
Noname manuscript No.
(will be inserted by the editor)

Specifying and Verifying Usage Control Models and Policies in
TLA+

Christos Grompanopoulos · Antonios Gouglidis · Anastasia Mavridou

the date of receipt and acceptance should be inserted later

Abstract Novel computing paradigms, e.g. the Cloud,

introduce new requirements with regard to access con-

trol such as utilisation of historical information and con-

tinuity of decision. However, these concepts may intro-

duce an additional level of complexity to the underpin-

ning model, rendering its definition and verification a

cumbersome and prone to errors process. Using a formal

language to specify a model and formally verify it may

lead to a rigorous definition of the interactions amongst

its components, and the provision of formal guarantees

for its correctness. In this paper, we consider a case

study where we specify a formal model in TLA+ for

both a policy-neutral and policy-specific UseCON us-

age control model. Through that, we anticipate to shed

light in the analysis and verification of usage control

models and policies by sharing our experience when us-

ing TLA+ specific tools.

Keywords Authorisation models · Concurrency ·
Model checking · UseCON

Christos Grompanopoulos
Department of Mechanical Engineering
University of Western Macedonia
Kozani, Greece
E-mail: cgrompanopoulos@uowm.gr

Antonios Gouglidis
School of Computing and Communications
Lancaster University
Lancaster, United Kingdom
E-mail: a.gouglidis@lancaster.ac.uk

Anastasia Mavridou
SGT / NASA Ames Research Center
Moffett Field
CA 94035, USA
E-mail: anastasia.mavridou@nasa.gov

1 Introduction

Access control systems offer the mechanisms to control

and limit the actions or operations that are performed

by a user or process – referred to as subjects – on a set

of system objects. Based on a set of existing policy rules

an authorisation process is required to take a decision

for granting or denying a subject to access an object in

a system. Thus, access control systems are considered

to be amongst the most critical of security components.

Their importance is highlighted in a special publication

by NIST, where formal verification for various access

control policies is proposed for application [12].

New computing paradigms, e.g. the Cloud [7], re-

quire further investigation of access control systems.

This eventually introduces the need for models, e.g. us-

age control [9], to cope with complex high-level require-

ments set by new computing paradigms. Usage control

models provide an integration of access control, digital

rights, and trust management, which may be applicable

in environments such as the Cloud. To achieve this in-

tegration, usage control models support additional con-

cepts, e.g. utilisation of historical information and con-

tinuity of decision. By utilising historical information,

the allowance of a usage does not depend only on the

participant’s properties, but also on the previous usages

that have been exercised, resulting in a dynamic usage

control model. Continuity of decision considers that ac-

cess to an object is no longer an instantaneous access

or action, but it may last for sometime. Consequently,

decision factors are evaluated not only before (i.e. pre-

authorisation), but also during the exercise of an access

(i.e. ongoing-authorisation), and evolve the concept of

access control to that of usage control.

Formal methods have proven to be particularly use-

ful in the process of system design and software devel-

2 Christos Grompanopoulos et al.

opment [2]. With regard to usage control models, tem-

poral logic can be used to provide unambiguous seman-

tics of the functions supported by the models, such as

utilisation of historical information of usages and con-

tinuity of decision [17]. Usage control systems are con-

current and characterised by non-determinism due to

the potential of a subject to arbitrarily request or ter-

minate the use of an object. As discussed in [32], a num-

ber of usage control formal models are limited to the

specification of a single use, which is isolated and has

no interference with other uses. UseCON [9] is a usage

model that provides enhanced expressiveness compared

to existing access/usage control models and applicable

in new computing paradigms [9]. This is achieved by

introducing the use entity that is the theoretical repre-

sentation of a real-world usage exercised by a subject on

an object. Therefore, by utilising information from uses,

the UseCON model is capable of taking into consider-

ation historical data during the usage control decision

process.

In our case study, we selected to use the enhanced

version of Temporal Logic of Actions (TLA+) [16] in or-

der to specify UseCON and further analyse and verify

the proposed model using TLA+ tools, i.e. TLA+ Tool-

box. TLA+ has been selected over other specification

languages (e.g. Alloy) due to its support of temporal

quantifiers and reliance on the notion of actions to ex-

press dynamism. Although dynamic properties may be

supported by Alloy, that may be an error-prone task

since dynamism has to be modelled explicitly by the

user [19].

In [6], we have defined and verified the core opera-

tions of UseCON. In this paper, we provide a specifica-

tion of the policy-neutral UseCON model that does not

include any constraints on the number of requested uses

(which was set in [6] to a maximum of 3). Furthermore,

we provide policy-specific examples based on the two

supported authorisation models in UseCON, and we

also introduce faults in the previous examples. We fur-

ther analyse and verify the new specifications through

the extended use of TLA+ Toolbox. Specifically, the

TLC model checker was used for a) the verification of

the model’s internal management procedures (for the

policy-neutral UseCON model); b) the verification of

a list of properties for the policy-specific examples; c)

the successful detection of the introduced faults in the

policies.

The remainder of this paper is organised as follows:

Section 2 elaborates on related work (i.e. usage control

models and verification) and provides a comparison of

that with our approach. Section 3 provides necessary

background information on the UseCON model and

the TLA+ specification language. Section 4 presents

a TLA+ specification of UseCON. Section 5 provides

examples of UseCON-supported access control policies

formalised with TLA+. In Section 6, we verify the spec-

ified models and policies; elaborate on the detection

of introduced faults in the policies; and provide per-

formance results of the TLC model checker. Section 7

concludes the paper.

2 Related work

A number of formal definitions for usage control mod-

els have been specified to express the newly introduced

concepts (e.g. continuity of decision, use of historical

information) in the usage decision making process. A

model defined in [33] by Zhang et al. was specified us-

ing TLA to highlight the enhanced expressiveness of

UCON compared to existing models. In general, a first

task when specifying a system is to choose what part

of a system will be specified and then decide on the ab-

straction level of that specification. Thus, atomicity is

an important aspect of that level of abstraction, with

grain of atomicity described to be ‘... the choice of what

system changes are represented as a single step of a be-

haviour.’ [16]. The grain of atomicity in Zhang’s et al.

specification is set at the internal actions of the model,

separating the actions that update the state of a usage

from those that update the attribute value of an entity.

The specification described in [33] assumes a single us-

age process, and thus, it may raise questions with re-

gard to the operational phase of usage control systems,

when considering multiple usages running concurrently.

In [35] [36] Zhang et al. investigate a safety problem

related to the creation of new objects in a UCON sys-

tem. The defined formal model permits the existence of

multiple usages. However, it sets the grain of atomicity

to that of an entire usage to eliminate the impact of con-

current operations into the internal state transitions of

the usage states. The language used to specify the sys-

tem appears to be a Z-like language. Both specifications

proposed by Zhang et al. are capable of expressing not

only the model itself, but also the policies supported

by the specified models, which is achieved by specifying

both the authorisation predicates and attribute update

procedures.

A specification of a usage control model was devel-

oped in [14] by Janicke et al. to support the need for

continuous on-going scenarios. Specifically, within an

initial usage (i.e. a session), a number of ’internal’ us-

age requests may be performed. The latter is required

to be labelled by atomic actions to support immediate

revocation of usages. This specification is developed in

Interval Temporal Logic (ITL) [4] and supports concur-

rent usages only within sessions. An additional formal

Specifying and Verifying Usage Control Models and Policies in TLA+ 3

Table 1 Comparison of UseCON with related work

Model Main On- Concur- Grain of Fairness Policy Language Model
attributes going rency atomicity checker

Zhang et al. Single usage Yes No Internal No Yes TLA No
[33] process Yes actions

Zhang et al. Component Yes No Single No Yes Z-like Custom
[35] [36] creation usage

Janicke et al. Series of Yes Yes Internal No No ITL No
[14] usages in a session (session) actions

Martinelli et al. Define activities Yes No Internal No Yes POLPA No
[20] in a UCON process actions

UseCON Extended Yes Yes Internal Yes Yes TLA+ TLC
[6] expressiveness actions

model based on the POlicy Language based on Process

Algebra (POLPA) is presented in [20]. This specifica-

tion presents only the basic features of UCON and does

not deal with any concurrency issues or present policy

implementation paradigms. Properties that may be ver-

ifiable in the above models appear to be missing from

both [14] and [20].

