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Abstract

Anomaly detection is of increasing importance in the data rich world of today. It can

be applied to a broad range of challenges ranging from fault detection to fraud preven-

tion and cyber-security. Many of these application require algorithms which are very

scalable, as well as accurate, due to large data volumes and/or limited computational

resources.

This thesis contributes three novel approaches to the field of anomaly detection.

The first contribution, Collective And Point Anomalies (CAPA) detects and distin-

guishes between both collective and point anomalies in linear time. The second contri-

bution, MultiVariate Collective And Point Anomalies (MVCAPA) extends CAPA to

the multivariate setting. The third contribution is a novel particle based kalman filter

which detects and distinguished between additive outliers and innovative outliers.
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Chapter 1

Introduction

Anomaly detection is an area of considerable importance and has been subject to

increasing attention in recent years. This is due to the wide range of applications the

field lends itself to. Examples include fault detection (Theissler, 2017; Zhao et al.,

2018), fraud prevention (Ahmed et al., 2016), and cyber security (Goh et al., 2017).

The ubiquity of sensors and the emergence of the Internet of Things (IoT) has lead to

the detection of anomalies in streaming data to emerge as a new and critical challenge.

One important aspect of anomalies is that they can come in different guises. One

classification was offered by Chandola et al. (2009) who distinguish between global,

contextual, and collective anomalies. Here global anomalies are single points which

fall outside the general pattern of the data while contextual anomalies fall outside their

local data pattern. Collective anomalies on the other hand are defined to be a sequence

of observations which are not necessarily anomalous by themselves but together form

an anomalous pattern. The Kalman filtering literature similarly distinguishes between

punctual anomalies called additive outliers which affect the observations only and

1



CHAPTER 1. INTRODUCTION 2

persisting anomalies called innovative outliers which affect the system (Ruckdeschel

et al., 2014).

This thesis introduces novel statistical methods for detecting and distinguishing

between different types of anomalies in a computationally efficient manner. All al-

gorithms have been inspired by anomalies observed in telecommunications network

data.

The remainder of the thesis is organised as follows: We begin by reviewing relevant

background in Chapter 2. The focus of this chapter will lie on robust statistics,

Kalman filtering and changepoint methods.

In Chapter 3, we propose a new epidemic changepoint based algorithm which

can detect and distinguish between collective an point anomalies in empirically linear

time. We call the algorithm Collective And Point Anomalies (CAPA), theoretically

prove its consistency, empirically evaluate it against competing methods, and apply

it to monitoring machine temperature data and to exoplanet detection.

We propose extension of CAPA to the multivariate setting, which we call multivari-

ate CAPA (MVCAPA), in Chapter 4. Crucially, the proposed methodology allows for

related anomalies in different components to have imperfect alignment across time.

We theoretically show MVCAPA’s consistency and that it is able to optimally de-

tect sparse anomalies, affecting only a few components, as well as dense anomalies,

affecting a large subset of components.

A novel Kalman filter which is robust to both additive and innovative outliers is

proposed in chapter 5. The proposed methodology, which we call Computationally

Efficient Bayesian Anomaly detection by Sequential Sampling (CE-BASS) is fully
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online, very scalable, and shown to compare favourably with other robust filters.

CE-BASS is applied to both real router data and a benchmark dataset.

We discuss our contribution to the literature as well as potential areas of further

research in Chapter 6.



Chapter 2

Background and Literature Review

In this chapter, we review some of the background literature relevant to this thesis.

We will begin by reviewing the pertinent definitions and concepts in robust statistics

in Section 2.1 before reviewing the robust Kalman Filter literature in Section 2.2

and the changepoint literature in 2.3. We purposefully omit reviewing the vast range

of anomaly detection approaches proposed by the machine learning and computer

science community and instead refer to the excellent reviews which can be found in

Chandola et al. (2009) and Pimentel et al. (2014), as well as the more recent papers by

Lavin and Ahmad (2015), Talagala et al. (2019), Ahmad et al. (2017), and references

therein.

2.1 Robust Statistics

When the distribution of the typical data is known, detecting anomalies becomes

almost trivial. However, inferring the distribution of the typical data from a data

4



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 5

set which is potentially polluted by anomalies is difficult as outliers can significantly

affect the inference procedure. Take the sample mean for example: A single outlier

has the potential of irreversibly polluting this statistic, hence making it useless for

the purpose of detecting anomalies. Other commonly used statistics such as the

sample variance, regression coefficients, sample covariance matrices, etc. are equally

vulnerable to outliers.

Observations like the above have motivated the field of robust statistics. Robust

statistics aim to bound the influence any single data point can have on the statistic

while equally trying to achieve an efficiency which is close to that of maximum like-

lihood estimators. We will review the key concepts of the field in this section, as it

provides important background to subsequent sections and chapters.

2.1.1 Definitions Around Robustness

The main concept in robustness is the influence function, first introduced by Hampel

(1968). For a given statistic, T (), which is a functional mapping a cumulative density

function F () to a scalar, the influence function is defined via the Gateaux derivative

IF (x, F ) = lim
ε→0

T ((1− ε)F + ε4x)− T (F )

ε
. (2.1.1)

Here, 4x(y) = I (y ≥ x) denotes the CDF of point mass at x. It captures how much

deviations from the assumed distribution can affect the statistic. A statistic is said

to be robust if the influence function is bounded (Hampel et al., 1986).

For example, the mean is defined by the functional T (G) =
∫
xdG(x). For a distri-

bution F with mean µ the influence function is therefore given by x− µ. Conversely,
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the median is defined by the functional T (G) = G−1(1/2). Its influence function for

a distribution with PDF f and median m is therefore

1

f(m)
(I(x < m)− 1

2
). (2.1.2)

This confirms the intuition that the mean is not a robust statistic whilst the median

is robust.

Another important metric in robust statistics is the breakdown point which mea-

sures the proportion of data that can be anomalous whilst guaranteeing that the

difference between the statistic on the polluted data and the statistic on the unpol-

luted data is finite. Formally it can be defined as the largest γ such that

sup
G,ε<γ

|T ((1− ε)F + εG)− T (F )| <∞.

It can be shown to be 0 for the mean and 1
2

for the median. The median therefore

achieves the theoretical maximal breakdown point. Indeed, it can be shown that the

breakdown point must be less or equal to 1
2

– otherwise there would be identifiability

issues (Hampel et al., 1986).

Finally, the asymptotic efficiency is an important metric. Robust estimators

achieve robustness by ignoring or down-weighting parts of the data. They are therefore

less efficient than the maximum likelihood estimator (MLE). This is captured by the

asymptotic efficiency which is defined as the asymptotic variance of the MLE divided

by that of the robust estimator. For instance, the median achieves and asymptotic

efficiency of 2/π for normal data (Hampel et al., 1986).
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2.1.2 M-Estimators

The median mentioned in the previous section is an example of an L-estimator, where

L is short for location. Other examples of such L-estimators are the α-trimmed

mean which neglects the α% of lowest and highest observations. L-estimators for the

variance also exist, such as the inter-quartile range, the α-trimmed variance, or the

median absolute deviation (Hampel et al., 1986).

However, a different class of estimators called M -estimators, going back to Huber

(1964b), tend to be preferred due to their better efficiency (Jurečková and Picek,

2005). M -estimators are obtained through a minimisation problem: For a suitable

cost function ρ(·, ·), the M -estimator of a parameter θ is obtained from observations

x1, ..., xn by minimising (
n∑
i=1

ρ(xi, θ)

)

with respect to θ. This can be viewed as a generalisation of the MLE since taking

ρ(·, ·) to be the negative log-likelihood recovers the MLE.

A range of cost functions ρ() has been proposed with the aim of achieving robust-

ness. One such function is Tukey’s bi-weight loss (Tukey, 1960), defined as

ρ(xi, θ) =


(xi − θ)2 |xi − θ| < h,

h2 |xi − θ| ≥ h,

which can be shown to bound the influence function at h. Here, the threshold pa-

rameter h governs the trade-off between robustness and efficiency – the higher h, the

more efficient the estimate becomes, the lower h, the more robust.
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Another robust loss function is Huber loss (Huber, 1964a) which is defined as:

ρ(xi, θ) =


(xi − θ)2 |xi − θ| < h,

2h|xi − θ| − h2 |xi − θ| ≥ h.

It can be shown to bound the influence function at h. Furthermore, it provides a trade-

off between robustness and efficiency which is in some sense pareto-optimal. Indeed,

Hampel (1968) showed that Huberisation, i.e. truncating the influence function of an

MLE achieves maximal efficiency for a given breakdown point.

Other commonly used robust loss functions include the Dynamic Covariance Scal-

ing (Agarwal et al., 2013) and the log-likelihood of the t-distribution distribution

(Agamennoni et al., 2012).

2.2 Kalman Filtering Approaches

An important challenge in many anomaly detection applications is that sequential

or online processing of time series data is often a requirement. The Kalman filter

first proposed by Kalman (1960) uses a latent variable model which provides a conve-

nient way of processing new observations at a fixed computational cost. Furthermore,

having processed observations Y1, ....,Yn, the Kalman filter can return a mean and

variance estimate for Yn+1, making it, in principle, very well suited for anomaly detec-

tion: A Mahalanobis distance can be computed and an anomaly declared if it exceeds

a predefined quantile of the χ2-distribution. However, the Gaussian noise model used

by the classical Kalman filter makes it vulnerable to outliers. A range of outlier robust

Kalman filters, more suitable to anomaly detection, has therefore been proposed.
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We will begin this section by reviewing the Kalman filter and discuss the two types

of anomalies which can affect it. We will then discuss the most common approaches

aimed at robustifying the Kalman filter namely filters which use t-distributed noise in

conjunction with Variational Bayes (VB), filters which use Huberisation, and filters

which use heavy tailed noise in conjunction with other methods to maintain approx-

imations to the posterior.

2.2.1 The Classical Kalman Filter

The Kalman filter goes back to the seminal paper Kalman (1960). It considers a model

in which observations Y1, ...,Yn are underpinned by hidden variables X1, ...,Xn in

the following manner:

Yt = CXt + ηt Xt = AXt−1 + εt.

Here the noise processes ηt
i.i.d∼ N(0,R) and εt

i.i.d∼ N(0,Q) are independent for t ≥ 1

and a prior X0 ∼ N(µ0,Σ0) is put on the initial state.

The main feature of the Kalman filter is that it allows for online updates of the hid-

den state. When Xt|Yt, ....,Y1 ∼ N(µt,Σt), it can be shown that Xt+1|Yt+1, ....,Y1 ∼

N(µt+1,Σt+1), where the new mean and variance, µt+1 and Σt+1 are obtained from
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µt and Σt through the update equations

µ̂ = Aµt

Σ̂ = AΣtA
T + Q

z = Yt −Cµ̂

K =
(
CΣ̂CT + R

)−1

CΣ̂

µt+1 = µ̂+ KTz

Σt+1 = (I−KCT )Σ̂.

(2.2.1)

As mentioned in the introduction to this section, the Gaussian noise model used

by the Kalman filter make it very vulnerable to outliers. One particular challenge

is that two types of outliers can occur: additive outliers (Ruckdeschel et al., 2014),

sometimes called observational outliers (Gandhi and Mili, 2009), affect the process ηt.

Their impact is limited to just one time point. Conversely, innovative (Ruckdeschel

et al., 2014), or process (Huang et al., 2017) outliers, affect the process εt. Their

impact can potentially affect many observations to come. Robustness against just

one of these two types of outliers typically make the filter more vulnerable to the

other. For instance, additive outlier robust filters tend to update the hidden variables

even less than the classical Kalman filter when encountering an innovative outlier

(Ruckdeschel et al., 2014).

2.2.2 Variational Bayes and t-Distributed Noise

A number of filters which achieve robustness to outliers by assuming t-distributed

noise processes ηt and/or εt has been proposed. For example, Agamennoni et al.
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(2011) assumed t-distributed noise ηt to achieve robustness against additive out-

liers. The authors use the conditional noise model ηt
i.i.d∼ N(0,St), where S−1

t ∼

W(R−1/s, s). Here, W() denotes the Wishart distribution, which generalises the

Gamma distribution to the multivariate setting. Whilst this model achieves robust-

ness to additive outliers, there is no longer a tractable filter. Indeed, given a Gaussian

prior Xt|Yt, ....,Y1 ∼ N(µt,Σt), the posterior Xt+1|Yt+1, ....,Y1 is no longer Gaus-

sian.

Variational Bayes is often used to obtain a Gaussian approximation to the poste-

rior. It finds the Normal distribution which minimises the Kullback-Leibler divergence

with the posterior distribution. In conjunction with t-distributed noise, this is often

relatively easy to do. For example, in the model considered by Agamennoni et al.

(2011), the posterior can be obtained by initialising S = R and iterating the Kalman

like equations

K =
(
CΣ̂CT + S

)−1

CΣ̂

µt+1 = µ̂+ KTz

Σt+1 = KSKT + (I−KCT )Σ̂(I−CKT )

S =
sR + (Yt −Cµt+1)(Yt −Cµt+1)T + CΣt+1C

T

s+ 1

until convergence. Similar ideas can be found in the filters proposed by Ting et al.

(2007), also robust to additive outliers and Huang et al. (2017, 2019) who propose

filters which are robust against both additive and innovative outliers.
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2.2.3 Huberisation and Robust Statistics

Approaches inspired by robust statistics can be used to truncate the effect of individual

observations to achieve robustness against additive outliers or to truncate the effect

of the prior state to achieve robustness against innovative outliers.

An example of such a filter is the additive outlier robust filter using Huberisation

proposed by Ruckdeschel et al. (2014). The authors replace

µt+1 = µ̂+ KTz

in Equation (2.2.1) by

µt+1 = µ̂+H(KTz, b).

Here H(x, b) denotes x Huberised at level b, which is formally defined as

H(x, b) = xmin

(
1,
b

x

)
.

In the same paper, Ruckdeschel et al. (2014) also show that robustness against

innovative outliers can be achieved if C is invertible by replacing

µt+1 = µ̂+ KTz

in Equation (2.2.1) by

µt+1 = µ̂+ C−1
(
z−H(

(
I−CKT

)
z, b)

)
.

Similar approaches, inspired by robust statistics were used by (Gandhi and Mili,

2009) for robustness against additive and innovative outliers and Chang et al. (2013)

for robustness against additive outliers.
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2.2.4 Other Approaches

Other approaches using heavy tailed noise and approximating the posterior have also

been proposed. Kitagawa (1987) for instance proposed an approach which consists

of using splines to approximate the posterior distribution at each time point. The

proposed methodology is shown to be able to deal with both additive and innovative

outliers but scales poorly with the dimensionality of the problem.

Particle filtering (Fearnhead and Künsch, 2018) to approximate the distribution

of xt has also been proposed. Gordon et al. (1993) proposed to sample from the noise

at each time point and give particles weight proportional to the likelihood. However,

such approaches are not computationally robust against outliers, as noted by Chang

(2014): As outliers become stronger it is less and less likely that an appropriate

particle will be sampled. Some particle filters offering computational robustness to

specific models (Fearnhead and Clifford, 2003) and to additive outliers (Xu et al.,

2013) have therefore been proposed. The filter by Harrison and Stevens (1976) is also

often mentioned as being robust to both types of outliers. However, it uses a Gaussian

mixture model and is therefore not robust to outliers.

2.3 Changepoint Approaches

Observing that our world is ever-changing, the ancient Greek philosopher Heraclitus

claimed that “No man ever steps in the same river twice, for it’s not the same river

and he’s not the same man”. It can be assumed that Heraclitus would object to

time series being modelled as stationary, on similar grounds. Indeed, data generating
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mechanisms often change. One approach of modelling this non-stationarity is via

changepoints.

The literature considers two main types of changepoint models: Classical change-

point models, typically only referred to as changepoint models, and epidemic change-

point models. The classical changepoint model, first considered by Page (1954), as-

sumes that there exists a set of time-points at which the data-generating mechanism

changes. The epidemic changepoint model, going back to Levin and Kline (1985)

according to Yao (1993), assumes that the data follows some typical distribution for

most of the time except during certain windows in which it behaves differently. These

epidemic changes provide a natural model for collective anomalies.

