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Abstract: Lunar mare regolith is traditionally thought to have formed by impact bombardment 21 

of newly emplaced coherent solidified basaltic lava. We use new models for initial 22 

emplacement of basalt magma to predict and map out thicknesses, surface topographies and 23 

internal structures of the fresh lava flows and pyroclastic deposits that form the lunar mare 24 

regolith parent rock, or protolith. The range of basaltic eruption types produce widely varying 25 

initial conditions for regolith protolith, including 1) “auto-regolith”, a fragmental meters-thick 26 

surface deposit that forms upon eruption and mimics impact-generated regolith in physical 27 

properties, 2) lava flows with significant near-surface vesicularity and macro-porosity, 3) 28 

magmatic foams, and 4) dense, vesicle-poor flows. Each protolith has important implications for 29 

the subsequent growth, maturation and regional variability of regolith deposits, suggesting 30 

wide spatial variations in the properties and thickness of regolith of similar age. Regolith may 31 

thus provide key insights into mare basalt protolith and its mode of emplacement.  32 

 33 

Plain Language Summary: Following recent studies of how lava eruptions are emplaced on the 34 

lunar surface, we show that solid basalt is only one of a wide range of starting conditions in the 35 

process of forming lunar soil (regolith). Gas present in the lavas during eruption also produced 36 

bubbles, foams and explosive products, disrupting the lava and forming other starting 37 

conditions for mare soil parent material. 38 

 39 

  40 
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 41 

1.  Introduction and Background 42 

In contrast to Earth, where water-rock interactions cause soil formation to be dominantly a 43 

chemical weathering process, high-energy physical weathering processes dominate the 44 

formation and evolution of the lunar regolith (Hörz, 1977): 1) micrometeorite comminution 45 

(rock breakup into smaller fragments), and 2) agglutination (quenched impact glass and welded 46 

particles averaging 25-30 vol% of regolith) (McKay et al., 1974).  The canonical model for lunar 47 

mare regolith development (e.g., Hörz, 1977; Langevin and Arnold, 1977; McKay et al., 1991; 48 

Lucey et al., 2006) begins with the emplacement of a lava flow, representing a fresh solid basalt 49 

surface unaffected by impact bombardment or space weathering processes (Wilcox et al., 50 

2005).  The pristine surface and interior of the new lava flow (Fig. 1) is the mare regolith parent 51 

rock, or protolith, and is generally thought of as being dense, solidified basalt.  Because the 52 

fresh surface of a lunar lava flow has never been observed, most regolith development models 53 

assume a generally flat lava flow surface and a solid coherent flow interior.  The apparent lack 54 

of significant volatiles such as H2O in lunar magmas led to earlier assumptions that most mare 55 

basalt flows would be essentially non-vesicular.     56 

Regolith formation begins with impact bombardment onto the pristine dense lava flow, a 57 

stochastic process that deforms, pulverizes, melts and ejects basalt protolith to become the 58 

initial stages of the regolith layer, in stark contrast to the characteristics of evolved or more 59 

mature regolith (Fig. 1). Two major temporal trends occur in regolith development: 1) buffering 60 

trend: the initial predominantly coarse-grained and blocky substrate ejecta from the protolith 61 

becomes subject to further impact bombardment at all scales (particularly micro-meteorite), 62 

comminuting blocks, reducing grain size, overturning soil grains and exposing them to space 63 

weathering/solar wind, adding more and more agglutinates to the soil, and reworking already-64 

existing regolith material.  The growing regolith layer thus acts as a buffer to further regolith 65 

growth, favoring reworking over further breakup of the protolith.  2) impact flux trend: 66 

decreasing impact flux during the several Ga period of mare basalt emplacement means that 67 

the rate of bombardment of older flows, and the rate of regolith growth, will be non-linear; 68 

younger lava flows will be subject to a lower integrated impact flux and lower absolute flux. 69 

These general trends result in a paradigm of regolith development constructed from 70 

observations and data from orbital, Apollo and Luna surface observations, soil mechanics 71 

experiments, and detailed laboratory analysis of regolith cores and returned samples (McKay et 72 

al., 1991; Lucey et al., 2006).    73 

Four recent developments have the potential to change this paradigm.  First, discoveries in 74 

the last decade have pointed to the presence of significant amounts of H2O and other volatile 75 

species in lunar magmas (Saal et al., 2008; Hauri et al., 2011), and clarified their influence on 76 

the characteristics of ascending magma (Rutherford et al., 2017).  Secondly, improved models 77 

of the generation, ascent and eruption of mare basalt magma (Wilson and Head 2017a; 2018), 78 

including updated inclusion of magmatic volatiles, have underlined the distinctly different 79 

stages and associated deposits in the eruption and emplacement of mare basalts, including 80 

proximal pyroclastic deposits and distal lava flows (Head and Wilson, 2017; Wilson and Head, 81 