In [33], both the expressiveness and flexibility of

the usage control model were presented through several

policies (e.g. RBAC, Chinese Wall). The formal model

in [35] studied the safety problem in usage control, con-

cluding that only a very restricted pre-authorization

subset of usage control models may support the safety

problem. Work in [27] also examined the safety problem

in UCON policies, which appears to generalise the re-

strictions imposed by [35]. Specifically, the specification

proposed in [27] permits the concurrent execution of us-

ages and allows attribute values to get values over infini-

tive domains using an algebraic structure. A compar-

ison of UseCON’s capabilities described in [6] against

the above mentioned work is depicted in Table 1.

A first attempt to formally verify usage control poli-

cies with a model checker is presented in [25]. Specifi-

cally, a formal model of simple usage control policies us-

ing an extension of Linear Temporal Logic (LTL). Poli-

cies were verified using the NuSMV model checker [5].

The authors in [26] verified a policy implementation of a

usage control system using the SPIN model checker [10].

The implementation was designed for a Web based con-

ference management application and supports concur-

rent applications through a common communication

channel. However, the usage scenario lacks of support

for ongoing rules. Separation of duties policies in usage

control are studied in [18], where initially they define

a set-based specification of separation of duty policies

and then they adapt it to attribute values of usage con-

trol. This resulted in the application of already existing

static mutually exclusive attribute (SMER) constraints.

3 Background

In this section, we give an overview of UseCON and

provide a specification of it in TLA+. The reasons for

selecting TLA+ and the TLC model checker are men-

tioned in the introduction section. In addition to that,

a complementary reason for selecting TLA+ lies in the

fact that based on our personal experience, we find

TLA+ to be a versatile language that may be used by

both researchers and engineers, and thus may facilitate

the development of access control systems.

3.1 An Overview of UseCON

The UseCON model is composed of three entities, na-

mely subjects, objects, and actions. These three enti-

ties, together with uses, are the core components of

UseCON. Decision factors in UseCON are the attribute

dependent authorisations and the usage dependent au-

thorisations.

Subjects and objects are fundamental concepts, pro-

posed already by access control models. Specifically, a

subject is an entity that requests the execution of an

operation on object entities. An action entity repre-

sents the novel and complicated operations imposed

by new computing paradigms. All the security rele-

vant characteristics, including related contextual infor-

mation of subjects, objects, and actions are described

through their attributes. An example of an action entity

could be a money transfer operation from a bank ac-

count, where the attributes describe the amount being

transferred, the date of the transaction, the currency,

etc.

A core component of the UseCON model is the use

component, which represents the security related se-

mantics of a usage. A use, is created when a subject re-

quests the execution of an action on an object where (s,

o, a) are the direct entities, while the rest are the indi-

rect entities of the usage. A use is described through at-

4 Christos Grompanopoulos et al.

tributes that record the detailed security-relevant char-

acteristics and capabilities that are associated with the

requested usage. Each use is further associated with a

‘state’ attribute, which embodies the status of the us-

age in progress (see Figure 1). The ‘state’ attribute is

assigned each time one of the following values:

– Init: The usage has not been requested by a subject

yet.

– Requested: Upon request for a usage, the appro-

priate attributes are associated with the use and

proper values are assigned to them. The pre-autho-

risation policy rules, which govern the requested us-

age, have not been evaluated yet.

– Denied: The requested usage has been denied, be-

cause it failed to satisfy the pre-authorisation rules.

– Activated: The requested usage has been allowed,

as a result of successfully fulfilled pre-authorisation

policy rules, and is being executed.

– Terminated: The allowed/ongoing usage has been

terminated by the system due to a violation of an

ongoing authorisation rule.

– Completed: The usage that has been completed due

to a subject’s intervention.

An authorisation is the only decision factor in UseCON.

However, for the creation of a usage decision, the UseCON

model utilises three criteria, i.e. the properties of the

entities, contextual information, and historical informa-

tion about usages. Therefore, authorisations are cate-

gorised into Attribute dependent Authorisations (AdAs)

and Usage dependent Authorisations (UdAs) as follows:

– Contextual information and properties that describe

an entity are associated with the corresponding en-

tity’s attributes. The values of these attributes in

turn are utilised by AdAs policy rules for the cre-

ation of a usage decision.

– Historical information of usages is utilised by UdAs.

Specifically, in UseCON, uses can record all the in-

formation regarding the previous or concurrent us-

ages exercised in the system. Consequently, an UdA

policy rule utilises the historical information con-

tained into the use attribute values to allow or deny

a usage request.

Integrating authorisations with continuity of deci-

sion results into two UseCON sub-models. These are

the pre-authorisations and the ongoing-authorisations

sub-models. The UseCON elements and the relations

between them are depicted in Figure 2.

UseCON is an expressive model, as required by the

new computing paradigms, not only due to the fact that

is able to utilise all the three criteria (i.e. contextual in-

formation, properties and historical information), but

also because these criteria can be related to either di-

rect or indirect entities or even to any subset of the

usage control system entities, e.g. a bank should issue

new loans to a customer if and only if the sum of the

existing loans of all customers is lower than a given

amount. Moreover, UseCON inherently supports the

utilisation of historical information of usages through

use entities. Consequently, there is a strict distinction

between the functional components of the internal us-

age control model (e.g. creation and state transition

actions of use entities) and the components that define

the specific policy implementations of the model (e.g.

the creation of the usage decision — policy rules).

3.2 Specifications in TLA+

A system’s specification in TLA+ follows the Standard

Model, which is the description of a set of behaviours

each representing a possible execution of the system.

Every TLA+ specification is composed of predicates,

actions and temporal formulas.

Specifically, a predicate is a boolean-valued expres-

sion built from variables and constants and is evaluated

on a state. The evaluation of a predicate in a state is

performed by calculating the predicate expression with

the assigned values of the included variables in this

state. A formal definition following [15] is:

s[[p]] , p(∀ ‘u’ : s[[u]]/u)

where p(∀‘u’ : s[[u]]/u) denotes the evaluation of pred-

icate p by substituting every variable u with the as-

signed value in state s (s[[u]]). If a predicate p is eval-

uated as true in state s it denotes that predicate p is

satisfied in state s.

An action denotes a relation between pairs of states

of the system (denoted as system steps). A step is a

pair of successive states. An action is a boolean-valued

expression built from constants, primed and unprimed

variables. Primed variables refer to next states while

unprimed refer to previous states of a step. A formal

definition of actions follows:

s[[a]]t , a(∀ ‘u’ : s[[u]]/u, t [[u]]/u ′)

We say that action a satisfies states s,t, or that s,t is

an a-step if the evaluation of the action, with unprimed

variables assigned value from state s and primed vari-

ables assigned value from state t, is true. A predicate

can be considered as a special action that is evaluated

only on the first state of a step.

A temporal formula in TLA+ is a Boolean valued

expression that is evaluated on behaviours. More specif-

ically, a temporal formula F is composed by action and

Specifying and Verifying Usage Control Models and Policies in TLA+ 5

Fig. 1 Accomplishment status of a single usage

Fig. 2 UseCON usage control system

predicates combined with logical and temporal oper-

ators. An action / predicate can be considered as a

special temporal formula that is evaluated on the first

step / state of the behaviour. Some of the fundamental

temporal operators in TLA+ follow:

– Always �. The formula F must satisfy every suf-

fix of the behaviour. The semantics of the always

temporal operator follows:

< s0, s1, . . . > [[�F]] , ∀n ≥ 0: < sn , sn+1, . . . > [[F]]

where the , operator utilised in an expression id ,
exp defines id to be synonymous with the expres-

sion exp. Replacing id by exp does not change the

meaning of the specification.

– Eventually ♦. The formula F must satisfy some states

of the behaviour. The semantics or eventually can

be defined by utilising the always temporal operator

as follows:

♦F , ¬�¬F

– Leads to ;. The formula F ; G asserts that when-

ever F is true, G is eventually true. That is G is

true at the same time with F or sometime later.

The leads to operator can be defined utilising the

previous temporal operators as:

F ; G , �(F =⇒ ♦G)

Consequently, all the accepted behaviours of a sys-

tem can be specified in TLA+ with a temporal formula

called specification of the following form:

Spec , Init ∧�Next

where Init is a predicate and Next is an action.

