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Abstract

Flexible spatial models that allow transitions between tail dependence classes have
recently appeared in the literature. However, inference for these models is computa-
tionally prohibitive, even in moderate dimensions, due to the necessity of repeatedly
evaluating the multivariate Gaussian distribution function. In this work, we attempt
to achieve truly high-dimensional inference for extremes of spatial processes, while
retaining the desirable flexibility in the tail dependence structure, by modifying an
established class of models based on scale mixtures Gaussian processes. We show that
the desired extremal dependence properties from the original models are preserved un-
der the modification, and demonstrate that the corresponding Bayesian hierarchical
model does not involve the expensive computation of the multivariate Gaussian dis-
tribution function. We fit our model to exceedances of a high threshold, and perform
coverage analyses and cross-model checks to validate its ability to capture different
types of tail characteristics. We use a standard adaptive Metropolis algorithm for
model fitting, and further accelerate the computation via parallelization and Rcpp.
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Lastly, we apply the model to a dataset of a fire threat index on the Great Plains
region of the US, which is vulnerable to massively destructive wildfires. We find that
the joint tail of the fire threat index exhibits a decaying dependence structure that
cannot be captured by limiting extreme value models.

Keywords: Asymptotic dependence, Asymptotic independence, Censored likelihood, Thresh-
old exceedance
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1 Introduction

Modeling the dependence structure in the extremes of spatial processes is of great conse-

quence for risk analysis of extreme events. In this paper, we make a slight alteration to

the flexible class of randomly scaled transformed Gaussian process models to sidestep com-

putational bottlenecks normally encountered in the likelihood. Our modification enables

high-dimensional inference, while preserving submodels that transition smoothly between

extremal dependence classes.

Generally, the probability that two spatially-indexed random variables exceed a high

level simultaneously varies by their separation distance, and the particular way in which this

joint probability decays must be well-represented in models if one hopes to accurately to

assess risks posed by spatial extremal phenomena. Good estimation of how the dependence

changes both with distance in space and as one moves farther into the joint tail will enable us

to accurately calculate exceedance probabilities of areal quantities, predict at un-observed

locations, and, secondarily, get a more realistic picture of marginal quantities.

In classical spatial modeling, Gaussian processes have been widely used due to their

mathematical simplicity and tractability for larger datasets. However, the Gaussian den-

sity function is very light-tailed, and thus has the potential to underestimate probabilities

associated with extreme events; furthermore, Gaussian models stipulate that the depen-

dence among rare events at distinct locations will always diminish such that the probability

of observing an extreme at one location, conditional upon an extreme at another location,

is zero in the limit. This property is termed asymptotic independence, but models that

only exhibit this phenomenon may be too inflexible for applications where the true tail

dependence structure is uncertain.

Max-stable processes form an important class of models that exhibit the alternative
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scenario of asymptotic dependence. They are the natural extension of classical univari-

ate extreme value theory to infinite dimensional settings, and therefore can provide an

asymptotically-justified modeling framework for datasets consisting of block-maxima. Coun-

terparts of max-stable processes suitable for threshold exceedances are called generalized

Pareto processes (Ferreira and de Haan, 2014; Thibaud and Opitz, 2015). These processes

are also asymptotically dependent, but possess the advantage that they bypass many of

the computational difficulties of max-stable processes.

Despite the theoretical appeal of limiting max-stable and generalized Pareto processes,

there are two main drawbacks to these models: (i) the assumption of asymptotic depen-

dence may be incorrect and (ii) even if the data are asymptotically dependent, they will

often not appear to follow such limiting models at sub-asymptotic levels. Both max-stable

and generalized Pareto process dependence structures exhibit stability properties, meaning

that their dependence structures are invariant to the operations of taking maxima and

conditioning upon exceedances of higher thresholds, respectively. If the true data generat-

ing process exhibits weakening dependence in the un-observed region of the tail, inference

drawn under these models about the far joint tail will over-estimate risk, sometimes sub-

stantially.

On account of the limitations of limiting models, it is desirable to find a family of spatial

models that can transition between asymptotic dependence and asymptotic independence.

In particular, we will be examining a class of marginally transformed Gaussian scale mix-

ture models, which includes those recently proposed by Huser et al. (2017) and Huser and

Wadsworth (2019). These models are of great interest due to their appealing theoretical

properties and ability to flexibly capture both types of extremal dependence structure. Un-

fortunately, inference for these models is not feasible for large numbers of observed sites,

as calculation of the censored likelihood, the preferred method for fitting joint tail mod-
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els, entails integration over high-dimensional multivariate Gaussian distribution functions.

To increase scalability, we propose an adaptation of the model by adding an independent

measurement error term to each component. By adding this nugget effect, the new model

circumvents the lengthy computation of the multivariate normal distribution function. Also

it can elegantly avoid the integral of the process below the censoring threshold by consider-

ing the uncensored process as latent and drawing from it using Gibbs sampling, allowing for

truly high-dimensional inference. Furthermore, we show that the modified models retain

all the significant asymptotic properties of the original smooth models despite the presence

of the measurement errors, which lays a solid theoretical foundation for correctly capturing

the sub-asymptotic dependence behavior.

The article is organized as follows. Section 2 provides a brief literature review on the

measures of extremal dependence and hybrid spatial extreme models, and further explains

the intractability of the existing censored likelihood approaches for inference on these hybrid

models. Section 3 describes our new model that alleviates the computational problems, and

studies its extremal dependence properties. Section 4 includes a marginal transformation

in the hierarchical model and details the inference using Gibbs sampling. Section 5 presents

a simulation study that validates the methodology. We apply our model to a dataset of the

Fosberg Fire Weather Index (FFWI) on the Great Plains in Section 6. Section 7 concludes

with some discussion. Appendix A provides proofs of all the theoretical results. Appendix

B includes supplementary diagnostics for the data application.

2 Spatial Dependence for Extremes

For a stochastic process {X(s) : s ∈ S}, we write Xj = X(sj) and so forth for simplicity,

where sj denotes the jth spatial location. Let Fj denote the marginal distribution of Xj,
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and Fjk denote the joint distribution of Xj and Xk. It is useful to summarize the extremal

dependence implied by the observed process concisely.

We restrict the scope to the bivariate case, focusing on stationary and isotropic ran-

dom fields. One example of a bivariate dependence measure is the upper tail dependence

coefficient:

χu(h) = P (Fj(Xj) > u |Fk(Xk) > u) (1)

where h = ‖sj − sk‖. Joe (1993) defined the upper tail dependence parameter as the limit

χ(h) = limu→1 χu(h). Asymptotic dependence is attained if and only if χ(h) > 0, while

χ(h) = 0 defines asymptotic independence.

For max-stable processes, χu(h) = 2 − V (1, 1) + O(1 − u), u → 1, where V (·, ·) =

− logFjk(·, ·) when X has unit Fréchet margins. Max-stable distributions can be associ-

ated to a generalized Pareto counterpart, for which χu(h) ≡ χ(h) = 2 − V (1, 1) for all u

above a certain level (Rootzén et al., 2018). The fact that χu(h) does not depend on u

is a manifestation of the threshold-stability of generalized Pareto processes. In practice,

empirical estimates of (1) from data tend to show χu(h) decreasing with both h and u,

meaning that realistic models should also have this property.

When χ(h) = 0, i.e., the case of asymptotic independence, further detail about the

behavior of χu(h) is obtained by exploiting the joint tail assumption of Ledford and Tawn

(1996):

P (Fj(Xj) > u|Fk(Xk) > u) = L(1− u)(1− u)1/ηX(h)−1 (2)

where L is slowly varying at zero, that is, limt→0 L(tx)/L(t) = 1 for any x > 0, and ηX(h) ∈

(0, 1] is the coefficient of tail dependence of the process X. The pair of variables (Xj, Xk)

are asymptotically dependent when ηX(h) = 1 and L(·) 9 0. The remaining cases are all

asymptotically independent, and the value of ηX(h) characterizes the strength of extremal

dependence in the upper joint tail. In the case of a Gaussian process, ηX(h) = {1+ρ(h)}/2,
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where ρ(h) is the correlation at lag h. The variables are called positively associated when

ηX(h) > 1/2 and negatively associated when ηX(h) < 1/2. Near independence corresponds

to ηX(h) = 1/2.

Gaussian processes are asymptotically independent for all correlations ρ(h) 6= 1. They

might be considered candidates for modeling the joint tail of asymptotically independent

phenomena, but as there is no theory to specifically recommend Gaussian processes in this

scenario, it is desirable to consider other models as well. As an alternative, Opitz (2016)

captures spatial dependence in asymptotically independent processes by construction of

Laplace random fields, defined as mixtures of Gaussian processes with a random variance

that is exponentially distributed. Wadsworth and Tawn (2012) proposed the class of in-

verted max-stable processes, for which the tail decay is specified fully by ηX(h), although

inference is computationally challenging.