2018; Garry et al., 2012).  Third, global orbital remote sensing data (imaging, altimetry, radar, 82 

radiometry, thermal inertia, etc.) and Earth-based radar data have revealed significant diversity 83 

in the characteristics of mare volcanic landforms (Tables S1-S2), impact crater populations and 84 



 3 

morphologies, mare regolith surfaces, and mare subsurface materials (Lucey et al., 2006), all 85 

suggesting that regolith properties are likely to be much more diverse than the paradigm 86 

developed from Apollo and Luna sites.  Finally, renewed interest in human and robotic lunar 87 

exploration, and thus resource/geotechnical/engineering aspects of a more sustained human 88 

presence, have encouraged global characterization of the mare regolith layer and its underlying 89 

mare basalt protolith. In this analysis, we review developments in understanding the stages in 90 

the ascent and eruption of magma for new insights into the production of lunar mare regolith 91 

protolith, and the implications for regolith development, and its global characteristics and 92 

variability (Tables S1-S2).    93 

 94 

2.  Lunar Mare Basalt Lava Flow Emplacement Paradigm 95 

Assessment of gas release patterns (Rutherford et al., 2017) during individual mare basalt 96 

eruptions (Wilson and Head, 2018) provides the basis for predicting the effect of vesiculation 97 

processes on the structure and morphology of eruption products: typical lunar eruptions are 98 

subdivided into four phases (Fig. 2a).  These phases, controlled by total dike volumes, initial 99 

magma volatile content, vent configuration, and magma discharge rate, define the wide range 100 

of initial mare basalt extrusive products and consequent regolith protoliths produced in space 101 

and time (Table S1).   102 

The rising dike penetrates the surface initiating Phase 1, the minutes-long, explosive 103 

transient gas release phase due to volatile concentration into the low-pressure upward-104 

propagating dike tip; this results in a very widespread but extremely thin deposit, distributing 105 

the ubiquitous volcanic glass beads found in lunar soils (Heiken and McKay, 1974; Heiken, 1975; 106 

Delano, 1986).  The dike continues to rise toward a neutral buoyancy configuration, initiating 107 

the high-flux hawaiian eruptive Phase 2, characterized by peak magma discharge rates, the 108 

near-steady explosive eruption of magma containing bulk volatile content, and formation of a 109 

relatively steady, largely optically-dense hawaiian fire fountain.  Pyroclasts lose gas efficiently 110 

and accumulate within ~10 km of the fissure, forming a lava lake deficient in gas bubbles.  In 111 

short-lived eruptions, degassed lava flows away from the lake to form the distal parts of a 112 

dense lava flow. In long-lasting eruptions, lava erodes a sinuous rille.  Phase 2 involves eruption 113 

of a significant part of the total dike magma volume and magma volume flux decreases with 114 

time (Fig. 2a).  115 

When the dike approaches an equilibrium, the vertical extent of the dike becomes fixed, 116 

and a rapid change occurs toward the lower-flux Phase 3 hawaiian to strombolian transition. 117 

The main driving process is the horizontal reduction in the dike thickness due to a decrease in 118 

internal excess pressure and relaxation of dike intrusion-induced deformation.  Magma vertical 119 

rise speed decreases greatly to less than 1 m/s; magma volume flux leaving the vent decreases 120 

to a few ×104 m3 s-1 over ~3-5 days. These reductions mean that CO gas bubbles nucleating 121 

deep in the dike can now rise significantly through their parent liquid, with larger bubbles 122 

overtaking smaller bubbles, leading to coalescence, greater growth, and eventual formation of 123 

gas slugs filling almost the entire dike width and producing surface strombolian explosions (e.g., 124 

Keske et al., 2020).  125 

When vent activity becomes entirely strombolian the dike closing, strombolian vesicular 126 

flow Phase 4 begins; horizontal dike closure continues, and magma is extruded at a low flux. 127 

Minor strombolian explosive activity continues; rise rates are sufficiently low that a stable crust 128 
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will form on magma in the lava lake and flowing away as lava flows.  In a low-flux eruption, 129 

Phase 4 begins only after most of magma in the dike has been erupted and the volume flux is at 130 

a very low level, resulting in the emplacement of vesicular lava in the vent vicinity (Fig. 2a,b). 131 

Erupted magma consists of lava containing bubbles of a mixture of gases and volatile elements 132 

(Gaillard & Scaillet, 2014; Renggli et al., 2017). Lavas exsolving ~1,000 ppm of these gases would 133 

leave the vent as lava foams with vesicularities >90% by volume. The topmost bubbles would 134 

explode into the overlying vacuum, producing a bubble wall shard layer (an “auto-regolith”) 135 

