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1. Introduction

Given n samples from a population of individuals belonging to different types with unknown proportions,
how do we estimate the probability of discovering a new type at the (n + 1)-th draw? This is a classical
problem in statistics, referred to as the missing mass estimation problem. It first appeared in ecology (e.g.,
Fisher et al. [9] and Good [15]), and its importance has grown in recent years driven by applications in
biological and physical sciences (e.g., Kroes et al. [20], Gao et al. [11] and Ionita-Laza et al. [17]), machine
learning and theoretical computer science (e.g., Motwani and Vassilvitskii [25] and Bubeck et al. [5]), and
information theory (e.g., Orlitsky et al. [29] and Ben-Hamou et al. [3]). To introduce the missing mass, let
P =

∑
j≥1 pjδθj be an unknown discrete distribution, where (θj)j≥1 are atoms on a measurable space and

(pj)j≥1 are the corresponding probability masses, i.e. pj ∈ [0, 1] such that
∑
j≥1 pj = 1. If Xn = (X1, . . . , Xn)

is a collection of independent and identically distributed random variables from P , then we define the missing
mass as

Mn(P,Xn) =
∑
j≥1

pj1(θj /∈ Xn), (1.1)

where 1(·) is the indicator function. The Good-Turing estimator (Good [15]) is arguably the most popular
nonparametric estimator of Mn(P,Xn). It has been the subject of numerous studies. These include, e.g.,
asymptotic normality and large deviations (Zhang and Zhang [38], Gao [10] and Grabchak and Zhang [16]),
admissibility and concentration properties (McAllester and Ortiz, [21], Ohannessian and Dahleh [27] and
Ben-Hamou et al. [2]), consistency and convergence rates (McAllester Schapire [22], Wagner et al. [37] and
Mossel and Ohannessian [24]), optimality and minimax properties (Orlitsky et al. [28] and Rajaraman et al.
[35]).

Let M̂n(Xn) denote an estimator of the missing mass Mn(P,Xn). Motivated by the recent works of Ohan-
nessian and Dahleh [27], Mossel and Ohannessian [24], Ben-Hamou et al. [2] and Grabchak and Zhang [16],
in this paper we consider the problem of consistent estimation of the missing mass under the multiplicative
loss function

L(M̂n(Xn),Mn(P,Xn)) =

∣∣∣∣∣ M̂n(Xn)

Mn(P,Xn)
− 1

∣∣∣∣∣ . (1.2)

As discussed in Ohannessian and Dahleh [27], the loss function (1.2) is adequate for estimating small value
parameters, since it allows to achieve more informative results. The multiplicative loss function (1.2) has
been already used in statistics, for instance in the estimation of small value probabilities using importance
sampling (Chatterjee and Diaconis [6]) and in the estimation of tail probabilities in extreme value theory
(Beirlant and Devroye [1]). Under the loss function (1.2), Ohannessian and Dahleh [27] showed that: i) the
Good-Turing estimator may be inconsistent; ii) the Good-Turing estimator is strongly consistent if the tail
of P decays to zero as a regularly varying function with parameter α ∈ (0, 1) (e.g., Bingham et al. [4]).
In particular, Grabchak and Zhang [16] showed that the convergence rate of the Good-Turing estimator
is n−α/2, up to a slowly varying function. Mossel and Ohannessian [24] strengthened the inconsistency
result of Ohannessian and Dahleh [27], showing the impossibility of estimating Mn(P,Xn) in a completely
distribution-free fashion, that is without imposing further structural assumptions on P . In this paper we
strengthen, and expand, the result of Grabchak and Zhang [16] on the rate of convergence of the Good-Turing
estimator.

We start by introducing an alternative, and remarkably shorter, proof of the impossibility result of
Mossel and Ohannessian [24]. Our proof relies on Bayesian nonparametric ideas, and in particular on the
use a Ferguson-Dirichlet process prior (Ferguson [8]) for the unknown distribution P . The prior assumption
on P allows us to avoid the winding constructive arguments of Mossel and Ohannessian [24], and then prove
the impossibility of estimating Mn(P,Xn) by exploiting well-known properties of the posterior distribution
of Mn(P,Xn). Beside being of independent interest, our alternative proof suggests a natural approach to
study rates of convergence of the Good-Turing estimator under the class of α ∈ (0, 1) regularly varying P . In
particular, we make use of the two-parameter Poisson-Dirichlet process prior (Pitman and Yor [34]) for the
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unknown distribution P , which is known to generate (almost surely) discrete distributions whose tails decay
to zero as a regularly varying function with parameter α ∈ (0, 1). See, e.g., Gnedin et al. [13] and references
therein. Under this prior assumption on P , we exploit properties of the posterior distribution of Mn(P,Xn)
to prove that n−α/2 is the best rate of convergence that any estimator of the missing mass Mn(P,Xn)
can achieve, up to a slowly varying function. Our result strengthen the result of Grabchak and Zhang [16],
showing the optimality, up to a slowly varying function, of the rate of convergence of the Good-Turing
estimator. Finally, still relying on the two-parameter Poisson-Dirichlet process prior for P , we first study
minimax rates for the Good-Turing estimator under the class of α ∈ (0, 1) regularly varying P . In particular,
we show that the minimax rate for estimating Mn(P,Xn) must be at least n−α/2, and we conjecture that
the Good-Turing estimator is an asymptotically optimal minimax estimator under the class of α ∈ (0, 1)
regularly varying P .

The paper is structured as follows. In Section 2 we present the alternative proof of the main result of
Mossel and Ohannessian [24]. In Section 3 we state and prove our main results on the rate of convergence and
on the minimax rate of the Good-Turing estimator under α ∈ (0, 1) regularly varying P . Section 4 contains
a discussion of our results, and some open problems on the estimation of missing mass and generalizations
thereof. Auxiliary results and technical lemmas are deferred to Appendix A. The following notation is
adopted throughout the paper: [0, 1] is the unit interval, and B([0, 1]) denotes its Borel σ-algebra; P is the
space of discrete distributions on [0, 1], endowed with the smallest σ-algebra making P 7→ P (A) measurable
for every A ∈ B([0, 1]); Pn is the n-fold product of P on [0, 1], and EP denotes the expectation with respect
P ; for ease of notation, we also use EP to denote the expectation with respect to Pn; ` is a slowly varying
function, i.e. a function satisfying `(xc)/`(x) → 1 as x → ∞ for every c > 0; C denotes a generic strictly
positive constant; given a sequence of probabilities (pj)j≥1, we set (p[j])j≥1 to be its corresponding ordered
sequence of probabilities, i.e. p[1] ≥ p[2] ≥ . . .; given two functions f and g, f ∼ g stands for lim f/g = 1,
f = O(g) for lim sup |f |/|g| < C, f = o(g) for lim f/g = 0; B(a, b) denotes the Beta integral of parameters
a, b > 0.

2. Impossibility of estimating Mn(P,Xn)

Let Xn = (X1, . . . , Xn) be a collection of independent and identically distributed random variables from an
unknown discrete distribution P . The actual values taken by the Xi’s is not relevant for the missing mass
estimation problem. In particular, without loss of generality, we assume that the Xi’s takes values in the
set [0, 1]. Therefore, P (·) =

∑
j pjδθj (·) is assumed to be an unknown discrete distribution on the sample

space [0, 1], given a sequence of atoms θj ∈ [0, 1] and masses pj < 1 such that
∑
j≥1 pj = 1. Both atoms

and masses of the distribution P are supposed to be unknown. Given the sample Xn, we are interested in
estimating the missing Mn(P,Xn) defined in (1.1). The function Mn(P,Xn) is a jointly measurable function
of P and Xn, as proved in Proposition A.1. Given an estimator M̂n(Xn) : [0, 1]n → [0, 1] of Mn(P,Xn),
we will measure its statistical performance by using the multiplicative loss function defined in (1.2). As we
discussed in the introduction, this loss function is suitable to study theoretical properties of parameters or
functionals taking small values, and it has already been used in previous works on missing mass estimation,
e.g., Ohannessian and Dahleh [27], Mossel and Ohannessian [24], Ben-Hamou et al. [2] and Grabchak and
Zhang [16].

