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Abstract

This thesis comprises three essays in macroeconomics and finance. In the first chapter

we investigate the business cycle, property-price and investment dynamics when there is

competition between households and firms for real estate. We introduce a construction

sector into a RBC framework, which uses land, capital and labour to produce both

commercial and residential real estate. This market structure activates a ‘real estate

substitution channel’, where economic disturbances which alter the demand for one

type of real estate, by affecting the overall costs of real estate production, endogenously

create a substitution with its counterpart. For example, an increase in demand for

residential real estate, also increases the cost of producing commercial structures which

reduces the amount demanded by firms. In turn, this crowds out commercial real

estate which affects the goods market in a similar way to an adverse aggregate supply

shock. The estimated model reveals that housing preference shocks explain the largest

part of the variation in property prices and residential investment, while commercial

real estate prices are primarily driven by technology shocks.

The second topic proposes a novel approach for testing for rational speculative

bubbles in segmented capital markets. The basic idea is that, under capital controls,

heterogeneity of speculative expectations across international equity markets causes

financial assets with identical cash flow promises to trade at different prices. Because

these deviations from the law of one price inherit the properties of the speculative

bubble process, they display periods of explosive dynamics and have predictive power

for future movements in equity prices in sample. These two hypotheses can be

examined empirically using sequential unit root tests and predictive regressions. An



viii

attractive feature of this approach for bubble detection is that it does not require the

specification of a model for market fundamentals, thus mitigating the well-known joint

hypothesis problem. The focus of the paper is on mainland Chinese companies that

cross list shares in Hong Kong. China is an ideal setting for our analysis because of

the significant restrictions on capital movements imposed by the authorities and the

turbulent behaviour of its stock market over the last decades.

Finally, the third chapter investigates the causal effect of consumer confidence on the

housing market dynamics, using narrative evidence. We adopt an external instrument

approach that is using mass fatalities to identify exogenous variations in consumer

confidence. We find that adverse sentiment shocks can negatively affect housing

demand with a strong and prolonged reduction of house prices and new houses sold.

The deterioration of sentiments worsens homeownership conditions, causes a response

of monetary policy, and exacerbates real consumption spending. In a counterfactual

experiment, we assess the importance of the housing market by restricting the response

of the housing market variables to sentiment shock to be zero. We find that, the

housing market can propagate the effect of the sentiment shock to the rest of the

economy. The effect becomes particularly evident in longer horizons, specifically after

one year, where the deviation from the unrestricted model becomes substantial.
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Chapter 1

Real Estate and Construction

Sector Dynamics in the Business

Cycle

Joint with William Tayler

1.1 Introduction

Real estate is a significant component of the economy’s capital stock and households’

wealth, which serves as both a crucial input for producers and provider of residence for

households. Investment in real estate can be categorised according to its use as either

commercial or residential,1 with commercial real estate (henceforth CRE) typically

accounting for around half of business assets (Nelson et al., 2000) and residential real

estate (henceforth RRE) constituting one-third of household net worth. Moreover, the
1Commercial investment consists of new construction and improvements to existing structures in

commercial and health care buildings, manufacturing buildings, power and communications structures,
and other structures. Residential investment includes new construction of single-family homes and
multifamily homes and spending on other residential structures (Lally, 2009) - BEA Briefing
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construction sector lies in a unique and influential position as a major contributor to

the business cycle (Case et al., 2000; Head et al., 2014; Leamer, 2015).

In this paper, we argue that the inclusion of a construction sector as a producer

of both commercial and residential real estate is pivotal when evaluating the driving

forces behind property prices and economic activity. Firstly, CRE creation is an

important indicator of macroeconomic activity since it constitutes a significant factor

of production at the firm level. Secondly, the construction sector, as a creator of RRE,

responds directly to the demand for residential housing over the business cycle. As a

consequence, the competition for inputs that arise in the construction sector, such as

land, labour and capital creates direct spillovers between the two types of real estate.

A closer look into the construction sector and the disaggregated construction

spending for the US (Figure 1.1) reveals that despite both commercial and residential

spending growing in a similar way until 2001, they behave quite differently following

the two recession periods. After the 2001 dot.com crisis there was a fall in commercial

spending, while residential spending continued its upward trend until the onset of the

2007 financial crisis when it dived sooner and greater than commercial spending. Thus,

depending on the source of macroeconomic fluctuation, these two types of real estate

can potentially display quite different cyclical behaviours. More recently, the move

away from conventional office based work towards home working due to the Covid-19

pandemic has only further emphasised the importance of understanding the properties

and mechanisms behind these real estate co-movements.

The level of construction activity is one of the key mechanisms through which

changes in real estate prices are transmitted to the wider economy. Since construction

spending tracks the overall investment in real estate, i.e. the creation of new structures,

investment seems to follows a very similar path. Figure 1.2 plots the property and land

prices, alongside real estate investment. As was the case with construction spending,

different types of real estate investment have quite different cyclic behaviours (Wheaton,

1999); this can be particularly evident prior to the financial crisis. Analogous periods

can also be considered, for example, the 2nd energy crisis of 1982, where the demand
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Fig. 1.1 Construction Spending

Notes: Commercial construction spending (solid line) and residential construction spending (dotted line). Variables
are in log units and normalised to the origin of the sample. The shaded bars mark the NBER recession dates. Private
construction spending covers the dollar construction work done on new structures or improvements to existing structures.
Data estimates include the cost of labour and materials, cost of architectural and engineering work, overhead costs,
interest and taxes paid during construction, and contractor’s profits. Source: data.gov

for commercial real estate boomed and reached a speculative point in many markets

followed by an immediate fall in commercial real estate prices and investment, and the

aftermath of the early 1990s recession.

In line with the evidence of Roback (1982); Rosen (1979), and Gyourko (2009),

property and land prices appear to comove contemporaneously and have similar time-

series patterns. In particular, during the 2007-2008 financial crisis, all three series

displayed a sharp fall followed by a more gradual recovery. Finally, land prices have

followed a steady upward trend during the whole sample, which appears to drive both

commercial and residential real estate prices (Davis and Heathcote, 2007; Glaeser and

Ward, 2009; Gyourko et al., 2013).

We further investigate the dynamics of residential and commercial real estate

empirically. We consider the partial derivatives of RRE and CRE investment, and

CRE price at various horizons with respect to innovation in the RRE price shock.

Figure 1.3 displays the estimated impulse response of RRE price, RRE investment,
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Fig. 1.2 Real Estate Dynamics

Notes: Real commercial property price (solid line), real land price (dotted line) and real house price
(dashed line). All variables are in log units and normalized to the origin of the sample. The shaded
bars mark the NBER recession dates.

CRE investment, and CRE price following a shock to the RRE price series.2 The

impulse responses are estimated in a four-variable Bayesian Vector Autoregressive

(BVAR) model with the flat prior. We generate IRFs for an RRE price shock using

recursive identification, where we order RRE prices first. Although the identification of

the model may appear unguided by theory, it can approximate the effects of a housing

demand shock in a DSGE framework that represents an exogenous shift to housing

preferences.3

A positive shock to the RRE price leads to a positive response of the RRE investment.

On the other hand, CRE investment has the opposite response, which indicates a

substitution between the two real estate sectors, i.e. residential and commercial. Since
2In Appendix 1 there is a comprehensive explanation of the data and the data-manipulations used

in this paper.
3Innovations in RRE price may simply reflect information already contained in other variables

innovations. To address this possibility, we reorder the variables in the system such that RRE price is
orthogonalized with respect to other variables (RRE price is ordered last). We find that, whether or not
is first orthogonalized with respect to CRE, the shape of the impulse responses remain identical. For
robustness, we perform the same estimation with the Minnesota prior (Doan et al., 1984; Litterman,
1986). Results are available in the Appendix.
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Fig. 1.3 RRE Price Shock

Notes: Impulse response to a positive shock to the residential real estate price from a recursive
BVAR model with Diffuse Prior. Identification is achieved through Cholesky decomposition with the
following ordering {RRE Price, RRE Investment, CRE Investment, CRE Price }, all in real terms.
Solid lines represent the median estimated responses and dotted lines the 68% probability bands.

property prices co-move, the CRE price will increase following a positive shock to RRE

prices.

The aim of this paper is to shed light on the mechanism behind the relationship

between the price of residential and commercial real estate, and the substitution between

residential and commercial investment outlined in Figure 1.3. To do so, we introduce

a construction sector into a DSGE model, which undertakes the production of both

commercial and residential real estate. Specifically, we introduce sectoral heterogeneity

as in Iacoviello and Neri (2010), by differentiating between two groups of entrepreneurs

- consumption good and construction sector. To achieve this multi-sector entrepreneur

structure, we disaggregate the capital stock (Davis and Heathcote, 2005) into three
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components: consumption good, residential and commercial real estate. Whilst there

is a growing literature whereby residential housing production allows households to

consume both housing and nonhousing goods (Benhabib et al., 1991; Chang, 2000;

Davis and Heathcote, 2005; Fisher, 2007; Greenwood and Hercowitz, 1991), we also

allow the construction sector to facilitate the production of new commercial structures.

In this way, we can analyse the interplay between commercial and residential real estate

when there is both competition for land in the construction sector and competition for

real estate between households and consumption good entrepreneurs.

According to Davis and Heathcote (2007), fluctuations in real estate values are

primarily driven by changes in land prices, and land provides important collateral

value for business investment spending. As a result, we assume entrepreneurs in both

groups face credit constraints in the spirit of Kiyotaki and Moore (1997), where firms

finance investment spending by using the value of their inputs (besides labour) as

collateral. By doing so, there are positive co-movements between land prices and

business investment, as in (Liu et al., 2013). However, the additional requirement of

commercial and residential investment for construction means that the dynamics and

level of real estate prices can differ between commercial and residential production.

Our model is able to capture the substitution between commercial and residential

investment, which is evident in the BVAR model in Figure 1.3. We refer to this mecha-

nism as the “real estate substitution channel”. The channel we address encapsulates the

land reallocation channel as was initially established by Liu et al. (2013), however, we

claim that land does not equate real estate investment. Land has a unique quality; it is

fixed on aggregate, however, real estate investment clearly follows its own law of motion.

By introducing a construction sector where investment decisions depend upon not only

land but all of the inputs of real estate production, we are able to connect the dynamics

of the two series. Our results indicate that in general, the residential/commercial land

allocation acts as an anchor for the allocation of its real estate investment counterpart.

However, this is by no means always the case and, in particular following recession

periods, there is a notable divergence between the movements of land and real estate
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investment which has non-trivial implications for both real estate dynamics and real

economic activity.

The paper proceeds as follows. The next chapter describes the theoretical model.

Section 3 reports the calibration and estimation details. Section 4 explains the properties

of the model. Section 5 describes the importance of land. Finally, Section 6 concludes.

1.2 Model

We consider an economy that consists of two types of agents: a representative household

and an entrepreneur. The entrepreneur chooses to produce either consumption goods

or build new property structures for residential or commercial purposes. The represen-

tative household’s utility depends on consumption goods, housing, and leisure, while

the entrepreneur’s utility depends only on consumption goods. Consumption goods

production requires labour, capital, and commercial real estate as inputs. Real estate

investments require labour, capital, and land as inputs. Furthermore, the entrepreneur

in both of these sectors needs external financing for investment spending. Imperfect

contract enforcement implies that the entrepreneur’s borrowing capacity is constrained

by the value of their collateral assets. Because these assets vary depending upon

the sector, collateral differs according to the type of production. Borrowing in the

consumption good sector is constrained by the value of non-construction capital and

the value of the commercial real estate, while the construction sector is constrained by

the value of capital and land.

1.2.1 Households

There is a continuum of households indexed by d ∈ [0, 1]. The representative household

seeks to maximize its discounted, time separable lifetime utility. The utility function is

given by
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Et
∞∑
t=0

βtdzt

{
ln (Cd,t − γdCd,t−1)+χt ln (Hd,t)−

ψt
1 + η

(
N1+ξ
c,t +(Nhc,t+Nhd,t)1+ξ)

1+η
1+ξ

}
,

(1.1)

where Cd,t denotes consumption, Hd,t denotes residential housing stock, Nc,t, Nhc,t

and Nhd,t denote labour hours in consumption good, commercial and residential real

estate production, respectively. The parameter βd ∈ (0, 1) is a discount factor, the

parameter γd measures habits in consumption and parameters ξ and η measure, the

labour mobility among the different types of production and the inverse of the Frisch

elasticity, respectively. The terms zt and ψt capture shocks in intertemporal preference

and labour supply respectively. Housing preference shock χt shifts preferences away

from consumption and leisure towards housing. The shocks follow

ln zt = ρz ln zt−1 + σzϵz,t, lnψt = ρψ lnψt−1 + σψϵψ,t,

lnχt = (1− ρχ) ln χ̄+ ρχ lnχt−1 + σχϵχ,t,

where σz, σψ, σχ are the standard deviations of the innovation, and ϵz,t, ϵψ,t, ϵχ,t are

independent and identically distributed (i.i.d) normal processes.

The disutility of labour, follows Horvath (2000) and Iacoviello and Neri (2010)

specification that allows for imperfect labour mobility among sectors. The household

allocate labour resources to the productive activities, for ξ ≥ 0, hours worked are not

perfect substitutes between sectors. Specifically, labour in the consumption and real

estate sectors in sectors are imperfect substitutes which gives rise to sectoral wage

differentials. In contrast, labour can freely move from commercial to residential real

estate production and vice versa within the construction sector and they face the same

wage.

The households consume, accumulate houses, work for the consumption good and

construction sector, and use bonds to smooth consumption. The flow of funds constraint
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for the household is given by

Cd,t+qhd,tHd,t+
St
Rt

≤ qhd,t(1−δhd)Hd,t−1+wc,tNc,t+wh,tNhc,t+wh,tNhd,t+St−1+ql,tLephd,t
(1.2)

where qhd,t is the price of residential homes, Rt is the gross real loan rate, and wc,t,

wh the real wage of the consumption good and construction sector respectively. St
is the loanable bond that the household buys in period t which pays off in period

t + 1. Finally, Lephd,t is the amount of land that the household is left with after the

depreciation of the housing stock where ql,t is the land price. The household chooses

Cd, Hd, Nc, Nhc , Nhd and St to maximize (1.1) subject to (1.2).

1.2.2 The Entrepreneur

We model the entrepreneurial sector with borrowing constraints à la Iacoviello (2005),

where entrepreneurs consume in every period and can raise their net worth by lowering

their consumption. To introduce sectoral heterogeneity we consider a representative

entrepreneur that operates in two sectors - consumption good and construction sector,

where residential and commercial real estate comprise the construction sector. The

entrepreneur faces the utility function

Et
∞∑
t=0

βte

(
log(Ci,t − γeCi,t−1)

)
, i = c, h (1.3)

where c and h define the respective consumption good and construction good sectors.

Ci,t denotes the entrepreneur’s consumption and γe is the habit persistence parameter.

We ensure that the parameter βe ∈ (0, 1) is smaller than the households discount factor

βe < βd, so that the credit constraint is binding in a neighborhood of the steady state

(Iacoviello, 2005). The entrepreneur owns all inputs beside labour, i.e. capital, land

and commercial real estate.
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1.2.3 The Consumption Good Sector

The entrepreneur in the consumption good sector produces goods using non-construction

capital, labour and commercial real estate as inputs. The production function is given

Yt = Kαc
c,t−1H

µc
c,t−1 (Ac,tNc,t)1−αc−µc (1.4)

where Yt denotes output, Kc,t−1, Hc,t−1, Nc,t, Ac,t, denote non-construction capital,

commercial real estate , labour and labour productivity respectively. The entrepreneur

is endowed with Kc,t−1 units of initial non-construction capital stock and Hc,t−1 of

commercial real estate stock. Production functions in both sectors are subject to an

exogenous labour-augmenting productivity shock. The shocks follow

lnAc,t = ρAclnAc,t−1 + σAcϵAc,t,

where σAc is the standard deviations of the innovation, and ϵAc,t is an independent and

identically distributed (i.i.d) normal process. The entrepreneur faces the flow of funds

constraint

Cc,t +Kc,t + qhc,tHc,t + wc,tNc,t +Bc,t−1 (1.5)

= Yt + (1− δkc)Kc,t−1 + (1− δhc)qhc,tHc,t−1 + Bc,t

Rt

+ ql,tL
ep
hc,t − ϕc,t4

where qhc,t denotes the price of commercial real estate, the variable ϕc,t describes capital

adjustment costs and δkc and δhc are the depreciation rates of non- construction capital

and commercial real estate respectively. The value of land that the entrepreneur is left

with after the depreciation of the housing stock is ql,tLephc,t . Finally, Bc,t is the amount

of debt used to finance investments in the non-construction sector which is subject to

4ϕc,t = ϕkc

2

(
kc,t

kc,t−1
− 1
)2

kc,t−1
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the credit constraint

Bc,t ≤ ρbBc,t−1 + (1− ρb)θcEt (qhc,t+1Hc,t +Kc,t) , (1.6)

where θc can be interpreted as a steady state loan-to-value (LTV) ratio, and ρb measures

the inertia in the borrowing limit Iacoviello (2015). Following Kiyotaki and Moore

(1997) there is a limit on the obligations of entrepreneurs. The amount the creditor

can borrow to invest is bounded by a fraction of the value of the collateral assets i.e.

the commercial real estate and the non-construction capital. The entrepreneur in the

consumption good sector chooses {Cc,t, Kc,t, Hc,t, Nc,t, Bc,t} to maximize (1.3) subject

to (1.4) - (1.6).

1.2.4 The Construction Sector

The entrepreneur in the construction sector produces new commercial and residential

real estate using capital, labour and land as inputs. The production function for the

former is given by

IHc,t = Kαh
hc,t−1L

µh
hc,t−1 (Ahc,tNhc,t)1−αh−µh , (1.7)

where IHc,t denotes the commercial real estate. Subscript hc and hd define the

commercial and residential real estate sectors such that Khc,t−1, Nhc,t , Lhc,t−1, denote

the inputs; commercial real estate capital, labour and land that is used for commercial

real estate, respectively. The production function for residential real estate is

IHd,t = Kαh
hd,t−1L

µh
hd,t−1 (Ahd,tNhd,t)1−αh−µh , (1.8)

where IHd,t denotes new homes, and Khd,t−1, Nhd,t and Lhd,t−1, are the corresponding

inputs . Ahc,t and Ahd,t measure the productivity of commercial and residential
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construction and follow the processes

lnAhc,t = ρAhc
lnAhc,t−1 + σAhc

ϵAhc,t

lnAhd,t = ρhdlnAhd,t−1 + σAhdϵAhd,t

where σAhc
and σAhd are the standard deviations of the innovation, and ϵAhc

and ϵAhd,t
are two independent and identically distributed (i.i.d) normal processes. Construction

sector entrepreneurs face the following flow of funds constraint

Ch,t +Khc,t +Khd,t + ql,t (Lhc,t + Lhd,t) + wh,t (Nhc,t +Nhd,t) +Bh,t−1 = qhc,tIHc,t

+ qhd,tIHd,t + (1− δkh)Khc,t−1 + (1− δkh)Khd,t−1 + Bh,t

Rt

− ϕh,t5, (1.9)

where Bh,t is the debt for financing investments in the construction sector and is subject

to the credit constraint

Bh,t ≤ ρbBh,t−1 + (1− ρb)θhEt (ql,t+1 (Lhc,t + Lhd,t) +Khc,t +Khd,t) . (1.10)

The amount the entrepreneur can borrow in the constructions sector is limited by

the total value of land and construction capital in the production of real estate. The en-

trepreneur in the construction sector chooses {Ch,t, Khc,t, Khd,t, Lhc,t, Lhd,t, Nhc,t, Nhd,t, Bh,t}

to maximize (1.3) subject to (1.7) - (1.10).

5ϕh,t = ϕhc

2

(
khc,t

khc,t−1
− 1
)2

khc,t−1 + ϕhd

2

(
khd,t

khd,t−1
− 1
)2

khd,t−1
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1.2.5 Market Clearing Conditions and Equilibrium

The goods market produces consumption and business investment. The clearing

condition implies that

Yt − ϕt = Ct + IBt, (1.11)

where Ct = Cd,t + Cc,t + Ch,t is the aggregate consumption and IBt is the business

investment. Business investment is described as

IBt = IKc,t + IKh,t + q̄hcIHc,t,

where IKc,t = Kc,t − (1− δkc)Kc,t−1 can be described as investment in nonresidential

equipment and intellectual property products. The second part of business investment

IKh,t = Khc,t − (1− δkh)Khc,t−1 +Khd,t − (1− δkh)Khd,t−1 denotes the investment in

construction machinery, which is a small part of the total machinery. CRE is used as

an intermediate input in the production of consumption good output and built into

the capital stock of the sector in the economy, hence the last term q̄hcIHc,t describes

the value of new RRE. Hc,t evolves according to the law of motion

IHc,t = Hc,t − (1− δhc)Hc,t−1. (1.12)

The construction sector produces new homes IHd,t

IHd,t = Hd,t − (1− δhd)Hd,t−1, (1.13)

where Hd,t is the stock of residential real estate. The GDP is the sum of the value

added of the consumption good and residential real estate, that is

GDPt = Yt + ¯qhdIHd,t. (1.14)
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Available land does not evolve over time (without loss of generality we can assume

land to fixed at L̄h = 1). In the spirit of Liu et al. (2013), we assume land market

clearing with the following condition

L̄h = Lhc,t + Lhd,t. (1.15)

We define ex post land, Lephd and Lephc as the land which is owned by the respective

household and entrepreneur following the depreciation of their housing stock. This is

then purchased the construction entrepreneur who uses it as an input. Since all land

has a positive value it is always built upon when it becomes available, thus it follows

that Lephc + Lephd = L̄h with the following shares applied to each sector

Lephc,t = δhcHc,t−1

δhcHc,t−1 + δhdHd,t−1
L̄h Lephd,t = δhdHd,t−1

δhcHc,t−1 + δhdHd,t−1
L̄h. (1.16)

1.2.6 Real Estate Substitution

In this section, we use a static model to explain the mechanism of real estate substitution

in the presence of a housing demand shock. Figure 1.4 includes the four markets we

consider in our analysis, residential real estate (top left), land market (top right),

labour market (bottom left) and commercial real estate (bottom right).

Consider a positive RRE price shock that shifts the demand curve in the RRE

market from DA to DB. Higher demand for houses will increase RRE prices (qhd) and

cause RRE investment to rise. To facilitate this increase in production, demand for

construction machinery, labour in the construction sector, and land will also increase.

In the land market, the residential land demand curve will shift from LAhd to LBhd

, increasing competition for the available land, which leads to an increase in land

prices and a substitution towards RRE land use. Similarly, the increased demand for

labour for residential construction will raise construction sector wages. This hike in

construction costs generates a vertical shift in the supply of commercial real estate,
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Fig. 1.4 Housing Demand Shock

qhd
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Lhc
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Labour Market (Construction)
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D
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Notes: The figure display the residential real estate market (top left), the land market (top right),
tha labour market (bottom left) and the commercial real estate market (bottom right), following a
housing demand shock.

displayed by the shift from SA to SB, which increase the CRE price, qhc and cause a

fall in CRE investment.