(Qiao et al., 2020, their Fig. 14); gas would escape through this accumulating debris layer until 136 

welding and the accumulated debris weight inhibited further foam disintegration.  If the 137 

underlying lava still contained dissolved volatiles, volatile concentration into the remaining 138 

liquid as the lava cooled and crystallized would result in second boiling (an increase in vapor 139 

pressure to the point of supersaturation) and additional post-emplacement vesiculation, 140 

causing a range of macro-micro-vesicularity (Wilson et al., 2019, their Fig. 5). In a high-flux 141 

eruption Phase 4 (somewhat higher than 104 m3 s-1), a large fraction of the total dike volume is 142 

still available for extrusion as vesicular lava (Fig. 2a).  This lava is predicted to cause flow 143 

inflation (Self et al, 1996; Hamilton et al., 2020), intruding vesicular lava into the still-hot 144 

interiors of the previously emplaced non-vesicular flows. Magma from the shallow parts of the 145 

dike (<400 m) feeding such intruding flows would contain water/sulfur compounds that had not 146 

yet exsolved.  As the resulting inflated flows cooled on a timescale of weeks, second boiling 147 

would occur in this case also, causing a further, possibly extensive, inflation episode (Wilson et 148 

al., 2019; their Fig. 5). For eruptions contained within summit pit craters, Phase 4 lavas can 149 

pond and undergo further distinctive protolith evolution (Fig. 2c) 150 

We now explore the implications of these four phases of a typical mare basalt eruption (Fig. 151 

2a) for the resulting surface deposits, the mare basalt regolith protolith.  152 

 153 

3.  Mare Basalt Protolith Types: Implications for Regolith Evolution 154 

What are the major different types of surface topography, morphology, surface properties, 155 

and internal structure (Fig. 3) of deposits predicted by these four phases (P1-P4), (Figs. 2,3), 156 

their distribution (Table S1), and the implications for regolith development on these protoliths?  157 

1. Solidified Non-Vesicular Coherent Mare Basalt:  Magma largely degassed at the vent 158 

during the hawaiian activity of P2 will produce several-100 km long, generally flat, smooth-159 

surfaced flows, with low vesicularity, that cool to solidified basalts up to tens of m thick (Fig. 160 

3a). Their distribution and plan view will be influenced by surface topography underlying the 161 

flow, regional slopes, and flow cooling behavior (Head and Wilson, 2017). Distal flows 162 

associated with sinuous rilles should also form this type of regolith protolith.  These flows 163 

should be very widespread distally from the vent and form a regolith protolith that is similar to 164 

that of the standard regolith evolution model (Fig. 1; Table S1).   165 

2. Inflated Flows: Surface Topography, Vesicularity and Meso-Macro Porosity: If P4 activity 166 

is of long duration, flow inflation of P2 flows can result, elevating and distorting the pre-existing 167 

solidified flow surface, and introducing several-m scale topographic irregularities on the 168 

recently solidified upper thermal boundary layer of the flow (Fig. 3b). This extremely irregular 169 

protolith surface (e.g., Hamilton et al., 2020) will influence the nature of initial stages of regolith 170 

development, causing irregular crater formation and ejecta distribution at scales less than the 171 

average roughness.  The solidified inflated core of the flow at depths of a few meters will 172 
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consist of a very porous layer of low-density vesicular basalt of significant thickness due to 173 

intrusion of very vesicular P3 magma. Furthermore, meter-scale void spaces from coalescence 174 

of vertically migrating gas pockets are also predicted (Wilson et al., 2019, their Fig. 5).  As 175 

superposed craters are formed on this protolith, energy partitioning will favor crushing of 176 

vesicles and voids over brittle deformation and this will influence the grain size and shape of 177 

the initial regolith layers; meso- and macro-porosity will favor collapse pit and collapse crater 178 

formation, regolith drainage into void spaces, and slowing of optical maturation due to 179 

preferential drainage of the finest fractions.  These inflated flows should be distributed closer 180 

to the vent than those formed from the non-inflated distal P2 flows (Table S1). 181 

3. Inflated Flows: Second Boiling, Vertical Bubble Migration and Extrusion of Magmatic 182 

Foam: Prior to solidification, further cooling and evolution of P4-inflated P2 flows can cause 183 

second boiling and in situ generation of additional vesicular layers (Fig. 3c).  If second boiling is 184 

significant (e.g., thick inflated layer, volatile-rich magma), bubble layers can undergo active 185 

upward migration of foams in pipes to form shallow gas pockets creating shallow meter-scale 186 

void space and further deforming the lava flow surface (Wilson et al., 2019, their Fig. 5). Theory 187 

further predicts that cracking of the upper thermal boundary layer can enable extrusion of 188 

foams potentially forming the small mounds known as Ring-Moat Dome Structures (RMDS) 189 

(Zhang et al., 2017, 2020). Instead of the dense, vesicle-poor solidified basalt substrate (Figs. 190 