In real datasets, it is difficult to conclude definitively whether data exhibit asymptotic

independence or asymptotic dependence, and incorrectly assuming an asymptotically in-

dependent model can lead to equally severe problems with bias as incorrectly assuming an

asymptotically dependent model. Because of this, a recent focus in the literature has been

on models that can encompass both scenarios.

2.1 Traversing Asymptotic Independence and Dependence in Spa-

tial Extremes

Wadsworth and Tawn (2012) were the first to introduce hybrid models that combine max-

stable and inverted max-stable processes so that asymptotic dependence prevails at short

distances, and asymptotic independence at long distances. However, inference for this

model is difficult because there are a fairly large number of parameters involved, and the
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transition between the dependence classes takes place at the boundary of the parameter

space.

Recently, several Gaussian scale mixture models were proposed to allow more flexible

transitions between dependence classes. Through multiplying an asymptotically indepen-

dent Gaussian process by a random effect that governs the extremal dependence, these

models can be described by a small number of parameters and have non-trivial asymp-

totically independent and asymptotically dependent submodels. More precisely, suppose

{Z(s), s ∈ S} is a standard isotropic and stationary Gaussian process with covariance

function CθC (h) indexed by a parameter vector θC , where h is the length of the separation

vector, so that ΣθC is the covariance matrix of associated finite-dimensional distributions.

The class of Gaussian scale mixture models can be constructed as

X∗(s) = R · g(Z(s)), R |θR ∼ FR, (3)

where g(·) is a link function, and R > 0 is a random scaling factor, from distribution FR

indexed by θR, that can be interpreted as a constant random process over spatial domain S

with perfect dependence. Loosely speaking, heavier tailed R, impacting simultaneously the

whole domain S, induces asymptotic dependence in X∗, whereas lighter tailed R induces

asymptotic independence. Engelke et al. (2019) provide a fuller description of how extremal

dependence of X∗ relates to the relative marginal tail heaviness of R and g(Z).

Morris et al. (2017a) uses a space-time model based on skew-t process, where g(·) is

a identity function, R2 ∼ IG(a/2, b/2) is an inverse gamma random variable, and CθC is

a Matérn covariance function. On top of the mixture, they added covariate effects and

a skew term. Since the inverse gamma distribution is heavy tailed, the skew-t process is

asymptotically dependent for a < ∞. Asymptotic independence is achieved only when

a→∞.
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Huser et al. (2017) also used an identity link function, but placed few assumptions

on the random scale, and provided more general results on the joint tail decay rates of

the mixture processes. They showed that a wide class of Weibull-like tail decay in R

yields asymptotic independence, while a Pareto-like tail that is regularly varying at infinity

gives asymptotic dependence. They also proposed a parametric model that bridges the

two asymptotic regimes and provides a simple transition, in which R is a two-parameter

distribution

FR(r) =

 1− exp{−γ(rβ − 1)/β}, β > 0,

1− r−γ, β = 0
(4)

where γ > 0, and the support is [1,∞). Since (rβ−1)/β converges to log r as β approaches

0, (4) forms a continuous parametric family on β. When β > 0, (4) constitutes a class of

Weibull-type distributions and thus assures asymptotic independence. When β = 0, the

variable R is Pareto distributed and thus gives asymptotic dependence. This shows that

the model provides greater flexibility and can transition from asymptotic dependence to

independence via adjusting the value of β.

However, the previous two Gaussian scale mixture models both make the transition

between the dependence classes at the limit or the boundary of the parameter space. They

are also inflexible in their representation of asymptotic dependence structures because there

is dominating preference over one dependence class. It may be more desirable to find a

model for which the transition takes place in the interior of the parameter space so one we

can quantify the uncertainty about the dependence class in a simpler manner. To overcome

this, Huser and Wadsworth (2019) proposed a marginally transformed Gaussian scale mix-

ture model, where g(·) transforms a standard Gaussian variable to standard Pareto, and R

itself is Pareto distributed:

g(z) =
1

1− Φ(z)
, R | δ ∼ Pareto

(
1− δ
δ

)
, δ ∈ [0, 1]. (5)
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Here the type of asymptotic dependence is determined by the value of δ. When δ ≤ 1/2, R

is lighter tailed or equivalent to standard Pareto, which induces asymptotic independence;

when δ > 1/2, the converse is true, which induces asymptotic dependence. Specifically, the

upper tail dependence parameter χX∗ = 2δ−1
δ
E
[
min{g(Zi), g(Zk)}(1−δ)/δ

]
when δ > 1/2

and 0 otherwise, while the coefficient of tail dependence is

ηX∗ =


1, δ > 1

2
,

δ
1−δ ,

ηZ
ηZ+1

< δ ≤ 1
2
,

ηZ , δ ≤ ηZ
ηZ+1

,

where ηZ is the coefficient of tail dependence for (Zi, Zk) (Huser and Wadsworth, 2019).

The model in (5) provides a smooth transition through asymptotically independent

and asymptotically dependent submodels. It has many appealing asymptotic properties.

However, inference for models of the form (3) is typically made via censored likelihood. This

requires computing an integral where the integrand contains the Gaussian distribution

function in |C| dimensions, where |C| is the number of components below a designated

high threshold. Such integrals are computationally prohibitive for even moderately-sized

datasets. In Section 3 we introduce a slight alteration to this model to make it tractable

while preserving all the desired asymptotic results.

2.2 The Censored Likelihood

In multivariate and spatial extremes, the preferred approach to fitting the dependence

structure is using a censored likelihood, which prevents observations from the bulk of the

distribution from affecting the estimation of the extremal dependence structure. It provides

a reasonable compromise between bias and variance compared to alternative approaches,

although different censoring schemes have been adopted (Thibaud and Opitz, 2015; Huser
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et al., 2016).

For a process of the form (3) observed at D spatial locations s1, · · · , sD ∈ S, we obtain

the distribution function by conditioning on R as

G(x∗) =

∫ r∗

1

ΦD

(
g−1

(
x∗

r

)
; ΣθC

)
fR(r)dr, (6)

where r∗ = min(x∗1, · · · , x∗D), and ΦD denotes the D-variate Gaussian distribution with

zero mean and covariance matrix ΣθC .

Let C ⊆ {1, . . . , D} be the set of locations with censored observations—that is, the

set of locations where the components are below a high threshold; let U be the set of

locations with uncensored observations. For any index set A,B ⊂ {1, . . . , D}, denote

xA = {xi : i ∈ A}, ΣA;B as the matrix Σ restricted to the rows in A and the columns in

B, and let ΣA|B be the Schur complement of B in ΣA;B. The likelihood is obtained via

taking partial derivatives of (6) with respect to U :

∂|U|

∂x∗U
G(x∗) =

∫ r∗

1

Φ|C|

(
g−1

(
x∗C
r

)
−ΣC;UΣ

−1
U ;Ug

−1
(

x∗U
r

)
; ΣC|U

)
× φ|U|

(
g−1

(
x∗U
r

)
,ΣU

)∏
j∈U

g−1
′
(
x∗j
r

)
r−|U|fR(r)dr.

(7)

Although a only one-dimensional integral appears in (7), the integrand includes a |C|-

dimensional Gaussian distribution function. When approximating the integral using stan-

dard quadrature or Monte Carlo methods, one needs to compute Φ|C| for each sample

point taken on (1, r∗). This is only feasible when the number of locations D is moderate.

Additionally, this calculation will have to be repeated for each time replicate.

To avoid the integrating the process below the threshold, one could instead think of

X∗(s) as latent and draw from it using Monte Carlo methods. Consequently there is no

need to compute the awkward likelihood (7). However, to update the Markov chain each
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time, it is now necessary to draw x∗C from a high-dimensional truncated distribution, which

might again be computationally intensive.

Therefore, we propose to make a slight adjustment to the model in (3). Our new model

is markedly more amenable to higher-dimensional inference, yet it keeps hold of the joint

tail decay rates attained in the original model (e.g. Huser and Wadsworth, 2019; Huser

et al., 2017). Equivalently, our new model has non-trivial asymptotically dependent and

asymptotically independent submodels with the transition taking place in the interior of

the parameter space in the case of our modified version of (5).

