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Abstract

In this paper, I demonstrate how to assess the heteroskedasticity problems in

cross-sectional studies that use linear regression models using my HeteroskedasticityV3

SPSS macro. I present two illustrative examples inspired from real research. This paper

also provides the annotations of the macro outputs. In my classroom demonstrations,

students were asked to analyse data sets used in this paper and discuss their regression

results with and without implementing robust standard errors. The merits of checking

for the presence of heteroskedasticity prior to adjusting robust standard errors were also

discussed in class.
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Tutorial on Heteroskedasticity using HeteroskedasticityV3 SPSS macro

Introduction

Homoskedasticity is one of the basic assumptions in OLS (ordinary least squares)

regression, which states that the regression error terms should have the same spreads

across any values of independent variables. For simplicity, let us consider a simple linear

regression model of customers’ satisfaction scores on types of customers described by

the following equation:

Satisfactioni = β0 + β1Loyali + µi (1)

for i = 1, ..., N , where N equals the number of customers in a random sample.

Loyali is a dummy variable that equals 1 for loyal customers and equals 0 for non-loyal

customers. The error term µi is normally distributed with mean equals zero and

variance equals V ar(µi|Loyali) = σ2
i . The error terms are assumed to be independent,

which means that they are not correlated, i.e., Cov(µi, µj) = 0, for i 6= j. 1. For the

above model, the homoskedasticity assumption requires the variance of the error terms

to be constant across loyal vs. non-loyal customers. That is,

V ar(µi|Loyali = 1) = V ar(µi|Loyali = 0) = σ2, or simply put, σ2
loyal = σ2

non−loyal. This

implies that the variance of the distribution of satisfaction scores is the same for loyal

and non-loyal customers in a population. The distributions of the error terms within

each group are assumed to be normal with mean zero.

Homoskedasticity is a special case of heteroskedasticity. In this particular

example, error terms µi are heteroskedastic if the variance of the error terms for the

loyal customers is not the same as that of the non-loyal customers, i.e.,

V ar(µi|Loyali = 1) 6= V ar(µi|Loyali = 0) = σ2
i , or simply put, σ2

loyal 6= σ2
non−loyal. In

general, heteroskedasticity exists if the variance of the error is not constant at any

values of independent variables. In OLS regression that assumes homoskedastic errors,

1 Hereafter, I use the term residuals instead of errors if the parameters of the above model are

estimated using a random sample
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the variance of the regression parameters can be calculated according to the following

formula:

V ar(b) = σ2(XTX)−1 (2)

where b is a vector of the coefficient estimates. For two parameters as in Equation

1, b = (b0 b1)T where E(b) = β. X is an N ×K matrix of independent variables where

K is regression parameters including a constant, which equals 2 (i.e., the intercept and

the slope) in Equation (1). The symbol σ2 denotes the variance of the error terms, i.e.,

V ar(µ) = σ2. However, when error terms are heteroskedastic, the above formula to

compute the standard errors of the regression coefficients are not correct anymore as σ2

values are not constant across values of X. The general form of the variance of the

regression coefficients can be seen below (see e.g., Davidson & MacKinnon, 2004; Fox,

2015; Stock & Watson, 2015):

V ar(b) = (XTX)−1XTΩX(XTX)−1 (3)

Where Ω is the covariance matrix of the error terms. If error terms are

homoskedastic (Ω = σ2I, where I is the N ×N identity matrix), Equation (3) simplifies

to Equation (2). My heteroskedasticityV3 macro presented in this paper implements

this general formula as a basis in calculating various options to adjust standard errors,

which will be explained later. In literature, Equation (3) is also referred as the

heteroskedasticity-consistent covariance matrix (HCCM) 2 and is also known as the

sandwich covariance matrix (Davidson & MacKinnon, 2004).3

For a simple linear regression model, as we are interested in the variance of the

coefficient estimate of b1, the variance is given by the following formula:

2 the word ’corrected’ is also popular instead of ’consistent’.