Thus "real estate substitution" following a RRE demand shock is driven by cost

push pressures which acts to crowd out the CRE market in the same way as an adverse

aggregate supply shock.6 As can be seen in Figure 1.4, the overall effects of real estate
6There is a strand of literature in urban economics that indicate that the demand for both

residential and commercial real estate are similar. In this framework introduced by Rosen (1979)
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substitution on both real estate prices and investment depend upon the price elasticities

of supply and demand in the real estate, land and labour markets. To shed further

light upon the quantitative and state-contingent behaviour of this channel, we fully

estimate the model in the following section.

1.3 Estimation

We use Bayesian methods to estimate our model. The posterior density is constructed by

simulation using the Metropolis-Hastings algorithm (with 200,000 draws) as described

in An and Schorfheide (2007).7 The model due to the innate characteristics of the

RBC, can only allow for a limited number of shocks, which in this case amount to six.

Since we can not accommodate more than six shocks in the model we are restricted to

six observables: consumption, residential real estate investment, residential real estate

price, commercial real estate investment, commercial real estate prices and total hours.

All variables are denoted in real terms. All the data have been gathered from freely

available sources such as BEA, BLS and FRED. We demean the hours and detrend

the logarithm of the rest of the variables independently using a quadratic trend.8. The

detrended and demeaned data are plotted in Figure 1.5 The sample covers the period

from 1975:Q1 to 2016:Q4.

Due to the low number of observables we are unable to to estimate a wide range of

structural parameters, hence we focus our estimation strategy primarily to the shocks’

processes.

and Roback (1982) land prices is the entry fee that households and firms must pay to access the
productivity and the amenities of a labour market area. Because land is substitutable between uses,
the price of both residential and commercial property will move together.

7Appendix C plots the prior and posterior densities, details on the estimation strategy and tests of
convergence for the stability of the estimated parameters

8Appendix A describes further details of the data construction
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Fig. 1.5 Detrended Data

Notes: Prices, investment and cosumption have been detrended using a quadratic trend and normal-
ized to the beginning of the sample. Hours are demeaned. The model parameters are estimated using
data from 1975Q1-2016Q4. Shaded regions indicate the NBER recession periods.

1.3.1 Calibrated Parameters

To calibrate, we use data on the US market. Table 1.1 summarizes our calibration.

We set the discount factor for households βd = 0.9925, that corresponds to a annual

3% bank prime loan rate. We fix the discount factor for entrepreneurs at βe = 0.975 ,

which makes the credit constrain binding in the steady state (Iacoviello, 2005). Since

entrepreneurs can use bonds to smooth consumption we assume a higher degree of

habit persistence γe = 0.65 than households γd = 0.5. The depreciation rates for

residential real estate, non construction capital, commercial real estate, and capital in

the construction sector are set to δhd = 0.01, δkc = 0.025, δhc = 0.025 and δkh = 0.04

(Iacoviello and Neri, 2010). Parameter χ is calibrated to 0.2 to set the steady state of

the ratio of residential investment to output.
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Real estate also typically accounts for about half of business assets, so we set

αc = 0.20 for the capital share and µc = 0.20 for the real estate share (Liu et al.,

2013). It is important to note that the construction sector is more labour-intensive,

hence the labour share ought to be larger than the consumption good sector, thus the

construction factor shares are set to αh = 0.20 for the capital share and µh = 0.1 for

the land share (Davis and Heathcote, 2005).

Finally, the LTV ratios have to take values less than 0.75, since commercial

mortgage-backed securities loans permit maximum LTV of 75%. Grovenstein et al.

(2005) measures LTV ratios to be 71.01% in five major commercial real estate property

types originating from 10547 loans. Downing et al. (2008) report an average LTV of

67.40% for over 14.000 commercial mortgages between 1996 and 2005. Arsenault et al.

(2013) finds a mean of 66% for the period of 1991 to 2011. For our purpose we set

consumption good LTV to 70% (θc = 0.70), while real estate firms correspond to an

aggregate loan-to-value ration to 50% (Gyourko, 2009), thus we set θh = 0.5.

Table 1.2 shows the steady steady ratios of the model. The sum of the consumption

share (68%) and the business investment (22%) is the consumption good share, which

amounts to 90%. The remaining 10% is the residential real estate share. We split the

business investment share into three sub-components. The commercial real estate share

accounts for 34% of business investment or 7% of GDP. The other two components

Table 1.1 Calibrated Parameter Values

Households Entrepreneur
βd Discount factor 0.9925 βe Discount factor 0.975
χ Housing services 0.2 γe Habit persistence 0.65
γd Habit persistence 0.5 ρb Borrowing inertia 0.8

Entrepreneur: Consumption Good Entrepreneur: Construction
αc Non-construction capital share 0.2 αh Construction capital share 0.2
µc Commercial real estate share 0.2 µh Land share 0.1
δkc Depreciation of non-construction capital 0.025 δhd Depreciation residential real estate 0.01
δhc Depreciation of commercial real estate 0.025 δkh Depreciation of construction capital 0.04
θc LTV consumption good sector 0.70 θh LTV construction sector 0.5
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Table 1.2 Steady State Ratios

C/GDP Consumption share 68%
IB/GDP Business investment share 22%
– IKc/IB Software and non-construction equipment share 53%
– IKh/IB Construction equipment share 11%
– qhcIHc/IB Commercial structure share 34%
qhdIHd/GDP Residential structure share 10%

qhdHd/(4×GDP ) Residential real estate wealth 2.46
(qcHc +Kc)/(4×GDP ) Consumption good capital 3.1
(Khc +Khd)/(4×GDP ) Construction capital 0.16

are software and non-construction capital and construction capital that constitute the

largest part of business investment 53% and 11% respectively. To calculate the business

capital in the consumption good sector, we sum the capital used in the production of

the consumption good and the commercial real estate wealth. The business capital

for the construction good is 25% higher than the residential housing wealth, while

the business capital of the construction is only 4% of the business capital stock. This

means that construction firms possess only a smart part of the total capital.

1.3.2 Prior & Posterior Distributions

Table 1.3 summarizes the estimation of the model. We report the estimates of shock

and structural parameters at the posterior mean, median and mode, along with the 90%

posterior probability intervals. For the shock processes, we use Beta distribution for the

persistence with prior mean of 0.8 and a standard deviation of 0.1, and Inverse-Gamma

distribution for the standard errors with prior mean 0.001 and standard deviation 0.01.

For labour supply elasticity (η) we use a normal distribution centred around 0.5, and

we observe a moderate response of labour supply to wages with a median estimate to

0.64. Also, agents exhibit little preference for labour mobility with a median estimate

of 0.89.
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Table 1.3 Prior and Posterior Distribution

Prior Distribution Posterior Distribution

Parameter Density Mean SD Mean 2.5% Median Mode 97.5%

σz Inv Gamma 0.00 0.00 0.069 0.061 0.069 0.068 0.077
σχ Inv Gamma 0.00 0.00 0.081 0.063 0.08 0.08 0.099
σψ Inv Gamma 0.00 0.00 0.017 0.016 0.017 0.017 0.019
σAc Inv Gamma 0.00 0.00 0.02 0.017 0.02 0.02 0.023
σAhc Inv Gamma 0.00 0.00 0.03 0.028 0.03 0.03 0.033
σAhd Inv Gamma 0.00 0.00 0.031 0.028 0.031 0.031 0.035
ρz Beta 0.80 0.01 0.78 0.75 0.79 0.79 0.82
ρχ Beta 0.80 0.01 0.95 0.93 0.95 0.95 0.96
ρψ Beta 0.80 0.01 0.98 0.98 0.98 0.98 0.99
ρAc Beta 0.80 0.01 0.98 0.97 0.98 0.98 0.99
ρAhc Beta 0.80 0.01 0.98 0.97 0.98 0.98 0.99
ρAhd Beta 0.80 0.01 0.96 0.95 0.96 0.96 0.97
ξ Beta 1 0.1 0.89 0.84 0.89 0.9 0.94
η Normal 0.5 0.1 0.64 0.41 0.64 0.65 0.88
ϕc Gamma 10.00 6.25 13 10 13 13 17
ϕh Gamma 10.00 6.25 14 8.9 14 10 19

In the construction sector, we observe that the autoregressive terms are relative high,

indicating a persistent and prolonged effect on the construction technology, consistent

with Iacoviello and Neri (2010). The standard errors are close 0.03 and 0.031 for

commercial and residential, respectively.

1.4 Properties of the Model

For the central part of the analysis, we focus on two shocks: an RRE preference shock

and a technology shock to the consumption good sector. All impulse responses plots
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Fig. 1.6 Housing Preference Shock

Notes: Impulse responses to a positive (one standard deviation) shock to housing preferences. The
y-axis measures percent deviation from the steady state.

correspond to a one standard deviation shock. The y-axis measures the deviation from

the steady state.

1.4.1 Estimated IRFs

Figure 1.6 shows IRFs for the housing preference shock. As explained in section 2.6, the

housing preference shock, causes RRE prices and investment to increase.9 Increases in

the production of residential real estate requires more inputs, thus increasing the land

prices, wages in the construction sector, and therefore RRE investment itself. However,

CRE production also requires these inputs, and it is the rise of these input prices that

activate the real estate substitution channel and causes a fall in CRE investment.
9Alternatively this could be condidered a "housing demand shock" as in Iacoviello and Neri (2010)
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In Iacoviello and Neri (2010) a positive housing preference shock creates a rise

in capital in the construction sector and a decrease in capital in the consumption

sector. This shift in resources between sectors cause a small but negative response

to business investment. In our model, CRE investment by definition is included

in the business investment; therefore with a reduction in CRE investment, business

investment will follow. However, rather than the shift of resources between construction

and non-construction capital, the redistribution takes place within the construction

sector between the two types of real estate producers.

The increase in land prices also raises the collateral capacity of the entrepreneurs

in the construction sector, allowing them to increase borrowing and consumption.

On the other hand, the increase in RRE prices and the fall in CRE investment

reduces the household consumption and the collateral capacity of entrepreneurs in the

consumption good sector, respectively. The behaviour of consumption resembles the

case of heterogeneous households (Iacoviello, 2005; Iacoviello and Neri, 2010), where

the assumption of constrained-households produces positive co-movement between

consumption and house prices. However, in our model, we generate this co-movement,

by utilising the borrowing characteristic of entrepreneurs in the construction sector.

Figure 1.7 shows the IRF for a technology shock in the consumption good sector.

For a technology shock, investment and output go up on impact. However, with the

separation of investment, we can observe that it is CRE investment that drives business

investment, which in turn increases production and output, while RRE investment

declines, by a smaller proportion, and overall output still increases.

Specifically, a positive productivity shock increases the demand and price of the

inputs required to produce consumption good, that is consumption good capital, CRE

capital and commercial land. In turn, the increase in demand for CRE increase CRE

investment, wages in the construction sector and land prices. Higher input prices set

up the real estate substitution mechanism, which generates a cost-push increase in

residential prices and reduces residential investment. Thus what we initially considered

a positive supply shock to the consumption good, instigates the equivalent of a positive
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Fig. 1.7 Consumption Good Technology Shock

Notes: Impulse responses to a positive (one standard deviation) shock to consumption-good technology.
The y-axis measures percent deviation from the steady state.

demand shock to CRE and, in turn, an adverse supply shock to residential property.

Borrowing increases stem from the higher value of CRE and the increase in land prices.

Consumption follows residential house prices very closely since household utility retains

the same relative weights on housing and consumption.

1.4.2 Relative Importance of the shocks

Table 1.4 reports variance decomposition for the key macroeconomic variables across

the 6 type of structural shocks at forecasting horizons between the impact period (1Q)

and the five years after the initial shock (20Q).

It is clear that the largest variation in RRE prices stems from the housing preference

shocks, especially at short horizons. Indeed over longer horizons changes in household
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Table 1.4 Variance Decomposition

Shocks

Horizon Discount Housing
Preferences

Labour
Supply

Consumption
Technology

CRE
Tecnology

RRE
Technology

RRE Prices
1Q 8.37 62.91 0.26 7.16 7.44 13.87
5Q 12.76 56.94 0.47 16.99 2.17 10.67
10Q 12.34 49.58 0.59 25.54 2.11 9.85
20Q 9.33 38.91 0.76 36.82 2.46 11.73

CRE Prices
1Q 7.71 1.71 2.41 46.92 39.55 1.70
5Q 14.48 2.86 1.42 35.34 43.01 2.88
10Q 12.61 2.81 1.15 33.44 47.06 2.93
20Q 9.14 2.39 0.99 33.70 51.21 2.57

RRE Investment
1Q 0.40 16.29 1.47 10.57 2.02 69.26
5Q 1.77 21.33 1.50 7.72 0.73 66.94
10Q 1.01 23.25 2.14 4.51 1.34 67.75
20Q 1.12 23.66 2.96 2.65 3.69 65.91

CRE Investment
1Q 4.28 1.69 18.77 66.54 7.50 1.22
5Q 11.18 9.21 11.81 36.12 23.51 8.17
10Q 5.97 11.21 8.50 19.18 44.35 10.78
20Q 2.93 10.02 6.34 9.65 60.52 10.55

Consumption
1Q 83.12 0.02 2.68 14.15 0.00 0.02
5Q 65.68 0.00 5.12 28.99 0.21 0.01
10Q 44.26 0.01 7.95 46.97 0.80 0.01
20Q 25.06 0.01 10.68 63.07 1.18 0.01

income are spread across both the consumption good and house prices which also

explains why the two components of household utility are highly correlated. CRE

prices react in a similar way, over short horizons most of the variation is attributed

to demand (consumption technology shock), while more weight is allocated to supply

(CRE technology) as you go in longer horizons. Additionally, discount shocks play a

non-trivial role in determining property prices, which further highlights the importance

of treating real estate separately to consumption.

More than half of the RRE investment variation is attributed to the technology

shock to the residential construction, and around a quarter of the variation is driven by

a housing demand shock. On the other hand CRE investment, on impact is primarily

explained by a technology shock to the consumption good, i.e. CRE demand shock,
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Fig. 1.8 Historical Decomposition of Structural Shocks

Notes: The solid line represents the data. Housing preferences and consumption good technology
include only their corresponding shock. Real estate technology shock includes both CRE and RRE
technology shocks. All series are in deviation from the estimated trend.

and secondarily by the technology shock to the commercial construction. However, the

effect of the shock in the end changes and allocates more weight into the supply shock

and less to the demand shock.

Figure 1.8 displays the historical decomposition of the prices and investment in

residential and commercial real estate. The solid lines display the detrended historical

data, obtained by applying a quadratic filter on the observed series. The filled regions

show the historical contribution of the four shocks under our estimated parameters. In

order to observe the technology shock across the whole construction sector, we combine

residential and commercial real estate technology as real estate technology.

The sum of these four shocks accounts for most of the variation in the filtered

observed series. The real estate substitution channel indicates that a positive shock
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in either the housing preferences or consumption good technology will increase real

estate prices, however, the response of each element of investment will be contingent

on the source and the dominance of the shock. A positive housing preference shock

boosts residential investment and diminishes commercial investment, while consumption

good technology works in the opposite way where residential investment drops and

commercial investment increases. However, in the bottom two graphs of Figure 1.8

that display the property quantities (investments) the two shock work against each

other, a result that is attributed to the real estate substitution channel. Thus to fully

comprehend these investment cycles it is crucial that the demands for the two types of

real estate are not considered in isolation, but rather that the relative strength of the

disturbances that drive them are considered.

The housing preference shock seems to be the main driver of the 2007 financial

crisis, which is evident in all variables besides the CRE prices. Significantly, in the

build-up to the financial crises the increase in RRE are not offset by a fall in CRE

investment and following the financial crisis both types of investment fall, a result in

contrast to the real estate substitution channel. In the following section, we detail how

the construction sector and its interaction with both land, and the two types of real

estate, can give rise to both of these investment co-movements.

1.5 The role of Land

1.5.1 Land as a unique input

Land, while not directly useful as an input for consumption good producers or as a

product for households, is a unique factor of production. Competition for land, stems

from the fact that not only land is finite10, but also both households and firms need it

indirectly through their demands for new RRE and CRE respectively. Liu et al. (2013)

were the first to introduce competition for land and the “land reallocation channel” in
10Land can grow at a very small rate if we consider the land zoning restriction lifts, that enable the

commercial and residential building to overtake farmlands or previously unzoned territories
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a DSGE framework. In their novel paper, there was no need for real estate production

since land prices are able to capture the largest part of the business cycle fluctuations

(Davis and Heathcote, 2007). With the abstraction of real estate production and the

construction sector, land prices are identical to property prices, and guarantee that the

land reallocation channel will always be present and dominant. However, the price and

the quantity of land has very different time-series properties to the price and quantity

of land in commercial use (Davis, 2009).

To understand more clearly the relationship between land and real estate in our

framework, consider construction sector’s demand for land, which for RRE and CRE

production is given by

ql,t = βeEt
uch,t+1

uch,t

(
µh
qhc,tIHc,t+1

Lhc,t

)
+ λbh,t(1− ρb)θhql,t+1 (1.17)

and

ql,t = βeEt
uch,t+1

uch,t

(
µh
qhd,tIHd,t+1

Lhd,t

)
+ λbh,t(1− ρb)θhql,t+1 (1.18)

respectively. The term uch is the marginal utility of consumption and λbh defines the

shadow value of the construction sectors existing loans in consumption units. Like

Liu et al. (2013) according to equations (1.17) and (1.18) the cost of a unit of land

depends upon the marginal utility of land services and the discounted resale value of

land. However, the marginal product of land, (µh IHd,t+1
Lhd,t

and µh
IHc,t+1
Lhc,t

) depends upon

the real estate demands of the construction sector and not directly on the consumption

good producers or households.

At the extreme when µh → 1 in production functions of RRE and CRE ((1.7) and

(1.8) respectively), the construction of real estate requires only depends land, so that

the construction sector becomes redundant. The supply of new structures is constant,

and land and real estate are equivalent, so that akin Liu et al. (2013) the change in

RRE investment perfectly offsets the change in CRE investment, to equates marginal

product of land in each sector.
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In our framework, the land reallocation channel is encapsulated through a broader

definition of competition in the construction sector, where the competition between

households and firms is not for land use but for the two types of real estate. Land

reallocation is always present, but in comparison with Liu et al. (2013) it is not

always dominant. A critical motivation behind a more flexible version of “real estate

substitution” is that the two types of real estate do not always follow an opposing

path, so an assumption of complete substitution would be unreasonable. The recent

global Covid-19 pandemic has further underscored the importance of this model feature.

The restrictions of workers to attend offices and hospitality venues has had severe

implications for both the supply of labour, the value of commercial premises, and in-turn

commercial real estate investment. On the other hand, the implications for residential

real estate investment depend upon changes in both the demand for residential property

and all of the inputs required for production in the construction sector. To shed further

light on this issue we consider a labour supply shock.

Labour supply shocks have been shown to be a significant driver of the fall in labour

hours during the Covid-19 pandemic (Brinca et al., 2020).11 We argue that such a fall

in labour supply will unmistakably leads to a fall in CRE investment as the marginal

product of CRE falls. However the implications for RRE investment are ambiguous

and contingent upon the weight that land has relative to the other inputs required

for the construction of real estate. With a construction sector, where the creation of

structures is given by equations (1.7) and (1.8), we have that land, capital and labour

all contribute to the formation of new real estate. As a result, the fall in the supply of

labour in Figure 1.9 with low values of µh not only reduces the demand for IHc,t from

consumption good producers but also the supply of both labour and capital to the

whole of the construction sector. This creates a separation of real estate investment
11For tractability we assume that the labour supply shock falls uniformly across our sectors. As

argued by Dingel and Neiman (2020), the extent to which work in a sector can be carried out at
home would have implications for our model, both for the sectoral response of hours, but also because
it creates a separation between labour and CRE in production. In our model this would create a
cushioning of the falls in labour supply alongside an amplification of the fall in CRE investment and
real estate substitution



1.5 The role of Land 29

from land use which can be seen by equating (1.17) and (1.18) to give

IHc,t+1 = Lhc,t
Lhd,t

qhd,t
qhc,t

IHd,t+1 (1.19)

In (1.19) commercial real estate investment dynamics are not only determined by the

ratio of land use, but also by the demands for residential real estate. This separation

of IHd,t from Lhd,t allows IHc,t to potentially fall which allows for both CRE and RRE

investment to co-move such that the aggregate supply of real estate falls. Moreover,as

can be seen in equations (1.17) and (1.18) and in Figure 1.9, with lower values of µh
the falls in the land price has less influence on construction costs and the real estate

substitution channel is weakened which suppresses some of the falls RRE and CRE

prices. Meanwhile, driven by the reduction in labour hours, spending on both RRE

and CRE ( qhc,tIHc,t+1 and qhd,tIHd,t+1 respectively) falls whilst, by assumption, the

supply of land is fixed. This reduces the marginal product of land, such that land prices

become more volatile. In contrast for higher values of µh the real estate substitution

channel dominates and the two series take opposing paths.

1.5.2 Land Shares

To investigate the role of land as input in the construction sector and its implications

for the real estate cycle, we examine the simulated path of investment and land share

for both residential and commercial real estate. Figure 1.10 displays the simulated

path of RRE investment and residential land in the top panel, and the CRE investment

and commercial land in the bottom panel. Land and investment cycles seem to be in

synchronisation for most of the sample, however, there are significant divergences, in

particular following recession periods.

For example, after the office overbuilding of the 1980s and the consequent collapse,

demand for residential land followed a steady upward trend which peaks in 2007.

However, post-2007 there is large shift that changes the composition of land share

towards the commercial side. Due to the model flexibility, we can observe movements
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Fig. 1.9 Labour Supply Shock Sensitivity

Notes: Impulse responses to a positive (one standard deviation) shock to labour supply. The y-axis
measures percent deviation from the steady state.

in investment that is not simply equivalent to the supply of land. Moreover, in the

post-financial crisis period, we see a significant fall in both RRE and CRE investment

that is not attributed to the substitution of land. By ignoring the construction sector,

and using land as the only input, the supply land would be significantly overestimated.

Eventually, towards the end of the sample where RRE demand begins to recover,

residential investment converges towards its land counterpart.

Finally, we compare our estimate of land share with the estimate derived from

Davis and Palumbo (2008). Figure 1.11 plots model estimate of residential land share

(dotted line), the aggregate residential land shares (solid line) along with the 68% error

bands (dashed lines) that correspond to the bottom 16% and top 84% percentile of

the MSA land shares. According to Davis and Heathcote (2007), land values can also
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Fig. 1.10 Investment and Land

Notes: Top figure display the residential investment (solid line) and the residential land (dashed line). The bottom
figure display the the commercial investment (solid line) and the commercial land (dashed line). The sum of land
should always be one. Investment is measured on the left axis and land on the right. The shaded bars mark the NBER
recession dates.

be conceptualised as the value of the real estate when you exclude the cost of the

structures. Thus the mentioned estimate does not correspond to land measurement, but

instead as the ratio of residential real estate value to residential land value. Consistent

with Davis and Palumbo (2008), our model estimate shows an upward trend which

indicates that residential housing is much more land-intensive than it used to be. Both

estimates capture the upward trend and subsequent fall of the land shares after 2007.

The crisis in 2007 reverts this trend to 1980s levels.
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Fig. 1.11 Land Shares

Notes: Empirical land shares are calculated as the ratio of land value over the home value from Davis and Palumbo
(2008). The dashed bands indicate the top and bottom decile of the MSA areas land share. The shaded bars mark the
NBER recession dates. Source www.aei.org/housing/land-price-indicators/

1.6 Conclusion

This paper has shown both the existence and potential mechanism behind the real

estate substitution channel as well as captured the way it manifests. Notably, the

inputs of the construction sector play a significant role in explaining the detail and scale

of the processes that create this effect. The channel is reciprocal, meaning that it can

either originate in residential or the commercial real estate. However, the magnitude

and dynamics are not symmetrical, which highlights that even though construction has

many commonalities in the production of the two types of real estate, the specificity of

each type is non-trivial.