A sequence of estimators M̂n(Xn) is said to be consistent for Mn(P,Xn), under parameter space P and
the loss function L, if the loss incurred by the estimator converges in probability to zero under all points
in the parameter space. Formally, M̂n(Xn) is consistent for Mn(P,Xn) if for all P ∈ P and for all ε > 0 it
holds true

Pn(L(M̂n(Xn),Mn(P,Xn)) > ε)→ 0 (2.1)

as n → ∞. Furthermore, the estimator M̂n(Xn) is strongly consistent if (2.1) is replaced by almost sure
convergence. Under this setting, Mossel and Ohannessian [24] proved Theorem 2.1 below. In this section
we present an alternative, and remarkably shorter, proof of Theorem 2.1. Our proof relies on Bayesian
nonparametric ideas, and in particular on the use the Ferguson-Dirichlet process prior for the unknown
distribution P .
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Theorem 2.1. Let P be the set of all discrete distributions on [0, 1] and L be the loss function defined as
(1.2). Then, there do not exist any consistent estimators for the missing mass Mn(P,Xn), i.e. there are no
estimators M̂n(Xn) satisfying (2.1).

Proof. We are going to show that for every estimator M̂n(Xn), there exists ε > 0 such that

sup
P∈P

lim sup
n

Pn(L(M̂n(Xn),Mn(P,Xn)) > ε) > 0 (2.2)

and, therefore, there exists P ∈ P such that L(M̂n(Xn),Mn(P,Xn)) does not converge to zero in probability.
First, note that for ε < 1/2, Fact A.1 implies

Pn(L(M̂n(Xn),Mn(P,Xn)) > ε) ≥ Pn(L(Mn(P,Xn), M̂n(Xn)) > 2ε),

hence it is sufficient to show that there exists 0 < ε < 1 such that for every estimator M̂n(Xn) the following
is satisfied

sup
P∈P

lim sup
n

Pn(L(Mn(P,Xn), M̂n(Xn)) > ε) > 0. (2.3)

We prove that (2.3) holds for all 0 < ε < 1/4, and therefore (2.2) holds for any 0 < ε < 1/8, as well. Fix
ε ∈ (0, 1/4) and let us denote by DPγ the Ferguson-Dirichlet process on P (Ferguson [8]), with base measure
γ on [0, 1]. We choose γ uniform, i.e. γ(dθ) = 1(0 < dθ < 1). We can now lower bound the supremum in
(2.3) by averaging over P with respect to DPγ and then use the Fubini theorem to get

sup
P∈P

lim sup
n

Pn(L(Mn(P,Xn), M̂n(Xn)) > ε)

≥
∫
P

lim sup
n

Pn(L(Mn(P,Xn), M̂n(Xn)) > ε)DPγ(dP )

≥ lim sup
n

∫
P

∫
[0,1]n

1(L(Mn(P,Xn), M̂n(Xn)) > ε)Pn(dXn)DPγ(dP )

= lim sup
n

∫
[0,1]n

∫
P
1(L(Mn(P,Xn), M̂n(Xn)) > ε)DPγ+

∑n

i=1
δXi

(dP )PnDPγ (dXn)

≥ lim sup
n

∫
[0,1]n

inf
x≥0

∫
P
1(L(Mn(P,Xn), x) > ε)DPγ+

∑n

i=1
δXi

(dP )dXn,

where: i) the first inequality follows since we can lower bound the supremum by an average; ii) the second
inequality follows from reverse Fatou’s lemma; iii) the equality comes by swapping the marginal of P and
conditional of Xn given P , on the one hand, with the marginal of Xn (denoted by PnDPγ

) and the conditional

of P given Xn, on the other hand; iv) the last inequality follows by considering the infimum over all possible
values of M̂n(Xn). We also recall that when P is distributed according to DPγ , then the marginal of Xn,
PnDPγ

, is a Generalized Polya urn, while the conditional of P given Xn is DPγ+
∑n

i=1
δXi

(see Theorem 4.6 and

subsection 4.1.4 of Ghosal and Van der Vaart [12]). From Proposition A.2, Mn(P,Xn) under the posterior
distribution DPγ+

∑n

i=1
δXi

is distributed according to a Beta random variable Beta(1, n). Therefore, we can

write ∫
P
1(L(Mn(P,Xn), x) > ε)DPγ+

∑n

i=1
δXi

(dP ) = P

(∣∣∣∣Zx − 1

∣∣∣∣ > ε

)
(2.4)

where Z ∼ Beta(1, n). From Lemma A.1, we have that P
(∣∣Z
x − 1

∣∣ > ε
)
≥ 1− 2ε

(1−ε) for all x ≥ 0 and n ≥ 2.

Plugging this estimate in place of (2.4), we obtain

sup
P∈P

lim sup
n

Pn(L(Mn(P,Xn), M̂n(Xn)) > ε) ≥ 1− 2ε

(1− ε)

and the right hand side is strictly positive for all 0 < ε < 1/4.
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Mossel Ohannessian [24] proved Theorem 2.1 by exploiting a coupling of two generalized (dithered)
geometric distributions. Here we presented an alternative proof of Theorem 2.1. While the proof of Mossel
and Ohannessian [24] has the merit of being a constructive proof, our approach has the merit of being
a direct approach, which exploits properties of the posterior distribution of the missing mass Mn(P,Xn)
under a Ferguson-Dirichlet prior for P . Beside being of independent interest, our alternative proof suggests
a natural approach to study rates of convergence of the Good-Turing estimator under the class of α ∈ (0, 1)
regularly varying P . Indeed similar Bayesian arguments will be crucial in the next section to study the rate
of convergence and the minimax rate ot the Good-Turing estimator under the class of α ∈ (0, 1) regularly
varying P .

Theorem 2.1 shows that for any asymptotic result to hold uniformly over a set of possible distributions,
the parametric space P must be restricted to a suitable subclass. In particular, the proof of Theorem 2.1
shows that there are no consistent estimators for the class of distributions sampled from a Ferguson-Dirichlet
process. This suggests that conditions must be imposed on the tail decay of the elements of the parameter
space. From Kingman [19] (Equation 65), we have that, if P is sampled from a Ferguson-Dirichlet process,
its sequence of ordered masses behaves like log p[j] ∼ −jC, as j → +∞. Therefore, the tail of P has

approximately exponential form, resembling a geometric distribution and satisfying p[j] = o(j−
1
α ) for every

α ∈ (0, 1). Indeed, a geometric distribution was first used in Ohannessian and Dahleh [27] to prove that
the Good-Turing estimator may be inconsistent. Theorem 2.1 shows that, under this very light regime, any
estimator of the missing mass, not just the Good-Turing, fails to be consistent under multiplicative loss.
This motivates us to consider, in the next section, the class of discrete distributions P ’s having heavy enough
tails.

3. Consistent and minimax rate optimal estimation of Mn(P,Xn)

We start by recalling the Good-Turing estimator (Good [15]) of the missing mass Mn(P,Xn), and then we
investigate its convergence rate and minimax risk for regularly varying P . The definition of the Good-Turing
estimator makes use of the proportion of unique values in the random sample Xn to estimate the missing
mass. In particular, let Yn,j(Xn) denote the number of times the value θj is observed in the sample Xn,
namely

Yn,j(Xn) =

n∑
i=1

1(Xi = θj).

