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Abstract In this paper, I demonstrate how to assess the heteroskedasticity prob-

lems in cross-sectional studies that use linear regression models using my Het-
eroskedasticityV3 SPSS macro. I present two illustrative examples inspired from
real research. This paper also provides the annotations of the macro outputs. In

my classroom demonstrations, students were asked to analyse data sets used in

this paper and discuss their regression results with and without implementing ro-

bust standard errors. The merits of checking for the presence of heteroskedasticity

prior to adjusting robust standard errors were also discussed in class.
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Concept to be presented

Homoskedasticity is one of the basic assumptions in OLS

(ordinary least squares) regression, which states that the

regression error terms should have the same spreads

across any values of independent variables. For simplic-

ity, let us consider a simple linear regression model of cus-

tomers’ satisfaction scores on types of customers described

by the following equation:

Satisfactioni = β0 + β1Loyali + µi (1)

for i = 1, ..., N , whereN equals the number of customers
in a random sample. Loyali is a dummy variable that
equals 1 for loyal customers and equals 0 for non-loyal
customers. The error term µi is normally distributed with
mean equals zero and variance equals V ar(µi|Loyali) =
σ2
i . The error terms are assumed to be independent, which

means that they are not correlated, i.e., Cov(µi, µj) =
0, for i 6= j. 1. For the above model, the homoskedastic-
ity assumption requires the variance of the error terms to

be constant across loyal vs. non-loyal customers. That is,

V ar(µi|Loyali = 1) = V ar(µi|Loyali = 0) = σ2
, or sim-

ply put, σ2
loyal = σ2

non−loyal. This implies that the variance

of the distribution of satisfaction scores is the same for

loyal and non-loyal customers in a population. The distri-

butions of the error terms within each group are assumed

to be normal with mean zero.

Homoskedasticity is a special case of heteroskedastic-

ity. In this particular example, error terms µi are het-
eroskedastic if the variance of the error terms for the loyal

customers is not the same as that of the non-loyal cus-

tomers, i.e., V ar(µi|Loyali = 1) 6= V ar(µi|Loyali =
0) = σ2

i , or simply put, σ
2
loyal 6= σ2

non−loyal. In general,

heteroskedasticity exists if the variance of the error is not

constant at any values of independent variables. In OLS re-

gression that assumes homoskedastic errors, the variance

of the regression parameters can be calculated according

to the following formula:

V ar(b) = σ2(XTX)−1 (2)

where b is a vector of the coefficient estimates. For two pa-
rameters as in Equation 1, b = (b0 b1)T where E(b) = β.
X is an N × K matrix of independent variables where

K is regression parameters including a constant, which

equals 2 (i.e., the intercept and the slope) in Equation (1).

The symbol σ2
denotes the variance of the error terms,

i.e., V ar(µ) = σ2
. However, when error terms are het-

1
Hereafter, I use the term residuals instead of errors if the parameters of the above model are estimated using a random sample
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Figure 1 Scatter plot of customer type and satisfaction scores.

(a) (b)

eroskedastic, the above formula to compute the standard

errors of the regression coefficients are not correct any-

more as σ2
values are not constant across values ofX . The

general form of the variance of the regression coefficients

can be seen below (see e.g., Stock & Watson, 2015; David-

son & MacKinnon, 2004; Fox, 2015):

V ar(b) = (XTX)−1XTΩX(XTX)−1 (3)

where Ω is the covariance matrix of the error terms. If

error terms are homoskedastic (Ω = σ2I, where I is the
N × N identity matrix), Equation (3) simplifies to Equa-

tion (2). My heteroskedasticityV3 macro presented in this
paper implements this general formula as a basis in calcu-

lating various options to adjust standard errors, which will

be explained later. In literature, Equation (3) is also re-

ferred as the heteroskedasticity-consistent covariance ma-

trix (HCCM)
2
and is also known as the sandwich covari-

ance matrix (Davidson & MacKinnon, 2004).
3
.