1,3a), much of the initial substrate will consist of an irregular surface and micro-, meso- and 191 

macro-porous protolith (also having undergone auto-regolith formation) in which impact 192 

energy partitioning will favor crushing of vesicles and voids, initially finer-grained regolith, and 193 

potential slowing of maturation due to drainage of the finest fraction into the still-porous 194 

substrate.  The presence of surface magmatic foams will favor crushing, changes in crater 195 

morphometry (vertical growth favored over lateral) and clast size fractions dominated by 196 

bubble-wall geometry (Morgan et al., 2019). The presence of unusual foam mounds (RMDS) 197 

might signal the locations of P4 inflated flows where significant second boiling has taken place 198 

(Table S2).  These inflated flows should be distributed closer to the vent than those formed 199 

from the non-inflated distal P2 flows (Table S1). 200 

4. Foam Flows and “Auto-Regolith” Formation: Some very vesicular P4 flows can extrude 201 

out onto the surface near the vent (Fig. 3d).  When such highly vesicular flows are exposed to 202 

the lunar vacuum, they undergo catastrophic fragmentation and disruption that can destroy the 203 

entire meters-thick flow, leading to production of a fragmental layer (an auto-regolith); this 204 

auto-regolith layer can comprise the entire flow-unit thickness in a point-source eruption, and a 205 

significant amount of the flow thickness in fissure flows (Fig. 2b). Wilson et al. (2019; their Fig. 206 

5) have described the process in detail; the resulting protolith stratigraphy of the cooled and 207 

solidified flow consists of an upper meters-thick fragmental layer of glassy shards (the “auto-208 

regolith”) overlying a thin layer of welded pyroclasts, above an extremely vesicular layer up to 209 

several meters thick (Fig. 3d) (Table S1).  Initial impacts will crush, comminute and redistribute 210 

this substrate, influencing initial crater formation and shape, and subsequent degradation; 211 

blocks derived from these layers will be rare and easily degraded.  212 

5. Foam Flows With Coherent Surfaces: Some P4 flows can develop a coherent upper 213 

thermal boundary layer, inhibiting initial catastrophic foam flow disruption and resulting in 214 

extremely vesicular, low density meters-thick flows with a solidified carapace, and perhaps 215 

some initial collapse pits (Fig. 3e). These are most likely to occur in the vicinity of vents and pit 216 
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craters, where variations in effusion rates can cause a solid crust to form and foam buildup 217 

below, before renewed activity extrudes it out of the vent area.  This regolith protolith is 218 

predicted to have extremely high meso-macro-porosity, and initial impacts are likely to cause 219 

collapse and deformation of the substrate; the late-stage lava flows on the rim of the small 220 

shield volcano Cauchy 5 have been interpreted to display such a regolith protolith (Qiao et al, 221 

2020) (Table S1).    222 

6. Pyroclastic Layers: During P2, sustained hawaiian eruptive activity in the lunar vacuum 223 

results in regions surrounding the vent accumulating significant thicknesses (up to many 10s of 224 

m) of pyroclastic beads out to ranges of several tens of km; Weitz et al., 1998; Gaddis et al., 225 

2003 (Fig. 3f). The presence of such layers affects subsequent impact crater energy partitioning, 226 

crater size-frequency distributions, soil maturation, etc. The pyroclastic layers are a type of 227 

“auto-regolith” and can be interbedded with more coherent basaltic flow layers.  Such a 228 

substrate was explored on Apollo 17, where the 120 m diameter Shorty crater had penetrated 229 

both pyroclastic and basalt flow layers (Schmitt , 1973) (Table S1).  230 

7. Emplacement of Anomalous “Xenolithic” Volcanic Glass Beads: In the initial minutes of an 231 

eruption (P1) extremely explosive venting of gas and disrupted foam disperses pyroclasts very 232 

widely, well beyond the associated subsequent flow deposits (P2-4) (Fig. 3g). On the basis of 233 

the nature of the rapid gas expansion and pyroclast fragmentation, these pyroclasts should 234 

arrive at the target site as generally solidified round glass beads (Table S1).  These are a 235 

candidate source of “xenolithic” pyroclasts in all regolith deposits (Delano, 1986).  The high-236 

energy of this venting can also incorporate and widely disperse pre-existing regolith particles 237 

from the venting site. 238 

8. Volcanic Pit Crater Floor Surfaces: If P3 occurs in a pit or collapse crater (Fig. 2c) rather 239 

than a fissure eruption (Fig. 2b), P3 activity can concentrate strombolian pyroclasts and P4 240 

foamy lavas in the depression, resulting in the development of an extremely high concentration 241 

of volatiles and magmatic foams below a solidified and evolving thermal boundary layer of 242 

unusual micro- and macro-vesicularity (Fig. 3h) (Table S1).  The flexing and disruption of the 243 

highly macro-vesicular lava lake crust layer has been proposed to cause extrusion of magmatic 244 

foams to form mounds (Fig. 2c) (e.g., Wilson and Head, 2017b; Qiao et al. 2017, 2018, 2019, 245 