Furthermore, let Kn,r(Xn) and Kn(Xn) be the number of values observed 1 ≤ r ≤ n times and the total
number of distinct values, respectively, observed in Xn, i.e.,

Kn,r(Xn) =

∞∑
j=1

1(Yn,j = r) Kn(Xn) =

n∑
r=1

Kn,r(Xn).

The Good-Turing estimator of Mn(P,Xn) is defined in terms of the statistic Kn,1(Xn), that is

ĜT (Xn) =
Kn,1(Xn)

n
. (3.1)

Ohannessian and Dahleh [27] first proved the inconsistency, as n→ +∞, of ĜT (Xn) under the choice of P
being a geometric distribution. In the same paper, it is shown that under the assumption that the tail of
P decays to zero as a regularly varying function with parameter α ∈ (0, 1), the Good-Turing estimator is
strongly consistent. This latter result was generalized to the range α ∈ (0, 1] in the work of Ben-Hamou et
al. [2].

The assumption of regularly varying distribution P provides with a generalization of the power law
tail decay, adding some more flexibility by the introduction of the slowly varying function `. Power-law
distributions are observed in the empirical distributions of many quantities in different applied areas, and
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their study have attracted a lot of interest in recent years. For extensive discussions of power laws in empirical
data and their properties, the reader is referred to Mitzenmacher [23], Goldwater et al. [14], Newman [26],
Clauset et al. [7] and Sornette [36]. Restricting the parameter space to probability distributions having
regularly varying tail is not a mere technical assumption and, on the contrary, it represents a natural subset
of the parameter space to consider, which we expect to contain the true data generating distribution for
many different applications. To move into the concrete setting of regular variation (e.g., Bingham et al. [4]),
for every P ∈ P we define a counting measure on [0, 1] as νP (dx) =

∑
j δpj (dx), with corresponding tail

function defined as ~νP (x) = ν([x,+∞)) for all x > 0. Then a distribution P ∈ P is said to be regularly
varying with parameter α ∈ (0, 1) if

~νP (x)
x↓0∼ x−α`(1/x), (3.2)

where ` is a slowly varying function. From Lemma 22 and Proposition 23 of Gnedin et al. [13], (3.2) is
equivalent to the more explicit condition in term of ordered masses of P

p[j]
j↑∞∼ j−1/α`∗(j), (3.3)

where `∗ is a slowly varying function depending on `. We denote by PRVα ⊆ P the set of all regularly varying
distribution on [0, 1] with parameter α. From (3.3) it is clear that such a class includes distributions having
power-law tail decay, which correspond to the particular case of `∗ being a constant, which is equivalent to
` being constant. We denote the class of distributions having power law tail decay by PPLα ⊆ PRVα . In the
following results, we will restrict our attention to the estimation problem under restricted parameter spaces
PRVα and PPLα .

Ohannessian and Dahleh [27] proved that the Good-Turing estimator is consistent under all distributions
P in the class PRVα . Grabchak and Zhang [16] then proved that the convergence rate of the Good-Turing
estimator is n−α/2, up to a slowly varying function. Hereafter we strengthen, and expand, the result of
Grabchak and Zhang [16]. Recall that, under the loss function (1.2), a sequence (rn)n∈N is a convergence
rate of an estimator M̂n(Xn) for the distribution P ∈ P if

lim
n
Pn(L(M̂n(Xn),Mn(P,Xn)) > Tnrn) = 0

for all sequences Tn → ∞. For the sake of clarity, in the next proposition we state the result of Grabchak
and Zhang [16] on the rate of convergence of the Good-Turing estimator. An alternative proof of the next
proposition follows from Proposition 3.2 below along with a straightforward application of Markov’s inequal-
ity.

Proposition 3.1. Let ĜT (Xn) be the Good-Turing estimator, defined in (3.1). Then, for every P ∈ PRVα
and for all Tn →∞,

lim
n
Pn(L(ĜT (Xn),Mn(P,Xn)) > Tnn

−α/2`−1/2(n)) = 0, (3.4)

where ` in (3.4) is the slowly varying function specific to P appearing in (3.2). Therefore, up to slowly
varying functions, n−α/2 is a convergence rate for the Good-Turing estimator within the class PRVα .

The next theorem strengthen Proposition 3.1 on the rate of convergence of the Good-Turing estimator.
Indeed it shows that the convergence rate achieved by the Good-Turing estimator is actually almost the best
convergence rate any estimator of Mn(Xn, P ) can achieve. For any other estimator of the missing mass, it
is possible to find a point P ∈ PPLα for which the rate of convergence is not faster than n−α/2.

Theorem 3.1. For any estimator M̂n(Xn), there exists P ∈ PPLα ⊂ PRVα such that for every Tn → 0

lim inf
n

Pn(L(M̂n(Xn),Mn(P,Xn)) < Tnn
−α/2) = 0.

Therefore the convergence rate of M̂n(Xn) cannot be faster than n−α/2.
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Proof. Let (Tn)n any non-negative sequence converging to 0. We will show that for any estimator M̂n(Xn),

inf
P∈PRVα

lim inf
n

Pn(L(M̂n(Xn),Mn(P,Xn)) < Tnn
−α/2) = 0. (3.5)

Let us denote by SPα the law of a stable process on [0, 1] of parameter α. This a subordinator with Levy
intensity, ν(dω) = α

Γ(1−α)ω
−1−αdω. See Kingman [19] and Pitman [33] for details and additional references.

Because of ν([x,∞)) = x−α

Γ(1−α) , the stable process samples probability measures belonging to PPLα . Now we

can upper bound the infimum in (3.5) by an average with respect to SPα,

inf
P∈PRVα

lim inf
n

Pn(L(M̂n(Xn),Mn(P,Xn)) < Tnn
−α/2)

≤
∫
P

lim inf
n

Pn(L(M̂n(Xn),Mn(P,Xn)) < Tnn
−α/2)SPα(dP )

≤ lim inf
n

∫
P

∫
[0,1]n

1(L(M̂n(Xn),Mn(P,Xn)) < Tnn
−α/2)Pn(dXn)SPα(dP )

where the last equality follows by applying Fatou’s Lemma.
Take n large enough so that Tnn

−α/2 < 1/2. Let us denote by PnSPα the marginal law of the observations
under an α-stable process, when P is integrated out, i.e. the probability measure on [0, 1]n defined as
PnSPα(A) =

∫
P P

n(A)SPα(dP ) for all A ∈ B([0, 1]n) . We swap the integration of the marginal of P and the
conditional of Xn given P with the marginal of Xn and the conditional of P given Xn and then apply Fact
A.1 to obtain∫

P

∫
[0,1]n

1(L(M̂n(Xn),Mn(P,Xn)) < Tnn
−α/2)Pn(dXn)SPα(dP )

=

∫
[0,1]n

∫
P
1(L(M̂n(Xn),Mn(P,Xn)) < Tnn

−α/2)SPα|Xn(dP )PnSPα(dXn)

≤
∫

[0,1]n

∫
P
1(L(Mn(P,Xn), M̂n(Xn))) < 2Tnn

−α/2)SPα|Xn(dP )PnSPα(dXn)

where SPα|Xn denotes the posterior distribution of P given the sample Xn. Therefore, taking s > 1, we
can upper bound the quantity appearing on the l.h.s. of (3.5) by

lim sup
n

∫
[0,1]n

1(Kn(Xn) ∈ (nα/s, snα))

×
∫
P
1(L(Mn(P,Xn), M̂n(Xn))) < 2Tnn

−α/2)SPα|Xn(dP )PnSPα(dXn)

+ lim sup
n

PnSPα(Kn(Xn) 6∈ (nα/s, snα)).