For a simple linear regression model, as we are inter-

ested in the variance of the coefficient estimate of b1, the
variance is given by the following formula:

V ar(b1) =

∑N
i=1 a

2
iσ

2
i∑N

i=1 s
2
i

(4)

For homoskedastic errors where σ2
i is the same for all

i, the variance of b1 is given by

V ar(b1) =
σ2

S2
xx

(5)

where ai = xi − x̄ (i.e., subtracting the mean of xi’s
from xi), and Sxx =

∑N
i=1 a

2
i is the sum of squares of the

ai’s. These results are covered in the textbooks mentioned
above and presented here to make readers aware of the

subtle differences in the formula for computing standard

errors for b1 when heteroskedasticity exists (Equation (4))
and when it does not (Equation (5)). I present the details of

these derivations in the appendix.

The homoskedastic vs. heteroskedastic regression sit-

uations are typically explained using a graphical method.

Figure 1 provides an illustration. In Panel A of Figure 1, the

variance of satisfaction scores of loyal customers is roughly

equal to that of the loyal customers. This is indicated by the

non-significant difference in the standard deviations of the

satisfaction scores between the two groups of customers.

As shown in the figure, the vertical spreads of satisfaction

across the two groups are relatively equal. Equal spreads

in the satisfaction scores implies that the regression residu-

als will also have the same spreads. Thus, Panel A exhibits

homoskedastic errors situations.
4

In Panel B of Figure 1, the variance of satisfaction

scores across the two groups of customers are unequal.

As can be seen in the figure, the vertical spreads of

the satisfaction scores across the two groups are un-

equal—satisfaction scores are more spread out for loyal

customers than those for non-loyal customers. Unequal

spreads in the satisfaction scores implies that the regres-

sion residuals will also have unequal spreads (Stock &Wat-

son, 2015). Thus, Panel B exhibits heteroskedastic error sit-

uations. In both panels, simple regression lines and coeffi-

2
The word ’corrected’ is also popular instead of ’consistent’.

3
Due to the fact thatXT ΩX is placed between two slices of (XTX)−1

.

4
Instead of plotting the actual values, boxplots are recommended to use as it contains more information about data e.g., skewness, outliers, median,

min and max values.
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cient estimates were also plotted. Readers can easily verify

the relationship between the coefficient estimates and the

mean satisfaction scores of loyal vs. non-loyal customers.

When heteroskedasticity problem exists, the standard

errors of the OLS regression coefficients will be biased.

However, the regression coefficients will still be unbiased

(i.e., over repeated samples, on average the estimates will

be equal to population parameters) and OLS is still consis-

tent (i.e., will get closer to population parameters as sam-

ple gets larger) (Stock & Watson, 2015). If regression er-

rors are heteroskedastic but standard OLS is applied, the

t and F test used to test hypotheses and confidence inter-

vals associated with regression coefficients are wrong be-

cause the standard errors are wrong. Subsequently, OLS

results could lead to an erroneous conclusion in regard to

hypothesis testing. For example, non-significant relation-

ship in a population can be significant in a samplewith het-

eroskedastic errors. A simple remedy that has been recom-

mended in the literature is to adjust the standard errors us-

ing the heteroskedasticity-adjusted or robust standard er-

rors (Stock & Watson, 2015).
5

This tutorial aims to demonstrate the use of my Het-
eroskedasticityV3 SPSS macro to assess the impact of the
heteroskedasticity problems on hypothesis testing. The

macro allow users to eyeball the OLS results with or with-

out the heteroskedasticity adjusted-standard errors simul-

taneously for a direct comparison. In addition, the macro

produces outputs that includes results of heteroskedastic-

ity tests (i.e., Breusch - Pagan and Koenker tests) and a

graphical output for the assessment of the potential pres-

ence of heteroskedasticity. This tutorial provides two il-

lustrative examples with hypothetical data sets that can be

used in a classroom demonstration. In the next section, I

explain the features of the macro and present two illustra-

tive examples.

The HeteroskedasticityV3macro

My HeteroskedasticityV3 macro is written in both spd and
spe format. As mentioned previously, it produces results of

OLS with and without adjusted-standard errors, contains

heteroskedasticity tests and automatically produces a scat-

ter plot of fitted values vs. residuals. The Heteroskedas-
ticityV3 macro will appear in SPSS drop-down menu after
being installed and outputs standard OLS results and those

with heteroskedasticity-adjusted standard errors.

