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1. Introduction 

In this study, we solve a variety of endogeneity problems, for the first time, for spatial stochastic 

frontier models. Traditional stochastic frontier models do not control for spatial lag of the dependent 

variable, which captures so called spatial autoregressive (SAR) dependence (see Cliff and Ord, 1973, 

1981). If such a dependence is present, omitting the SAR term would lead to inconsistent parameter 

and efficiency estimates. Druska and Horrace (2004), Glass, Kenjegalieva, and Paez-Farrell (2013) 

(GKP), Glass, Kenjegalieva, and Sickles (2014) (GKS), and Kutlu and Nair-Reichert (2018a) solve 

this problem via distribution-free approaches.1 An important advantage of these distribution-free ap-

proaches is that we do not assume a specific distribution to the inefficiency term. However, outliers 

may have serious implications for the magnitudes of the efficiency estimates.2 Hence, alternatively, 

in the conventional stochastic frontier literature, it is common to represent inefficiency via a one-sided 

error term. In the spatial spillover context, Glass, Kenjegalieva, and Sickles (2016) follow this ap-

proach and introduce the SAR variable while also making distributional assumptions (i.e., half normal 

distribution) on the inefficiency component of the error structure.3  

While these stochastic frontier approaches solve the endogeneity problem due to the SAR var-

iable being endogenous, they don’t solve the endogeneity problems resulting from the endogeneity of 

frontier variables (other than SAR term) and environmental variables (i.e., variables that affect ineffi-

ciency), which would lead to inconsistent parameter and efficiency estimates. For example, Mutter et 

al. (2013) argue that if the quality is a part of the production process where it is cost enhancing and 

quantity and quality decisions are made simultaneously, then the quality variable would be endoge-

nous, i.e., correlated with the two-sided error term.4 In the stochastic frontier context, there is a recent 

yet growing interest for solutions to this type of endogeneity problem. Guan et al. (2009), Kutlu (2010), 

 
1 See Schmidt and Sickles (1984) and Cornwell, Schmidt, and Sickles (1990) for non-spatial distribution-free stochastic 

frontier models and Duygun, Kutlu, and Sickles (2016) for their Kalman filter counterparts.  
2 See Kutlu (2012, 2017) for a more details about this issue and some potential solutions.  
3 See Han, Ryu, and Sickles (2016) for an extension of Glass, Kenjegalieva, and Sickles (2014) where the spatial weighting 

matrix is time-varying.  
4 Note that dropping the quality variable does not solve the problem as this would bias efficiency estimates. 
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Tran and Tsionas (2013), Amsler, Prokhorov, and Schmidt (2016, 2017), Griffiths and Hajargasht 

(2016), Karakaplan and Kutlu (2017a,b) 5, and Kutlu, Tran, and Tsionas (2018) exemplify such stud-

ies.6  

In this study, we consider a SAR stochastic frontier model where endogeneity of both frontier 

and environmental variables are allowed. Hence, we solve three different endogeneity problems (en-

dogeneity of SAR term, frontier variables, and environmental variables) at the same time. We achieve 

this by employing a control function approach, which was first introduced by Kutlu (2010) to the 

stochastic frontier literature. Our general estimation strategy can easily be modified and applied in 

both cross sectional SAR stochastic frontier context as well as conventional SAR models without in-

efficiency, i.e., full efficiency. Moreover, besides cost and production function estimation, our model 

can may be applied in the industrial organization setting where the one-sided error term captures the 

market power. For example, Orea and Steinbucks (2018), Karakaplan and Kutlu (2018a), and Kutlu 

and Wang (2018) propose conduct parameter models that use stochastic frontier models. Since the 

conduct parameter models involve estimation of demand and supply equations, they would suffer from 

endogeneity issues; and thus these studies utilize techniques that solve endogeneity issues. Therefore, 

the scope of our contribution is beyond the efficiency measurement context. 