A behaviour satisfies Spec if the first state of the be-

haviour satisfies Init and every consequent step satisfies

Next. However, a well-defined specification should allow

stuttering steps (steps that leave the system variables

unchanged). Thus, the specification has the following

form:

Spec , Init ∧�[Next]<v1,...,vn> (1)

where [Next]<v1,...,vn> is defined as:

[Next]<v1,...,vn> , Next ∨ ((v ′
1 = v1) ∧ . . . ∧ (v ′

n = vn))

Formula (1) demands that the transition from one

state to another is either a Next-step or a stuttering

step that leaves the system variables unchanged.

6 Christos Grompanopoulos et al.

However, the TLA+ specification expressed in (1),

also describes behaviours that may stop at any point,

including a behaviour that starts in a valid initial state

and takes no step. The weak fairness property of the

action Next (denoted as WFvars(Next)) asserts that be-

haviours are not allowed to stop in a state in which

Next action is enabled (Action A is enabled in a state

s if there exists a state t such that s → t is a A-step).

Therefore, the specification of a system that permits

stuttering steps and supports the weak fairness prop-

erty for action Next has the following form:

Spec , Init ∧�[Next]<v1,...,vn> ∧WFvars(Next)

A property in TLA+ is described together with a

system’s specification and has the form of an invari-

ant or a temporal formula. An invariant is a predicate

that is evaluated on a system state. Consequently, an

invariant holds on a system specification, if and only if,

every state of all the behaviours of a system satisfy that

predicate. Moreover, a temporal formula is evaluated on

a system behaviour. Consequently, a temporal formula

hold on a specification, if and only if, it is satisfied by

all the behaviours of the system.

4 Specification of UseCON in TLA+

In the following, we provide a formal specification of

the UseCON model in TLA+. This includes the spec-

ification of UseCON’s main elements, decision making

rules, and procedures for managing use elements. Fur-

thermore, we describe two transition systems (TS) of

UseCON, i.e. one TS for the pre and one TS for the on-
going authorisation model, which are used for support-

ing concurrent operations amongst uses in UseCON.

4.1 Main Elements

A use in UseCON represents a request to execute an

action (a) from a subject (s) on an object (o). Every

s, a, and o is characterised by a unique identification

value called sid, aid and oid, respectively. The sets SID,

AID, and OID contain all the unique identification val-

ues for subjects, actions and objects that are used in

the usage control system. The values of SID, AID and

OID remain the same throughout the lifetime of the

usage control system and the are declared as sets with

constant values in the specification with the following

declaration:

constants SID , OID , AID

To verify the model it is required to assign values to

SID, OID and AID, using expressions of the following

form:

AID = {“aid1”, “aid2”, . . , “aidn”}
OID = {“oid1”, “oid2”, . . , “oidn”}
SID = {“sid1”, “sid2”, . . , “sidn”}

In UseCON attributes can be assigned to subjects,

objects and actions to provide additional characteristics

to them through their attribute value. However, the us-

age control system does not modify automatically the

attribute value of system entities. Thus, attribute val-

ues of system entities are proposed to be updated man-

ually by the usage control administration model, which

is not covered by the proposed specification. Therefore,

each of the subjects, objects and actions are represented

in the specification by a single value, i.e. sid, oid and

aid, respectively. As it is highlighted by their specifica-

tion, subjects, objects and actions have a similar role

in the UseCON specification. Therefore, onward in this

paper, we use the term entity to refer to a subject,

object or action. Moreover, the set of entities (E) is

described as follows

E = S ∪O ∪A

A usage request in UseCON results into the creation

of a use. A tuple composed of the identity values of the

subject, object and action participating in the usage (i.e.

sid, oid and aid, respectively) uniquely identifies a sin-

gle use and it is denoted as the uid of that use. The set

of use identifiers (UID) is the cartesian product of the

SID, AID and OID, defined as follows:

UID
∆
= (SID ×AID ×OID)

The characteristics of a use are represented through

attribute values. More specifically, every use must con-

tain a status attribute to represent the current status

of a use. Its value may be one of the following: ‘init’,

‘requested’, ‘activated’, ‘denied’, and ‘completed’ for the

preUseCON authorisation model;in the ongoing autho-

risation model, the ‘denied’ value is replaced by ‘ter-

minated’. Thus, the set of uses that instantiate usage

requests from subjects s to objects o for actions a is a

TLA+ function U having UID set as its domain and

range the set of records USES with a status field.

The set of records that specify the use entities is

defined in TLA+ as follows:

USES
∆
= [status : USTATUS]

Specifying and Verifying Usage Control Models and Policies in TLA+ 7

and USTATUS is the set with all the status attribute

values and it is defined for the pre-authorisation model

as:

USTATUS
∆
= {“init”, “requested”, “activated”,

“denied”, “completed”}

and for the ongoing-authorisation model as:

USTATUS
∆
= {“init”, “requested”, “activated”,

“terminated”, “completed”}

Therefore, the set of all functions with domain UID

and range a subset of USES is defined as [UID →
USES].

It is worth mentioning that in TLA+ a function

defines also a table. Specifically, a TLA+ table is a

function with index values taken from the function’s

domain, and table values assigned from the function’s

range. Therefore, the proposed specification uses only a

single variable U that is a TLA+ function/table. Table

U assigns each index from the cartesian product of the

constant sets of SID, OID and AID (i.e. all the possible

usage that may be requested) to a use record in USES,

which contains the use attributes.

The definition of U as the variable in the specifica-

tion is described as:

variables U

In the beginning of a TLA+ specification, several

modules may be included for supporting different op-

erators. Our specification includes Integers which en-

compass arithmetic operators, e.g. and TLC module is

included to use TLA+ specific expressions such as the

RandomElement. This is declared as follows:

extends Integers, TLC

4.2 Decision Making in UseCON

In the current specification of the UseCON model, the

U variable records all the usages that have been previ-

ously exercised in the system. Policy rules in UseCON

are able to utilise information from both entities and

use attribute values. Specifically, a UseCON policy rule

that governs the allowance of a usage request from a

subject s on an object o with an action a, is a Boolean-

valued expression, i.e. a TLA+ predicate, which can be

one of the following types:

– Direct Policy Rules: The expression of a direct pol-

icy rule consists of constant values or attributes of

the direct entities of the usage. The definition of

such an expression is as follows:

DirectPolicy(uid)
∆
=

expression(e1, e2, . . . , en , l1, l2, . . . , lm)

Where ei , i ∈ 1..n are attributes of the direct enti-

ties, li , i ∈ 1..m are constant values and uid is the

identifier of the usage that is examined for allowance

or not. Access to the identifiers of a direct entity is

achieved through the uid . Specifically, uid [1] is the

subject’s id, uid [2] is the action’s id and uid [3] is

the object’s id.

– Indirect Policy Rules: The expression of an indirect

policy rule consists of attribute values stemming not

only from direct, but from indirect entities too. In

this case, the system searches in variable U for the

existence of a usage with a specific indirect entity.

The definition of such an expression is as follows:

IndirectPolicy(uid)
∆
= ∃ uidindirect ∈ U :

select(e1, e2, . . . , en , l1, l2, . . . , lm)

Where the select expression searches the existence

of a specific usage, with ei , i ∈ 1..n being the at-

tributes of the direct entities (discovered through

uid) or indirect entities (discovered through uidindirect),

and li , i ∈ 1..m are constant values.

An example of an indirect policy rule could be an

expression that evaluates into true or false, if the

parent of a child has paid the usage of a toy in an

amusement park. In this example, the child is the

direct entity and the parent is an indirect entity.

The select expression should take into account the

fact that there is a use in U where the ‘parent’ id is

the sid, having a payment action.

– Complex Indirect Policy Rules: New computing pa-

radigms introduce complex access control policies,

where the usage decision is based on information re-

lated not only to a single entity, but also to a subset

of entities. Such complex policies can be supported

in UseCON through complex indirect policy rules.

More specifically, the system may search in variable

U for all the entities that satisfy a desired (select)

8 Christos Grompanopoulos et al.

predicate. The semantics of an expression of a com-

plex indirect policy rule is as follows:

ComplexIndirectPolicy(uid)
∆
=

∃ uidindirect1 , uidindirect2 , . . . , uidindirectk ∈ U :

select(e1, e2, . . . , en , l1, l2, . . . , lm)

Where parameters ei , i ∈ 1..n are attributes of the

direct entities (discovered through uid) or indirect

entities (discovered through uidindirecti , i ∈ 1..k), and

li , i ∈ 1..m are constant values.