3 Model

3.1 Construction

We alter the models in Section 2.1 by adding an independent measurement error term to

each component,

X(si) := X∗(si) + εi = R · g(Z(si)) + εi, (8)

where εi
iid∼ N(0, τ 2), i = 1, . . . , D, and distribution of R and the link function remain

the same. That is, we add a simple nugget effect to the smooth process X∗(si). When

drawing the latent processes below the threshold, we can condition on the smooth process

and simply update the noisy one. Because these error terms are independent of each other,

there is only a univariate integral involved in the full conditional likelihood. Also, when we

update the smooth process X∗(s) given the noisy process X(s), no truncation or censoring

is present and it is much easier to sample from the corresponding likelihood. Section

4 contains more details on the Markov Chain Monte Carlo (MCMC) updating scheme,

where we show how this small alteration can hugely facilitate inference.
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3.2 Dependence Properties

We begin with the model (5) from Huser and Wadsworth (2019), modified as in (8). Recall

that g(Z(s)) is a stationary process with standard Pareto margins possessing asymptotic

independence; i.e., P (g(Z(s)) > x) = x−1 and

P (g(Z(si)) > x, g(Z(sk)) > x) = LZ(x) · x−
1

ηZ (h) , i 6= k, (9)

where LZ(x) is slowly varying at infinity, and ηZ(h) = (1 + ρ(h))/2 < 1 for the Gaussian

correlation ρ(h) < 1.

Figure 1 illustrates the estimated coefficient of tail dependence ηX as a function of δ

for ηZ = 0.1, . . . , 0.9. For each combination of δ and ηZ , we generate 5,000,000 replicates

from model (5) (i.e. τ 2 = 0) and model (8) with τ 2 = 1 respectively. For each replicate, we

sample (Zi, Zk) from a Gaussian copula with correlation 2ηZ − 1. We then numerically ap-

proximate the joint survival probability in (2) for threshold u = 0.99 to obtain an estimate

of ηX . The left panel of Figure 1 clearly shows that the smooth transition from asymptotic

independence to asymptotic dependence takes place around δ = 1/2, confirming the re-

sults from Huser and Wadsworth (2019) with a reasonable bias; the right panel shows that

adding a measurement error has little effect on the tail dependence because ηX exhibits

similar behavior. This result invites investigation of whether the flexible asymptotic prop-

erties in Huser and Wadsworth (2019) are preserved in the altered model. In the following,

we generalize the problem from the specific model of Huser and Wadsworth (2019) for the

process X∗ in (8), to any X∗ with a wide class of marginal tail behaviors.

The impact of the additive Gaussian nugget effect on the extremal dependence of X

depends upon the marginal tail heaviness of X∗: roughly, the heavier the tail of X∗, the less

the impact of the noise. Since we employ X as the spatial dependence model, we assume

its margins, and those of X∗, are identical over space.
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Figure 1: Coefficient of tail dependence approximated for the smooth Gaussian scale mix-

ture processes (τ 2 = 0) and the noisy processes (τ 2 = 1) as a function of δ ∈ (0, 1) for

ηW = 0.1, . . . , 0.9. The levels of dependence are similar for two models.
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We will focus on the dependence of X under two broad classes of marginal distribution

for X∗: regularly varying tails, and Weibull-like tails. A measurable function u : R+ → R+

is said to be regularly varying at infinity with index κ if for all x > 0 limt→∞ u(tx)/u(t) = xκ;

we write u ∈ RVκ. When κ = 0, the function is slowly varying.

Regularly varying tails are defined through the survival function being regularly varying

at infinity, i.e., P(X∗ > x) ∈ RV−α, α > 0. Weibull-like tails are defined through the

survival function

P(X∗ > x) ∼ u(x) exp(−θxα), θ, α > 0, x→∞ (10)

where u ∈ RVκ, and α is termed the Weibull index. We also assume that X∗ has a density

satisfying fX∗(x) ∼ v(x) exp(−θxα), with v(x) = u(x)(θαxα−1). The main results are now

summarized in Proposition 3.1.

Proposition 3.1. With definitions and notation as above:

1. If X∗ has a regularly varying tail, or Weibull-like with Weibull index α < 1, then

χX = χX∗ and ηX = ηX∗.

2. If X∗ has a Weibull-like tail with Weibull index α = 1 then

χX ∈ [E(eθmin(ε1,ε2))/E(eθε),E(eθmax(ε1,ε2))/E(eθε)]χX∗

and ηX = ηX∗. Note if χX∗ = 0 then so is χX .

3. If X∗ has a Weibull-like tail with Weibull index α > 1 then:

(a) If α ∈ (1, 2), then ηX = ηX∗

(b) If α = 2, then an interval can be given for ηX (see Expression (27)).

(c) If α > 2, then ηX = 1/2.
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The proof of Proposition 3.1 is given in Appendix A.

For the process of Huser and Wadsworth (2019), described in equation (5), X∗ always

has a regularly varying tail. In this case, Proposition 3.1 part 1 gives ηX(h) = ηX∗(h), and

χX(h) = χX∗(h), with ηX∗(h) and χX∗(h) given in Section 2.1. This means the flexible

asymptotic properties in Huser and Wadsworth (2019) are preserved in the altered model.

Another popular model for spatial data is the t-process (Røislien and Omre, 2006),

which is a Gaussian scale mixture for which the mixing variable R2 follows an inverse

gamma distribution. If X∗ is a t-process, then it is asymptotically dependent with a

regularly varying tail, so ηX(h) = ηX∗(h) = 1 and χX(h) = χX∗(h) > 0 by Proposition 3.1.

Similarly, the skew-t process (Padoan, 2011; Morris et al., 2017b) is regularly varying and

asymptotically dependent, so the same conclusions apply.

For the Gaussian scale mixture of Huser et al. (2017), X∗ either has regularly varying or

Weibull-like tails depending on the distribution of the scaling variable R. In particular when

β > 0 in distribution (4), X∗ has a Weibull-like tail with Weibull index α = 2β/(β+2) < 2.

As such, parts 1, 2 and 3a of Proposition 3.1 are relevant. In all cases ηX∗(h) = ηX(h) =

{(1 + ρ(h))/2}β/(β+2), and χX(h) = χX∗(h) = 0 for β > 0. When β = 0 then X∗ has a

regularly varying tail, and is asymptotically dependent with ηX(h) = ηX∗(h) = 1, and

χX∗(h) = χX(h) = 2{1− Tγ+1((γ + 1)1/2(1− ρ(h))/(1− ρ(h)2)1/2)} > 0,

where Tν is the cdf of the Student-t distribution with ν degrees of freedom.

We note that the process X∗ in equation (3) is constructed only for its dependence

properties, and there is no “natural” scale on which to express it. For example, considering

the process of Huser and Wadsworth (2019) we could also write

X∗(s) = E + V (s), (11)
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with E | δ ∼ Exp(δ/(1− δ)), V (s) = log g(Z(s)), which has the same dependence structure

as defined in (3) and (5), since it is obtained through a monotonic marginal transformation.

Taking X∗ from (11), Proposition 3.1 part 2 gives ηX(h) = ηX∗(h). Asymptotic dependence

of X∗ implies asymptotic dependence of X, but only bounds on χX(h) are available.

In practice, if choosing a marginal scale for X∗, there may be a trade-off between

theoretical desires and computational practicality. Supposing that we wish X to inherit

the properties of X∗, a heavy-tailed choice is best.

4 Bayesian Inference

4.1 Hierarchical Model

We define a Bayesian hierarchical model based on the process (8) defined in Section 3.1

and use a MCMC algorithm to fit to the data. For the reasons outlined in Section 2.2,

we assume data are censored below a high threshold q. In (8), the mixing parameter θR

controls both joint and marginal behavior of the response X, which we would prefer to

separate. Therefore, motivated by the theory of univariate extremes, we first assume our

observations above the same high threshold q are generalized Pareto distributed, and we

include a marginal transformation in the hierarchical model.

Let {Y (s) : s ∈ S} denote the observed process. We define a marginal transformation

T (y) as follows:

T (Y (s)) = F−1X|θR,τ2 ◦ FY |q,σ,ξ(Y (s)), (12)

where FX|θR,τ2 is the marginal distribution function for process (8), and

FY |q,σ,ξ(y) =

 p, y ≤ q,

p+ (1− p)FGPD|q,σ,ξ(y), y > q,
(13)
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where p = P (Y (si) ≤ q), q is a high threshold, and FGPD|q,σ,ξ(y) = 1− [1 + ξ(y− q)/σ]−1/ξ,

with support {y ≥ q : 1 + ξ(y − q)/σ ≥ 0}. Conditioning on the smooth process X∗(si) =

x∗(si), which was not truncated, the censored likelihood for an observation y(si) can be

derived as

ϕ(y(si) |X∗, τ 2,θR,θGPD, p) =


Φ

(
F−1

X|θR,τ2
(p)−x∗(si)

τ

)
if y(si) ≤ q,

1
τ
φ
(
T (y(si))−x∗(si)

τ

)
· fY |q,σ,ξ(y(si))

fX|θR,τ2
(T (y(si)))

if y(si) > q,

(14)

where θGPD = (σ, ξ). Note that there are only univariate calculations required in (14), com-

pared to (7) for which we have to estimate the |C|-dimensional Gaussian distribution func-

tions. In addition, since Yi and Yk are independent conditioning on the smooth process (i 6=

k), the joint likelihood of the whole vector y is simply fY (y) =
∏D

i=1 ϕ(y(si) |X∗, τ 2,θR,θGPD, p).