(3.6)

We will now upper bound the two terms of the sum in (3.6) independently. Let us focus on the first term of
(3.6). Let n large enough so that 3 < αnα

s < αsnα < n−3 and Tnn
−α/2 < 1/4. From Proposition A.2, under

the posterior SPα|Xn, Mn(P,Xn) is distributed according to a Beta random variable Beta(αKn(Xn), n −
αKn(Xn)). Let us denote a(Xn) = αKn(Xn), b(Xn) = n − αKn(Xn), and for easiness of notation we will
simply write a and b in the following calculations. Moreover let Fa,b be the cumulative distribution function
of the Beta random variable Beta(a, b). Thanks to Proposition A.2 in the Appendix, we have that∫

P
1(L(Mn(P,Xn), M̂n(Xn))) < 2Tnn

−α/2)SPα|Xn(dP )

= Fa,b((1 + 2Tnn
−α/2)M̂n(Xn))− Fa,b((1− 2Tnn

−α/2)M̂n(Xn))

≤ sup
x∈[0,1]

(
Fa,b((1 + 2Tnn

−α/2)x)− Fa,b((1− 2Tnn
−α/2)x)

)
.
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Consider the function ψ : R+ → [0, 1] defined by

ψ(x) = Fa,b((1 + 2Tnn
−α/2)x)− Fa,b((1− 2Tnn

−α/2)x).

Notice that ψ ∈ C2 and that ψ(0) = limx→∞ ψ(x) = 0. Therefore, ψ reaches its maximum in x∗(a, b) ∈ R+

(denoted as x∗ for easiness of notation) satisfying

ψ′(x∗) = (1+2Tnn
−α/2)fa,b((1 + 2Tnn

−α/2)x∗)

− (1− 2Tnn
−α/2)fa,b((1− 2Tnn

−α/2)x∗) = 0,

where fa,b is the density function of the Beta(a, b) distribution. On the event Kn(Xn) ∈ (nα/s, snα), we
have a, b > 3, thus fa,b is bell-shaped with second inflexion point given by

κ(a, b) =
a− 1

a+ b− 2
+

√
(a−1)(b−1)
a+b−3

a+ b− 2
≤ αsnα

n− 2
+

√
αsnα

n− 2
≤ 2αsnα

n− 2
.

Therefore, f ′a,b is non decreasing on the interval [κ(a, b),∞) and, as a consequence, ψ′′ is non negative on

[ κ(a,b)
(1−2Tnn−α/2)

,∞), from which we can deduce that ψ′ is non decreasing on the same interval. Now, since

limx→∞ ψ′(x) = 0, it follows that ψ′(x) ≤ 0 on [ κ(a,b)
(1−2Tnn−α/2)

,∞). Therefore x∗(a, b) satisfies

x∗(a, b) ≤ κ(a, b)

(1− 2Tnn−α/2)
≤ 2αsnα

(n− 2)(1− 2Tnn−α/2)
≤ 4αsnα

n− 2
.

We can now upper bound supx≥0 ψ(x) as follows:

sup
x≥0

ψ(x) = ψ(x∗) ≤ 4Tnn
−α/2x∗ sup

x≥0
fa,b(x) ≤ 16Tnn

−α/2αsn
α

n− 2
sup
x≥0

fa,b(x).

By Lemma A.3 in Appendix A it follows that, on the event Kn ∈ (nα/s, snα), for n large enough,

sup
x≥0

ψ(x) ≤ 128Tnn
−α/2αsn

α

n− 2
(a+ b)3/2a−1/2b−1/2

≤ 128Tnn
−α/2αsn

α

n− 2
n3/2(αnα/s)−1/2(n− sαnα)−1/2 = Tng(α, s, n)

where we also have lim sup
n→+∞

Tng(α, s, n) = 0.

From all previous computations, we deduce that, on the event Kn(Xn) ∈ (1/snα, snα), there exists
n0(α, s), which does not depend on the value of Kn, such that for all n ≥ n0(α, s) the inequality∫

P
1(L(Mn(P,Xn), M̂n(Xn))) < 2Tnn

−α/2)SPα|Xn(dP ) ≤ Tng(α, s, n)

holds true, thus we get

lim sup
n

∫
[0,1]n

1(Kn(Xn) ∈ (1/snα, snα))

×
∫
P
1(L(Mn(P,Xn), M̂n(Xn))) < 2Tnn

−α/2)SPα|Xn(dP )PnSPα(dXn)

≤ lim sup
n

Tng(α, s, n) = 0.

Therefore the first term in (3.6) is equal to zero.
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Let us now consider the second term in (3.6), namely

lim sup
n

PnSPα(Kn(Xn) 6∈ (nα/s, snα)).

By virtue of Theorem 3.8 of Pitman [33], under the α-stable process, Kn(Xn)
nα → Sα almost surely, where Sα

is a random variable on R+ distributed according to a Stable distribution of parameter α. As a consequence
we have

lim sup
n

PnSPα(Kn(Xn) 6∈ (nα/s, snα)) = P(Sα 6∈ (1/s, s)). (3.7)

The r.h.s. of (3.7) converges to zero as s→∞, and then so does (3.6).

Proposition 3.1 and Theorem 3.1 together show that the Good-Turing estimator achieves the best con-
vergence rate up to a slowly varying function. In particular, if the distribution P has a power-law decay, i.e.
P ∈ PPLα , the two rates match and the Good-Turing estimator achieves the best rate possible. In particular,
because ĜT (Xn) does not depend on α, it follows that the Good-Turing estimator is actually rate adaptive
for the class of power law distributions, PPL = ∪0<α<1PPLα .

The next theorem considers the asymptotic minimax estimation risk for the missing mass under the loss
function (1.2) and with parameter space PPLα . In particular Theorem 3.2 provides with a lower bound for
the estimation risk of this statistical problem, showing that the minimax rate is not smaller than n−α/2.

Theorem 3.2. Let PPLα be the class of discrete distributions on [0, 1] with power law tail function and let
L denote the multiplicative loss function (1.2). Then, there exists a positive constant C > 0 such that

lim inf
n

nα/2 inf
M̂n(Xn)

sup
P∈PPLα

EP

(
L(M̂n(Xn),Mn(P,Xn))

)
> C

where the infimum is taken over all possible estimators M̂n(Xn).

