.13)

f as defined in (2.3.12),
SUS =S8, SNS,=0.
Again, we consider a relaxation of the above problem in which the entries in f
are allowed to take arbitrary values in R. Through a change of variable g := D> 7,
the relaxed problem can be restated using the symmetric normalised graph Laplacian

matrix Lgym as

: T
min g Lyng
geRN

st. Dig 11, (2.3.14)
lgllz = vol (S).

The solution to the above optimisation problem is given by the eigenvector of Ly, that

corresponds to its second smallest eigenvalue. It is easy to check that \ is an eigenvalue

of L, with eigenvector v if and only if X is an eigenvalue of Ly, with eigenvector Dz,

Therefore, f is the eigenvector of L, that corresponds to its second smallest eigenvalue.

The discrete cluster labels can thus be found by applying /-means clustering to either g
or f.

For a general K -partitioning problem, the entries in the indicator matrix H € RV*¥K

for the normalised cut problem is specified as follows

Hy = { VIS’ (2.3.15)

0, otherwise,

fori € {1,...,N}and k € {1, ..., K}. Following the same line of deduction as in the

ratio cut setting, one can show that the following holds

cut (Sk, Sk)

H'H=1 HDH=1
’ ’ vol (Sk)

= h] Lh,,

22 CHAPTER 2. BACKGROUND

for k € {1,..., K}. A detailed deduction for this can be found in Appendix 2.A.2. We
now restate the normalised cut problem for general K as the following discrete trace

minimisation problem

min _ tr(H"LH)

S,y SKCS
s.t. H'DH =1,
H as defined in (2.3.15), (2.3.16)
K
Usi=s,
k=1

SiﬂSj:Q), VZ,jE{l,,K}

Relaxing the discreteness condition on H and apply the change of variable 7' = D:H,
we obtain the following relaxed problem involving the symmetric normalised graph

Laplacian matrix Ly, as

min tr(T" LynT)
T

(2.3.17)
st. T'T=1.

Again, the solution to this problem is given by the matrix 7™ whose columns contain
the K eigenvectors that correspond to the K smallest eigenvalues of Lgy,,. Similarly,
H consists of the K eigenvectors of L, that correspond to its K smallest eigenvalues.
The final cluster labels can be obtained by applying K-means clustering to the rows
of H or T'. The use of H corresponds to the symmetric spectral clustering algorithm
(Ng et al., 2002), and the use of 7" corresponds to the random walk spectral clustering
algorithm (Shi and Malik, 2000). A summary for the procedures of both normalised
spectral clustering algorithms is provided in Algorithm 2 and 3.

A natural question that arises is: which of these two normalised graph Laplacians
should we use? Furthermore, should we use the un-normalised graph Laplacian or the
normalised graph Laplacians? To answer these questions, one can first check the degree
distribution of the affinity matrix. If the degrees are evenly distributed, then there should

not be a big difference in which graph Laplacian matrix is used. However if the opposite

CHAPTER 2. BACKGROUND 23

is true, then the normalised version is preferred over the un-normalised. This is because
both of these two normalised graph Laplacians take into account the size of clusters and
the within-cluster connectivity.

For both un-normalised and random walk spectral clustering, the eigenvectors of the
corresponding graph Laplacian L and L., are used as the input to K -means clustering.
Although this is also the case for symmetric spectral clustering, it is worth noting that
A is an eigenvalue of L,, with eigenvector v if and only if A is an eigenvalue of Ly,
with eigenvector D3v. That is, the eigenvectors of Ly, are obtained by multiplying the
eigenvectors of L, with Dz . This means that if some nodes have very small total edge
weights, then the corresponding entries in the eigenvectors are very small as well. The
arguments in Von Luxburg (2007) are in favour of the random walk spectral clustering for
this reason. However, this issue of having small values in the eigenvectors are resolved
by an additional row normalisation step in the symmetric spectral clustering algorithm.
In addition, if a point has very weak connections to the remaining points in a data set,
then there is reason to believe that it might be an outlier. Thus, the cluster label does not

matter that much after all.

Algorithm 2: Spectral Clustering (Shi and Malik, 2000)

Input :Data affinity matrix A € RV*¥V
Number of clusters &

1. Compute the normalised graph Laplacian: L, = [— D1 A
2. Compute the eigen-decomposition of Ly,

3. Let V € RY*X be the matrix whose columns contain the eigenvectors
vy, ...,V corresponding to the /K smallest eigenvalues of L.

4. Group the rows of V' with the K -means algorithm into K clusters

Output : Clusters {Sy, ..., Sk} with Sy = {i|lw; = k} fork € {1,..., K}

2.3.4 Spectral Clustering - An Example

In this section, we apply spectral clustering to the two data sets with non-convex clusters

that we used in Section 2.1 Figure 2.1.2. Previously, we have shown that K-means

24 CHAPTER 2. BACKGROUND

Algorithm 3: Spectral Clustering (Ng et al., 2002)

Input :Data affinity matrix A € RV*V
Number of clusters K

[S—

. Compute the normalised graph Laplacian: Ly, = I — D 2AD™ 2
2. Compute the eigen-decomposition of Lgyn

3. Let U € RV*K be the matrix whose columns contain the eigenvectors
V1, ..., Vg corresponding to the K smallest eigenvalues of Ly,

4. Normalise the rows in U to have unit length under the ¢5-norm

5. Group the normalised rows in V' with the K'-means algorithm into K clusters

Output : Clusters {Si, ..., Sk} with Sy = {i|lw; = k} fork € {1,..., K}

clustering struggles to find a good partitioning of the data regardless of the chosen
number of clusters. Here we show that spectral clustering is capable of finding the correct
partitioning of the data on both examples.

As a first step, we need to determine the similarity graph thus construct the data
affinity matrix. In Section 2.2.1, we discussed a few options for similarity graphs. On
these two data sets, we experiment with both the £-NN graph and the fully connected
graph with Gaussian similarity function. Both graphs have a tuning parameter: in k-NN
graph, k controls the neighbourhood size; in Gaussian similarity function, o controls
the neighbourhood size. When the Gaussian similarity function is used as the proximity
measure in the k-NN graph, we observe that both a k-NN graph with £ = 10 and a
fully connected graph with 0 = 100 lead to the correct data partitioning. For illustration
purpose, we will continue our discussion using the £-NN graph with k£ = 10.

Once the data affinity matrix is constructed, the next choice to make is which graph
Laplacian matrix to construct. We discussed un-normalised spectral clustering, random
walk spectral clustering, and symmetric spectral clustering in Section 2.3.2 and 2.3.3. We
mentioned that the decision between un-normalised and normalised spectral clustering is
dependent on the degree distribution. It does not make much of a difference when the
degrees are evenly distributed, otherwise normalised distribution is often preferred over

the un-normalised version (Von Luxburg, 2007). Histograms for the degree distribution

CHAPTER 2. BACKGROUND 25

of both data sets are shown in Figure 2.3.1. It is clear to see that the two histograms
exhibit a bell shape, which suggests that the degrees are far from evenly distributed.
Therefore, we narrow the options down to normalised graph Laplacians. Out of the two
normalised graph Laplacians L, and Lgy,, we choose to use Ly, as its eigenvectors

account for the degree distribution.

Two Moons Two Circles

o
w

Frequency
Frequency

=

0.2+

0' A I

0.0-+—=m Iv r
6 8

10
Degrees

0.24
I 0.14
il
12 14

;I‘”
6 8

10
Degrees

1

‘I.
2

y

14

Figure 2.3.1: Histograms of the degree distribution based on the affinity matrix.

We apply eigen-decomposition to each of the two symmetric graph Laplacians,
and obtain its K = 2 smallest eigenvalues and their corresponding eigenvectors. A
visualisation of the first and second eigenvectors are provided in Figure 2.3.2. The points
are coloured in their true cluster labels. It can be seen that the data are clearly separable
in both data examples. We apply K -means clustering to the two eigenvectors after row
normalisation, and a visualisation of the data coloured in the assigned cluster labels can
also be found in the bottom row of Figure 2.3.2. We can see that spectral clustering has

correctly identified the clusters on both data examples.

2.4 Subspace Clustering

So far, we have introduced K -means clustering and spectral clustering, which are two
of the most fundamental approaches in clustering. However, the performance of these
methods suffers in the presence of high-dimensionality, as is previously mentioned in
Chapter 1. The curse-of-dimensionality, along with the exponential increase in the

amount of high-dimensional data in recent years, largely motivated an active research

26

CHAPTER 2. BACKGROUND

-0.01

!
Fd
o
=

-0.03

Values in the eigenvector

-0.04

-0.05

0.01

0.00

-0.01

-0.02

-0.03

Values in the eigenvector

-0.04

-0.05

1.00

0.75

0.50

0.25

X[:,

0.00

-0.25

-0.50

1st eigenvector

600 800 1000
Index of points

=
~
S
S
'S
S
S

1st eigenvector

e

0 200

400

600

800

1000

Index of points

-0.020

-0.025

-0.030

-0.035

Values in the eigenvector

-0.040

-0.045

0.02

0.01

0.00

! !
g el
o o
= —

!
o
o
@

Values in the eigenvector

-0.04

-0.05

1.0

0.5

0.0

X[:,2]

-0.5

-1.0

1st eigenvector

200 400 600 800 1000
Index of points

2nd eigenvector

AT iR

0

T

200

400

600

800

1000

Index of points

bt
g

& ¥

X:,1]

Figure 2.3.2: A visualisation of the two eigenvectors corresponding to the two smallest
eigenvalues of Ly, (first and second row), and the data points coloured in the assigned
cluster labels (third row).

area called subspace clustering. Subspace clustering is motivated by the observation

that high-dimensional data can often be summarised well in a much lower-dimensional

subspace (Elhamifar and Vidal, 2013).

CHAPTER 2. BACKGROUND 27

Existing subspace clustering methods mainly fall under four different categories:
iterative methods, spectral methods, algebraic methods, and statistical methods. We
provide an overview of these different types of methods in the remainder of this section.
In particular, our methodological contributions from Chapter 3 to 5 are based upon

iterative, spectral, and algebraic methods respectively.

2.4.1 Iterative Methods

Iterative subspace clustering methods alternate between assigning points to subspaces
and estimating the corresponding subspaces given the cluster labels (Bradley and Man-
gasarian, 2000; Tseng, 2000; Agarwal and Mustafa, 2004; Wang et al., 2009). Note that
the general concept of iterative subspace methods resembles that of /' -means clustering,
except that the cluster centroid is replaced by the subspace basis.

K-Plane Clustering (KPC) (Bradley and Mangasarian, 2000) is a generalisation of
K-means clustering from modelling the data as groups of spherical clusters to modelling

the data as drawn from multiple hyperplanes,
Pr={zeR"|z’vy =}, Vke{l,.. . K}. (2.4.1)

The authors showed that the solution (v, ;) that gives the minimising hyperplane for a
group of points is given by the smallest eigenvalue and its corresponding eigenvector of

the following symmetric positive semi-definite matrix,

1
By =X (I — —11T) X, (2.4.2)

g

where the rows of X, € R™*¥ correspond to the n;, points that are assigned to cluster k.
In Eq. (2.4.1), vy, 1s given by the eigenvector that corresponds to the smallest eigenvalue
of By as given in Eq. (2.4.2), and 4 is given by v, = nlleXk.vk. Similar to K -means
clustering, the algorithm iterates between assigning each point to the closest hyperplane
and estimating the hyperplane for each cluster of points.