We give a unique interpretation to the housing preference shock, where it does not

merely generate a shift in the preference for housing, instead it is shown to have of a

structural connection with commercial real estate. In turn, this relationship explains
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how demand shocks in the residential real estate can easily crowd out commercial real

estate, which affects the goods market in a similar way to an adverse aggregate supply

shock.

The Bayesian estimation of the model reveals that housing preference shocks

determine much of the movements in aggregate variables. Moreover, the historical

decomposition reveals that whilst movements in housing demand drives all variables; it

was the collapse in CRE prices that was particularly dominant in the 2007 crisis, which

stemmed from a fall in productivity in the consumption good sector. As a result, whilst

the co-movements of RRE and CRE prices are somewhat anchored our results reveal

that there are different mechanisms at play which are very important for explaining

the short-run dynamics in both the construction sector and economy as a whole.





Chapter 2

Speculative Bubbles in Segmented

Markets: Evidence from Chinese

Cross-Listed Stocks

Joint with Efthymios Pavlidis

2.1 Introduction

China’s stock market: A crazy casino (The Economist, May 26th 2015)

Since the re-opening of the Shanghai stock exchange (SSE) and the foundation of

the Shenzhen stock exchange (SZSE) in the early 1990s, the Chinese stock market has

experienced a remarkable growth. Starting from just a handful of listed companies

in 1990 and a tiny market capitalization, it expanded to over three thousand firms in

2017 and a market capitalization of seven trillion dollars, ranking second worldwide

behind the United States (Carpenter and Whitelaw, 2017). While the Chinese stock

market has grown rapidly over the last decades, movements in Chinese share prices

have been anything but tranquil, with spectacular price rallies followed by severe
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market crashes occurring in the 1990s, 2000s, and 2010s. Such extreme financial events

appear difficult to explain using observed market fundamentals and have led to a

consensus that speculative forces are in action in the Chinese stock market. Notably,

in his 2001 speech, the preeminent Chinese economist Wu Jinglian compared China’s

stock market to a casino, that is manipulated by speculators and lacks a strong link

to fundamentals. The casino term has since been adopted by the popular press to

describe the overall behaviour of Chinese share prices. Given China’s leading role in

global economic growth and investment, the presence of speculative dynamics, bubbles,

in the country’s capital allocation system constitutes a topic of increasing significance.

In general, testing for speculative bubbles in financial markets is confounded by

the fact that the fundamental value of financial securities is unobserved. Early studies

have attempted to address this issue by utilizing observed variables, such as dividends,

to estimate intrinsic values. A major drawback of such direct approaches is that they

depend crucially on the strong and, in most cases, unrealistic assumption that the true

data generating process for fundamentals is known. As argued by several researchers,

model misspecification or omitted variables can lead to false inference in favour of

bubbles, rendering direct approaches invalid (Flood and Garber, 1994; Gürkaynak,

2008; Hamilton and Whiteman, 1985; West, 1987). To circumvent this problem, more

recent studies have employed indirect approaches that exploit information about market

fundamentals incorporated in derivative prices or survey data (Pavlidis et al., 2017,

2018). These studies show that periodically collapsing bubbles create a wedge between

actual realizations of future spot prices and market expectations which, under general

conditions, depends solely on the bubble process. As an implication, rather than

using estimates of intrinsic asset values to assess the presence of speculative bubbles,

researchers can examine the dynamics of the difference between actual future spot

prices and market expectations. Unfortunately, indirect approaches based on future

prices or survey data cannot be applied in the case of China because derivative markets
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are at an early stage of development and survey data on market expectations that

cover periods long enough to allow a proper econometric analysis do not exist.1

In this paper, we propose an alternative approach for testing for rational speculative

bubbles that makes use of the unique trading features of Chinese cross-listed securities.

There is a large number of companies incorporated in mainland China that simultane-

ously issue A shares on SSE or SZSE, and H shares on the Stock Exchange of Hong

Kong (SEHK). For a given issuer, these two types of shares have identical voting rights

and exchange-rate-adjusted dividend payments (i.e., they have the same fundamentals)

but differ in terms of their accessibility by different groups of investors. Prior to the

introduction of the Stock Connect scheme, Chinese mainland investors could easily

access A but not H shares, while international and Hong Kong investors could readily

access H but not A shares because of strict government regulations. The segmentation

of A- and H-share markets implied that price valuations of the same security could

differ across geographical locations without giving rise to arbitrage opportunities (Chen

and Knez, 1995; Froot and Dabora, 1999; Lamont and Thaler, 2003). The main idea

of the present paper is that, in this setting with limits to arbitrage, differences in

speculative trading in Chinese mainland and Hong Kong can lead to distinct bubbles

processes in A- and H-share markets. As a consequence, share prices of cross-listed

companies can diverge despite having the same underlying fundamentals.

To demonstrate the theoretical implications of different speculative dynamics in

A- and H-share markets, we adopt a standard asset-pricing model with rational,

risk-neutral investors and consider a periodically collapsing bubble process in the

market for A but not for H shares. We show that, in this framework, the A-H price

differential displays two characteristic properties when the bubble erupts. First, the

price differential grows (in expectation) at an exponential rate, thus displaying explosive

dynamics and, second, it has predictive content for future changes in A-share prices.
1Equity warrants were briefly introduced in China in 2005–8 (Liu et al., 2014). By examining the

behaviour of the warrants market during this period, Xiong and Yu (2011) provide strong evidence
in favour of speculative dynamics. Specifically, they show that the price of many put warrants with
long maturities exceeded both the upper bound given by the strike price and the more conservative
fundamental value implied by the Black and Scholes model.
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These two properties can be examined empirically to test for speculative bubbles by

exploiting recent advances in recursive unit root tests and in predictive regression tests

with persistent regressors.

For our empirical application, we use data on the Hang Seng AH Premium Index

and on a panel of 26 cross-listed companies spanning the period from January 2006

to December 2018. By employing the popular Generalized Supremum Augmented

Dickey Fuller (GSADF) of Phillips et al. (2015a,b) and its panel version, we show

that A-H price differentials display episodes of explosive dynamics. These episodes

are relative short and coincide with periods commonly considered to be characterized

by speculative bubbles. Namely, the Chinese stock market frenzy of 2007 and the

Chinese stock market crash of 2014-2015. A similar conclusion is reached by looking

at the predictive regression results, which indicate periods of in-sample predictability,

again, during 2007 and 2014-15. Thus, in line with the casino hypothesis, our findings

support the presence of speculative dynamics in the Chinese stock market prior to 2015.

On the contrary, we find no evidence of speculative bubbles after the 2014-15 market

crash. As we discuss in more detail in the empirical results section, during this latter

period mutual stock market connectivity was established between mainland China and

Hong Kong through the Shanghai- and Shenzhen-Hong Kong Stock Connect programs.

By raising the degree of financial integration of China into the global economy, these

programs gradually increased capital flows across markets.

The presence of distinct bubble processes in mainland China and Hong Kong

provides a possible explanation for one of the most intriguing puzzles in finance: the

large and highly persistent share price deviations of Chinese cross-listed companies

(Carpenter and Whitelaw, 2017; Fernald and Rogers, 2002). A number of factors have

been put forth in the literature as determinants of foreign share discounts, such as

different attitudes toward risk, information asymmetries, changes in exchange rate

expectations, liquidity and transaction costs (Chan et al., 2008; Chung et al., 2013;

Wang and Jiang, 2004). As a final exercise, we use a dynamic panel probit methodology

to investigate whether such factors can explain the identified episodes of exuberance in
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A-H price differentials. The estimation results suggest that the likelihood of bubble

formation is associated with a proxy for credit and a measure of the degree of public

dissemination of information.

The rest of the paper is structured as follows. Section 2.2 provides an overview of the

institutional background of Chinese stock markets. Section 2.3 outlines the theoretical

framework and describes the proposed bubble detection methods. The following section

deals with the empirical application of these methods to A-H cross-listed shares. The

same section provides a robustness exercise based on American Depository Receipts,

discusses the Stock Connect program and its impact on the time-series behaviour of

A-H price differentials, and presents the results of the dynamic panel probit analysis.

The final section summarizes our findings and provides concluding remarks.

2.2 Institutional Background

China’s modern stock market opened only in the early 1990s with the re-establishment

of SSE on November 26, 1990 and the foundation of SZSE on December 1, 1991. Upon

their opening, SSE listed eight companies and had a market capitalization of 1.2 billion

renminbi (RMB), and SZSE listed six companies with a total share capital of 273

million RMB. In 2016, the number of listings in SSE and SZSE increased to 3,134 firms

and their combined market capitalization reached 51 trillion RMB, which corresponded

to 68 percent of the country’s gross domestic product.

There are two types of tradable shares issued by Chinese firms listed on SSE and

SZSE, the so-called A and B shares. The market for A shares is by far the largest,

accounting for the lion’s share of trading volume and market capitalization. A shares

are quoted in domestic currency (RMB) and, until recently, were primarily traded

by mainland Chinese citizens due to strict capital controls imposed by the Chinese

authorities.2 B shares, on the other hand, are traded in foreign currency (US dollars in
2During our sample period, China implemented a number of schemes aiming to gradually open

its capital market to overseas investors. In 2002, the Qualified Foreign Institutional Investor (QFII)
program was launched, which allowed overseas financial institutions that met a set of admission
requirements to invest in China’s securities markets subject to quotas. In 2011, a second scheme,
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Shanghai and Hong-Kong dollars in Shenzhen) and were limited to foreign investors

until February 2001, when China Securities Regulatory Commission (CSRC) permitted

their purchase by mainland citizens via the secondary market.

Since 1993, Chinese firms can also list shares on stock exchanges outside mainland

China to raise capital from abroad. Due to its geographical proximity and extensive

socio-economic links to the mainland, the most popular location is Hong Kong. Com-

pared to SSE and SZSE, the Stock Exchange of Hong Kong (SEHK) constitutes a

more advanced financial market, it has adopted financial reporting standards that are

in alignment with the IFRS since 2005, and it is open to foreign investors. In 2016,

241 Chinese firms issued shares in SEHK with a market capitalization exceeding 24

trillion Hong-Kong dollars. This type of shares, referred to as H, is subject to the Hong

Kong Exchanges and Clearing Limited listing requirements, and are quoted and traded

in Hong Kong dollars. Analogously to the market for A shares, investors residing in

mainland China had very limited access to the market for H shares until 2015 due to

tight restrictions on capital movements.3

A key feature for our analysis is that a number of Chinese companies issue both

A shares in mainland China and H shares in Hong Kong. Apart from their trading

location, these cross-listed securities are identical. They have the same legal rights and

the same claims to exchange-rate adjusted dividends. Moreover, cross-listed Chinese

companies are required to disclose the same information to local and overseas investors

(Jia et al., 2017). Thus, in the absence of market frictions, A and H shares should trade

for the same price. However, due to the segmentation of A and H markets, deviations

from the law of one price are typical, with A shares usually trading at a premium.

the Renminbi QFII (RQFII), was jointly established by the CSRC, the People’s Bank of China, and
the State Administration of Foreign Exchange (SAFE). The scheme allowed subsidiaries of domestic
financial institutions in Hong Kong to invest in mainland stock markets. As of February 2016, 279
foreign institutions had been granted QFII licenses and 158 institutions RQFII licenses. The total
QFII and RQFII quotas were 80.795 billion US dollars and 471.425 billion RMB, respectively, which
represented a small fraction of total market capitalization.

3In 2006, the Qualified Domestic Institutional Investor (QDII) program was launched which
provided limited opportunities for mainland investors to access overseas markets, including Hong
Kong, via CSRC approved financial institutions. As of December 2015, 132 institutions had been
granted QDII qualification, and SAFE had approved investment quotas of 90 billion US dollars.
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Table 2.1 Distribution of cash market trading volume by investor type and origin

2006-07 2007-08 2008-09 2009-10 2010-11 2011-12 2012-13 2013-14 2014-15 2016 2018 Full Sample
Retail Total 32% 29% 29% 25% 26% 21% 23% 25% 27% 23% 16% 25%
- Local Retail 28% 26% 25% 21% 22% 17% 18% 20% 19% 16% 10% 20%
- Overseas Retail 4% 3% 4% 4% 4% 4% 5% 5% 8% 7% 6% 5%

Institutional Total 64% 65% 62% 65% 62% 63% 61% 58% 50% 53% 55% 60%
- Local Institutional 25% 27% 24% 23% 20% 21% 20% 24% 19% 20% 20% 22%
- Overseas Institutional 39% 38% 38% 42% 42% 42% 41% 34% 31% 20% 20% 35%

Other 4% 6% 8% 10% 12% 15% 16% 16% 22% 24% 29% 15%

US+Europe 71% 74% 70% 69% 69% 69% 67% 64% 56% 57% 51% 65%
Asia 22% 22% 26% 27% 22% 21% 24% 29% 36% 36% 42% 28%

Source: Hong Kong Exchanges and Clearing Limited Cash Market Transaction Surveys from 2007 to
2016.

A potential explanation for the documented A-H price disparities is investor hetero-

geneity between markets. On the one hand, the market for A shares is dominated by

local, retail investors. These investors account for more than 80 percent of the trading

volume and, as survey evidence suggests, are less experienced than US investors and

younger, with more than half being under 45 years of age (see, Gan et al., 2014, Feng

and Seasholes, 2003, and the 2013 CSRC securities report). On the other hand, retail

investors comprise only a small part of the Hong Kong market (25 percent during

our sample period), with most of the trading volume being generated by institutional

investors (60 percent). Trading from overseas investors (mainly from the United States

and Europe) is also substantial, accounting for 40 percent of the total volume (see

Table 2.1). Mei et al. (2005), among others, argue that, because of their type and age

composition, stock market investors in mainland China are more likely to engage in

intense speculative trading.

As we discuss in Section 2.4, a factor that may magnify the effect of speculative

trading on A-H prices disparities is differences in the institutional features of short

selling across markets. While short selling has been permitted in Hong Kong since

January 1994, it was not until March 2010 that China launched a pilot program allowing

90 constituent stocks of the SSE and SZSE composite indices to be sold short and

purchased on margin.4 The main objective of the program was to improve information
4The CSRC also conducted a few small pilot programs in 2007 and 2008.
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efficiency, thus facilitating the price discovery process, and to generate trading liquidity.

In 2011, the CSRC announced that the pilot scheme would become routine practice,

and in subsequent years, the list of eligible stocks was revised and expanded several

times. By December 2016, the number of eligible stocks increased to 950, representing

one-third of the total number of firms issuing A shares. Despite the gradual removal of

the ban on margin trading and securities lending in mainland Chinese markets, the

associated margin financing and shorting costs are higher by an order of magnitude

compared to more developed financial markets (see, e.g., Chang et al., 2014).

2.3 Speculative Bubbles: Theory and Econometric

Tests

We begin our analysis with a standard endowment economy in which rational, infinitely-

lived investors derive utility from personal consumption (Diba and Grossman, 1988;

Gürkaynak, 2008). In this economy, the representative investor’s objective is to

max Eτ

∞∑
τ=t

βτ−tu(Cτ ), (2.1)

where Cτ denotes the level of consumption at period τ , Eτ is the rational expectations

operator conditional on all available information at time τ , and β is a discount factor

that is restricted to take values in (0,1) so that time preferences are positive. The

instantaneous utility function, u(·), is assumed to be concave, increasing in Cτ , and

continuously differentiable.

At each time period, τ , the investor is faced with a budget constraint. She receives

an endowment yτ which can be instantly consumed or used to purchase dividend-paying

shares, sτ , in order to smooth future consumption. Letting Pτ denote the price of a

share in units of the consumption good and Dτ the dividend payment, the budget
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constraint faced by the investor is given by

Cτ ≤ yτ + (sτ+1 − sτ )Pτ +Dτsτ . (2.2)

The first order condition for the investor’s utility maximization problem specified

by (2.1) and (2.2) is given by

Ptu(Ct) = βEτ [(Pt+1 +Dt+1)u′(Ct+1)]. (2.3)

Intuitively, the above Euler equation states that for a time-path of s to be optimal, an

investor cannot become better off by selling or buying a share at time t and reversing

the transaction at time t+ 1. By assuming that financial and goods markets clear and

normalizing the number of existing shares to unity, Equation (2.3) can be rewritten as

Et[qt+1]− β−1qt = −Et[u′(yt+1 +Dt+1)Dt+1], (2.4)

where qt ≡ Ptu
′(yt +Dt). The general solution to this first order stochastic difference

equation is given by

qt = Ft +Bt, (2.5)

where the first term of the RHS is referred to as the market fundamentals component

because it depends on the present value of all future dividends and the marginal

utilities of consumption, Ft = ∑∞
j=1 β

jEt[u′(yt+j +Dt+j)Dt+j]; while, the second term

is a rational bubble component that satisfies the condition

Et[Bt+1] = β−1Bt. (2.6)

In the empirical literature on rational bubbles, Bt is usually viewed to be driven by

variables that are exogenous to the valuation process. Moreover, it is often assumed

that utility is linear, which implies risk neutrality and constant marginal utility. Under

this latter assumption, the general solution to (2.4) simplifies to the textbook asset
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pricing equation

Pt = Ft +Bt =
∞∑
j=1

βjEt[Dt+j] +Bt, (2.7)

which links the current stock price to the bubble process Bt and to a market-

fundamentals component that equals the discounted value of expected future dividends.

The above analysis has important implications for econometric tests for rational

speculative bubbles. By condition (2.6), if a bubble exists then it will grow, in

expectation, geometrically at the rate of β−1 − 1. It follows from Equation (2.7) that

the stock price will display explosive dynamics and diverge from its fundamental value

over time.5 This prediction has motivated a plethora of studies that employ non-

stationarity tests to examine the presence of speculative bubbles in financial markets.

Some studies have applied unit root tests to stock prices and price-to-fundamentals

ratios (such as stock prices to dividends). Others have examined the existence of

cointegrating relationships between prices and observed market fundamentals. The

main drawback of such direct approaches is that they rely on strong assumptions

about the data generating process for market fundamentals which are difficult to verify

in practice. Specifically, tests on raw prices implicitly assume that the fundamental

component in (2.7) does not display explosive dynamics in sample. Whilst, tests that

control for market fundamentals by using observed economic and financial variables

are subject to model misspecification and omitted-variable problems. As argued by

several researchers, these deficiencies can lead to false inference (Gürkaynak, 2008).

2.3.1 Cross-Listed Securities

Consider an extension of the above framework to two segmented, but otherwise identical

economies, A and H, in which investors trade shares of the same storable asset locally.
5The increasing difference between actual and intrinsic asset values arises because of investors’

expectation to sell the asset at an even higher price in a future date. Note, however, that these
large, expected capital gains do not imply arbitrage opportunities since they are already priced in
the market. That is, the evolution of asset prices satisfies the requirement of market efficiency by
construction.



2.3 Speculative Bubbles: Theory and Econometric Tests 45

In this setting, there is an asset pricing equation for each economy given by

P i
t = F i

t +Bi
t, (2.8)

with i = A,H. Because investors are entitled to the same stream of dividend payments

irrespective of their location, their valuations for the market fundamental components

of A- and H-share prices satisfy FA
t = FH

t . However, there are no forces that guarantee

equality of the bubble components BA
t and BH

t . This is so because arbitrage between

markets is not feasible and market efficiency dictates that {Bi
t}∞
t=0 can be any sequence

of random variables that satisfies condition (2.6). Thus, allowing for speculative bubbles

in financial markets gives rise to the possibility of non-unique asset price paths for A

and H shares,

PA
t − PH

t = BA
t −BH

t , (2.9)

and can lead to violations of the law of one price. The above expression lies in the heart

of our analysis. It suggests that the price differential between A and H shares, first,

does not depend on market fundamentals and, second, it displays the same behaviour

as the difference in bubble sequences. As long as BA
t and BH

t are not co-explosive,

the price differential will exhibit explosive dynamics (see Nielsen, 2010). Therefore,

one can test for the presence of distinct speculative bubbles, while remaining agnostic

about the intrinsic value of the asset, by simply running right-tailed unit root tests on

PA
t − PH

t .

Recursive Unit Root Tests The property that PA
t − PH

t is explosive when BA
t

and BH
t do not co-explode holds irrespective of the type of speculative bubble. The

simplest scenario is that of a linear AR(1) process for BA
t

BA
t+1 = β−1BA

t + ϵt+1, (2.10)

where ϵt+1 ∼ iid(0, σ2
ϵ ), and no bubbles in the market for H shares, BH

t = 0. For the

case of the Chinese market, it is more realistic to presume that bubbles, if they exist,
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are periodically collapsing. For expositional purposes, we focus on the periodically-

collapsing bubble proposed by Blanchard (1979)

BA
t+1 =


1
βπ
BA
t + ϵt+1, with prob. π

ϵt+1, with prob. 1− π.
(2.11)

This process switches between two states. In the first state, it grows geometrically at

the higher than average rate of 1/(βπ)− 1, whilst in the second state it collapses to

a white noise. In expectation, the growth rate of BA
t equals β−1 − 1 and, therefore,

Equation (2.11) satisfies (2.6). By resembling the behaviour of the bubble process, the

price differential

PA
t − PH

t = BA
t , (2.12)

also alternates between an explosive and a stationary state. As will be shown in the

following section, this behaviour is in line with the price rallies and subsequent collapses

that have characterized the A-H premium index over the last decades.

From an empirical perspective, the presence of boom-bust dynamics in PA
t − PH

t

implies that standard unit root tests based on linear, time-invariant regression equations

may display extremely low power to detect bubbles. A number of studies illustrate

that such tests frequently lead to finding spurious stationarity even though asset prices

driven by periodically-collapsing bubbles are inherently explosive (see, e.g., Evans,

1991). To deal with this shortcoming, in this paper we employ the GSADF test

of Phillips et al. (2015a,b) and its panel version proposed by Pavlidis et al. (2016).

The GSADF test has a number of attractive features. First, due to its recursive

nature, it is consistent with multiple changes in regime. Second, it displays accurate

size and good power properties and in many cases is superior to alternative tests for

periodically-collapsing bubbles (for simulation evidence, see Phillips et al., 2015a, and

Homm and Breitung, 2012). And third, it permits identification of the periods during

which the series under examination displays explosive dynamics. The panel version, on

the other hand, introduces a rich specification, that captures the heterogeneity and
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cross-sectional dependencies of constituent series, in order to test for overall exuberance.

By doing so, it can lead to substantial power gains in comparison to univariate unit

root procedures applied to aggregate series (Pavlidis et al., 2019). A description of the

GSADF and panel GSADF tests can be found in Appendix B.1.

Rolling Predictive Regressions The presence of distinct asset price bubbles has

also implications for predictability tests on stock prices. Consider the following

predictive regression

PA
t+1 − PA

t = α0 + α1(PA
t − PH

t ) + ut+1, (2.13)

where α0 and α1 are regression coefficients, and the error term ut+1 ∼ iid(0, σ2
u). In the

absence of speculative bubbles and under risk neutrality, the efficient market hypothesis

postulates that movements in stock prices are unpredictable and, therefore, the value

of the slope coefficient in (2.13) is continuously equal to zero. However, this prediction

may fail in the presence of distinct bubbles. To illustrate this point most simply, let

fundamentals follow a random walk process, Ft+1 = Ft + vt+1, and consider again the

case of an ongoing bubble in the market for A shares but no bubble in the market for

H shares. The least squares estimate for the slope coefficient in regression (2.13) is

α̂1 = ĉov(PA
t+1 − PA

t , P
A
t − PH

t )
v̂ar(PA

t − PH
t ) . (2.14)

We have already obtained an expression for the regressor in (2.14), see Equation (2.12).