Proof. In the following, we make use of the generic notation C to refer to constants that can only depend
on α (its value may change from a line to the other). As in the proof of Theorem 3.1, let SPα denote the
law of a stable process of parameter α and PnSPα the marginal law of the observations under this prior. We
can lower bound the minimax risk by the Bayesian risk with respect to the prior SPα. Indeed one has

inf
M̂n(Xn)

sup
P∈PPLα

EP

(
L(M̂n(Xn),Mn(P,Xn))

)
≥ inf
M̂n(Xn)

∫
P
EP

(
L(M̂n(Xn),Mn(P,Xn))

)
SPα(dP )

= inf
M̂n(Xn)

∫
[0,1]n

∫
P
L(M̂n(Xn),Mn(P,Xn))SPα|Xn(dP )PnSPα(dXn)

≥
∫

[0,1]n
inf

M̂n(Xn)

∫
P
L(M̂n(Xn),Mn(P,Xn))SPα|Xn(dP )PnSPα(dXn). (3.8)

From Proposition A.2 in Appendix A, the posterior distribution of missing mass Mn(P,Xn) under SPα is
distributed according to Beta(αKn(Xn), n−αKn(Xn)). Le a(Xn) = αKn(Xn) and b(Xn) = n−αKn(Xn),
and for easiness of notation we will simply write a and b in the following calculations. The inner integral in
(3.8) equals∫

P
L(M̂n(Xn),Mn(P,Xn))SPα|Xn(dP ) =

∫ 1

0

|M̂n(Xn)− x|
x

xa−1(1− x)b−1

B(a, b)
dx

=
B(a− 1, b)

B(a, b)

∫ 1

0

|M̂n(Xn)− x|x
a−2(1− x)b−1

B(a− 1, b)
dx =

B(a− 1, b)

B(a, b)
EM ′

(
|M ′ − M̂n(Xn)|

)
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where M ′ is a random variable distributed according to Beta(a− 1, b). Plugging this quantity into (3.8), we
find

inf
M̂n(Xn)

sup
P∈PPLα

EP

(
L(M̂n(Xn),Mn(P,Xn))

)
≥
∫

[0,1]n

B(a− 1, b)

B(a, b)
inf

M̂n(Xn)
EM ′

(
|M ′ − M̂n(Xn)|

)
PnSPα(dXn)

=

∫
[0,1]n

B(a− 1, b)

B(a, b)
EM ′ (|M ′ −med(M ′)|)PnSPα(dXn) (3.9)

where med(M ′) denotes the median of M ′. Now, let us denote by fa,b and ma,b the density function and the
median of a Beta random variable with parameters a and b, respectively. From Lemma A.2, we can rewrite
the inner expectation in (3.9) as

B(a− 1, b)

B(a, b)
EM ′ (|M ′ −ma−1,b|) = 2

∫ ma,b

ma−1,b

fa,b(x)dx,

therefore we have

inf
M̂n(Xn)

sup
P∈PPLα

EP

(
L(M̂n(Xn),Mn(P,Xn))

)
≥ 2

∫
[0,1]n

(∫ ma,b

ma−1,b

fa,b(x)dx

)
PnSPα(dXn), (3.10)

where we recall that a = αKn(Xn) and b = n − αKn(Xn). From Theorem 3.8 of Pitman [33], when P is
distributed according to the α-stable process, Kn(Xn)/nα converges in distribution to a random variable Sα
on [0,∞) with Stable distribution of parameter α. Therefore, there exist n0 and two positive bounded values

wα and Wα such that for all n > n0, P(Kn(Xn)
nα ∈ [wα,Wα]) ≥ 1

2 and 8 < 2αwαn
α ≤ 2αWαn

α < n− 1.
We are now ready to lower bound (3.10). We will make use of some technical lemmas regarding the density

and median of the Beta distribution, whose statements and proofs are deferred to Appendix A. The r.h.s.
of (3.10) can be lower bounded by the following quantity

2P(wαn
α ≤ Kn(Xn) ≤Wαn

α)

×EPn
SPα

[∫ ma,b

ma−1,b

fa,b(x)dx
∣∣∣wαnα ≤ Kn(Xn) ≤Wαn

α

]
.

(3.11)

Given our choice of n0, wα and Wα, for n > n0, we have that P(wαn
α ≤ Kn ≤ Wαn

α) ≥ 1
2 . Recall

now that a = αKn(Xn) and b = n − αKn(Xn). Moreover noticing that we are conditioning on the event
wαn

α ≤ Kn(Xn) ≤ Wαn
α, one has 3 < a < b and a < b/2; by applying Lemma A.4 we can lower bound

(3.11) by

2
1

2
EPn

SPα

[
C√
a
|wαnα ≤ Kn(Xn) ≤Wαn

α

]
,

for some strictly positive constant C. Ultimately this leads to

inf
M̂n(Xn)

sup
P∈PRVα

EP

(
L(M̂n(Xn),Mn(P,Xn))

)
≥ CEPn

SPα

[
a−1/2 | wαnα ≤ Kn(Xn) ≤Wαn

α
]

= Cα−1/2
EPn

SPα

[
K−1/2
n | wαnα ≤ Kn(Xn) ≤Wαn

α
]

≥ C(wαn
α)−1/2 = Cn−α/2,
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which provides the lower bound rate for the minimax risk,

lim inf
n

nα/2 inf
M̂n(Xn)

sup
P∈PPLα

EP

(
L(M̂n(Xn),Mn(P,Xn))

)
> C.

The lower bound of Theorem 3.2 can be used to derive the minimax rate, by matching it with appropriate
upper bounds of specific estimators of the missing mass. This lower bound trivially still holds for any para-
metric set larger than PPLα and, therefore Theorem 3.2 also provides with a lower bound of the estimation
risk under the larger parameter space PRVα . In the next Proposition, we show that for a fixed distribution
P ∈ PRVα , the Good-Turing estimator achieves the best possible rate of Theorem 3.2 up to a slowly varying
term.

Proposition 3.2. Let ĜT (Xn) be the Good-Turing estimator and let P ∈ PRVα . Then, there exists a finite
constant C such that for every n

EP (L(ĜT (Xn),Mn(P,Xn))) ≤ Cn−α/2`−1/2(n),

where ` is the slowly varying function specific to P appearing in (3.2).

Proof. Let P ∈ PRVα and ` defined as in (3.2). In the following we use the generic notation C and C ′

to refer to constants that can only depend on P (their values may change from a line to the other). Here
we study the convergence rate under the assumption of regular variation of the Good-Turing estimator

ĜT (Xn) =
Kn,1(Xn)

n , proving that

EP

(
L(ĜT (Xn),Mn(P ))

)
= O(n−α/2`(n)−1/2).

Let us first notice that for a ≥ 0, b, c > 0

L(a, c) =

∣∣∣∣ab
(
b

c
− 1

)
+
a

b
− 1

∣∣∣∣ ≤ L(a, b) +
a

b
L(b, c).

Therefore, we can upper bound the loss of ĜT (Xn) =
Kn,1(Xn)

n by

L(ĜT (Xn),Mn(P,Xn))

≤ L(ĜT (Xn),EP (ĜT (Xn)) +
ĜT (Xn)

EP (ĜT (Xn))
L(EP (ĜT (Xn)),EP (Mn(P,Xn))

+
ĜT (Xn)

EP (Mn(P,Xn))
L(EP (Mn(P,Xn)),Mn(P,Xn)),

and consequently its risk by

EP (L(ĜT (Xn),Mn(P,Xn))) ≤ EP (L(ĜT (Xn),EP (ĜT (Xn)))

+ L(EP (ĜT (Xn)),EP (Mn(P,Xn))

+EP

(
ĜT (Xn)

EPMn(P,Xn)
L(EP (Mn(P,Xn)),Mn(P,Xn))

)
.

(3.12)

We will now separately upper bound the three components of the r.h.s. of the previous inequality. Let us
first focus on the quantity L(EP (ĜT (Xn)),EP (Mn(P,Xn)). From the work of Karlin [18] (see also Theorem
4.2 of Ben-Hamou et al. [2]), we know that

EP (ĜT (Xn)) ∼ αΓ(1− α)nα−1`(n),
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as n→∞ and since 0 ≤ EP (ĜT (Xn))−EP (Mn(P,Xn)) ≤ 1
n , we deduce that

L(EP (ĜT (Xn)),EP (Mn(P,Xn)) ≤ Cn−α`(n)−1. (3.13)

Let us now consider the first term in the r.h.s. of (3.12),

EP (L(ĜT (Xn),EP (ĜT (Xn))) = EP

(∣∣∣∣ Kn,1(Xn)

EP (Kn,1(Xn))
− 1

∣∣∣∣) . (3.14)

As a result of Ben-Hamou et al. [2] Proposition 3.5 (see also the proof of corollary 5.3 of the same paper),
for every ε > 0, we have

Pn(L(Kn,1(Xn),EP (Kn,1(Xn))) ≥ ε) ≤ 4e−ε
2A2

n ,

where

An =
E(Kn,1(Xn))√

8(E(Kn,1(Xn)) ∨ 2E(Kn,2(Xn))) + 4/3
.