3 Due to the fact that XT ΩX is placed between two slices of (XT X)−1.
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V ar(b1) =
∑N
i=1 a

2
iσ

2
i

S2
xx

(4)

For homoskedastic errors where σ2
i is the same for all i, the variance of b1 is given

by:

V ar(b1) = σ2

Sxx
(5)

Where, ai = xi − x̄ (i.e., subtracting the mean of xi’s from xi), and Sxx = ∑N
i=1 a

2
i

is the sum of squares of the ai’s. These results are covered in the textbooks mentioned

above and presented here to make readers aware of the subtle differences in the formula

for computing standard errors for b1 when heteroskedasticity exists (Equation (4)) and

when it does not (Equation (5)). I present the details of these derivations in the

appendix.

The homoskedastic vs heteroskedastic regression situations are typically explained

using a graphical method. Figure 1 provides an illustration. In Panel A of Figure 1, the

variance of satisfaction scores of loyal customers is roughly equal to that of the loyal

customers. This is indicated by the non-significant difference in the standard deviations

of the satisfaction scores between the two groups of customers. As shown in the figure,

the vertical spreads of satisfaction across the two groups are relatively equal. Equal

spreads in the satisfaction scores implies that the regression residuals will also have the

same spreads. Thus, Panel A exhibits homoskedastic errors situations.4

In Panel B of Figure 1, the variance of satisfaction scores across the two groups of

customers are unequal. As can be seen in the figure, the vertical spreads of the

satisfaction scores across the two groups are unequal—satisfaction scores are more

spread out for loyal customers than those for non-loyal customers. Unequal spreads in

the satisfaction scores implies that the regression residuals will also have unequal

spreads (Stock & Watson, 2015). Thus, Panel B exhibits heteroskedastic error

4 Instead of plotting the actual values, boxplots are recommended to use as it contains more

information about data e.g., skewness, outliers, median, min and max values.
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situations. In both panels, simple regression lines and coefficient estimates were also

plotted. Readers can easily verify the relationship between the coefficient estimates and

the mean satisfaction scores of loyal vs. non-loyal customers.

When heteroskedasticity problem exists, the standard errors of the OLS regression

coefficients will be biased. However, the regression coefficients will still be unbiased (i.e.,

over repeated samples, on average the estimates will be equal to population parameters)

and OLS is still consistent (i.e., will get closer to population parameters as sample gets

larger) (Stock & Watson, 2015). If regression errors are heteroskedastic but standard

OLS is applied, the t and F test used to test hypotheses and confidence intervals

associated with regression coefficients are wrong because the standard errors are wrong.

Subsequently, OLS results could lead to an erroneous conclusion in regard to hypothesis

testing. For example, non-significant relationship in a population can be significant in a

sample with heteroskedastic errors. A simple remedy that has been recommended in the

literature is to adjust the standard errors using the heteroskedasticity-adjusted or

robust standard errors (Stock & Watson, 2015).5

This tutorial aims to demonstrate the use of my HeteroskedastictyV3 SPSS macro

to assess the impact of the heteroskedasticity problems on hypothesis testing. The

macro allow users to eyeball the OLS results with or without the heteroskedasticity

adjusted-standard errors simultaneously for a direct comparison. In addition, the macro

produces outputs that includes results of heteroskedasticity tests (i.e., Breusch - Pagan

and Koenker tests) and a graphical output for the assessment of the potential presence

of heteroskedasticity. This tutorial provides two illustrative examples with hypothetical

data sets that can be used in a classroom demonstration. In the next section, I explain

the features of the macro and present two illustrative examples.

5 I used the word ’adjusted’ and ’robust’ interchangebly throughout the text as both terms are equally

popular in literature.
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The HeteroskedasticityV3 macro

My HeteroskedasticityV3 macro is written in both spd and spe format. As

mentioned previously, it produces results of OLS with and without adjusted-standard

errors, contains heteroskedasticity tests and automatically produces a scatter plot of

fitted values vs. residuals. The HeteroskedasticityV3 macro will appear in SPSS

drop-down menu after being installed and outputs standard OLS results and those with

heteroskedasticity-adjusted standard errors.