An example of a complex indirect policy rule is one

that confirms that the balance of a number of bank

accounts is over a specific amount. Information that

is related to a set of bank accounts, those belong-

ing to the corresponding account holders, is required

for the evaluation of the aforementioned policy rule.

Consequently, the selection expression defines the

subset of the bank accounts that belongs to specific

customers.

Moreover, two or more UseCON policy rules can be

combined together with logical operators as follows:

p = p1 ⊗ p2 ⊗ . . .⊗ pn

where ⊗ is a logical operator (e.g. AND, OR), and

pi , i ∈ 1..n is a policy rule. The policy rule pi can be a

direct, indirect or complex indirect policy rule.

4.3 Transition Systems

Actions in the UseCON model are categorised to those

triggered by a subject’s request and those operated au-

tomatically by the usage control system. More specifi-

cally, for every use supervised by the usage control sys-

tem the following actions can be triggered by a subject.

– Request : This action performs the transition from

the ‘init’ status of the use to ‘requested’.

– Complete: This action changes the state of the use

from ‘activated’ to ‘completed’.

The actions performed automatically by the usage

control system follow:

– preEvaluate: This action is performed by the usage

control system only when the allowance of the use

is governed by a pre-authorisation rule. This action

changes the status of the use to either ‘activated’ or

‘denied’, depending on the outcome of the examined

policy rule.

– onEvaluate: In case the allowance of a use is gov-

erned by an ongoing authorisation rule, the onEval-

uate action is performed by the usage control sys-

tem. If the particular policy rule is satisfied then the

status of the use does not change. In case the policy

rule is not satisfied, the status of the use is changed

to ‘terminated’.

– Activate: This action is performed only when the

allowance of the use is governed by an ongoing au-

thorization rule. It follows the execution of the Re-

quest action and changes the status of the use from

‘requested’ to ‘activated’.

Any of the previous actions, modifythe status at-

tribute value and are considered to be atomic , i.e. a

single behavioural step. The transition system for a sin-

gle use UseCON system controlled by a pre and an on-

going authorisation policy rule is depicted in Figures 3

and 4, respectively.

Figures 3 and 4, depict that UseCON is a policy

neutral model that records the usage requests as they

are submitted by the system entities. However, a pol-

icy specification can be easily introduced with a predi-

cate (see rectangle shape in figures) that determines the

granting or not of a specific usage request. In this paper,

we provide four specifications. Two generic specifica-

tions (i.e. policy independent) where the predicate ran-

domly evaluates to TRUE or FALSE in both preUseCON

and ongoing models, with two additional policies de-

scribed in the next section. In its initial state, no uses

are exercised in the system, and thus the first state of

every behaviour must satisfy the TLA+ predicate Init.

The Init predicate defines that all the uses in the table-

variable U must be in the ‘init’ status:

Init
∆
=

U = [uid ∈ UID 7→ [status 7→ “init”]

Moreover, according to the time period that a use

request evaluation is performed, a pre-authorisation and

an ongoing-authorisation transition systems are created.

4.3.1 Pre-authorisation

The possible actions that can be performed on a pre-

authorisation UseCON system are the use request for a

new use, the evaluation of an already requested use, or

the completion of a use that is already executed. There-

fore, the next action, that describes all the possible next

states could be a request, pre-evaluate, or complete ac-

tion, described as follows:

Next
∆
= Request ∨ preEvaluate ∨ Complete

Specifying and Verifying Usage Control Models and Policies in TLA+ 9

Fig. 3 Transition system of a single use pre-authorisation UseCON model

Fig. 4 Transition system of a single use ongoing authorisation UseCON model

More specifically, the Request action specifies a ran-

dom usage request. Firstly, Request selects non deter-

ministically 1 a use identifier uid, of a usage that is

in the ‘init’ status. Consequently, Request modifies the

status attribute value from ‘init’ to ‘requested’. The

definition of the Request action is as follows:

Request
∆
=

∧ ∃ uid ∈ UID :

∧U [uid].status = “init”

∧U ′ = [U except ! [uid].status = “requested”]

The preEvaluate action examines if there are any

uses that have been requested, but have not been pro-

cessed by the usage control system. Specifically, preE-

valuate examines if there is a use instance with sta-

tus attribute value equals to ‘requested’. Consequently,

the action evaluates the policy rule that governs the

allowance of the use that the specific use instance in-

stantiates. Based on the outcome of that policy rule

the action modifies the status attribute value of the use

either to ‘activated’ or to ‘denied’, respectively.

In order to verify the correctness of the use entity

management of our specification we specify a policy-

neutral predicate by utilising the RandomElement pred-

icate of TLA+ which arbitrarily chose the value TRUE

1 The non-determinism property is implied by the use of
the ∃ operator. For comprehensive information refer to [16].

of FALSE, as follows:

PolicyNeutral(uid)
∆
= RandomElement({TRUE ,FALSE})

Therefore the specification of the preEvaluate action

follows:

preEvaluate
∆
=

∃ uid ∈ UID :

∧U [uid].status = “requested”

∧U ′ = [U except ! [uid].status =

if (PolicyNeutral(uid))

then “activated”

else “denied”]

The Complete action simulates a subject’s request

to terminate the execution of a currently active use. If

such a use exists, its status attribute value should be

equal to ‘activated’. Consequently, the ‘completed’ ac-

tion modifies the status attribute value from ‘activated’

to ‘completed’. The Complete action is defined as fol-

lows:

Complete
∆
=

∃ uid ∈ UID :

∧U [uid].status = “activated”

∧U ′ = [U except ! [uid].status = “completed”]

10 Christos Grompanopoulos et al.

4.3.2 Ongoing-authorisation

The transition system of the ongoing-authorisation Use-

CON model is differentiated from the pre-authorisa-

tion model in a number of ways. Firstly, in an ongo-

ing model, a use that is requested is permitted to be

activated without the evaluation of any policy rule. Sec-

ondly, at a given time interval 2, an ongoing action is

executed onEvaluate. Thus, the specification of the Next

action on an ongoing authorisation model has the fol-

lowing definitions:

Next
∆
=

Request ∨ onActivate ∨ onEvaluate ∨ Complete

The Activate action searches for the existence of a

use with state attribute value equal to ‘requested’ and

consequently updates it to ‘activated’.

onActivate
∆
= ∃ uid ∈ UID :

∧U [uid].status = “requested”
∧U ′ = [U except ! [uid].status = “activated”]

Whereas onEvaluate action evaluates an ongoing

policy rule and based on the result: 1) it does not up-

date the use’s state, which remains equal to ‘activated’

or 2) it modifies its state attribute value to ‘terminated’,

as follows (PolicyNeutral predicate is also utilised):

onEvaluate
∆
= ∃ uid ∈ UID :

∧U [uid].status = “activated”
∧U ′ = [U except ! [uid].status =

if (PolicyNeutral(uid))

then “activated”
else “terminated”]

The source code of the specification in TLA+ is

available on Github at [8].

5 Examples of Policies

The development of an access/usage control system is

a multi-layer process that results in the definition of

an access/usage control policy, model and mechanism

[29]. A policy declares the high level directives that reg-

ulate access to resources, while the model is a formal

representation of the system. Moreover, the mechanism

defines the low-level hardware and software functions

that implement the desired policy. UseCON is a general

purpose usage control model that is capable of support-

ing a wide range of high level policies [9]. However, to

2 The determination of the exact interval is left open as an
implementation issue.

implement a specific high-level policy using UseCON, it

requires to specify policy rules. Policy rules are required

because they are responsible for getting a decision re-

garding a usage allowance and they are represented in

our specification by predicates. A motivating scenario

that uses the pre-authorisation UseCON model follows:

Usage Scenario 1: A shareholder advice company

requires from its clients to sign a non-disclosure agree-

ment for every content they request to view. The non-

disclosure agreement action can be modeled using an

“aid1” action and the view content action with “aid2”.

Thus, the PolicyNeutral predicate in the preEvaluate

action should be replaced by another predicate to im-

plement the above policy. The predicate should be eval-

uated to true for the non-disclosure agreement action;

or will be evaluated to true for any other action only

if the non-disclosure agreement action has been com-

pleted for the same s, o tuple. Such a predicate can be

described as follows:

Policy1(u1)
∆
= ∨ u1[2] = “aid1”

∨ ∃ u2 ∈ UID : (

∧ SameSO(u1, u2)

∧ u2[2] = “aid1”

∧ U [u2].status = “completed”

where SameSO is an expression able to validate that

usages u1 and u2 consist of the same subject and ob-

ject tuple. The semantics of SameSO expression, can

be defined as follows:

SameSO(u1, u2)
∆
= ∧ u1[1] = u2[1]

∧ u1[3] = u2[3]

The rationale behind the Policy1 expression is: if

subject s requests to perform action a on object o, the

requested action permitted if and only if one of the

following holds: 1) action a is the non-disclosure agree-

ment (”aid1” id); or 2) if action a wants to view the

object (”aid2” id), the same subject should have al-

ready completed a non-disclosure agreement action in

the past on the same object.