In what follows, we will begin by reviewing the classical changepoint model as

well as some some of the main approaches for changepoint inference in Section 2.3.1.

This is mostly for background as the main focus of this section lies on the closely

related epidemic changepoint detection problem. In Section 2.3.2, we will then review

current approaches for the detection of univariate epidemic changepoints. This will

be followed by a discussion of multivariate approaches in Section 2.3.3. For simplicity

of exposition, we will focus on the change in mean setting, the frameworks being more

general.

2.3.1 Univariate Changepoint Models

Consider a univariate time series x1, ..., xn. It is said to obey the classical changepoint

model if there exists a set of changes τ = {t0, ..., tK+1}, where 0 = t0 < t1... < tK ≤
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Figure 2.3.1: An example time series with K = 3 changes in mean. The first change

occurs at t1 = 100, the second at t2 = 250, and the third at t3 = 350.

tK+1 = n, such that

xt ∼



M0 t0 < t ≤ t1,

...

MK tK < t ≤ tK+1,

1 ≤ t ≤ n.

Here Mk denotes the model obeyed by the data before the kth changepoint. Setting

Mk = N(µk, σ
2) gives rise to the change in mean problem with Gaussian noise.

This setting has received a considerable amount of attention (Killick et al., 2012;

Fryzlewicz, 2014) and will be the main focus of the remainder of this section for

simplicity of exposition.

Detecting a Single Change

We will begin by reviewing the case in which at most one change (AMOC) is present.

This is because approaches for the AMOC setting can be extended to multiple changes
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using the Binary Segmentation algorithm described in the next section. In the AMOC

setting, it is of interest to test the null hypothesis of a stationary mean

H0 : µ1 = ... = µn,

against the alternative hypothesis

H1 : ∃T : 0 ≤ T ≤ n, µ1 = ... = µT 6= µT+1 = ... = µn,

which states that a change is present at some time T .

If a single time point, T , had to be investigated, using a log-likelihood ratio statistic

would be a natural choice. It can be shown that this statistic is the square of the

following cumulative sum (CUSUM) statistic

ST =

∣∣∣∣∣
√
n− T
nT

T∑
t=1

xt −

√
T

n(n− T )

n∑
t=T+1

xt

∣∣∣∣∣ .
It is therefore natural to compute this statistic for all candidate integers 1 ≤ T ≤ n−1.

If max (S2
T ) then exceeds a threshold λ a change at time argmax (S2

T ) is inferred.

Otherwise, no changepoint is returned. Suitable choices for λ are discussed in Section

2.3.1. It should be noted that this approach is not restricted to the change in mean

setting. It can be extended to any type of change provided an appropriate likelihood

ratio tests exists.

Binary Segmentation Approaches

Binary Segmentation, introduced by Scott and Knott (1974) can be used to extend

any AMOC changepoint method to infer multiple changepoints. The idea behind

Binary Segmentation consists of repeatedly applying an AMOC procedure to segments

between inferred changepoints. The algorithm can be summarised as follows:
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1. Apply the AMOC procedure to the data x1,...,xn and obtain candidate change-

point points T .

2. If the statistic does not exceed the threshold λ stop. Otherwise consider T to

be a changepoint

3. Repeat the above procedure on the sequences x1,...,xT and xT+1,...,xn

Binary segmentation is computationally very efficient. Indeed, its computational

complexity is O(n log(n)). However, it has been shown to yield unsatisfactory results

even in the absence of any noise in certain settings (Fryzlewicz, 2014). This has lead to

the development of derived methods such as Wild Binary Segmentation (Fryzlewicz,

2014).

Penalised Cost Approaches

An alternative approach to Binary Segmentation consists of minimising a penalised

cost (Killick et al., 2012; Jackson et al., 2005). In this approach, each segment of data

between two inferred changepoints is allocated a cost, such as twice the negative log-

likelihood evaluated at the segment’s MLE. Every additional changepoint introduced

typically reduces the total cost and therefore incurs a penalty β to avoid over-fitting.

The number of changepoints K̂ and changepoints t1, ..., tK̂ are then inferred by min-

imising the penalised cost:

K̂∑
i=0

C
(
x(ti+1):ti+1

)
+ K̂β
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The cost function C is chosen in the light of the model considered. For the change-in

mean case, for example, it is natural to use the residual sum of squares, i.e.

C (xa:b) = min
µ

(
b∑
i=a

(xi − µ)2

)
=

b∑
i=a

x2
i − (b− a+ 1) (x̄a:b)

2 .

It should be noted that for a ≤ b < c

C (xa:c)−
(
C (xa:b) + C

(
x(b+1):c

))
=

(√
c− b

(b− a+ 1)(c− a+ 1)

T∑
t=1

xt −

√
c− a+ 1

(b− a+ 1)(c− b)

c∑
t=b+1

xt

)2

holds, i.e. that the reduction in cost obtained by splitting a segment is equal to the

CUSUM statistic. Consequently, Binary Segmentation can be viewed as a greedy

heuristic for minimising the penalised cost.

Efficient Inference for Penalised Cost Approaches

The penalised cost introduced in the previous section can be minimised exactly via

Optimal Partitioning (OP) introduced by Jackson et al. (2005). To this end, C(m) is

defined to be the cost of the optimal partition of all observations up to and including

the mth one. The following recursive relationship then holds:

C(m) = min
1≤k≤m

(C(k − 1) + C (xk:m) + β) .

In the above, the optimal k represents the optimal changepoint preceding m, condi-

tional on m being a changepoint. Solving the above dynamic programme therefore

returns the optimal partition.

It can be shown that solving the full dynamic programme is at least O(n2) (Killick

et al., 2012). However, Killick et al. (2012) showed that the solution space of the

dynamic programme can be pruned thereby reducing the computational cost. Indeed
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the authors showed that if the cost function is such that

C (xa:c) ≥ C (xa:b) + C
(
x(b+1):c

)
, ∀a ≤ b < c

i.e. such that adding an additional change does not reduce the cost, then if

C(k − 1) + C (xk:m) > C(m) + β

holds for some k ≤ m then k can be disregarded for all future steps of the dynamic

programme, without affecting the cost optimality of the returned partition. Kil-

lick et al. (2012) use this observation in their algorithm Pruned Exact Linear Time

(PELT), to solve a pruned version of the dynamic programme considered by OP. The

authors showed that PELT can be significantly faster than OP, especially when mul-

tiple changepoints are present and have a computational cost which is as low as O(n)

when the number of changes increases linearly in the number of observations, whilst

still exactly minimising the penalised cost.

A different approach to this problem was proposed by Maidstone et al. (2017),

who introduced Functional Pruning Optimal Partitioning (FPOP). Unlike PELT and

OP, which condition on the location of the last changepoint, FPOP conditions on the

last value of the parameter.

Choice of λ and β

The parameter λ and its analogue β are typically chosen in such a way that the number

of false positives is controlled and that true changepoints are detected consistently.
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For the change in mean case, the model

xt ∼ N(µt, σ
2) µt =



µ1 t0 < t ≤ t1

...

µK+1 tK < t ≤ tK+1

with a fixed number of changepoints K is typically considered. The aim is then to

show that under certain assumptions on the length of segments and the strength of

the changes

P
(
K̂ = K, |t̂i − ti| < g(n) 1 ≤ i ≤ p

)
≥ 1− h(n)

holds for large enough n. Here, g(n) = o(n), h(n) = o(1), K̂ denotes the inferred

number of changes, and t̂1, ..., t̂K̂ denote the inferred changes. The above statement

therefore implies that the true number of changes as well as the true relative location

ti/n will be increasingly accurately estimated as the number of observations in between

changes increases. Fryzlewicz (2014) showed that both Binary Segmentation and Wild

Binary Segmentation are consistent if the threshold λ is set to c log(n)1+α for some

positive c and α. Similarly, Tickle et al. (2018) showed that optimal partitioning is

consistent provided that β is set to (2 + ε) log(n) for some ε > 0.

2.3.2 Epidemic Changepoint Models for Univariate Data

The epidemic changepoint model assumes that data follows a typical distribution for

most of the time but deviates from it during certain segments, the start and end

point of which for epidemic changes. To formalise this, consider a univariate time

series x1, ..., xn. It is said to obey the epidemic changepoint model if there exists a set
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Figure 2.3.2: An example time series with K = 2 epidemic changes in mean. The

first collective anomaly occurs between s1 = 100 and e1 = 150, and the second once

occurs between s2 = 350 and e2 = 381.

of windows τ = {(s1, e1), ..., (sK , eK)}, where 0 ≤ s1 < e1 ≤ s2 < ... ≤ sK < eK ≤ n,

such that

xt ∼



M1 s1 < t ≤ e1,

...

MK sK < t ≤ eK

M0 otherwise

1 ≤ t ≤ n.

Here,Mk denotes the model obeyed by the data during the kth epidemic change. In

between these epidemic changes it follows the null model M0. An example of such a

timeseries can be found in Figure 2.3.2. As in the classical changepoint case, setting

Mk = N(µk, σ
2) gives rise to the change in mean problem with Gaussian noise. For

simplicity, we will focus on this special case for the remainder of this section, pointing
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to generalisations where appropriate.

Inferring at most one Single Change

The setting in which At Most One Change (AMOC) is present has received a sig-

nificant amount of attention. This is because methodology detecting AMOC can

naturally be extended to detect multiple changes, as we will show in Section 2.3.2.

The problem of detecting a single epidemic change in mean can be formulated as the

following hypothesis test (Yao, 1993): Consider data x1, ...., xn, where xi N(µi, σ
2)

and test the null hypothesis of a stationary mean.

H0 : µ1 = ... = µn,

against the alternative hypothesis that some segment (s, e) has a different mean

H1 : ∃s, e : 0 ≤ s < e ≤ n, µ1 = ... = µs = µe+1 = ... = µn 6= µs+1 = ... = µe.

This hypothesis testing framework can be extended to other types of epidemic changes,

such as epidemic changes in variance, slope, mean and variance, etc.

The presence and location of epidemic changes are then typically inferred by using

a likelihood ratio statistic (see, for example, Aston et al. (2012) and Yao (1993)). This

likelihood ratio statistic is computed for all candidate start and end points. The pair

of points for which this statistics is the largest is then declared a collective anomaly if

the statistic exceeds a pre-defined threshold λ. Otherwise, the alternative hypothesis

is rejected. The threshold λ is typically increased with the number of observations to

account for multiple testing. (Yao, 1988)
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Inferring Multiple Changes

Arguably the most commonly used method for the detection of multiple epidemic

changes is circular binary segmentation (CBS) introduced by Olshen et al. (2004).

Like Binary Segmentation for classical changepoints, CBS is capable of extending any

AMOC test statistic to multiple epidemic changes by repeatedly applying the AMOC

procedure to the parts of the data currently deemed typical. The algorithms can be

summarised as follows:

1. Apply the AMOC procedure to the data x1,...,xn and obtain candidate start

and end points s and e.

2. If the statistic does not exceed the threshold λ stop. Otherwise consider (s, e)

to be an epidemic changepoint

3. Repeat the above procedure on the sequences x1,...,xs and xe+1,...,xn

The computational cost of CBS is O(n2), when the whole data is searched. A faster

approximation was proposed by Venkatraman and Olshen (2007). Another approach

at speeding up CBS consists of imposing a maximum length m for epidemic changes,

which reduces the computational cost to O(mn).

On the choice of λ

The threshold λ is typically chosen in such a way that it controls the overall number

of false positives at an acceptable level. Since O(n2) possible start and end points are

investigated, this problem is closely linked to multiple testing. When trying to detect
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epidemic changes in mean against a 0-background for example, as is the case in the

CNV data, the log-likelihood ratio statistic for a segment s, e simplifies to

T (s, e) = (e− s)

(
1

e− s

e∑
t=s+1

xt

)2

,

assuming Gaussian noise. Yao (1988) showed that

P
(

max
0≤s<e≤n

T (s, e) ≤ (2 + ε)σ2 log(n)

)
→ 1, as n→∞

under the null hypothesis for all ε > 0. Here σ is the standard deviation of the noise.

Consequently, setting λ = (2+ ε)σ2 log(n) asymptotically controls the number of false

positives.

2.3.3 Epidemic Changepoint Models for Multivariate Data

Many time series are multivariate and epidemic changes can manifest themselves

across multiple components. One commonly considered model for multivariate epi-

demic changes is the subset multivariate model, which assumes that components be-

have independently of each other, but that their anomalous time periods are linked.

An example where this model is applicable can be found in the CNV data. Indeed,

when no copy number variation is present, the data is independent across individuals.

However, copy number variations can be shared by multiple subjects meaning that

collective anomalies are likely to affect a subset of individuals at similar locations on

the genome.

As with univariate epidemic changepoint detection, we can extend any AMOC pro-

cedure to multiple epidemic changes by circular binary segmentation. Consequently,
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Figure 2.3.3: An example time series with K = 2 epidemic changes in mean. The first

collective anomaly occurs between s1 = 100 and e1 = 150 and affects all components,

i.e. J1 = {1, 2, 3}. The second once occurs between s2 = 350 and e2 = 381 and affects

only the first component, i.e. J2 = {1}.

we will only review AMOC procedures in this section. In order to do so, we will begin

by formalising the subset multivariate epidemic changepoint model before reviewing

some theoretical results regarding sparse changes affecting few components strongly

and dense changes which weakly affect a large number of components. This will be

followed by a discussion of inference approaches.

Subset Multivariate Epidemic Changepoint Model

Consider multivariate data x1, ...,xn ∈ Rp. This data is said to contain a subset

multivariate epidemic changepoint if there exists a subset J ⊂ {1, ..., p} which exhibits

a-typical behaviour during a time window (s, e). Formally we test the hypothesis

H0 : x
(i)
t ∼M

(i)
0 1 ≤ t ≤ n, 1 ≤ i ≤ p,
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which states that all n observations from the ith component follows the null model

M(i)
0 for 1 ≤ i ≤ p against the alternative hypothesis

H1 : ∃ 0 ≤ s < e ≤ n,J ⊂ {1, ..., p} : x
(i)
t ∼


M(i)

1 s < t ≤ e, i ∈ J

M(i)
0 otherwises

that an anomalous segment exists during which the ith component obeys a model

M(i)
1 which is different from its typical model M(i)

0 for i ∈ J.

Detectability Boundaries

Subset multivariate epidemic changes can be easier or harder to detect depending on

how strong the changes are and how many components are affected. The literature

(Jeng et al., 2012; Cai et al., 2011a) typically distinguishes between sparse changes,

in which only a few components are affected by strong anomalies and dense changes

which affect a large set of components, but potentially by very little. This has been

formalised for the changes in mean and variance by Cai et al. (2011a) who for a

segment s, e considered testing the null hypothesis of uncontaminated data

H0 : x
(i)
t ∼ N(0, 1) 1 ≤ i ≤ p, s < t ≤ e

against the alternative hypothesis of contaminated data

H0 : x
(i)
t ∼ (1− vi)N(0, 1) + viN(µ, 1 + σ2) 1 ≤ i ≤ p, s < t ≤ e

where the independent random variables vi ∼ Ber(p−ξ) for 0 ≤ ξ < 1 determine

whether the ith component exhibits anomalous behaviour or not. The parameter ξ

then determines whether the regime is sparse (ξ > 1
2
) or dense (ξ ≤ 1

2
). The strength
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of the change in mean (e− s)|µ| can the be parametrised as

(e− s)|µ| =


√

2rp log(p) ξ > 1
2

p−rp ξ ≤ 1
2
,

, rp > 0

depending on whether the anomalous segment is dense or sparse. It is then called

detectable if the exists a test whose type 1 and type 2 error both converge to 0 as

p→∞. Jeng et al. (2012) showed that the detectability boundary for the case ξ > 1
2

was

ρ− = min

(
ξ − 1

2
− σ2,

(
1− (1 + σ2)

√
(1− ξ)

)2
)

and that such a test exists if rp > ρ− and does not exist if rp < ρ−. Similarly the

authors showed that the detectability boundary for the case ξ ≤ 1
2

was

ρ− <


1
2
− ξ σ = 0

∞ σ > 0

and that a consistent test exists if rp < ρ− and does not exist if rp > ρ−. Boundary

cases for the related problem of distinguishing between mixtures were treated in Cai

et al. (2011a).