Hence, we can now bound (3.14) as follows

EP (L(ĜT (Xn),EP (ĜT (Xn))) = EP (L(Kn,1(Xn),EP (Kn,1(Xn)))

=

∫ ∞
0

Pn(L(Kn,1(Xn),EP (Kn,1(Xn))) ≥ ε)dε

≤ 4

∫ ∞
0

e−ε
2A2

ndε =
4

An

∫ ∞
0

e−y
2

dy = CA−1
n ,

where we have used the change of variables y = εAn. Therefore, from the asymptotic behaviors ofEP (Kn,1(Xn))
and EP (Kn,2(Xn)) that are provided in the work of Karlin [18] (see also Theorem 4.2 of Ben-Hamou et al.
[2]), we conclude that

EP (L(ĜT (Xn),EP (ĜT (Xn))) ≤ Cn−α/2`(n)−1/2. (3.15)

Finally, let us look at the third term in (3.12), namely

EP

(
ĜT (Xn)

EPMn(P,Xn)
L(EP (Mn(P,Xn)),Mn(P,Xn))

)
. (3.16)

Notice that (3.16) is equal to

EP

(
ĜT (Xn)

Mn(P,Xn)
L(Mn(P,Xn),EP (Mn(P,Xn)))

)
, (3.17)

and from the Cauchy-Schwarz inequality, we can upper bound (3.17) by√√√√EP ( ĜT (Xn)2

Mn(P,Xn)2

)√
EP (L(Mn(P,Xn),EP (Mn(P,Xn)))2). (3.18)

We will first compute the asymptotic behavior of the second term in (3.18) and then show that the first term
is asymptotically bounded. By applying Theorem 3.9 of Ben-Hamou et al. [2] and the asymptotic regimes
of Karlin [18], we obtain that for every ε > 0,

Pn(L(Mn(P,Xn),EP (Mn(P,Xn)) ≥ ε) ≤ 2e−ε
2Bn ,

where
Bn ≤ Cnα`(n)
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(see for example the proof of Corollary 5.3 of Ben-Hamou et al. [2]). Therefore, for all ε > 0

Pn(L(Mn(P,Xn),EP (Mn(P,Xn)))2 ≥ ε) ≤ 2e−εBn

and, following the same reasoning used before, we obtain

EP

(
L(Mn(P,Xn),EP (Mn(P,Xn)))2

)
≤ CB−1

n

which leads to√
EP (L(Mn(P,Xn),EP (Mn(P,Xn)))2) ≤ Cn−α/2`(n)−1/2. (3.19)

It remains only to prove that the first term in (3.18) is bounded. First note that

ĜT (Xn)

Mn(P,Xn)
≤ Kn(Xn)

n
∑
j>Kn(Xn) p[j]

For t ≥ 1, let us define the function f by f(t) = t∑
j>t

p[j]
. Noticing that f(t) ≥ 1 > 0 we can write

ĜT (Xn)

Mn(P,Xn)
≤ f(Kn(Xn))

f(E(Kn(Xn)))

f(E(Kn(Xn)))

n
. (3.20)

Denoting by `
1
α# the de Bruijn conjugate of `

1
α (see subsection 1.5.7 of Bingham et al. [4] for a definition),

Proposition 23 of Gnedin et al. [13] implies the following

f(t) ∼ Ct 1
α `

1
α#(t

1
α ),

which in turns implies that f2 is regularly varying with index 2/α. Since f is non decreasing, it is bounded
on any set of the form [1, T ], we can apply Potter’s Theorem (Theorem 1.5.6, Bingham et al. [4]) to obtain

f(Kn(Xn))2

f(EP (Kn(Xn)))2
≤ C

[(
Kn(Xn)

EP (Kn(Xn))

) 1
α

+

(
Kn(Xn)

EP (Kn(Xn))

) 3
α

]
+ C ′.

Following the same lines of reasoning that we used before, we can show that for all η > 1

lim
n→+∞

EP [L(Kn(Xn),EP (Kn(Xn)))η] = 0, (3.21)

and, thanks to the elementary inequality x/|x− 1| ≤ 2 for x ≥ 2, it follows that, for all η > 1,(
Kn(Xn)

EP (Kn(Xn))

)η
≤ 2η + 2ηL(Kn(Xn),EP (Kn(Xn)))η.

As a consequence of this last inequality, along with (3.21), for all η > 1 we obtain

EP

((
Kn(Xn)

EP (Kn(Xn))

)η)
≤ C

from which we get that

EP

((
f(Kn(Xn))

f(EP (Kn(Xn)))

)η)
≤ C. (3.22)

Besides, since EP (Kn(Xn))
1
α ∼ n`

1
α (n), which diverges to infinity, the uniform convergence theorem for

slowly varying functions (Theorem 1.2.1, Bingham et al. [4]) gives that

`
1
α#(EP (Kn(Xn))

1
α ) ∼ ` 1

α#(n`
1
α (n)).
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As a consequence of this and of the asymptotic properties of f , we obtain that

f(EP (Kn(Xn)))

n
∼ ` 1

α (n)`
1
α#(n`

1
α (n)),

which, from the definition of the de Bruijn conjugate, in turn gives

f(EP (Kn(Xn)))

n
∼ 1,

and then

f(EP (Kn(Xn)))2

n2
≤ C. (3.23)

From (3.20), (3.22) and (3.23) together, we finally obtain

EP

(
ĜT (Xn)2

Mn(P,Xn)2

)
≤ C,

which together with (3.13), (3.15) and (3.19) concludes the proof.

Extending Proposition 3.2 to hold uniformly over PRVα is an open problem and probably requires a careful
control over the size of PRVα . Indeed, the classes of distributions we are considering are defined through the
asymptotic properties of their elements, while to obtain minimax results we need a control for each n ∈ N.
Even though Proposition 3.2 does not directly provide with the minimax rate of the Good-Turing estimator,
it still provides with a sanity check for its asymptotic risk. Specifically, Proposition 3.2 implies that for every
P ∈ PPLα ,

lim sup
n

nα/2EP (L(ĜT (Xn),Mn(P,Xn))) < +∞.

Moreover, from a minor change at the beginning of the proof of Theorem 3.2, we can also prove that for every
estimator M̂n(Xn) and every sequence (Tn)n diverging to infinity, we can find an element P ∈ PPLα such
that one has lim supn Tnn

α/2
EP (L(M̂n(Xn),Mn(P,Xn))) = +∞. This observation leads us to conjecture

that the Good-Turing estimator provides with a rate optimal minimax estimator under the loss function
(1.2).