Likelihoods for independent time replicates are simply multiplied together, and the pro-

portion of censored observations p can be treated as a known parameter or an unknown

parameter that enters the hierarchical model. See Appendix A.2 for a complete statement

of the hierarchical model. The priors for the model parameters are

τ 2 ∼ IG(a, b), σ ∼ halfCauchy(1), ξ ∼ Unif(−0.5, 0.5), (15)

where halfCauchy(1) refers to the positively truncated standard Cauchy distribution (see

Gelman, 2006). We implement this methodology for two different Gaussian scale mixture

models: that of Huser and Wadsworth (2019), and that of Huser et al. (2017). The priors

for θR are δ ∼ U(0, 1) for the former, and β ∼ halfCauchy(1) for the latter. The prior for

θC depends on the choice of the covariance function. In our implementations, we adopt the

Matérn covariance function with θC = (ρ, ν), where ρ is the range parameter, and ν is the

smoothness parameter. The prior is then set to subject to two independent half Cauchy

distributions with scale parameter 1.

18



4.2 Gibbs Sampler

To estimate the posterior distribution of the model parameters, we apply random walk

Metropolis (RWM) algorithm using Log-Adaptive Proposals (LAP) as our adaptive tuning

strategy (Shaby and Wells, 2010). Since conjugate priors are not available, we use random

walk Metropolis-Hastings update steps.

At each MCMC iteration, we first update the smooth process X∗ conditioning on the

true values for all non-censored sites, current values for X∗ and all other model parameters:

ϕ(X∗ | · · · ) ∝
D∏
i=1

ϕ(yi |X∗, τ 2,θR,θGPD, p) · ϕ(X∗|R,θC), (16)

where the likelihood function of X∗ conditioning on the random scaling factor R is calcu-

lated in Appendix A.2. We then update R using its conditional posterior distribution

ϕ(R | · · · ) ∝ ϕ(X∗ |R,θC) · ϕ(R |θR).

Since time independence is assumed, we can update X∗t and Rt in a parallel fashion

across t = 1, . . . , T . The other parameters are updated similarly using adaptively-tuned

random walk Metropolis-Hastings updates, with the likelihood (14) multiplied by the cor-

responding priors in (15).

5 Simulation Studies

In this section, we present simulation results and conduct coverage analysis to investigate,

firstly, whether the MCMC procedure is able to draw accurate inference on model param-

eters, and secondly, in the case of the modified version of model (5), to check whether

our model captures asymptotic dependence characteristics correctly even when the data-

generating model is different from the fitted model.
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5.1 Parameter Estimation

To verify the accuracy of inference made by MCMC sampling, we generate data from

model (8) in Section 3.1, in both the special case of the Huser et al. (2017) model (4)

and the special case of the Huser and Wadsworth (2019) model (5), with the addition of

nugget terms. In both cases, we use D = 200 sites uniformly drawn from the unit square

[0, 1]2, with the latent Gaussian processes Z(s) are generated using a Matérn covariance

with smoothness parameter ν = 3/2. The characteristic length scale parameter is set to

ρ = 0.05 in the case of model (4) and ρ = 0.1 in the case of model (5).

For model (4), we use T = 20 independent temporal replications, and set β = 0.5,

γ = 1 (which is fixed during estimation), and nugget variance τ 2 = 0.22. This represents

a challenging case, with a fairly long tail and nugget that is small relative to the scale of

X∗(s). For model (5), we use T = 40 independent temporal replications, and set the nugget

variance to τ 2 = 32. Because the latent Z(s) is transformed to Pareto, τ 2 = 32 is still small

compared to the scale of smooth process X∗(s); see the Supplementary Material for a

more in-depth discussion on the effects of τ 2. We consider two different scenarios for the

dependence parameter δ: δ = 0.3 and δ = 0.7, corresponding to asymptotic independence

and asymptotic dependence respectively. Finally, in all cases the processes are marginally

transformed to generalized Pareto distribution with (q, σ, ξ) = (11, 1, 0), where q and p =

0.8, the proportion of censored observations, are treated as known parameters.

The attenuation constants used in the LAP algorithm are c0 = 10, c1 = 0.8. The prior

for ρ is halfCauchy(1), and the priors for the other parameters are specified in (15), where

(a, b) = (0.1, 0.1) so that the prior for τ 2 is fairly noninformative. We ran each MCMC

chain for 400,000 iterations and thinned the results by a factor of 10. The parallelism of

updatingX∗t and Rt is implemented in R via the foreach routine with doParallel package

as a backend (Microsoft Corporation and Weston, 2017).

20



β = 0.5

●

●

●

●

●

● ●

●

● ● ● ● ●

●

●

●

● ●

●

75

80

85

90

95

100

75 80 85 90 95 100
(1 − α) × 100% credible level

A
ve

ra
ge

 c
ov

er
ag

e

β

●

● ●

●

●

● ● ●

● ● ●

● ●

●

●

●

●

●

●

75

80

85

90

95

100

75 80 85 90 95 100
(1 − α) × 100% credible level

A
ve

ra
ge

 c
ov

er
ag

e

τ2

Figure 2: Empirical coverage rates of credible intervals for the Huser et al. (2017) model:

β = 0.5, τ 2 = 0.22. The error bars are 95% binomial confidence intervals for the coverage

probability.

5.2 Coverage Analysis

We now study the coverage properties of the posterior inference based on the MCMC

sampler for the posterior credible intervals with 100 simulated datasets drawn from the

Huser et al. (2017) and Huser and Wadsworth (2019) models, under each of the scenarios

described in the previous section.

Figures 2 and 3 shows the empirical coverage rates of highest posterior density credible

intervals of several sizes, along with standard binomial confidence intervals. In all cases,

we can see that the sampler performed well in generating posterior inference that is well

calibrated, with close to nominal frequentist coverage. The coverage for larger δ is maybe

slightly different than nominal for large α, but overall the results are quite good.
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Figure 3: Empirical coverage rates of credible intervals for the Huser and Wadsworth (2019)

model under two designs: δ = 0.3 (left) and δ = 0.7 (right). For both designs, τ 2 = 32.

The error bars are 95% binomial confidence intervals for the coverage probability.

5.3 Simulation with Mis-specified Models

We now fit our model to data generated from other distributions to validate its ability to

capture the tail dependence characteristics under mis-specification. We simulate datasets

from models referenced in Section 2.1, and use the sampler described in Section 4.2 to fit

model (8) with the Huser and Wadsworth (2019) latent process. The data were generated

using four different simulation designs:

• Skew-t process from Morris et al. (2017a) with (a, b) = (6, 16) (asymptotically depen-

dent);

• Gaussian scale mixture from Huser et al. (2017) with β = 0 (asymptotically depen-

dent);

• Gaussian scale mixture from Huser et al. (2017) with β = 1 or 5 (asymptotically

independent).
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For each simulation design, we simulate a single dataset using D = 100 locations uniformly

distributed on [0, 1]2 and T = 40 independent time replicates. The Matérn covariance

function with ν = 3/2 and ρ = 1 is again specified for the latent Gaussian processes. For

the skew-t process, Rt ∼ IG(3, 8) to give a t distribution with 6 degrees of freedom, and

λ = 3 to simulate moderate skewness. For the last two designs, the Rt were generated as

described in (4), with γ = 1.

To obtain good starting values for the latent smooth process X∗ for MCMC, we first

marginally transform the simulated data to noisy scale mixture variables X independently

at each location using the following procedure. Following the semi-parametric procedure of

Coles and Tawn (1991), we estimate each marginal distribution as a blend of the generalized

Pareto distribution function above a high marginal threshold, and the empirical distribution

function below that threshold. Fixing initial values for (δ, τ 2), we then transform the

margins to noisy scale mixtures via Xjt = F−1X|δ,τ2 ◦ F̂sj(Yjt). The next step is to run

a Metropolis algorithm using the full conditional distribution ϕ(X∗ | · · · ) (see (16)) 100

times and save the last random walk states as initial values for X∗. This procedure is also

used for data analysis in Section 6. Finally, with initial values in hand, the datasets from

each design were fit using a fully Bayesian approach that simultaneously updates marginal

and spatial dependence parameters.