There are four options available on the macro for ad-

justing the standard errors due to the heteroskedasticity of

unknown form: HC0, HC1, HC2, HC3, and HC4. HC0 is the

well-known White’s estimator (White, 1980). In HC0, the

error termΩ in the HCCM of Equation (3) was estimated by
the variance of the OLS residuals (e2i ). HC1 and HC2 were

developed by MacKinnon and White (1985). HC1 improves

HC0 by adjusting for the degrees of freedom, i.e.,
N

N−K .

HC2 modified HC1 by adjusting for the leverage value of

observations (hi). These h
′
is lie in the main diagonal of the

projection matrix P = X(XTX)−1XT
. HC3 and HC4 was

developed by Davidson andMacKinnon (1993) and Cribari-

Neto (2004), respectively. HC3 modified HC2 slightly and

HC4 modified HC3 by adjusting residuals with a leverage

factor. I present the modifications of the matrix Ω to esti-
mateXTΩX to calculate each of these options below:

ΩHC0 = diag(ei
2) (6)

ΩHC1 =
N

N −K
diag(ei

2) (7)

ΩHC2 = diag

(
ei

2

1− hi

)
(8)

ΩHC3 = diag

(( ei
2

1− hi

)2)
(9)

ΩHC4 = diag

(
ei

2

(1− hi)δi

)
, δi = min

{
4,
Nhi
K

}
(10)

Based on simulation study of Long and Ervin (2000),

they found that HC3 performs well in a small sample (N ≤
250) - the statistical power associated with testing a hy-
pothesis is higher than that of other adjustments. Later

Cribari-Neto (2004) demonstrated that HC4 performs well

with small samples and recommended researchers to use

it when observations have a high leverage values and er-

rors are not normally distributed. For these reasons HC4 is

set as a default of the macro. (More detail explanations of

each of these options and their differences can be read in

the following articles: Hayes and Cai; Curto, Pinto, Morais,

and Lourenço; Rosopa, Schaffer, and Schroeder; MacKin-

non, 2007, 2011, 2013, 2013).

The HeteroskedasticityV3 macro reports the results of
two statistical tests commonly used to test the homoskedas-

ticity assumption, namely the Breusch-Pagan (BP) and

Koenker tests. The results of the two outputs could differ

because BP is a large sample test and is not suitable for

small samples. If data is non-normal, which is more real-

istic in real settings (Koenker, 1981), users should rely on

the results of the Koenker test. For this particular data,

both tests are significant, showing that heteroskedasticity

is present. As the heteroskedasticity is present in the data,

as mentioned in the introduction, the standard errors, p-

values and confidence intervals associated with the regres-

sion coefficients are not correct anymore. It is important to

note that, the conclusions are based on p-values and false

conclusions can occur due to a lack of statistical power.

Past studies shows that Koenker test outperforms BP test

in terms of power (Lyon & Tsai, 1996).

5
I used the word ’adjusted’ and ’robust’ interchangebly throughout the text as both terms are equally popular in literature.
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Figure 2 The HeteroskedasticityV3 macro

Illustration 1: The effects of types of customers on sat-
isfaction

To illustrate the heteroskedasticity problem, it is best to

start with a simple linear regression model with a dummy

(0,1) independent variable and a continuous dependent

variable. This is because the variance or the standard

deviation of the dependent variable and residuals can be

easily calculated at the two discrete values of the dummy

variable allowing users to inspect the differences in stan-

dard deviations of the dependent variable. Furthermore,

as two independent samples t-test was usually taught prior

to learning regression, usersmight recall and relate the use

of the Levene’s test of the equality of variances to the tests

commonly used in the context of linear regression mod-

els. However, as stated by Rosopa et al. (2013) "Levene’s

(1960) test may not have adequate statistical power to de-

tect violations of the homogeneity of variance assumption

when testing for the equality of two independent means."

(p. 347).

To this end, I use satisfaction scores as a dependent

variable and types of customer as a dummy (0,1) indepen-

dent variable with two groups: loyal vs. non-loyal cus-

tomers. For example, loyal customers are those who holds

loyalty memberships and non-loyal customers are regular

customers that do not possess loyalty cards. In essence, I

am using the simple linear regression model shown ear-

lier in Equation (1). For this illustration, the macro input is

shown in Figure 2.