2. The Model and Estimation of Efficiency 

 

2.1. The Model  

 

For the sake of fixing the ideas, we present a production function. The same equations can be 

used for the cost function estimation with minor modifications. We call a variable endogenous if it is 

 
5 See Karakaplan and Kutlu (2018b) and Kutlu and Nair-Reichert (2018b) for applications of Karakaplan and Kutlu 

(2017a,b).  
6 Kutlu and Sickles (2012) uses similar approaches to solve endogeneity issues in the Kalman filter estimation context. 
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correlated with the two-sided error term. Consider the following stochastic frontier model:  
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where 
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y  is the logarithm of the output for thi  productive unit; 
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w  is the weight of thj productive 

unit’s output for thi  productive unit where 1
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where 
i
r N 0 1 , 

i
r * , and 

i

*
 are independent. Therefore, we have:  

i i v r i

i r i

v r

r

'
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                                     (3) 

  

where 1
r v

, 1/2 1
r

, and 
i r i
r r . Then, the frontier equation can 

be written as follows:  
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where 
i i i
e r u  and 

i i
x z '( )  is a bias correction term. The density function of 

i
r  is given 

by:  
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Moreover, the density function of 
i
 is given by: 

  

                        
i i i i
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As 
i
 and 

i
e  are independent, the log-likelihood function is given by:  

 

    
0 1 2

ln ln ln ln
i ii

L L L L ,                          (7) 

 

where 
N

L I W
0

ln ln  is the scaled logged determinant of the Jacobian of the transformation 

from e  to y  and W  is the row-normalized matrix for weights with zero diagonals;7 

 
7 It is standard to assume in the literature that diagonal elements of W are zero. This rules out self influence possibility. 
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By maximizing the total log-likelihood lnL , we obtain the estimates for the model’s parameters. Un-

der standard conditions, the our estimator is consistent as n .  

One of the outstanding difficulties is that when we have a large sample, 
N
I W  term is the 

determinant of a large matrix, which needs to be re-calculated at each iteration of the optimization 

procedure. One potential possibility, as suggested by Pace an Perry (1997), is evaluating 
N
I W  

term usig a vector of values for  in the internal 
min max
, . These values need to be calculated 

before optimization and thus would only require calculation of the corresponding vector of determi-

nants once. If we have a sufficiently fine grid of  values, we can use interpolated values of 

N
I W  to obtain intervening points.8 In what follows, we assume that 0,1 , the elements of 

W  are non-negative, and all the diagonal elements of W  are zero. An implication of this this as-

sumption is that 
N
I W 0  and thus N

I W  is non-singular. As mentioned by LeSage and 

Pace (1999), 0,1  assumption is widely employed in the literature.9 Moreover, as described by 

Kutlu (2018) and we will argue later in the paper, this assumption is useful when interpreting the 

 
8 There are a number of approaches to obtain this determinant (computationally) efficiently. See LeSage and Pace (1999) 

for details of these approaches as well as numerical approaches used in the maximum likelihood estimation.  
9 Glass, Kenjegalieva, and Sickles (2014) assume that 

min
1/ ,1  where 

min
 is the smallest real characteristic 

root of W . 
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efficiency estimates. Following Glass, Kenjegalieva, and Sickles (2014), we also assume that the rows 

and columns of W  and 
N
I W

1
 are uniformly bounded in absolute value before row-normal-

izing W . This assumption implies that the spatial process for the dependent variable has a fading 

memory (Kelejian and Pruchas, 1998, 1999). The computational burden can be reduced further by 

applying variations of concentrated log-likelihood approaches in the literature (e.g., Elhorst, 2009; 

Glass, Kenjegalieva, and Sickles, 2014). Finally, note that when we have panel data, we can simply 

replace W  by 
T
I W  where T  is the number of time periods; and the rest of the analysis remains 

the same. 

Once we obtain the parameter estimates, the inefficiency term 
i
u  can be predicted via: 

                          

i

i

i

i

i

i i i i i
u E u e h

( )
ˆ

( )
                    (8) 

 

In practice, this equation is evaluated at i i ij j ij
e y w y x '

1
ˆˆ ˆ .  

 

2.2. Direct, Indirect, and Total Efficiency Estimates 

 

As argued by LeSage (2009) the marginal effect of explanatory variables would be a function 

of the SAR term; and thereore the  parameter estimates cannot be interpreded as marginal effects. 