Figure 4 displays the nonparametric and model-based estimates of the upper tail de-

pendence χu(h) defined in (1). To generate nonparametric estimates of χu(h) at distance

h = ‖s1 − s2‖, we look at all pairs of points whose locations are h apart (within a small

tolerance ε = 0.005), and compute the ratio of empirical probabilities χ̂u(h). This is similar

to an empirical variogram estimator. The nonparametric confidence envelopes are obtained

by computing pointwise binomial confidence intervals, pretending that each pair of points

is independent from each other pair of points. For parametric estimates, we take samples
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from the converged MCMC chain, and use parameters from each iteration to simulate 108

pairs of (X(s1), X(s2)) based on our model to generate a smooth χu(h) estimate for each

MCMC iteration. Then, combining across MCMC iterations, we compute the pointwise

average curves and their credible bands. The results in Figure 4 demonstrate that our

model provides a sensible approximation to the extremal dependence structure of the mis-

specified models. Borrowing strength across locations, the parametric estimators of χu(h)

are much more reliable than the nonparametric ones in that they are able to discriminate

between the two asymptotic classes via estimating a relatively small number of parameters.

Especially for the Huser et al. (2017) models, the dependence strength diminishes gradu-

ally as β becomes greater, eventually resembling the Gaussian copula. With the extra tail

flexibility, our model is able to accurately capture these features.

6 Data Analysis

We consider daily observations of Fosberg Fire Weather Index (FFWI) from 1974 to 2015

at 93 monitoring stations over parts of the Great Plains, mainly from Central Great Plains

to South Texas Plains (Dunn et al., 2012). Figure 9 shows the observation locations as

black triangles. The FFWI aims to quantify potential wildfire threat. It is a single number

summary calculated from temperature, wind speed, and relative humidity; larger index

values signify higher flame lengths and more rapid drying (Fosberg, 1978). Due to human

activity and changes in the grassland ecosystem, the Great Plains region is becoming an

important high-risk region of large wildfires. According to a in-depth study conducted

by Donovan et al. (2017), the average total area burned by fires in Great Plains region

between 2005 and 2014 was in the millions of hectares per year. In 2017, 809,380 hectares

were lost to wildfires in a single week in Texas, Oklahoma, and Kansas alone (Herskovitz,
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(c) Huser et al. (2017) with β = 1
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(d) Huser et al. (2017) with β = 5
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Figure 4: Estimated coefficients χu(h), u ∈ [0.9, 1], for two points at distance ||s1−s2|| = 1,

using data simulated from the mis-specified models with Matérn correlation function with

ν = 3/2 and ρ = 1. The two scenarios in the top row are asymptotically dependent, while

the scenarios in the bottom row are asymptotically independent. Each simulated data

set has 100 uniform locations in [0, 1]2, and 40 time replicates. Solid green lines show true

χu(h) function. The black dashed lines show the averaged curve from the posterior samples

of fitted model, while the blue shaded areas are 95% credible envelopes. The red dashed

lines show the nonparametric estimates from the simulated data sets, while the grey shaded

areas are pointwise 95% binomial confidence intervals.
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2017). As a consequence of the prevailing hot and dry air, wildfires in this region are

particularly more concentrated in the spring, feasting on grasses made dry by long-term

drought. Modeling the tail behavior of FFWI and studying the extremes of the process

could have major implications for wildfire planning.

To ensure the independence over time and avoid seasonal effects, we take the maxima

of the FFWI values over ten-day intervals during the spring season. Figure 5 shows the

50-year return levels estimated using the block maxima with 10-year sliding windows for 12

randomly-selected stations. There is no clear evidence for a systematic increase or decrease

in the return levels. Although treating meteorological data as constant over time is often

problematic, particularly for temperature data, the behavior in Figure 5 suggests that an

assumption of constant marginal parameters in time is appropriate.

To account for the physical features of the terrain in the Great Plains, we describe the

scale parameter in θGPD by the trend surface:

σ(s) = β0 + β1lon(s) + β2lat(s) (17)

where lon(s) and lat(s) are the longitude and latitude of the stations at which the data are

observed. We constrain the joint prior of (β0, β1, β2)
′ such that the support of σ(s) is the

positive real line. We model the shape parameter ξ(s) as constant over the spatial domain,

as suggested by exploratory analysis (see Appendix B.1).

Similar to the procedure in Section 5.3, to obtain starting values for MCMC, we fit

generalized Pareto distributions to model events above the 98% quantile, u98, and empirical

distributions to those below u98, of the time series at each station separately, and then use

the fitted models to transform the data to have noisy scale mixture distributions. We then

ran the MCMC chain for 50,000 iterations thinned by 10 steps and discarded a burn-in

period of 25,000 iterations.
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Figure 5: Point estimates and 95% confidence intervals for 50-year return levels of FFWI at

12 randomly selected stations. For each station and for each year, we estimate the return

level using annual maxima in a 10-year sliding window. There is no evident systematic

trend in the return level, so the assumption of marginal parameters that are constant in

time is deemed appropriate.
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ρ ν τ δ

Posterior Mean 0.504 0.344 1.837 0.530

95% Credible Interval (0.483, 0.524) (0.324, 0.362) (0.331, 3.963) (0.528, 0.531)

β0 β1 β2 ξ

Posterior Mean -17.531 -0.284 -0.1873 0.3392

95% Credible Interval (-17.614, -17.401) (-0.285, -0.283) (-0.1874, -0.1871) (0.3385, 0.3396)

Table 1: Posterior mean and 95% highest posterior density credible interval.

6.1 Model Evaluation

First and foremost, we examine whether the estimate δ falls within (0, 1/2] or (1/2, 1) in

accordance to whether the data-generating process is asymptotically independent or de-

pendent. Table 1 reports the posterior means and 95% credible intervals for the model

parameters. Trace plots for δ and τ can be found in Appendix B.2. For this dataset, the

MCMC results show that the range of the mixing parameter δ is close to the interface

between the two dependence class, while demonstrating asymptotic dependence. Nonethe-

less, the value of δ being close to 1/2 means that χu(h) will still decrease with u before

eventually reaching a positive limit. In addition, the estimated value of the smoothness

parameter ν stands out, as it is very small, indicating very rough process realizations.

To better evaluate the model fit, we randomly hold out 5 stations for validation pur-

poses, and exclude them from the MCMC analysis; see the red points in Figure 9. We

then compare the empirical distributions of mean, and maxima for each time point at the

5 held-out stations with those simulated with parameters from MCMC samples. Though

we modeled our data as censored observations, the model may still work a bit further into

the center of the distribution. Results are displayed in Figure 6 where we only show values

exceeding 80% threshold for mean, and 90% threshold for maxima. We can see that the fit
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Figure 6: Comparisons of the observed and predicted mean (left) and maxima (right) for 5

locations held out for model validations. Overall 95% confidence envelopes are also shown.

Note that the values are transformed marginally to uniform using the empirical distribution

functions at each location.

displays a good match against the observed mean and maxima in the upper quantiles.

As a comparison, we change X∗ to be a t process, and re-fit the model using MCMC.

We apply proper scoring rules (Gneiting and Raftery, 2007), log scores and continuously-

ranked probability scores (CRPS), to compare the quality of probabilistic forecasts. While

running MCMC, we interpolate the latent process X∗ at the held-out locations for each

iteration using the full conditional likelihood. Plugging the predictive draws at the held-out

observations into the equation (14), we obtain the log score (simply the log-likelihood) as

V = log

(
T∏
t=1

5∏
j=1

φ(yt(rj) |X∗t , · · · )

)
(18)

where {rj | j = 1, . . . , 5} are the validation stations. The left panel of Figure 7 compares

the log scores between two models, showing that the transformed Gaussian scale mixture

process clearly outperforms the t process. Additionally, we calculate the CPRS (Matheson
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Figure 7: Comparisons of the log-likelihood scores and CRPS between our model and a

similar model with t latent process. In both panels, higher values indicate better model fit.

and Winkler, 1976) for both models,

CRPS(FY , y) = −
∫ ∞
−∞

(FY (z)− 1{y ≤ z})2dz (19)

where FY is the marginal distribution estimated using parameters using one MCMC iter-

ation, and y is the observed value. The right panel of Figure 7 shows the averaged CRPS

for the two models, where our model clearly has better results.

Similar to Figure 4, we show the empirical and model-based values of χu(h) and χ̄u(h)

for the block maxima of the FFWI in Figure 8, which confirms that our model captures the

extremal spatial dependence in the data quite well. The quantity χ̄u(h) is an alternative

dependence measure useful in the situation χ(h) = 0, and is defined as

χ̄h(u) =
2 log(1− u)

logP (Fj(Xj) > u, Fk(Xk) > u)
− 1→ 2ηX(h)− 1, u→ 1.