Data for this illustration (satisfaction.sav) is generated

using SPSS syntax in an sps format (see Listing 1) or R

codes (see Listings 2). The SPSS syntax format is suitable

for those that has no or limited background in R. In both

formats, users can modify parameters in the codes to suit

their modelling purposes. The satisfaction scores for loyal

vs. non-loyal of customers were generated according to

a normal distribution with different means and standard

deviations. Heteroskedasticity is infused to the data by

setting the standard deviation of the satisfaction scores of

loyal customers to be higher than that of non-loyal cus-

tomers. Hence, the form of the heteroskedasticity is known

beforehand. In reality, the form of the heteroskedasticy

in mostly unknown. The mean satisfaction scores of the

loyal customers are also set to be higher than that of the

non-loyal customers reflecting a more realistic situation

(see e.g., Meyer-Waarden, 2008). In the generated sample,

the means and standard deviations of satisfaction scores

of the two groups are: Mloyal = 2.979, SDloyal = 0.334;
Mnon−loyal = 6.829, SDnon−loyal = 0.784. Conducting
the two–independent samples t-test on the data, the Lev-

ene’s test of the equality of variances will be rejected while

mean difference is significant.

Interpretations of the HeteroskedasticityV3 outputs

The outputs can be seen in Listings 3 (see appendix) and

will be annotated as follows. First, the macro produces

information on the name of the dependent variable (line

8) and the R2
value (line 11). The OLS outputs under ho-

moskedasticity and heteroskedasticity assumption are pre-

sented in lines 13-16 and lines 19 - 21, respectively. The

The Quantitative Methods for Psychology v112
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outputs report the coefficient estimates (b), standard er-

rors (se), t-values (t), p - value (sig) and the lower (95%LB)

and upper bound (95%UB) of the 95% confidence interval.

The default option for heteroskedasticity-adjusted or ro-

bust standard errors is HC4 and is noted in line 23. For

this example, as expected, the coefficient estimates for cus-

tomer type denoted by variable grp in the outputs are un-
changed after their standard errors are adjusted.

6
The

standard error for the intercept after the adjustment is

slightly lower than that of without adjustment, while the

standard errors before and after the adjustment is rela-

tively the same. Thus, for hypothesis testing, the conclu-

sion regarding the significance of customer type (p = 0.000)

is unchanged after adjustment. The ANOVA table fromOLS

with robust standard error is presented in lines 26 - 29.

Lines 33 - 59 produce outputs for the Breusch - Pa-

gan and Koenker test. Important results are presented

in lines 53 - 55. For this particular example, both tests

are significant (p = 0.000) indicating the potential presence

of heteroskedasticity. To augment this analysis, the Het-
eroskedasticityV3 also produces a scatter plot of fitted val-
ues and residuals placed at the end of the output page. I

have modified the plot and presented it earlier in the Panel

B of Figure 1. As been previously explained, the scatter plot

suggests that the regression error terms are heteroskedas-

tic as the residuals are more spread out for loyal customers

than those for non-loyal customers.

It is important to note that some researchers (see e.g.,

Ng & Wilcox, 2011; Long & Ervin, 2000; Stock & Wat-

son, 2015) do not recommend to perform heteroskedas-

ticity tests as it can lead to poor control over Type I

errors. Instead, they recommend to directly apply the

heteroskedasticity-adjusted standard errors without prior

testing for the homoskedasticity assumption as accord-

ing to them applying the standard error adjustment "..of-

fer reasonable control over Type I errors under both ho-

moscedasticity and heteroscedasticity" (Ng &Wilcox, 2011,

p. 256). However, as pointed out by Wooldridge (2013), re-

gardless of sample size, if the homoskedasticity assump-

tion is not rejected, then the t-statistics from OLS will

have an exact t distributions (Wooldridge, 2013, p. 273)
and t statistics calculated using adjusted-standard errors
in small samples will not be exactly distributed accord-

ing to t distributions. Thus, there is an advantage of ap-
plying heteroskedasticity tests. For large cross-sectional

data, Wooldridge (2013) recommends to always report the

heteroskedasticity-adjusted standard errors together with

the usual OLS standard errors. My HeteroskedasticityV3
macro conveniently facilitates this task for users as both

results are presented simultaneously in the outputs.