2020).  On the basis of the predicted properties of such a lava lake environment, these authors 246 

outlined solidified lava lake and magmatic mound substrate characteristics producing extremely 247 

underdense targets and potential regolith drainage. These characteristics could have significant 248 

implications for the nature and retention of superposed craters, the original and long-term 249 

regolith grain-size evolution, the slowing of optical maturation rates, and the retardation of 250 

aging interpreted from impact crater size-frequency distribution data.  251 

 252 

4. Discussion 253 

A. Summary of New Perspectives on Regolith Protolith Development:  254 

Analysis of the phases of individual mare basalt eruptions (Fig. 2) provides a forward-model 255 

of the formation of regolith protolith and shows that the traditional view of a solid basaltic 256 

regolith protolith (Fig. 1) is only one of a wide array of regolith protoliths (Fig. 3).  These results 257 

provide an interpretative framework to revisit and expand our understanding of mare basalt 258 

regolith-forming processes, and predictions for the interpretation of remote sensing data (Table 259 

S2).  They also yield some potential new insights that might help clarify existing knowledge of 260 
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regolith characteristics, and can be used to plan for future robotic and human scientific and 261 

resource exploration (Table S1).    262 

B. Application of Protolith Concepts to Regolith Formation and Evolution:  263 

1) Basal regolith-substrate interfaces: The starting conditions for regolith development (Fig. 264 

3) can vary widely from solid basalt to a meters-thick “auto-regolith”; initial topography can 265 

vary up to tens of meters. These factors can significantly influence estimates of local and 266 

regional thickness and lateral continuity of regolith. 267 

2) Energy partitioning in regolith-forming impact events: Efficiency of cratering will vary as a 268 

function of protolith surface and subsurface structure (Fig. 3). The ratio of rock substrate 269 

crushing/deformation to ejection will vary in space/time for substrates with meso-macro-270 

porosity, and grain sizes and shapes will vary accordingly.  Initial development of an “auto-271 

regolith” will mean that impact “regolith buffering” will operate from the beginning.  Different 272 

substrate responses to impact energy partitioning will introduce significant variability in 273 

regolith grain sizes, shapes, percentage agglutinates, presence/abundance of rocks, and 274 

thickness.    275 

3) Morphology of fresh superposed impact craters: These should differ widely in early 276 

protolith bombardment on the basis of energy partitioning in different substrates (Fig. 3); this 277 

will cause sequential morphological differences as regolith thickens between and within flows. 278 

The normal fresh-crater morphological sequence employed to predict regolith thickness 279 

(Quaide and Oberbeck, 1968) in traditional substrates (Fig. 1) should be updated to include 280 

other protoliths (Fig. 3).  281 

4) Regolith thickness with age: Regolith thickness/age relationships (e.g., Quaide and 282 

Oberbeck, 1968; Shkuratov and Bondarenko, 2001; Wilcox et al., 2005; Bart et al., 2011; Bart, 283 

2014; Di et al., 2016) should take into account the nature of the initial substrate topography, 284 

structure (vertical and horizontal) and the potential presence of an auto-regolith (Fig. 3); great 285 

thickness variability in space and time is likely across this spectrum.  286 

5) Regolith growth rates: “Auto-regolith” formation can provide both an initial multi-287 

meters-thick “regolith” layer and a buffering layer influencing regolith growth rates.  Existing 288 

models of regolith growth rates (Xie et al., 2018) can be augmented with assessments based on 289 

the predicted range of regolith protoliths (Fig. 3).  290 

6) Regolith components and maturation rates: Expected diversity of initial protolith 291 

conditions will map out into the relative proportions of components (e.g., indigenous and 292 

xenolithic pyroclastic glass, glass shards, grain vesicularity, grain sizes and shapes, mesostastis, 293 

etc.) in evolving regolith. An understanding of the full range of regolith protoliths (Fig. 3) can 294 

help interpretation of variations in these factors in current regolith samples and make testable 295 

predictions for future exploration (Tables S1-S2).    296 

7) Degradation of superposed craters with time: Energy partitioning in different substrates 297 

(Fig. 3) will yield different initial crater morphologies and morphometries, influencing the 298 

interpretation of crater degradation and lifetime; very porous macro-vesicular substrates can 299 

also produce initial and subsequent collapse craters that can mimic degraded primary impacts. 300 

Landform and crater degradation analyses (e.g., Fassett and Thomson, 2014) can now employ 301 

the wider range of regolith protoliths (Fig. 3) to assess their implications.  302 

8) Impact crater size-frequency distribution measurements and surface ages: Variable 303 

protolith characteristics in space/time result in variable superposed crater energy partitioning 304 
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that can influence fresh and degraded impact crater morphology/morphometry, CSFD 305 

measurements, and determination of population equilibrium diameters. An extreme case of 306 

these types of effects is predicted to occur in pit crater floors (P3-4; Fig 2c) (e.g., Irregular Mare 307 