Another usage scenario that highlights the expres-

siveness of the UseCON model and uses the ongoing

authorization model follows.

Usage Scenario 2: A multimedia content provider

has two categories of users: ’premium’ and ’free’. A

policy rule determines that whenever a free licence user

has access to an object along with a premium user, the

free licence user may be denied use of that object to

ensure a better user experience for the premium user.

Specifying and Verifying Usage Control Models and Policies in TLA+ 11

This usage scenario follows the ongoing UseCON

model, which means that when a usage is requested it

is always activated. However, periodically 3, the model

evaluates a predicate on all the activated usages. If the

predicate is evaluated to true the usage continues, oth-

erwise the use is immediately terminated. Here we as-

sume that subjects ”sid1” and ”sid2” refer to a free

and premium member, respectively, and access may be

requested by both users on the same object 4. Thus,

the PolicyNeutral predicate in the OnEvaluate action

should be replaced by another predicate to implement

the above policy. The predicate should evaluate to true

if the usage is exercised by a premium user; or if the

usage is exercised by a free member, there is no us-

age activated on the same object by a premium user.

The semantics of a predicate that implements the above

logic may be specified as follows:

Policy2(u1)
∆
= ∨ u1[1] = “sid2”
∨ ∧ u1[1] = “sid1”
∧ ¬(∃ u2 ∈ UID :

∧ u2[1] = “sid2”
∧ u1[3] = u2[3]

∧U [u2].status = “activated”)

6 Model Checking with TLC

Toolbox is an Integrated Development Environment (IDE),

which is designed for the definition and verification of

TLA+ specifications. Specifically, the toolbox editor pro-

vides functionality for the definition and alteration of

TLA+ specifications, and supports syntax highlighting.
Additionally, an automatic parser checks the defined

specifications for syntax errors and presents them ac-

cordingly by marking them in the used modules.

The tool in use for the verification of a TLA+ specifi-

cation in toolbox is the TLC model checker. Specifically,

TLC explicitly generates and computes all the possible

states of a system. However, many times the specifica-

tion of a system might contain an infinite number of

states. TLC handles such specifications, by choosing a

finite model of the system and in turn checks it thor-

oughly. Specifically, the creation of a system’s model in

TLC requires the definition of its specifications, proper-

ties and values of constant parameters. A specification

represents all the behaviours that have to be checked.

Moreover, the values assigned to constant parameters

3 The time period in which the ongoing predicates are eval-
uated is implementation-specific by the UseCON model
4 Since the specification of attributes is not present in the

current model, we express the different categories of users
through their IDs.

are utilised for the instantiation of a specification. TLC

can check a model for deadlocks, invariants and proper-

ties. A deadlock occurs when the model reaches a state

in which its next-state action allows no successor states.

An invariant is a predicate that is evaluated on a sys-

tem state. Consequently, an invariant holds on a system

specification, if and only if, every state of all the be-

haviours of a system satisfy that predicate. Properties

are temporal formulas that must be evaluated to true

for all the behaviours of the model. TLC has some lim-

itations regarding the handling of a subclass of TLA+

specifications and properties that it can check [16]. A

very helpful feature of TLC is the fact that when it iden-

tifies an error during the verification process, it provides

an error trace viewer that allows the exploration in a

structured view of the debugging information. More-

over, TLC supports an arbitrary evaluation of states

and action formulas in each step of the trace.

6.1 Use management

One of the fundamental properties that can be verified

in a system is that of type correctness. Specifically, type

correctness is considered to be an invariant which deter-

mines that all the variables of the system are assigned

with values originating only from a specific set of val-

ues. The UseCON specification uses a single variable

U which is a table, TLA+ function, with domain the

set of use identifiers, and range the set records with the

use attributes. The invariant property that defines type

correctness in the UseCON model, is defined as follows:

TypeOK
∆
= U ∈ [UID → USES]

where UID is the set of uses IDs and USES is the set

of records that specifies the use entities, as these are

described in Section 4.1.

A use is capable of recording detailed historical in-

formation about the operation of system usages. Conse-

quently, a valid implementation of the UseCON model,

where multiple use processes are operating concurrently,

depends on a proper management of the use instances

that represent these uses. Specifically, all use instances

must adhere only to the state transitions depicted in

Figures 3 and 4 for the pre-authorisation and ongoing-

authorisation models, respectively. Based on that, a

number of safety and liveness properties can be de-

fined. For example, a safety property (a faulty state

cannot be reached) states that a use instance cannot be

evaluated as ‘requested’ or ‘activated’ or ‘denied’ in its

status attribute, if it has previously been evaluated as

’completed’. The semantics in TLA+ that verify safety

properties in a pre and ongoing authorisation model

12 Christos Grompanopoulos et al.

Table 2 Safety properties in UseCON

Safety properties
Current state �¬ state

Pre Completed Init or Requested or Activated or Denied
Activated Init or Requested or Denied

Denied Init or Requested or Activated or Denied
Requested Init

Ongoing Completed Init or Requested or Activated or Denied
Activated Init or Requested

Terminated Init or Requested or Activated or Completed
Requested Init

Table 3 Liveness properties in UseCON

Liveness properties
Current state 3 state

Pre Activated Completed
Init Requested

Requested Activated or Denied
Ongoing Requested Activated

Init Requested
Activated Completed or Terminated

(depicted in Table 2) are expressed by the following

temporal formulae:

Safety Pre Completed
∆
= 2(∀ uid n ∈ UID :

U [uid n].status = “completed” =⇒
2 ¬(∨U [uid n].status = “init”

∨U [uid n].status = “requested”

∨U [uid n].status = “activated”

∨U [uid n].status = “denied”))

Safety Pre Activated
∆
= 2(∀ uid n ∈ UID :

U [uid n].status = “activated” =⇒
2 ¬(∨U [uid n].status = “init”

∨U [uid n].status = “requested”

∨U [uid n].status = “denied”))

Safety Pre Denied
∆
= 2(∀ uid n ∈ UID :

U [uid n].status = “denied” =⇒
2 ¬(∨U [uid n].status = “init”

∨U [uid n].status = “requested”

∨U [uid n].status = “activated”

∨U [uid n].status = “completed”))

Safety Pre Requested
∆
= 2(∀ uid n ∈ UID :

U [uid n].status = “requested” =⇒
2 ¬(U [uid n].status = “init”))

Safety On Completed
∆
= ∀ uid n ∈ UID :

U [uid n].status = “completed” =⇒
2 ¬(∨U [uid n].status = “init”

∨U [uid n].status = “requested”

∨U [uid n].status = “activated”

∨U [uid n].status = “terminated”)

Safety On Activated
∆
= ∀ uid n ∈ UID :

U [uid n].status = “activated” =⇒
2 ¬(∨U [uid n].status = “init”

∨U [uid n].status = “requested”)

Safety On Terminated
∆
= ∀ uid n ∈ UID :

U [uid n].status = “terminated” =⇒
2 ¬(∨U [uid n].status = “init”

∨U [uid n].status = “requested”

∨U [uid n].status = “activated”

∨U [uid n].status = “completed”)

Safety On Requested
∆
= ∀ uid n ∈ UID :

U [uid n].status = “requested” =⇒
2 ¬(U [uid n].status = “init”)

In addition, the definition of liveness properties in

the UseCON model determine all the valid state transi-

tions regarding any use instance. For example, Figure 3

presents that a use instance that has at any given state

a status attribute value that is evaluated to ’activated’,

then its attributed value must be eventually evaluated

as ’completed’. All the possible state transitions that

are eligible to be performed are depicted in Table 3.