K-Subspace Clustering (KSC) is one of the most popular iterative methods that

28 CHAPTER 2. BACKGROUND

has been invented and reinvented several times (Tseng, 2000; Agarwal and Mustafa,
2004; Wang et al., 2009). Tseng (2000) first generalised both K -means clustering which
considers the cluster centre as a point, and K -plane clustering which represents each
cluster as a hyperplane, to that of /-subspace clustering (KSC). Given that the data lie
in a P-dimensional ambient space, KSC represents each cluster with a g-dimensional
subspace (0 < ¢ < (P — 1)). It is easy to see that both K-means (¢ = 0) and K -planes
(¢ = P — 1) are two special cases of this generic framework.

We present the base algorithm as described in both Agarwal and Mustafa (2004) and
Wang et al. (2009) as follows. Given the set of N data points X = {xi}f\il, the aim is
to find a set of subspace bases V = {V, € R” Xq}szl and cluster labels {wi}ﬁvzl such
that the overall reconstruction error is minimised. Concretely, the loss function can be

expressed as follows

Wi ¥ w;

LX) = > = Vo, Vi3, (2.4.3)
k=1 @€,

in which the number of subspaces K is assumed to be known. Given a set of cluster
labels, the subspace bases V = {Vj,...,Vx} can be obtained by applying Principal
Component Analysis (PCA) (Jolliffe, 2011) to each group of data points from the same
subspace such that the total reconstruction error in Eq. (2.4.3) is minimised. The columns
in Vj, are the top-¢q principal components for the k-th subspace. The basis matrix Vj
for each subspace k can be obtained through the eigen-decomposition of its covariance

matrix as

(X — 1) " (X5 — 1)) = VEAL(V)T, (2.4.4)

in which X, € R™*" is denoted as the data matrix that contains the n;, points assigned
to cluster £, and p, as the column-wise mean vector of X. V;* is a P x P matrix whose
columns correspond to the eigenvectors of the covariance matrix of Xj, and A} is a
diagonal matrix containing the P eigenvalues.

Given the subspace bases V = {V1, ..., Vi }, the cluster label w; for a point ¢; € X

CHAPTER 2. BACKGROUND 29

can be obtained as

w; = argmin ||:BZ — VkaT:Bsz) (2.4.5)
ke{1,...,.K}

KSC initialises with a set of randomly assigned cluster labels. The iterative process
alternates between estimating the subspaces basis vectors according to Eq. (2.4.4),
and updating the cluster labels according to Eq. (2.4.5). The algorithm terminates
when the loss function value in Eq. (2.4.3) stops decreasing, and it is guaranteed to
converge to a local optimum as is the case for the standard /K-means clustering. It
is worth noting that the subspace dimensions are assumed to be known and equal in
the KSC base algorithm. However, this does not necessarily have to be the case. In
Agarwal and Mustafa (2004), the authors extend KSC by introducing a dimension
normalisation function for the determination of the corresponding subspace dimension
qx, for each subspace k (k € {1,..., K}). This function captures the trade-off between
the reconstruction error and the subspace dimension.

Median K -Flats (MKF) (Zhang et al., 2009) is an online iterative subspace cluster-
ing method that minimises the ¢, distance between a point to the corresponding subspace
as opposed to the /5 distance used in KSC. It has been observed that using the ¢; distance
measure is more robust than its {5 counterpart in the existence of a large number of
outliers in the data. As in KSC, MKF also requires that all subspace dimensions are
known and equal.

Instead of minimising the objective function in an iterative manner between subspace
estimation and cluster assignment, MKF uses stochastic gradient descent to minimise the
objective function (Christopher, 2006). The algorithm initialises with randomly allocated
points and their corresponding K subspaces. At each iteration, a random point is chosen
and allocated to its closest subspace, then the subspace is updated with stochastic gradient
descent. The process repeats until some convergence criterion is met.

Although iterative methods are conceptually simple to implement and computation-
ally fast to converge, they are sensitive to initialisation just like /-means clustering (EI-
hamifar and Vidal, 2013). An initialisation scheme called farthest insertion is proposed

in Zhang et al. (2009), which has been shown to improve the cluster performance when

30 CHAPTER 2. BACKGROUND

the data have little noise and few outliers. Based on the same idea as farthest insertion,
more recently He et al. (2016) proposed a robust algorithm for /K -subspace recovery in
the existence of outliers. The initialisation scheme first generates () candidate subspaces
(Q > K) using probabilistic farthest insertion (Ostrovsky et al., 2013). Then K out of
these () subspaces are selected based on a greedy algorithm.

Another approach to address the initialisation issue in iterative methods is to run the
algorithm multiple times and then aggregate the results. Lipor et al. (2017) proposed
Ensemble K -Subspaces (EKSS) which combines KSC with ensemble clustering. The
main idea therein is to run KSC with multiple random initialisations, and combine the
clustering results from multiple runs together. The development of EKSS is based on
the observation that even those bad initialisations of KSC yield some partially correct
cluster labels. As such, several KSC runs with bad initialisations may be combined to
form a more accurate partitioning. Given a set of /V data points, the EKSS algorithm
performs KSC for a number of times with random initialisation, then forms an N by
N co-association matrix in which the (7, j)-th entry of the matrix denotes the number
of times point ¢ and j are assigned to the same cluster. This co-association matrix is
then modified by retaining only the top-q values from either each row or each column,
in which q is a user-specified parameter. The purpose of this operation is to form a ¢
nearest neighbours graph, so that ideally each point is connected to points from the same
subspace (Heckel and Bolcskei, 2015). Spectral clustering is applied to the modified
co-association matrix to obtain the final cluster labels.

Lipor (2017) provides theoretical guarantees on the performance of EKSS. Given
EKSS with a specific choice of parameter values and by combining the clustering results
from many random initialisations of KSC, it can be shown that the entries in the co-
association matrix converge to a monotonically increasing function of the absolute value
of the inner product between pairs of points (Lipor et al. (2017, Lemma 1)). In addition,
it can cluster the points exactly under given conditions on the number of points per

subspace and the maximum affinity between subspaces. Specifically, the affinity between

CHAPTER 2. BACKGROUND 31

subspace S; and S; is defined as (Heckel and Bolcskei, 2015; Zhang and Balzano, 2016)

1

iy 4

V"Vl e, (2.4.6)

where ¢; and ¢; denote the subspace dimensions for S; and S;, V; and V; denote the
subspace bases for S; and S;. The EKSS algorithm has been shown to perform well on a
number of benchmark data sets. Although it can be suitably parallelised due to its design,

it does require more computing power to counteract the effect of bad initialisations.

2.4.2 Spectral Methods

In this section, we provide a brief review of spectral-based subspace clustering methods.
A detailed discussion of state-of-the-art spectral-based methods will be provided in
Chapter 4 Section 4.2.1. For an extensive overview of this area, we refer the reader
to Vidal (2011). We will signpost more recent literature in the rest of this section.
Spectral-based methods are based upon the self-expressiveness model (Elhamifar and
Vidal, 2013). Given a data set X = {x; € R” }i]il, the main premise of this model is
that every point «; € X can be well approximated by a linear combination of a few other
points from the same subspace. In the noise-free case, each point can be reconstructed by
using exactly ¢ points from the same linear subspace or (¢+ 1) points from the same affine
subspace, in which ¢ is the subspace dimension. Concretely, the self-expressiveness

model can be expressed as the following optimisation problem for each point:

min el + o |1Bill;
: 2.4.7)

st. x;, =Y_,08;,+ ¢,

where Y_; = [x1,...,Ti 1, @iy, ..., 2y € RPN e the data matrix without the
t-th column for x; to prevent the trivial solution of self-representation, and p is a penalty
parameter on the coefficient vector. Here 3; denotes the coefficient vector of the linear
combination in representing x;, and €; represents the difference between x; and the

linear combination Y_;3;, which is the reconstruction error term.

32 CHAPTER 2. BACKGROUND

Combining the coefficient vectors for all N points together, we obtain the coefficient

matrix B as follows

0 Bz Bz ... Bin
Bor 0 Poz ... Bon
B= |83 B2 0 ... Ban|- (2.4.8)

|Onv1 Pne Bys .. 0

where (3;; in B denotes the coefficient value in front of ; in the linear combination that
approximates ;. That is, the coefficient vectors are stored in the columns of B. Given
the coefficient matrix 5, a common way to construct a non-negative symmetric affinity
matrix A is through A = (|B| 4 |B|") /2 (Huang et al., 2015; Li et al., 2017, 2018a).
The final clustering labels can then be obtained by applying a standard spectral clustering
algorithm (Shi and Malik, 2000; Ng et al., 2002) to the affinity matrix.

Most spectral-based methods differ in the choice of the norms ||| and [|-||,. The
most influential work in the area of spectral-based subspace clustering is Sparse Subspace
Clustering (SSC) (Elhamifar and Vidal, 2009). SSC applies the ¢;-norm to the coefficient
vectors to encourage sparse solutions. In addition, it treats the existence of noise and
sparse outlying entries with the /5 and ¢;-norm respectively. This is based on the fact
that the data are often more evenly affected by noise, whereas sparse outlying entries are
more local as is reflected in its name. Theoretical guarantee for the correctness of SSC is
provided in Elhamifar and Vidal (2009), which shows that the solution vectors of SSC are
subspace-preserving when the subspaces are independent (see Chapter 1 Section 1.2 for
definition of independent subspaces). Subspace-preserving refers to the scenario where
there is no connection between points from different subspaces, thus 3;; # 0 only when
x; and x; are in the same subspace (You et al., 2016; Li et al., 2018a). In Soltanolkotabi
and Candes (2012), the correctness of SSC is further extended to the more general case
where the subspaces could have non-trivial intersections (You, 2018).

Extensions of SSC. The success of SSC has led to the development of many other

subspace clustering methods that also exploit the self-expressiveness property. Inspired

CHAPTER 2. BACKGROUND 33

by SSC, You et al. (2016) proposed a sparse subspace clustering method based on
Orthogonal Matching Pursuit (OMP) (Pati et al., 1993). The proposed method is termed
SSC-OMP, for its kinship to the original SSC algorithm. It uses OMP to recursively
select one point at a time to minimise the /5-norm of the reconstruction error term, until
a pre-specified k points are selected to be included into the sparse representation. That
is, it applies the {y-norm on the coefficient vector 5; (i € {1,...,N}). SSC-OMP is
computationally efficient, thus suitable to be applied to large-scale problems. As in SSC,
it has been shown that OMP gives a subspace-preserving representation of each data
point if the subspaces are independent. In addition, SSC-OMP has also been shown to
be subspace-preserving under certain conditions when the subspaces are not necessarily
independent.

Another subspace clustering method that is based upon SSC is called Structured
Sparse Subspace Clustering (S3C) (Li and Vidal, 2015; Li et al., 2017). A key difference
between S3C and other spectral-based methods is that it integrates the stage of learning
the representation matrix with the stage of spectral clustering. This results in an iterative
optimisation framework. The optimisation programme in the first stage incorporates
the results from spectral clustering through a new subspace structured /;-norm on
the coefficient vector. This also paves the way for further incorporation of constraint
information if there is any (Li et al., 2017, 2018b), which we will discuss in further detail
in Chapter 4.