In matrix notation, the production equation is given by: 

                     y Wy X u v
1 ,                              (9) 

which can be written as follows:  

                 
N N N

y I W X I W u I W v.
1 1 1

1
             (10) 

After renaming the variables, we have:  

                               y X u v,
1                                 (11) 
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where 
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1
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1
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ginal effects for Cobb-Douglas production function are given by: 
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 is the thk  frontier variable for productive unit j ; k
 is the thk  component of ; and 

N
ij

I W
1

is the thij  element of 
N
I W

1
. The total marginal effect of 

k
x
1

, thk  frontier 

variable, is defined as the marginal change in 
i
y  as a response to changes in 

1kjx  for all j :  

 
 i

k Nj j
ijkj

y
I W

x

1

1

.  
     (13) 

As pointed out by Kutlu (2018), the total inefficiency is captured by the u  term, not by u . Kutlu 

(2018) showed that when W  is a row-normalized weighting matrix with diagonal elements being zero 

and 0,1 , we have 
N
I W

1
0 , i.e., all elements are non-negative. Therefore, 

i
u 0 , 

i
u  

is a non-decreasing function of components of u , and if u 0 , then 
i
u 0 . These imply, as argued 

by Kutlu (2018), that we can use 
i
u 0  to represent the full efficiency benchmark. 

In our spatial model, the usual formula for calculating (total) efficiency is not valid as it ignores 

the spatial spillovers. The corrected efficiency can be calculated by: 

 
i i
E =exp -u .    (14) 

This is a generalization of the usual formula as when 0 , we have i i
u u . The shares of direct 

and indirect inefficiencies (see Kutlu, 2018) are given by:  

 
N

dir ii
i

i

Ni j
ijind

i
i

I W u
SIE =

u

I W u

SIE =
u

1

1

.

 

 (15) 

These shares can be used to decompose efficiency into direct and indirect efficiency components.  
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2.3. Testing Endogeneity 

 

Amsler, Prokhorov, and Schmidt (2016) and Karakaplan and Kutlu (2017a,b) describe a simple test, 

using similar ideas with the Durbin-Wu-Hausman test, for endogeneity for the non-spatial stochastic 

frontier models. These tests are applicable in our setting as well. We can test the endogeneity using the 

F-test for . If all components of  are jointly significant, we conclude that the bias correction 

term is needed and thus we have endogeneity. We can also check test the endogeneity of individual 

variables by testing the significance of the corresponding component of . 

 

3. Monte Carlo Simulations 

 

To evaluate the performance of our proposed estimator in finite samples, we conduct a small Monte 

Carlo experiment. We consider the following data generating process (DGP): 

 

1
1
*

1/2

2 1 2
*

exp( )

(0, exp( ))
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i ij j i fi i i
j

i i i
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h z q
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, 

 

where 1i
z  and 2i

z  are exogenous variables, i
v  and 

*

i
u  are independent random variables. The spa-

tial weights 
ij
w  are generated using row normalized exponential distance weights of the form: 

 

   
exp( ) / exp( ),

0 ,

ij ij
i j

ij

d d i j
w

i j
  

 

where 
ij
d  are the centroid distances between each pair of spatial units i  and j . The endogenous 
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variables 
fi
q  and 
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q  are generated as follows:  
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where 
'

1 2
( , )

i i i
. Note that when 

1
0 , 

fi
q  becomes exogenous and likewise, when 2

0
, 

ui
q   becomes exogenous. Finally, when 1 2

0
 , all variables are exogenous and this is our 

branchmark or “exogenous model.” In each experiment, we consider the following values for 

1 2
( , ) {(0,0),(0.7,0.7)}  , and we fixed the values of 0.7  , 0.75  , 

1 2
1  , 

0.5
u
c , 0.1

v
, 

1
0.5 , 

2
0.75 , 

1
0.4 , 

2
0.9 , and  

 

1 0.2 0.2 0.2

0.2 1 0.2 0.2
.

0.2 0.2 1 0.2

0.2 0.2 0.2 1

  

 

Finally, we consider the following sample sizes: (100,200,400)n , and the Monte Carlo experi-

ments are conducted with 500 replications. We announce the biases and root mean squared errors for 

the parameter estimates and efficiency estimates as well as spearman correlation of true and estimated 

efficiencies. 
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4. Empirical Example  

4.1. Data 

4.2. Empirical Model and Estimation Results 

 

5. Conclusion 

The conventional stochastic frontier models neither allow spatial spillovers nor endogeneity. If 

any of the frontier or environmental variables are correlated with the two-sided error term; or the SAR 

component is omitted while being a relevant term, then parameter and efficiency estimates would be 

inconsistent. We presented the first model that can solve both issues simultaneously by employing a 

control function approach.  

XXXXX  
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