Recall that the posterior mean for δ is greater than 0.5, which means χ̄h(u)→ 1 as u→ 1.

Interestingly, the black dashed curve of the right panel of Figure 8 seems to have a limit less
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Figure 8: Empirical estimates (dashed red lines and gray envelopes) of χu(h) (left) and

χ̄u(h) (right) for the FFWI, u ∈ [0.95, 0.995], for two points at distance ‖s1− s2‖ = 20km.

The blue shaded areas are 95% credible envelopes obtained from the posterior samples of

fitted model, and the black dashed lines show the averaged curve. The vertical line is the

threshold used when fitting the dependence model.

than 1. This is because to attain the correct limit in this case, we would need to compute

χ̄h(u) for values of u that are very close to 1, which is very difficult numerically.

6.2 Results

To get an idea of what a realization of the fitted process looks like, the left panel of Figure

9 shows one realization of the latent X(s) scale mixture process using parameters from

one MCMC iteration. The extreme values are mainly concentrated in two small regions.

The right panel shows the same realization, now marginally transformed to the scale of the

FFWI values. Since we modeled our data as partially censored observations, the map here
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only displays the areas where threshold exceedances are observed.

A quantity of great interest is areal exceedance probabilities, which represent the

amount of territory simultaneously at extreme risk for wildfire. To obtain a Monte Carlo

estimate of these joint probabilities, we use parameters from each MCMC sample to simu-

late 100 processes (on a 15km × 15km grid), and calculate the total area that has FFWI

over a designated threshold. Figure 10 shows the results. These curves represent total

area at risk for various FFWI thresholds. The curves for the higher thresholds decay faster

than those for the lower thresholds, which confirms that extreme events simultaneously

occurring across large areas becomes less common when the threshold increases. This also

shows that the joint tail of the fire threat index exhibits a weakening dependence structure,

with more extreme events being more localized. It is not possible to capture this behavior

using limiting extreme value models like max-stable or generalized Pareto processes.

7 Discussion

In this paper, we have proposed a new modeling approach, based on the class of transformed

Gaussian scale mixture models, which includes those recently proposed by Huser et al.

(2017) and Huser and Wadsworth (2019). We added a measurement error to the mixture,

hence avoiding the need to calculate the onerous |C|-dimensional Gaussian distribution

function when dealing with the censored likelihood. We also circumvent the need to draw

from a high-dimensional truncated distribution by treating the smooth process as latent

and updating repeatedly using MCMC. In addition to its computational advantages, the

presence of a measurement error term may also make the model more realistic for data

collected by real-world instruments. Indeed, nugget effects are ubiquitous in environmental

statistics, not just to represent measurements errors, but also as a result of small scale
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Figure 9: A realization of the process generated from parameters from one MCMC iteration.

Left panel shows the latent scale mixture process X(s) in log scale to better visualize spatial

patterns, with points showing the stations of the 93 gauges. For model checking, the 88

stations marked by triangles were used to fit the models, and those marked with circles

were used to validate the models. Right panel shows the same realization, marginally

transformed to the scale of the original FFWI data, and then censored. A projected

coordinate reference system, NAD83(HARN), is used here so that the axes are in units of

meters.
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Figure 10: The distribution of the total area that is over a certain threshold. For each

MCMC iteration, we simulate 100 processes on a 15km×15km grid, and count the number

of threshold exceedances. The density of the total area is then estimated using Gaussian

kernels.
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effects that are not included in the large scale model for spatial dependence.

Even with the presence of the measurement error, the model is still able to capture

qualitatively different types of sub-asymptotic dependence behavior of spatial processes. In

the case of our modification of the Huser and Wadsworth (2019) model, a smooth transition

between both extremal dependence paradigms takes place in the interior of the parameter

space, which enables inference of the dependence class in a simple manner. We proved that

all the appealing asymptotic properties found in the original smooth process are preserved

in the modified model, regardless of the size of the measurement error variance.

In the data analysis presented in Section 6, the credible interval for ξ is narrower than

we might expect, and it is not clear why this might be the case. In the Supplementary

Material, we present some evidence from simulation that the sharpness of the marginal

posterior for ξ may indeed accurately reflect the information contained in the data, as

viewed through the lens of the model. Nevertheless, we believe this phenomenon requires

further investigation.

The model allows inference on spatial extreme-value datasets with relatively large num-

bers of locations. The computational limitations are similar to those of conventional spatial

Gaussian process models. We have defined the model conditionally as a Bayesian hierarchi-

cal model, for which standard MCMC techniques can be used to fit the data. Computation

is facilitated greatly by parallelizing over time t and migrating some basic linear algebra

to C/C++ via Rcpp. Even so, the lack of closed form marginal transformations creates a

significant (though embarrassingly parallel) computational challenge that scales with the

total number of exceedances, rather than the usual case of scaling with the number of

spatial locations.

Despite easing computational limitations associated with the Huser et al. (2017) and

Huser and Wadsworth (2019) models, our modified versions inherit the same theoretical
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limitations. Neither model is able to account for the possibility of independence between

observations as the distance between sites becomes large, nor are they able to transition

from asymptotic dependence at short range to asymptotic independence at longer range.

Wadsworth and Tawn (2019) presents an alternative approach to modeling spatial extremes

that begins to address these issues.

Another interesting possibility to explore would be to include the nugget term inside

the link function g. This would result in closed-form marginal distributions in some cases,

perhaps making computations easier. However, it would change the dependence structure

in ways that would not vanish in the limit, which is not the behavior we were aiming for

here, but could be useful nonetheless.
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A Technical appendix

A.1 Proof of Proposition 3.1

For the proof of Proposition 3.1, we begin by recalling useful results from the literature.

The first is Breiman’s lemma, see e.g. Breiman (1965) and Cline and Samorodnitsky

(1994), and a corollary for sums of a regularly varying and light-tailed random variables.

Lemma A.1 (Breiman). Suppose that Q = ST where P(S > s) ∈ RV−α, α ≥ 0 and

E(Tα+δ) <∞ for some δ > 0. Then

P(Q > x) ∼ E(Tα)P(S > x), x→∞.

Corollary A.1.1. Suppose that P(X > x) ∈ RV−α, α ∈ (0,∞), and ε is a random variable

such that E(eδε) <∞ for some δ > 0. Then

P(X + ε > x) ∼ P(X > x), x→∞.

Proof. Since P(X > x) =: F̄X(x) ∈ RV−α, for positive finite α, P(eX > x) = F̄X(log(x)) ∈

RV0. By assumption E(eδε) <∞, and so applying Breiman’s Lemma to eXeε yields

P(eXeε > x) ∼ P(eX > x), x→∞,

from which the result follows.

The second result relates to sums of Weibull-tailed variables, i.e., those with survival

functions satisfying (10) and the associated density

fX∗(x) ∼ v(x) exp(−θxα), v(x) = u(x)(θαxα−1) ∈ RVκ+α−1. (20)

The following lemma can be verified directly from Theorem 4.1 of Asmussen et al. (2018),

by identifying that the conditions in Section 4 of that paper hold for this subclass when

α > 1.
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Lemma A.2 (Asmussen et al. (2018); Balkema et al. (1993)). Let Y1, Y2 be variables with

density (20), with regularly varying functions vj, uj and parameters θj > 0, αj > 1, j = 1, 2.

Then the density and survival function of the convolution satisfy

fY1+Y2(x) ∼ v+(x) exp{−ψ+(x)}, P(Y1 + Y2 > x) ∼ u+(x) exp{−ψ+(x)},

where ψ+(x) = θ1q1(x)α1 + θ2q2(x)α2, with q1(x), q2(x) determined by solving

q1 + q2 = x, θ1α1q
α1−1
1 = θ2α2q

α2−1
2 , (21)

and

v+(x) =

(
2πψ′′+(x)

θ1α1(α1 − 1)qα1−2
1 θ2α2(α2 − 1)qα2−2

2

)1/2

v1(q1)v2(q2); u+(x) = v+(x)/ψ′+(x).

Finally we note also the following two useful inequalities

P(X∗1 + min(ε1, ε2) > x,X∗2 + min(ε1, ε2) > x) ≤P(X∗1 + ε1 > x,X∗2 + ε2 > x) ≤

P(X∗1 + max(ε1, ε2) > x,X∗2 + max(ε1, ε2) > x),

(22)

P(ε1 + min(X∗1 , X
∗
2 ) > x, ε2 + min(X∗1 , X

∗
2 ) > x) ≤P(X∗1 + ε1 > x,X∗2 + ε2 > x) ≤

P(ε1 + max(X∗1 , X
∗
2 ) > x, ε2 + max(X∗1 , X

∗
2 ) > x),

(23)

where the two lower bounds are equal. We can now prove Proposition 3.1.