In particular these results mean that even the smallest changes in variance make

any dense change detectable. Another point of interest is that the signal strength

of a dense change can go to 0 as p goes to infinity without the change becoming

undetectable.
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Inference Approaches

A variety of methods has been proposed to detect epidemic changes, dense and/or

sparse, in multivariate data. For example, Zhang et al. (2010) computes a likelihood

ratio statistic for each of the p components individually and the sums these, hence

obtaining a tests statistic for a given start and end point. This test statistic is good

for dense changes but lacks power for detecting sparse ones. Conversely, the approach

suggested by Jeng et al. (2010) consists of considering the largest test statistic only,

an approach suitable only for sparse changes.

Approaches capable of detecting both sparse and dense epidemic changes have also

been proposed. These approaches typically test each component individually thus

obtaining p different p-values, which they then process to obtain a global significance

value. The methods of both Zhang et al. (2010) and Jeng et al. (2010) fall into

this framework thought they have good power only against certain types of epidemic

changes. One example an approach suitable for both sparse and dense changes is

proportion adaptive segment selection (PASS), introduced by Jeng et al. (2012), uses

higher criticism (Donoho and Jin, 2004). Higher criticism builds on the fact that all p-

values q1, ..., qp are i.i.d. U(0, 1) distributed under the null hypothesis. Consequently,

the ordered p-values q(1) ≤ ... ≤ q(p) are all Beta distributed under the null hypothesis.

This motivates the higher criticism statistic which is defined as:

HC∗p = max
1≤i≤p

(HCp,i) , HCp,i =
√
p

i
p
− q(i)√

q(i)(1− q(i))
.

This statistic can be computed for all candidate start and end points. Jeng et al.
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(2012) showed that a threshold value of

(1 + ε) log(nm) + 2 log(log(p))√
2 log(log(p))

,

for some ε > 0 asymptotically controls the number of false positives, as well as having

power against all detectable sparse and most detectable dense alternatives. However,

this asymptotic result is based on the asymptotic (and slow) convergence of the higher

order statistic to a non-degenerate random variable (Shorack and Wellner, 2009).

To improve finite sample performance, and reduce the number of false positives in

particular, the authors suggest to consider maxα0≤i≤p (HCp,i) instead, where α0 ∈ N

is greater than 1. However, this is only advisable if no collective anomalies of interest

affects fewer than α0 components.

Other methods for combining the individual p-values have also been proposed. For

example, the adaptive Fisher procedure Song et al. (2016), which exploits the fact

that the differences between the logarithms of the ordered p-values is exponentially

distributed under the null. Entirely different principal component analysis based

approaches have also been proposed (Aston et al., 2012).



Chapter 3

Collective And Point Anomalies

3.1 Introduction

Anomaly detection is an area of considerable importance for many time series applica-

tions, such as fault detection or fraud prevention, and has been subject to increasing

attention in recent years. See Chandola et al. (2009) and Pimentel et al. (2014) for

comprehensive reviews of the area. As Chandola et al. (2009) highlight, anomalies

can fall into one of three categories: global anomalies, contextual anomalies, or col-

lective anomalies. Global anomalies and contextual anomalies are defined as single

observations which are outliers with regards to the complete dataset and their local

context respectively. Conversely, collective anomalies are defined as sequences of ob-

servations which are not anomalous when considered individually, but together form

an anomalous pattern.

A number of different approaches can be taken to detect point (i.e. contextual

and/or global) anomalies. These are observations that do not conform with the pat-

30
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tern of the data. Hence, the problem of detecting point anomalies can be reformulated

as inferring the general pattern of the data in a manner that is robust to anomalies.

The field of robust statistics offers a wide range of methods aimed at this problem.

For instance, Rousseeuw and Yohai (1984) proposed S-estimators to robustly esti-

mate the mean and variance. These estimators were later extended to a multivariate

setting by Rousseeuw (1985). A wide variety of robust time series models also exist.

For example, Muler et al. (2009) proposed a robust ARMA model, Muler and Yohai

(2002) a robust ARCH model, and Muler and Yohai (2008) a robust GARCH model.

A robust non-parametric method, which decomposes time series into trend, seasonal

component, and residual was proposed by Cleveland et al. (1990).

The machine learning community has also provided a rich corpus of work for the

detection of point anomalies. Commonly used methods include nearest neighbour

based approaches, such as the local outlier factor (Breunig et al., 2000), and infor-

mation theoretical methods such as the one introduced by Guha et al. (2016). It is

beyond the scope of this chapter to review them all. Instead we refer to excellent

reviews that can be found in Chandola et al. (2009) and Pimentel et al. (2014). Lavin

and Ahmad (2015), Talagala et al. (2019), Ahmad et al. (2017), and references therein

provide examples of more recent developments in the area.

One common drawback of several point anomaly approaches is their limited ability

to detect anomalous segments, or collective anomalies. Such features are of signifi-

cance in many applications. One example is the analysis of brain imaging data, where

periods in which the brain activity deviates from the pattern of the rest state have

been associated with sudden shocks (Aston and Kirch, 2012). Another example is in
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detecting regions of the genome with unusual copy number (Bardwell and Fearnhead,

2017; Siegmund et al., 2011; Zhang et al., 2010), with such copy number variation

being associated with diseases such as cancer (Jeng et al., 2012).

The current statistical literature mostly uses hidden Markov models, smoothing

based approaches or epidemic changepoint methods for the detection of collective

anomalies. Hidden Markov models assume that a hidden state chain determines

whether the data produced is anomalous or typical (Smyth, 1994). The underlying

assumption that anomalous segments share one or multiple common behaviours is

very attractive for some applications, such as brain imaging, where it can be assumed

that there is a finite number of states, but can be a constraint in others. Hidden

Markov models also suffer from the fact that they are not robust to global anomalies.

Moreover, they tend to be slow to fit, which is an important disadvantage in many

modern, big-data applications. This is in stark contrast with the typically very fast

smoothing based approaches like the one proposed by Schwartzman et al. (2011).

However, the smoothing step limits interpretability making the approach vulnerable

to point anomalies and differentiating between point and collective anomalies nigh

impossible. Furthermore, these methods achieve optimal power when the bandwidth

of the smoothing kernel is of the same length-scale as the collective anomalies, meaning

that they can struggle when anomalies are of very different lengths.

The epidemic changepoint model, first introduced by Levin and Kline (1985) as-

sumes that there is a typical behaviour, from which the data deviates during col-

lective anomalies. Epidemic changepoints can therefore be viewed as two classical

(non-epidemic) changepoints: one away from and one back to the typical distribu-
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tion. Thus, a simple approach to detecting collective anomalies would be to use one

of the many methods for changepoint detection (e.g. Fearnhead and Rigaill, 2019a,

Fryzlewicz, 2014, James et al., 2016, Killick et al., 2012, Ma and Yau, 2016, and ref-

erences therein). However this does not exploit the fact that the behaviour of the

segment before the start and after the end of an anomalous segment is the same. This

reduces its statistical power, as can be seen in Section 3.5, which is a disadvantage,

especially when faced with a weak signal.

The main corpus of work addressing the problem of detecting epidemic changes

has been driven by the analysis of neuroimaging and genome data. An early ap-

plication of epidemic changepoints to neuroimaging data can be found in Robinson

et al. (2010), who use a hidden Markov model to detect epidemic changes in mean.

This was later extended by Aston and Kirch (2012). Both methods are vulnerable

to point anomalies, a shortcoming in some applications like the ones we consider in

this chapter. Another limitation is that both approaches assume the presence of at

most one change. Conversely, motivated by challenges arising in Genomics, a range

of methods, both univariate and multivariate, have been proposed to detect epidemic

changes in mean, mainly by considering sum of squares type test statistics (see Jeng

et al., 2012; Siegmund et al., 2011; Cai et al., 2012), sometimes in combination with

hidden states. They are therefore vulnerable to global anomalies. A more general

Bayesian hidden state method for the detection of anomalous segments was proposed

by Bardwell and Fearnhead (2017).

This article makes two main contributions. The first is the introduction of an esti-

mation procedure that allows for the identification of Collective And Point Anomalies
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(CAPA). Secondly, we establish finite sample consistency results not only for CAPA,

but also for a commonly used penalised cost based method (Killick et al., 2012) aimed

at detecting changes in mean and variance. This setting presents significant additional

technical challenge compared to the change in mean setting, to which most existing

theoretical results apply. Since the first version of this work appeared on arXiv, a sim-

ilar algorithm has been independently proposed by Zhao and Yau (2019). However,

the work of Zhao and Yau (2019) does not contain any consistency results and does

not address the challenge of fitting point anomalies when using a data distribution

with multiple parameters (e.g. changes in mean and variance).

The article is organised as follows: We begin by introducing a parametric model

with epidemic changes in Section 3.2. This provides a general framework for collective

anomalies, the location of which we infer by minimising a penalised cost. In Section

3.3, we introduce an algorithm which minimises an approximation to the penalised

cost based on a robust estimate of the parameter of the typical distribution. This

approximation can be minimised by a dynamic programme.

Section 3.4 presents a number of theoretical results. Specifically, we introduce a

proof of consistency for the detection of joint classical changes in mean and variance

using a penalised cost approach, which is of independent interest. We then prove

that CAPA consistently estimates the number and location of collective anomalies,

despite the simplicity of the approach used for the estimation of the parameters of

the typical distribution. Section 3.5 concludes with a discussion of penalties. We then

compare CAPA to other methods in a simulation study in Section 3.5 and show that

it outperforms them, especially in the presence of point anomalies.
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The chapter is concluded by applying CAPA to two real datasets in Section 3.6.

The first dataset is lightcurve data gathered by the Kepler space telescope. There we

show that CAPA can be used to detect Kepler 1132-b, an exoplanet which orbits the

star Kepler 1132 (Morton et al., 2016). The second dataset is a machine temperature

dataset obtained on an expensive industrial machine. There we show that CAPA can

be used to detect both critical failures as well as early warning signs, highlighting

the algorithms usefulness for predictive maintenance. The proofs of the theoretical

results are all given in the appendix. CAPA has been implemented in the R package

anomaly (Fisch et al., 2020) which is available from CRAN.

3.2 A Modelling Framework for Collective Anoma-

lies

We assume that the data follow a parametric model where collective anomalies are

epidemic changes in the model parameters. Whilst, in practice, it is unlikely that the

distribution of the data in an anomalous segment will belong to the same family of

distributions as the distribution of the typical data, it can nevertheless be expected

that a set of parameters different from the typical distribution’s will offer a better fit.

We say that data x1, ...,xn follow a parametric epidemic changepoint model if xt has
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probability density function f(xt, θ(t)) and

θ(t) =



θ1 s1 < t ≤ e1,

...

θK sK < t ≤ eK ,

θ0 otherwise,

where θ0 is the, usually unknown, parameter of the typical distribution, from which

the model deviates during the K anomalous segments (s1, e1),...,(sK , eK) by adopting

behaviours characterised by the parameters θ1, ..., θK all different from θ0. We assume

these windows do not overlap, i.e. e1 ≤ s2, ..., eK−1 ≤ sK . Note that fitting an epidemic

changepoint requires only one new set of parameters for θ, since the typical parameter

is shared across the non-anomalous segments. This compares favourably with the two

additional sets of parameters for θ introduced when an epidemic changepoint is fitted

using two classical changepoints. We can therefore expect to gain statistical power,

which is confirmed by the empirical results in Section 3.5.

It is possible to infer the number and location of epidemic changes by choosing K̃,

(s̃1, ẽ1),...,(s̃K̃ , ẽK̃), and θ̃0, which minimise the penalised cost

∑
t/∈∪[s̃i+1,ẽi]

C(xt, θ̃0) +
K̂∑
j=1

min
θ̃j

 ẽj∑
t=s̃j+1

C(xt, θ̃j)

+ β

 , (3.2.1)

subject to ei− si ≥ l̂, where l̂ is the minimum segment length for an appropriate cost

function C(x, θ) and a suitable penalty β. For example, C(x, θ) could be defined as

the negative log-likelihood of x under the parametric model using parameter θ. A

common choice for the penalty β would then be C log(n) (Yao, 1988; Killick et al.,

2012; Fryzlewicz, 2014), where the constant C depends on the model considered.
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Using the formulation in (3.2.1), we can infer the location of joint epidemic changes

in mean and variance by minimising the penalised cost related to the negative log-

likelihood of Gaussian data. In this case θ = (µ, σ2) contains both the mean and

variance and we estimate K, s1, ..., sK , and e1, ..., eK by minimising

∑
t/∈∪[s̃i+1,ẽi]

[
log(σ2

0) +

(
xt − µ0

σ0

)2
]

+

K̃∑
j=1

[
(ẽj − s̃j)

(
log

(∑ẽj
t=s̃j+1(xt − x̄(s̃j+1):ẽj )

2

(ẽj − s̃j)

)
+ 1

)
+ β

]
,

(3.2.2)

subject to ẽi − s̃i ≥ 2, i.e. a minimum segment length of 2, to account for the fact

that θ is two dimensional.

It is well known that many changepoint detection methods struggle in the presence

of point anomalies in the data and tend to fit two changepoints around each of them

(Fearnhead and Rigaill, 2019a). An approach based on minimising the above cost

function is not intrinsically immune to this phenomenon either. However, given that

point outliers can naturally be viewed as single observations with a larger variance,

we can incorporate them in the model as epidemic changes, in variance only, of length

one. We therefore choose K̃, (s̃1, ẽ1),...,(s̃K̃ , ẽK̃), µ0, σ0, as well as the set of point

anomalies O ⊂ {1, ..., n}, which minimise the modified penalised cost∑
t/∈∪[s̃i+1,ẽi]∪O

[
log(σ2

0) +

(
xt − µ0

σ0

)2
]

+
∑
t∈O

[
log
(
(xt − µ0)2 + γσ2

0

)
+ 1 + β′

]
+

K̂∑
j=1

[
(ẽj − s̃j)

(
log

(∑ẽj
t=s̃j+1(xt − x̄(s̃j+1):ẽj)

2

(ẽj − s̃j)

)
+ 1

)
+ β

]
,

(3.2.3)

where β′ is a penalty smaller than β. This modification ensures that it is now cheaper

to fit an outlier as an epidemic changepoint in variance only than as a full epidemic

change. The constant, γ > 0 ensures that the argument of the logarithm will be larger

than 0. We recommend setting γ to the level of precision of the observations, subject
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to requiring γ > exp(−β′) which ensures that no inliers are fitted as point anomalies,

as shown by Proposition 3 in Section 3.4.

This modification has the added benefit that it allows the algorithm to distinguish

between point and collective anomalies. This property is important for a range of

applications in which collective and point anomalies have different interpretations

(see Section 3.6.1 for an example).

3.3 Estimation of Collective and Point Anomalies

We now turn to consider the problem of minimising the penalised cost we introduced

in the previous section. Unlike in the classical changepoint problem considered by

Jackson et al. (2005), the penalised cost given by equation (3.2.1) can not be minimised

using a dynamic programme, since the parameter θ0 is shared across multiple segments

and typically unknown. We therefore use robust statistics to obtain an estimate, θ̂0,

for θ0. Such robust estimates can be obtained for a variety of models (Hampel et al.,

1986; Jurečková and Picek, 2005). For example, the median, M -estimators, or the

clipped mean can be used to robustly estimate the mean. The inter quartile range, the

median absolute deviation, or the clipped standard deviation can be use to estimate

the variance. Robust regression is available to estimate the parameters of AR models.

Having obtained θ̂0, we then minimise

∑
t/∈∪[ŝi+1,êi]

C(xt, θ̂0) +
K̂∑
j=1

min
θ̂j

 êj∑
t=ŝj+1

C(xt, θ̂j)

+ β

 , (3.3.1)

as an approximation to (3.2.1). Since it can be expected that most data belongs to

the typical distribution, θ̂0 should be close to θ0. One might therefore expect that
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using this estimate will have little impact on the performance of the method, which

we also show theoretically for joint changes in mean and variance in Section 3.4.2.