Using Equation (2.11), we can also obtain the following expression for the regressand

PA
t+1 − PA

t = 1− π
βπ

BA
t + ϵt+1 + vt+1. (2.15)

Substituting (2.12) and (2.15) into the formula for the least-squares coefficient yields

α̂1 = 1− π
βπ

+ ĉov(ϵt+1, B
A
t )

v̂ar(BA
t ) + ĉov(vt+1, B

A
t )

v̂ar(BA
t ) .
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Because the vector of future shocks (ϵt+1, vt+1) is orthogonal to BA
t , the plim of

ĉov(ϵt+1, B
A
t )/v̂ar(BA

t ) and of ĉov(vt+1, B
A
t )/v̂ar(BA

t ) are zero. Therefore, as the bubble

erupts

plim α̂1 = 1− π
βπ

> 0, (2.16)

and price movements in A shares become predictable. Note, however, that this ex post

predictability cannot be exploited in real time by investors, who rationally price A

shares by attaching a non-zero probability to the bubble bursting, and therefore it

does not imply rejection of market efficiency. Note also that, in the absence of bubbles,

explosive fundamentals cannot cause α1 to deviate from zero since in this case the

regressor will be fixed at PA
t − PH

t = 0.

The above analysis suggests that, if the null of non-explosive dynamics in PA
t −PH

t

is rejected, then researchers can further examine the presence of speculative bubbles

by sequentially testing the hypothesis of no predictability, H0 : α1 = 0, against the

one-sided alternative H1 : α1 > 0. An issue of concern in this framework is that the

predictor in regression (2.13) is highly persistent under the alternative hypothesis. As

a consequence, the slope coefficient α1 follows a non-standard limiting distribution,

and results based on conventional inference methods can be misleading (Phillips, 2014).

Several methods have been proposed in the literature to draw valid statistical inference

in this setting, such as the efficient Q-test of Campbell and Yogo (2006), the conditional

likelihood approach of Jansson and Moreira (2006), the nearly optimal test of Elliott

et al. (2015), and the bootstrap procedures of Kilian (1999) and Kilian and Taylor

(2003). We adopt a rolling-window approach that consists of sequentially estimating

predictive regressions and drawing statistical inference using the IVX instrumentation

method of Phillips and Magdalinos (2009), Phillips and Lee (2013), and Kostakis et al.

(2015). The IVX method is particularly attractive in this setting because it allows

robust chi-square inference for a wide range of AR processes, from stationary to mildly

explosive. For a description of the IVX testing procedure, the interested reader is

referred to Appendix B.2.
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2.4 Empirical Results

In this section, we apply the above bubble detection methods to data on Chinese A-H

twin shares. We also provide a robustness check, which examines Chinese American

Depository Receipts traded in the New York Stock Exchange, and discuss the effect of

the Stock Connect program on A-H price differentials. Finally, we explore the ability of

a number of factors, that have been put forth in the literature as potential determinants

of foreign share discounts, to explain episodes of exuberance in A and H share price

differences.

2.4.1 A and H Shares

Data For our main empirical analysis, we employ the Hang Seng AH premium index,

and a balanced panel of 26 Chinese companies simultaneously listed on SEHK and

SSE or SZSE. The data are downloaded from Thomson Reuters Datastream and cover

the period from the first week of January 2006 to the last week of December 2018.6

The reason for setting the start date at January 2006 is twofold. On the one hand, this

choice allows us to examine the Chinese stock market frenzy of 2007 and, on the other,

we avoid potential biases related to, first, the A-share market reforms that occurred

in April 2005 and, second, the change in the exchange-rate regime that took place in

July of the same year.7 With regard to the data frequency, the use of weekly prices

enables us examine a large sample size (T =678 observations), which may lead to
6The entire population of companies that listed both A and H shares throughout our sample period

is 29. We have discarded three companies, Luoyang Glass and Hisense Kelon Electrical Holdings, due
to the large number of missing observations, which exceeds 15% of the sample size, and Shenji Group
Kunming Machine Tool Company Limited due to cancellation of listing. For the remaining companies,
for which the percentage of missing data is small (less than 6%), we have replaced missing data with
the latest available observation.

7On the 29th of April 2005, the Chinese government implemented the Split Share Structure Reform
which led to a substantial reduction in the number of state owned non-tradable shares. On the 21st
of July 2005, China abandoned its peg to the US dollar, which caused an immediate appreciation
to 8.11 RMB per US dollar. Since then, China has adopted a managed floating exchange rate with
reference to a basket of foreign currencies.
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Table 2.2 Chinese Cross-listed Companies

Company Name Abbreviation Sector A-Ticker H-Ticker ADR-Ticker
Angang Steel Angang Materials 000898.SZ 0347.HK
Anhui Conch Cement Anhui Conch Materials 600585.SS 0914.HK
Anhui Expressway Anhui Express Industrials 600012.SS 0995.HK
Guangzhou Baiyunshan Pharmaceutical Holdings Baiyunshan Health Care 600332.SS 0874.HK
China Eastern Airlines China East Air Industrials 600115.SS 0670.HK CEA
China Petroleum & Chemical China Petroleu Energy 600028.SS 0386.HK SNP
COSCO Shipping Energy Transportation Cosco Shipping Industrials 600026.SS 1138.HK
CSSC Offshore & Marine Engineering Group CSSC Marine En Industrials 600685.SS 0317.HK
Dongfang Electric Dongfang Elec Industrials 600875.SS 1072.HK
Huadian Power International Huadian Power Utilities 600027.SS 1071.HK
Huaneng Power International Inc Huaneng Power Utilities 600011.SS 0902.HK HNP
Jiangsu Expressway Jiangsu Exp Industrials 600377.SS 0177.HK
Jiangxi Copper Jiangxi Copper Materials 600362.SS 0358.HK
Beijing Jingcheng Machinery Electric Jingcheng Mach Industrials 600860.SS 0187.HK
Maanshan Iron & Steel Maanshan Iron Materials 600808.SS 0323.HK
Nanjing Panda Electronics Nanjing Panda Information Technology 600775.SS 0553.HK
Northeast Electric Development Northeast Elec Industrials 000585.SZ 0042.HK
Sinopec Shanghai Petrochemical S Sh Pechem Materials 600688.SS 0338.HK SHI
Sinopec Oilfield Service Sinopec Oilfie Energy 600871.SS 1033.HK
China Southern Airlines Southern Air Industrials 600029.SS 1055.HK ZNH
Shenzhen Expressway Sz Expressway Industrials 600548.SS 0548.HK
Tianjin Capital Environmental Protection Group Tianjin Cap Industrials 600874.SS 1065.HK
Tsingtao Brewery Tsingtao Brew Consumer Staples 600600.SS 0168.HK
Shandong Xinhua Pharmaceutical Xinhua Pharm Health Care 000756.SZ 0719.HK
Yanzhou Coal Mining Yanzhou Coal Energy 600188.SS 1171.HK
ZTE ZTE Information Technology 000063.SZ 0763.HK

Notes: SS, SZ, and HK indicate shares listed on the Shanghai Stock Exchange, the Shenzhen Stock Exchange, and the
Stock Exchange of Hong Kong, respectively. All American Depository Receipts (ADRs) are traded on the New York
Stock Exchange.

substantial power gains in detecting periodically-collapsing bubbles, especially if these

are short-lived.

Table 2.2 reports the list of companies together with their stock ticker, the stock

exchange on which they are listed, and the corresponding market sector. As can be seen

from the table, the majority of shares (22 out of 26) are traded on SSE, which accounts

for the largest share of total market capitalization in mainland China. Furthermore,

the sample spans all but three stock market sectors, from energy and materials to

utilities, health care and information technology. From this perspective, the sample is

quite representative of the market.

The three sectors not covered in our analysis are communications, financial, and

real estate. Regarding the latter, China has experienced a spectacular real estate boom
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during the last decades. Fang et al. (2016) show that real estate prices in the four most

developed metropolitan areas (Beijing, Shanghai, Shenzhen, and Guangzhou) grew

by 13 percent per annum from 2003 to 2013; and Wu et al. (2015) find that real land

prices in 35 major Chinese cities increased by a factor of five for a sample period similar

to ours. The sheer magnitude of these price changes makes the Chinese real estate

boom even more spectacular than the one experienced by the US in the 2000s, and has

raised concerns about the presence of speculative dynamics in the sector (Chen and

Wen, 2017; Glaeser et al., 2017). In line with these concerns, several studies provide

evidence in favour of bubble-type dynamics in China’s real estate market (Mao and

Shen, 2019; Zhi et al., 2019). Hence, if anything, the omission of real estate from our

analysis may bias the results in favour of the no-bubble null hypothesis.

Summary Statistics Table 2.3 presents descriptive statistics (means, standard

deviations, minimum and maximum values, and AR(1) coefficient estimates) of the

A- to H-share price ratios for the 26 cross-listed companies. To allow meaningful

comparisons between markets, A-share prices are converted to Hong-Kong dollars. Two

stylized facts about the size and the dynamics of A-H price disparities emerge. The

first is that A shares typically sell at a premium relative to H shares. As is evident

from Columns 2 and 4 of Table 2.3, for the vast majority of companies, this premium is

on average substantial, and can reach extreme values in parts of the sample. A prime

example is Sinopec Oilfie, whose A shares traded at almost three times the price of H

shares on average, and at slightly less than nine times the price of H shares in October

2008. The second fact that emerges is that A-H price ratios are highly persistent, with

AR(1) coefficient estimates very close to unity. The above well-documented facts are

difficult to reconcile with standard asset-pricing models, giving rise to the so-called

A-H premium puzzle.

The two stylized facts are also apparent when looking at the aggregate behaviour of

A- and H-share prices. Figure 2.1 shows the evolution of the Hang Seng A share and

AH premium indices over time. The latter index measures the price premium/discount
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Table 2.3 Descriptive Statistics of A- to H-share price ratios

Company Mean SD Min Max AR(1)

Angang 1.077 0.261 0.704 2.312 0.953
Anhui Conch 0.927 0.134 0.603 1.491 0.929
Anhui Express 1.549 0.538 0.863 3.184 0.982
Baiyunshan 1.875 0.515 1.200 3.559 0.972
China East Air 2.131 0.842 1.128 5.949 0.972
China Petroleu 1.343 0.398 0.838 2.553 0.979
Cosco Shipping 1.467 0.363 0.866 2.768 0.956
CSSC Marine En 1.972 0.680 0.816 3.843 0.978
Dongfang Elec 1.493 0.344 0.861 2.772 0.959
Huadian Power 1.882 0.646 0.816 3.950 0.977
Huaneng Power 1.410 0.327 0.787 2.184 0.968
Jiangsu Exp 1.027 0.151 0.706 1.554 0.931
Jiangxi Copper 1.852 0.471 1.047 3.589 0.957
Jingcheng Mach 3.322 0.813 1.571 7.375 0.942
Maanshan Iron 1.418 0.442 0.838 3.530 0.963
Nanjing Panda 3.503 1.057 1.673 6.180 0.975
Northeast Elec 3.428 0.808 1.404 7.344 0.947
S Sh Pechem 2.696 0.959 1.208 5.070 0.978
Sinopec Oilfie 3.626 1.182 1.273 8.851 0.967
Southern Air 1.886 0.639 1.008 4.258 0.973
Sz Expressway 1.474 0.278 0.892 2.610 0.945
Tianjin Cap 3.019 0.866 1.430 6.569 0.968
Tsingtao Brew 1.115 0.193 0.808 1.824 0.949
Xinhua Pharm 2.839 0.614 1.559 4.647 0.960
Yanzhou Coal 1.828 0.566 0.870 3.591 0.965
ZTE 1.238 0.237 0.825 2.316 0.930

Note: The table presents means, standard deviations, minimum and maximum values, and AR(1) coefficient estimates
for A-H price ratios.

of A shares over H shares for the largest and most liquid cross-listed Chinese companies.

Similarly to individual companies, the index typically takes values above its parity

value of 100, averaging around 120 and reaching a maximum of 195 in 2008. The index

is also highly persistent, displaying extraordinary long swings. Interestingly, the most

notable AH premium rallies coincide with the two Chinese stock market ‘bubbles’: the

market frenzy of 2007 and the period preceding the market crash of 2015. Given that
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Fig. 2.1 Hang Seng Indices

the AH premium reflects deviations of asset prices from fundamentals, Figure 2.1 hints

that the boom episodes in mainland China were driven by speculative trading.

Econometrics Results To formally examine the existence of speculative bubbles in

the Chinese stock market, we run standard ADF and GSADF tests on the AH premium

index and on the A-H price differentials for the 26 cross-listed companies. Following

the recommendation of Phillips et al. (2015a,b), we choose a short lag length, k = 1,

and set the minimum window size in the recursive GSADF procedure by using the rule

of thumb r0 = 0.01 + 1.8/
√
T . Overall, the unit root test results provide several new

insights about the integration properties of the series.

Looking at the GSADF test statistic for the AH index and the panel GSADF

statistic for the group of companies, presented in Table 2.4„ we observe that the null

hypothesis of no explosive behaviour can be rejected by both tests at all conventional

significance levels. Thus, there is strong evidence of speculative bubbles in A-H share

price differentials at the aggregate level. Although informative about the overall
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Table 2.4 Bubble Detection Tests: A-H Shares

Company ADF GSADF Company ADF GSADF

Angang -3.593 3.197∗∗∗ Jingcheng Mach -3.391 4.339∗∗∗

Anhui Conch -3.765 1.004 Maanshan Iron -3.247 3.386∗∗∗

Anhui Express -2.313 7.012∗∗∗ Nanjing Panda -4.568 4.233∗∗∗

Baiyunshan -4.188 1.670 Northeast Elec -3.001 3.432∗∗∗

China East Air -2.859 5.718∗∗∗ S Sh Pechem -2.655 3.722∗∗∗

China Petroleu -2.148 3.835∗∗∗ Sinopec Oilfie -2.856 5.640∗∗∗

Cosco Shipping -3.141 3.033∗∗∗ Southern Air -2.952 4.230∗∗∗

CSSC Marine En -3.132 4.722∗∗∗ Sz Expressway -3.796 4.606∗∗∗

Dongfang Elec -4.310 2.348∗∗ Tianjin Cap -3.435 8.663∗∗∗

Huadian Power -3.243 3.078∗∗∗ Tsingtao Brew -3.378 3.002∗∗∗

Huaneng Power -2.800 3.411∗∗∗ Xinhua Pharm -3.066 4.703∗∗∗

Jiangsu Exp -3.570 2.447∗∗ Yanzhou Coal -3.878 3.552∗∗∗

Jiangxi Copper -2.986 4.530∗∗∗ ZTE -3.369 1.450

AH Premium Index -2.977 3.225∗∗∗ Panel 1.829∗∗∗

Notes: The table reports ADF, GSADF, and panel GSADF test statistics for the AH premium index and the 26
cross-listed companies. ∗,∗∗ and ∗∗∗ denote statistical significance at the ten, five, and one percent levels, respectively.
The minimum window size for the GSADF and panel GSADF test is set equal to 53 weeks. Finite sample critical
values are obtained from using 2000 simulations.

behaviour of the Chinese stock market, this finding does not shed light on whether

bubbles are widespread across cross-listed companies. This is so because both the

univariate and the panel GSADF tests can, in principle, reject the null even if a single

constituent series displays exuberance.8 However, the results for the disaggregate data

suggest that this is not the case. From the 26 cross-listed securities, 21 have statistically

significant GSADF statistics at the one percent significance level and 23 at the five

percent. The conclusion that emerges is that speculative bubbles are prevalent across

companies.

Another point that is worth noting is that, although the majority of GSADF

statistics exceed the 95 percent critical value, the ADF statistics fail to do so. These

findings are not inconsistent. As aforementioned, standard unit root tests, including

the ADF, have extremely low power in detecting speculative bubbles which collapse
8For the univariate GSADF test, this property follows from the fact that the combination of the

explosive constituent series with other unit root and/or stationary processes results in an explosive
AH index, and for the panel test, it is a direct implication of the alternative hypothesis of at least one
of the elements of the panel displaying explosive dynamics.
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Fig. 2.2 Date-stamping Periods of Market Exuberance

AH Premium Index Panel AH

Notes: The plots display the sequence of BSADF statistics (solid line) together with the corresponding 95 percent
critical value sequence (dotted line) for the AH premium index (left) and the panel of 26 cross-listed companies (right).
Critical values are obtained using 2000 simulations. The minimum window is 53 weeks. The shaded areas indicate
periods of exuberance.

in sample. Hence, taken together, the ADF and GSADF test results imply that A-H

price differences display explosive dynamics during parts of, but not the entire, sample.

To identify these periods of exuberance, we start by plotting the Backward Supre-

mum ADF (BSADF) statistics for the A-H premium index, and the panel BSADF

statistics for the 26 cross-listed companies together with their corresponding 95 percent

critical value sequence in Figure 2.2. A comparison of the test statistics with their

critical values indicates that speculative bubbles occurred in 2007 and 2014-15. This

conclusion is supported further by the results for individual companies. Figure 2.3

shows the periods of exuberance for each of the 23 cross-listed securities that have

statistically significant GSADF statistics at the five percent level. As is evident from

the figure, the episodes of exuberance are clustered around 2007-08 and 2014-15. The

fact that bubble episodes are highly synchronised across companies points to the

existence of a market-wide speculative factor that drove A-share prices to diverge from

their fundamental values, and led to the stock market frenzy of 2007 and the market

crash of 2014-15. The presence of such a factor is also in accordance with previous

studies which show that changes in foreign share discounts are highly correlated with

movements in the market they trade (Froot and Dabora, 1999).



56 Speculative Bubbles in Segmented Markets

Fig. 2.3 Date-stamping Periods of Exuberance in A-H Price Differentials

Notes: The figure shows the periods of exuberance in A-H share price differentials identified by the BSADF date-
stamping strategy. 95 percent critical values are obtained using 2000 simulations. The minimum window size is 53
weeks.

Fig. 2.4 Date-stamping Periods of In-Sample Predictability

Notes: The figure shows the periods of in-sample predictability of A-share price movements identified by IVX rolling-
predictive regressions. The regressor in Equation (2.13) is the A-H price differential. The window size is 53 weeks.
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Having established the presence of explosive dynamics in A-H twin share prices,

we run rolling predictive regressions of the form given by Equation (2.13). To allow

direct comparisons with the unit root test results, the rolling window size is set equal

to the minimum window size r0. Figure 2.4 shows the periods of predictability for

each of the cross-listed securities in our sample. In accordance with the pattern

of the BSADF statistics, we observe that the majority of IVX statistics become

positive and statistically significant in 2007 and in 2014-15. Thus, as suggested by

the theoretical analysis of Section 2.3, A-H price differences have predictive content

for future movements in A-share prices during periods of exuberance. Overall, the

above results provide novel evidence in support of speculative bubbles in China’s stock

market.

2.4.2 Chinese American Depository Receipts

As a robustness check, we repeat the above analysis using a subset of our sample of

Chinese companies for which American Depository Receipts (ADRs) are traded on

the New York Stock Exchange. An ADR represents a bundle of H shares held in

trust by a U.S. depository bank. On the one hand, these securities make it easier for

U.S. investors to trade shares of companies incorporated outside the U.S. and, on the

other, they provide a source of capital for China. Like A and H shares, ADRs entitle

investors to the same exchange-rate-adjusted dividend payments and capital gains.

However, contrary to A and H shares, limits to arbitrage between Hong Kong and

the U.S. market are far less constraining. If an ADR sells at a premium, a financial

intermediary can purchase H shares in Hong Kong, create a new ADR, and make an

instant profit (Lamont and Thaler, 2003). Thus, arbitrage should restrict ADR and

H-share prices from diverging due to speculation, but not ADR and A-share prices.

Our empirical results are in line with this hypothesis. Starting with the unit root

test statistics presented in Table 2.5, we observe that the univariate GSADF and panel

GSADF tests always fail to reject the null of non-explosive dynamics in ADR-H price

differentials. On the contrary, there is strong evidence in favour of explosive dynamics
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Table 2.5 Bubble Detection Tests: American Depository Receipts

ADR-H A-ADR

Company ADF GSADF ADF GSADF

China East Air -17.911 -0.729 -2.874 5.597∗∗∗

China Petroleu -17.381 -3.035 -2.155 3.964∗∗∗

Huaneng Power -15.837 -1.190 -2.830 3.131∗∗∗

S Sh Pechem -15.579 -2.142 -2.646 3.660∗∗∗

Southern Air -16.252 -0.523 -2.942 4.068∗∗∗

Panel -3.043 2.251∗∗∗

Notes: The table reports GSADF test statistics for the difference between the prices of A shares and ADRs, as well
as the difference between the prices of ADRs and H shares. ∗,∗∗ and ∗∗∗ denote statistical significance at the ten, five,
and one percent levels, respectively. The minimum window size for the GSADF and panel GSADF test is set equal to
53 weeks. Finite sample critical values are obtained from using 2000 simulations.

Fig. 2.5 Date-stamping Periods of Exuberance in A-ADR Price Differentials

Notes: The figure shows the periods of exuberance in A-ADR price differentials identified by the BSADF date-stamping
strategy. 95 percent critical values are obtained using 2000 simulations. The minimum window size is 53 weeks.

for A-ADR price pairs, with all test statistics being significant at the one percent

significance level. The results for the BSADF statistics, summarized in Figure 2.5,

indicate that the periods of exuberance in the latter series are again synchronised,

taking place in 2007 and 2014-15. Thus, they coincide with those for A-H share prices.

Similarly, the IVX predictive regressions, presented in Figure 2.6, suggest that A-ADR

price differentials contain valuable information for predicting A-share price movements

during these periods.
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Fig. 2.6 Date-stamping Periods of In-Sample Predictability

Notes: The figure shows the periods of in-sample predictability of A-share price movements identified by IVX rolling-
predictive regressions. The regressor in Equation (2.13) is the A-ADR price differential. The window size is 53 weeks.

2.4.3 The Stock Connect Programs

Two major developments for China’s integration into global capital markets took place

in the last part of our sample period. In November 2014, the Shanghai-Hong Kong

Stock Connect program was launched and a similar program, the Shenzhen-Hong Kong

Stock Connect, was put into operation in December 2016. Under the Stock Connect

programs, SSE/SZSE and SEHK established mutual order-routing connectivity which

enabled mainland Chinese and international/Hong-Kong investors to trade, specific

securities listed in SEHK and SSE/SZSE, respectively, subject to daily and aggregate

quotas. The two programs are open to exchange participants, who satisfy certain

eligibility requirements, and cover all cross-listed shares.