There are four options available on the macro for adjusting the standard errors

due to the heteroskedasticity of unknown form: HC0, HC1, HC2, HC3, and HC4. HC0

is the well-known White’s estimator (White, 1980). In HC0, the error term Ω in the

HCCM of Equation (3) was estimated by the variance of the OLS residuals (e2
i ). HC1

and HC2 were developed by MacKinnon and White (1985). HC1 improves HC0 by

adjusting for the degrees of freedom, i.e., N
N−K . HC2 modified HC1 by adjusting for the

leverage value of observations (hi). These h′is lie in the main diagonal of the projection

matrix P = X(XTX)−1XT . HC3 and HC4 was developed by Davidson and MacKinnon

(1993) and Cribari-Neto (2004), respectively. HC3 modified HC2 slightly and HC4

modified HC3 by adjusting residuals with a leverage factor. I present the modifications

of the matrix Ω to estimate XTΩX to calculate each of these options below:

ΩHC0 = diag(ei2) (6)

ΩHC1 = N

N −K
diag(ei2) (7)

ΩHC2 = diag( ei
2

1− hi
) (8)

ΩHC3 = diag{( ei
2

1− hi
)2} (9)
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ΩHC4 = diag{ ei
2

(1− hi)δi
}, δi = min {4, Nhi

K
} (10)

Based on simulation study of Long and Ervin (2000), they found that HC3

performs well in a small sample (N ≤ 250) - the statistical power associated with

testing a hypothesis is higher than that of other adjustments. Later Cribari-Neto (2004)

demonstrated that HC4 performs well with small samples and recommended researchers

to use it when observations have a high leverage values and errors are not normally

distributed. For these reasons HC4 is set as a default of the macro. More detail

explanations of each of these options and their differences can be read in the following

articles: Curto, Pinto, Morais, and Lourenço (2011); Hayes and Cai (2007); MacKinnon

(2013); Rosopa, Schaffer, and Schroeder (2013).

The HeteroskedasticityV3 macro reports the results of two statistical tests

commonly used to test the homoskedasticity assumption, namely the Breusch-Pagan

(BP) and Koenker tests. The results of the two outputs could differ because BP is a

large sample test and is not suitable for small samples. If data is non-normal, which is

more realistic in real settings (Koenker, 1981), users should rely on the results of the

Koenker test. For this particular data, both tests are significant, showing that

heteroskedasticity is present. As the heteroskedasticity is present in the data, as

mentioned in the introduction, the standard errors, p-values and confidence intervals

associated with the regression coefficients are not correct anymore. It is important to

note that, the conclusions are based on p-values and false conclusions can occur due to

a lack of statistical power. Past studies shows that Koenker test outperforms BP test in

terms of power (Lyon & Tsai, 1996).

Illustration 1: The effects of types of customers on satisfaction

To illustrate the heteroskedasticity problem, it is best to start with a simple linear

regression model with a dummy (0,1) independent variable and a continuous dependent

variable. This is because the variance or the standard deviation of the dependent

variable and residuals can be easily calculated at the two discrete values of the dummy
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variable allowing users to inspect the differences in standard deviations of the

dependent variable. Furthermore, as two independent samples t-test was usually taught

prior to learning regression, users might recall and relate the use of the Levene’s test of

the equality of variances to the tests commonly used in the context of linear regression

models. However, as stated by Rosopa et al. (2013) "Levene’s (1960) test may not have

adequate statistical power to detect violations of the homogeneity of variance

assumption when testing for the equality of two independent means." (p. 347).

To this end, I use satisfaction scores as a dependent variable and types of

customer as a dummy (0,1) independent variable with two groups: loyal vs. non-loyal

customers. For example, loyal customers are those who holds loyalty memberships and

non-loyal customers are regular customers that do not possess loyalty cards. In essence,

I am using the simple linear regression model shown earlier in Equation (1). For this

illustration, the macro input is shown in Figure 2.