Patch mounds and hummocky terrain in Ina; Garry et al., 2012; Qiao et al., 2019; Wilson and 308 

Head, 2017b) where protolith variability (Figs. 2c,3) may have profound effects on superposed 309 

crater formation, retention, degradation, and CSFD.  310 

9) Vertical structure of lava flows: Individual lava flow cross-sectional vertical structure 311 

should vary widely (in both space and time) (Fig. 3), in contrast to the dense solid basalt cooling 312 

unit commonly assumed (Fig. 1). Despite this diversity and complexity, eruption phase 313 

parameter space (Fig. 2a) offers promise to unravel the eruption history of individual cross-314 

section exposures of intercalated lava flows and regolith layers (Kerber et al., 2019).  315 

10) Variation in regolith protolith (Fig. 3) in space and time:  In individual basaltic eruptions, 316 

protolith diversity and complexity is predicted to decrease as a function of distance from the 317 

eruptive vent (Fig. 2a) and, with the exception of P4 inflated flows, distal flows may be most 318 

similar to the traditional model (Fig. 1).  Magmatic volatile abundances introduce additional 319 

variability in the nature of different eruptive stages and deposits; increasing insights into 320 

species and abundances (Rutherford et al., 2017) can be readily mapped into modified protolith 321 

paradigms.  Improved models of eruption conditions, and deposit formation as a function of 322 

distance from the vent, will help to place point samples (e.g., Apollo 15 highly vesicular basalts, 323 

green pyroclastic glass beads; Apollo 17 orange/black pyroclastic glass beads) into more robust 324 

predictions for proximity to the eruptive vent and, together with remote sensing data, provide 325 

regional assessments of protolith trends.  Exploration of vertical sections in impact and pit 326 

crater walls can provide insight into temporal variations in regolith protolith (Kerber et al., 327 

2019). 328 

 329 

5.  Conclusions and Implications 330 

On the basis of our forward-modeling of the four stages in lunar lava flow emplacement 331 

(Fig. 2a), we conclude that a wide diversity of regolith protoliths is likely to be present in lunar 332 

mare regolith deposits in addition to the traditional solid basalt model (Figs. 1,3).  333 

Documentation of these differences in initial flow characteristics and regolith protolith (Fig. 3) 334 

can enhance the understanding of the complexity of regolith development and lead in turn to a 335 

paradigm for the variation in basaltic lava flow surface and internal structure in time and space. 336 

Predictions of the forward model of lava flow emplacement can provide specific goals and 337 

objectives for further exploration of the nature and initial emplacement environment of the 338 

regolith protolith, and the evolution and current state of the resulting regolith (Tables S1-S2). 339 

Some promising areas of investigation include:  340 

1) Analysis of orbital remote sensing data for their ability to detect and map variations in 341 

protolith/regolith parameter space (e.g., radiometry, radar, surface roughness, photometry, 342 

mineralogy, maturity indices, etc.) (Table S2). For example, Campbell et al. (2009, 2014) 343 

described significant variations in the distribution of decimeter-scale subsurface rocks in Maria 344 

Serenitatis, Imbrium and Crisium from Earth-based radar data, interpreted to be due to 345 

variations in initial flow properties.  Bandfield et al. (2011) and Hayne et al. (2017) explored 346 

variations in regolith temperatures in a variety of enigmatic cold and hot spots detected by LRO 347 

Diviner radiometry, and Chan et al. (2010) showed multiple anomalies in microwave brightness 348 
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temperatures in lunar mare regolith.  These types of trends and anomalies could be explored 349 

for variations related to the physical properties of different regolith protoliths (Fig. 3).    350 

2) Measurements of the vertical structure of lava flows and regolith characteristics revealed 351 

in rille, impact crater and pit crater walls could be revisited in the context of the different lava 352 

flow regolith protoliths, and in situ exploration of vertical sections (Kerber et al., 2019) should 353 

be given high priority.    354 

3) Regolith protolith variability data may provide additional insight into regolith and 355 

underlying lava flow physical properties, thickness and internal structure relevant to past and 356 

future seismic (e.g., Cooper et al., 1974), heat flow (Langseth et al., 1976), surface and orbital 357 

ground penetrating radar (e.g., Yuan et al., 2017), and surface electrical properties data.  358 

4) Analyzing assumptions about crater degradation processes and CSFD ages to take into 359 

account potentially varying protolith and regolith processes may help to explain the often high 360 

degree of local and regional regolith variability (e.g., Fassett and Thompson, 2014; Hirabayashi 361 

et al., 2018; Needham et al., 2018; Prieur et al., 2018).  362 

5) Revisiting the Apollo/Luna/Chang’E data on the lunar regolith in the context of this 363 

forward-model protolith/regolith growth paradigm may provide new insights into regolith 364 

production and evolution and its variability (Lucey et al., 2006). 365 

Examples of this array of candidate regolith protoliths (Fig. 3. Table S1) and an assessment 366 

of appropriate investigation techniques (Tables S2) provide a basis for further exploration of 367 

mare regolith diversity and geotechnical properties.   368 
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Figures: 504 
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 506 
 507 