Although the Stock Connect landmark programs established mutual stock market

access between mainland China and Hong Kong, they did not eliminate A-H price

disparities. There are two reasons for this empirical observation. The first reason is

that cross-listed shares remained non-fungible under the Stock Connect scheme. The

fact that investors cannot purchase ‘cheap’ H shares in Hong Kong and sell them

onshore implies that A-H price differentials continued to not constitute pure arbitrage

opportunities. The second reason is that Stock Connect is a long-term initiative whose

aim is to gradually increase the degree of financial integration of China into the global

economy. Upon its inception, there were several issues in terms of rules and operations
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(such as legal ownership rights, investor protection, settlement arrangements and

trading limits) which acted as impediments to capital flows. Due to these issues, the

take up of the programs’ investment quota was anaemic in the first year of operation,

representing less than one percent of trades in the entire market. Since then, regulators

have introduced a number of enhancements to address these issues and to improve

operational efficiencies. For instance, real-time delivery versus payment was introduced

to address concerns about the absence of real-time settlement, Hong Kong Exchanges

and Clearing Limited started offering special segregated account services to remove

some of the obstacles presented by pre-delivery requirements, aggregate quotas were

removed, and daily quotas were raised. These improvements were associated with a

steady increase in the average daily northbound and southbound turnover over time,

from less than 1% of equity total to 2% (SZSE/northbound), 3.5% (SSE/northbound),

and 8% (southbound) in 2018. As can be seen from Figure 2.1, the increase in

turnover coincides with a small but evident reduction in A-H price disparities, with

the AH premium index dropping from 150 in 2015 to around 120 at the end of 2018.

Furthermore, our empirical analysis shows that, even though A-H price differentials

are still substantial, there is no statistical evidence in favour of speculative bubbles

since the 2014-15 stock market crash (see Figures 2.2, 2.3 and 2.4).

2.4.4 Sources of AH Premia

Several studies have attempted to explain the AH premium puzzle by looking at market

and firm-specific factors which, under segmented markets, can cause price valuations

of the same asset to differ across geographical locations (Cai et al., 2011; Chung et al.,

2013; Seasholes and Liu, 2011; Wang and Jiang, 2004). In this section, we explore

whether changes in such factors are linked to periods of exuberance in A-H price

differentials. For doing so, we employ a dynamic panel probit (DPP).

Let bi,t denote a binary bubble indicator, which takes the value of unity when the

BSADF statistic for firm i exceeds its critical value at time t, and zero otherwise. The
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DPP model can be defined in reference to a theoretical relationship of the form

b⋆i,t = X ′
i,tβ + ϵi,t, (2.17)

where b⋆i,t is an unobservable variable that determines the occurrence of a bubble in the

share price of firm i at time t, Xi,t is a vector of covariates that includes a constant,

the lag value of bi,t, and market and firm-specific variables, β is a coefficient vector,

and ϵi,t is a normally distributed error term. The binary bubble indicator bi,t is related

to the latent variable b⋆i,t according to

bi,t =


1, if b⋆i,t > 0

0, otherwise,
(2.18)

and the corresponding DPP model is given by

Pr(bi,t = 1|Xi,t) = Φ(X ′
i,tβ), (2.19)

where Φ(·) denotes the cumulative Gaussian distribution function. This model can

be estimated via partial maximum likelihood, and the corresponding pooled probit

estimator is consistent and asymptotically normal (Wooldridge, 2001, Ch. 13).

In line with previous literature, we consider the following potential sources of AH

premia:

• Risk Appetite. The differential risk hypothesis postulates that A shares may

sell at a premium because investors in mainland China are less risk averse in

comparison to overseas investors and therefore demand a lower compensation

for bearing risk (Ma, 1996). We proxy differences in risk appetite (risk) by the

ratio of variances of A- and H-share returns (Chung et al., 2013; Wang and Jiang,

2004). Similarly to Wang and Jiang (2004), we measure the variance of returns

using the squared residuals of a regression of returns on their one-period lagged

values and local market index returns.
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• Liquidity. According to the liquidity hypothesis, investors require compensation

in the form of lower prices for purchasing assets which are relatively less liquid

and have higher transaction costs (Amihud and Mendelson, 1986). We employ

two proxies to capture differences in liquidity between markets. The first is given

by the ratio of trading volumes (volume). The second is a transaction cost-based

liquidity measure, defined as the difference between the bid-–ask spreads of A

and H shares (spread).

• Changes in Exchange Rate Expectations. Because firms incorporated in mainland

China pay dividends in RMB, an expected depreciation of the Chinese currency

implies a reduction in the expected future payoffs received by overseas investors

from holding H shares. By altering the present value of H shares, movements

in exchange rate expectations can cause A- and H-share prices to diverge. A

natural way to capture this effect is to include changes in (log) forward exchange

rates (forward) in the DPP model. Unfortunately, forward exchange rates are

only available for the period beginning in June 2009, which does not cover the

first bubble episode in Chinese stock markets. To deal with this shortcoming,

we use spot exchange rate returns (spot) in our main analysis. The results for

forward rates, which are reported in Appendix B.3, are qualitatively similar.

• Aggregate Market Conditions. Previous studies show that aggregate market

conditions are correlated with AH premia (Chung et al., 2013; Ma, 1996; Wang

and Jiang, 2004). The findings of these studies suggest that when mainland

Chinese stock markets are more bullish than the Hong Kong market, A-H price

differentials tend to widen and vice versa. Though typically this behaviour

is attributed to investor sentiment (see, e.g., Stambaugh et al., 2012, and the

references therein) it is also consistent with the presence of a market-wide bubble

that drives the prices of individual Chinese securities (as suggested by the IVX

and BSADF results). Irrespective of whether the mechanism generating security

prices involves bubbles or sentimental investors, differences in aggregate market
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conditions constitute a speculative source of AH premia and, in this aspect, differ

from the factors outlined above which fall in the category of market fundamentals.9

To proxy for relative market conditions, we follow Chung et al. (2013) and use

the logarithm of the A-share price index over the H-share price index (market).

• Public Dissemination of Information.10 Another factor related to speculative

trading is the degree of public dissemination of information. A number of theoret-

ical models predict that, in the presence of short-sale constraints, heterogeneous

beliefs can give rise to price overvaluation (Harrison and Kreps, 1978; Scheinkman

and Xiong, 2003). In these models, investors are willing to pay a price that ex-

ceeds the intrinsic value of an asset because they expect to profit from selling the

asset to a more ‘optimistic’ investor in the future. By reducing the dispersion of

beliefs across agents and, thereby, lowering the probability of future transactions

with more optimistic investors, public dissemination of information lowers the

magnitude of bubbles.

A popular measure of the degree of public dissemination of information is the

number of financial analysts covering a stock, analyst coverage (Brennan et al.,

1993; Duarte et al., 2008; Hong and Kacperczyk, 2010; Hong et al., 2000; Kelly

and Ljungqvist, 2012). Financial analysts gather information from a variety

of formal sources, such as financial disclosures, news, and earnings conference

calls, but also via informal channels, such as discussions with firms’ management,

brokerage clients, and investors, to produce reports assessing the performance

of financial assets (Bradshaw, 2011). These reports can coordinate beliefs by

aggregating complex information and presenting it in an easily understandable

manner to less sophisticated investors (Chang et al., 2007). Thereby, an increase
9It should be noted that behavioural models establish a link between bubbles, transaction volume,

and volatility (Scheinkman, 2014; Scheinkman and Xiong, 2003), which makes the distinction between
fundamental and non-fundamental factors even less clear.

10We are grateful to a referee for motivating the examination of public dissemination of information,
short-sale constraints, and margin trading in our empirical analysis.
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in the number of analysts covering a stock can raise the rate of information flow

to market participants and lead to a higher degree of belief coordination.

A substantial empirical literature indicates that analyst coverage conveys infor-

mation to the market (Ayers and Freeman, 2003; Hong et al., 2000; Lys and Sohn,

1990; Womack, 1996). In a study closely related to ours, Andrade et al. (2013)

use several measures of overvaluation and show that Chinese stocks covered

by a greater number of analysts were much less affected by the spectacular

boom-bust episode of 2007. Furthermore, the authors provide evidence in favour

of the hypothesis that analyst coverage reduced bubble intensity by lowering the

dispersion of beliefs. We collect data on analyst coverage from IBES.

• Short-Sale Constraints. Short sale constraints are widely believed to impact on

the functioning of capital markets. From a theoretical perspective, their effect

on asset prices is ambiguous (Beber and Pagano, 2013). In a highly cited paper,

Miller (1977) hypothesizes that short-sale constraints can result in overpricing

as they prevent the information held by bearish investors, who do not own a

stock, from being impounded into market prices. This prediction is in line with

the conventional view that short-sale impediments act as a limit-to-arbitrage,

restricting investors from exploiting and eliminating overpricing and making

bubble formation more likely. Diamond and Verrecchia (1987) show, however,

that Miller’s prediction does not hold under rationality and risk neutrality because

rational agents factor in their valuations the fact that short-sale constraints

restrain investors with negative information from trading. Chang et al. (2006)

propose a model in which rational, risk averse investors trade to share risks and

to speculate on private information. In this framework, short-sale constraints

can actually cause securities to sell below fundamental values. On the one hand,

short-sale constraints induce a slower price discovery, which increases the risk

perceived by less informed investors and makes them require higher returns, thus

causing market prices to decline. On the other hand, limiting short sales related

to risk sharing raises the demand for assets and, thereby, their price. Depending
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on whether the information or risk-sharing effect dominates, the introduction of

a short-sale constraint can lead to systematically lower or higher prices compared

to fundamentals. Bhojraj et al. (2009) also demonstrate that short sellers may

not eliminate overpricing when there is ‘synchronisation risk’ so that arbitrageurs

cannot predict each others trading strategies (see also Abreu and Brunnermeier,

2002, 2003).11

Most of the empirical literature finds positive effects of short selling on stock

market efficiency and the process of price discovery (e.g. Alexander and Peterson,

2008; Autore et al., 2011; Boehmer et al., 2013; Chang et al., 2007; Diether et al.,

2009). By employing either short interest or shorting flow data, the majority of

empirical studies suggest that short sales are based on value-relevant information

and reduce overvaluation (see, e.g. Asquith and Meulbroek, 1995; Asquith et al.,

2005; Boehmer et al., 2008b; Christophe et al., 2004; Curtis and Fargher, 2014;

Dechow et al., 2001; Diether et al., 2008) However, there are also studies that

fail to find a significant relationship between short-sale constraints and asset

prices (e.g. Battalio and Schultz, 2006; Boehmer et al., 2008a; Diether et al., 2009;

Kaplan et al., 2013) or provide evidence against the overvaluation hypothesis

(Doukas et al., 2006).

Following previous literature, we use differences in short-interest ratios (shares

sold short over total shares outstanding) as a relevant instrument for differences in

short-sale constraints across markets.12 Our null hypothesis is that an increase in

the short-interest ratios for A shares with respect to those for their H counterparts

is associated with a relative decline in A-share prices, and thus with a lower
11A number of papers show that short selling can also cause price manipulation and amplify price

declines, thereby increasing the severity of a market crash (e.g Allen and Gale, 1992; Brunnermeier
and Oehmke, 2013; Goldstein and Guembel, 2008; Hong and Stein, 2003).

12In addition to short interest ratios, indirect proxies for short-sale constraints include breadth of
ownership (Chen et al., 2002), institutional ownership (Hirshleifer et al., 2011; Nagel, 2005), and rebate
rates (Drechsler and Drechsler, 2014; Geczy et al., 2002; Jones and Lamont, 2002). In our analysis,
we focus on short interest ratios because weekly lending data are readily available at the stock level.
On the contrary, rebate rates are not publicly available. As a consequence, empirical studies have
been limited to proprietary databases over short time periods. With regard to institutional ownership,
Nagel (2005) and Asquith et al. (2005), find that this proxy is highly correlated with short interest.
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probability of a bubble occurring. To construct the short interest variable, we

download data on SSE and SZSE securities lending from the China Stock Market

& Accounting Research (CSMAR) database provided by GuoTaiAn, and obtain

short-selling data for H shares from the Historical Data Service of the Hong Kong

Exchanges and Clearing Market website.

• Margin Trading. Academics and policy makers have long argued that the inter-

action of credit and speculation is an essential component of booms and crises

(Borio et al., 2002; Fisher, 1933; Jordà et al., 2016; Mishkin, 2009; Mishkin et al.,

2008). This view is supported by recent theoretical work which links bubble

formation to the expansion of credit (Barlevy, 2014; Martin and Ventura, 2016;

Miao and Wang, 2018), and also by several empirical papers that provide strong

evidence in favour of credit-fuelled bubbles in asset markets (Jordà et al., 2015;

Wachter, 2015).

In mainland China, trading on margin, like short selling, was strictly prohibited

until March 2010. In the following years and especially during the 2014-15 stock

market boom, the volume of margin trading surged. Between June 2014 and June

2015, outstanding margin loans quintupled from 403 billion RMB to 2.27 trillion,

which comprised around 12 percent of the combined free float of the Shanghai and

Shenzhen stock markets - the highest level of margin to free float in the history

of global equity markets.13 In line with the academic literature on leveraged

bubbles, this unprecedented expansion in credit is generally viewed as a prime

cause of the 2014-15 stock market rally and the subsequent crash. However, to

the best of our knowledge, there is still no formal statistical evidence to support

this hypothesis. To fill this gap in the literature, as a final explanatory variable,
13The evolution of margin financing in mainland China and its impact on equity prices was

extensively covered by the financial press. See, for instance, Untameable Market (The Economist, 3
July 2015).
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we employ a margin proxy: the volume of margin trading as a percentage of

the total volume of shares outstanding for securities traded in mainland China.14

The above set of covariates does not account for two potential determinants of AH

premia: macroeconomic conditions and information asymmetries between local and

overseas investors. The reason for not examining the former determinant is twofold.

First, because macroeconomic variables are observed at a low frequency (monthly

or quarterly), their use requires temporal aggregation of the high-frequency financial

variables and, most importantly, of the bubble indicator process bi,t. This change in

frequency can induce non-random measurement error in the left hand side variable

of the probit model (especially given that the identified episodes of exuberance are

relatively short) and thereby result in biased and inconsistent regression estimates

(Hausman, 2001). Second, as shown by previous literature, macroeconomic variables do

not appear to have a statistically significant relationship with movements in AH premia

so that their omission should not have a substantial impact on our results (Chung

et al., 2013). With regard to information asymmetries between local and overseas

investors, a proxy for this factor is given by market capitalization. However, market

capitalization is itself a function of share prices and, as such, is directly influenced

by the presence of speculative bubbles. Consequently, this proxy cannot shed light

on whether episodes of exuberance in A-H price differentials are due to asymmetric

information or speculation.

Having specified the set of explanatory variables, we turn to the DPP estimation

results. Table 2.6 presents coefficient estimates, marginal effects, standard errors,

likelihood ratio (LR) statistics, and McFadden R2s for two specifications, DPP1 and

DPP2. In DPP1, the set of covariates is restricted to an intercept, the lagged value of
14It should be noted that our margin proxy suffers from two limitations. First, it is based solely on

data for mainland China since margin trading data is not available for the Hong Kong market and,
second, it does not account for other types of leveraged financing available to retail investors. The
latter limitation is likely more important for our analysis. Before the 2015 crash, grey-market margin
lending thrived in mainland China, with estimates placing it as high as 1 to 1.5 trillion RMB (for a
discussion of unregulated margin borrowing in mainland China, see So you’re a leveraged stock market
investor with poor timing in China? (Financial Times, 15 July 2015) and the May 2015 report of
Credit Suisse). As a consequence, our empirical results may understate the strength of the relationship
between total financing and speculative bubbles.
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Table 2.6 Estimation results for the Dynamic Panel Probit model

DPP1 DPP2

Coefficient Estimate Marginal Effects Coefficient Estimate Marginal Effects

lagged exuberance 2.682∗∗∗ 0.519∗∗∗ 2.679∗∗∗ 0.516∗∗∗

(0.089) (0.035) (0.089) (0.036)
market 2.229∗∗∗ 0.033∗∗∗ 2.273∗∗∗ 0.033∗∗∗

(0.281) (0.004) (0.284) (0.004)
analyst coverage −0.035∗∗∗ −5.2e− 04∗∗∗ −0.036∗∗∗ −5e− 04∗∗∗

(0.008) (1.2e− 04) (0.008) (1.3e− 04)
short interest −0.086 −0.001 −0.068 −0.001

(0.074) (0.001) (0.076) (0.001)
margin 0.008∗∗∗ 1.2e− 04∗∗∗ 0.008∗∗∗ 1.2e− 04∗∗∗

(0.002) (2.6e− 05) (0.002) (2.8e− 05)
risk −3.6e− 08 −5.3e− 10

(7.1e− 07) (1.0e− 08)
volume −0.004 −5.7e− 05

(0.006) (8.6e− 05)
spread −1.008 −0.015

(0.754) (0.011)
spot −0.989 −0.015

(9.615) (0.141)
Constant −2.915∗∗∗ −2.883∗∗∗

(0.112) (0.118)

McFadden R2 0.518 0.519
LR Statistic (p-value) 2.619(0.623)

Notes: The table presents coefficient estimates, marginal effects, standard errors, and McFadden R2s for a restricted
(DPP1) and an unrestricted (DPP2) model specification. It also reports the likelihood ratio (LR) statistic and the
corresponding p−value for the restriction that the coefficients on risk, liquidity, spread, and spot are equal to zero.
∗,∗∗ and ∗∗∗ denote statistical significance at the ten, five, and one percent levels, respectively.

the bubble indicator, the measure of relative market conditions, the proxy for short-sale

restrictions, analyst coverage and the proxy for margin trading in mainland China,

i.e., Xi,t =(1, bi,t−1, market, analyst coverage, short interest, margin). While, in DPP2,

we also include the four variables that account for fundamental sources, i.e., Xi,t =(1,

bi,t−1, market, analyst coverage, short interest, margin, risk, volume, spread, spot).

Overall, the estimation results for the two DPP models suggest that fundamental

sources cannot explain episodes of exuberance in A-H price differentials. The coefficients
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on risk, volume, spread and spot are individually statistically insignificant, and the LR

test fails to reject the joint null hypothesis that all four coefficients are equal to zero

with a p-value of 0.623. Furthermore, the difference between the McFadden R2s of the

restricted and unrestricted models is minimal.

On the other hand, the coefficient estimates for the variables related to speculation

are correctly signed and statistically significant at the one percent level with only

one exception, the instrument for short-sale constraints. Starting with the market

variable, which captures differences in market-wide speculation, we observe that this

proxy is positively associated with the likelihood of bubble formation. This implies

that as mainland Chinese markets become more bullish in comparison to the Hong-

Kong market, there is a higher probability of an episode of exuberance in A-H price

differentials occurring. According to the marginal effect estimates for DPP1 and DPP2,

the magnitude of this relationship is substantial, with a one percent increase in the

log difference between the A- and H-share price indices being associated with a three

percentage points increase in the probability of exuberance. This finding provides

support to the claim that the divergence of A-share prices from their fundamental

values is related to market-wide speculation.

Our results are also broadly consistent with real option theories which predict that

the public dissemination of information reduces overpricing through the coordination

of investors’ beliefs. Specifically, our results indicate that as the number of analysts

covering a stock (analyst coverage) increases the likelihood of bubble formation in

A-H price differentials declines -though the marginal effect is smaller compared to the

market variable. The relationship between public dissemination of information and

exuberance has policy implications. It implies that micro-level policies can contribute

toward financial stability by enhancing the information flow to Chinese markets. Such

policies may consist of regulating information disclosure by firms, subsidising analyst

coverage and coordinating the matching process of analysts and firms (for a detailed

discussion, see Andrade et al., 2013).
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The relation between credit and asset price exuberance has also policy relevance.

In line with the theoretical and empirical literature on leveraged bubbles, we find

that credit expansion, approximated by margin, is associated with an increase in the

likelihood of bubble formation. Since margin trading was prohibited in mainland

China prior to 2010, this finding supports the commonly held view that credit played

a significant role in the development of the stock market bubble of 2014-15. This

conclusion justifies the actions of the Chinese authorities in 2015 which, although

long-delayed, aimed at limiting speculative trading by i) enforcing stricter regulations

on margin trading and ii) by cracking down on grey-market lending (Huang et al.,

2019). In a wider policy context, the 2014-15 Chinese stock market crash forms part of

a series of financial events that highlight the need for a robust system of regulation

and financial supervision that prevents credit excesses (see, e.g., Yellen, 2011).

With regard to the short-sale proxy, we observe that the estimated coefficient on

this variable is negative, in line with Miller’s hypothesis that short selling reduces

overpricing, but statistically insignificant. The fact that short sellers did not lean

against the 2014-15 bubble is also evident by the relatively low short-selling volume in

Chinese markets, which prior to the market crash did not exceed 10.3 billion RMB.

A potential explanation for this behaviour is provided by theoretical models with

‘noise-trading’ or ‘synchronisation’ risk (Brunnermeier and Oehmke, 2013). In the

former models, rational arbitrageurs with finite horizons refrain from trading against

the bubble because noise traders may widen the mispricing. While, in the latter,

bursting the bubble requires synchronised action by arbitrageurs, who are however

unable to coordinate. The uncertainty about the timing of the price correction, makes

it optimal for rational agents to ride rather than trade against the bubble.

2.5 Conclusion

In the presence of limits to arbitrage, speculative bubbles can cause financial assets

with the same market fundamentals to trade at different prices in different locations.
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These deviations from the law of one price display, like the bubble process, explosive

dynamics and have predictive content for equity price movements. Based on these two

predictions, we proposed a new approach for bubble detection in segmented markets

that utilizes recursive unit root tests and predictive regressions. By applying these

methods to data on Chinese cross-listed shares, we found strong evidence in favour of

speculative dynamics. Interestingly, for the vast majority of cross-listed securities, the

identified periods of exuberance coincide with the Chinese stock market frenzy of 2007

and the market crash of 2014-15. These findings point to a market-wide speculative

factor driving Chinese share prices. Finally, we employed a dynamic panel probit model

to shed light on the determinants of exuberance. The estimation results suggest that

the likelihood of exuberance in A-H price differentials is associated with a proxy for

credit expansion and a measure of public dissemination of information. This highlights

the importance of micro-level and macroprudential policies for financial stability.





Chapter 3

Sentimental Housing Markets

3.1 Introduction

Since the 2006 housing market collapse in the US that triggered the financial meltdown,

housing dynamics have attracted a lot of attention amongst academics and practitioners.

House prices in the US exhibited unprecedented volatility (Glaeser et al., 2014),

and significant momentum (Case and Shiller, 1989; Piazzesi and Schneider, 2009)

that reached levels far above what economic fundamentals could reasonably support

(Shiller, 2015). While there are many popular approaches that are trying to explain

the recent developments in the housing market, one prominent view is the role of

sentiment. Conventional models work under the premise of rational expectations;

however, this notion is challenged when individual expectations deviate from the

rationality assumption. Home price expectations can play an important role in housing

dynamics (Armona et al., 2019) and shifts in beliefs can be a substantial driver of

movements in house prices, and rents (Kaplan et al., 2015). ‘Animal spirits’ or irrational

expectations in the housing market, can lead to substantial house price appreciation

(Case et al., 2003; Shiller, 2014), that drive the price away from market fundamentals.

We study the role of expectations and the influence of sentiment in the housing

markets through survey evidence on consumer behaviour. We extract data about

expectations through the Michigan survey, which offers a comprehensive dataset on
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consumer buying and savings decisions. From a selection of consumer confidence indices,

we use the Index of Consumer Expectations (ICE), which focuses on the prospects of the

economy and households’ financial situation, that are inherently more forward-looking.