Dense representation models. Although certain conditions have been established
for both SSC and SSC-OMP to be subspace-preserving, they are not sufficient conditions
to produce correct clustering labels. Given that each point is represented by a few other
points from the same subspace, it does not mean that all points in the same subspace form
only one connected component. This may result in over-segmentation of points from
one subspace by spectral clustering, which is known as the graph connectivity problem
(Nasihatkon and Hartley, 2011; Wang et al., 2016).

To avoid this problem, one type of spectral-based method obtains the coefficient

vector by minimising the ¢»-norm of the reconstruction error term in Eq. (2.4.7). For

34 CHAPTER 2. BACKGROUND

example, Least Squares Regression (LSR) (Lu et al., 2012) applies the ¢5-norm to both
the reconstruction error term and the coefficient vector. The data affinity matrix obtained
from the coefficient vectors are dense. Similar to LSR, Smooth Representation Clustering
(SMR) (Hu et al., 2014) also minimises the least squares error on the reconstruction error
term. In addition, it computes the graph Laplacian matrix L from a £-NN graph (See
Section 2.2.1), and then incorporate L into the objective function. We provide more
detailed discussion of the problem formulation in Chapter 4.

These ¢5-regularised problems have several nice properties. The objective of LSR
corresponds to that of ridge regression, and has a closed form solution (Hoerl and
Kennard, 1970). The objective of SMR is a smooth convex function, thus has a unique
solution. Setting the derivative of the objective with respect to the solution vector yields
the Sylvester equation, which can be solved by the Bartels-Stewart algorithm (Bartels
and Stewart, 1972).

Another well-known dense representation model is Low Rank Representation (LRR) (Liu
et al., 2010, 2012). It seeks a lowest rank representation of the data matrix with respect
to a dictionary, which is the data matrix itself. It is mentioned in Liu et al. (2010) that
the low rankness criterion is more suitable than the sparse representation one, as sparse
representation models do not necessarily capture the global structure of the data. LRR
solves a convex optimisation programme that applies the nuclear norm on the coefficient
matrix, and the ¢ ;-norm on the reconstruction error. The nuclear norm can be defined as
the sum of all the singular values of a matrix. It is a convex envelop of the rank function,
thus can serve as a convex surrogate for it. The /5 ;-norm is the sum of the ¢;-norms of
the columns of a matrix. It encourages the columns of the reconstruction error term to be
zero, which implies that the noise is specific to the data points.

Inclusion of an affine constraint. The aforementioned methods implicitly or explic-
itly deal with data that lie in linear subspaces. In general, data from affine subspaces can
also be considered as in the case of linear subspaces. This is because a P-dimensional
affine subspace S, can be considered as a (P + 1)-dimensional linear subspace that

includes S, and the origin (Elhamifar and Vidal, 2013). However, there are potential

CHAPTER 2. BACKGROUND 35

side effects of ignoring the affine structure of the data. In particular, it may result in
indistinguishability between subspaces as a result of a potential increase in the dimension
of the intersection between two subspaces.

To explicitly handle data from affine subspaces, one can include a constraint which
requires that the coefficient vector sums up to one. This is based on the fact that any point
from a ¢-dimensional affine subspace can be expressed with a combination of (¢ + 1)
other points from the same subspace (Elhamifar and Vidal (2013, Section 3.3)). The
addition of an affine constraint to the SSC problem results in Affine Sparse Subspace
Clustering (ASSC) (Li et al., 2018a). It has been observed that the ¢;-norm no longer
induces sparsity with the inclusion of an affine constraint. As a result, the affinity matrix
constructed from the coefficient matrix of ASSC is dense. It has been shown that ASSC
enjoys subspace-preserving property when the affine subspaces are independent.

There are other methods that include an affine constraint in the problem formulation,
but are not motivated by affine subspaces. Sparse Simplex Representation (SSR) is first
proposed in Huang et al. (2013) for the modelling of brain networks. It includes the
affine constraint as part of the simplex constraint to ensure that the resulting coefficient
vectors are between zero and one, which provides a probabilistic interpretation for the
coefficient values. In Sparse Manifold Clustering and Embedding (SMCE) (Elhamifar
and Vidal, 2011), the aim is to identify points that lie in the same manifold. SMCE uses
the geometrically motivated assumption that there exists a small neighbourhood for each
point, in which only the points that come from the same manifold lie approximately in the
same low-dimensional affine subspace. The proposed optimisation programme selects
a few neighbours of each data point that span a low-dimensional affine subspace near
that point. We will provide further details to these spectral-based subspace clustering

methods in Chapter 4.

2.4.3 Algebraic Methods

Algebraic methods are mostly based on linear algebra, for example matrix factorisation;

or polynomial algebra, which models the union of subspaces with a set of homogeneous

36 CHAPTER 2. BACKGROUND

polynomials. We discuss a few factorisation-based methods in Section 2.4.3.1 that
are based on either the Singular Value Decomposition (SVD) or the Reduced Row
Echelon Form (RREF) (Golub and Van Loan, 2013). In Section 2.4.3.2, we introduce the
most influential work based on polynomial algebra — Generalised Principal Component
Analysis (GPCA) (Vidal et al., 2003, 2005), and discuss some of the recent extensions
based on GPCA.

2.4.3.1 Factorisation-based Methods

Methods that are based on matrix factorisation obtain the data segmentation from a low
rank factorisation of the data matrix X € RV*? (Vidal, 2011; Elhamifar and Vidal,
2013). Assume that the data matrix X} which contains n; points in the ¢;-dimensional
subspace k (k € {1,..., K}) is noise-free, then we can express X} in terms of its
subspace basis vectors as

X, =Y, V], (2.4.9)

where Y, € R™ % ig the low-dimensional representation of the data points in subspace k,
and the columns of V}, € RF*% correspond to the basis vectors for its ¢j,-dimensional
subspace. If we order the rows of the full data matrix X according to their subspace
labels as I'X in which I' € RV*¥ is a permutation matrix, then we can express the

ordered full data matrix ' X as

Y1
Yy T
rx = WA, VT =YV (2.4.10)

Yi

If the subspaces are independent from each other, then we have r := rank(X) = > le Q>
Y € RV*" and V € R"™*P. This idea of low rank matrix factorisation is the basis of a
number of algebraic methods. For example, Boult and Brown (1991) and Costeira and
Kanade (1998) rely on the Singular Value Decomposition (SVD) of X, and Gear (1998)

utilises the Reduced Row Echelon Form (RREF) of X.

CHAPTER 2. BACKGROUND 37

Most of these methods are motivated by the motion segmentation problem. The
main objective of the motion segmentation problem is to identify a number of objects
moving independently in three dimensions, captured by a sequence of two-dimensional
images of a scene (Gear, 1998). Each rigid moving object can be described by a group
of two-dimensional feature points {(z1,v1), (¥2,y2) , ... (TN, Yn,)}. The pair (z;,y;)
(i € {1,..., Ni}) contains the horizontal and vertical coordinates of the points in one
image, where /V;, denotes the total number of points for object k. The motion of each
object is captured by a sequence of of frames that each contains a group of these feature
points. These feature points corresponding to each object can be suitably modelled as a
set of linearly independent subspaces.

SVD-based factorisation methods. Boult and Brown (1991) uses a rank-r SVD to
approximate the data matrix, X ~ USVT, where U € RV*", 3 € R™*", and V € RP*".
Given K linearly independent motions, they observe that the rank 7 is given by 3K. This
is because the location of each object captured by a moving camera can be characterised
with three-dimensional location coordinates. Thus, they reside in a three-dimensional
affine space, or four-dimensional linear space under homogeneous coordinates. A
segmentation of the motions can be obtained by applying a clustering algorithm to the
rows of U. It is worth noting that this is essentially equivalent to applying clustering on
the dimension reduced data as represented by the top-r principal component vectors.

The Costeira and Kanade algorithm (Costeira and Kanade, 1995, 1998) is also based
upon the SVD to address the motion segmentation problem. Let X =~ USVT be the
rank-r SVD approximation of the data matrix, then the pairwise affinity information can
be captured via Q = UUT € R¥*N. In the noise-free scenario, Q;; # 0 if point i and j
are in the same subspace and zero otherwise. The cluster labels can be obtained either
by applying spectral clustering to (), or by sorting and thresholding the entries in () and
forming a block-diagonal structure (Vidal, 2011). A main drawback of the algorithm is
that it is very sensitive to noise, and it is difficult to find a suitable threshold (Kanatani,
2001).

RREF-based factorisation methods. Another type of factorisation-based method

38 CHAPTER 2. BACKGROUND

relies on the Reduced Row Echelon Form (RREF). One of the earliest RREF-based meth-
ods is proposed in Gear (1994) and further developed in Gear (1998), and is motivated
by the motion segmentation application as well. A motion sequence is composed of
f image frames, and each image frame contains a number of two-dimensional points
that are associated with K independently moving objects in a three-dimensional space.
The aim is to identify which points belong to which moving objects throughout these f
frames.

The locations of the points are recorded using homogeneous coordinates W =
[wy, ... ,wN]T, where w; = [z;, v, 2i, 1]T is the location for point i (i € {1,...,N}).
Each frame is the result of a different transformation 7; € R*** of the coordinates in
Wforj e {1,...,f}. Let T = [T\,...,Ty]", then the data matrix can be obtained as
X = WTT which is of size N by P in which P = 2f. The pairs of columns in X
correspond to the horizontal and vertical coordinates of the projection of all NV points
in the image frames. In the noise-free scenario, X would have rank no greater than 4 K.
The algorithm first obtains the reduced row echelon form based on the transpose of the
data matrix, ' = rref(X "), with partial pivoting through the Gauss-Jordan elimination
process. An outline of the process can be found in Gear (1994, 1998), and is given below
in Algorithm 4.

At the end of the process, the reduced row echelon form £ would have the following

canonical form

10 ... 0 Fiop ... Fn
01 ... 0 FQ’(T+1) FQ,N

P , (2.4.11)
00 ... 1 Fguy ... Foy

in which r is the rank of F'. The first columns of F'is a r by r identity matrix, where
each row / column is called a pivot row /column. The rank tolerance parameter ¢, in
Algorithm 4 controls the resulting rank of F'. If it is too large, there would only be a few
pivot columns. If it is too close to zero, there would be more pivot columns than the rank

of the noise-free data.