Illustration 2: The effects of team characteristics on
team stability

For the second illustration (slotegraaf.sav), I chose group

dynamics as a research context. When I used this exam-

ple in my class, I pointed out to my students that this is

a realistic setting that might occur to them when work-

ing in a group on their coursework. This illustration is

inspired by a research paper by Slotegraaf and Atuahene-

Gima (2011) that examined the decision-making processes

of cross-functional teams defined as a group of workers of

different management functions responsible for executing

a project. Data for this illustration was generated from a

correlation matrix reported in Slotegraaf and Atuahene-

Gima (2011). Among several constructs reported in the pa-

per, I chose three constructs that would be easy to grasp

without reading the article prior to the class. These con-

structs are project team stability, project team size and

project team-level debate. In the data set, these constructs

are represented with variables tstability, teamsize and tde-

bate, respectively. My aim is to examine the influence of

two team characteristics (i.e., project team size and project

team level debate) on project team stability. By using the

HeteroskedasticityV3 macro, I want to show how control-
ling for heteroskedasticity could alter initial research con-

clusions derived from standard OLS that violates the ho-

moskedasticity assumption. There are two hypotheses be-

ing tested. In the first hypothesis, team size is predicted to

be negatively related to team stability – a large team could

be unstable (e.g., members come and go during a project).

In the second hypothesis, team-level debate is predicted to

be negatively related to team stability – heated debates can

make a team unstable (e.g., members resign).

Listing 4 shows the macro outputs. As can be seen

in the standard OLS outputs. Both predictor variables

(i.e., teamsize and tdebate) are significant (bteamsize =
0.514, p = 0.042; btdebate = −0.489, p = 0.036). Note
that despite being significant, the sign of bteamsize is posi-
tive, which is counterintuitive and contradicts our hypoth-

esis. After applying the heteroskedasticity-robust standard

errors, results show that team size and team-level debate

are no longer significant although the p-value of the later

is very close to being significant (bteamsize = 0.514, p =
0.128; btdebate = −0.489, p = 0.054). The scatter plot of
the fitted values vs. residuals is presented in Figure 3. The

plot suggests that heteroskedasticity may be present in the

data as the vertical spread of the residuals gets larger as

the fitted value increases. In fact, the residuals on the left

of the plot, i.e., below fitted values = -1, appear to be very

cluttered compared to those on the right. This graphical

inspection is confirmed by the results of the Breusch - Pa-

6
Note that grp is a 0, 1 dummy variable – dummy variable should be coded as 0 or 1.
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Figure 3 Scatter plot of fitted values of tstability vs. residuals

gan and Koenker test where both tests were significant (p

< 0.05).

Note that for this illustration, data was generated using

information reported in a published paper (correlations,

means and standard deviations)
7
. The heteroskedasticity

that was detected was inherent in the generated data and

its form is unknown. For the sake of learning, users can

generate data by specifying how heteroskedasticity arises,

for example by setting residuals variance depends on an

independent variable. This task is more convenient to do

in R than SPSS as the whole analysis as reported above

can be coded in one script. I provided the R codes shown

in Listing 5 to show one way of generating data with het-

eroskedasticity of known forms.
8
.

In-classroom activities

The materials in this paper have been largely used in my

classroom demonstrations at postgraduate-level module

on applied quantitative research methods - without pre-

senting mathematical formulas and derivations. In my

class, first, I explained the concept of heteroskedasticity us-

ing the satisfaction. sav data. Next, students were asked to

analyse the slotegraaf.sav presented in this paper and dis-

cuss their regression results with and without implement-

ing robust standard errors. Next, themerits of checking for

the presence of heteroskedasticity prior to adjusting robust

standard errors were discussed. This strategy of teaching

heteroskedasticity were well-received by my students who

did not have strong background in statistics. One infor-

mal feedback I received was that "This is a difficult concept

which is in need of the knowledge of statistics, but the in-

structor uses detailed and simple explanations to help us

understand". Other students including two PhD students

and one of my colleagues praise the simplicity of using the

macro and the lay-out of the outputs that present the OLS

results with and without adjusted standard errors next to

each other.