The approximation to the penalised cost in (3.3.1) can be minimised exactly by

solving the dynamic programme

C(m) = min

[
C(m− 1) + C(xm, θ̂0), min

0≤k≤m−l̂

(
C(k) + min

θ̂

(
m∑

t=k+1

C(xt, θ̂)

)
+ β

)]
,

(3.3.2)

where C(m) is the cost of the most efficient partition of the first m observations and

C(0) = 0. For example, solving the dynamic programme

C(m) = min

[
C(m− 1) + log(σ̂2

0) +

(
xm − µ̂0

σ̂0

)2

,

min
0≤k≤m−2

(
C(k) + (m− k)

[
log

(
1

m− k

m∑
t=k+1

(
xt − x̄(k+1):m

)2)
+ 1

]
+ β

)]
,

minimises the approximate penalised cost for joint epidemic changes in mean and

variance defined in equation (3.2.2), thus inferring the number and location of collec-

tive anomalies. Similarly, we can minimise the approximation to its point anomaly

robust analogue in equation (3.2.3) by solving the dynamic programme

C(m) = min

[
C(m− 1) + log(σ̂2

0) +

(
xm − µ̂0

σ̂0

)2

,

min
0≤k≤m−2

(
C(k) + (m− k)

[
log

(
1

m− k

m∑
t=k+1

(
xt − x̄(k+1):m

)2

)
+ 1

]
+ β

)
,

C(m− 1) + 1 + log
(
γσ̂2

0 + (xm − µ̂0)2
)

+ β′

]
,

thus also inferring the number and location of point anomalies, with a negligible

increase in computational cost. We call this algorithm CAPA. Pseudocode for the full

CAPA algorithm is given by Algorithm 1 in the appendix.
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Solving the full dynamic program is at least O(n2). This is because it requires n

steps over a solution space 0 ≤ k ≤ m− l, which is of size O(n) on average. However,

we can reduce the size of the solution space by borrowing ideas on pruning from Killick

et al. (2012), provided the loss function is such that adding a free changepoint will not

increase the cost – a property which holds for many commonly used cost functions

such as the negative log-likelihood. Indeed, the following proposition holds:

Proposition 1. Let the cost function C(·, ·) be such that

min
θ

(
c∑
t=a

C(xt, θ)

)
≥ min

θ

(
b−1∑
t=a

C(xt, θ)

)
+ min

θ

(
c∑
t=b

C(xt, θ)

)

holds for all a, b, and c such that a+ l̂ ≤ b < c− l̂. Then, if

C(k) + min
θ

(
m∑
t=k

C(xt, θ)

)
≥ C(m) (3.3.3)

holds for some k < m− l̂, we can exclude that k from the solution space for all future

steps m′ ≥ m+ l̂ of the dynamic programme.

Thus we can keep track of the set of time indices that we need to minimise over

in the dynamic programme. For each of these, we check, at each time step, if condi-

tion 3.3.3 holds, and, if it does, we remove the index from the set. See steps 15-22

of Algorithm 2 in the appendix for more detail. This can significantly reduce the

computational cost. In practice, we found that it was close to O(n) for the detection

of joint epidemic changes in mean and variance when the number of true epidemic

changes increased linearly with the number of observations. Note that the time after

which a k can be discarded in the minimisation step also depends on the minimum

segment length, something not considered by Killick et al. (2012).
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3.4 Theory for Joint Changes in Mean and Vari-

ance

We now introduce some theoretical results for CAPA. In particular, we establish the

consistency of CAPA at detecting collective anomalies and demonstrate that it can

be viewed as a corollary of the consistency of a statistical procedure, such as optimal

partitioning from Jackson et al. (2005) minimising a penalised cost function to detect

classical (i.e. non-epidemic) changepoints. Consequently, we will begin by proving

the consistency of a penalised cost method for the detection of changes in mean and

variance in Section 3.4.1. To the best of our knowledge, no such result exists in

the literature, which makes this proof of independent interest. We then proceed to

proving the consistency of CAPA at detecting collective anomalies in Section 3.4.2.

Like other cost function based approaches, CAPA is significantly affected by the

choice of penalties. We therefore conclude this section by discussing suitable choices

for this important hyper parameter in Section 3.4.3. The proofs of all theorems and

propositions stated in this section can be found in the appendix.

3.4.1 Consistency of Classical Changepoint Detection

Consider the sequence x1, ..., xn ∈ Rn which is normally distributed with K ∈ N

changepoints. The sequence therefore satisfies xt = µ(t) + σ(t)ηt for ηt
i.i.d.∼ N(0, 1),
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where

(µ(t), σ(t)2) =



(µ1, σ
2
1) t0 + 1 ≤ t ≤ t1,

...

(µK+1, σ
2
K+1) tK + 1 ≤ t ≤ tK+1.

(3.4.1)

Here 0 = t0 ≤ ... ≤ tK+1 = n denote the start of the series, the K changepoints, and

the end of the series. We assume that the mean and/or variance changes at these

changepoints, i.e. that (µk, σ
2
k) 6= (µk+1, σ

2
k+1). These changes in mean and variance

can be of varying strength. To quantify this, we define the signal strength 4σ,k of the

change in variance at the kth changepoint to be

42
σ,k =

(√
σk
σk+1

−
√
σk+1

σk

)2

=
σk
σk+1

+
σk+1

σk
− 2.

We note that 42
σ,k is equal to 0 if, and only if, σk+1 = σk. We also define the signal

strength 4µ,k of change in mean at the kth changepoint to be

4µ,k =
|µk − µk+1|√

σkσk+1

.

Note that these two quantities can be combined into a global measure of signal

strength

4k = log

(
1 +

1

2
42
σ,k +

1

4
42
µ,k

)
for the kth change (see Lemma 7 in the appendix material for details).

We now define the penalised cost C̃(xi:j, τ ′, α) of data xi:j under partition τ ′ =

{i− 1, t̂′1, ..., t̂
′
K̂′
, j} to be

C̃(xi:j, τ ′, α) =
K̂′∑
k=0

C̃(x(t̂k+1):t̂k+1
) + K̂ ′α log(n)1+δ,
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for δ, α > 0. Here α log(n)1+δ corresponds to the commonly used strengthened SIC-

type penalty (Fryzlewicz, 2014; Li et al., 2016) for introducing an additional change-

point. The cost of a segment xa:b is set to be

C̃(xa:b) = C̃(xa:b, {a− 1, b}) = (b− a+ 1)

(
log

(∑b
a(xt − x̄a:b)

2

b− a+ 1

)
+ 1

)
,

which is the same as the segment cost used to infer the location of epidemic changes

in mean and variance. Since this leaves two parameters to fit, we impose a minimum

segment length of two for all partitions.

We also introduce the following assumption which ensures that the changepoints

are sufficiently spaced apart to allow for their detection:

Assumption 1. There exists some δ̃ > 0 such that for 1 ≤ k ≤ K + 1

tk − tk−1 ≥
log(n)1+δ+δ̃

min(4k,42
k,4k−1,42

k−1)
,

where 40 = 4K+1 =∞ for convenience of notation.

Here the fact that min(4k,42
k,4k−1,42

k−1) is used instead of min(42
k,42

k−1) as in

the change in mean setting is due to the fact that we have moved from a sub-Gaussian

to a sub-exponential setting.

Then, the following consistency result holds:

Theorem 1. Assume that observations x1, ..., xn follow the distribution specified in

Equation 3.4.1 and that Assumption 1 holds. Let K̂ and t̂1, ..., t̂K̂ be the number and lo-

cations of changepoints inferred by minimising the penalised cost function C̃(x1:n, τ, α).

Then there exists a constant C such that ∀ε > 0 there exist constants A(α, ε) and
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B(α, δ̃, δ, ε) such that

P
(
K̂ = K, |t̂k − tk| <

A(α, ε)

min(4k,42
k)

log(n)1+δ 1 ≤ k ≤ K

)
≥ 1− Cn−ε

holds for all n ≥ B(α, δ̃, δ, ε).

The proof of this result addresses several novel challenges such as obtaining upper

and lower bounds on a range of transformations of the residual sum of squares arising

from the fact that joint changes in mean and variance were considered instead of only

changes in mean, as in pre-existing work (e.g. Fryzlewicz, 2014). In particular, the

lower bound on the MGF of the weighted sum of χ2-distribution in Lemma 12 is of

independent interest. Note that the strengthened SIC was used as penalty in order

to simplify the exposition of the proof. A very similar proof can be used to show that

a α log(n) type penalty for a sufficiently large α also achieves consistency.

Furthermore, the bounds on the accuracy of the detected changes can be tightened.

For all δ > δ0, it is possible to show that the detected changes must be within

A(α,ε)

min(4k,42
k)

log(n)1+δ0 of the true changes once n ≥ B(α, δ̃, δ, ε) and n ≥ B(α, δ̃, δ0, ε).

This is because Theorem 1 then also holds for the penalty α log(n)1+δ0 , which therefore

guarantees that the fitted changes of the optimal partition with K fitted changes must

be within A(α,ε)

min(4k,42
k)

log(n)1+δ0 of the true changes.

3.4.2 Consistency of CAPA

The results we obtained in the previous section can be extended to prove the consis-

tency of CAPA for the detection of joint epidemic changes in mean and variance. As

in the previous section, consider data x1, ..., xn which is of the form xt = µ(t)+σ(t)ηt,
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where ηt ∼ N(0, 1). Since we now assume epidemic changes, we have

(µ(t), σ(t)2) =



(µ1, σ
2
1) s1 < t ≤ e1,

...

(µK , σ
2
K) sK < t ≤ eK ,

(µ0, σ
2
0) otherwise.

Here, µ0 and σ2
0 are the typical mean and variance respectively and K is the num-

ber of epidemic changepoints. The variables sk and ek denote the starting and end

point of the kth anomalous window respectively. Treating the sk and ek like classical

changepoints allows us to extend the definitions of 4σ and 4µ, and therefore 4, to

the epidemic changepoint model by setting

42
σ,k =

σk
σ0

+
σ0

σk
− 2 and 4µ,k =

|µk − µ0|√
σkσ0

.

We make the following assumptions

Assumption 2. .

a) There exists some δ̃ > 0 such that for 1 ≤ k ≤ K

ek − sk ≥
log(n)1+δ+δ̃

min(4k,42
k)
,

sk+1 − ek ≥
log(n)1+δ+δ̃

min(4k,42
k,4k+1,42

k+1)
.

b) ek − sk ≤
√
n for 1 ≤ k ≤ K.

Assumption 2a is analogous to Assumption 1. Assumption 2b is only needed

when the parameters of the typical distribution are unknown and guaranteess that
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the robust estimates of the typical parameter will converges quickly enough to the

ground truth. The following consistency result then holds for CAPA.

Theorem 2. Let (ŝ1, ê1, ..., ŝK̂ , êK̂) be the partition inferred by CAPA on observations

x1, ..., xn using a minimum segment length of 2 and α log(n)1+δ as penalty for both

point anomalies and epidemic changepoints. If x1, ..., xn follow the distribution spec-

ified above and Assumption 2 holds, then there exists a constant C such that ∀ε > 0

there exist constants A(α, ε) and B(α, δ̃, δ, ε) such that

P
(
K̂ = K, |êk − ek| <

A(α, ε)

min(4k,42
k)

log(n)1+δ, |ŝk − sk| <
A(α, ε)

min(4k,42
k)

log(n)1+δ 1 ≤ k ≤ K
)

≥ 1− Cn−ε

holds for all n ≥ B(α, δ̃, δ, ε).

As in Theorem 1, the strengthened SIC was used as penalty to simplify the ex-

position of the proof. A very similar result could be derived to show that a α log(n)

type penalty for a sufficiently large α achieves consistency. This result suggests that

CAPA, fits collective anomalies as such, despite being able to fit them as a mixture of

point anomalies and data belonging to the typical distribution. It is possible to relax

Assumption 2b to ek− sk ≤ D
√
n for some constant D, with the constants A, B, and

C then also depending on D.

As in Theorem 1, the bounds on the accuracy of the detected epidemic change-

points can be tightened. For all δ > δ0, it is possible to show that the detected epi-

demic changepoints must be within A(α,ε)

min(4k,42
k)

log(n)1+δ0 of the true epidemic change-

points once n ≥ B(α, δ̃, δ, ε) and n ≥ B(α, δ̃, δ0, ε). This is because Theorem 1 then

also holds for the penalty α log(n)1+δ0 , which therefore guarantees that the fitted

epidemic changepoints of the optimal partition with K fitted epidemic changepoints
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must be within A(α,ε)

min(4k,42
k)

log(n)1+δ0 of the true epidemic changepoints.

3.4.3 Penalties

We now turn to the problem of tuning the penalties β and β′ introduced in Sec-

tion 3.2. In the previous section, we showed that CAPA is consistent when using

an α log(n)1+δ penalty for both collective and point anomalies. The result can be

tightened slightly to show that consistency is achieved by using an α log(n) penalty

for collective anomalies and an α′ log(n) penalty for point anomalies for sufficiently

large constants α and α′. In practice, we recommend choosing α and α′ with the aim

of controlling the asymptotic rate of false positives under the null hypothesis that no

anomalies – collective or point – are present.

Relatively tight results can be derived for the case in which the typical mean

and variance are known and the observations are normally distributed. Indeed, the

following proposition holds under these assumptions:

Proposition 2. Let x1, ..., xn be i.i.d. N(µ, σ2) distributed, for known µ and σ. Then

there exist constants C1 and C2 such that when the penalty for point anomalies, β′,

and the penalty for collective anomalies, β, satisfy β′ ≥ 2ψ and β ≥ 2(2+2ψ+2
√

2ψ),

then

P
(
K̂ = 0, Ô = ∅

)
≥ 1− C1ne

−ψ − C2

(
ne−ψ

)2
.

for all ψ > 0

The proof of this result relies on a bound of the MGF of the cost function under

the data distribution and can therefore be extended to other cost functions and data
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distributions and to the classical changepoint setting. As a consequence of Proposition

2, setting the penalty for collective anomalies to (4 + ε) log(n) and the penalty for

point anomalies to (2 + ε) log(n), where ε > 0 controls the asymptotic rate of false

positives in this scenario, since the probability of observing false positives then tends

to 0 as n tends to ∞.

Moreover, the following proposition holds under general (i.e. model-free) assump-

tions

Proposition 3. Let (µ̂, σ̂), Ô, and β′ correspond to the estimated parameters of

the typical distribution, the inferred set of point anomalies, and the penalty for point

anomalies used by CAPA respectively. Assume, moreover, that the constant γ, defined

in Section 3.3, satisfies 1 ≥ γ ≥ exp (−β′). Then, there exists a constant K(β′) =

β′ + o(β′) such that

i /∈ Ô =⇒ (xi − µ̂)2 < σ̂2K(β′)

and

(xi − µ̂)2 > σ̂2K(β′) =⇒ i ∈ Ô ∨ ∃k ∈ {1, ..., K̂} : i ∈ {ŝk + 1, ..., êk}

This proposition defines a threshold for |xi−µ|/σ below which the ith observation

will not be considered a point anomaly and above which the ith observation will not be

considered typical. Furthermore, this detection threshold asymptotically behaves like

β′. This provides a natural way of choosing the penalty β′ for point anomalies based

on how large outliers, as measured by |xi − µ|/σ are assumed to be. For Gaussian

data, extreme value theory places the threshold at
√

(2 + ε) log(n), which confirms

the choice of β′ derived from Proposition 2.
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In practice, the typical parameters are often unknown and the constants α and

α′ should be slightly inflated to reflect this additional uncertainty. This effect on α,

is offset by the fact that the Bonferroni correction used in the proof of Proposition

2 becomes loose when the minimum segment length exceeds 2 as it does not exploit

correlations. We chose β′ = 3 log(n) and β = 4 log(n) as default penalties for point

and collective anomalies respectively in our software implementation and recommend

inflating both penalties, whilst maintaining their ratio, when dealing with heavy tailed

or autocorrelated data.