CHAPTER 2. BACKGROUND 39

Algorithm 4: Reduced Row Echelon Form (RREF) with Partial Pivoting

Input: Transpose of the data matrix: Y = X T; rank tolerance parameter: ¢,

Initialisation: : = 1, j = 1
while: < 2f and j < N do
Switch rows so that max Y, ; is in row 7, where

re{i,...,2f}
Y, ; denotes the entry in the r-th row and the j-th column of Y’

ifY; ; > t, then
Divide the i-th row by Y; ; (Y] ; is the pivot)
force {1,...2f}and c # i do
Yo < Y. =Y. ; x Y, where
Y.. denotes the c-th row of Y
end
14— 1+1
end
J4+—7+1
end

The locations of the non-zero values in the reduced row echelon form provide the
grouping information. Any two columns in /' which have non-zero elements in the
same row are considered to belong to the same moving object, thus in the same cluster.
However, when the data matrix is not noise-free, the non-pivot columns F. 1) to F x
are often filled with non-zero entries only. As such, another user-specified parameter
called the grouping tolerance parameter is introduced to set small entries in the non-pivot
columns to zero. These two parameters combined have been shown to be able to tolerate
a moderate amount of noise in the data (Gear, 1998). However, the success of the
algorithm is based on the assumption that the subspaces are independent (see Chapter 1

Section 1.2 for the definition of independent subspaces).

2.4.3.2 Generalised Principal Component Analysis (GPCA)

The main idea. Generalised Principal Component Analysis (GPCA) (Vidal et al.,
2003, 2005) is an algebraic-geometric method for clustering data lying in a union
of linear subspaces. It models a union of K subspaces with a set of homogeneous
polynomials with degree /. We illustrate the main idea behind this with a simple example

shown in Figure 2.4.1, in which the union of two subspaces S; = {x|r; = 22 = 0} and

40 CHAPTER 2. BACKGROUND

Sy = {x3 =0} lie in a three-dimensional space, with normal vectors by, b, € R?
respectively.
S
_ A
. ° o o o o 4—\:10 ¢ l X2
) L]) ..: e L]) : .S2

Figure 2.4.1: Data points drawn from a union of two subspaces in R?.

The union of the two subspaces can be characterised with the following polynomial

p(x) = (b{z) (byz) =0, (2.4.12)

where b; and b, are the normal vectors that are orthogonal to points lying in subspaces

S and S respectively. Eq. (2.4.12) says that the point © = [z1, 73, xg]T either belongs

to subspace S; which gives b/ = 0, or belongs to subspace S, which has bJx = 0.
As can be inspected visually, these two subspaces can also be characterised with two

separate second-order polynomials

pl(w) = X1T3 = O, pQ(CU) = Xod3 = 0. (2413)

Let P(x) = [p1(x), p2(x)] denote the set of two polynomials in Eq. (2.4.13), then the

partial derivatives of P(x) along all basis directions can be expressed as

1
VP(x) = |22@ | = |0 a]. (2.4.14)
OP(x) T To

CHAPTER 2. BACKGROUND 41

Consider two points z; = [0,0,1]" € S; and @, = [1,1,0]" € S, from these two

subspaces respectively, the derivative of P(x) at these two points can be written as

1 0 0 0
VP(xy)= 1|0 1|, VP(x2)= |0 0]- (2.4.15)
0 0 1 1

It can be seen the the columns of VP(x;) span the orthogonal complement of S,
which is denoted as Si-. Similarly, the columns of V P(zx;) span Sy It is also worth
noting that the dimension of §;, plus the rank of its orthogonal complement given by
the gradient of the set of polynomials, is equal to the ambient space dimension, i.e.
rank (VP (x;)) +dim (S;) = 3 fori € {1,2}. As such, if we can identify one point from
each subspace, we can obtain the subspace bases and their dimensions from the gradient
of P(x) at these points.

Identifying one point per subspace can be conducted in a sequential manner. In
the noise-free scenario, one can simply start by picking a random point from the data.
When the data are noisy, one can pick a point that is closest to an existing subspace.
The algebraic distance is used in Vidal et al. (2005), which is calculated as d(x)* =
p1(x)? + po(x)? = (22 + x3) 22 in our illustrative example. If we pick x; € S as the
first point, then the next point can be obtained by dividing b] z from the polynomial
in Eq. (2.4.12). As such, we are left with p(x) = bJx = 0, which can alternatively be
expressed as the set of two polynomials P(x) = [x1, x2]. The process of dividing one
polynomial by another is called polynomial division.

The procedural form of GPCA. To summarise, the overall subspace clustering
process of GPCA consists of three stages: polynomial fitting, differentiation, and division.
As a first step, one needs to construct the polynomial with order K for a union of K
subspaces. In order to do this, note that we can rewrite Eq. (2.4.12) in a general second-

order polynomial as follows

cle + chg + cg,x§ 4+ c4x129 + c5x123 4+ cgroxy = 0. (2.4.16)

42 CHAPTER 2. BACKGROUND

Although this polynomial is non-linear in , it is linear in the coefficient vector ¢ =

[Cl, c ,Cﬁ]T.

K+P-1

In general the vector c is of length My (P) = ("%

), which corresponds to the
number of monomials in the order-K polynomial. Let v (x;) € RMx(P) denote the
vector of all monomials for z; € X, i.e. v (x;) = [#2, 22, 22, 100, 2175, To13]' € R

for the second-order polynomial in Eq. (2.4.16). Then any point x; from the union of

subspaces satisfies the following homogeneous equation
" [v(x),...,v(zy) =c"V(X) =0T, (2.4.17)

where V (X) € RMx(P)*N g called the embedded data matrix. The space spanned by
the set of all coefficient vectors that satisfy the homogeneous polynomial can be obtained
from the SVD decomposition of the embedded data matrix.

Once this is done, the process proceeds by first picking a point that is closest to one
of the subspaces and calculate the gradient of the polynomial at this point. Then we use
polynomial division to characterise the union of the remaining (K — 1) subspaces. The
process iterates between these two stages until all & subspaces are estimated and all
points are assigned to their corresponding subspaces.

Discussion. GPCA addresses the subspace clustering problem in the most general
case of an arbitrary number of subspaces with unknown and possibly different dimen-
sions, and with arbitrary intersections among pairs of subspaces. It has been shown to
perform favourably when compared to methods proposed in previous work. However, its
computational complexity increases with the number of subspaces and their dimensions,
and its performance deteriorates with the increase of the number of subspaces and their
dimensions. The GPCA model is also very sensitive to the existence of noise and outliers.
A robust extension to GPCA is proposed in Ma et al. (2008) which uses the Geometric
Information criterion (Kanatani, 1998).

GPCA is originally designed only for data that lie in a union of linear subspaces.
However, it can also be applied to data that are from affine subspaces by using homoge-

neous coordinates (Vidal, 2011). The homogeneous coordinates of € R” are given by

CHAPTER 2. BACKGROUND 43

[mT, 1] T € R®+D, An affine subspace of dimension ¢ in an ambient space of dimension
P can be considered as a linear subspace of dimension (¢ + 1) in an ambient space of
dimension (P + 1). Tsakiris and Vidal (2017) established the correctness of GPCA when

applied to noise-free data lying in a union of affine subspaces.

2.4.4 Statistical Methods

Statistical methods make explicit assumptions about the distribution of the data and /
or the distribution of the noise (Vidal, 2011). This type of method defines a generative
model that is responsible for the observed data (Tipping and Bishop, 1999a; Gruber and
Weiss, 2004; Yang et al., 2006; Archambeau et al., 2008; Rao et al., 2010; Arias-Castro

etal., 2017).

2.4.4.1 Mixtures of Probabilistic Principal Component Analysers (MPPCA)

Principal component analysis (PCA) (Jolliffe, 2011) is one of the most widely used
methods for dimension reduction and visualisation. However, it does not consider the
data in a probabilistic framework, which makes it ad hoc to some extent. Probabilistic
Principal Component Analysis (PPCA) (Tipping and Bishop, 1999b) puts PCA in a
maximum-likelihood framework, which takes into account the probability density of
the observed data. PPCA can be considered as a special case of statistical factor analy-

sis (Bartholomew et al., 2011), which is one of the most popular latent variable models.

Given a data set X' = {a:i}fil, a latent variable model builds a relationship between each
P-dimensional observed variable « and g-dimensional latent (unobserved) variable y.

Factor analysis assumes this relationship is linear, which can be expressed as
r=Vy+pu+e, (2.4.18)

in which the columns of V' € R4 are the factor loadings, p is the feature-wise mean
vector of the data, and € is the noise in the data. The latent variable y is assumed to be

Gaussian with zero mean and unit variance, y ~ A (0,). The noise is also assumed to be

44 CHAPTER 2. BACKGROUND

Gaussian distributed € ~ N (0, ¥), in which the variance ¥ is a diagonal matrix. There is
no closed form solution for obtaining V" and W, but an iterative Expectation-Maximisation
(EM) algorithm can be used to estimate them (Tipping and Bishop, 1999b).

When ¥ = 021, i.e. all diagonal entries in ¥ are equal, PCA can be derived within
the framework of density estimation. The specific noise distribution € ~ A(0, 021)
combined with Eq. (2.4.18) implies that the distribution of the observed variable x
conditioned on the latent variable y is given by x|y ~ N (Vy + u,0?I). As such, we
can obtain the PPCA model which has the following probability density function for

any x € X:

P(x) = / P (a|y)P (1) dy

. 1 (2.4.19)
— (o {3 - WO e - |

where C = VVT + ¢%1. A detailed derivation for Eq. (2.4.19) can be found in Tipping
and Bishop (1999a) and Tipping and Bishop (1999b). Using Bayes’ rule, we can obtain
the conditional distribution of the latent variable y given the observed variable x as

follows

yloe ~N (M'VT(z—p),0’ M), (2.4.20)

where M = VTV +021. Note that M € R?*9, as compared to C' € RP*P_ Tt can be seen
that when o — 0, the posterior mean M~V T (x —) converges to (VTV) VT (z —).
This represents an orthogonal projection onto the latent space, hence the conventional
PCA is recovered.

In the PPCA model Eq. (2.4.19), V and o can be explicitly derived from maximum

likelihood estimation as

Vo =V, (A, — 021)* R, 2.4.21)
1 P
oy = Fep Z A, (2.4.22)
Jj=q+1

where A, is the eigenvalue matrix whose diagonal entries contain the top-q eigenvalues

CHAPTER 2. BACKGROUND 45

Ajs of the data, and V/, is the eigenvector matrix whose columns correspond to the top-¢q
eigenvalues. Here R is an arbitrary ¢ X ¢ rotation matrix, which can be ignored for
simplicity (i.e. R = I) (Tipping and Bishop, 1999b).

Mixtures of Probabilistic Principal Component Analysers (MPPCA) (Tipping
and Bishop, 1999a) extends PPCA into a mixture of local PCA models, in which all of
the model parameters may be estimated through the maximisation of a single likelihood
function. The log-likelihood of observing the data set under the MPPCA model can be

expressed as

£=3 log {P(a)}

xreX
K (2.4.23)
=) log {ZwkIP(a:]k)} :
reX k=1

where P(x|k) is a single PPCA model, and 7, is the proportion of data that are in the
k-th sub-model (cluster), where Zszl 7, = 1. The model parameters can be found via
Expectation-Maximisation algorithm. The data points are first randomly allocated into
K clusters. In the E-step, we calculate the probabilities of assigning each point x; to
all clusters k (k € {1,..., K'}), pix. Then, we assign each point to the cluster with the
highest probability. In the M-step, p; is used to recompute the subspace parameters
using PPCA. These two steps are iterated until convergence to a local maximum of the
log-likelihood function.