Conclusion

Heteroskedasticity problems remain a challenging topic in

regression as well as challenging task in explaining the

concept to non-statistical oriented audiences. In fact, after

several decades since the seminal paper by White (1980)
9
,

the topic of finding new statistical methods to test and con-

trol for heteroskedasticity of an unknown form in cross-

sectional data remains an active area of research (see e.g.,

MacKinnon, 2013; Lu & Wooldridge, 2020). For those who

want to deepen their knowledge further, I recommend

them to read these particular articles: MacKinnon (2013),

Rosopa et al. (2013), Hayes and Cai (2007), which have been

mentioned in previous sections.

Lastly, In this paper I have introduced my Het-
eroskedasticityV3 SPSS macro to deal with heteroskedas-
ticity problems in linear regression models that use cross-

7
The sample size of the generated data was much smaller than that of reported in the published paper.

8
Thanks to an anonymous reviewer who shared his/her R codes to replicate results of illustration 2 lines (18 - 41) modified in Listing 5.

9
or Eicker-Huber-White’s estimator to honour White (1980)’s predecessors: Eicker (1967) and Huber (1967).
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sectional data. As aforementioned in the previous para-

graph, the macro includes two statistical tests commonly

used in practice (i.e., Breusch - Pagan and Koenker test),

four heteroskedasticity adjusted-standard error options to

control for heteroskedasticity and a scatter plot of fitted

values vs. residuals. My aim is that the macro would

be useful for applied researchers, practitioners and gradu-

ate students to assess heteroskedasticity problems in their

works using SPSS.
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Appendix

Listing 1: SPSS syntax to generate data for illustration 1

1 SET RNG=MC SEED=2000000.
2 MATRIX.
3

4 /*** You can modify this part.
5 COMPUTE nobs = 100. /* set the number of observations/cases.
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6 COMPUTE one= make(nobs,1, 1). /*create a dummy variable ’1’.
7 COMPUTE two= make(nobs,1, 0). /*create a dummy variable ’0’.
8 COMPUTE mu1 = 7. /*set the mean of group 1.
9 COMPUTE sd1 = 0.8. /*set the standard deviation of group 1.
10 COMPUTE mu2 = 3. /*set the mean of group 2.
11 COMPUTE sd2 = 0.3. /*set the standard deviation of group 1.
12

13 /*** Don’t modify this part.
14 COMPUTE x = UNIFORM(nobs,2). /* generate uniform random variates.
15 COMPUTE z = -ln((1/x)-1)/1.702. /* transform to standard normal.
16 COMPUTE x1 = mu1 + z(:, 1)*sd1. /* convert std normal to normal.
17 COMPUTE x2 = mu2 + z(:, 2)*sd2. /* convert std normal to normal.
18 COMPUTE x1 = t({one, x1}).
19 COMPUTE x2 = t({two, x2}).
20 COMPUTE mydata =t({x1, x2}). /* tidy up the data.
21 SAVE mydata/OUTFILE =* / VARIABLES = grp, Y.
22 END MATRIX.

Listing 2: R codes to generate data for illustration 1

1 library(tidyverse)
2 library(haven)
3 library(fastDummies)
4 set.seed(1233)
5

6 # Generate data.
7 nobs <- 100
8 m.loy <- 7
9 sd.loy <- 0.8
10 m.nonloy <- 3
11 sd.nonloy <- 0.3
12 loyal <- rnorm(nobs, m.loy, sd.loy)
13 non_loyal <- rnorm(nobs, m.nonloy, sd.nonloy)
14

15 # Combine loyal and non_loyal and make it tidy.
16 dat <- data.frame(loyal) % > %
17 mutate(non_loyal) % > %
18 gather(key = "grp", value = "satisfaction") % > %
19 mutate(grp = as.factor(grp))
20

21 # Create dummy variable for grp.
22 dat <- dummy_cols(dat, select_columns = c(’grp’),
23 remove_selected_columns = FALSE)
24

25 # Store data into SPSS .sav format.
26 write_sav(dat,"/Users//Documents/Data/satisfaction.sav")
27 view(dat)