 508 

Figure 1. Traditional solid dense basalt protolith regolith evolution model (after Wilcox et al., 2005). 509 

 510 

  511 
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 512 

   513 
Figure 2a. 514 

 515 

  516 
Figure 2b.       Figure 2c. 517 

 518 

Figure 2. a.  Four stages of a typical mare basalt eruption (after Wilson and Head, 2018). b. Vertical sequence in fissure 519 

eruption. c. Vertical sequence in pit crater eruptions. (b and c: Wilson and Head, 2017b). 520 

  521 
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 524 

Figure 3. Cross-sections of eight regolith protolith types.     525 
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 544 

Table S1: Predicted locations of the eight different regolith protolith types (Fig. 3). 545 

 546 

A) Solidified non-vesicular mare basalts:   547 

-General Locations: Distal parts of long fissure-fed, lava flows (Fig. 2b); medial and distal flows associated with sinuous rilles 548 

(Fig. 2a: Phase 2 distal flows). 549 

-Specific Locations: Medial to distal parts of southwest Mare Imbrium lava flows (Schaber, 1973; Chen et al., 2018; Bugiolacchi 550 

and Guest, 2008); Apollo 11 Site (Beaty and Albee, 1978); Apollo 12 site (Neal et al., 1994); near terminations of Rima Hadley, 551 

Rima Prinz, etc. (Hurwitz et al., 2012, 2013). 552 

 553 

B) Inflated flows: 554 

-General Locations: Proximal to distal parts of both central vent-fed flows (Fig. 2a: Phase 4b) and long, fissure-fed lava flows 555 

(Fig. 2b) (Self et al, 1996; Hamilton et al., 2020); Possibly small irregular mare patches (IMPs) (Braden et al., 2014; Qiao et al., 556 

2020). 557 

-Specific Locations: Proximal and medial (Zhang et al., 2016; Chen et al., 2018) regions of SW Mare Imbrium flows; Apollo 15 558 

site (Apollo 15 PET, 1972; Lofgren et al., 1975; Keszthelyi, 2008); Ina (Garry et al., 2012).  559 

 560 

C) Inflated flows: Second boiling: 561 

-General Locations: Proximal and medial parts of long, fissure-fed lava flows (Fig. 2a: Phase 4b); any areas containing ring-moat 562 

dome structures (RMDS) (Zhang et al., 2017, 2020; Wilson et al, 2019).  Possibly small IMPs (Braden et al., 2014; Qiao et al., 563 

2020). 564 

-Specific Locations: RMDS-Central Mare Tranquillitatis, Mare Fecunditatis, Southern Oceanus Procellarum, Northern Mare 565 

Humorum (Zhang et al., 2017, 2020). IMPS-Northwestern Mare Tranquillitatis, Sechi X, Aratus D (Braden et al., 2014; Qiao et al., 566 

2020). 567 

 568 

D) Proximal flows: “Auto-regolith” formation:  569 

-General Locations: Near eruption source regions (Fig. 2a: Phase 4a); fissure vents (Fig. 2b); and small shield summits (Fig. 2c), 570 

flanks. 571 

-Specific Locations: Southwest Imbrium lava flow source regions (Zhang et al., 2016); Elongate mare source depression such as 572 

Sosigenes (Qiao et al., 2018); Cauchy 5 small shield volcano (Qiao et al., 2020); Ina Mounds (Braden et al, 2014; Qiao et al., 573 

2019; Wilson and Head, 2017b).  574 

 575 

E) Foam flows: Coherent surfaces: 576 

-General Locations: Adjacent to eruption source regions (Fig. 2a: Phase 3, 4a); fissure vents (Fig. 2b); small shield summits and 577 

flanks (Fig. 2c); pit crater floors (Fig. 2c). 578 

-Specific Locations: Flanks of Cauchy 5 small shield volcano (Qiao et al., 2020); Ina crater floor (rough unit; Garry et al., 2012; 579 

Qiao et al. 2019); Possibly regions characterized by small Irregular Mare Patches (IMPs) (see extensive lists in Braden et al., 580 

2014 and Qiao et al., 2020).  581 

 582 

F) Pyroclastic deposits: 583 

-General Locations:  Within regional and local dark mantle deposits (DMDs) (Fig. 2a: Phase 2, 3); associated with sinuous rilles 584 

(Fig. 2a: Phase 2). Can also be mixed with interbedded lava flows (Fig. 2a: Phase 2 proximal and medial; Fig. 2b). 585 

-Specific Locations:  Regional dark mantle deposits (Aristarchus Plateau, Sinus Aestuum, Sulpicius Gallus, etc.; Gaddis et al., 586 