Data for this illustration (satisfaction.sav) is generated using SPSS syntax in an

sps format (see Listing 1) or R codes (see Listings 2). The SPSS syntax format is

suitable for those that has no or limited background in R. In both formats, users can

modify parameters in the codes to suit their modelling purposes. The satisfaction scores

for loyal vs. non-loyal of customers were generated according to a normal distribution

with different means and standard deviations. Heteroskedasticity is infused to the data

by setting the standard deviation of the satisfaction scores of loyal customers to be

higher than that of non-loyal customers. Hence, the form of the heteroskedasticity is

known beforehand. In reality, the form of the heteroskedasticy in mostly unknown. The

mean satisfaction scores of the loyal customers are also set to be higher than that of the

non-loyal customers reflecting a more realistic situation (see e.g., Meyer-Waarden,

2008). In the generated sample, the means and standard deviations of satisfaction

scores of the two groups are: Mloyal = 2.979, SDloyal = 0.334; Mnon−loyal = 6.829,

SDnon−loyal = 0.784. Conducting the two–independent samples t-test on the data, the

Levene’s test of the equality of variances will be rejected while mean difference is

significant.
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Interpretations of the HeteroskedasticityV3 outputs

The outputs can be seen in Listings 3 (see appendix) and will be annotated as

follows. First, the macro produces information on the name of the dependent variable

(line 8) and the R2 value (line 11). The OLS outputs under homoskedasticity and

heteroskedasticity assumption are presented in lines 13-16 and lines 19 - 21,

respectively. The outputs report the coefficient estimates (b), standard errors (se),

t-values (t), p - value (sig) and the lower (95%LB) and upper bound (95%UB) of the

95% confidence interval. The default option for heteroskedasticity-adjusted or robust

standard errors is HC4 and is noted in line 23. For this example, as expected, the

coefficient estimates for customer type denoted by variable grp in the outputs are

unchanged after their standard errors are adjusted. 6 The standard error for the

intercept after the adjustment is slightly lower than that of without adjustment, while

the standard errors before and after the adjustment is relatively the same. Thus, for

hypothesis testing, the conclusion regarding the significance of customer type (p =

0.000) is unchanged after adjustment. The ANOVA table from OLS with robust

standard error is presented in lines 26 - 29.

Lines 33 - 59 produce outputs for the Breusch - Pagan and Koenker test.

Important results are presented in lines 53 - 55. For this particular example, both tests

are significant (p = 0.000) indicating the potential presence of heteroskedasticity. To

augment this analysis, the HeteroskedasticityV3 also produces a scatter plot of fitted

values and residuals placed at the end of the output page. I have modified the plot and

presented it earlier in the Panel B of Figure 1. As been previously explained, the scatter

plot suggests that the regression error terms are heteroskedastic as the residuals are

more spread out for loyal customers than those for non-loyal customers.

It is important to note that some researchers (see e.g., Long & Ervin, 2000; Ng &

Wilcox, 2011; Stock & Watson, 2015) do not recommend to perform heteroskedasticity

tests as it can lead to poor control over Type I errors. Instead, they recommend to

directly apply the heteroskedasticity-adjusted standard errors without prior testing for

6 Note that grp is a 0, 1 dummy variable – dummy variable should be coded as 0 or 1.
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the homoskedasticity assumption as according to them applying the standard error

adjustment "..offer reasonable control over Type I errors under both homoscedasticity

and heteroscedasticity" (Ng & Wilcox, 2011, p. 256). However, as pointed out by

Wooldridge (2013), regardless of sample size, if the homoskedasticity assumption is not

rejected, then the t-statistics from OLS will have an exact t distributions (Wooldridge,

2013, p. 273) and t statistics calculated using adjusted-standard errors in small samples

will not be exactly distributed according to t distributions. Thus, there is an advantage

of applying heteroskedasticity tests. For large cross-sectional data, Wooldridge (2013)

recommends to always report the heteroskedasticity-adjusted standard errors together

with the usual OLS standard errors. My HeteroskedasticityV3 macro conveniently

facilitates this task for users as both results are presented simultaneously in the outputs.