4. Discussion

In this paper, we have considered the problem of consistent estimation of the missing mass under a multi-
plicative loss function. We have presented an alternative, and remarkably shorter, proof of the main result of
Mossel and Ohannessian [24] on the impossibility of a distribution-free estimation of the missing mass. Our
results relies on novel arguments from Bayesian nonparametric statistics, which are then exploited to study
convergence rates and minimax rates of the Good-Turing estimator under the class of α ∈ (0, 1) regularly
varying P . In Proposition 3.1 and Theorem 3.1 it has been shown that, within the class PPLα , the Good-
Turing estimator achieves the best convergence rate possible, while for the class, PRVα , this rate is the best
up to a slowly varying function. An open problem is to understand weather this additional slowly varying
term is intrinsic to the problem or our results can actually be improved to make the rate of the Good-Turing
estimator matches the best possible rate also within the class of regularly varying distributions. Under the
restricted parametric spaces, in Theorem 3.2 we have provided a lower bound for the asymptotic risk. This
bound can be used to compare estimators from a minimax point of view, by finding suitable upper bounds
matching the lower bound rate. In particular, in Proposition 3.2 we have shown that the asymptotic rate
of the risk of the Good-Turing estimator matches the lower bound rate, up to a slowly varying function.
However, the rate of Proposition 3.2 is a pointwise result, for a fixed P ∈ PRVα . An open problem is to
extend Proposition 3.2 to the uniform case, when considering the supremum of the risk over all P ∈ PRVα .
This extension probably requires a careful analysis and control of the size of this parameter space PRVα .
Work on this is ongoing.
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Appendix A

Fact A.1. For ε < 1/2 and a, b ≥ 0, L(a, b) ≤ ε implies L(b, a) ≤ 2ε, where L denotes the multiplicative
loss function.

Proof. Let a, b be positive real numbers, ε < 1/2 and suppose L(a, b) = |ab − 1| ≤ ε. Straightforwardly, we
have that

−bε ≤ a− b ≤ bε (A.1)

From the lower bound of (A.1), a ≥ (1 − ε)b ≥ b/2 and, therefore, 1
a ≤

2
b . Multiplying (A.1) by this last

inequality, we conclude L(b, a) ≤ 2ε.

Proposition A.1. The missing mass Mn(P,Xn) is a jointly measurable map.

Proof. Recall that P is endowed with the smallest σ-algebra making the mappings P 7→ P (A) measurable
for every A ∈ B([0, 1]). This is also the Borel σ-algebra generated by the weak convergence topology, which
can be induced by the bounded Lipschitz metric (see Appendix A of Ghosal and Van der Vaart [12]), defined
as

dBL(P,Q) = sup
‖f‖C1≤1

∣∣∣∣∫ fdP −
∫
fdQ

∣∣∣∣
where the supremum is over all real functions satisfying |f(x) − f(y)| ≤ |x − y| for any x, y ∈ [0, 1]. The
product space [0, 1]n is supposed to be endowed with the Euclidean topology, which can be induced by the
`∞ norm.

Let us consider On(P,Xn) = 1−Mn(P,Xn) and define, for any η > 0, the function

fη,Xi(x) := max(0, η − |Xi − x|),

in addition put fη,Xn := maxi fη,Xi , which is 1−Lipschitz function, since all fη,Xi are 1−Lipschitz. Now, let
Oη,n be defined as follows

Oη,n(P,Xn) =
1

η

∑
j≥1

pjfη,Xn(θj) =

∫
1

η
fη,XndP.

Consider a point (P,Xn) ∈ P × [0, 1]n, we have that

lim
η→0

Oη,n(P,U1:n) = On(P,U1:n). (A.2)

Indeed, for any x ∈ [0, 1] one has

fη,Xn
(x)

η
> 0⇔ ∃i ∈ {1, .., n}, |Xi − x| < η,

hence, if x 6∈ Xn, limη→0
fη,Xn (x)

η = 0, whereas
fη,Xn (Xi)

η = 1 for any η and i. Finally, since
fη,Xn (Xi)

η ≤ 1, the

dominated convergence theorem gives (A.2). We prove that On is measurable, and so does Mn, by showing
that Oη,n are continuous functions.

Let ε > 0, and consider Xn,Yn ∈ [0, 1]n such that ‖Xn − Yn‖∞ ≤ ηε/2. Furthermore suppose that
P,Q ∈ P with dBL(P,Q) ≤ ηε/2. For any x ∈ [0, 1], one has

|fη,Xn
(x)− fη,Yn

(x)| ≤ ηε/2.
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Indeed, suppose for instance fη,Xn
(x) ≥ fη,Yn

(x), with fη,Xn
(x) > 0. Now consider Xi the closest point to

x, we have

fη,Xn
(x) = η − |Xi − x| ≤ η − |Yi − x|+ ηε/2 = fη,Yn

(x) + ηε/2.

Finally, let us compute the distance between the two images,

η |Oη,n(P,Xn)−Oη,n(Q,Yn)| =
∣∣∣∣∫ fη,Xn

dP −
∫
fη,Yn

dQ

∣∣∣∣
≤
∣∣∣∣∫ fη,Xn

dP −
∫
fη,Xn

dQ

∣∣∣∣+

∣∣∣∣∫ fη,Xn
dQ−

∫
fη,Yn

dQ

∣∣∣∣
≤
∣∣∣∣∫ fη,XndP −

∫
fη,XndQ

∣∣∣∣+ ‖fη,Xn − fη,Yn‖∞ ≤ ηε

which gives
|Oη,n(P,Xn)−Oη,n(Q,Yn)| ≤ ε.

Therefore Oη,n is continuous and hence measurable. Finally we conclude that Mn is measurable since it is
the limit of the sum of measurable functions.

Proposition A.2. Let Xn = (X1, . . . , Xn) be a sample such that Xi|P
iid∼ P for all 1 ≤ i ≤ n. The following

distributional results hold true:

i) if P ∼ DP(γ), where γ(dθ) = 1(0 < dθ < 1), then Mn(Xn, P )|Xn ∼ Beta(1, n);
ii) if P ∼ SPα, then Mn(Xn, P )|Xn ∼ Beta(αKn(Xn), n− αKn(Xn)).

Proof. We are going the derive the posterior distribution of Mn(Xn, P ) when P is distributed according to
the law of a two-parameter Poisson-Dirichlet process (Pitman and Yor [34]), P ∼ PY(η, α), with α < 1 and
η > −α. Point i) in the statement is the particular case PY(1, 0), while point ii) corresponds to PY(0, α).

From Corollary 20 of Pitman [32], the posterior distribution of P given Xn under the two-parameter
Poisson-Dirichlet process satisfies the following distributional equality

P |Xn
d
=

Kn∑
i=1

wiδX∗
i

+ w0P̃ ,

where (X∗1 , . . . , X
∗
Kn

) are Kn the distinct values in the sample Xn and having multiplicities (n1, . . . , nKn),
w = (w0, w1, . . . , wKn) is a random vector distributed according to a Dirichlet distribution Dir(η+Knα, n1−
α, . . . , nKn − α) and P̃ ∼ PY(α, η +Knα) independent of w. Therefore,

Mn(Xn, P ) = P ({Xn}c)|Xn
d
=

Kn∑
i=1

wiδX∗
i
({Xn}c) + w0P̃ ({Xn}c). (A.3)

The point masses in (A.3) are all equal to zero, while P̃ ({Xn}c) = 1 since the base measure of P̃ is diffuse.

Therefore, Mn(Xn, P )
d
= w0 and w0 is distributed according to Beta(η+Kn(Xn)α, n−αKn(Xn)) from the

aggregation property of the Dirichlet distribution.