Proof of Proposition 3.1. 1) When X∗ has a regularly varying tail, Corollary A.1.1 provides

that P(X∗ + ε > x) ∼ P(X∗ > x). For the existence of ηX∗ , the variable min(X∗1 , X
∗
2 ) also

has a regularly varying tail. Further,

E(eδmax(ε1,ε2)) = E
[
max(eδε1 , eδε2)

]
≤ E

[
eδε1 + eδε2

]
= 2eδ

2σ2/2 <∞,
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so Corollary A.1.1 thus gives P(X∗1 + max(ε1, ε2) > x,X∗2 + max(ε1, ε2) > x) ∼ P(X∗1 >

x,X∗2 > x), and similarly for the lower bound. Hence P(X∗1 + ε1 > x,X∗2 + ε2 > x) ∼

P(X∗1 > x,X∗2 > x). Therefore it follows that χX∗ = χX . If f(x) ∼ g(x) for f(x)→ 0 then

log f(x) ∼ log g(x), so the result for η follows as well.

When X∗ has a Weibull-like tail with Weibull index α < 1, then P(eX
∗
> x) ∼

u(log x) exp{−θ(log x)α} ∈ RV0, and the rest of the argument follows as above.

2) When α = 1, P(eX
∗
> x) ∼ u(log x)x−θ ∈ RV−θ. Breiman’s lemma now yields

P(eX
∗
eε > x) ∼ E(eθε)P(eX

∗
> x). (24)

As a consequence, inequality (22) does not lead to a precise asymptotic relationship for

P(X∗1 + ε1 > x,X∗2 + ε2 > x), but rather that it is asymptotically bounded within the range

[
E
[
eθmin(ε1,ε2)

]
,E
[
eθmax(ε1,ε2)

]]
P(min(X∗1 , X

∗
2 ) > x). (25)

Combining (24) and (25), we get the stated bound for χX∗ . It follows also that log P(X >

x) ∼ log P(X∗ > x) and log P(X1 > x,X2 > x) ∼ log P(X∗1 > x,X∗2 > x), and hence

ηX∗ = ηX .

3) Here we use Lemma A.2, where different values of q1, q2 are found for the three cases

α ∈ (1, 2), α = 2 and α > 2. To make notation more obvious, we replace q1, q2 with q∗, qε

for summation of X∗, ε, and q∧∗ , q
∨
ε etc., for summation of min(X∗1 , X

∗
2 ) and max(ε1, ε2), for

example. The three cases are considered for the value of α∗; we always have αε = 2.

a) For α∗ ∈ (1, 2),

q∗(x) = x− α∗θ∗
2θε

xα∗−1[1 + o(1)],

qε(x) =
α∗θ∗
2θε

xα∗−1[1 + o(1)].
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Therefore

ψ+(x) = θ∗q∗(x)α∗ + θεqε(x)2 ∼ θ∗x
α∗ , (26)

which implies − log P(X∗ + ε > x) ∼ − log P(X∗ > x).

To understand the joint behavior, we again use (22). Note that

P(max(ε1, ε2) > x) = 1− Φ(x/τ)2 ∼ 2φ(x/τ)/(x/τ) = u∨ε (x)e−x
2/(2τ2).

P(min(ε1, ε2) > x) = [1− Φ(x/τ)]2 ∼ φ(x/τ)2/(x/τ)2 = u∧ε (x)e−x
2/τ2 .

Consequently, min(ε1, ε2) and max(ε1, ε2) both have α = 2, with different θ. As θε does not

affect the leading order behavior of ψ+ in (26), the tails of min(X∗1 , X
∗
2 ) + min(ε1, ε2) and

min(X∗1 , X
∗
2 ) + max(ε1, ε2) both have ψ+(x) ∼ θ∧∗ x

α∗ in the exponent, where

P(min(X∗1 , X
∗
2 ) > x) ∼ u∧∗ (x) exp{−θ∧∗ xα∗}.

Consequently − log P(X∗1 + ε1 > x,X∗2 + ε2 > x) ∼ − log P(X∗1 > x,X∗2 > x) and so

ηX∗ = ηX .

b) When α∗ = αε = 2, solving the equations in (21) provides

q∗(x) =

(
θε

θ∗ + θε

)
x, qε(x) =

(
θ∗

θ∗ + θε

)
x,

and

ψ+(x) =

(
θεθ∗
θ∗ + θε

)
x2.

For the margins, and maximum θε = θ∨ε = 1/(2τ 2), whilst for the minimum, θ∧ε = 1/τ 2.

We can now use both sets of inequalities (22) and (23), to give that the range of ηX is[
θ∗

2θ∧∗

θ∧∗ + 1/τ 2

θ∗ + 1/(2τ 2)
,min

{
θ∗
θ∧∗

θ∧∗ + 1/(2τ 2)

θ∗ + 1/(2τ 2)
,
θ∗

2θ∨∗

θ∨∗ + 1/τ 2

θ∗ + 1/(2τ 2)

}]
. (27)
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Some simplification arises upon noting that θ∨∗ = θ∗, since

P(max(X∗1 , X
∗
2 ) > x) = 2P(X∗1 > x)− P(X∗1 > x,X∗2 > x)

= 2P(X∗1 > x) {1− P(X∗2 > x|X∗1 > x)/2}

∼ 2P(X∗1 > x){1− χX∗/2}, x→∞.

As τ 2 → 0, i.e., as the nugget effect disappears, the endpoints converge to θ∗/θ
∧
∗ = ηX∗ . As

τ 2 →∞, i.e., as the nugget effect dominates, both endpoints converge to 1/2.

c) When α∗ > αε = 2, solving the equations in (21) provides

q∗(x) =

(
2θε
θ∗α∗

x

)1/(α∗−1)

[1 + o(1)],

qε(x) = x− q∗(x) ∼ x,

and ψ+(x) ∼ θεx
2. Using inequality (23),

− log P(X∗1 + ε1 > x,X∗2 + ε2 > x) ∼ θ∧ε x
2;

noting that θε = 1/(2τ 2) and θ∧ε = 1/τ 2 leads to ηX = 1/2.
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A.2 Hierarchical model

Under spatiotemporal setting, we observe {Yt(s) | t = 1, . . . , T, s ∈ S}, and the temporal

dependence is ignored. Then the hierarchical model can be described as

Yt(s) |X∗t , τ 2,θR,θGPD, p = T−1(X∗t (s) + ε(s)),

X∗t |Rt,θC = Rt · g(Zt),

Rt |θR ∼ FR,

τ 2 ∼ IG(a, b),

θGPD = (σ, ξ) ∼ halfCauchy(1) · U(ξ;−0.5, 0.5),

θC = (ρ, ν) ∼ halfCauchy(1) · halfCauchy(1),

(28)

where θR corresponds to δ ∈ [0, 1] for the Huser and Wadsworth (2019) model and

β ∈ [0,∞) for the Huser et al. (2017) model, and Zt is a Gaussian process with Matérn

covariance ΣθC . The priors for θR are δ ∼ U(0, 1) and β ∼ halfCauchy(1) respectively.

In Section 4, we have formulated the full conditional likelihood ϕ(Yt(s) |X∗t , τ 2,θR,θGPD, p)

for a fixed time and location; see Equation (14). Next we are going to work out the con-

ditional joint likelihood ϕ(X∗t |Rt,θC) = ϕ(X∗t (s1), . . . , X
∗
t (sD) |Rt,θC) for a fixed time

t. Keeping the notations same as the main text, we denote g(·) as the link function that

transforms the scale of the latent Gaussian process. For the model of Huser et al. (2017),

g(·) is an identity function, and thus X∗t conditioning on Rt remains to be a multivariate

Gaussian random variable. For the Huser and Wadsworth (2019) model, the conditional

density needs more careful scrutiny.

Lemma A.3. Let X∗ = (X∗1 , . . . , X
∗
D) = (R · g(Z1), . . . , R · g(ZD)), where (Z1, . . . , ZD) ∼

N(0,ΣθC ). For the Huser and Wadsworth (2019) model, the density conditional on R is

ϕ(x∗1, . . . , x
∗
D |R,θC) =

1√
|ΣθC |

exp

{
−1

2
g−1

(
x∗

R

)T
(Σ−1θC − ID)g−1

(
x∗

R

)}
· RD

(
∏D

i=1 x
∗
i )

2
,
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where g(·) = 1/{1− Φ(·)}.