For the pre and ongoing authorisation UseCON model

these properties can be expressed in TLA+ as follows:

Liveness Pre Activated
∆
=

∀ uid n ∈ UID : U [uid n].status = “activated”

; U [uid n].status = “completed”

Liveness Pre Init
∆
=

∀ uid n ∈ UID : U [uid n].status = “init”

; U [uid n].status = “requested”

Liveness Pre Requested
∆
=

∀ uid n ∈ UID : U [uid n].status = “requested”

; (∨U [uid n].status = “activated”

∨U [uid n].status = “denied”)

Liveness On Requested
∆
=

Specifying and Verifying Usage Control Models and Policies in TLA+ 13

∀ uid n ∈ UID : U [uid n].status = “requested”

; U [uid n].status = “activated”

Liveness On Init
∆
=

∀ uid n ∈ UID : U [uid n].status = “init”

; U [uid n].status = “requested”

Liveness On Activated
∆
=

∀ uid n ∈ UID : U [uid n].status = “activated”

; (∨U [uid n].status = “completed”

∨U [uid n].status = “terminated”)

6.2 Usage scenarios policies

Usage scenario 1 is based on the pre-authorisation and

usage scenario 2 is based on the ongoing authorisa-

tion UseCON model. Therefore, the safety and liveness

properties of those models, as defined in the previous

subsection, should also be valid in these two scenarios.

Moreover, additional policy-specific properties can

be verified in usage scenarios 1 and 2. Specifically, a

property that examines: if a subject is viewing an ob-

ject then it must already exercise the non-disclosure

agreement action. Such a property can be verified for

usage scenario 1. The aforementioned property is ex-

pressed as an invariant in TLA+ as follows:

Safety1
∆
= ∀ u1 ∈ UID :

(∧ u1[2] 6= “aid1”

∧ U [u1].status = “activated” =⇒
(∃ u2 ∈ UID :

∧ u2[2] = “aid1”

∧U [u2].status = “completed”

∧ SAMESO(u1, u2)))

where the SameSO expression has the same semantics

as in the Policy1 predicate expression.

Similarly, there are three policy-specific properties

that are expressed as TLA+ temporal formulas for us-

age scenario 2. The first property defines that a pre-

mium user will always complete her usage, and the us-

age will never be terminated by the usage control sys-

tem, unless completed. The aforementioned property

can be expressed as follows:

Liveness1Scenario2
∆
= ∀ uid ∈ UID :

(uid [1] = “sid2” ∧U [uid].status 6= “completed”) ;

(U [uid].status = “completed”)

A second property could state that the usage of a

free licence user can be completed or terminated. The

aforementioned property can be expressed as follows:

Liveness2Scenario2
∆
= ∀ uid ∈ UID : (

uid [1] = “sid1” ∧ (U [uid].status 6= “completed”

∨ U [uid].status 6= “terminated”)) ;

(U [uid].status = “completed” ∨
U [uid].status = “terminated”)

An additional third property defines that a free li-

cence user can always complete his usage if he begins

that after being completed by a premium user. The

aforementioned property can be expressed as follows:

Liveness3Scenario2
∆
= 2(∀ uid1, uid2 ∈ UID :

∧ uid1[3] = uid2[3]

∧ uid1[1] = “sid1”

∧ uid2[1] = “sid2”

∧U [uid1].status = “requested”

∧U [uid2].status = “completed” =⇒
32(U [uid1].status = “completed”))

6.3 Faulty policies

In this subsection, we consider the insertion of on a

number of faulty policies in the specification. In the

following, we revisit the above mentioned policy exam-

ples, modify them (insert faults) and investigate the

outcome of the verification process.

The predicate used to implement policy 1 (preUseCON

model) has been modified as follows:

MPolicy1(u1)
∆
=

∨ ∧ u1[2] = “aid1”

∨ ∃ u2 ∈ UID : (

∧ u1[1] = u2[1]

∧ u2[2] = “aid1”

∧ ∨U [u2].status = “activated”

∨U [u2].status = “completed”)

Compared with the original policy, this predicate

guarantees that a usage request from ”sid1” with any

action other than ”aid1” (e.g. view document) on an

object is allowed only if previously a usage of ”sid1”

with action ”aid1” (i.e. non-disclosure agreement) has

been completed. However, the predicate fails in the

sense the above mentioned usage requests are not re-

stricted on the same object. Therefore, it is possible

that subject ”sid1” may complete a non-disclosure agree-

ment usage (i.e. action ”aid1”) on any object (i.e. ”oid1”

object) and then will be able to view any object.

The model run with the following entities, i.e. sub-

ject:”sid1”, actions:”aid1”, ”aid2” and objects:”oid1”,

”oid2”) and TLC detects a violation on invariant Safety1.

Additionally, in the error trace field of the Toolbox an

14 Christos Grompanopoulos et al.

Table 4 Performance evaluation

Authorisation Uses Diameter States Distinct Termination Safety Liveness Policies
model found states

Pre

8 25 1870480 389919 00:00:22 – – –
8 25 1870220 389889 – 00:04:39 – –
8 25 1870830 389969 – – 00:01:18 –
8 25 393217 65536 – – – 00:00:22
10 31 58575316 9763305 00:00:55 – – –
10 31 58576741 9763492 – 02:52:26 – –
10 31 58577250 9763553 – – 00:35:08 –
10 31 7864321 1048576 – – – 00:00:25

Ongoing

8 25 2499671 390570 00:00:24 – – –
8 25 2499449 390538 – 00:05:04 – –
8 25 2499451 390538 – – 00:01:15 –
8 25 793153 104976 – – – 00:00:57
10 31 78123847 9765474 00:00:55 – – –
10 31 78122850 9765362 – 03:24:40 – –
10 31 78122882 9765372 – – 00:41:21 –
10 31 17845921 1889568 – – – 00:26:56

* Time in HH:MM:SS

example behaviour that violates Safety1 is provided.

Variable U holds in a state the following values:

(<<"sid1", "aid1", "oid2">> :>

[status |-> "completed"] @@

<<"sid1", "aid2", "oid2">> :>

[status |-> "init"] @@

<<"sid1", "aid1", "oid1">> :>

[status |-> "init"] @@

<<"sid1", "aid2", "oid1">> :>

[status |-> "requested"])

In the next state of the above behaviour, the last

usage (i.e. having UID ”sid1, aid2, oid1”) change its

status attribute value from ”requested” to ”activated”.

This is caused since ”sid1” has performed ”aid1” on

”oid1” (i.e. having UID ”sid1, aid1, oid2”). However,

this behaviour violates our policy since it is required for

every subject to complete a non-disclosure agreement

(compulsory) on the same object.

The predicate used to implement policy 2 (ongoing

authorisation model) has been altered in two versions.

The specification of the first follows:

MPolicy2 1(u1)
∆
=

∨ u1[1] = “sid2”
∨ ∧ u1[1] = “sid1”
∧ ¬(∃ u2 ∈ UID :

∧ u2[1] = “sid2”
∧U [u2].status = “activated”)

Compared with the original predicate, this one ter-

minates any usage requested from subject ”sid1” if a

usage from subject ”sid2” is activated on any object.

Therefore, a usage of ”sid1” will be terminated even if

”sid2” exercises a usage on a different object.

The previous alteration of the predicate violates tem-

poral formula Liveness3Scenario2. That formula states

that ”sid2” completes the usage of a specific object,

when ”sid1” requests to use that object in the future,

that usage should be allowed for completion (i.e. reach

”complete” state). This is because ”sid2” will never ask

the same usage again.

The model run with the following entities, i.e. sub-

ject:”sid1, sid2”, actions:”aid1” and objects: ”oid1, oid2”)

and TLC detects a violation of the Liveness3Scenario2

temporal formula. Variable U holds in a state the fol-

lowing values:

(<<"sid2", "aid1", "oid2">> :>

[status |-> "activated"] @@

<<"sid2", "aid1", "oid1">> :>

[status |-> "completed"] @@

<<"sid1", "aid1", "oid1">> :>

[status |-> "activated"])

In the next state of the above behaviour, the status

attribute of usage with UID ”sid1, aid1, oid1” changes

from ”activated” to ”terminated”. That happened since

usage UID ”sid2, aid1, oid2” is ”activated” despite the

fact that they are both operating on different objects.

However, this violates the temporal formula, because

”sid2” has already completed usage on object ”oid1”

(i.e. UID ”sid2, aid1, oid1”). A predicate that imple-

ments an additional alteration of policy2, follows:

MPolicy2 2(u1)
∆
= ∧ u1[1] = “sid1”
∧ ¬(∃ u2 ∈ UID :

∧ u2[1] = “sid2”
∧ u1[3] = u2[3]

∧U [u2].status = “activated”)

Specifying and Verifying Usage Control Models and Policies in TLA+ 15

Compared with the original predicate this one al-

ways terminates usages requested by subject ”sid2”.