However, consumer confidence indices “are mostly a reflection of what’s going on

rather than a cause” (Friedman, 1992), which means that consumer confidence indices

cannot appropriately represent sentiment, since innovations in consumer confidence

carry information which reflects both fundamentals and noise and cannot be easily

disentangled.1

In order to reconcile for the existence of the fundamental component in consumer

confidence, we adopt the novel identification approach of Lagerborg et al. (2018), where

fatalities from mass shootings are used to identify exogenous variations to consumer

sentiment. Mass public shootings draw a lot of public and media attention because

they are a significant emotional event that involves “innocent victims and offenders

who seemingly went ‘berserk’ in a public setting” (Duwe, 2000, p. 391). The occurrence

of these tragic events and the subsequent media coverage to the wider public can

potentially create a wave of fear and pessimism that can affect the behaviour of the

consumers, which can impact on the whole economy. Although mass shootings incur a

substantial cost to society, individual events are unlikely to induce direct economic costs

and have been shown to be unrelated to economic fundamentals (Pappa et al., 2019).

However, they have been shown to directly affect consumer confidence (Lagerborg

et al., 2018).

We investigate the role of expectations on the housing market dynamics by exam-

ining exogenous variations to consumer sentiment. To identify consumer sentiment

shocks, we implement the proxy SVAR estimation procedure and use mass fatalities

in the US as an instrument to consumer confidence index (Lagerborg et al., 2018).

The instrument diagnostics show rejection of instrument irrelevance, but evidence of
1Barsky and Sims (2012) decompose the two contradicting views on consumer confidence into

the ‘animal spirits’ and the ‘news’ approach. The ‘animal spirits’ approach represents autonomous
(self-fulfilling) fluctuations in beliefs, while the ‘news’ approach refers to the sentiment that depicts
present and future beliefs about fundamentals.
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weak instrument. To face problem caused by weak instrumentation, we use the robust

inference approach of Montiel Olea et al. (2020), that constructs confidence sets for

impulse response coefficients that are valid under weak-instrument asymptotics; thus,

we are able to correct for potential small-sample bias and size distortions.

Our analysis uses monthly data for the sample period of 1963 to 2016. Our

benchmark model consists of the ICE, industrial production, unemployment rate,

consumer price index, house prices, and new houses sold. We introduce negative

sentiment shocks that correspond to an increase of pessimism. As agents become

pessimistic, households experience increase uncertainty about future income, which

means the consumer is increasing their precautionary savings, causing the savings

rate to go up (Angeletos et al., 2018). Households reduce consumption, and firms cut

down on employment and investment; which reduce aggregate consumption, industrial

production and increase unemployment. We also find that the CPI marginally increases

and interest rates decline. Decreased confidence levels affect the household’s demand

for housing which is reflected through a fall in house prices and new houses sold.

Finally, the adverse effect on housing demand deteriorates the housing affordability

and increases the mortgage spreads, which adversely affects homeowners.

We isolate the effect of the housing market by conducting a counterfactual experi-

ment that restricts the effect of the house prices and new houses sold. We evaluate

the quantitative effect of the housing market by measuring the difference between

the restricted and the unrestricted model. In the presence of a consumer sentiment

shock, the inclusion of the housing market enhances the responsiveness of the savings

rate, monetary policy and consumption. Declining house prices reduce the households’

spending capabilities and lead to a further increase in the savings rate. Monetary policy

takes into account potential changes in house price expectations, which exacerbate

the fall of the interest rates. Finally consumption falls more than the unrestricted

model, the reasons attributed to this additional reduction in consumption is twofold i)

increased savings reduce durable consumption, while ii) the decrease in house prices

are creating negative wealth effects on non-durable and service consumption. The
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influence of the housing market becomes particularly evident after one year, where the

deviation from the unrestricted model becomes substantial.

Our results are consistent with macroeconomic models where housing play a driving

role in belief formation (Burnside et al., 2016; Glaeser and Nathanson, 2017; Piazzesi and

Schneider, 2009). Our work is also related to a growing literature that is focusing on the

relationship between the housing market with consumer confidence. Kaplan et al. (2016)

investigates how consumers’ home price expectations respond to past home price growth,

and how they impact investment decisions. Soo (2018) reveals that housing media

sentiment has significant predictive power for future house prices. Makridis (2018) shows

that housing price growth is associated with a rise in perceptions about the current state

of the economy. Finally, Khan et al. (2019) find that household investment increases

and follow a persistent response after a positive confidence shock, and confidence shocks

account for a substantial share of variation in household investment.

The rest of the paper is organised as follows. Section 2 discusses the data. Section

3 describes the empirical methodology. Section 4 presents the empirical results, while

section 5 provides the robustness checks. Finally, section 5 concludes.

3.2 Data and preliminaries

In this section, we provide a detailed description of the variables. We discuss the data

and their unique characteristics, with a focus on the construction of the mass fatalities

index.

Consumer Confidence To study consumer confidence, we use data from the Surveys

of Consumers, which is published monthly by the University of Michigan2. Responders

are asked questions regarding their personal and family finances, business and buying

conditions. For all question, answers are categorised into ‘favourable’, ‘neutral’, and
2The survey is based on at least 500 telephonic household interviews that are conducted nationally,

statistically designed to be representative of all American households. Michigan has adopted a rotating
panel design for this survey, in which the majority of individuals (approximately 60%) are first-time
respondents from whom re-interviews will be attempted six months thereafter.
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‘unfavourable’. The ‘relative score’ is calculated as the difference between the percentage

of responders that are giving a favourable response and the percentage of responders

that are giving an unfavourable response, plus 100. Thus, a relative score of 100 would

indicate parity between favourable and unfavourable responses. appendix:data offers a

more detailed description of the index, accompanied by the questions comprising it.

The most popular index from the consumer survey is the Index of Consumer

Sentiment (ICS), which is a broad index covering respondents’ views about both current

and expected future conditions. For our empirical analysis, we are only interested in

views about future conditions, so we focus on the Index of Consumer Expectation

(ICE) as the measure of consumer confidence, which is constructed from three out of

five questions from ICS. The questions comprising ICE focus on how consumers view

prospects for their financial situation, the general economy over the near term, and the

economy over the long term; thus ICE is inherently more forward-looking and more

suitable to proxy expectations change in consumer behaviour.

To investigate the causal effect of consumer sentiment on the housing market, we

analyse the relationship between consumer confidence and both house prices and new

houses sold. To measure house price appreciation, we use the historical home price

index of Case & Shiller. The Case & Shiller index is a national home price index for

single-family homes that are available since 1890 and are updated monthly. In order

to study the housing volume cycle (supply), we use new houses sold, since residential

investment is not available at monthly frequencies. The reason we prefer new houses

sold to housing starts, or permits is that there is a discrepancy among these variables

that derives from the fact that not all new single-family houses are measured as part

of the residential sales series. There are several categories to residential construction

series, but only those that are built for sale are included in the residential sales series.3

Even though there is a growing literature on how consumer confidence relates to

macroeconomic conditions, there is little evidence on the relationship of consumer

confidence with the housing market. Figure 3.1 plots the detrended series — consumer
3We also include housing starts in our sensitivity analysis, which produces similar results.
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Fig. 3.1 Housing Market and Consumer Confidence

Note: The graph presents the consumer confidence with the house prices (left panel) and the consumer
confidence with the houses sold (right panel).

confidence with house prices (left panel) and consumer confidence with the new houses

sold (right panel). Although confidence does not display significant contemporaneous

correlation with house prices, there is substantial cross-correlation. According to

Makridis (2018), housing price growth affects beliefs about the economy almost half

as much as employment growth and is associated with a 0.65sd rise in perceptions

about the current economic conditions. As for the new houses sold we can say that it

exhibits very strong comovement with confidence. Khan et al. (2019) also investigate

the relationship of the housing market with consumer confidence, where confidence

leads household investment by two quarters, and housing starts by one quarter. Finally,

housing displays a strong price and volume cycle, especially around the 2007-financial

crisis, that can be explained by the preceding years of low short-term interest rates

and relaxed lending standards (Leamer, 2015; Taylor, 2007).

Mass Fatalities As aforementioned, we use fatalities from mass shootings to proxy

autonomous changes in consumer sentiment. Mass shootings are a terminological

antecedent of mass murder and have been identified as a novel American crime problem.

They are driven by mass public shootings, which include gun-related mass murder that

takes place at a public location in the absence of other criminal activity; thus it can be
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seen not only as a type of mass murder but also as a specific type of mass shooting

(Duwe, 2020). There is a clear relationship between mass public shootings and mental

illness, where perpetrators demonstrated signs of severe mental illness prior to the

attack or have been diagnosed with a mental disorder.

To construct the US mass fatalities series, we use two data sources, Wikipedia

(Wikipedia, 2020) for the period 1963 to 1985 and MotherJones’ open-source database

of (Follman et al., 2015) from 1985 to the end of 2016. The selection criteria include

crimes that were committed in a public place by a single perpetrator that acted

alone, and the perpetrator killed more than seven people. According to Duwe (2000),

even though almost all mass murders are newsworthy, familicides and felony-related

massacres are among the least newsworthy. So in order to capture the sentiment that

resonates to the whole country, we exclude familicides, crimes connected to domestic

violence or felony-related massacres such as burglary, gang wars, or contract killings.4

Figure 3.2 shows the chronology of mass shootings with incidents the exceed seven

fatalities from 1963:1 to 2016:12. During this period, there were 32 incidents, with 395

people injured and 447 fatalities. Between 1963 and 2005, a mass shooting occurred

roughly once every 78 days. However, between 2005 and 2016, that rate has accelerated

greatly, with at least one mass shooting every 16 days, almost three times more. In

the years following 2016, the number of fatalities has increased substantially, caused

not only by the increased mass shooting frequency but also because the death count

per shooting rose dramatically. Eight of the twenty most deadly mass shootings in

American history occurred in the last five years, including the deadliest incident of

2017 Las Vegas shooting that claimed 58 lives. More than half of the cases involved

school or workplace shootings; the other cases occurred in locations including shopping

malls, restaurants, and religious and government buildings. During our sample period,

the three most lethal shootings were (1) the Orlando nightclub massacre with 49

fatalities, (2) the Sandy Hook Elementary massacre with 25 fatalities, and (3) the

Virginia Tech massacre with 37 fatalities. At the later stage of our analysis, we exclude
4MortherJones’ database includes cases known as "spree killings "— killings occurred in more than

one location, but still over a short period.
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Fig. 3.2 Mass Fatalities

Note: The graph presents the chronology of mass shooting with incidents that exceed 7 fatalities
from 1960:1 to 2016:12.

these observations from our variable to check our instrument robustness on single

extreme events.

It is crucial to stress mass fatalities’ unique characteristics that depend on the

US locality and the frequency of these events. The idiosyncrasy of the US market

enables the construction of an irregular time series that depends on the occurrence of

mass fatalities. However, these events may be non-existent to most of the countries of

the world, or the recurrence of this event is so rare that it can hardly proxy validly

the consumer confidence . Furthermore, the housing market is usually examined

at the quarterly frequency, which allows the presence for a variety of prices and

quantities for the housing market. However, mass fatalities are better represented with

the monthly frequency, since aggregating fatalities in lower frequencies would create

extreme observations of fatalities that could influence the validity the instrument;

thus reduce the instrument’s information and make it irrelevant concerning consumer

confidence.
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3.3 Methodology

In this section we give an overview of the proxy SVAR methodology. We describe

the important parameters, the identification, the scale parameterization, the weak

instrument diagnostics and robust inference when the instrument strength is weak.

3.3.1 Proxy Structural Vector Autoregression

The proxy SVAR was firstly introduced by Stock and Watson (2012) and Mertens and

Ravn (2013). We adopt the notation of Montiel Olea et al. (2020), which formalize the

theory for inference in a proxy SVAR setting. The model is a standard finite-order

structural vector autoregression. Let Yt be an n × 1 vector of observables, with the

reduced form representation,

Yt =
p∑
j=1

AjYt−j + ut, (3.1)

where Aj, j = 1, . . . , p are n× n coefficient matrices, and ut is a vector of reduced form

residuals with covariance matrix Σuu′ . The reduced form innovations are related to a

vector of structural shock, εt, via

ut = Θ0εt, (3.2)

where Θ0 is invertible. The structural shocks are assumed to be serially and mutually

uncorrelated, with E(εt) = 0, E(εtε′
t) = In, E(εtε′

s) = 0 for s ̸= t where I is the

identity matrix. Under the stationarity assumption, the structural moving average

representation is given by

Yt =
∞∑
k=0

Ck(A)Θ0εt−k, (3.3)
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where the notation Ck(A) emphasizes the dependence of the MA coefficients on the

AR coefficients in A = (A1, A2, . . . , Ap).5 From (3.3), we derive the structural impulse

response coefficients, which is the response of Yi,t+k to a one-unit change in ej,t

∂Yi,t+k
∂εj,t

= e′
iCk(A)Θ0ej, (3.4)

where ej denotes the jth column of the identity matrix In.

In our analysis, we focus on the identification of the consumer sentiment shock, which

without loss of generality, it can be ordered first. To proceed with the identification

we need to partition the structural shock into εt = (ε′
1,t, ε

′
2,t)′, where ε1,t is the n× 1

vector that contains the structural shocks of interest and ε2,t is the n× (n− 1) vector

that contains the other shocks. Similarly, we consider the following partition of Θ0:

Θ0 =
[

Θ0,1
n×1

Θ0,2
n×(n−1)

]
, Θ0,1 =

 Θ′
0,11

1×1
Θ′

0,21
1×(n−1)

′

, Θ0,2 =
 Θ′

0,12
(n−1)×1

Θ′
0,22

(n−1)×(n−1)

′

where Θ0,1 is the n× 1 matrix of coefficients that correspond to the structural shocks

of interest, and Θ0,2 is the n× (n− 1) matrix of coefficients that corresponds to other

shocks.

Let zt be a k vector of instrumental (proxy) variables for the target shock, that are

correlated with the structural shock of interest (relevance) but orthogonal to other

shocks (exogeneity).

E[ztε′
1t] = ϕ ̸= 0 (relevance) (3.5)

E[ztε′
it] = 0, i > 1 (exogeneity), (3.6)

where ϕ is an unknown scalar.
5Specifically: Ck(A) =

∑k
m=1 Ck−m(A)Am, k = 1, 2, . . ., where C0(A) = In and Am = 0 for m > p.



3.3 Methodology 83

The impulse responses with respect the shock of interest are determined by Θ0e1 =

Θ0,1. The econometric problem arises in Equation 3.2, where Θ0,1 cannot be identified

because ε1,t is not observable. Since ε1,t and Θ0,1 are not separately identified, we

use (3.5) and (3.6) to normalise the scale of the target shock ε1,t. Then Θ0,1 can be

identified up to scale convention with

Γ = E(ztut) = E(ztΘ0εt) = ϕΘ0,11. (3.7)

We normalize the size of target shock to have a one unit contemporaneous effect

on a pre-specified variable Yi∗ , that is ∂Yi∗,t/∂ε1,t = −1, in order to generate a

negative consumer sentiment shock. Using the unit effect normalisation Θ0,11 = 1,

Γ11 = E(ztu′
t) = ϕ, so that

Θ0,1 = E(ztu1,t)
E(ztui,t)

= Γ
Γ11

= Γ
e′

1Γ
. (3.8)

Thus, the structural impulse response with respect to ε1,t follows directly from (3.4):

λk,i = ∂Yi,t+k
∂ε1,t

= e′
1Ck(A)Γ
e′

1Γ
. (3.9)

Implementation and the plug-in estimator The plug-in estimator for λk,i re-

places A and Γ in Equation 3.9 with the corresponding estimators

λ̂k,i(ÂT , Γ̂T ) = e′
1Ck(Ât)Γ̂T
e′

1Γ̂T
, (3.10)

where ÂT is the least squares estimator of the VAR coefficients, and Γ̂T is the sample

covariance between zt and ut.

When zt is a strong instrument, confidence sets for impulse responses can be formed

in a way that leads to the 100Ö(1− a)% large sample confidence set for λk,i:

CSPlug−in =
λk,i

∣∣∣∣∣∣ T (λ̂k,i(ÂT Γ̂T )− λk,i)2

σ2
T,k,i

≤ χ2
1,1−a

 , (3.11)
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where χ2
1,1−a is the 1 − a percentile of the χ2

1 distribution and σ̂2
T,k,i is a consistent

estimator for σ2
k,i. The presence of e1′Γ̂ in the denominator of (3.10) suggests that the

large-sample normal approximatoin of the distribution of the plug-in estimator may be

poor when e1′Γ̂ is small, leading to poor coverage of the resulting CSPlug−in confidence

set. Montiel Olea et al. (2020) also propose an inference approach that is valid under

weak-instrument asymptotics.

3.3.2 PSVAR: Weak Instrument and Robust Confidence sets

When instruments are weak, the plug-in estimator in Equation 3.11 is biased toward

the probability limit of the estimator of the impulse response coefficient. To allow for

models which the correlation between the external instrument and the target structural

shock can be arbitrarily close to zero, consider E(ztε1,t) = ϕT , where ϕT → ϕ, and ϕ = 0

is allowed. This framework allows, for strong instruments, but also weak instruments

as in Staiger and Stock (1997) , where an instrument is valid but potentially weak (and

exogeneity holds). Montiel Olea et al. (2020) create confidence bands robust towards

weak instrument on the inverted Anderson-Rubin (AR) test (Anderson and Rubin,

1949), which yields

CSAR =
{
λk,i|AR(λk,i) ≤ χ2

1,1−a

}
, (3.12)

which are asymptotically valid and have strong-instrument asymptotic equivalence

with the CSplug−in.

Weak Instrument Diagnostics When there is a single instrument, i.e. k = 1 we

can detect weak instruments with the heteroskedasticity-robust first-stage F-statistic.

An alternative diagnostic arises from noting that, with Θ0,11 normalised to equal 1, ϕ

equals Γ11. Because,
√
T (Γt − Γ) d→ N (0,WΓ), the Wald Statistic is equal to

ξ1 =
T Γ̂2

T,1

ŴΓ,11
(3.13)
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and also is a measure of instrument strength, where ŴΓ,11 is the estimated asymptotic

variance of the estimator ÂT , Γ̂t and ΣT . Under weak instrument asymptotics, ξ1 has

the same non-centrality parameter as the heteroskedasticity-robust first-stage F and

will tend to be smaller in finite samples than the first-stage F. Both statistics can

be compared to the Stock and Yogo (2005) critical values or to some rule of thumb,

such as ξ1>10. Additionally, the statistic ξ1 has the feature that the 100%(1− a) AR

confidence set is a bounded interval if and only if ξ1 > χ2
1,1−a.

3.4 Empirical Results

In this section, we apply the proxy SVAR with the proposed identification in the

benchmark model. We assess our instrument strength, and we apply robust inference

for weak instruments. We examine the effect of the housing market by conducting

a counterfactual, where variables are not allowed to respond to the housing market.

Finally, we provide an array of robustness checks which examine the sensitivity of the

specification.

3.4.1 Benchmark Model

Data We analyse monthly data over the period of January of 1963 to December

2016. For our benchmark model, we use a six-variable specification which consists of

the confidence index (ICE), the industrial production, the unemployment rate, the

consumer price index (CPI), the house prices and the new houses sold. All variables

except the unemployment-rate enter the VAR in log-levels, we use a quadratic trend

to detrend all variables, and we use 18 lags for our specification. appendix:data offers

a detailed description of the data.

To properly evaluate our identification validity, it is crucial to investigate the

strength of the instrument since instruments that are weakly correlated with endogenous

regressors render conventional methods for estimation and inference unreliable (Andrews

et al., 2019). We find that the heteroskedasticity-robust first stage F-statistic is 7.75,



86 Sentimental Housing Markets

Fig. 3.3 Benchmark Model Identified with IV

Note: Impulse response to a negative sentiment shock from proxy SVAR model. Identification is
achieved by using mass fatalities as an instrumental variable to Confidence. Solid lines represent the
estimated responses and shaded areas represent the 68% probability bands generated with the AR
confidence bands. Dotted lines represent the 68% probability bands obtained from a wild-bootstrap
procedure with 500 repetitions.

and the ξ1 Wald statistic is 4.46. Both statistics exceed the 5% critical value (χ2
1,0.05 =

3.84) for rejecting instrument irrelevance, but they are below the Stock and Yogo (2005)

rule of thumb cutoff of 10, suggesting that the instrument is weak. Thus we need to

apply the Anderson-Rubin confidence sets, in order to make our setting robust to the

low-strength instrument. Finally, because ξ1 < χ2
1,0.05, the 95% AR weak-instrument

confidence sets for the impulse response coefficients are bounded intervals.

Figure 3.3 shows the IRFs of the benchmark model to a negative sentiment shock,

which corresponds to a 1% decline in consumer confidence. The impulse responses

are identified using a proxy SVAR with mass fatalities as the instrument for the full

sample. The shaded areas represent the 68% weak-instrument robust CSAR confidence
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sets, and the dotted lines show the 68% confidence intervals that are obtained through

a wild-bootstrap procedure with 500 repetitions. Robust confidence sets take into

consideration the low strength of the instrument and increase the uncertainty for all

variable by producing broader confidence bands. Specifically, we can observe a large

deviation in house prices confidence bands, where the lower bound reaches 0.2 with the

AR bands in comparison to 0.15 with band obtained from a wild-bootstrap procedure.

However, for the most part, it seems that weak instrument confidence sets roughly

coincide with the strong instrument confidence sets, and our results are significant.

From this point onward, we only calculate robust confidence sets in the proxy SVAR

model.

A 1% negative shock in the sentiment that is caused by innovation to consumer

confidence does not have any substantial implication on impact for most of the variables.

It is followed by a persistent and significant response to confidence itself that dies

approximately after two years. Industrial production follows a declining path that

reaches almost 1% at its’ lowest point, while unemployment follows an upward path

that rises up to 2%. Both measures of economic activity exhibit a similar pattern that

gradually reaches the maximum deviation from the trend around the 14-16 months

and eventually take three years to fully recover. CPI has a much slower and persistent

response that can not be considered significant for the majority of horizons.6 Regarding

our housing market variables, houses sold resemble the shape of the response of

industrial production; however, the magnitude is almost four times stronger. Finally,

house prices exhibits a persistent and almost permanent response that reaches -1.3%.

Lagerborg et al. (2018) indicate that sentiment shocks identified with a triangular

covariance matrix are not orthogonal to fundamentals, as it specified by total factor

productivity, thus extracting a composite signal of news and animal spirits. To

investigate this alternative identification, we compare our benchmark specification with
6The FOMC focused on inflation as measured by the price index for personal consumption

expenditures (PCE) rather than consumer price index (CPI) because that measure is less dominated
than is the CPI by the imputed rent of owner-occupied housing and for other technical reasons. To
that end, we use the PCE price index as an alternative measure of price inflation in our analysis. Our
results remain identical.
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Fig. 3.4 Benchmark Model identified with Cholesky Decomposition

Note: Impulse response to a negative sentiment shock from a recursive VAR model. Identification is
achieved through Cholesky decomposition with Confidence ordered first. Solid lines represent the
estimated responses and shaded areas represent the 68% probability bands obtained though bootstrap
with 500 repetitions.

an SVAR model identified with Cholesky decomposition (Figure 3.4). Although there

are no qualitative differences, we can observe disparities on the magnitude, the impact

size and the statistical significance of the responses. The effect on industrial production

and unemployment appears to be very similar in both identification schemes. CPI

is more persistent without exhibiting a reversion to the trend, and the confidence

bands indicate that the effect is statistical significance for all horizons. Houses sold

exhibit a significant difference in the size of the response on impact, which is almost

four times larger. Finally, house prices response is contracted almost 50% less than

our benchmark identification.. In a similar study, Khan et al. (2019) use a 4-variable

VAR model identified with Cholesky decomposition ordered as {ICE, House Price,

Household Investment and Output}, that shows a 1% response of house prices and 2%
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to household investment (residential investment plus consumer durables) response to a

unit shock to confidence. The results from the Cholesky decomposition significantly

underestimate the responses of the housing market, cutting both house prices and

houses sold response to half.