Illustration 2: The effects of team characteristics on team stability

For the second illustration (slotegraaf.sav), I chose group dynamics as a research

context. When I used this example in my class, I pointed out to my students that this

is a realistic setting that might occur to them when working in a group on their

coursework. This illustration is inspired by a research paper by Slotegraaf and

Atuahene-Gima (2011) that examined the decision-making processes of cross-functional

teams defined as a group of workers of different management functions responsible for

executing a project. Data for this illustration was generated from a correlation matrix

reported in Slotegraaf and Atuahene-Gima (2011). Among several constructs reported

in the paper, I chose three constructs that would be easy to grasp without reading the

article prior to the class. These constructs are project team stability, project team size

and project team-level debate. In the data set, these constructs are represented with

variables tstability, teamsize and tdebate, respectively. My aim is to examine the

influence of two team characteristics (i.e., project team size and project team level

debate) on project team stability. By using the HeteroskedasticityV3 macro, I want to

show how controlling for heteroskedasticity could alter initial research conclusions

derived from standard OLS that violates the homoskedasticity assumption. There are
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two hypotheses being tested. In the first hypothesis, team size is predicted to be

negatively related to team stability – a large team could be unstable (e.g., members

come and go during a project). In the second hypothesis, team-level debate is predicted

to be negatively related to team stability – heated debates can make a team unstable

(e.g., members resign).

Listing 4 shows the macro outputs. As can be seen in the standard OLS outputs.

Both predictor variables (i.e., teamsize and tdebate) are significant

(bteamsize = 0.514, p = 0.042; btdebate = −0.489, p = 0.036). Note that despite being

significant, the sign of bteamsize is positive, which is counterintuitive and contradicts our

hypothesis. After applying the heteroskedasticity-robust standard errors, results show

that team size and team-level debate are no longer significant although the p-value of

the later is very close to being significant

(bteamsize = 0.514, p = 0.128; btdebate = −0.489, p = 0.054). The scatter plot of the fitted

values vs. residuals is presented in Figure (3). The plot suggests that heteroskedasticity

may be present in the data as the vertical spread of the residuals gets larger as the

fitted value increases. In fact, the residuals on the left of the plot, i.e., below fitted

values = -1, appear to be very cluttered compared to those on the right. This graphical

inspection is confirmed by the results of the Breusch - Pagan and Koenker test where

both tests were significant (p < 0.05).

Note that for this illustration, data was generated using information reported in a

published paper (correlations, means and standard deviations) 7. The heteroskedasticity

that was detected was inherent in the generated data and its form is unknown. For the

sake of learning, users can generate data by specifying how heteroskedasticity arises, for

example by setting residuals variance depends on an independent variable. This task is

more convenient to do in R than SPSS as the whole analysis as reported above can be

coded in one script. I provided the R codes shown in Listing 5 to show one way of

generating data with heteroskedasticity of known forms.8.

7 the sample size of the generated data was much smaller than that of reported in the published paper.

8 thanks to an anonymous reviewer who shared his/her R codes to replicate results of illustration 2
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In-classroom activities

The materials in this paper have been largely used in my classroom

demonstrations at postgraduate-level module on applied quantitative research methods

- without presenting mathematical formulas and derivations. In my class, first, I

explained the concept of heteroskedasticity using the satisfaction. sav data. Next,

students were asked to analyse the slotegraaf.sav presented in this paper and discuss

their regression results with and without implementing robust standard errors. Next,

the merits of checking for the presence of heteroskedasticity prior to adjusting robust

standard errors were discussed. This strategy of teaching heteroskedasticity were

well-received by my students who did not have strong background in statistics. One

informal feedback I received was that "This is a difficult concept which is in need of the

knowledge of statistics, but the instructor uses detailed and simple explanations to help

us understand". Other students including two PhD students and one of my colleagues

praise the simplicity of using the macro and the lay-out of the outputs that present the

OLS results with and without adjusted standard errors next to each other.

Conclusion

Heteroskedasticity problems remain a challenging topic in regression as well as

challenging task in explaining the concept to non-statistical oriented audiences. In fact,

after several decades since the seminal paper by White (1980)9, the topic of finding new

statistical methods to test and control for heteroskedasticity of an unknown form in

cross-sectional data remains an active area of research (see e.g., Lu & Wooldridge,

2020; MacKinnon, 2013). For those who want to deepen their knowledge further, I

recommend them to read these particular articles: Hayes and Cai (2007); MacKinnon

(2013); Rosopa et al. (2013), which have been mentioned in previous sections.