Proof. First note that

(Z1, . . . , ZD) = (g−1
(
X∗1
R

)
, . . . , g−1

(
X∗D
R

)
) = (Φ−1

(
1− R

X∗1

)
, . . . ,Φ−1

(
1− R

X∗D

)
).

Fixing R as a constant, we can apply the chain rule to obtain

dZ1

dX∗1

∣∣∣
X∗1=x

=
√

2π exp

{
[Φ−1(1−R/x)]2

2

}
· R
x2

=
√

2π exp

{
g−2(x/R)

2

}
· R
x2
.

(29)

Then the Jacobian matrix can be written as

dZ

dX∗ =


dZ1

dX∗1
. . .

dZD
dX∗D

 ,
and

det

(
dZ

dX∗

∣∣∣
X∗=x∗

)
(29)
= (
√

2π)D exp

{
1

2

D∑
i=1

g−2(x∗i /R)

}
· RD

(
∏D

i=1 x
∗
i )

2

Denote fZ as the density function of N(0,ΣθC ). Then

fZ(g−1(x∗1/R), . . . , g−1(x∗D/R)) =
1

(2π)D/2
√
|ΣθC |

exp

{
−1

2
g−1

(
x∗

R

)T
Σ−1θC g

−1
(
x∗

R

)}
.

Apply the change of variables formula

ϕ(x∗ |R,θC) = fZ(g−1(x∗/R))

∣∣∣∣det( dZ

dX∗

)∣∣∣∣ ,
and we will get the desired result. �

When updating certain variables for a random walk Metropolis-Hastings step, we cal-

culate the corresponding full conditional likelihood for both current values and proposed
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values. Since ϕ(Yt(s) |X∗t , τ 2,θR,θGPD, p) entails most parameters and latent variables,

we will evaluate this density over and over again. Looking back at its analytic form in

(14), the most compute-intensive part is to calculate the marginal transformation T (·) as

defined in (12), which requires the computation of the marginal quantile function of the

noisy process, i.e. F−1X |θR,τ2 . Note that the marginal distribution function FX|θR,τ2 can be

obtained through a convolution:

1− FX|θR,τ2(x) = P (X∗ + ε > x) =

∫ ∞
−∞
{1− FX∗|θR(x− ε)} · φτ (ε)dε, (30)

where φτ is the density of N(0, τ 2), and FX∗|θR is the marginal distribution function of the

smooth process, whose forms are derived in Huser et al. (2017) and Huser and Wadsworth

(2019) for the two models of interest in this paper. Because (30) cannot be further sim-

plified, we compute the improper integral numerically using the QUADPACK algorithms

which are implemented within the gsl integration library in C++. The computations in

C++ and R are interfaced using the package Rcpp.

To compute pth quantile of X, i.e. F−1X|θR,τ2(p), which is required for likelihood function

evaluations, we first evaluate the distribution function FX|θR,τ2 at a fine grid of x values.

We then perform cubic spline interpolation through the control points to yield a continuous

quantile function estimate. Due to the smoothness of the quantile function, numerical ex-

periments showed that this technique suffered no measurable reduction in accuracy relative

to the much slower technique of computing quantiles using a numerical root finder.
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Figure 11: Pointwise generalized Pareto parameters fitted with observations from each

station.

B Additional Diagnostics

B.1 Marginal parameters

To examine the trend surfaces of the marginal parameter θGPD, we fit univariate generalized

Pareto distribution to the spring observations at each station over a high threshold u0.8.

The estimated parameters are plotted in Figure 11. We can see that there is no obvious

spatial pattern for the shape parameter, while there is significant longitudinal effect for the

scale parameter. This give grounds for applying linear trend surface to scale, and constant

surface to shape (see Equation (17)).
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Figure 12: Trace plots for δ and τ 2.

B.2 MCMC results

Batch means (Flegal et al., 2010) is a convenient way to compute Monte Carlo standard

errors for MCMC outputs. If one divides a Markov chain {Xn} into k batches of size b, the

Monte Carlo estimate of µ = E(g(X)) based on ith batch can be obtained as follows:

µ̂i =

∑ib
s=(i−1)b+1 g(Xs)

b
, i = 1, . . . , k,

and batch means estimate of the Monte Carlo standard error can be defined as

σ̂2 =
1

k(k − 1)

k∑
i=1

(µ̂i − µ̂)2,

where µ̂ is the overall Monte Carlo estimate. See Figure 13 for batch means standard errors

computed periodically for δ and ρ. Other parameters have similar results. We report the

stabilized batch means standard errors in Table 2.

For the data analysis, we used 20 cores from the CyberScience Advanced Cyber Infras-

tructure at Penn State. On average, each iteration takes approximately 1.76 seconds (CPU

time). The effective sample size (ESS) per second is also reported in Table 2, in which the

marginal parameters has lower values.
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Figure 13: MCMC standard error plot (left) for ρ and δ, which is calculated using consistent

batch means for MCMC chains. ACF plots for ρ and δ are displayed on the right.

ρ ν τ δ β0 β1 β2 ξ

Monte Carlo SE 0.0013 0.0071 0.3570 0.0003 0.0134 0.0002 0.0001 0.0004

ESS per second 0.223 0.468 0.098 0.190 0.027 0.027 0.031 0.019

Table 2: Monte Carlo standard error for estimating the mean (computed using stabilized

batch means for MCMC chains).
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Supplementary Material

In this document, we examine the performance of the MCMC algorithm when τ 2 → 0,

i.e., our proposed model (8) converges to the underlying smooth process from Huser and

Wadsworth. One may suspect that the Markov chains will mix very poorly when the value

of τ 2 is small (although when τ = 0, an alternative MCMC scheme might be possible,

wherein components of X∗ could be updated from truncated distributions, albeit more

complicated ones). We conduct another simulation study for datasets generated from

δ = 0.5 (transition point) and various τ 2 values (9, 3, 0.5, 0.0025). Other parameter

settings remain the same as in Section 5.1. The sites and the smooth processes are simulated

using the same random number generating seed for each dataset. We want to see the critical

point of τ 2 for the algorithm to fail.

Figure 14 displays the results from running the MCMC algorithm, with each row show-

ing one case. The red dashed line signifies the true parameter values, and the blue lines

indicates the 95% posterior credible intervals. Each MCMC chain was run for 400,000 iter-

ations. Thinning the results by a factor of 10, we show the last 50,000 iterations. We can

see that, while the performance of δ stays stable for different true τ 2 values, the Markov

chain for τ 2 converges slower when its true values becomes smaller. In the case where

τ 2 = 0.0025, the true value is outside of the 95% credible interval and the chain mixes

very poorly. Figure 15 shows trace plots of an X∗ at one specific site and time which is

censored for all four simulations due to the same collection of sites and underlying smooth-

ing processes. We can see that for larger value of τ 2, there are more fluctuations for X∗

over the threshold, which might be the reason why the MCMC algorithm works better in

this case. The dissatisfying performance when τ 2 is very small might also have something

to do with the particular sampler we used (random walk M-H with a symmetric proposal
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Figure 14: Comparisons of the trace plots of δ and τ 2. See text for explanations.
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(a) Case τ2 = 9
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Figure 15: Comparisons of the trace plots of X∗ at 1st site and 10th time replicate. The

sites and the smooth processes are the same across four simulations, and true X∗[1, 10] is

censored.

kernel), given the parameter is so close to the boundary, rather than a problem with the

overall modeling scheme.

Next we briefly discuss the narrowness of credible intervals for ξ. The sharpness of the

marginal posteriors for ξ may seem unrealistically narrow, but we present some evidence

that that they may be accurately reflecting the information contained in the data, as seen

through the lens of the model.

For the coverage analysis presented in Section 5.2, the threshold is u = 0.8, which

resulted in narrow CIs for ξ in the Huser and Wadsworth (2019) model (we did not include

the coverage analysis for the marginal parameters in the main text, as this was not the
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Figure 16: Empirical coverage rates of credible intervals for ξ for Huser et al. (2017) (a.k.a.

HOT) model (left) and Huser and Wadsworth (2019) model (middle). The credible interval

widths between the two model runs are compared on the right.

focus of the manuscript). While the posterior distributions are not perfectly calibrated, the

coverage rates are still acceptable; see Figure 16. The posterior intervals do under-cover,

but not by much. For example, 95% credible intervals cover the true shape parameter about

87% of the time. We used the exact same code for the simulation as for the data analysis,

so there is reason to think that the posterior intervals for the data analysis are probably

okay, even though they are very short. For the Huser et al. (2017) model, in which X∗

has a lighter marginal tail, the CIs for ξ appear to be perfectly calibrated. Although the

code used for this simulation is not all identical to that of the sampler for the Huser and

Wadsworth (2019) model and the data analysis, a large percentage of the code is common

across the two samplers.
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