3.5 Simulation Study

To assess the potential of CAPA, we compare its performance to that of other popular

anomaly and changepoint methods on simulated data. In particular, we compare with

PELT as implemented in the changepoint package (Killick et al., 2018; Killick and

Eckley, 2014), a commonly used changepoint detection method, luminol (Maheshwari

et al., 2014), an algorithm developed by LinkedIn to detect segments of atypical

behaviour, as well as BreakoutDetection (James et al., 2016) which was introduced

by Twitter to detect changes in mean in a way which is robust to point anomalies.

The simulation study was conducted over simulated time series each consisting of

5000 observations, for which the typical data follows a N(0, 1) distribution. Epidemic

changepoints occur at a rate of 0.0005 (corresponding to an average of about 2.5

epidemic changes in each series), with their length being i.i.d. Pois(30)-distributed.

In each anomalous segment the data is again normally distributed, with the means
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being i.i.d. N(0, a2) distributed and standard deviations i.i.d. Γ(1/b, 1/b) distributed.

We used a = 1, and a = 10 for weak and strong changes in mean respectively as

well as b = 1 and b = 10 for weak and strong changes in variance respectively. Short

anomalies and strong anomalies where also simulated using a = b = 5 and collective

anomalies of i.i.d. Pois(6)-distributed length.

We compared the performance of the four methods in the presence of both strong

and weak changes in mean and/or variance. We also repeated the analysis with 10 i.i.d.

N(0, 102) distributed point anomalies occurring at randomly sampled points in the

typical data. Robustness to model misspecification was also investigated by using t10-

distributed noise and AR(1)-distributed noise with autocorrelation parameter ρ = 0.3.

The comparison of these methods is made using the three different approaches we

detail below.

3.5.1 ROC

We obtained ROC curves for the four methods. For BreakoutDetection and PELT, we

considered detected changes within 20 time points of true changes to be true positives

and classified all other detected changes as false positives. For luminol and CAPA, we

considered detected starting and end points of epidemic changes to be true positives if

they were within 20 observations of a starting and end point respectively. The results

regarding the precision of true positives in Section 3.5.2 suggest that the results in this

section are robust with regard to the choice of error tolerance. We set the minimum

segment length to ten for PELT, CAPA, and BreakoutDetection. To obtain the ROC

curves we varied the penalty for collective anomalies β in CAPA, the penalty in PELT,
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(a) Weak (b) Weak, PAs (c) Strong, PAs (d) Short, PAs

(e) Weak (f) Weak, PAs (g) Strong, PAs (h) Short, PAs

(i) Weak, AR (j) Weak, AR, PAs (k) Strong, AR, PAs (l) Short, AR, PAs

(m) Weak, T (n) Weak, T, PAs (o) Strong, T, PAs (p) Short, T, PAs

Figure 3.5.1: Data examples and ROC curves for changes in mean for CAPA (black),

PELT (red), BreakoutDetection (green), and luminol (blue).
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the threshold in luminol, and the beta parameter of BreakoutDetection.

The resulting ROC curves, as well as examples of realisations of the data for the

scenario of weak and strong changes in mean can be found in Figure 3.5.1.The results

for joint changes in mean and variance, as well as changes in variance can be found in

the appendix. We see that CAPA generally outperforms PELT, even in the absence of

point anomalies. This is due to it having more statistical power, by exploiting the epi-

demic nature of the change. This becomes particularly apparent when the changes are

weak. CAPA also outperform BreakoutDetection and luminol for epidemic changes

in mean, the scenario for which these methods were developed. Moreover, the perfor-

mance of CAPA is barely affected by the presence of point anomalies, unlike that of

the non-robust methods.

3.5.2 Precision

We also investigated the precision of the true positives for the four methods. We

compared the mean absolute distance between detected changes (i.e. true changes

which had a detected changes within 20 observations) and the nearest estimated

change across all the 12 scenarios. We used the default penalties for all methods

(i.e. the BIC for PELT) except BreakoutDetection, where we found that the default

penalty returned no true positives at all for many scenarios. We therefore used the

results we obtained when deriving the ROC curves to set the beta parameter to an

appropriate level for each case.

The results of this analysis can be found in Table 3.5.1. We see that CAPA is gen-

erally the most precise one. Moreover, its precision is not too strongly affected by the
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Mean Variance Point anomalies CAPA PELT BreakoutDetection luminol

weak - - 1.79 1.50 3.40 9.91

weak - 10 1.72 2.27 3.75 10.70

strong - - 0.16 0.61 5.38 15.99

strong - 10 0.19 0.67 4.68 15.60

- weak - 1.41 1.43 4.60 9.87

- weak 10 1.31 1.89 4.49 10.76

- strong - 0.33 0.73 5.19 12.03

- strong 10 0.33 0.79 5.17 11.29

weak weak - 1.16 1.30 4.00 11.40

weak weak 10 1.22 1.63 4.00 11.30

strong strong - 0.09 0.56 3.78 16.31

strong strong 10 0.09 0.58 3.77 15.71

Table 3.5.1: Precision of true positives measured in mean absolute distance for CAPA,

PELT, luminol, and BreakoutDetection.
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(a) With epidemic changes. (b) Stationary data.

Figure 3.5.2: log-log-plot of the runtime of CAPA (black), PELT (red), BreakoutDe-

tection (green), and luminol (blue).

presence of point anomalies, unlike that of PELT, whose performance is significantly

deteriorated by anomalies, especially when the signal is weak. The reason for this

is that PELT fits additional changes in the presence of anomalies, which results in

shorter segments. This leads to less accurate parameter estimates, and consequently

poorer estimates for the location of the changepoint. CAPA does not face this problem

since the parameter of the typical distribution is shared across all segments.

3.5.3 Runtime

Finally, we investigated the relationship between the runtime of the 4 methods and

the number of observations. Our comparison is based on data following a distribution

identical to the one we used in Sections 3.5.1 and 3.5.2. Since this type of data
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favours PELT and CAPA, because the expected number of changes increases with

the number of observations, we also compared the runtime of the four methods on

stationary N(0, 1) data, which represents the worst case scenario for these methods.

Figure 3.5.2 displays the average speed over 50 repetitions for the two cases. When

comparing the slopes between 10000 and 50000 datapoints we note that the slope is

very close to 2 for BreakoutDetection in both cases as well as CAPA and PELT

for stationary data, suggesting quadratic scaling. In the presence of epidemic changes

however, that slope is 1.26 for CAPA – 1.14 even between 25000 and 50000 datapoints

– thus suggesting near linear runtime.

3.6 Applications

We now turn to applying CAPA to Kepler lightcurve data and a machine temperature

dataset. These two applications are illustrative of the two main flavours of anomaly

detection: In the Kepler lightcurve data, anomalies can point to the presence of an

exoplanet, i.e. a potentially exciting scientific discovery. This application is therefore

an example of novelty detection, similar in spirit to other applications such as the

detection of copy number variations (Bardwell and Fearnhead, 2017) or the analysis

of fMRI data (Aston and Kirch, 2012). Conversely, in the machine temperature

dataset anomalies can point towards a potentially critical problem. It therefore falls

under the same category as fraud and other fault detection procedures.
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(a) Full data. (b) Subset (120 days).

Figure 3.6.1: Light curve of Kepler 1132, obtained at approximately 30 minute inter-

vals. Missing values are due to periods in which the star was not observed. Note the

presence of a point anomaly on day 1550 – with luminosity −13 – and the fact that no

transit signature is apparent to the eye. This remains true after zooming in on a 120

day subset of the data, despite the known presence of Kepler 1132-b, an exoplanet

orbiting this star every 62.9 days.

(a) 62.8 days. (b) 62.9 days. (c) 63.0 days.

Figure 3.6.2: CAPA applied with default penalties to the light curve of Kepler 1132

preprocessed using different periods.
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Figure 3.6.3: The strongest change in mean, as measured by maxk (4µ,k), detected

by CAPA for the lightcurve of Kepler 1132. All periods from 1 to 200 days at 0.01

day increment were examined.
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3.6.1 Kepler Light Curve Data

CAPA can be applied to the Kepler light curve data to detect exoplanets via the so

called transit method (Sartoretti and Schneider, 1999) first proposed by Struve (1952).

This method consist of measuring the luminosity of a star at regular intervals, with

the aim of detecting segments of reduced luminosity. These indicate the transit of

a planet (Sartoretti and Schneider, 1999) past the star, as in an eclipse, and can

naturally be interpreted as collective anomalies: a short period of reduced luminosity

followed by a return to the baseline level. The light curves are typically preprocessed

(Mullally, 2016) and both the raw and whitened light curves for over 40 million stars

can be accessed online. We have included the whitened light curve of the star Kepler

1132 in Figure 3.6.1 to illustrate the nature of this type of data. We note the presence

of a global anomaly on day 1550 and the noisy nature of the data. These make the

detection of transits challenging given the weak signal induced by planetary transits.

Indeed, even the transit of Jupiter past the sun reduces the latter’s luminosity by

only 1% (Sartoretti and Schneider, 1999). The ability to automate the analysis of

light curves would be beneficial, given the large number of light curves that have been

gathered and need analysing.

Since the reduction in luminosity caused by transiting planets is known to be

weak, we amplify the signal to noise ratio by exploiting the periodic nature of the

transit signal. If the period of an orbiting planet were known, the signal of its transit

could be strengthened by considering all data points to have been gathered at their

measurement time modulo that period. We would thus obtain an irregularly sampled
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time series which we can transform into a regularly sampled time series by binning

the data into equally sized bins and taking the average within each bin. We could

then apply CAPA to this preprocessed data, which would exhibit a stronger mean

anomaly for any planet with the associated period. The results obtained by applying

this method to the light curve of Kepler 1132 using a period of 62.8, 62.9, and 63.0

days can be found in Figure 3.6.2. We note that using a period of 62.9 days results

in a promising dip, which is not present when using 62.8 or 63 days as period.

Given a light curve, the periods of exoplanets orbiting the corresponding star, if

any are present, are obviously not known a priori. However, we can use the approach

described in the previous paragraph to test a range of candidate periods: Since transits

appear as periods of reduced mean, we simply record the strength of the strongest

change in mean, as defined by maxk (4µ,k) (see Section 3.4), of any detected collective

anomalies for each candidate period, expecting it to be largest for the orbital period

of exoplanets. This approach can be compared with a spectral method. We tried all

periods from 1 day to 200 days with increments of 0.01 days for the light curve of

Kepler 1132. The result of this analysis can be found in Figure 3.6.3. Note that the

largest change in mean is recorded at a period of 62.89 days. This result is consistent

with the existing literature, which considers Kepler 1132 to be orbited approximately

every 62.892 days by the exoplanet Kepler 1132-b, whose radius is about 2.5 times

that of the earth (Morton et al., 2016). As with spectral methods, we also observe

resonance of the main signal at integer fractions of that period.

Furthermore, recalling that there are currently over 40 million recorded light curves

for different starts, we require a fast automated procedure. The cost of running CAPA
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(a) Raw data with labels. (b) CAPA output.

Figure 3.6.4: Machine temperature data with anonymised y-axis. The labels were

provided by an engineer.

for one putative orbital period is small relative to the cost of binning the data for that

period. Analysis of the Kepler 1132 data for all 20,000 orbital periods considered took

less than 5 minutes on a standard laptop.

We also applied CAPA to the light curves of further stars with confirmed exoplan-

ets and were able to detect their transit signal at the right period. A more detailed

exposition of these results can be found in the appendix.

3.6.2 Machine Temperature Data

We now turn to analysing the machine temperature data taken from the Numenta

Anomaly Benchmark Ahmad et al. (2017) and included, with permission, in the

anomaly package. The data, displayed in Figure 3.6.4a, were obtained from a heat

sensor on a large industrial machine over the course of approximately 3 months at a 5
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minute sampling frequency. The data set, consisting of n = 22695 observations, was

analysed by an engineer who identified three relevant events: A planned shutdown, a

catastrophic system failure, as well as a period of anomalous behaviour preceding the

failure which was, in hindsight, deemed to have been an early warning sign.

Given that there is a large amount of structure in the data, most notably auto-

correlation, we used Minimum Covariance Determinant (MCD) covariance estimator

(Rousseeuw, 1984) to robustly estimated the AR(1) coefficient ρ = 0.98 and, following

Lavielle and Moulines (2000) inflated the default penalties by a factor of 1+ρ
1−ρ . We then

applied CAPA to the data using a maximum segment length m = 1500 to prevent the

fitting of long anomalies which are merely a result of model mis-specification. The

results can be seen in Figure 3.6.4b. Note that all anomalies flagged by the engineer

where correctly detected. Furthermore, only a single additional collective anomaly

was detected. We refrain from calling it a false positive as it is not possible to know

what would have happened without the planned shut-down.



Chapter 4

Multivariate Collective And Point

Anomalies

4.1 Introduction

The field of anomaly detection has attracted considerable attention in recent years, in

part due to an increasing need to automatically process large volumes of data gathered

without human intervention. Comprehensive reviews of the area can be found in

Chandola et al. (2009) and Pimentel et al. (2014). More recently the detection of

anomalies in multivariate data has become more important (Boudt et al., 2020; Chen

et al., 2020).

In this article, we focus on the following setting: we observe a multivariate time

series x1, ...,xn ∈ Rp corresponding to n observations observed across p different

components. Each component of the series has a typical behaviour, interspersed by

windows of time where it behaves anomalously. In line with the definition in Chandola

62
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et al. (2009), we call the behaviour within such a time window a collective anomaly.

Often the underlying cause of such a collective anomaly will affect more than one, but

not necessarily all, of the components. Our aim is to accurately estimate the location

of these collective anomalies within the multivariate series, potentially in the presence

of point anomalies.

Whilst it may be mathematically convenient to assume that anomalous structure

occurs contemporaneously across all affected sequences, in practice one might expect

some time delays (i.e. offsets or lags), as illustrated by Figure 4.1.1. In this article,

we will consider two different scenarios for the alignment of related collective anoma-

lies across different components. The first, is that concurrent collective anomalies

perfectly align. That is, we can segment our time series into windows of typical and

anomalous behaviour, with the latter affecting a subset of components. The second,

and for many applications more realistic, setting considered in this chapter assumes

that concurrent collective anomalies start and end at similar but not necessarily iden-

tical time points.

Current approaches aimed at detecting collective anomalies can broadly be divided

into state space approaches and (epidemic) changepoint methods. State space mod-

els assume that a hidden state, which evolves following a Markov chain, determines

whether the time series’ behaviour is typical or anomalous. Examples of state space

models for anomaly detection can be found in Bardwell and Fearnhead (2017) and

Smyth (1994). These models have the advantage of providing interpretable output

in the form of probabilities of certain segments being anomalous. However, they are

often slow to fit and are sensitive to the choice of prior distributions, which can be
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(a) No lags (b) Lags are indicated in light blue.

Figure 4.1.1: A time series with K = 2 collective anomalies, highlighted in blue.

Using notation from Section 4.2 these collective anomalies occur from times s1 = 150

to e1 = 200 and s2 = 350 to e2 = 400; the affected components are J1 = {1, 2, 3} and

J2 = {3, 4}.

difficult to specify.

The epidemic changepoint model (Levin and Kline, 1985) provides an alternative

detection framework, built on an assumption that there is a typical behaviour from

which the model deviates during certain windows. Each epidemic changepoint consists

of two classical changepoints, one away from and one returning back to the typical

distribution. Epidemic changepoints can be inferred by using classical changepoint

methods (Killick et al., 2012; Fryzlewicz, 2014; Wang and Samworth, 2018). However,

such approaches lead to sub-optimal power, as they do not exploit the fact that the

typical parameter is shared across the non-anomalous segments.

Many epidemic changepoint methods are based on the popular circular binary

segmentation algorithm (Olshen et al., 2004), an epidemic changepoint version of bi-

nary segmentation. For multivariate data, the key challenge for these methods is

that theoretically detectable anomalies can either be sparse, with a few components
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exhibiting strongly anomalous behaviour, or dense, with a large proportion of compo-

nents exhibiting potentially very weak anomalous behaviour (Cai et al., 2011b; Jeng

et al., 2012). A range of different epidemic changepoint methods have been proposed

that use circular binary segmentation to deal with different types of anomalies: the

methods of Zhang et al. (2010) for dense changes, LRS (Jeng et al., 2010) for sparse

changes, and higher criticism (Donoho and Jin, 2004) based methods like PASS (Jeng

et al., 2012) for both types of changes.