Lastly, In this paper I have introduced my HeteroskedasticityV3 SPSS macro to

lines (18 - 41) modified in Listing 5

9 or Eicker-Huber-White’s estimator to honour White (1980)’s predecessors: Eicker (1967) and Huber

(1967).
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deal with heteroskedasticity problems in linear regression models that use

cross-sectional data. As aforementioned in the previous paragraph, the macro includes

two statistical tests commonly used in practice (i.e., Breusch - Pagan and Koenker test),

four heteroskedasticity adjusted-standard error options to control for heteroskedasticity

and a scatter plot of fitted values vs. residuals. My aim is that the macro would be

useful for applied researchers, practitioners and graduate students to assess

heteroskedasticity problems in their works using SPSS.
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Appendix

Listing 1: SPSS syntax to generate data for illustration 1

1 SET RNG=MC SEED =2000000.
2 MATRIX .
3
4 /*** You can modify this part.
5 Compute nobs = 100. /* set the number of observations / cases.
6 Compute one= make(nobs ,1, 1). /* create a dummy variable ’1’.
7 Compute two= make(nobs ,1, 0). /* create a dummy variable ’0’.
8 Compute mu1 = 7. /*set the mean of group 1.
9 Compute sd1 = 0.8. /*set the standard deviation of group 1.

10 Compute mu2 = 3. /*set the mean of group 2.
11 Compute sd2 = 0.3. /*set the standard deviation of group 1.
12
13 /*** Don ’t modify this part.
14 Compute x = UNIFORM (nobs ,2). /* generate uniform random variates

.
15 Compute z = -ln ((1/x) -1)/ 1.702. /* transform to standard normal .
16 Compute x1 = mu1 + z(:, 1)*sd1. /* convert std normal to normal .
17 Compute x2 = mu2 + z(:, 2)*sd2. /* convert std normal to normal .
18 Compute x1 = t({one , x1}).
19 Compute x2 = t({two , x2}).
20 Compute mydata =t({x1 , x2}). /* tidy up the data.
21 SAVE mydata / OUTFILE =* / VARIABLES = grp , Y.
22 END MATRIX .
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Listing 2: R codes to generate data for illustration 1

1 library ( tidyverse )
2 library (haven)
3 library ( fastDummies )
4 set.seed (1233)
5
6 # Generate data.
7 nobs < -100
8 m.loy <-7
9 sd.loy < -0.8

10 m. nonloy < -3
11 sd. nonloy < -0.3
12 loyal <-rnorm(nobs , m.loy , sd.loy)
13 non_ loyal <-rnorm (nobs , m.nonloy , sd. nonloy )
14
15 # Combine loyal and non_ loyal and make it tidy.
16 dat <-data.frame(loyal) % > %
17 mutate (non_ loyal) % > %
18 gather (key = "grp", value = " satisfaction ") % > %
19 mutate (grp = as. factor (grp))
20
21 # Create dummy variable for grp.
22 dat <- dummy _cols(dat , select _ columns = c(’grp ’),
23 remove _ selected _ columns = FALSE)
24
25 # Store data into SPSS .sav format .
26 write _sav(dat ,"/Users // Documents /Data/ satisfaction .sav ")
27 view(dat)
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Listing 3: Outputs from the heteroskedasticity macro for illustration 1