The main advantage of MPPCA over iterative type of subspace clustering methods is
that it provides a probabilistic framework for the data generation process. MPPCA can
be considered as a probabilistic version of KSC, in which soft cluster assignments are
used instead of hard cluster assignments. However, the advantage of MPPCA comes at
the cost of a restrictive assumption that the distribution of the data and the noise have to
be Gaussian, which is often not realistic in practice. Similar to KSC, MPPCA suffers
from bad initialisations and is prone to converge to a local optimum.

In the same vein, Gruber and Weiss (2004) proposed a multi-body factorisation
algorithm that is also formulated as a variant of factor analysis, which can be solved

via the EM-algorithm. Unlike PPCA (and MPPCA), which has strict assumptions on

46 CHAPTER 2. BACKGROUND

the behaviour of the noise structure, the multi-body factorisation algorithm can handle
arbitrary noise structure as well as missing data. More recently, Archambeau et al. (2008)
proposed a robust version of PPCA and subsequently a mixture of robust PPCA models.
It extends the MPPCA model to also take into account the existence of outliers by means

of the Student’s ¢-distribution to replace the Gaussian distribution.

2.4.4.2 Random Sample Consensus (RANSAC)

Another statistical method that addresses the issue of a significant amount of outliers is
Random Sample Consensus (RANSAC) (Fischler and Bolles, 1981; Yang et al., 2006).
RANSAC assumes that the data are drawn from a union of linear subspaces, and that
the subspace dimensions must be known and equal (Yang et al., 2006). Unlike many
other subspace methods that fit one model or a set of sub-models to the data as a whole,
RANSAC fits one sub-model to a small number of points at a time.

RANSAC samples a small number of points at a time for enough times to reach a
certain confidence level that one of these subsets is outlier-free or has very few outliers.
This paradigm requires three parameters to be specified (Fischler and Bolles, 1981): (a)
an error tolerance threshold beyond which a point is considered as an outlier given the
model; (b) the total number of subsets of ¢ points to sample from the whole data set, in
which ¢ is the known subspace dimension; and (c) the number / proportion of compatible
points to suggest that the model is sound. The first subspace is estimated by repeatedly
sampling ¢ points from the data until (b) is violated or (c) is met. Otherwise, the sample
with the largest number / proportion of compatible points is chosen. RANSAC proceeds

in a greedy fashion by estimating one subspace at a time as follows:

(1) Estimate a new subspace, and assign a few points to the subspace. All remaining

points in the data set are considered as outliers to the current subspace model.

(2) Remove the inliers of the previous subspace model from the current data set.

Repeat step (1) to estimate the next subspace until all subspaces are estimated.

(3) Given the inliers in each subspace, use PCA to estimate the ¢ basis vectors of the

CHAPTER 2. BACKGROUND 47

subspace. Assign the points to the subspace that they have the smallest projection

distance to.

The main advantage of RANSAC is that it addresses the presence of outliers explicitly.
However, the performance of RANSAC deteriorates quickly with the increase in the
number of subspaces. In addition, the computational complexity of the algorithm also

increases exponentially with the dimension of the subspaces.

2.44.3 Agglomerative Lossy Compression (ALC)

Agglomerative Lossy Compression (ALC) is a simple clustering algorithm that mod-
els the data as a mixture of Gaussian distributions, which are allowed to be almost
degenerate (Ma et al., 2007). Degeneracy of the data means that some features may be
approximated by linear combinations of other features in the data. The original ALC
algorithm is proposed in Ma et al. (2007), and it has been further extended in Rao et al.
(2010) to solve the motion segmentation problem in the presence of outliers, missing
entries, and corrupted trajectories.

ALC is an agglomerative clustering algorithm that proceeds in a bottom-up approach,
hence the term “agglomerative” in its name. To begin with, each data point is treated as
a group of its own. Then, two groups are merged that leads to the biggest decrease in
the loss function. The algorithm terminates when the loss function cannot be decreased
further through additionally merging any two existing groups.

The coding length function is used as the loss function, which provides a measure
of goodness of the data segmentation. Coding length is the minimal number of bits
needed to represent the data, subject to a given distortion of the data as determined by
an allowable distortion parameter . Given a set of data points X = {a:, € R” }Z.]il,
let X;, € RP*™ denote the data matrix whose columns correspond to the data vectors

that are assigned to the k-th cluster. The loss (coding length) function for X; can be

expressed as follows

P P
L(Xpy,e) = J; % Jog, (det (1 + —XkaT)> : (2.4.24)

ne2

48 CHAPTER 2. BACKGROUND

which can be shown to be a smooth surrogate of rank(X}) (Rao et al., 2010). Therefore,
the objective in Eq. (2.4.24) can be considered as a surrogate for the rank minimisation

problem. The overall loss function of ALC can be expressed as follows

Nk

[L(Xk, £) — ny log, (-)] , (2.4.25)

L ({Xk}llc(:l 75> = 1 N

K
k=
where the second term counts the number of bits needed to represent the labels of the
data.

The algorithm only depends on a single parameter, the allowable distortion ¢ of the
data. Once this is determined, the algorithm then automatically determines the number
of the clusters, which does not involve any parameter estimation. The smaller ¢ is, the
larger the number of clusters is, and vice versa. The optimal segmentation of the data
should ideally result in the shortest coding length subject to a given distortion of the data.

Although ALC has been shown to work well in a number of motion segmentation
examples, there is no systematic approach to choose the distortion parameter €. In Rao
et al. (2010), the authors propose to experiment with a range of ¢ values and pick the
ones that produce the number of clusters that agree with our prior knowledge of the
data set. This is in no way an efficient approach to determine the parameter value, as
the computational cost of ALC is O(N3 + N?P? + N P3). Furthermore, it is a greedy
descent algorithm that does not guarantee a global convergence to the optimum of the

loss function.

2.5 Clustering Performance Measures

In this section, we familiarise the reader with a few clustering performance measures
that we will use throughout the remainder of this thesis. Performance measures evaluate
how similar cluster assignment labels are to ground truth labels. It is often the case that
the numbering of cluster assignment labels / do not match with that of the ground truth
labels J. As long as all points that belong to the same cluster are assigned to the same

label, and points that belong to different clusters are assigned to different labels, a perfect

CHAPTER 2. BACKGROUND 49

clustering is obtained.

However, when the clustering result is not perfect, there are several ways of measuring
how close the cluster assignment labels are to the ground truth labels. The first two
measures that we will introduce in this section are purity (Zhao and Karypis, 2001) and
clustering error (Elhamifar and Vidal, 2013), which are two sides of the same coin. They
evaluate the percentage of correctly and incorrectly clustered points respectively. In
addition, we also introduce the Adjusted Rand Index (ARI) (Hubert and Arabie, 1985) and
Normalised Mutual Information (NMI) (Cover and Thomas, 2012). These two measures
are more advanced than the previous two, in that they also take into account the difference
in the number of clusters, in addition to the conditional and joint entropy of both the

ground truth labels and the cluster assignment labels.

2.5.1 Purity & Clustering Error

Purity (Zhao and Karypis, 2001) is one of the most straightforward measures to evaluate
the performance of classification / clustering tasks. By counting the occurrences of the
dominated label in each true class, it sums over the proportions of these occurrences
across all J classes. Given a set of N points {a;} ,letC = {1, ¢y, ..., cn} denote
the set of ground truth labels for the data, and {2 = {wy,ws, ..., wx} the set of cluster
assignment labels. Let us also denote C; as the set of class labels correspond to class

Jj (G eA{l,...,J}), and £ the set of cluster labels that correspond to cluster k (k €

{1,..., K}). Concretely, purity is calculated as follows
1
Purity = 2 max |C; (1 (2. (2.5.1)

It gives us an intuitive understanding of how well a clustering algorithm performs
given that the number of clusters K is known. With that said, it is not necessarily the
case that the number of clusters K specified by a clustering algorithm agrees with the
true number of classes J. It is worth noting that purity does not penalise for the number

of clusters K. Consider the extreme case of assigning each data point to a cluster, this

50 CHAPTER 2. BACKGROUND

would produce a purity measure of 1. However, this in no way indicates that it is a perfect
clustering result. It is simply an artefact of an extreme case of over-clustering. This
would not happen for clustering methods that require the number of clusters to be known
a priori.

As opposed to purity, clustering error measures the proportion of points that a
clustering algorithm makes mistakes on. One can immediately obtain what the clustering

error is once the purity score is known. It is calculated by

J
. 1
Clustering error = 1 — N Z mjax IC; N 12 (2.5.2)

i=1

Both of these two measures are commonly used to compare the algorithmic performance

of different clustering algorithms.

2.5.2 Adjusted Rand Index (ARI)

Adjusted Rand Index (ARI) (Hubert and Arabie, 1985) is namely an adjusted measure of
Rand Index (RI) (Rand, 1971). In order to introduce ARI, we need to first familiarise the
reader with RI. Rand Index compares, for each pair of points, whether they belong to the
same group or different groups according to the ground truth labels and according to the
cluster assignment labels. Each pairwise comparison can be classified into one of the

four scenarios as follows:

a: the pair of points are classified into the same group both by the ground truth

labels and by the cluster assignment labels,

b: the pair of points are classified into the same group by the ground truth labels

but into different groups by the cluster assignment labels,

e c: the pair of points are classified into the same group by the cluster assignment

labels but into different groups by the ground truth labels,

d: the pair of points are classified into different groups both by the ground truth

labels and by the cluster assignment labels.

CHAPTER 2. BACKGROUND 51

We denote the number of pairwise comparisons that fall into each of the four scenarios
as ng, Ny, Ne, and ng respectively, then the Rand Index (RI) between the ground truth set

C and the cluster assignment set {2 is calculated as

Ng + Ng

RI(C, (2) = :
(€. 9) Ng + Np + Ne + Ny

(2.5.3)

A drawback of Rl is that the expected value is not constant between two random
partitions. To overcome this, Hubert and Arabie (1985) proposed the Adjusted Rand
Index (ARI), which takes into account the expected value of the Rand index in the
calculation. Table 2.1 summarises the pairwise comparisons between each true class C;

(j € {1,...,J}) and each assigned cluster (2 (k € {1,..., K}).

Classes J
[CY R I P I V] D (6]
Clusters
‘Qll ni1 N12 Ce nig ny.
|QQ| 21 T29 e Nag Na.
|QK’ st N2 ngJg ngkg.
S 2] ni | no | ... | ny n

Table 2.1: Notation for comparing two set of labels on the same data set.

Using the count data in Table 2.1, the Adjusted Rand Index (ARI) between the ground

truth set C and the cluster assignment set (2 is defined as

S (") — = ()5, (7Y)

ARI(C,) = (2.5.4)

2k (né“)‘;zJ (") S ()= (YY)

Note that the same term is subtracted from both the numerator and the denominator. This
common term is the expected value of the Rand index. The first term in the denominator
is the maximum index that can be obtained. Therefore, the expression for ARI can be

considered as a corrected-for-chance version of the Rand index (Nguyen et al., 2009).

52 CHAPTER 2. BACKGROUND

ARI takes a value between -1 and 1 that represents the amount of similarity in two
clusterings. A value of 0 indicates the result is equivalent to random assignment, and a
value close to 1 indicates strong agreement between the cluster assignment labels and the
ground truth labels. A negative value means that the number of pairs of points that the
cluster labels and the ground truth labels agree on is less than the expected number given
by random assignment. Although ARI is an improvement on RI, it can be easily verified
that two clustering results with the same purity score are likely to take on different ARI
values. Hence it is best not to rely solely on ARI to compare the quality of two clustering

results.