The approach we present in this chapter is fundamentally different from this earlier

work. It builds on a penalised cost based test statistic to detecting collective anoma-

lies, which we introduce in Section 4.2. As compared to earlier work, this approach is

general, as we can choose different costs to detect different type of anomalies. It can

also be model-based, as the cost is most naturally defined in terms of the negative log-

likelihood of the data under an appropriate model for data in normal and anomalous

segments. One of the challenges with implementing such an approach for multivariate

data is how to choose the penalty, and in particular how the penalty varies as the

number of anomalous series varies. By focussing on the case of at most one anomalous

region we are able to propose appropriate penalties, and show that this choice both

controls the false positive rate and has optimal power to detect both sparse and dense

anomalies in the case of i.i.d. Gaussian data where anomalies correspond to changes

in the mean of the data.

An advantage of this penalised cost approach is that we can extend the method

from detecting a single anomaly to detecting multiple anomalies without having to

resort to binary segmentation algorithms – instead we can exactly and efficiently opti-



CHAPTER 4. MULTIVARIATE COLLECTIVE AND POINT ANOMALIES 66

mise the penalised cost criteria over the unknown number and position of the anoma-

lies. We show how to extend this approach so as to allow for both point anomalies, and

for the estimated anomalous segments to be misaligned across series. Furthermore

we present a theoretical result that gives intuition regarding the trade-offs involved

when specifying the maximum lag. The resulting algorithm is called Multi-Variate

Collective And Point Anomalies (MVCAPA). MVCAPA has been implemented in

the R package anomaly for detecting collective anomalies which correspond to changes

in mean, or changes in mean and variance.

We give finite sample consistency results for MVCAPA for the problem of detecting

anomalies that change the mean in Gaussian data in Section 4.5. Our main result

shows the consistency of estimates of the number and location of the anomalous

segments, albeit for the special case where we ignore point anomalies or any mis-

alignment of the collective anomalies, and for a slightly different penalty regime from

the one we recommend in practice. However we are unaware of any similar consistency

result for detecting collective anomalies in multivariate data. Whilst there are similar

consistency results for the related problem of detecting changes in multivariate data

(Wang and Samworth, 2018; Cho and Fryzlewicz, 2015), these are for versions of

methods that assume a minimum segment length, and under the condition that this

increases with the amount of data. We do not assume MVCAPA imposes a minimum

segment length in our proof. This greatly increases the technical challenge – as one

of the main issues with dealing with multiple anomalies is showing that a single true

anomaly is not fit using multiple collective anomalies, something that can be easily

excluded if our inference procedure assumes a diverging minimum segment length.
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Dealing with this challenge is particularly complicated in our setting, due to the

possibility of fitting an anomaly as either sparse or dense.

4.2 Model and Inference for a Single Collective

Anomaly

4.2.1 Penalised Cost Approach

We begin by focussing on the case where collective anomalies are perfectly aligned.

We consider a p-dimensional data source for which n time-indexed observations are

available. A general model for this situation is to assume that the observation x
(i)
t ∈ R,

where 1 ≤ t ≤ n and 1 ≤ i ≤ p index time and components respectively, comes from

a parametric family of distributions, which may depend on earlier observations of

component i, and whose parameter, θ(i)(t) ∈ R, depends on whether the observation

is associated with a period of typical behaviour or an anomalous window. Conditional

on θ(i)(t), the series are assumed to be independent. We let θ
(i)
0 denote the parameter

associated with component i during its typical behaviour. Let K be the number of

anomalous windows, with the k-th window starting at sk + 1 and ending at ek and

affecting the subset of components denoted by the set Jk. We assume that anomalous

windows do not overlap, so ek ≤ sk+1 for k = 1, . . . , K − 1. We let l denote the

minimum length of a collective anomaly, and impose ek − sk ≥ l for each k; setting

l = 1 imposes no minimum length. Our model then assumes that the parameter
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associated with observation x
(i)
t is

θ(i)(t) = θ
(i)
k if sk < t ≤ ek and i ∈ Jk (4.2.1)

and θ
(i)
0 otherwise.

We start by considering the case where there is at most one collective anomaly,

i.e. where K ≤ 1, and introduce a test statistic to determine whether a collective

anomaly is present and, if so, when it occurred and which components were affected.

The methodology will be generalised to multiple collective anomalies in Section 4.3.

Throughout we assume that the parameter, θ0, representing the sequence’s baseline

structure, is known. In practice we can estimate θ0 robustly over the whole data, as

in Fisch et al. (2018a).

Given the start and end of a window, (s, e), and the set of components involved,

J, we can calculate the log-likelihood ratio statistic for the collective anomaly. To do

so, we introduce a cost, which in the case of i.i.d. observations from a density f(x,θ)

is

Ci
(
x

(i)
s+1:e,θ

)
= −2

e∑
t=s+1

log f(x
(i)
t ,θ),

obtained as minus twice the log-likelihood of data x
(i)
s+1:e for parameter θ. For depen-

dent data we can replace f(x
(i)
t ,θ) by the conditional density of x

(i)
t given x

(i)
1:(t−1).

We can then quantify the saving obtained by fitting component i as anomalous for

the window starting at s+ 1 and ending at e as

Si (s, e) = Ci
(
x

(i)
(s+1):e,θ

(i)
0

)
−min

θ

(
Ci
(
x

(i)
(s+1):e,θ

))
.

For example, to detect anomalies that correspond to changes in the mean of the

data we can use a cost based on a Gaussian model for the data, Ci
(
x

(i)
s+1:e,θ

)
=



CHAPTER 4. MULTIVARIATE COLLECTIVE AND POINT ANOMALIES 69

∑e
i=s+1((x

(i)
t − µ

(i)
0 )/σ

(i)
0 )2, where µ

(i)
0 and σ

(i)
0 are the typical mean and standard

deviation of the ith component respectively. This leads to a saving

Si (s, e) =
(e− s)(
σ

(i)
0

)2

(
1

e− s

e∑
t=s+1

x
(i)
t − µ

(i)
0

)2

,

If anomalies could correspond to changes in either or both of the mean and variance,

we can again base the cost on a Gaussian model but allow both mean and variance

to be estimated for an anomalous region. This leads to savings

Si (s, e) =
e∑

t=s+1

(
x

(i)
t − µ

(i)
0

σ
(i)
0

)2

−(e−s−1)

log


∑e

t=s+1

(
x

(i)
t − 1

e−s
∑e

t′=s+1 x
(i)
t′

)2

(e− s)
(
σ

(i)
0

)2

+ 1

 .

Similarly, for count data, we could base our cost on a Poisson or negative-binomial

model for the data.

Given a suitable cost function, the log-likelihood ratio statistic is
∑

i∈J Si (s, e). As

the start or the end of the window, or the set of components affected, are unknown a

priori, it is natural to maximise the log-likelihood ratio statistic over the range of pos-

sible values for these quantities. However, in doing so, we need to take account of the

fact that different J will allow different numbers of components to be anomalous, and

hence will allow maximising the log-likelihood, or equivalently minimising the cost,

over differing numbers of parameters. This suggests penalising the log-likelihood ratio

statistic differently, depending on the size of J. That is we test the null hypothesis of

there being no anomaly by calculating

max
J,s≤e−l

[∑
i∈J

Si (s, e)− P (|J|)

]
, (4.2.2)

where P (.) is a suitable positive penalty function of the number of components that

change, and l is the minimum segment length. We will detect an anomaly if (4.2.2)
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is positive, and estimate its location and the set of components that are anomalous

based on the values of s, e, and J that give the maximum of (4.2.2).

To efficiently maximise (4.2.2), define positive constants α, β1:p with P (1) = α+β1,

and, for i = 2, . . . , p, βi = P (i) − P (i − 1). So the βis are the first differences of our

penalty function P (·). Further, let the order statistics of S1 (s, e) , . . . ,Sp (s, e) be

S(1) (s, e) ≥ ... ≥ S(p) (s, e) ,

and define the penalised saving statistic of the segment x(s+1):e,

S (s, e) = max
k

(
k∑
i=1

{
S(i) (s, e)− βi

})
− α.

Then (4.2.2) is obtained by maximising S (s, e) over s and e, subject to e− s ≥ l.

Clearly, α and β1 are only well specified up to their sum and α can be absorbed

into β1 without altering the properties of our statistic. However, not doing so can have

computational advantages: it removes the need of sorting if all the βis are identical

and equal to β, say, when

S (s, e) =

p∑
i=1

(Si (s, e)− β)+ − α.

4.2.2 Choosing Appropriate Penalties

The choice of penalties will impact both the overall false error rate of the approach

and how the power to detect an anomaly varies with the number of components that

are affected. In particular, we want a penalty function, P (·), that allows us to match

optimal power results for both sparse and dense anomalies, whilst having a false error

rate that asymptotically tends to 0. In practice, we then suggest fixing the shape of the
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penalty function and to use simulation from an appropriate model with no anomalies,

to scale the penalty function to achieve a desired false error rate. Such a tuning of

the penalty function is straightforward, as it involves tuning a single scaling factor,

whilst making the choice of penalty robust to both deviations from assumptions and

looseness in the bounds on the false error-rate.

The optimal power results correspond to models with a change in mean in Gaussian

data – for which the savings using the square error loss, or equivalently the Gaussian

log-likelihood, have a χ2
1 distribution under the null. We thus derive penalty regimes

under an assumption that the savings can be stochastically bounded by aχ2
v under the

null hypothesis that no anomalies are present for some positive integer v and some

positive real number a. This bound also holds for a wide variety of other cost functions

under a range of different assumptions. If the cost is based on twice the negative log-

likelihood, the savings are equal to the deviance and, if standard regularity conditions

hold, converge to a χ2
v distribution as e − s → ∞. Also, when the Gaussian log-

likelihood is used to detect changes in mean the bound holds under a range of model

mis-specifications, such as when the time series are i.i.d. sub-Gaussian with parameter

a; or when data from each component follow an independent AR(1)-models with

bounded positive auto-corrletion parameter (Lavielle and Moulines, 2000).

Our bounds on the false positive rate will be based on showing

P
(
K̂ = 0

)
≥ 1− Ae−ψ(p,n), (4.2.3)

where A is a constant and ψ := ψ(p, n) increases with n and/or p. The appropriate

choice of ψ will depend on the setting. In panel data the number of time points n
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Figure 4.2.1: A comparison of the 3 penalty regimes for a χ2
1-distributed saving when

p = 500 and ψ = 2 log(10000). Regime 1 is in green, regime 2 in red and regime 3 in

blue.

may be small but we may have data from a large number of components, p. Setting

ψ(p, n) ∝ log(p) is therefore a natural choice so that the false positive probability tends

to 0 as p increases. In a streaming data context, the number of sampled components

p is typically fixed, while the number of observations n increases, so setting ψ(p, n) ∝

log(n) is then natural.

We present three different penalty regimes (see Figure 4.2.1), each with power to

detect anomalies with different proportions of anomalous segments. The regimes will

be indexed by a parameter ψ which corresponds to the exponent of the probability

bound, as defined in (4.2.3). We denote the penalty functions for each of these regimes

by P1, P2 and P3 respectively. The first penalty regime consists of just a single global

penalty:

Penalty Regime 1: P1(j) = a
(
pv + 2

√
pvψ + 2ψ

)
, corresponding to setting βj = 0

for 1 ≤ j ≤ p and α = a
(
pv + 2

√
pvψ + 2ψ

)
.

Under this penalty, we would infer that any detected anomaly region will affect
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all components. This is inappropriate, and is likely to lead to a lack of power, if we

have anomalous regions that only affect a small number of components. For such

anomalies, the following regime offers a good alternative as it has a smaller penalty

for fitting collective anomalies with few components:

Penalty Regime 2: P2(j) = 2(1 + ε)aψ + 2(1 + ε)aj log(p) which corresponds to

setting α = 2(1 + ε)aψ and βj = 2(1 + ε)a log(p), for 1 ≤ j ≤ p and ε > 0.

Comparing penalty regime 2 with penalty regime 1, we see that it has a lower

penalty for small j, but a much higher penalty for j >>
√
p/ log p. As such it has

higher power against collective anomalies affecting few components, but low power if

the collective anomalies affect most components.

If v ≤ 2, a third penalty regime can be derived:

Penalty Regime 3:

P3(j) = a

(
2(ψ + log(p)) + jv + 2pcjf(cj) + 2

√
(jv + 2pcjf(cj))(ψ + log(p))

)
,

where f is the PDF of the χ2
v-distribution and cj is defined via the implicit equation

P (χ2
v > cj) = j/p.

As can be seen from Figure 4.2.1 for the special case of χ2
1-distributed savings, this

penalty regime provides a good alternative to the other penalty regimes, with lower

penalties for intermediate values of |J |.

All these regimes control the false positive rate, as shown in the following propo-

sition.

Proposition 4. Let the savings Si(s, e) be independent and stochastically bounded by

aχ2
v for 1 ≤ i ≤ p and let K̂ denote the number of inferred collective anomalies. If we
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use penalty regime 1 or 2, or if v ≤ 2 and we use penalty regime 3, then, there exists

a global constant A such that P{K̂ = 0} ≥ 1− An2e−ψ.

Rather than choosing one penalty regime, we can maximise power against both

sparse, intermediate and dense anomalies, by choosing α, β1, ..., βp so that the result-

ing penalty function P (j), is the point-wise minimum of the penalty functions P1(j),

P2(j), and, if available, P3(j). We call this the composite regime. It is a corol-

lary from Proposition 4, that this composite penalty regime achieves P{K̂ = 0} ≥

1 − 3An2e−ψ for the same global constant A as in Proposition 4, when Si(s, e) is

stochastically bounded by aχ2
v.

4.2.3 Results on Power

For the case of a collective anomaly characterised by changes in the mean in a subset

of the data’s components, we can compare the power of our penalised saving statistic

with established results regarding the optimal power of tests. Specifically, we examine

behaviour under a large p regime. We follow the asymptotic parameterisation of Jeng

et al. (2012) and therefore assume that the collective anomaly is of the form

x
(i)
t = v(i)µ+η

(i)
t , v(i) ∼


0 with prob. 1− p−ξ,

1 with prob. p−ξ,

and η
(i)
t

i.i.d.∼ N(0, 1), for s < t ≤ e,

(4.2.4)

the noise η
(1)
t , ...,η

(p)
t of the different series being independent.

Typically (Jeng et al., 2012), changes are characterised as either sparse or dense.

In a sparse change, only a few components are affected. Such changes can be de-

tected based on the saving of those few components being larger than expected after
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accounting for multiple testing. The affected components therefore have to experi-

ence strong changes to be reliably detectable. On the other hand, a dense change is

a change in which a large proportion of components exhibits anomalous behaviour.

A well defined boundary between the two cases exists with ξ ≤ 1
2

corresponding to

dense ξ > 1
2

and corresponding to sparse changes (Jeng et al., 2012; Enikeeva and

Harchaoui, 2019). Depending on the setting, the change in mean is parameterised by

rp ∈ R in the following manner:

(e− s)µ2 =


2rp log(p) 1

2
< ξ < 1,

p−2rp 0 ≤ ξ ≤ 1
2
.

Both Jeng et al. (2012) and Cai et al. (2011b) derive detection boundaries for

rp, separating changes that are too weak to be detected from those changes strong

enough to be detected. For the case in which the standard deviation in the anomalous

segment is the same as the typical standard deviation, the detectability boundaries

correspond to ρ− = (1−
√

1− ξ)2 if 3/4 < ξ < 1, ρ− = ξ − 1/2 if 1/2 < ξ ≤ 3/4 for

the sparse case; and ρ+ = (1/2− ξ)/2 for the dense case (0 ≤ ξ ≤ 1
2
). The following

proposition establishes that the penalised saving statistic has power against all sparse

changes within the detection boundary, as well as against dense changes within the

detection boundary

Proposition 5. Let the typical mean be known and the series x1, ...,xn contain an

anomalous segment xs+1, ...,xe, which follows the model specified in (4.2.4). Let rp >

ρ− if 1
2
< ξ < 1 or rp < ρ+ if 0 ≤ ξ ≤ 1

2
. Then the number of collective anomalies, K̂,

estimated by MVCAPA using the composite penalty with a = 1, v = 1 and ψ(p, n) =
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2 log(n) + 2 log(log(p)) on the data x1, ...,xn, satisfies

P
(
K̂ 6= 0

)
→ 1 as p→∞

provided that log(n) = o(log(p)).