Listing 3: Outputs from the heteroskedasticity macro for illustration 1

1 Run MATRIX procedure:
2
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3 written by Ahmad Daryanto
4

5 Original Regression model:
6

7 Dependent variable
8 Y
9

10 R-square
11 .912
12

13 OLS outputs
14 b se t sig 95%LB 95%UB
15 constant 2.9790 .0603 49.4180 .0000 2.8602 3.0979
16 grp 3.8503 .0853 45.1633 .0000 3.6822 4.0184
17

18 OLS outputs with heteroskedasticity-robust standard errors:
19 b se t sig 95%LB 95%UB
20 constant 2.9790 .0334 89.1141 .0000 2.9131 3.0450
21 grp 3.8503 .0853 45.1633 .0000 3.6822 4.0184
22

23 * Note: standard error is HC4 variant
24

25

26 ------- ANOVA TABLE --------
27 SS df MS F Sig
28 Model 741.2307 1.0000 741.2307 2039.7248 .0000
29 Residual 71.9527 198.0000 .3634 -999.0000 -999.0000
30

31 ============================================
32

33 Breusch-Pagan and Koenker test
34

35 ============================================
36

37 The tests use the scaled residuals from the original OLS above with no adjustment
to standard errors.

38

39 OLS outputs
40 b se t sig 95%LB 95%UB
41 constant .3075 .1800 1.7087 .0891 -.0474 .6624
42 grp 1.3850 .2545 5.4415 .0000 .8830 1.8869
43

44 R-square
45 .130
46

47 ------- ANOVA TABLE --------
48 SS df MS F Sig
49 Model 95.9048 1.0000 95.9048 29.6096 .0000
50 Residual 641.3171 198.0000 3.2390 -999.0000 -999.0000
51

52 ---- Breusch-Pagan and Koenker test statistics and sig-values
53 LM Sig
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54 BP 47.9524 .0000
55 Koenker 26.0179 .0000
56

57 Null hypothesis:heteroskedasticity not present (homoskedasticity).
58 If sig-value less than 0.05, reject the null hypothesis.
59 Note: Breusch-Pagan test is a large sample test and assumes the residuals to be

normally distributed.

Listing 4: Outputs from the heteroskedasticity macro for illustration 2

1 Run MATRIX procedure:
2

3 written by Ahmad Daryanto
4

5 Original Regression model:
6

7 Dependent variable
8 tstabili
9

10 R-square
11 .438
12

13 OLS outputs
14 b se t sig 95%LB 95%UB
15 constant-1.9779 .8161 -2.4237 .0268 -3.6996 -.2561
16 teamsize .5143 .2335 2.2028 .0417 .0217 1.0068
17 tdebate -.4892 .2153 -2.2724 .0363 -.9435 -.0350
18

19 OLS outputs with heteroskedasticity-robust standard errors:
20 b se t sig 95%LB 95%UB
21 constant-1.9779 1.0462 -1.8906 .0759 -4.1851 .2294
22 teamsize .5143 .3210 1.6020 .1276 -.1630 1.1915
23 tdebate -.4892 .2366 -2.0682 .0542 -.9883 .0099
24

25 * Note: standard error is HC4 variant
26

27 ------- ANOVA TABLE --------
28 SS df MS F Sig
29 Model 9.4623 2.0000 4.7312 6.6345 .0074
30 Residual 12.1230 17.0000 .7131 -999.0000 -999.0000
31 ============================================
32

33 Breusch-Pagan and Koenker test
34

35 ============================================
36 The tests use the scaled residuals from the original OLS above with no adjustment

to standard errors.
37 OLS outputs
38 b se t sig 95%LB 95%UB
39 constant 3.6622 1.4044 2.6077 .0184 .6992 6.6251
40 teamsize 1.1915 .4018 2.9657 .0087 .3439 2.0392
41 tdebate .6581 .3705 1.7763 .0936 -.1236 1.4398
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42

43 R-square
44 .370
45

46 ------- ANOVA TABLE --------
47 SS df MS F Sig
48 Model 21.0477 2.0000 10.5238 4.9830 .0074
49 Residual 35.9029 17.0000 2.1119 -999.0000 -999.0000
50

51 --- Breusch-Pagan and Koenker test statistics and sig-values
52 LM Sig
53 BP 10.5238 .0052
54 Koenker 7.3916 .0248
55

56 Null hypothesis:heteroskedasticity not present (homoskedasticity).
57 If sig-value less than 0.05, reject the null hypothesis.
58 Note: Breusch-Pagan test is a large sample test and assumes the residuals to be

normally distributed.