2.5.3 Normalised Mutual Information (NMI)

Normalised Mutual Information (NMI) (Cover and Thomas, 2012; Amelio and Pizzuti,
2015) is another commonly used measure to evaluate cluster performance. It is a
normalised version of Mutual Information (MI), with higher NMI values indicating
better clustering results. Following the notation in Table 2.1, the Mutual Information

(MI) between the set of ground truth labels C = {¢y, ¢a, ..., ¢y} and the set of cluster

assignment labels {2 = {w;, ws,...,wy} can be calculated as follows
- P(C; N £2)
MI(C,) = — P(C; N) log —L—F 2.5.5

where P(C;), P(£2), and P(C; N (2;) denote the proportions of points belonging to
class j, cluster k, and both, respectively. This measure suffers from the same drawback
as purity. That is, MI increases with the increase of the number of clusters /.

To resolve this problem, the improved NMI measure divides MI by the following

normalising term:
H(C)+ H(£2)

5 , (2.5.6)

CHAPTER 2. BACKGROUND 53

where H ({2) is the entropy of the cluster assignment set {2 defined as follows,

H(£2) = =Y P(2)1og P(24). (2.5.7)

K
The entropy of the ground truth set H(C) can be similarly obtained using the above
formula. The normalising term averages the entropies of the ground truth labels and the
cluster assignment labels. It penalises for the number of clusters, as the entropy is larger

for larger number of clusters. Thus NMI is a measure that is always between 0 and 1,

and we can also use it to compare clusterings with different number of clusters.

54 CHAPTER 2. BACKGROUND

2.A Appendix: Connection between Graph Cuts and

Graph Laplacians

2.A.1 The Ratio Cut and the Un-normalised Graph Laplacian

Given a general K -partitioning problem, the ratio cut objective is defined as follows
1 W (S S e cut(Sy, S)
. o k)Ok) k> Ck
RatioCut(Sy, ..., Sk) = 3 E —_—— = E —_—. (2.A.1)

We can show that the ratio cut objective can be expressed as a discrete minimisation
problem involving the graph Laplacian matrix.
For K = 2, the ratio cut objective of a bi-partitioning composed of two subsets

{81, 82}, in which §; U Sy = S and S; NSy = 0, can be expressed as

2 _
RatioCut(S,S2) = Y tfg_“”
k=1 k

_ cut(Sy,Ss) n cut(Sz, S1) (2.A.2)
S |2

1 1
= out(S1, &) (@ * @) '

Multiplying both sides of Eq. (2.A.2) by the cardinality of the set |S| = |S;| + |Sa], we

obtain

|S| - RatioCut(S;, S2)

+ (S| |Si| +|S
nis)- (1181 181 i)

1 2

|Sa| |Sh]
—Cl.lt 81,82 (S :S;)
2

|32 |51] |52 | |51
—cut(L B Y N] A Y bt
el) (B & s Vs

Z% D> wilf

i=1 j=1

=fTLf,

CHAPTER 2. BACKGROUND 55

in which the entries of f are defined as in (2.3.5). The last line from above follows by

the definition of the un-normalised graph Laplacian,

fILf=f'Df — fTAf

_Zf d; _ZZfzf]wz]

’Lljl

N
(z 2SS f ¢ zd fz)
=1

=1 j5=1

N
%(Zdsz 2ZZfzfjwm+de)
=1

=1 j=1

= %Zzwij(f

i=1 j=1

It is easy to verify that f also satisfies the following conditions:

N
So S S S
S - Z = > =SS 18l g =0
= €S (2.A.3)

2 _ |32 |31| _

Therefore, we can re-express the ratio cut objective for K = 2 as the following discrete

optimisation problem:

. T
L

slr,{lsgés FLy

s.t. fL1a,

172 = \/N7 2.A4)
f as defined in (2.3.5),

81U82:S, 81ﬂ82:®

For general K -partitioning problems, we can express the ratio cut between S, and its

complement S (k € {1,...,K})as

56 CHAPTER 2. BACKGROUND

cut(Sk, Sk) 1 1

= cut(Sg, S,
STV (S k%rgk,
ZESZ]ES \% ’Sk \% ’Sk 1652]65 V ’Sk V ’Sk

1 N

ij=1

= h] Lhy,.
By aggregating the above term for all S; we obtain

RatioCut(Sy, ..., S ZhTLhk Z(HTLH)kk:tr(HTLH). (2.A.5)

k=1

It is easy to verify that the columns in H are orthonormal to each other. Therefore, we can

express the ratio cut objective for general K as the following discrete trace minimisation

problem:
min tr(H"LH)
S1,eeny Sk CS
s.t. H'H =1,
H as defined in (2.3.7), (2.A.6)
K
Usi=s
k=1

SiNS; =0, Vije{l,... K}
2.A.2 The Normalised Cut and the Normalised Graph Laplacians

Given a general K -partitioning problem, the normalised cut objective is defined as
follows

NCUt(Sl, ce 7

1 ZK: %74 Sk, Sk XK: Cllt(Sk, Sk
24~ vo “— vol('

We can show that the normalised cut objective can be expressed as a discrete minimisation

problem involving the graph Laplacian matrix.

For K = 2, using similar algebraic substitutions as in the ratio cut setting, we have

CHAPTER 2. BACKGROUND 57

vol(S) - NCut(S;, S2) = vol(S) Z

k=1

Cut(Sk, Sk)
vol(Sk)

1 1
= Cut(81,82> |:VO (82> Yo (81) + 2
VOl(Sl) VO](SQ) (2A7)
= Y wy(fi—f)
1€81,J€S2
=f'Lf.
It is easy to verify that f also satisfies the following conditions:
(1) (Df)T1=0,
(2) fTDf = vol(S).
Condition (1) can be shown through the following deduction:
N
(DF)T1=>"dif:
i=1
meS neSs
vol (82) vol (81)
= vol (S — vol (&
vol(S Sorisy ~ YO 2 Sors,)
=0.
Condition (2) can be shown through the following deduction:
N
fIDF=> dif}
i=1
meS neSs
vol (Sy) vol (&)
=vol (S 1(S
Vo (1) vol (81) o (2) vol (82)
=vol (S).

Therefore, we can re-express the normalised cut objective for /' = 2 as the following

58 CHAPTER 2. BACKGROUND

discrete optimisation problem:

. T
s LS
s.t. Df 11,

FTDf = vol(S), (2.A.8)

f as defined in (2.3.12),

SUS =S8, SnNS,=0.

For general K -partitioning problems, in the same vein to the deduction for the
ratio cut setting, we can express the normalised cut between S;, and its complement Sj,

(ke{l,...,K})as
cut (Sk,Sk)

—h!Lh,. 2.A.
vol ()l 2.4.9)

Thus the following equivalence can be built for the normalised cut objective:
K K
NCut(Sy,...,8k) = hiLhy =Y (H'LH)y =t(H LH). (2.A.10)
k=1

k=1

The columns in H are orthonormal to each other, and we have the following

N
hiDh; = h3D;
=1

= hlpdn+ Y hid,

mESk n§é8k
1
=Y ——dn + Y 0 d,
meSk V01<8k) n¢Sk
vol (Sk)
~ vol ()

fork € {1,..., K}. Thus we have HDH = I.

Chapter 3

Subspace Clustering with Active

Learning

Subspace clustering is a growing field of unsupervised learning that has gained much
popularity in the computer vision community. Applications can be found in areas such as
motion segmentation and face clustering. It assumes that the data points originate from
a union of subspaces, and clusters the data depending on the corresponding subspace.
In practice, it is reasonable to assume that a limited number of labels can be obtained,
potentially at a cost. Therefore, algorithms that can effectively and efficiently incorporate
this information to improve the clustering model are desirable. In this work, we propose
an active learning framework for subspace clustering that sequentially queries informative
points and updates the subspace model. The query stage of the proposed framework
relies on results from the perturbation theory of Principal Component Analysis (PCA) to
identify those influential and potentially misclassified points. A constrained subspace
clustering algorithm is proposed that monotonically decreases the objective function
subject to the constraints imposed by the labelled data. We show that our proposed
framework is suitable for subspace clustering algorithms, including iterative methods
and spectral methods. Experiments on synthetic data sets, motion segmentation data sets,
and Yale Faces data sets demonstrate the advantage of our proposed active strategy over

state-of-the-art methods.

59

60 CHAPTER 3. SUBSPACE CLUSTERING WITH ACTIVE LEARNING

3.1 Introduction

In recent years, crowdsourcing (Su et al., 2012) for data annotation has drawn much
attention in the computer vision community, due to the need to make use of as much
data as possible and the lack of sufficiently labelled data. Clustering is commonly used
as an initial step to provide a coarse preliminary grouping in the absence of labelled
data. For example, there are plant recognition apps that allow one to take a photo of
a plant and identify its species. In video surveillance, one may wish to identify the
points corresponding to an object that exists in a sequence of frames, be it people or
cars etc. Usually some form of external information is available in these applications,
either through crowdsourcing websites, or through paid manual work to conduct a limited
amount of labelling. In either case, obtaining labels involves a cost which is either time,
money, or both. Therefore, effective and efficient ways of carrying out data annotation
are desirable.

The process of iteratively annotating the potentially misclassified data and subse-
quently updating the model is generally known as active learning (Settles, 2008). It is
a subfield of machine learning that aims to improve both supervised and unsupervised
algorithms. In supervised learning, points that are near the decision boundary are likely
to be misclassified. In unsupervised learning, the notion of potentially misclassified
points is less clear and is open for interpretation.

In subspace clustering, points are clustered according to their underlying subspaces.
There are different ways of measuring how likely a point is misclassified. One approach
is to consider points whose projection onto the associated subspace is large as potentially
misclassified (Lipor and Balzano, 2015). Alternatively, points that are almost equidistant
to their two nearest subspaces are likely to be misclassified (Lipor and Balzano, 2017).
Such ideas are based on the notion of the reconstruction error between the original point
and its projection to the subspace that defines the cluster. The total reconstruction error
is the objective function of the K'-Subspace Clustering (KSC) algorithm (Agarwal and
Mustafa, 2004). We therefore argue that effective active learning strategies should explic-

itly associate the query procedure with the optimisation of this objective. However, as we

CHAPTER 3. SUBSPACE CLUSTERING WITH ACTIVE LEARNING 61

will discuss in greater detail in the next section, the point with the largest reconstruction
error is not necessarily the most informative from the perspective of updating the entire
subspace clustering model.

Motivated by the connection between the reconstruction error and the KSC objective,
we consider a point to be influential if querying its true class thus updating the cluster
assignment can lead to a large decrease in the total reconstruction error. Given a set
of cluster labels, the optimal linear subspace for each cluster can be trivially estimated
through Principal Component Analysis (PCA) (Jolliffe, 2011). In particular, the basis for
each subspace (cluster) can be defined through the set of eigenvectors of the covariance
matrix of the points that are assigned to this cluster. We make use of ideas from the
perturbation analysis of PCA (Critchley, 1985) to evaluate efficiently how influential
each point is, and query the class of the most informative point(s). Once the true classes
of the influential points have been identified, our proposed K -subspace clustering with
constraints (KSCC) algorithm monotonically reduces the reconstruction error whilst satis-
fying all the constraints imposed by the labelled data. The active learning process iterates
between these two query and update procedures until the query budget is exhausted.