3.4.2 The Impact of the Housing Market on the Augmented

Model

In order to investigate additional variables that are related to the housing market

conditions, we augment our benchmark specification. To achieve that we include one

variable at a time, while we only report the additional variables under the condition

that the model remains almost identical. This way, we can study a set of variables

without altering the benchmark model. Our first variables expand on the housing

market model and are associated with home buying conditions and homeownership.

Homeownership affects household decisions including savings, consumption, labour

supply and other socio-economic aspects of consumer decisions. Affordability could

constitute a good predictor of the current level of homeownership or the direction of

near-future changes in the homeownership rate. In the benchmark model, a sharp

drop in consumer confidence would adversely affect house prices and income levels.

However, to fully grasp the cost of owner-occupied housing, we need to use a basic

definition for housing affordability, which is calculated as the ratio of house price to

disposable income (Weicher, 1977). Figure 3.5 illustrates a significant decline in housing

affordability (left panel), which indicates that the cost of owning a house becomes

burdensome. Even though the reversal of industrial production could replenish income,

house prices are declining at a faster rate than household income, which creates a

prolonged and persistent burden to housing affordability and homeownership.

The same time, prospective homeowners weighs the cost of borrowing to finance

the purchase, which be can be represented by mortgage spreads. In our definition,

the mortgage spread corresponds to the difference of 30-year mortgage rate with the

mean of the five- and ten-year government bond (Walentin, 2014). Figure 3.5 shows
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Fig. 3.5 Affordability and Home Buying Conditions

Note: Impulse response to a negative sentiment shock from proxy SVAR model. Identification is
achieved by using mass fatalities as an instrumental variable to Confidence. Solid lines represent the
estimated responses and shaded areas represent the 68% probability bands generated with the AR
confidence bands.

the mortgage spreads (right panel), which indicates that borrowing conditions for

new homebuyers will worsen, making the home purchase more costly. However, the

response seems to be relatively short-lived that dies out in less in a year. In general, the

effect of sentiment is negatively existing homeowner in the long-term, and discouraging

potential homeowners in the short-term.

We continue by performing a counterfactual experiment where we impose zero

restriction on the IRFs on the house prices and new houses sold for all horizons. We

achieve that by applying the methodology applied by Bachmann and Sims (2012) and

Bassetto et al. (2016), that restricts the coefficients of the underlying VAR in such a

way as to force the response of the housing market variables to sentiment shock to be

zero, and then compare the restricted impulse responses with the unrestricted ones.

The difference between both impulse response functions identifies the quantitative

importance of the housing market for the propagation of the sentiment shocks. The

variables that we are going to investigate are associated with savings decisions, monetary

policy and consumption expenditure choices.

To study the monetary policy response, we look at the period preceding the housing

bubble collapse, which has been characterised by exceptionally low short-term interest
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Fig. 3.6 Savings Rate Fig. 3.7 Monetary Policy

Note: Impulse response to a negative sentiment shock from proxy SVAR model. Identification is
achieved by using mass fatalities as an instrumental variable to Confidence. Solid lines represent the
estimated responses from the unrestricted mode, while dashed lines represent the estimated response
from the restricted model.

rates and relaxed lending conditions that may have contributed to factors that influence

the demand for housing (Taylor, 2007), which ultimately lead to a boom in housing

starts and soaring house prices. There is evidence that the Federal Reserve has

systematically responded to conditions in the housing market (Bachmann and Rüth,

2020), taking into account potential systematic monetary policy reactions to changes in

house price expectations. The housing market is also known for its spillover mechanism

that can potentially affect other sectors of economic activity. For example, a change in

housing wealth is often considered as a mechanism through which monetary policy can

affect consumer spending and other aspects of the individual’s balance sheet (Attanasio

et al., 2009; Browning et al., 2013; Campbell and Cocco, 2007; Carroll et al., 2011;

Mian et al., 2013).

We examine the monetary policy reaction in a negative sentiment shock, through

the response of federal funds rate. Figure 3.7 illustrates the policy rate and long-term

interest rate. A negative sentiment shock will lead to a decline in the federal fund rate

as a response to the labour market and inflation. Consumers respond to the uncertainty

created by the deterioration of confidence by increasing their precautionary savings

(Figure 3.6). The response of the policy rate counter the effects of the sentiment in the

economy, which in return, creates a trade-off with inflation. The absence of the housing
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market as it displayed by the restricted IRFs, shows that the reaction of the interest

rate and the savings decision would have been exacerbated. Corroborated by previous

literature, the response of the short-term rate indicates that the Fed systematically

reacts to the housing market conditions when conducting monetary policy.

The sample period includes the recent crisis, a period where the short-term interest

rate reached the zero lower bound; thus, we need to consider alternative ways to

investigate the effect of monetary policy. So, in addition to the federal funds rate,

which is the main instrument that the central bank is conducting monetary policy

implementations, we also include the shadow rate of Wu and Xia (2016). The shadow

rate is a new measure for the monetary policy stance that can be negative when

the short-term rate is bounded below by zero. We find that even when we adjust

for the zero-lower bound period with the shadow rate, we attain the same results

(Appendix Figure C.1). As short-term interest rates stay close to zero, we also include

the long-term interest rate in order to capture movements in unconventional monetary

policy. All interest rates exhibit the same pattern, where the effect of the housing

market becomes more prominent after one year, where the restricted IRFs seem to

deviate more from the unrestricted model.

An approach to aggregate consumer expenditures behaviour relates to the existence

of ‘animal spirits’ (Eppright et al., 1998), such that other sources of information

like extraordinary circumstances (e.g. wars), or socio-political environment may be

responsible for the aggregate consumer expectation changes. Confidence indicators

reflect consumers’ private information, so uncertainty about future income can lead

households to cut consumption and increase their stock of precautionary savings

(Acemoglu and Scott, 1994), to counteract the fall in their income (Carroll and Dunn,

1997; Carroll et al., 1992; Zeldes, 1989). There is a plethora of evidence to support that

measures of consumer confidence are highly correlated with real consumption (Carroll

et al., 1994; Pistaferri, 2016), and their role of the housing market to propagate this

effect.
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Fig. 3.8 Personal Consumption Expenditure

Note: Impulse response to a negative sentiment shock from proxy SVAR model. Identification is
achieved by using mass fatalities as an instrumental variable to Confidence. Solid lines represent the
estimated responses from the unrestricted mode, while dashed lines represent the estimated response
from the restricted model.

Housing is an important component of household wealth and a source of collateral for

securing loans. Rising house prices may stimulate consumption by relaxing borrowing

constraints or by increasing households’ perceived wealth. Case et al. (2003) explore

a panel of developed countries from the late 1970s through the late 1990s and find

a strong correlation between house prices and aggregate consumption. According to

Jarociński and Smets (2008), in the US a one per cent increase in real house prices

leads to a 0.075 per cent increase in real consumption after four quarters. In addition,

house price expectations are able to predict household expenditure decisions (Bover,

2015).
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Consumption is comprised of three categories: durables, non-durables and services.

Conventionally models examine consumption by looking at the effect on durables7 and

non-durables, while services are usually disregarded or included in the non-durables

calculation (Barsky and Sims, 2012). However, since housing constitutes an important

component of services8, it would be interesting to examine each part of consumption

independently and observe the individual contributions to consumption.

Figure 3.8 displays the response of aggregate (top-left panel) consumption, as

well as the response of durables (top right panel), non-durables (bottom-left) and

services (bottom-right). Following a negative sentiment shock, consumption drops,

where eventually starts to recover after two years. When we examine the three

sub-components, we can see that the biggest effect occurs in durables, which is

almost three times more than non-durables and four times bigger than services. One

possible explanation behind this proliferated effect of durable consumption can be,

that unemployment risk is an important factor in the timing of the purchase of durable

goods (Dunn, 1998). The counterfactual analysis shows that the contribution of the

housing market after one year becomes substantial, where the difference regarding the

unrestricted model reaches approximately to 2% . Furthermore, the response of the

industrial production to the negative sentiment shock may be largely attributed to

consumption; however, consumption is slightly more persistent, which may be indicative

of the influence of the housing market.

3.5 Sensitivity Analysis

In this section, we conduct a variety of robustness checks; however, we only report the

figures of a few salient robustness checks and provide the rest in an online appendix.
7The central SNA framework explicitly excludes consumer durables acquired by households from

its concept of assets. This exclusion occurs because the services they provide to households are not
treated as being within the SNA’s production boundary.

8Household consumption expenditures: Housing includes rental and imputed rental of owner-
occupied nonfarm housing and other.
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Fig. 3.9 Specification with Housing Starts

Note: Impulse response to a negative sentiment shock from proxy SVAR model. Identification is
achieved by using mass fatalities as an instrumental variable to Confidence. Solid lines represent the
estimated responses and shaded areas represent the 68% probability bands generated with the AR
confidence bands.

Housing starts is very prevalent measure of housing activity in the literature.

Although in our analysis, we favoured new houses sold against alternative measures of

housing volume, we apply an alternative specification to our benchmark model as a

sensitivity check, where we substitute new house sold with housing starts. Figure 3.9

shows the results from this alternative specification. Even though there are some

quantitative differences in housing starts, our overall conclusions remain unchanged.

The inclusion of housing starts has a 50% larger response on itself than houses sold,

which in its turn reinforce the size of the response of house prices, unemployment and

industrial production by 25%.

Next, we focus on the validity of the instrument by exploring its’ relationship

with the confidence index. It can be argued that due to the innate nature of mass
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fatalities that depict a series of tragic events, it can only convey information about

the pessimistic emotions of the economy; thus, mass fatalities cannot proxy the overall

sentiment of the economy. For that reason, we do an exercise where we construct two

additional indices from the Michigan Survey that are trying to capture the pessimism

(unfavourable) and the optimism (favourable) aspect of the consumer behaviour. We

extract all the responses from questionnaires that are included in the construction

of the ICE index. Then, we split these responses into favourable and unfavourable,

and we aggregate them into two distinct sub-indices that follow the same construction

principles with ICE.

Figure C.2 illustrates the two unfiltered sub-indices. As expected, the two indices

mirror each other almost perfectly, i.e. the decline of favourable responses is accompa-

nied by an increase of unfavourable response and vice versa. A potential interpretation

could be that the lack of pessimism in the survey’s questionnaire can be represented

as optimism, which fits our instrument’s disposition. We continue by applying the

instrumental variable identification in a proxy-SVAR model for both the favourable

and the unfavourable ICE sub-indices. However, since the two indices depict different

sentiment, in order to produce a negative sentimental unit-shock to both cases, instead

of a negative, we deliver a positive unit-shock to the unfavourable index. Figure C.3

shows that mass fatalities can successfully identify the autonomous changes in consumer

confidence in both cases, with almost no distinct differences. Thus mass fatalities can

constitute a valid instrument to identify the overall sentiment of the economy.

To further ensure our instrument’s robustness, we perform some additional checks

on our instrument’s initial inclusion conditions. First, we use a different rule to calculate

our instrument, where instead of seven, we use three or more fatalities (fatalities3),

to show that our instrument is not sensitive to our selection criteria. (Figure C.4)

illustrates the benchmark model, where fatalities3 is used as an instrument for the

identification. The results remain identical.

Furthermore, since fatalities is a zero-inflated instrument, the location of non-zero

observations could be very critical to the identification. We assure that this is not the
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case, by applying random reshuffling of the instrument, which will indicate whether the

identification is coincidental. Figure C.5 shows that random allocation of the fatalities

cannot identify the confidence correctly. Additionally, mass fatalities are relatively

sparse that happen in an irregular rate, thus could be sensitive to minor alternations

of the information they convey. Results that are sensitive to the deletion of one or two

clusters of observations highlight the degree to which significant results depend upon

sensitive coefficient, and standard error estimates (Young, 2020). We make sure that

the instrument is not sensitive to the exclusion of observations by removing the three

most lethal events individually (Figure C.6). The exclusion of the events is slightly

mitigating the effect of the sentiment as expected since the number of total fatalities is

reduced; however, it does not affect the identification.

Finally, we conduct a battery of checks to further assess the robustness of the model.

We focus on the initial lag specification and the detrending filter assumptions. We use

12 lags (Figure C.7) and 24 lags (Figure C.8), and we detrend all variables with 4th

order polynomial (Figure C.9). All sensitivity checks show that the model is robust.

3.6 Conclusions

In this paper, we investigate the role of consumer sentiment shocks on the housing

market variables. We implement an identification approach that uses mass fatalities

as instrumental variables to identify autonomous movements to consumer confidence.

Mass fatalities have been shown to be exogenous to economic activity; however, they

constitute a unique instrument to proxy the overall sentiment of the economy, since

it can explain developments in consumer confidence. We find that adverse sentiment

shocks are associated with a reduction in house prices and houses sold.

We augment our benchmark specification with additional variables in order to

explore the influence of the sentiment shocks on other aspects of the economy. We find

that negative shocks worsen homeownership conditions, induce the response of monetary

policy in order to counter the dampening effects on economic activity, and exacerbate
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real consumption spending. In a counterfactual experiment, we find that the presence

of the housing market in a consumer sentiment shock enhances the responsiveness of

the market variables. The role of the housing market becomes especially prominent on

longer horizons, usually after one year, where we observe increasing divergence from

the unrestricted model.
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Appendix A

Real Estate and Construction

Sector Dynamics in the Business

Cycle

A.1 Data and Sources

Aggregate Consumption: Real Personal Consumption Expenditure (seasonally

adjusted, chain-type quantity index, base year 2009, table 1.1.3) divided by the Civilian

Noninstitutional Population (CNP16OV, source: Bureau of labour Statistics). Source:

Bureau of Economic Analysis (BEA)

Business Investment: Real Private Nonresidential Fixed Investment (seasonally

adjusted, chain-type quantity index, base year 2009, table 1.1.3) divided by CNP16OV.

Source: BEA

Residential Investment Real Private Residential Fixed Investment (seasonally

adjusted, chain-type quantity index, base year 2009, table 1.1.3) divided by CNP16OV.

Source: BEA
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Commercial Real Estate Investment Real Private Nonresidential Structures

Fixed Investment (seasonally adjusted, chain-type quantity index, base year 2009, table

1.1.3) divided by CNP16OV. Source: BEA

Residential Real Estate Prices : Real House Price Index, United States (NSA)

deflated with the implicit price deflator for the nonfarm business sector (table 2 ,

source: BLS). Source: Census Bureau

Commercial Real Estate Prices : Real Commercial Real Estate Price Index,

United States (NSA) deflated with the implicit price deflator for the nonfarm business

sector (table 2 , source: BLS). Source: Federal Reserve System

Hours: Hours of Wage and Salary Workers on Nonfarm Payrolls: Private(seasonally

adjusted, Billions of Hours, Series ID: PRSCQ). Source: FRED
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A.2 BVAR

Fig. A.1 RRE Price Shock - Minnesota Prior

Notes: Impulse response to a positive shock to the residential real estate price from a recursive
BVAR model with Minnesota Prior. Identification is achieved through Cholesky decomposition with
the following ordering {RRE Price, RRE Investment, CRE Investment, CRE Price }, all in real terms.
Solid lines represent the median estimated responses and dotted lines the 68% probability bands.
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Fig. A.2 RRE Price Shock - RRE Price Ordered Last

Notes: Impulse response to a positive shock to the residential real estate price from a recursive
BVAR model with Diffuse Prior. Identification is achieved through Cholesky decomposition with the
following ordering {CRE Price, CRE Investment, RRE Investment, RRE Price}, all in real terms.
Solid lines represent the median estimated responses and dotted lines the 68% probability bands.
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Fig. A.3 RRE Price Shock - RRE Price Ordered Last - Minnesota Prior

Notes: Impulse response to a positive shock to the residential real estate price from a recursive
BVAR model with Minnesota Prior. Identification is achieved through Cholesky decomposition with
the following ordering {RRE Price, RRE Investment, CRE Investment, CRE Price }, all in real terms.
Solid lines represent the median estimated responses and dotted lines the 68% probability bands.
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A.3 Model Equations

Cd,t+qhd,tHd,t+
St
Rt

≤ qhd,t(1−δhd)Hd,t−1+wc,tNc,t+wh,tNhc,t+wh,tNhd,t+St−1+ql,tLephd,t.

The first-order conditions for households are:

ucd,twc,t = ztψt(N1+ξ
c,t + (Nhc,t +Nhd,t)1+ξ)

η−ξ
1+ξ )N ξ

c,t, (A3.1)

ucd,twh,t = ztψt(N1+ξ
c,t + (Nhc,t +Nhd,t)1+ξ)

η−ξ
1+ξ )(Nhc,t +Nhd,t)ξ, (A3.2)

ucd,t = βdRtucd,t+1, (A3.3)

ucd,tqhd,t = χtzt
Hd,t

+ βdEt
(
ucd,t+1 + (1− δhd)qhd,t+1

)
(A3.4)

ucd,t = zt

(
1

Cd,t − γdCd,t−1
− Et

βdγd
Cd,t+1 − γdCd,t

)
. (A3.5)

The budget and borrowing constraint for consumption-good entrepreneur are:

Cc,t +Kc,t + qhc,tHc,t + wc,tNc,t +Bc,t−1 (A3.6)

= Yt + (1− δkc)Kc,t−1 + (1− δhc)qhc,tHc,t−1 + Bc,t

Rt

+ ql,tL
ep
hc,t − ϕc,t

Bc,t ≤ ρbBc,t−1 + (1− ρb)θcEt
[
qhc,t+1Hc,t + Kc,t

Akc,t

]
. (A3.7)

the production technology is:

Yt = Kαc
c,t−1H

µc
c,t−1 (Ac,tNc,t)1−αc−µc . (A3.8)
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and the first order conditions are:

(1− αc − µc)Yt = wc,tNc,t, (A3.9)

ucc,t

(
1 + ∂ϕc,t

∂Kc,t

)
(A3.10)

= βeEtucc,t+1

(
αc
Yt+1

Kc,t

+ (1− δkc)−
∂ϕc,t+1

∂Kc,t

)
+ λbc,t(1− ρb)θc,

ucc,tqhc,t (A3.11)

= βeEtucc,t+1

(
µc
Yt+1

Hc,t

+ (1− δhc)qhc,t+1

)
+ λbc,t(1− ρb)θcqhc,t+1,

ucc,t = βeRtucc,t+1 + λc,t − ρbβeλc,t−1, (A3.12)

ucc,t =
(

1
Cc,t − γeCc,t−1

− Et
βeγe

Cc,t+1 − γeCc,t

)
, (A3.13)

where λbc,t denotes the multiplied on the borrowing constraint, which is greater than

zero in a neighbourhood of the equilibrium.

The budget and borrowing constraint for construction-sector entrepreneur are:

Ch,t +Khc,t +Khd,t + ql,t (Lhc,t + Lhd,t) + wh,t (Nhc,t +Nhd,t) +Bh,t−1

= qhc,tIHc,t + qhd,tIHd,t + (1− δkh)Khc,t + (1− δkh)Khd,t + ql,t (Lhc,t + Lhd,t) + Bh,t

Rt

,

(A3.14)
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Bh,t ≤ ρbBh,t−1 + (1− ρb)θhEt[ql,t+1 (Lhc,t + Lhd,t) +Khc,t +Khd,t]. (A3.15)

The production technologies are:

IHc,t = Kαhc
hc,t−1L

µh
hc,t−1 (Ah,t, Nhc,t)1−αhc−µh (A3.16)

IHd,t = Ahd,tK
αhd
hd,t−1L

µh
hd,t−1 (Ahd,t, Nh,t)1−αhd−µh (A3.17)

and the first order conditions are:

(1− αhc − µh)qhc,tIHc,t = wh,tNhc,t, (A3.18)

(1− αhd − µh)qhd,tIHd,t = wh,tNhd,t, (A3.19)

uch,t

(
1 + ∂ϕhc,t

∂Khc,t

)
(A3.20)

= βeEtuch,t+1

(
αhc

qhc,tIHc,t+1

Khc,t

+ (1− δkhc)−
∂ϕhc,t+1

∂Khc,t

)
+ λbh,t(1− ρb)θh,

uch,t

(
1 + ∂ϕhd,t

∂Khd,t

)
(A3.21)

= βeEtuch,t+1

(
αhd

qhd,tIHc,t+1

Khd,t

+ (1− δkhd)−
∂ϕhd,t+1

∂Khd,t

)
+ λbh,t(1− ρb)θh,

uch,tql,t = βeEtuch,t+1

(
µh
qhc,tIHc,t+1

Lhc,t

)
+ λbh,t(1− ρb)θhql,t+1, (A3.22)

uch,tql,t = βeEtuch,t+1

(
µh
qhd,tIHd,t+1

Lhd,t

)
+ λbh,t(1− ρb)θhql,t+1, (A3.23)
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uch,t = βeRtuch,t+1 + λbh,t − ρbβeλbh,t−1, (A3.24)

uch,t =
(

1
Ch,t − γeCh,t−1

− Et
βeγe

Ch,t+1 − γeCh,t

)
. (A3.25)

The market-clearing conditions are:

Yt − ϕt = Ct + IBt, (A3.26)

GDPt = Yt + ¯qhdIHd,t. (A3.27)

The evolution of commercial and residential real estate are:

IHc,t = Hc,t − (1− δhc)Hc,t−1, (A3.28)

IHd,t = Hd,t − (1− δhd)Hd,t−1. (A3.29)

The land is fixed and equal to:

L̄h = (Lhc,t + Lhd,t) . (A3.30)

The aggregate consumption and business investment are:

Ct = Cd,t + Cc,t + Ch,t, (A3.31)

IKc,t = Kc,t − (1− δkc)Kc,t−1. (A3.32)

Construction capital is equal to

IKh,t = Khc,t − (1− δkh)Khc,t−1 +Khd,t −−(1− δkh)Khd,t. (A3.33)
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Non-construction capital is equal to

IKt = IKc,t + IKh,t. (A3.34)

Business Investment

IBt = IKt + q̄cIHc,t; (A3.35)

Ex-post land equations are:

Lephc = Hc,t

(Hc,t +Hc,t)
L̄, (A3.36)

Lephd = Hd,t

(Hc,t +Hc,t)
L̄. (A3.37)

A competitive equilibrium consists of a sequence of allocation {Cd,t, Hd,t, Nc,t, Nhc,t, Nhd,t,

St, Cc,t, Kc,t, Hc,t, Bc,t, Ch,t, IHc,t, Khc,t, Lhc,t, IHd,t, Khd,t, Lhd,t}∞
t=0 and prices {wc,t, whc,t,

whd,t, qhd,t, qhd,t, ql,t, Rt}∞
t=0 such that

(i) given the {wc,t, whc,t, whd,t, qhd,t, Rt}∞
t=0 the sequence {Cd,t, Hd,t, Nc,t, Nhc,t, Nhd,t, St}∞

t=0

solves the household’s problem,

(ii) given the {wc,t, qhc,t, Rt}∞
t=0 the sequence {Cc,t, Kc,t, Hc,t, Nc,t, Bc,t}∞

t=0 solves the

entrepreneur in the consumption good sector problem,

(iii) given the {whc,t, qhc,t, whd,t, qhd,t, ql,t, Rt}∞
t=0 the sequence {Ch,t, IHc,t, Khc,t, Lhc,t, Nhc,t, Bh,t,

IHd,tKhd,t, Lhd,t, Nhd,t}∞
t=0 solves the entrepreneur in the construction sector problem,

(iv) all markets clear.
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A.4 Steady State

From the Euler equation we can derive that:

R = 1
βd
.