Listing 5. R codes to generate data with heteroskedasticity of known forms

1 # R codes related to Illustration 2
2 # Residual variance depends on the values of iv.
3

4 rm(list=ls())
5 library(lmtest)
6 library(sandwich)
7

8 obs <- 200 # number of observations
9 sigma.sq <- 0.2 # set variance
10

11 # generate variables
12 teamsize <- rnorm(obs,10,2)
13 tdebate <- rnorm(obs,7,3)
14 ve <- sigma.sq*teamsize # set error variance
15 error <- rnorm(obs, 0, sqrt(ve))
16 tstability <- 0.2 - 0.3*teamsize - 0.4*tdebate + error
17

18 #OLS regression
19

20 reg.model <- lm(tstability ~ teamsize + tdebate)
21 summary(reg.model)
22 par(mfrow = c(2, 2))
23 plot(reg.model, ask=FALSE)
24

25 # Breusch − Pagan test
26 bp <- bptest(tstability ~ teamsize + tdebate, varformula = NULL, studentize = FALSE

, data = list())
27 bp
28

29 # Koenker test
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30 kt <- bptest(tstability ~ teamsize + tdebate, varformula = NULL, studentize = TRUE,
data = list())

31 kt
32

33 # calculate robust standard errors
34 coeftest(reg.model,vcov = vcovHC(reg.model,type="HC4"))
35

36 #compute 95%CI for robust se
37 covariance <- vcovHC(reg.model, type = "HC4")
38 t.critical <-qt(c(0.025,0.975),summary(reg.model)$df[2])
39 se <- sqrt(diag(covariance))
40 robust.ci <-coef(reg.model) + se %o% t.critical
41 robust.ci

Deriving the standard error of b1 of a simple linear regression

Let ai be xi − x̄ and Sxx =
∑N
i=1 a

2
i . The estimate of b1 is given by (see e.g., Wooldridge, 2013):

b1 =

∑N
i=1 aiyi
Sxx

= β1 +

∑N
i=1 aiµi
Sxx

(11)

where yi = β0 + β1xi + µi, µi ∼ N(0, σ2
i ), Cov(µi, µj) = 0 for i 6= j, i = 1, 2, ..., N. β0 and β1 are the population

parameters.

Using the last term of Equation 11 and taking the conditional variance:

V ar(b1|X) = V ar((β1 +

∑N
i=1 aiµi
Sxx

)|X)

=

∑N
i=1 a

2
iσ

2
i

S2
xx

.

(12)

This result is obtained using the fact that we are taking the conditional variance on data assumed to be fixed despite

being drawn randomly from a population, hence Sxx is also not a random variable. Furthermore, β1 is a population
regression parameter, which is a constant and mostly unknown – otherwise, we do not need to estimate it. We use

the following properties of variance to get the final form: V ar(a) = 0, V ar(aX) = a2V ar(X), where a is a constant;

V ar(
∑N
i=1 aiµi) =

∑N
i=1 a

2
iV ar(µi) (i.e., the sum of the variance is the variance of the sum), and ai is a constant.

Back to Equation 12, if errors are homoskedastic, σ2
i = σ2

for all i, then the variance of b1 is given by:

V ar(b1|X) =

∑N
i=1 a

2
iσ

2

S2
xx

=
σ2

Sxx

(13)

Macro Installation

The heteroskedasticity SPSS macro is available both in .spd and .spe formats, which can be downloaded on my google

website
10
or the journal’s website. The .spd file can be installed on SPSS under version 24, 25 and 26. The recent version

27, SPSS does not accept the .spd file anymore but only the .spe format. The .spd file can be installed by simply double

clicking the file. Alternatively, use the pull-down menu by clicking: Extensions→ Utilities→ Install Custom Dialog. The
.spe file can be installed by clicking Extensions→ Install Local Extension Bundle.

Open practices

The Open Data badge was earned because the data of the experiment(s) are available on the journal’s web site.
The Open Material badge was earned because supplementary material(s) are available on the journal’s web site.
10
https://sites.google.com/view/ahmaddaryanto/spss-macros/heteroskedasticity
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