The rest of this chapter is organised as follows. We review related work in active
learning in Section 3.2, and introduce our proposed active framework in Section 3.3.
Experimental results on synthetic and real data are presented and discussed in Section 3.4.

The chapter finishes in Section 3.6 with conclusions and directions for future work.

3.2 Related Work

There are three main approaches to active learning (Settles, 2008): uncertainty sam-
pling (Balcan et al., 2007), query by committee (Seung et al., 1992), and expected model
change (Settles et al., 2008).

Uncertainty sampling queries the points the learning algorithm is least confident about.
Classic uncertainty sampling methods are generally ignorant to the data distribution, thus
prone to select outliers (Donmez et al., 2007). It is suggested in Melville and Mooney

(2004) to measure the informativeness of each point by the probability margin between

62 CHAPTER 3. SUBSPACE CLUSTERING WITH ACTIVE LEARNING

the label it is assigned to and its second most likely label. Other versions of uncertainty
sampling have been proposed to balance the density of a region and the uncertainty in
that region (Nguyen and Smeulders, 2004). When building supervised models, one may
also choose the unlabelled points near the decision boundary.

Query by committee (QBC) is a type of active learning strategy designed for classifier
ensembles (Seung et al., 1992). It constructs a committee of models based on the labelled
training data, and chooses to query the unlabelled points upon which the predictions
of the classifiers in the ensemble disagree the most. It enables the training of accurate
classifiers using a small subset of the data. To use this strategy, one has to provide
both the type of classifier and a measure of disagreement among the classifiers. It has
been shown in Freund et al. (1997) that rapid decrease in the misclassification error is
guaranteed if the queries have high expected information gain.

Expected model change is an active learning framework that bases its query strategy
on the idea that a point is informative if knowing its true class can cause a big change
in the current model (Settles et al., 2008). This is mostly applied to discriminative
probabilistic modelling, in which the gradient of the model is used as an indicator
for the informativeness of a point. It is widely applied to image retrieval and text
classification (Roy and McCallum, 2001). The method we propose also adopts this
approach, but to the best of our knowledge, we are the first to consider updating an
unsupervised learning model describing all the data, rather than just the labelled data.

As is implied above, most active learning approaches have been developed for super-
vised learning. However, less attention has been paid to the unsupervised counterpart.
Only a few active learning strategies have been proposed for subspace clustering (Lipor
and Balzano, 2015, 2017). In Lipor and Balzano (2015), two active strategies MaxResid
and MinMargin for KSC are proposed. MaxResid queries points that have large recon-
struction error to their allocated subspaces. MinMargin queries points that are maximally
equidistant to their two closest subspaces. These two strategies are effective in identifying
the points that are most likely to be misclassified. However, the queried points are not

necessarily the most informative points in terms of updating the full clustering model.

CHAPTER 3. SUBSPACE CLUSTERING WITH ACTIVE LEARNING 63

3.3 Active Learning Framework

In this section, we first formulate the subspace clustering problem and then present
the proposed active learning framework. There are two iterative procedures within this
framework. The first is to identify the most influential and potentially misclassified
points. The second is to update the cluster labels for all data points given the labelling

information.

3.3.1 K-Subspace Clustering

A ¢-dimensional linear subspace Sj, k € {1,..., K}, can be defined through an or-

thonormal matrix V}, € RP*? as
Sy={xeR": z=Vyy}, (3.3.1)

where the columns of V), constitute a basis for S;..

In subspace clustering, the overall objective is to find the set of optimal cluster labels
for all data points such that the total reconstruction error between each data point to their
corresponding subspaces is minimised. Given the set of N data points X’ = {zcl}fvz1 and
their cluster labels 2 = {w;}.',, the loss function value L(zx;,V,,) and the objective

f(X,V) can be written as

L(z;, V) = ||z — Vi,V][5, (3.3.2)
and
N
f(x, V)= min ; L L(z;, V,,), (3.3.3)
where V = {V1, ..., Vi } represents the set of all subspace bases. This objective can be

minimised through a /'-means-like iterative algorithm by alternating between subspace
estimation and cluster assignment.
We need to obtain the set of subspace bases such that the total reconstruction error

in Eq. (3.3.3) is minimised. The basis matrix V}, for each subspace k can be obtained

64 CHAPTER 3. SUBSPACE CLUSTERING WITH ACTIVE LEARNING

through the eigen-decomposition of its covariance matrix as
(X — 1p) (X — 1)) = VEAL(VOT. (3.3.4)

We denote X, € R™*¥ as the data matrix in which the rows correspond to the n;, data
points assigned to cluster k, and p, as the feature-wise mean vector of X;. The columns
in V¥ = [vy,...,vp| correspond to the eigenvectors of the covariance matrix of X}, and
A} is a diagonal matrix containing the set of P eigenvalues {\,..., Ap}. We denote Vj,
as the subset of eigenvectors in V}* that correspond to the ¢ largest eigenvalues.

Given the subspace bases V = {V,..., Vk}, the cluster label w; for each point

x; € X can be obtained as

w; = argmin [|@; — ViV, (33.5)
ke{l,..,K}

The algorithm terminates when the loss function value in Eq. (3.3.3) stops decreasing,

which indicates that either a local or global optimum is reached.

3.3.2 Query Procedure

The first element in quantifying the influence of an unlabelled point is the reduction in
the reconstruction error that would be achieved if this point is removed from its currently
assigned cluster. It is important to note that removing a point from a cluster implies that
the basis for the associated linear subspace may change, because V}, is a function of X,
(see Eq. (3.3.4)). Explicitly, we define U; (x5, V,,.) as the decrease in the reconstruction

error after removing the queried point from cluster w,, which can be expressed as

Ui, Vo) = Y Lz, Vo) — > L=V,), (3.3.6)

xest west\{mS}

where &, denotes the set of points in cluster wg, and V,,_ denotes the basis matrix for
cluster ws. We use sz to denote the potentially perturbed basis matrix after point x; is

removed from cluster ws,.

CHAPTER 3. SUBSPACE CLUSTERING WITH ACTIVE LEARNING 65

The second element in quantifying the influence of an unlabelled point is to consider
the increase in the reconstruction error of the cluster that x will be assigned to (after
being removed from its current cluster ws). As before, adding a point to a cluster
implies that the associated basis for this cluster may change. Given that each point is
allocated to its closest subspace, it is thus sensible to assume the cluster that x, has the
second smallest reconstruction error to is where x, would be assigned next. This can be
expressed as

wr = argmin Lz, Vj). (3.3.7)
k{1, K\ {ws}

Then we can define Us(x, V.») as the increase in the reconstruction error after adding

x; to cluster w}, which can be expressed as

Up(xe, Vi) = > L@, Viy) = > L(x, Viy). (3.3.8)

TEX, xU{zs} zeX, *

Here V. € RP*4 is the basis matrix of the points in the set { X, U {z,}}, whose
columns correspond to the eigenvectors of its covariance matrix.

Combining the above two influence measures together, we determine the most

informative and potentially misclassified point & as

Z; = arg max {Ul(a:s, Vi) — Ua(zs, ng)} , (3.3.9)

xs€Xy

where X7y denotes the set of unlabelled points. We also denote the set of labelled points as
Xr. Eq. (3.3.9) gives the point that brings the largest decrease in the reconstruction error
once removed from its allocated cluster w,, and the smallest increase in reconstruction
error upon being reallocated to its most probable cluster w.

Although these two measures of influence can be quantified and calculated exactly,
the number of required SVD computations is O(N?) throughout all iterations. Not to
mention that the computational complexity of SVD is min { N?P, P>2N} (Golub and
Van Loan, 2013). Every time a point is removed from or added to a cluster, the subspace

bases would change and need to be recalculated through PCA. Hence the need to seek

66 CHAPTER 3. SUBSPACE CLUSTERING WITH ACTIVE LEARNING

for an alternative approach, which could be pursued through the perturbation analysis of
PCA (Critchley, 1985).

We approximate the perturbed covariance matrix, the perturbed eigenvectors, and
the perturbed eigenvalues through power series expansions (Shi, 1997). As such, we can
obtain expressions for the updated reconstruction error without having to recompute all
the updated eigenvalues and eigenvectors after data deletion or addition. The algorithmic
form of our proposed query strategy is provided in Algorithm 5, before we provide the

details of how the two influence measures are calculated.

Algorithm 5: Query Strategy

Input :Data matrix: X € RV*F
Number of clusters: K
Initial cluster labels: 2 = {wy,...,wy}

repeat
for x, € Xy do

Compute the influence U (x5, V,,,) of removing x, from its allocated
cluster w

Calculate Uy (s, V,,+) using Eq. (3.3.8)

end

Optimise Eq. (3.3.9) to query &} and its true class ¢; € {1,..., K}

until Budget 7" or desired performance is reached

The influence of data deletion. Let S denote the sample covariance matrix for the
points that belong to the same cluster, Ay, ..., Ap denote its eigenvalues in descending
order, and vy, ..., vp denote its eigenvectors. Let D denote a set of d points to be
removed from the cluster. As a result, the covariance matrix, its eigenvectors and
eigenvalues will change by a certain amount. Under small perturbations (0 < ¢ < 1),
the perturbed covariance matrix S(c), the k-th perturbed eigenvalue A;(¢) and the
k-th perturbed eigenvector v(¢) can be written as the following convergent power

series (Wilkinson, 1965; Bénasséni, 2018):

CHAPTER 3. SUBSPACE CLUSTERING WITH ACTIVE LEARNING 67

S(e) =5+ SWe 4 822 oo glmigm 4o
Me(8) = M+ are Fae® + - ape™ + -, (3.3.10)
vp(e) = vk +re + hoe’ -+ Y™+
For sufficiently small €, the order of the eigenvalues is maintained, so are the signs within
the eigenvectors (Enguix-Gonzalez et al., 2005).

The main interest lies in finding the coefficients in the power series approximations.
First, the perturbed sample covariance matrix S(_D) can be deduced from the basic
definition of a covariance matrix (Wang and Liski, 1993; Bénasséni, 2018),

d
n—d

d2
G ap

Sipy =S+ ((S=Sp) — (®p — @) (®p —@)")

(3.3.11)

Tp —x)(Tp —)".

In the above expression, n denotes the original number of points in the cluster that
the set of points D are removed from. We use £ € R to denote the feature-wise
mean vector of the data before the removal of d points, and xp the feature-wise mean
vector of the d points to be removed. Lastly, we use S, Sp, and S(_D) to denote the
original covariance matrix, the covariance matrix of the set of deleted data points D,
and the covariance matrix of the perturbed data, respectively. We can associate ﬁ
and ((S — Sp) — (Zp —)(&p — &)") with £ and S as in Eq. (3.3.10). Similarly,
the correspondence can be made for the second order coefficients. We use a first order
approximation for our purpose from now on, as it has been shown to be sufficiently
accurate (Wang and Liski, 1993).