The ratio of the Lagrange multipliers to the marginal utility of consumption is

equal to:

λc
uce

= βd − βe
1− ρbβe

& λh
uce

= βd − βe
1− ρbβe

.

The ratio of the construction capital for commercial structures to commercial real

estate is:

Khc

qhcIHc

= αhcβe

1− βe(1− δkhc)− λhc

uce
(1− ρb)θhc

,

and investment for commercial structures is:

Ihc
qhcIHc

= δkhc
Khc

qhcIHc

.

The ratio of the construction capital for residential structures to residential real

estate is:

Khd

qhdIHd

= αhdβe

1− βe(1− δkhd)− λhd

uce
(1− ρb)θhd

and investment for residential structures is:

Ihd
qhdIHd

= δkhd
Khd

qhdIHd

.

Land to both type of real estate are:

qlLhc
qhcIHc

= µhβe

1− βe − λhc

uce
(1− ρb)θhc

,
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qlLhd
qhdIHd

= µhβe

1− βe − λhd

uce
(1− ρb)θhd

.

From the FOC in the consumption good we can derive that:

Kc

Y
= αcβe

1− βe(1− δkc)− λc

uce
θc(1− ρb)

,

Ic
Y

= δkc
Kc

Y
,

qhcHc

Y
= µcβe

1− βe(1− δhc)− λc

uce
θc(1− ρb)

,

qhcIHc

Y
= δhc

qhcHc

Y
,

Bc

Y
= θc

(
qhcHc

Y
+ Kc

Y

)
,

and from the budge constraint in the consumption good

Cc
Y

= αc + µc − δ′
kc

Kc

Y
− δ′

hc

qhcHc

Y
+R′Bc

Y
.

From the marginal marginal utility for residential real estate we can derive that:

qhdHd

Cd
= χ

(1− βd(1− δhd))
,



A.4 Steady State 125

and then we use the auxiliary variables x1 and x2 to help us with the calculations.

We derive that:

x1 = αhc + µh −
Ihc

qhcIHc

+ θh ∗
(
qlLhc
qhcIHc

+ Khc

qhcIHc

)
,

x2 = αhc + µhha −
Ihc

qhcIHc

+ θh ∗
(
qlLhc
qhcIHc

+ Khc

qhcIHc

)
,

Cd
Y

=
1−

(
Cc
Y

+ Ic
Y

)
− qhcIHc

Y

(
1− Ihc

qhcIHc

+ x1

)

1 + δhd
qhdIHd

Cd

(
Ihd

qhdIHd

+ x2
) ,

qhdHD

Y
= qhdHd

Cd

Cd
Y
,

qhdIHd

Y
= δhd

qhdHd

Y
.

To calculate the individual hours we need to combine the labour demand for

consumption good, commercial and residential real estate:

Nhd

Nhc

= (1− αhd − µh)
(1− αhc − µh

qhdIHd

qhcIHc

,

Nhc

Nc

=


(1−αhc−µh)
(1−αc−µc

) qhcIHc

Y(
1 + Nhd

Nhc

)ξ


1
1+ξ

,

Nhd

Nc

= Nhd

Nhc

Nhc

Nc

,

and then we can find the levels of individual hours with:
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Nc =

 (1− αc − µc) Y
Cd(

1 +
(
Nhc

Nc
+ Nhd

Nc

)1+ξ
) η−ξ

1+ξ


1

1+η

,

Nhc = Nhc

Nc

Nc & Nhd = Nhd

Nc

Nc.

From the demand for land for commercial and residential use we can find that:

qlLhc

Y
= qlLhc
qhcIHc

qhcIHc

Y
,

qlLhd

Y
= qlLhd
qhdIHd

qhdIHc

Y
.

From land supply we know that L̄h = 1, so:

ql
Y

= qlLhc
Y

+ qlLhd
Y

And then we can find the individual levels of land with

Lhc = qlLhc
Y

+ ql
Y
,

Lhd = qlLhd
Y

+ ql
Y
.

From the production technologies we find that:

q
µc

1−αc−µc
hc Y =

(
Kc

Y

) αc
1−αc−µc

(
qhcHc

Y

) µc
1−αc−µc

Nc,

q
− αhc

1−αhc
hc IHc =

(
Khc

qhcIHc

) αhc
1−αhc

L
µh

1−αhc
hc N

1−αhc−µh
1−αhc

c .
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Combining these two we can find the levels:

qhc =
 q

µc
1−αc−µc
hc Y

q
− αhc

1−αhc
hc IHc

qhcIHc

Y

1+
µc

1−αc−µc + αhc
1−αhc

Y =
(
Kc

Y

) αc
1−αc−µc

(
qhcHc

Y

) µc
1−αc−µc

q
− µc

1−αc−µc
hc Nc

IHc =
(

Khc

qhcIHc

) αhc
1−αhc

q
αhc

1−αhc
hc L

µh
1−αhc
hc N

1−αhc−µh
1−αhc

hc

IHd =
(

Khd

qhdIHd

)αhc
(
qhdIHd

Y
Y

)αhd

Lαhd
hd N

1−αhd−µh
hd .

Having solved for Y, IHc, qhc, IHd, qhd we can substitute and solve for the rest of

the variables ql, Hd, Hc, Cd, Cc, Ch, Kc, Khc, Khd, Bc, Bh, wc, wh . . .
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A.5 Estimation Details

The parameters of the model are estimated using Bayesian methods. We use Bayesian

methods because they allow incorporating a priori information on the parameters of

the model and also because pure maximum likelihood tends to produce fragile results,

particularly in situations in which some parameters are weakly identified.

A.5.1 The Output of the Metropolis

he parameters of the model are estimated using Bayesian methods. We use Bayesian

methods because they allow incorporating a priori information on the parameters of

the model. Convergence of the algorithm is assessed by looking at the plots of the

draws, the Brooks and Gelman (1998) statistics, and by computing recursively the

mean of the marginal posterior distribution of each parameter.

A.5.2 Posterior Densities

In the following graphs we report the posterior densities of selected parameters for both

chains. The posterior ones are based on 200,000 draws from the Metropolis algorithm.
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Fig. A.4 Posterior Densities
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A.5.3 Prior and posterior densities

In the following graphs we report the prior and posterior densities of selected parameters.

The posterior ones are based on 200,000 draws from the Metropolis algorithm and are

estimated using a Gaussian kernel.

Fig. A.5 Prior & Posterior Densities

Notes: Solid lines denote the posterior density while the dashed lines denote the prior density.
Vertical red lines correspond to the posterior mode.
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A.5.4 The output of the Metropolis

The following graphs report the time series of the draws from the posterior distribution

generated by the Metropolis algorithm.

Fig. A.6 Posterior Density Traceplot
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Fig. A.7 Structural Shock Traceplot - Chain 1
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Fig. A.8 Structural Shock Traceplot - Chain 2
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A.5.5 Brooks and Gelman (1998) Diagnostics

Brooks and Gelman (1998) convergence diagnostics is based on comparing pooled

and within chain variability of MC draws using the 80% interval/quantile range. The

convergence diagnostics displays the 80% interval range of draws from the pooled and

within chain means as well as the 80% interval range of the second and third central

moments (squared and cubed absolute deviations).

Fig. A.9 Multivariate Diagnostics
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Univariate Diagnostics

Fig. A.10 Univariate Diagnostic - Interval
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Fig. A.11 Univariate Diagnostic - m1



A.5 Estimation Details 137

Fig. A.12 Univariate Diagnostic - m2
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A.5.6 Recursive Mean

Fig. A.13 Recursive Mean - Chain 1
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Fig. A.14 Recursive Mean - Chain 2





Appendix B

Speculative Bubbles in Segmented

Markets: Evidence from Chinese

Cross-Listed Stocks

The Appendix describes the econometric methods employed to test for speculative

bubbles, and provides technical details for their estimation. Specifically, it outlines

the GSADF test of Phillips et al. (2015a,b), the proposed extension to a panel setting

of Pavlidis et al. (2016), and the IVX method of Phillips and Magdalinos (2009) and

Kostakis et al. (2015). The last section of the Appendix presents estimation results for

the dynamic panel probit that includes changes in forward exchange rates.

B.1 Recursive Unit Root Tests

The GSADF Test Consider the following augmented Dickey-Fuller regression equa-

tion

∆yt = ar1,r2 + γr1,r2yt−1 +
k∑
j=1

ψjr1,r2∆yt−j + ϵt, (B1.1)

where yt denotes a time series process, ϵt iid∼ N(0, σ2
r1,r2), and r1 and r2 denote fractions

of the total sample size that specify the starting and ending points of a subsample
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period. We are interested in testing the null hypothesis of a unit root, H0 : γr1,r2 = 0,

against the alternative of explosive behaviour in yt, H1 : γr1,r2 > 0. Let

ADFr2
r1 = γ̂r1,r2/s.e.(γ̂r1,r2)

denote the test statistic corresponding to this null hypothesis. Phillips et al. (2015a)

propose a recursive-rolling testing procedure which consists of estimating the ADF

regression (B1.1) on a large number of subsamples of the available data. The authors

show that, under the null, the supremum of the resulting ADF statistics

GSADF(r0) = sup
r2∈[r0,1],r1∈[0,r2−r0]

ADFr2
r1

has the following limit distribution

sup
r2∈[r0,1],r1∈[0,r2−r0]


1/2
r w

[W (r2)2 −W (r1)2 − rw]−
∫ r2
r1
W (r)dr[W (r2)−W (r1)]

r
1/2
w {rw

∫ r2
r1
W (r)2dr − [

∫ r2
r1
W (r)dr]2}1/2

 .
where r0 denotes the minimum window size, rw = r2 − r1, and W is the standard

brownian motion.

If the GSADF test rejects the null hypothesis of a unit root then, in a second stage,

the exact period(s) during which the series under examination displayed explosive

dynamics can be identified. The dating strategy of Phillips et al. (2015a,b) is based on

the BSADF statistic given by

BSADFr2(r0) = sup
r1∈[0,r2−r0]

ADFr2
r1 . (B1.2)

The origination date of the bubble corresponds to the first observation that the BSADF

statistic exceeds its critical value

r̂e = inf
r2∈[r0,1]

{r2 : BSADFr2(r0) > scuβT
r2 },
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and the termination date to the first observation after which the BSADF falls below

its critical value

r̂f = inf
r2∈[r0,1]

{r2 : BSADFr2(r0) < scuβT
r2 },

where scuβT
r2 is the 1 − βT critical value of the supremum ADF test based on ⌊r2T ⌋

observations, and βT is the chosen significance level.

The computation of the BSADF and GSADF test statistics requires the selection

of the minimum window size r0 and the lag length k. Following Phillips et al. (2015a),

we use the rule-of-thumb r0 = 0.01 + 1.8/
√
T , and select a short lag length, k = 1. The

implementation of the unit root tests also necessitates the limit distributions of the

BSADF and GSADF test statistics, which are non-standard. To obtain finite-sample

critical values, we simulate 2000 random walk processes with N(0, 1) errors.

The Panel GSADF Test Inspired by the work of Im et al. (2003), Pavlidis et al.

(2016) propose an extension of the GSADF test procedure to heterogeneous panels.

Consider the multivariate version of the ADF regression equation

∆yi,t = ai,r1,r2 + γi,r1,r2yi,t−1 +
∑k

j=1ψ
j
i,r1,r2∆yi,t−j + ϵi,t, (B1.3)

where i = 1, . . . , N , denotes the cross-listed company index. The null hypothesis of

the panel test is that all N cross-listed companies have a unit root, H0 : γi,r1,r2 = 0,

against the alternative of explosive behaviour in a subset of units, H1 : γi,r1,r2 > 0 for

some i. This alternative allows for γi,r1,r2 to differ across units and, therefore, is more

general than approaches based on the homogeneous alternative hypothesis.

The panel procedure of Pavlidis et al. (2016) is based on the average of the individual

BSADF statistics at each time period

panel BSADFr2(r0) = 1
N

∑N

i=1BSADFi,r2(r0), (B1.4)
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which provides a measure of overall exuberance in the sample. Given (B1.4), the

definition of the panel GSADF is simply

panel GSADF (r0) = sup
r2∈[r0,1]

panel BSADFr2(r0). (B1.5)

The results of Maddala and Wu (1999) and Chang (2004) show that the distribution

of panel unit root tests based on mean statistics is not invariant to cross-sectional

dependence of the error terms ϵi. To deal with this complication, Pavlidis et al. (2016)

employ a sieve bootstrap procedure to draw statistical inference. The procedure consists

of the following steps:

1. For each panel unit i, impose the null hypothesis and fit the restricted ADF

regression,

∆yi,t = ai,r1,r2 +
k∑
j=1
ψji,r1,r2∆yi,t−j + ϵi,t,

to obtain âi,r1,r2 , ψji,r1,r2 for j = 1, . . . , k, and ϵ̂i.

2. To preserve the dependence structure of the error term, generate bootstrap

residuals, ϵbi,t, by sampling with replacement columns from the residual matrix ϵ̂.

3. Recursively simulate artificial samples for first differences,

∆ybi,t = ai,r1,r2 +
k∑
j=1
ψji,r1,r2∆ybi,t−j + ϵbi,t,

and for levels,

∆ybi,t =
t∑

p=1
∆ybi,p.

4. Compute the sequence of panel BSADF statistics and the panel GSADF statistic

for the simulated series.

5. Repeat steps 2 to 4 one thousand times to obtain the empirical distribution of

the test statistics under the null.
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Similarly to the univariate testing procedure, dating episodes of overall exuberance

consists of comparing the panel BSADF with the sequence of critical values obtained

from the bootstrap procedure. The origination date is set equal to the first observation

that the panel BSADF statistic exceeds the 1− βT critical value, and the termination

date is set equal to the first observation that the Panel BSADF falls below the 1− βT
critical value.

B.2 The IVX Testing Procedure

Consider the following bivariate system

yt+1 = αxt + u1,t+1, (B2.1)

xt+1 = ρxt + u2,t+1, (B2.2)

where the errors (u1,t+1, u2,t+1)′ follow a martingale difference sequence, and ρ = 1+c/T γ

for some γ ≥ 0. In this setting, the AR coefficient for the regressor is allowed to take a

wide range of values. Depending on the value of c and γ, the regressor can be an i)

integrated (c = 0 or γ > 1), ii) local-to-unity (c ̸= 0 and γ = 1), iii) near stationary

(c < 0 and γ ∈ (0, 1)), iv) locally explosive (c > 0 and γ = 1), or v) mildly explosive

(c > 0 and γ ∈ (0, 1)) process. The IVX procedure is based on the creation of an

instrument zt which, although relies on the regressor, always falls in the near stationary

category iii. In particular, given an artificial autoregressive scalar,

ρz = 1 + cz/T
ζ , ζ ∈ (0, 1), cz < 0, (B2.3)

the IVX instrument is initialized at zero and sequentially computed for the remaining

periods according to

zt = ρzzt−1 + ∆xt. (B2.4)
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It can be shown that the estimator

α̂IVX =
∑
ztyt+1∑
ztxt

, (B2.5)

has the following limit theory

T
1+ζ

2 (α̂IVX − α) =⇒ ψ′,

where ψ′ is a mixed normal variable, and the IVX test statistic

IVX = α̂IVX − α
σ̂IVX

,

is standard normal (Kostakis et al., 2015; Phillips and Lee, 2013; Phillips and Mag-

dalinos, 2009). Simulation results in Kostakis et al. (2015) and Pavlidis et al. (2017)

indicate that the IVX test has good size and power properties in finite samples.
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B.3 Dynamic Panel Probit Results for Forward Ex-

change Rates

Table B.1 Estimation results for the Dynamic Panel Probit model (Forward Rates)

DPP1 DPP2

Coefficient Estimate Marginal Effects Coefficient Estimate Marginal Effects

lagged exuberance 2.625∗∗∗ 0.466∗∗∗ 2.624∗∗∗ 0.464∗∗∗

(0.134) (0.051) (0.134) (0.052)
market 1.484∗∗∗ 0.017∗∗∗ 1.434∗∗∗ 0.016∗∗∗

(0.422) (0.004) (0.433) (0.004)
analyst coverage −0.025∗∗∗ −2.9e− 04∗∗∗ −0.024∗∗ −0.000∗∗

(0.010) (1.1e− 04) (0.010) (0.000)
short interest −0.132 −0.001 −0.135 −0.001

(0.103) (0.001) (0.104) (0.001)
margin 0.009∗∗∗ 1.0e− 04∗∗∗ 0.009∗∗∗ 0.000∗∗∗

(0.002) (2.3e− 05) (0.002) (0.000)
risk −3.6e− 08 −0.000

(7.1e− 07) (0.000)
volume 0.003 0.000

(0.005) (0.000)
spread −0.565 −0.006

(1.327) (0.015)
forward −0.553 −0.006

(10.004) (0.111)
Constant −2.861∗∗∗ −2.868∗∗∗

(0.136) (0.140)

McFadden R2 0.447 0.447
LR Statistic (p-value) 0.561(0.967)

Notes: The table presents coefficient estimates, marginal effects, standard errors, and McFadden R2s for a restricted
(DPP1) and an unrestricted (DPP2) model specification. It also reports the likelihood ratio (LR) statistic and the
corresponding p−value for the restriction that the coefficients on risk, liquidity, spread, and forward are equal to zero.
∗,∗∗ and ∗∗∗ denote statistical significance at the ten, five, and one percent levels, respectively.





Appendix C

Sentimental Housing Markets

C.1 Data and Sources

Fatalities: Number of fatalities. Source: Follman et al. (2015) & Wikipedia (2020)

Confidence Index of Consumper Expectations. Source: Survey of Consumers, Uni-

versity of Michigan URL: https://data.sca.isr.umich.edu/

The Index of Consumer Expectations (ICE) is derived from the following three questions:

• PEXP : Now looking ahead–do you think that a year from now you (and your

family living there) will be better off financially, or worse off, or just about the

same as now?

• BUS12: Now turning to business conditions in the country as a whole–do you

think that during the next twelve months we’ll have good times financially, or

bad times, or what?

• BUS5: Looking ahead, which would you say is more likely–that in the country

as a whole we’ll have continuous good times during the next five years or so, or

that we will have periods of widespread unemployment or depression, or what?

ICE = PEXP +BUS5 +BUS12
4.1134 + 2.0
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There was no constant added until 1972:4 (except for 1972:1), from 19724 until

1981:11 the constant was 2.7, and from 1981:12 to present the constant is 2.0.

Industrial Production: Industrial Production Index (INDPRO), Index 2012=100,

Seasonally Adjusted.

Unemployment: Unemployment Rate (UNRATE) Percent, Seasonally Adjusted.

House Prices: US Real Home Prices URL: http://www.econ.yale.edu/ shiller/data.htm

Houses Sold: New One Family Houses Sold: United States (HSN1F), SA Annual

Rate, Thousands, Seasonally Adjusted Annual Rate.

Housing Starts Housing Starts: Total: New Privately Owned Housing Units Started

(HOUST), Thousands of Units, Seasonally Adjusted Annual Rate.

Federal Funds Effective Federal Funds Rate (FEDFUNDS) Percent, Not Seasonally

Adjusted.

Shadow Rate Policy rate adjust for the zero lower bound from Wu and Xia (2016).

Retrieved from https://sites.google.com/view/jingcynthiawu/shadow-rates

GS10 10-Year Treasury Constant Maturity Rate (GS10), Percent, Not Seasonally

Adjusted. Accessed through FRED.

GS5 5-Year Treasury Constant Maturity Rate (GS5), Percent, Not Seasonally Adjusted.

Retrieved from FRED.

Affordability Index: Housed Prices divided by the Real Disposable Personal Income

(DSPIC96), SA Annual Rate.

Mortgage spread: 30-Year Fixed Rate Mortgage Average in the United States

(MORTGAGE30US), percent, Not Seasonally Adjusted minus the average from GS5

and GS10 Walentin (2014).
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Real Consumption: Personal Consumption Expenditures (PCE), Billions of Dollars,

Seasonally Adjusted Annual Rate divided by Personal Consumption Expenditures:

Chain-type Price Index (PCEPI).

Comprised of Major Types of Product:

• Personal Consumption Expenditures: Durable Goods (PCEDG)

• Personal Consumption Expenditures: Nondurable Goods (PCEND)

• Personal Consumption Expenditures: Services (PCES)
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C.2 Robustness

Fig. C.1 Shadow Rates

Note: Impulse response to a negative sentiment shock from proxy SVAR model. Identification is
achieved by using mass fatalities as an instrumental variable to Confidence. Solid lines represent the
estimated responses from the unrestricted mode, while dashed lines represent the estimated response
from the restricted model.
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Fig. C.2 Favourable and Unfavourable ICE

Note: The graph presents the favourable ICE (black) and the unfavourable ICE (grey).
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Fig. C.3 Favourable and Unfavourable ICE Identified with IV

Note: Impulse response to a negative sentiment shock from proxy SVAR model. Identification is
achieved by using mass fatalities3 as an instrumental variable to both indices of Confidence. Solid
lines represent the estimated responses from the favourable ICE, while dashed lines represent the
estimated responses from the unfavourable ICE.
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Fig. C.4 Specification with Fatalities3

Note: Impulse response to a negative sentiment shock from proxy SVAR model. Identification is
achieved by using mass fatalities3 as an instrumental variable to Confidence. Solid lines represent the
estimated responses and shaded areas represent the 68% probability bands generated with the AR
confidence bands.
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Fig. C.5 Random Reshuffling

Note: Impulse response to a negative sentiment shock from proxy SVAR model. Identification is
achieved by using mass fatalities as an instrumental variable to Confidence. Solid lines represent the
estimated responses and shaded areas represent the 68% probability bands obtained from wild-bootsrap
wit 500 repetitions.
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Fig. C.6 Exclude top 3 shootings

Note: Impulse response to a negative sentiment shock from proxy SVAR model. Identification is
achieved by using mass fatalities as an instrumental variable to Confidence. The lines represent the
estimated responses.
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Fig. C.7 Specification with Lag = 12

Note: Impulse response to a negative sentiment shock from proxy SVAR model. Identification is
achieved by using mass fatalities as an instrumental variable to Confidence. Solid lines represent the
estimated responses and shaded areas represent the 68% probability bands generated with the AR
confidence bands.
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Fig. C.8 Specification with Lag = 24

Note: Impulse response to a negative sentiment shock from proxy SVAR model. Identification is
achieved by using mass fatalities as an instrumental variable to Confidence. Solid lines represent the
estimated responses and shaded areas represent the 68% probability bands generated with the AR
confidence bands.
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Fig. C.9 Benchmark Specification with 4th order Polynomial

Note: Impulse response to a negative sentiment shock from proxy SVAR model. Identification is
achieved by using mass fatalities as an instrumental variable to Confidence. Solid lines represent the
estimated responses and shaded areas represent the 68% probability bands generated with the AR
confidence bands.
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