Lemma A.1. Let Z ∼ Beta(1, n) and ε > 0. Then, for all x ≥ 0 and n ≥ 2, P
(∣∣Z
x − 1

∣∣ > ε
)
≥ 1− 2ε

(1−ε) .
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Proof. First let us consider x ∈ (0, 1
1+ε ] and n ≥ 2, that is

P

(∣∣∣∣Zx − 1

∣∣∣∣ > ε

)
= P(Z > (1 + ε)x) +P(Z < (1− ε)x)

= 1 + (1− (1 + ε)x)n − (1− (1− ε)x)n

= 1− 2xε

n−1∑
k=0

(1− (1 + ε)x)n−1−k(1− (1− ε)x)k (A.4)

≥ 1− 2xε

n−1∑
k=0

(1− (1− ε)x)n−1 = 1− 2xεn(1− (1− ε)x)n−1

≥ 1− 2
ε

(1− ε)
n(1− ε)x(1− (1− ε)x)n−1

≥ 1− 2
ε

(1− ε)
(1− 1/n)n−1 (A.5)

≥ 1− 2ε

(1− ε)

where we have used an − bn = (a − b)
n−1∑
k=0

an−1−kbk in (A.4) and that the maximum of the function x 7→

x(1− x)n−1 is achieved for x = 1/n in (A.5). Now let x > 1
1+ε , noticing that 2ε

(1+ε) < 1, we conclude that

P

(∣∣∣∣Zx − 1

∣∣∣∣ > ε

)
= P (Z < (1− ε)x) ≥ P

(
Z <

1− ε
1 + ε

)
= 1− 2n

εn

(1 + ε)n

≥ 1− 2ε

(1 + ε)
≥ 1− 2ε

(1− ε)

which proves the result.

Lemma A.2. Let M ′ be a random variable distributed according to Beta(a− 1, b) and med(M ′) denote its
median. Let fa,b and ma,b denote the density function and the median of a Beta distribution with parameters
a and b, respectively. Then, the following equality holds true

B(a− 1, b)

B(a, b)
EM ′ (|M ′ −ma−1,b|) = 2

∫ ma,b

ma−1,b

fa,b(x)dx. (A.6)

Proof. We start by computing the expected value on the l.h.s. of (A.6):

EM ′ (|M ′ −ma−1,b|) =

∫ 1

0

|x−ma−1,b|fa−1,b(x)dx

=

∫ ma−1,b

0

|x−ma−1,b|fa−1,b(x)dx+

∫ 1

ma−1,b

|x−ma−1,b|fa−1,b(x)dx

= −
∫ ma−1,b

0

(x−ma−1,b)fa−1,b(x)dx+

∫ 1

ma−1,b

(x−ma−1,b)fa−1,b(x)dx

=

∫ 1

ma−1,b

xfa−1,b(x)dx− 1

2
ma−1,b −

∫ ma−1,b

0

xfa−1,b(x)dx+
1

2
ma−1,b

=

∫ 1

ma−1,b

xfa−1,b(x)dx−
∫ ma−1,b

0

xfa−1,b(x)dx.
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Thanks to the previous chain of equalities we obtain

B(a− 1, b)

B(a, b)
EM ′ (|M ′ −ma−1,b|)

=
B(a− 1, b)

B(a, b)

∫ 1

ma−1,b

xfa−1,b(x)dx− B(a− 1, b)

B(a, b)

∫ ma−1,b

0

xfa−1,b(x)dx

=

∫ 1

ma−1,b

fa,b(x)dx−
∫ ma−1,b

0

fa,b(x)dx

=

∫ ma,b

ma−1,b

fa,b(x)dx+

∫ 1

ma,b

fa,b(x)dx−
∫ ma,b

0

fa,b(x)dx−
∫ ma−1,b

ma,b

fa,b(x)dx

=

∫ ma,b

ma−1,b

fa,b(x)dx+
1

2
− 1

2
−
∫ ma−1,b

ma,b

fa,b(x)dx

=

∫ ma,b

ma−1,b

fa,b(x)dx+

∫ ma,b

ma−1,b

fa,b(x)dx = 2

∫ ma,b

ma−1,b

fa,b(x)dx

and the result now follows.

Lemma A.3. Let fa,b denote the density of the Beta(a, b) distribution. Then, there exists n0 ∈ N such that
for all b > a > n0, one has

sup
x∈[0,1]

fa,b(x) < 8(a+ b)3/2a−1/2b−1/2. (A.7)

Proof. Suppose that a, b > 2. The mode of the Beta distribution is a−1
a+b−2 , therefore

sup
x∈[0,1]

fa,b(x) = fa,b

(
a− 1

a+ b− 2

)
≤ 1

B(a, b)

aa−1bb−1

(a+ b− 2)a+b−2
. (A.8)

From the Stirling’s formula, there exists n0 such that for a, b > n0,

1

B(a, b)
≤ (a+ b)a+b−1/2

aa−1/2bb−1/2
.

Exploiting the previous inequality to upper bound the r.h.s. in (A.8), we obtain

sup
x∈[0,1]

fa,b(x) ≤ a−1/2b−1/2(a+ b)3/2 1

(1− 2
a+b )

a+b
.

Finally, since for n0 large enough 1
(1− 2

a+b )a+b
≤ 8, we get the result (A.7).

Lemma A.4. Let fa,b denote the density of the Beta(a, b) distribution. Then, there exists a constant C such
that for any a, b > 3 with a < b/2,∫ ma,b

ma−1,b

fa,b(x)dx ≥ C√
a
.

Proof. In the sequel we use the generic notation C to refer to universal constants, the value of C may
change from a line to another. To simplify the notations, let n = a+ b and denote by Ix(a, b) the normalized
incomplete Beta function which is defined as

Ix(a, b) =

∫ x

0

fa,b(x)dx.
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It is well-known that

Ix(a+ 1, b) = Ix(a, b)− xa(1− x)b

aB(a, b)
,

as can be checked through the integration by parts formula. Successively, applying this result for x = ma−1,b

and using the definition of the median, we can deduce that

Ima−1,b
(a, b) = Ima−1,b

(a− 1, b)−
ma−1
a−1,b(1−ma−1,b)

b

(a− 1)B(a− 1, b)
= 1/2−

ma−1
a−1,b(1−ma−1,b)

b

(a− 1)B(a− 1, b)

= Ima,b(a, b)−
ma−1
a−1,b(1−ma−1,b)

b

(a− 1)B(a− 1, b)
,

which in turn leads to∫ ma,b

ma−1,b

fa,b(x)dx = Ima,b(a, b)− Ima−1,b
(a, b) =

ma−1
a−1,b(1−ma−1,b)

b

(a− 1)B(a− 1, b)
. (A.9)

Thanks to the Stirling formula applied to the Beta function, we know that for all a, b > 1,

B(a, b) ≤ C aa−1/2bb−1/2

(a+ b)a+b−1/2
= C

aa−1/2bb−1/2

nn−1/2
.

By plugging the previous formula in (A.9), we obtain∫ ma,b

ma−1,b

fa,b(x)dx ≥ C (n− 1)n−3/2

(a− 1)a−1/2bb−1/2
ma−1
a−1,b(1−ma−1,b)

b. (A.10)

Now, since a− 1 < b, the mode-median-mean inequality (see Payton et al. [31]) gives that

a− 2

n− 3
≤ ma−1,b ≤

a− 1

n− 1
,

from which we deduce

ma−1
a−1,b ≥

(a− 2)a−1

(n− 3)a−1
≥ (a− 2)a−1

(n− 1)a−1

and

(1−ma−1,b)
b ≥ bb

(n− 1)b
.

Now, together with (A.10), the previous two inequalities yield∫ ma,b

ma−1,b

fa,b(x)dx ≥ C (n− 1)n−3/2

(a− 1)a−1/2bb−1/2

(a− 2)a−1bb

(n− 1)n−1
≥ C

√
b

an

where we used the fact that for x > 2, xx ≥ (x − 1)x ≥ Cxx. The result follows by noticing that a < b/2
implies b/n < 2/3.
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