1 Run MATRIX procedure :
2
3 written by Ahmad Daryanto
4
5 Original Regression model:
6
7 Dependent variable
8 Y
9

10 R- square
11 .912
12
13 OLS outputs
14 b se t sig 95% LB 95% UB
15 constant 2.9790 .0603 49.4180 .0000 2.8602 3.0979
16 grp 3.8503 .0853 45.1633 .0000 3.6822 4.0184
17
18 OLS outputs with heteroskedasticity - robust standard errors :
19 b se t sig 95% LB 95% UB
20 constant 2.9790 .0334 89.1141 .0000 2.9131 3.0450
21 grp 3.8503 .0853 45.1633 .0000 3.6822 4.0184
22
23 * Note: standard error is HC4 variant
24
25
26 ------- ANOVA TABLE --------
27 SS df MS F Sig
28 Model 741.2307 1.0000 741.2307 2039.7248 .0000
29 Residual 71.9527 198.0000 .3634 -999.0000 -999.0000
30
31 ============================================
32
33 Breusch -Pagan and Koenker test
34
35 ============================================
36
37 The tests use the scaled residuals from the original OLS above

with no adjustment to standard errors .
38
39 OLS outputs
40 b se t sig 95% LB 95% UB
41 constant .3075 .1800 1.7087 .0891 -.0474 .6624
42 grp 1.3850 .2545 5.4415 .0000 .8830 1.8869
43
44 R- square
45 .130
46
47 ------- ANOVA TABLE --------
48 SS df MS F Sig
49 Model 95.9048 1.0000 95.9048 29.6096 .0000
50 Residual 641.3171 198.0000 3.2390 -999.0000 -999.0000
51
52 ---- Breusch -Pagan and Koenker test statistics and sig - values
53 LM Sig
54 BP 47.9524 .0000
55 Koenker 26.0179 .0000
56
57 Null hypothesis : heteroskedasticity not present ( homoskedasticity )

.
58 If sig -value less than 0.05 , reject the null hypothesis .
59 Note: Breusch -Pagan test is a large sample test and assumes the

residuals to be normally distributed .
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Listing 4: Outputs from the heteroskedasticity macro for illustration 2

1 Run MATRIX procedure :
2
3 written by Ahmad Daryanto
4
5 Original Regression model:
6
7 Dependent variable
8 tstabili
9

10 R- square
11 .438
12
13 OLS outputs
14 b se t sig 95% LB 95% UB
15 constant -1.9779 .8161 -2.4237 .0268 -3.6996 -.2561
16 teamsize .5143 .2335 2.2028 .0417 .0217 1.0068
17 tdebate -.4892 .2153 -2.2724 .0363 -.9435 -.0350
18
19 OLS outputs with heteroskedasticity - robust standard errors :
20 b se t sig 95% LB 95% UB
21 constant -1.9779 1.0462 -1.8906 .0759 -4.1851 .2294
22 teamsize .5143 .3210 1.6020 .1276 -.1630 1.1915
23 tdebate -.4892 .2366 -2.0682 .0542 -.9883 .0099
24
25 * Note: standard error is HC4 variant
26
27 ------- ANOVA TABLE --------
28 SS df MS F Sig
29 Model 9.4623 2.0000 4.7312 6.6345 .0074
30 Residual 12.1230 17.0000 .7131 -999.0000 -999.0000
31 ============================================
32
33 Breusch -Pagan and Koenker test
34
35 ============================================
36 The tests use the scaled residuals from the original OLS above

with no adjustment to standard errors .
37 OLS outputs
38 b se t sig 95% LB 95% UB
39 constant 3.6622 1.4044 2.6077 .0184 .6992 6.6251
40 teamsize 1.1915 .4018 2.9657 .0087 .3439 2.0392
41 tdebate .6581 .3705 1.7763 .0936 -.1236 1.4398
42
43 R- square
44 .370
45
46 ------- ANOVA TABLE --------
47 SS df MS F Sig
48 Model 21.0477 2.0000 10.5238 4.9830 .0074
49 Residual 35.9029 17.0000 2.1119 -999.0000 -999.0000
50
51 --- Breusch -Pagan and Koenker test statistics and sig - values
52 LM Sig
53 BP 10.5238 .0052
54 Koenker 7.3916 .0248
55
56 Null hypothesis : heteroskedasticity not present ( homoskedasticity )

.
57 If sig -value less than 0.05 , reject the null hypothesis .
58 Note: Breusch -Pagan test is a large sample test and assumes the

residuals to be normally distributed .
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Listing 5. R codes to generate data with heteroskedasticity of known forms