Rather than requiring µi to be 0, or a common value µ, it is trivial to extend the

result to the case where µ1, ..., µp are i.i.d. random variables whose magnitude exceeds

µ with probability p−ξ. It is worth noticing that the third penalty regime is required

to obtain optimal power against the intermediate sparse setting 1
2
< ξ ≤ 3

4
.

4.3 Inference for Multiple Anomalies

A natural way of extending the methodology introduced in Section 4.2 to infer mul-

tiple collective anomalies, is to maximise the penalised saving jointly over the num-

ber and location of potentially multiple anomalous windows. That is we infer K̂,(
ŝ1, ê1, Ĵ1

)
,...,

(
ŝK̂ , êK̂ , ĴK̂

)
by directly maximising

K̂∑
k=1

S (ŝk, êk) , (4.3.1)

subject to êk − ŝk ≥ l and êk ≤ ŝk+1.

Such an approach may not be robust to point outliers, which could either be in-

correctly inferred as anomalous segments or cause anomalous segments to be broken

up, thus limiting interpretability. The occurrence of both these problems can be pre-

vented by using bounded cost functions (Fearnhead and Rigaill, 2019b). For example,

when looking for changes in mean using a square error loss function, we truncate the
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loss at a value β′ to obtain the cost C(x, µ) = min(β′, (x−µ)2/σ2), which is equivalent

to using Tukey’s biweight loss.

When only spurious detection of anomalous regions due to point outliers is to be

avoided, just the cost used for the typical segments has to be truncated. To do this

first we define S ′ (xt) to be the reduction in cost obtained by truncating the cost of

a subset of the components of the observation x
(i)
t . So, for example, if our anomalies

correspond to changes in mean and we are using the square error loss, or equivalently

the Gaussian log-likelihood base cost, then

S ′ (xt) =

p∑
i=1

max

(x
(i)
t − µ

(i)
0

σ
(i)
0

)2

− β′, 0

 ,

where as before µ
(i)
0 and σ

(i)
0 are the mean and standard deviation of normal data for

component i. Joint inference on collective and point anomalies is then performed by

maximising the penalised saving

K̂∑
k=1

S (ŝk, êk) +
∑
t∈O

S ′ (xt) , (4.3.2)

with respect to K̂,
(
ŝ1, ê1, Ĵ1

)
,...,

(
ŝK̂ , êK̂ , ĴK̂

)
, and the set of point anomalies O,

subject to êk − ŝk ≥ l, êk < ŝk+1 (∪i[si + 1, ei]) ∩O = ∅.

Similarly, setting the cost C() of collective anomalies to the truncated loss pre-

vents collective anomalies from being split up by point anomalies. This has been im-

plemented for anomalies characterised by a change in mean, using Tukey’s bi-weight

loss, in the anomaly package. Using this cost function, however, makes computing

the savings S() more computationally complex: it is O(nM2p log(p)) when using a

maximum segment length M .
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The truncation threshold β′ has to be chosen depending on whether it is of interest

to detect point anomalies as such. When this is not the case, β′ tunes the robustness

of the approach – the lower it is, the more robust the approach becomes to outliers,

whilst higher values of β′ lead to more power. When point anomalies are of interest,

β′ can be chosen with the aim of controlling false positives under the null hypothesis,

that no point anomalies are present. When Tukey’s biweight loss is used for example,

the following proposition holds for any penalty β′:

Proposition 6. Let x
(i)
1 , ..., x

(i)
n be i.i.d. sub-Gaussian(λ) with known mean µi. Let

the series be independent for 1 ≤ i ≤ p. Let Ô denote the set of point anomalies

inferred by MVCAPA using cost C(x, µ) = min(β′, (x − µ)2). Then, there exists a

global constant A′ such that

P
(
Ô = ∅

)
≥ 1− A′npe−

1
2λ
β′ .

This suggests setting β′ = 2λ log(p) + 2λψ, where ψ is as in Section 4.2.2.

4.4 Computation

The standard approach to extend a method for detecting an anomalous window to

detecting multiple anomalous windows is through circular binary segmentation (CBS,

Olshen et al. (2004)) – which repeatedly applies the method for detecting a single

anomalous window or point anomaly. Such an approach is equivalent to using a greedy

algorithm to approximately maximise the penalised saving and has computational cost

of O(Mn), where M is the maximal length of collective anomalies and n is the number
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of observations. Consequently, the runtime of CBS is O(n2) if no restriction is placed

on the length of collective anomalies. We will show in this section that we can directly

maximise the penalised saving by using a pruned dynamic programme. This enables

us to jointly estimate the anomalous windows, at the same or at a lower computational

cost than CBS.

We will focus on the optimisation of the criteria that incorporates point anomalies

(4.3.2), though a similar approach applies to optimising (4.3.1). Writing S(m) for

the largest penalised saving of all observations up to and including time m, it is

straightforward to derive the recursion.

S(m) = max

(
S(m− 1) + S ′ (xm) , max

0≤t≤m−l

(
S(t) + S (t,m)

))

with S(0) = 0. Calculating S (t,m) is, on average, an O(p log(p)) operation, since

it requires sorting the savings made from introducing a change in each component.

This sorting is not required if the βi are identical, whence the computational cost to

O(p). For a maximum segment length M , the computational cost of this dynamic

programme approach scales like O(Mn).

If no maximum segment length is specified, it scales quadratically in n. However,

the solution space of the dynamic programme can be pruned in a fashion similar to

Killick et al. (2012) and Fisch et al. (2018a) to reduced this computational cost. This

is discussed in Section B.1.1 of the appendix. As a result of this pruning we found

the runtime of MVCAPA to be close to linear in n, when the number of collective

anomalies increased linearly with n.
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4.5 Accuracy of Detecting and Locating Multiple

Collective Anomalies

Whilst we have shown that MVCAPA has good properties when detecting a single

anomalous window for the change in mean setting, it is natural to ask whether the

extension to detecting multiple anomalous windows will be able to consistently infer

the number of anomalous windows and accurately estimate their locations. Specifi-

cally, we will be considering the case of joint detection of sparse and dense collective

anomalies in mean. Developing such results is notoriously challenging, as can be seen

from the fact that previous work on this problem (Jeng et al., 2012) has not provided

any such results. Another new feature of the following proof is that the results allow

for the number of anomalous segments K to increase, whereas most results in the re-

lated changepoint literature (e.g. Fryzlewicz, 2014) assume K to be fixed. Our novel

combinatorial arguments can be applied to other settings (e.g. mean and variance)

within the penalised cost framework.

Consider a multivariate sequence x1, ...,xn ∈ Rp, which is of the form xt = µ(t) +

ηt, where the mean µ(t) follows a subset multivariate epidemic changepoint model

with K epidemic changepoints in mean. For simplicity, we assume that within an

anomalous window all affected components experience the same change in mean, and

that the noise process is i.i.d. Gaussian, i.e. that for each component i,

µ(i)(t) = µk if sk < t ≤ ek and i ∈ Jk (4.5.1)

and 0 otherwise.
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Consider also the following choice of penalty.

j∑
i=1

βi =


Cψ + Cj log(p) if j ≤ k∗,

p+ Cψ + C
√
pψ if j > k∗.

(4.5.2)

Here, C is a constant, ψ := ψ(n, p) sets the rate of convergence and the threshold

k∗ = p1/2 ψ

log(p)
,

is defined as the threshold separating sparse changes from dense changes. This penalty

regime is identical, up to O(ε), to the point-wise minimum between penalty regimes

1 and 2, when C = 2 + ε.

Anomalous regions can be easier or harder to detect depending on the strength of

the change in mean characterising them and the number of components (|Jk| for the

kth anomaly) they affect. This intuition can be quantified by

42
k =



µ2
k

log(p) + ψ|Jk|−1
if |Jk| ≤ k∗,

µ2
k

√
pψ|Jk|−1 + ψ|Jk|−1

if |Jk| > k∗,

which we define to be the signal strength of the kth anomalous region. The following

consistency result then holds

Theorem 3. Let the typical means be known. There exists a global constants A and

C0 such that for all C ≥ C0 the inferred partition τ = {(ŝ1, ê1, Ĵ1), ..., (ŝK̂ , êK̂ , ĴK̂)}

obtained by applying MVCAPA using the penalty regime specified in (4.5.2) and no

minimum segment length, on data x which follows the distribution specified in (4.5.1)

satisfies

P
(
K̂ = K, |ŝk − sk| <

10C

42
k

, |êk − ek| <
10C

42
k

)
> 1− An3e−ψ, (4.5.3)
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provided that

ek − sk ≥
40C

42
k

, sk+1 − ek ≥
40C

42
k

, sk − ek−1 ≥
40C

42
k

holds for k = 1, ..., K.

The result is proved in the appendix using combinatorial arguments. This finite

sample result holds for a fixed C, which is independent of n, p, K, and/or 4k. When

ψ = log(p), the threshold k∗ is identical to that in Jeng et al. (2012). However, if ψ

is chosen to increase with log(n), so will k∗. This formalises the intuition that when

n >> p, all detectable changes can be detected as sparse changes (see Liu et al., 2019,

for similar results).

Theorem 3 can be extended to allow for both a minimum and maximum segment

length. The proof of the theorem is based on partitioning all possible segmentations

in to one of two classes, corresponding to those which are consistent with the event

in the probability statement of (4.5.3) and those that are not. The proof then shows

that conditional on a different event, whose probability is greater than 1 − An3e−ψ,

any segmentation in the latter class will have a lower penalised saving than at least

one segmentation in the former class, and thus cannot be optimal under our criteria.

This argument still works providing our choice of minimum or maximum segment

lengths does not exclude any segmentations from the first class of segmentations, i.e.

if

l ≤ min
k

(
ek − sk −

20C

42
k

)
, m ≥ max

k

(
ek − sk +

20C

42
k

)
.

Theorem 3 has implications for the special case p = 1 of univariate collective mean

anomaly detection. In this case, we detect the right number of collective anomalies,
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each with a localisation error of 10Cψ
µ2
k

with probability 1− An3e−ψ. Asymptotic con-

sistency can therefore be obtained by setting ψ = 4 log(n), which recovers standard

O(log(n))-localisation errors. As Theorem 3, the result is fully independent of the

number of anomalies K and therefore improves on existing results (Fisch et al., 2018a)

for the uni-variate setting.

4.6 Incorporating Lags

4.6.1 Extending the Test Statistic

So far, we have assumed that all anomalous windows are perfectly aligned. In some

applications, such as the vibrations recorded by seismographs at different locations,

certain components will start exhibiting atypical behaviour later and/or return to the

typical behaviour earlier. The model in (4.2.1) can be extended to allow for lags in

the start or end of each anomalous window. The parameter θ(i)(t) is then assumed

to be

θ(i)(t) = θ
(i)
k if sk + d

(i)
k < t ≤ ek − f

(i)
k and i ∈ Jk, (4.6.1)

and θ
(i)
0 otherwise. Here the start and end lag of the ith component during the kth

anomalous window are denoted, respectively, by 0 ≤ d
(i)
k ≤ w and 0 ≤ f

(i)
k ≤ w, for

some maximum lag-size, w, and satisfy sk + d
(i)
k < ek − f

(i)
k . The remaining notation

is as before.

The statistic introduced in Section 4.2 can easily be extended to incorporate lags.
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The only modification this requires is to re-define the saving Si (s, e) to be

max
0≤d(i),f(i)≤w
e−s−d(i)−f(i)≥l

[
Ci
(
x

(i)

(s+1+d(i)):(e−f(i))
,θ

(i)
0

)
−min

θ

(
Ci
(
x

(i)

(s+1+d(i)):(e−f(i))
,θ
))]

, (4.6.2)

where w is the maximal allowed lag. We then infer O, K̂,
(
ŝ1, ê1, d̂1, f̂1, Ĵ1

)
,...,(

ŝK̂ , êK̂ , d̂K̂ , f̂K̂ , ĴK̂

)
by directly maximising the penalised saving

K̂∑
k=1

S (ŝk, êk) +
∑
t∈O

S ′ (xt) , (4.6.3)

with respect to K̂,
(
ŝ1, ê1, d̂1, f̂1, Ĵ1

)
,...,

(
ŝK̂ , êK̂ , d̂K , f̂K , ĴK̂

)
, and the set of point

anomalies O, subject to 0 ≤ d̂k, f̂k ≤ w, (êk − f̂k)− (ŝk + d̂k) ≥ l and êk < ŝk+1.

Introducing lags means searching over more possible start and end points for the

anomalous segments in each series. Consequently, increased penalties are required to

control the false error rate. A simple general way of doing is based on a Bonferonni

correction to allow for the different start and end-points of anomalies in different

series. It is shown in Section B.1.2 of the appendix that if we use the penalty regimes

from Section 4.2.2 but inflate ψ by adding 4 log(w+ 1) we obtain the same bound on

false positives.

When anomalies correspond to change in mean in Gaussian data, we obtain the

following, stronger result.

Proposition 7. Let x
(i)
1 , ...,x

(i)
n be i.i.d. N(0, 1) and independent for 1 ≤ i ≤ p. Then,

for all ε > 0, Si (s, e), as defined in (4.6.2) is stochastically bounded by

(1 + ε)χ2
2 + 2(1 + ε) (log (w + 1) + log(6)− log(log(1 + ε)) + log(1 + log(w + 1))) ,

(4.6.4)

when the cost function is C(x, µ) = (x− µ)2 and the typical mean known.
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It should be noted that it is not possible to improve on the above result as the

search space can contain w + 1 independent savings when e− s = w. As a corollary

of Proposition 7, the following modified version of penalty regime 2 controls the false

positive probability:

Penalty Regime 2’: P ′2(j) = 2(1 + ε)ψ + 2(1 + ε)j log(p) corresponding to α =

2(1 + ε)ψ and βj = 2(1 + ε) log(p) + 2(1 + ε) log(w + 1), for 1 ≤ j ≤ p.

4.6.2 Result on Power

Incorporating lags can improve power, especially when considering sparse collective

anomalies. This becomes apparent when considering the following modification of the

setting considered in Section 4.2.3. Let

x
(i)
t = v(i)I (s+ di < t ≤ e− fi)µ+ η

(i)
t , v(i) ∼


0 with prob. 1− p−ξ,

1 with prob. p−ξ,

(4.6.5)

for s < t ≤ e, where the noise η
(1)
t , ...,η

(p)
t of the different series is independent and

satisfies η
(i)
t

i.i.d∼ N(0, 1) for s < t ≤ e. Assume also that the start and end lags add

up to w, i.e. that di + fi = w for 1 ≤ i ≤ p. The following result holds:

Proposition 8. Let 3
4
< ξ < 1 and (e − s − w)µ2 = 2rp log(p(w + 1)). MVCAPA

with a maximum lag of w using penalty regime 2’ is able to detect the segment x(s+1):e

defined in (4.6.5) as being anomalous with probability going to 1, whilst controlling

false positives as p→∞ if rp >
(
1−
√

1− ξ
)2

and log(n) = o(log(p)).

Conversely, it is possible to bound the power of any approach not considering lags

using the following corollary of Theorem 1 in Cai et al. (2011b).
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Proposition 9. Let 3
4
< ξ < 1 and e−s−w

e−s (e− s−w)µ2 = 2rp log(p). The sum of type

I and type II error of any test of the alternative hypothesis

H1 :
√
e− sx̄(i)

(s+1):e

i.i.d∼


N(0, 1) with prob. 1− p−ξ,

N( e−s−w
e−s µ, 1) with prob. p−ξ,

against the null hypothesis

H0 :
√
e− sx̄(i)

(s+1):e

i.i.d∼ N(0, 1)

converges to 1 as p→∞ if rp <
(
1−
√

1− ξ
)2

.

Thus for this setting, including lags, modifies the detectability boundary for µ2 by

a factor of

e− s− w
e− s

log((w + 1)p)

log(p)
.