The aforementioned predicate violates the Liveness1Scenario2

temporal formula, which states that every usage re-

quested by ”sid2” will always be completed. Indeed,

running the model with the following entities, i.e. sub-

ject:”sid1, sid2”, actions:”aid1” and objects: ”oid1”)

TLC detects a violation. A counterexample behaviour

is shown bellow in which the status variable of a ”sid2”

usage becomes terminated.

(<<"sid2", "aid1", "oid1">> :>

[status |-> "terminated"])

6.4 Performance Evaluation

The verification of the examined model was performed

using TLA+ Tool version 1.7.0 and running TLC ver-

sion 2.15 on Ubuntu 18.04. The hardware specifica-

tions of the host system are: 2x Intel(R) Xeon(R) Gold

6130 Processors; 128 GB DDR4 2666 of physical mem-

ory; and 512GB SATA3 SSD. The verification was per-

formed using the ’most’ option on the ’How to run’ field

on ToolBox.

A first set of results were collected by verifying ter-

mination states for the UseCON model. Specifically, in

a pre-authorisation UseCON model, we consider all the

uses of the model to be requested, and therefore, to be

either in the ‘activated’ state or in the ‘denied’ state.

The uses being activated were finally completed. There-

fore, the final state in every use must be ‘denied’ or

‘completed’. The TLC model checker evaluates all the

behaviours of the model and terminates when it reaches

to a deadlock, and the actions of the deadlocked be-

haviour are presented along with the attribute values in

each state. Moreover, we performed a verification of the

model against safety and liveness properties described

in Section 6.1. The verification was finished without

raising any errors5, but this applies only for the verifi-

cation of ≤ 10 uses for both the pre and ongoing au-

thorisation models. The input data used to verify each

of the authorisation models are:

– Pre model (8 uses): 2 subjects {”sid1”, ”sid2”}, 2

objects {”oid1”, ”oid2”}, 2 actions {”aid1”, ”aid2”}.
– Pre model (10 uses): 5 subjects {”sid1”, ”sid2”,

”sid3”, ”sid4”, ”sid5”}, 1 object {”oid1”}, 2 actions

{”aid1”, ”aid2”}.
– Ongoing (8 uses): 2 subjects {”sid1”, ”sid2”}, 4

objects {”oid1”, ”oid2”, ”oid3”, ”oid4”}, 1 action

{”aid1”}.
5 Termination is successful if, for all behaviours, the speci-

fication ends.

– Ongoing (10 uses): 2 subjects {”sid1”, ”sid2”}, 5

objects {”oid1”, ”oid2”, ”oid3”, ”oid4”, ”oid5”}, 1

action {”aid1”}.

Although higher numbers of uses were considered,

the verification process had to be interrupted due to the

excessive amount of time required for its completion.

When considered 12 uses the verification exceeded the

14 hours without being finished. Based on our previous

experience with TLC and large models, it might be the

case that TLC would not terminate the verification for

12 uses and generate an ’java.lang.OutOfMemoryError:

GC overhead limit exceeded’ error message – an indica-

tion of memory exhaustion, i.e. the Java virtual ma-

chine spent an excessive amount of time performing

Garbage Collection and was able to reclaim very lit-

tle heap space.

Even though we were not able to get verification

results for more than 10 uses, a system instance could

have more uses than the analysed ones. Thus, one could

argue that our analyses offer no a priori guarantees for

a system with more than 10 uses. However, an obser-

vation known as the ’small scope hypothesis’[13] states

that analysing small system instances suffices in prac-

tice since a high proportion of bugs can be found by

verifying a system for all inputs within some (usually

small) scope. A plethora of empirical studies [1,23,30]

support this hypothesis. For example, Yuan et al. [30]

analysed production failures in distributed data inten-

sive systems and showed that simple testing can prevent

most critical failures. In particular, the aforementioned

study showed that out of the 198 bug reports that were

analysed for several distributed systems, 98% of those

bugs could be triggered in a verification setting of three

or fewer processes. The small scope hypothesis has been

well supported by empirical analysis and has served as

the basis of lightweight modeling and analysis [13,31].

Based on the small scope hypothesis, we believe that

our analyses for up to 10 uses suffices for identifying

a high proportion of errors. To support this claim, we

introduced errors in our model and checked whether we

can successfully catch these within the 10 uses scope.

Our methodology is described in detail in Section 6.3

(faulty policies), where we showed that our scope was

sufficient for identifying all faults that were introduced.

The collected verification results (see Table 4) re-

quires a better understanding of the internal proce-

dures TLC is applying to compute the behaviours of

the model (i.e. generation of the transition system).

Initially, TLC computes the states that verify the Init

predicate and inserts them into a set G . For every state

s ∈ G , TLC computes all the possible states t such that

s 7→ t can be a step in a behaviour. Specifically, TLC

substitutes the values assigned to variables by state s

16 Christos Grompanopoulos et al.

for the unprimed variables of the Next action, and then

it computes all the possible assignment of values to the

primed variables that makes the Next action true. Ev-

ery state t , found by the former procedure, is added to

set G if it does not already exist. The previous two ac-

tions are repeated until no new states can be added in

G . Therefore, the verification results produced by TLC

incorporate information about: 1) the Diameter, which

describes the number of states in the longest path of

G in which no state appears twice; 2) the States found,

which describe the number of examined states; 3) the

Distinct States, which describe the number of exam-

ined distinct states. The verification results produced

by TLC for the pre and ongoing UseCON models are

presented in Table 4. An additional column presents

the actual running time of the TLC model checker in

hh:mm:ss format.

Furthermore, looking closer at the performance re-

sults in Table 4, we elaborate on a number of observa-

tions that result in strengthening our confidence with

regard to the correctness of the UseCON specification.

Firstly, the evaluation of the ongoing-authorisation model

creates a larger number of states compared with the

pre-authorisation model. This is explained by the fact

that the ongoing model contains a larger number of ac-

tions. Another useful observation is that the execution

of a policy-neutral UseCON model (i.e. pre- or ongo-

ing) has significantly more states compared with the

UseCON model that implements a specific policy. This

difference is explained by the fact that a policy intro-

duces a predicate, which restricts the next steps of a

preEvaluate or onEvaluate action. Finally, there is a

significant difference in the verification time between

the safety and the liveness properties. Specifically, the

liveness properties are verified in less time compared

with the safety ones. This difference is explained by the

fact that safety properties are using the ’always’ oper-

ator imposing the TLC model checker to verify them

in every state. While the liveness properties are verified

only on the states where the first part of the operator

is true due to the implication operator.

7 Conclusion

In this paper, we used TLA+ tools to analyse and verify

UseCON’s use management processes. Specifically, the

trace of the termination states verified that the defined

specifications of the system operate correctly and a set

of safety and liveness properties ensured the correctness

of UseCON’s transition systems and example policies.

An advantage of using model checking techniques for

the verification of usage control models is the provision

of formal guarantees with regard to the correctness of

the model, without requiring an implementation of it.

We also demonstrated how policy rules can be verified

in usage control models – specifically in UseCON – as-

suming both a pre and ongoing authorisation model.

These are of interest since a use request might lead

to a policy violation in concurrent uses. Thus, any use

request should be followed by an evaluation of all pol-

icy rules in all uses in the system to avoid conflicts

and violations. The insertion of faulty policies is also

considered to validate the correctness of the specifica-

tions. Nevertheless, known issues of model checking, i.e.

state explosion problem, prevented the timely verifica-

tion of uses when these increase in number. This re-

sulted in providing formal guarantees for the correct-

ness of UseCON for ≤ 10 uses for both the pre and

ongoing authorisation models. Considering the small

scope hypothesis, we argue that analysing small system

instances suffices in practice to find a high proportion

of bugs by verifying a system for all inputs within some

(usually small) scope. However, if stronger guarantees

are required, other options and tools may have to be

considered such as theorem provers. We anticipate our

work to shed light in the application of formal verifica-

tion techniques in the domain of usage/access control,

which could be beneficial when considering their appli-

cation in complex systems (e.g. the Cloud [11]).

Acknowledgements

We would like to thank the anonymous reviewers for

their helpful feedback that resulted in improving the

overall quality of this paper.