1 # R codes related to Illustration 2
2 # Residual variance depends on the values of iv.
3
4 rm(list=ls())
5 library ( lmtest )
6 library ( sandwich )
7
8 obs <- 200 # number of observations
9 sigma.sq <- 0.2 # set variance

10
11 # generate variables
12 teamsize <- rnorm(obs ,10 ,2)
13 tdebate <- rnorm(obs ,7 ,3)
14 ve <- sigma.sq* teamsize # set error variance
15 error <- rnorm(obs , 0, sqrt(ve))
16 tstability <- 0.2 - 0.3* teamsize - 0.4* tdebate + error
17
18 #OLS regression
19
20 reg.model <- lm( tstability ~ teamsize + tdebate )
21 summary (reg.model)
22 par(mfrow = c(2, 2))
23 plot(reg.model , ask=FALSE)
24
25 # Breusch - Pagan test
26 bp <- bptest ( tstability ~ teamsize + tdebate , varformula = NULL ,

studentize = FALSE , data = list ())
27 bp
28
29 # Koenker test
30 kt <- bptest ( tstability ~ teamsize + tdebate , varformula = NULL ,

studentize = TRUE , data = list ())
31 kt
32
33 # calculate robust standard errors
34 coeftest (reg.model ,vcov = vcovHC (reg.model ,type =" HC4 "))
35
36 # compute 95% CI for robust se
37 covariance <- vcovHC (reg.model , type = "HC4 ")
38 t. critical <-qt(c (0.025 ,0.975) ,summary (reg.model)$df [2])
39 se <- sqrt(diag( covariance ))
40 robust .ci <-coef(reg.model) + se %o% t. critical
41 robust .ci
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Deriving the standard error of b1 of a simple linear regression

Let ai be xi − x̄ and Sxx = ∑N
i=1 a

2
i . The estimate of b1 is given by (see e.g.,

Wooldridge, 2013):

b1 =
∑N
i=1 aiyi
Sxx

= β1 +
∑N
i=1 aiµi
Sxx

(11)

Where yi = β0 + β1xi + µi, µi ∼ N(0, σ2
i ), Cov(µi, µj) = 0 for i 6= j, i = 1, 2, ..., N.

β0 and β1 are the population parameters.

Using the last term of Equation (11) and taking the conditional variance:

V ar(b1|X) = V ar((β1 +
∑N
i=1 aiµi
Sxx

)|X)

=
∑N
i=1 a

2
iσ

2
i

S2
xx

. (12)

This result is obtained using the fact that we are taking the conditional variance

on data assumed to be fixed despite being drawn randomly from a population, hence

Sxx is also not a random variable. Furthermore, β1 is a population regression

parameter, which is a constant and mostly unknown – otherwise, we do not need to

estimate it. We use the following properties of variance to get the final form:

V ar(a) = 0, V ar(aX) = a2V ar(X), where a is a constant;

V ar(∑N
i=1 aiµi) = ∑N

i=1 a
2
iV ar(µi) (i.e., the sum of the variance is the variance of the

sum), and ai is a constant.

Back to Equation (12), if errors are homoskedastic, σ2
i = σ2 for all i, then the

variance of b1 is given by:

V ar(b1|X) =
∑N
i=1 a

2
iσ

2

S2
xx

= σ2

Sxx
(13)
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Macro Installation

The heteroskedasticity SPSS macro is available both in .spd and .spe formats,

which can be downloaded on my google website 10 or the journal website. The .spd file

can be installed on SPSS under version 24, 25 and 26. The recent version 27, SPSS does

not accept the .spd file anymore but only the .spe format. The .spd file can be installed

by simply double clicking the file. Alternatively, use the pull-down menu by clicking:

Extensions → Utilities → Install Custom Dialog. The .spe file can be installed by

clicking Extensions → Install Local Extension Bundle.

10 https://sites.google.com/view/ahmaddaryanto/spss-macros/heteroskedasticity
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Figure 1 . Scatter plot of customer type and satisfaction scores.
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Figure 2 . The HeteroskedasticityV3 macro

Figure 3 . Scatter plot of fitted values of tstability vs. residuals