1985, 2003; Weitz et al., 1998); Apollo 17 site, regional DMD interbedded with lava flows (Schmitt, 1973); Local dark mantling 587 

deposits (Alphonsus crater floor and dozens of other locations; Gaddis et al., 2000; Keske et al., 2020). 588 

 589 

G) “Xenolithic” volcanic glass beads:  590 

-General Locations:  Virtually all lunar mare regolith soils within tens to hundreds of km of fissure eruption source vents (Fig. 2a: 591 

Phase 1).     592 

-Specific Locations: Pyroclastic glass beads found in regolith and core samples from Apollo 11-17 (Delano, 1986; Heiken, 1974).   593 

 594 

H) “Volcanic Pit Craters”: Lava floor-Mounds: 595 

-General Locations:  Settings where magmatic foams can build up and extrude (Fig. 2a: Phase 3, 4); large central pit craters, 596 

shield volcano pit crater floors (Fig. 2c), elongated collapse craters (Fig. 2b).  597 

-Specific Locations:  Large irregular mare patches (Braden et al., 2014); Ina (Garry et al., 2012; Qiao et al. 2019; Wilson and 598 

Head, 2017b); Sosigenes (Qiao et al., 2018), Cauchy 5 (Qiao et al., 2020). 599 

  600 
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 601 

Table S2-Remote Sensing and Related Human and Robotic Techniques for Regolith Protolith Exploration and Documentation 602 

(with selected references as examples):  603 

 604 

Orbital and Earth-Based Remote Sensing: 605 

1) Surface morphology, albedo, topography: Imaging systems, altimeters: (Quaide and Oberbeck, 1968; Shkuratov and 606 

Bondarenko, 2001; Wilcox et al., 2005; Lawrence et al., 2013; Bart et al.; 2011; Rosenburg et al., 2011; Kreslavsky et al., 2013; 607 

Sato et al., 2014; Bart, 2014; Di et al., 2016; Prieur et al., 2018; Qiao et al., 2019, 2020; Xie et al., 2020; Zhang et al., 2017, 2020) 608 

2) Mineralogy and alteration: VNIR spectrometers: (Hawke et al., 1989; Weitz et al., 1998; Weitz and Head, 1999; Gaddis et 609 

al., 2003; Heather et al., 2003; Besse et al., 2011; Glotch et al., 2011) 610 

3)  Physical properties: Radiometry, thermal emission: (Banfield et al., 2011; Jin et al., 2007; Chan et al., 2010; Hayne et al., 611 

2017; Feng et al., 2020; Meng et al., 2020; Siegler et al., 2020) 612 

4) Near-surface/subsurface: Radar at a wide range of wavelengths and corresponding penetration depths: (Zisk et al., 613 

1977; Peeples et al., 1978; Shkuratov and Bondarenko, 2001; Carter et al., 2009; Ono et al., 2009; Campbell et al., 2014) 614 

 615 

Surface Robotic Exploration: 616 

1) Surface morphology, albedo, topography: (Lunokhod, Apollo and Chang’e missions; Fa and Jen, 2007; Jin et al., 2015; Lin 617 

et al. 2020)  618 

2) Ground penetrating radar at multiple wavelengths: (Yuan et al., 2017, 2020; Li et al., 2020) 619 

 620 

Surface Human Exploration: 621 

1) Astronaut operations and observations: (Apollo 11-17; representative sample of protolith rocks and derivative soils, 622 

xenolithic fragments; core tubes optimized for vertical and lateral variation of the landing region regolith; trenches and 623 

documentation of vertical stratigraphy; radial sampling of small craters to document vertical and lateral variation in the landing 624 

region; Shoemaker et al., 1969, 1970; Sutton et al., 1972; ALGIT, 1972; Ulrich et al., 1981; Wolfe et al., 1975; Schmitt, 1973; 625 

Schmitt et al., 2017)   626 

2) Soil mechanics experiments: (Carrier, 1973; Mitchell et al., 1974) 627 

3) Seismic, Surface Electrical Properties, Heat Flow, Gravimetry: (Talwani et al., 1973; Cooper et al., 1974; Langseth et al., 628 

1976; Grimm, 2018; Kovach and Watkins, 1973) 629 

 630 

Laboratory Analyses:  631 

1) Analysis of regolith components, constituents, and relation to local bedrock and related protolith: (McKay et al., 1974; 632 

Heiken, 1974; Heiken and McKay, 1974)   633 

2) Analysis of regolith xenoliths, material not linked to local protolth: (Delano, 1986; Xie et al., 2020) 634 

3) Comparisons of samples from new sites with the Apollo-Luna baseline: (e.g., Chang’e 3, 4, 5: Zhao et al., 2014; Xiao et 635 

al., 2015; Huang et al., 2018; Qian et al., 2018, 2020) 636 

  637 
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