As for the coefficients in the approximations for the eigenvalues and eigenvectors,

Lemma 2 in Wang and Liski (1993) provides us with the following results

o = vy SV, ay, = 0] SWap,, 4, (3.3.12)

68 CHAPTER 3. SUBSPACE CLUSTERING WITH ACTIVE LEARNING

and

Py = —(8 = NI)TSWy,

(m—1) (3.3.13)
Ym = —(S - AkI)T S(l)w(mfl) - Z ai’d;(mfi)

i=1
In the above expression, we have the Moore-Penrose inverse (Golub and Van Loan, 2013)

-
v,V
S—nDF =) 22
(S=x)'=2 ¢ R
i7k
Based on the above, we can deduce expressions for the perturbed eigenvalues, and the
influence of data deletion as expressed in Eq. (3.3.6).

We start with writing the first order approximation of the k-th (k € {1,..., P})

perturbed eigenvalue as follows

Me(e) = A+ X + 0(?)

~ N\, + vl SWo

d
=\ —l— d [S Sp — — Z CE)T] Vg

d <= (3.3.14)
d 1
=)\k + m [)\k — ’U,;I-SD’U]C — E Z OéiS]
sED
:n— n—dzaks kaka,

where o, = v] (s — &). Then using the expression in Eq. (3.3.6), we can write the

influence of removing a set D of data Xp € R¥*¥ from cluster k as

Ui(Xp, Vi) = > L@, Vi)— > L=, V)

reX) zeX;\{xs: s€D}
P P
= > M= > Mo (3.3.15)
k=(q+1) k=(q+1)

P

1 d
— Z (m Sezpazs + m (’U];,I—SD’U]C — Ak)) .

k=(q+1)

CHAPTER 3. SUBSPACE CLUSTERING WITH ACTIVE LEARNING 69

One can obtain the influence for the deletion of one point by plugging in d = 1. The
deduction follows due to the equivalence between the reconstruction error and the sum
of the unused eigenvalues in representing the subspace (Jolliffe, 2011). Next, we also
need to find another cluster on which the deleted data have little influence if they were
added to the cluster.

The influence of data addition. In the previous section, we have shown the influence
of data deletion through perturbation analysis of the eigenvalues and eigenvectors. The
aim is to find influential points whose true classes might differ from their currently
allocated labels.

Now we assess the impact on the reconstruction error for the cluster to which the
removed points are added. Following the same line of analysis as before, and with a
slight abuse of notation, we now let X denote the data matrix that the set of d points are
to be added to, and n the number of points in X. We denote the data after the addition of
d points as Xp, , and the corresponding sample covariance matrix S (J%) which combines

the original data X and the data to be added Xp.

Proposition 3.3.1. The form of S(*b) can be expressed as follows,

Sy =5+ (S0~ §) + (20 — @)(@p —~ 2)7)
P _ - . (3.3.16)
—m(mp—a:)(a:p—a:)

The proof of Proposition 3.3.1 can be found in Appendix 3.A.1. It is easy to see
that this can be matched exactly with the first two orders of the power series expansion.
We further show the perturbed form of the covariance matrix for the case of single data
addition in Proposition 3.3.2, with the proof included in Appendix 3.A.2. It can be seen
that the expression for single data deletion can also be obtained directly by setting d = 1

in Eq. (3.3.16).

Proposition 3.3.2. The perturbed covariance matrix in the case when d = 1 can be

expressed as

70 CHAPTER 3. SUBSPACE CLUSTERING WITH ACTIVE LEARNING

1
St =8+ (& —x,) (@ —x,) — S
w nl () (3.3.17)
— — T
_ —(n e (& —x;) (& —x5)

in which 15 and [(:Iz —x,) (& —x,) — S] correspond to £ and SV respectively.

Using the above expression for the perturbed covariance matrix and the results in
Eq. (3.3.12), we express the first order approximation of the k-th perturbed eigenvalue

ford =1 as

Me(€) = M +eAl + O(2)

~ A\ + v SWuy,

3.3.18)
_ L 1/ _ T (
_/\k+n+1vk ((a:—a:s)(ac—a:s) —S)vk

r ., n

where oy, = vg(ws — &) as before. Hence, the change in the reconstruction error for

cluster w} after the addition of x; can be expressed as

zEX, s U{zs} TEX, x
P

= > () =) (3.3.19)
k=q+1
P

-y o
bea1 +1
Using the perturbation analysis results, the influence of data addition and deletion
can be calculated directly after computing SVD decompositions K times per iteration.

This means that we only need to compute SVD decompositions (7" - K') times for all T’

iterations as compared to O(T - N?).

CHAPTER 3. SUBSPACE CLUSTERING WITH ACTIVE LEARNING 71

3.3.3 Update Procedure

After the class memberships of some points are queried, we will know the pairwise
must-link and cannot-link relationships among them. However, we do not know to which
cluster label we should assign each of these points to. The next step is to update the
subspace model under the grouping constraints. That is, the queried points that belong
to the same class must be assigned to the same cluster label. Additionally, the queried
points that do not belong to the same class should be assigned to different cluster labels.

We can naturally extend KSC into an iterative constrained clustering algorithm with
three stages. The first two stages involve the estimation of subspace bases and the cluster
assignment of each point to the closest subspace. In the third stage, we satisfy the
grouping constraints as mentioned above. This gives us a new constrained clustering
objective, which is composed of two parts.

For the set of unlabelled data AX;, the subspace clustering objective is to minimise

. 2
L(Xy,V) = MZXU {me?ll}“rim (e VmVnI:cu||2} , (3.3.20)
where V,,, € RP*4 is a basis matrix that is determined by the points that are currently
allocated to subspace m. Note that the basis matrix of the m-th cluster V,,, is determined
by points that are both labelled and unlabelled.

For the set of labelled data X7, we need to minimise the reconstruction error without
violating any of the grouping constraints. Among K groups of queried points, there
are K'! ways of matching each group to a unique cluster label. This is a combinatorial
optimisation problem, and we can denote as P (K) the set of all possible permutations.
Let P,. be the n-th permutation in P(K) that contains K unique labels to be matched
with the queried points, and P, be the assigned cluster label in the n-th permutation that
corresponds to true class c. Then we can write the subspace clustering objective for the

labelled data X, as

K
o . T 2
L(XL,V) = P { | X — VPMVPMXCHQ} : (3.3.21)

ne{l,....K!} 1

c=

72 CHAPTER 3. SUBSPACE CLUSTERING WITH ACTIVE LEARNING

where X, is a n, X P matrix that contains the n. queried points from class c.

When K is small, it is easy to simply evaluate all K! permutations and choose the
one with the smallest overall cost. However, as the number of clusters grows, it is
computationally prohibitive to evaluate all combinatorial possibilities. This problem is
also known as the minimum weight perfect matching problem, which can be solved in
polynomial time through the Hungarian algorithm (Kuhn, 1955). We first construct a /'
by K cost matrix P in which the (4, j)-th entry P;; denotes the total reconstruction error
of allocating data from class ¢ to cluster label j. An improved variant of the Hungarian
algorithm can achieve a computational cost of O(K?) (Jonker and Volgenant, 1987).
Hence, we adopt it as an alternative approach to exhaustive search to our problem in
stage 3 when K is larger than K.

To combine both the unlabelled and labelled objectives together, we can express the

combined constrained objective function as

g(X, V) = Z { minK} ||a:u — VmVTIZIJuH;} +
' (3.3.22)

P,.€P(K),
ne{l,...,.K'}

c=

K
min { }|XC—VPMV1;CXCH§}.
1

The procedural form of KSC with Constraints (KSCC) is detailed in Algorithm 6.
This three-stage procedure ensures that the constrained subspace clustering objective
in Eq. (3.3.22) decreases monotonically whilst satisfying all of the grouping constraints.

A proof for this can be found in Theorem 3.3.1.

Theorem 3.3.1. The K-Subspace Clustering with Constraints (KSCC) algorithm de-

creases the objective in Eq. (3.3.22) monotonically throughout iterations.

Proof. Our proof borrows ideas from the proof for the monotonicity of the K-means
clustering algorithm. For initialisation, we have as input a set of cluster labels 29 =
{aéo), el w](\?) } the set of unlabelled data A7;, and the set of labelled data X,. Given
the input information, we can calculate an initial set of bases matrices V) for all

subspaces. Let g(X', V() be the initial combined reconstruction error, then at iteration

CHAPTER 3. SUBSPACE CLUSTERING WITH ACTIVE LEARNING 73

Algorithm 6: KSC with Constraints (KSCC)
Input :Labelled and unlabelled data: X7, Xy

Initial cluster labels: 20 = {wg)), . ,w](\(,))}
Subspace dimension: ¢

repeat

% Stage 1: fitting subspaces

for X, e X (k=1,...,K)do

Calculate the eigen-decomposition on the covariance matrix of Xj:

cov(Xy) = Vi A V)T

end

9 Stage 2: updating labels

forx; c X (1=1,...,N)do

Determine the cluster label for x;:

wi = argming cq; sz WV;CT%HE

end

% Stage 3: satisfying constraints

Find the best vector P € P(K) to match with the true classes by solving
Eq. (3.3.21):

P’ = argmin {ZHX Vp,.V, MX HQ}

Pn.€P(K), | =1
ne{l,....K!}

using the Hungarian algorithm

until /teration number T’ is reached or the total reconstruction error stops
decreasing

t(t=0,...,T)we have

t t (t
g2 v = 3 |z —V((t))[(t) T, +ZHX V;(Z) P@)]TXC
:BuEXU e
2
t+1 t+1
> Y |la -V VT,
x, EX ¢ ¢ 2
t+1 t+1 t+1 t+1
= > |- vV, +ZHX Vi)
Ty EXy “
(t+1 t+1 (t+1 t+1)
2 Z _V(t+1) [V:(Hl))]—rwu (t)) V]_i(t)]
wueXU u nc
2
t+1 t+1 t+1 t+1
> Z V((t+1§[V:Lt+1%]Tmu‘ "‘Z”X V;<t+1)> ((f+1))]TXc)
Ty €EX

— g(‘)(" V(t+1)).

74 CHAPTER 3. SUBSPACE CLUSTERING WITH ACTIVE LEARNING

]

The first line of the proof says that, at iteration ¢, we have a set of cluster labels for
the unlabelled data Qg) and for the labelled data Q(Lt) that satisfy all constraints imposed
upon knowing the true classes of the points in X7,. When we proceed into the next step
of updating the set of bases V(**'1) at iteration (¢ + 1), the new set of bases minimise the
reconstruction error within each cluster of points given the assignment Q® (as stated
in the second and third lines of the proof). Next, in the assignment update stage for

the unlabelled data, we obtain the fourth line of the proof. It states that the assignment

(t+1))

wy in the (¢ 4 1)-th iteration would only be different from wi) if it gives a smaller
reconstruction error for x,. Finally, in the last step of the KSCC algorithm, we update
the matching between the cluster labels and the true classes. It only gets updated if some

other matching has a smaller overall reconstruction error for the labelled data X7, which

is reflected in the last two lines of the proof.

3.4 Experimental Results

In this section, we conduct a series of experiments with both synthetic and real data to
evaluate the performance of our proposed active learning strategies against three other
competing strategies'. The cluster performance is measured by the N