References

1. Andoni, A., Daniliuc, D., Khurshid, S., Marinov, D.:
Evaluating the “small scope hypothesis”. In: In Popl,
vol. 2. Citeseer (2003)

2. Backes, J., Bolignano, P., Cook, B., Dodge, C., Gacek,
A., Luckow, K., Rungta, N., Tkachuk, O., Varming, C.:
Semantic-based automated reasoning for aws access poli-
cies using smt. In: 2018 Formal Methods in Computer
Aided Design (FMCAD), pp. 1–9. IEEE (2018)

3. Black, P.E., Okun, V., Yesha, Y.: Mutation of model
checker specifications for test generation and evaluation.
In: Mutation testing for the new century, pp. 14–20.
Springer (2001)

4. Cau, A., Moszkowski, B., Zedan, H.: Interval tem-
poral logic. URL: http://www.cms.dmu.ac.uk/˜
cau/itlhomepage/itlhomepage. html (2006)

5. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F.,
Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.:
Nusmv 2: An opensource tool for symbolic model check-
ing. In: International Conference on Computer Aided
Verification, pp. 359–364. Springer (2002)

Specifying and Verifying Usage Control Models and Policies in TLA+ 17

6. Gouglidis, A., Grompanopoulos, C., Mavridou, A.: For-
mal verification of usage control models: A case study
of usecon using tla+. arXiv preprint arXiv:1806.09848
(2018)

7. Gouglidis, A., Mavridis, I., Hu, V.C.: Security policy
verification for multi-domains in cloud systems. Int. J.
Inf. Sec. 13(2), 97–111 (2014). DOI 10.1007/s10207-013-
0205-x

8. Grompanopoulos, C., Gouglidis, A.: UseCON specifi-
cation. https://github.com/agouglidis/UseCON-TLA
PLUS (2020)

9. Grompanopoulos, C., Gouglidis, A., Mavridis, I.: A use-
based approach for enhancing UCON. In: Security and
Trust Management - 8th International Workshop, STM
2012, Pisa, Italy, September 13-14, 2012, Revised Se-
lected Papers, pp. 81–96 (2012). DOI 10.1007/978-3-642-
38004-4 6

10. Holzmann, G.J.: The SPIN model checker: Primer and
reference manual, vol. 1003. Addison-Wesley Reading
(2004)

11. Hu, V., Iorga, M., Bao, W., Li, A., Li, Q., Gouglidis,
A.: General access control guidance for cloud systems.
Tech. rep., National Institute of Standards and Technol-
ogy (2020)

12. Hu, V.C., Kuhn, R., Yaga, D.: Verification and test meth-
ods for access control policies/models. NIST Special Pub-
lication 800-192 (2017). DOI 10.6028/NIST.SP.800-192

13. Jackson, D.: Software Abstractions: logic, language, and
analysis. MIT press (2012)

14. Janicke, H., Cau, A., Zedan, H.: A note on the formali-
sation of UCON. In: Proceedings of the 12th ACM sym-
posium on Access control models and technologies, SAC-
MAT ’07, pp. 163–168. ACM, New York, NY, USA (2007)

15. Lamport, L.: The temporal logic of actions. ACM
Transactions on Programming Languages and Systems
(TOPLAS) 16(3), 872–923 (1994)

16. Lamport, L.: Specifying Systems, The TLA+ Lan-
guage and Tools for Hardware and Software Engineers.
Addison-Wesley (2002)

17. Lazouski, A., Martinelli, F., Mori, P.: Usage control in
computer security: A survey. Computer Science Review
4(2), 81–99 (2010). DOI 10.1016/j.cosrev.2010.02.002

18. Lu, J., Li, R., Hu, J., Xu, D.: Static enforcement of static
separation-of-duty policies in usage control authorization
models. IEICE Transactions 95-B(5), 1508–1518 (2012)

19. Macedo, N., Cunha, A.: Alloy meets tla+: An exploratory
study (2016)

20. Martinelli, F., Mori, P.: On usage control for grid sys-
tems. Future Gener. Comput. Syst. 26(7), 1032–1042
(2010). DOI 10.1016/j.future.2009.12.005

21. Mavridou, A., Stachtiari, E., Bliudze, S., Ivanov, A.,
Katsaros, P., Sifakis, J.: Architecture-based design: A
satellite on-board software case study. In: Formal As-
pects of Component Software - 13th International Con-
ference, FACS 2016, Besançon, France, October 19-21,
2016, Revised Selected Papers, pp. 260–279 (2016). DOI
10.1007/978-3-319-57666-4 16

22. Newcombe, C., Rath, T., Zhang, F., Munteanu,
B., Brooker, M., Deardeuff, M.: Use of
formal methods at amazon web services.
https://lamport.azurewebsites.net/tla/formal-methods-
amazon.pdf (2014)

23. Oetsch, J., Prischink, M., Pührer, J., Schwengerer, M.,
Tompits, H.: On the small-scope hypothesis for testing
answer-set programs. In: Thirteenth International Con-
ference on the Principles of Knowledge Representation
and Reasoning (2012)

24. Park, J., Sandhu, R.S.: The UCONABC usage control
model. ACM Trans. Inf. Syst. Secur. 7(1), 128–174
(2004). DOI 10.1145/984334.984339

25. Pretschner, A., Ruesch, J., Schaefer, C., Walter, T.:
Formal analyses of usage control policies. In: Avail-
ability, Reliability and Security, 2009. ARES ’09. In-
ternational Conference on, pp. 98–105 (2009). DOI
10.1109/ARES.2009.100

26. Rajkumar, P., Ghosh, S., Dasgupta, P.: Concurrent usage
control implementation verification using the spin model
checker. In: N. Meghanathan, S. Boumerdassi, N. Chaki,
D. Nagamalai (eds.) Recent Trends in Network Security
and Applications, Communications in Computer and In-
formation Science, vol. 89, pp. 214–223. Springer Berlin
Heidelberg (2010). DOI 10.1007/978-3-642-14478-3 22

27. Ranise, S., Armando, A.: On the automated analysis of
safety in usage control: A new decidability result. In:
L. Xu, E. Bertino, Y. Mu (eds.) Network and System
Security, Lecture Notes in Computer Science, vol. 7645,
pp. 15–28. Springer Berlin Heidelberg (2012). DOI
10.1007/978-3-642-34601-9 2

28. Said, N.B., Abdellatif, T., Bensalem, S., Bozga, M.:
Model-driven information flow security for component-
based systems. In: From Programs to Systems. The Sys-
tems perspective in Computing, pp. 1–20. Springer (2014)

29. Samarati, P., de Vimercati, S.C.: Access control: Poli-
cies, models, and mechanisms. In: International School
on Foundations of Security Analysis and Design, pp. 137–
196. Springer (2000)

30. Yuan, D., Luo, Y., Zhuang, X., Rodrigues, G.R., Zhao,
X., Zhang, Y., Jain, P.U., Stumm, M.: Simple testing can
prevent most critical failures: An analysis of production
failures in distributed data-intensive systems. In: 11th
{USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 14), pp. 249–265 (2014)

31. Zave, P.: Using lightweight modeling to understand
chord. ACM SIGCOMM Computer Communication Re-
view 42(2), 49–57 (2012)

32. Zhang, X., Nakae, M., Covington, M.J., Sandhu, R.S.:
Toward a usage-based security framework for collabora-
tive computing systems. ACM Trans. Inf. Syst. Secur.
11(1), 3:1–3:36 (2008). DOI 10.1145/1330295.1330298

33. Zhang, X., Parisi-Presicce, F., Sandhu, R., Park, J.: For-
mal model and policy specification of usage control. ACM
Trans. Inf. Syst. Secur. 8, 351–387 (2005)

34. Zhang, X., Park, J., Parisi-Presicce, F., Sandhu, R.S.:
A logical specification for usage control. In: 9th ACM
Symposium on Access Control Models and Technolo-
gies, SACMAT 2004, Yorktown Heights, New York, USA,
June 2-4, 2004, Proceedings, pp. 1–10 (2004). DOI
10.1145/990036.990038

35. Zhang, X., Sandhu, R., Parisi-Presicce, F.: Safety anal-
ysis of usage control authorization models. In: Proceed-
ings of the 2006 ACM Symposium on Information, com-
puter and communications security, ASIACCS ’06, pp.
243–254. ACM, New York, NY, USA (2006)

36. Zhang, X., Sandhu, R.S., Parisi-Presicce, F.: Formal
model and analysis of usage control. George Mason Uni-
versity (2006)