This shows that the gain from including lags is especially significant when the lags

and segment lengths are on a similar scale. Furthermore, at constant lag and anomaly

length, the improvement becomes more significant with increasing dimension p. An-

other corollary of this result is that specifying a lag w′ which is too large (i.e. greater

than w) is advantageous provided that

e− s− w
e− s

log((w′ + 1)p)

log(p)
< 1,

which, ceteris paribus, is bound to hold as p→∞.

4.6.3 Computational Considerations

The dynamic programming approach described in Section 4.4 can also be used to

minimise the penalised negative saving in Equation (4.6.3). Solving the dynamic
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programme requires the computation of Si (t,m) for 1 ≤ i ≤ p for all permissible t at

each step of the dynamic programme. Computing these savings ex nihilo every time

leads to the computational cost of the dynamic programme to scale quadratically in

(w + 1).

However, it is possible to reduce the computational cost of including lags by storing

the savings

Ci
(
x

(i)
(a+1):b,θ

(i)
0

)
−min

θ

[
Ci
(
x

(i)
(a+1):b,θ

)]
for t − w ≤ b ≤ t and 0 ≤ a ≤ b − l. These can then be updated in each step of

the dynamic programme at a cost of at most O(np). From these, it is possible to

calculate all Si (t,m) required for a step of the dynamic programme in just O(np(w+

1)) comparisons. This reduces the computational cost of each step of the dynamic

programme to O(pn(w + 1) + pn log(p)). Crucially, only the comparatively cheap

operations of allocating memory and finding the maximum of two numbers increase

with w + 1. Furthermore, it is possible to adapt the pruning rule for the dynamic

programme to incorporate lags. The details for this and full pseudocode can be found

in the appendix.

4.7 Simulation Study

We now compare the performance of MVCAPA to that of other popular methods.

In particular, we compare ROC curves, precision, as well as the runtime with PASS

(Jeng et al., 2012) and Inspect (Wang and Samworth, 2018, 2016). PASS (Jeng et al.,

2012) uses higher criticism in conjunction with circular binary segmentation (Olshen
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et al., 2004) to detect subset multivariate epidemic changepoints. Inspect (Wang and

Samworth, 2018) uses projections to find sparse classical changepoints and therefore

provides a benchmark for the detection approach consisting of modelling epidemic

changes as two classical changepoints. For the purpose of this simulation study, we

used the implementation of PASS available on the author’s website and the Inspect

implementation from the R package InspectChangepoint.

The comparison was carried out on simulated multivariate time series with n =

5000 observations for p components with i.i.d. N(0, 1) noise, AR(1) noise (ρ = 0.3),

or t10-distributed noise for a range of values of p. To these, collective anomalies

affecting k components occurring at a geometric rate of 0.001 (leading to an average

of about 5 collective anomalies per series) were added. The lengths of these collective

anomalies are i.i.d. Poisson-distributed with mean 20. Within a collective anomaly,

the start and end lags of each component are drawn uniformly from the set {0, ..., w},

subject to their sum being less than the length of the collective anomaly. Note that

w = 0 implies the absence of lags. The means of the components during the collective

anomaly are drawn from an N(0, σ2)-distribution. In particular, we considered the

following cases, emulating different detectable regimes introduced in Section 4.2.3.

1. The most sparse regime possible: a single component affected by a strong

anomaly without lags, i.e. σ = 2 log(p), w = 0, and k = 1.

2. The most dense regime possible: all components affected by weak anomalies

without lags, i.e. σ = p−1/4, w = 0, and k = p.

3. A regime close to the boundary between sparse and dense changes, i.e. k = 2
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when p = 10 and k = 6 when p = 100 with σ = log(p) and w = 0.

4. A regime close to the boundary between sparse and dense changes, but with

lagged collective anomalies, i.e. the same as 3 but with w = 10.

This analysis was repeated with 5 point anomalies distributed N(0, 8 log(p)). The

log(p)-scaling of the variance ensures that the point anomalies are anomalous even

after correcting for multiple testing over the p different components.

4.7.1 ROC Curves

We use ROC curves to compare the methods. For our setting it is not clear how to

define the number of true negatives, and thus we plot the true positive rate against

the ratio of false positives to true positives. We obtained the curves by varying

the threshold parameters of Inspect and PASS and by rescaling α, β′, β1, ..., βp for

MVCAPA. The curves were obtained over 1000 simulated datasets. For MVCAPA,

we typically set w = 0, but also tried w = 10 and w = 20 for the third and fourth

setting. The median and median absolute deviation were used to robustly estimate the

mean and variance. Throughout the experiments, we used and rescaled the composite

penalty regime (Section 4.2.2) for w = 0 and penalty regime 2’ for w > 0. We also set

the maximum segment lengths for both MVCAPA and PASS to 100 and the minimum

segment length of MVCAPA to 2. The α0 parameter of PASS, which excludes the

α0 − 1 lowest p-values from the higher criticism statistic to obtain a better finite

sample performance (see Jeng et al. (2012)) was set to k or 5, whichever was the

smallest. For MVCAPA and PASS, we considered a detected segment to be a true
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(a) p=10 (b) p=10, AR (c) p=10, PAs (d) p=100, PAs

(e) p=10 (f) p=10, AR (g) p=10, PAs (h) p=100, PAs

(i) p=10 (j) p=10, AR (k) p=10, PAs (l) p=100, PAs

Figure 4.7.1: Example series and ROC curves for setting 1, 3, and 4 (top row to

bottom row). MVCAPA is in red, PASS in green, and Inspect in blue. The solid red

line corresponds to w = 0, the dashed one to w = 10 and the dotted one to w = 20.

The x-axis denotes the number of false discoveries normalised by the total number of

real anomalies present in the data.
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positive if its start and end point both lie within 20 observations of that of a true

collective anomalies’ start and end point respectively. For Inspect, we considered a

detected change to be a true positive if it was within 20 observation of a true start

or end point. When point anomalies were added to the data, we considered segments

of length one returned by PASS to be point anomalies to make the comparison with

MVCAPA fairer.

A subset of the results for three of the settings considered can be found in Figure

4.7.1. The full results for the four settings can be found in Figures B.4.1 to B.4.4 of

the appendix. We can see that Inspect usually does worst. This is especially true

when changes become dense, which is no surprise given the method was introduced

to detect sparse changes. However it is also the case for very sparse changes – the

setting for which Inspect has been designed, highlighting the advantage of treating

epidemic changes as such. We additionally see that MVCAPA generally outperforms

PASS. This advantage is particularly pronounced in the case in which exactly one

component changes. This is a setting which PASS has difficulties dealing with due

to the convergence properties of the higher criticism statistic at the lower tail (Jeng

et al., 2012). PASS outperformed MVCAPA in the second setting for p = 10, when

it was assisted by a large value of α0, which considerably reduced the number of

candidate collective anomalies it had to consider.

Figures 4.7.1e and 4.7.1i, show that MVCAPA performs best when the correct

maximal lag is specified. They also demonstrate that specifying a lag and there-

fore overestimating the lag when no lag is present adversely affects performance of

MVCAPA. However, when lags are present, over-estimating the maximal lag appears
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preferable to underestimating it. Finally, the comparison between Figures 4.7.1i and

4.7.1k shows that the performance of MVCAPA is hardly affected by the presence of

point anomalies.

We have also considered the case in which collective anomalies are characterised

by joint changes in mean and variance. ROC curves for that setting can be found in

the appendix.

4.7.2 Precision

We compared the precision of the three methods by measuring the accuracy (in mean

absolute distance) of true positives. Only true positives detected by all methods

were taken into account to avoid selection bias. We used the default parameters for

MVCAPA and PASS, whilst we set the threshold for Inspect to a value leading to

comparable number of true and false positives. To ensure a suitable number of true

positives for Inspect we doubled σ in the second scenario. The results of this analysis

can be found in Table 4.7.1 and show that MVCAPA is usually the most precise

approach, exhibiting a significant gain in accuracy against PASS. Whilst we noted

that erring on specifying too large a maximal lag was better in terms of power of the

MVCAPA to detect collective anomalies, we see that it does have an adverse impact

on the accuracy of their estimated locations.
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Setting p Lag PAs. MVCAPA MVCAPA, w=10 MVCAPA, w=20 Inspect PASS

1 10 0 - 0.09 - - 0.64 0.31

1 100 0 - 0.02 - - 0.40 0.62

1 10 0 0.09 - - 0.62 0.38

1 100 0 0.03 - - 0.40 0.67

2 10 0 - 0.09 - - 0.74 0.52

2 100 0 - 0.01 - - 0.71 0.54

2 10 0 0.05 - - 0.69 0.46

2 100 0 0.01 - - 0.67 0.51

3 10 0 - 0.11 2.31 3.30 0.72 0.27

3 100 0 - 0.01 3.43 3.83 0.53 0.29

3 10 0 0.09 2.23 3.26 0.69 0.22

3 100 0 0.01 3.35 3.82 0.53 0.23

4 10 10 - 0.63 0.46 1.09 0.80 2.53

4 100 10 - 1.27 0.18 1.57 0.61 3.64

4 10 10 0.72 0.51 1.22 0.83 2.60

4 100 10 1.23 0.21 1.58 0.59 3.77

Table 4.7.1: Precision of true positives detected by all methods measured in mean

absolute distance for MVCAPA, PASS, and Inspect.
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4.8 Detecting Copy Number Variation

We now apply MVCAPA to extract copy number variations (CNVs) from genetics

data. The data consists of a log-R ratio between observed and expected intensity

(formally defined in Lin et al. (2013)) evaluated along the genome. The typical mean

of this statistics is therefore equal to 0, whilst deviations from 0 correspond to CNVs.

A multivariate approach to detecting CNVs is attractive because they are often shared

across individuals. By borrowing signal across individuals we should gain power for

detecting CNVs which have a weak signal. However, as we will become apparent from

our results, shared variations do not always align perfectly across individuals.

In this section we re-use the design of Bardwell and Fearnhead (2017) to compare

MVCAPA with PASS. We will therefore investigate the performance of both methods

on two chromosomes (Chromosome 16 with n = 59, 590 measurements and Chromo-

some 6 with n = 126, 695 measurements) over 18 individuals, which we split into 3

folds of p = 6 individuals. We set the maximum segment length for MVCAPA and

PASS to 100. To investigate the potential benefit of allowing for lags, we repeated the

experiment for MVCAPA both with w = 0 (i.e. not allowing for lags) and w = 40.

Since n >> p in this application, we used the sparse penalty setting (Regime 2) for

MVCAPA.

Whilst the exact ground truth is unknown, we can compare different methods by

how accurately they detect known CNVs for a given test size. We used known CNVs

from the HapMap project (Consortium, 2003) as true positives and tuned the penalties

and thresholds in such a way that 4% of the genome was flagged up as anomalous
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for all methods. For MVCAPA this involved scaling the penalties α, β1, ..., βp by a

constant, as discussed in Section 4.2.2.

The results of this analysis on Chromosome 16 can be found in Table 4.8.1 while

the reults for Chromosome 6 can be found in Table B.4.7 in the appendix. These tables

show that MVCAPA shows much more consistency across folds than PASS. We can

also see that allowing for lags generally led to a better performance of MVCAPA, thus

suggesting non-perfect alignment of CNVs across individuals. Moreover, MVCAPA

was very fast taking 5 seconds to analyse the longer genome on a standard laptop when

we did not allow lags, and 10 seconds when we allowed for lags. The R implementation

of PASS, on the other hand, took 17 minutes. No point anomalies were identified by

MVCAPA.
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Truth PASS MVCAPA (w = 40) MVCAPA (w = 0)

Start Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3

2619669

2638575

21422575

32165010

34328205

54351338

70644511

Table 4.8.1: A comparison between PASS, MVCAPA without lags, and MVCAPA

with a lag of up to 40 for chromosome 16. Each row represents a known copy number

variation, their starting point (as defined by the HapMap) being indicated in the first

column. Successful detections are indicated by ticks.



Chapter 5

Innovative And Additive Outlier

Robust Kalman Filtering

5.1 Introduction And Literature Review

Anomaly detection is an area of considerable importance and has been subject to

increasing attention in recent years. Comprehensive reviews of the area can be found

in Chandola et al. (2009); Pimentel et al. (2014). The field’s growing importance

arises from the increasing range of applications to which anomaly detection lends

itself: from fraud prevention (Chandola et al., 2009; Pimentel et al., 2014), to fault

detection (Chandola et al., 2009; Pimentel et al., 2014), and even the detection of

exoplanets (Fisch et al., 2018b). More recently, the emergence of internet of things

and the ubiquity of sensors has led to emergence of the online detection of anomalies

as an important statistical challenge.

Kalman filters Kalman (1960) provide a convenient framework to detect anomalies

97
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within a streaming data context. In particular, they can be updated in a fully online

fashion at a fixed computational cost. At each time point, Kalman filters also provide

an estimate both for the expectation and variance of the next observation. These

can be used to determine whether that observation is anomalous or not. However,

the major drawback of Kalman filters is their lack of robustness to outliers: once the

filter has encountered an outlier, it will often produce inaccurate predictions for many

future time points.

The anomaly detection literature distinguishes between two types of outliers. The

first are additive outliers, sometimes referred to as observational outliers (Gandhi and

Mili, 2009), which affect the observational noise only. The other type of outliers are

the innovative, or process (Huang et al., 2017), outliers. These affect the updates of

the hidden states. In practice, both have a similar effect on the next observation,

but quite different effects on subsequent observations. Moreover, some innovative

outliers cannot be detected immediately as their influence on the observations is only

noticeable after, or over, a period of time.

A range of robust Kalman filters has been proposed to date. Many side-step the

problem of distinguishing between the two outlier types. By far the largest class of fil-

ters aims to be robust against heavy tailed additive outliers. Examples of such filters

include Ting et al. (2007); Agamennoni et al. (2011), which assume t-distributed ad-

ditive noise and perform inference using variational Bayes, Ruckdeschel et al. (2014),

who use Huberised residuals, and Chang (2014) inflate the noise covariance matrix

whenever an outlier is encountered. A few filters have also been developed with the

aim of achieving robustness against innovative outliers (Ruckdeschel et al., 2014).
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The problem with such filters is that they exacerbate the shortcomings of the Kalman

filter when they encounter the other type of anomaly: additive outlier robust Kalman

filters, for example, update their hidden states even less than the classical Kalman

filter when encountering innovative outliers.

In principle, it seems straightforward to combine the ideas of these two types of

robust Kalman filter. One body of literature proposes to use Huberisation of both

innovative and additive residuals (Gandhi and Mili, 2009; Chang, 2014). Others

(Huang et al., 2017, 2019) have modelled both additive and innovative outliers us-

ing t-distributions, by imposing Wishart priors on the precision matrix of both the

innovations and additions and maintaining the posterior by using variational Bayes

approaches. The issue with these filters comes from how they approximate the filter-

ing distribution of the state. Both return uni-modal posteriors after encountering an

anomaly. This is a shortcoming given that the posterior after an anomaly is likely to

be multi-modal: if the outlying observation was caused by an additive anomaly, the

state will be close to the prior, whereas if it was caused by an innovative anomaly,

the state would be far from it.

The ideal approach to constructing a robust filter would be to model the pos-

sibility of outliers in both the observation and system noise, and then use a filter

algorithm that attempts to calculate, or approximate, the true filtering distribution

for the model. An early attempt to do this was the spline based approach Kitagawa

(1987), but the computational complexity increases very quickly with the number

of dimensions and such a filter becomes impracticable when the state dimension is

greater than 3. As a result we consider using particle filters (Gordon et al., 1993;
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Fearnhead and Künsch, 2018). These are able to produce Monte Carlo approxima-

tions to the filtering distribution for an appropriate model that allows for outliers,

and, in principle, can work even if the filtering distribution is multi-modal. However

the Monte Carlo error of standard implementations of the particle can be prohibitively

large (Chang, 2014).

In this chapter, we develop an efficient particle filter by using a combination

of Rao-Blackwellisation and well-designed proposal distributions. The idea of Rao-

Blackwellisation is to integrate out part of the state so that the particle filter approx-

imates the filtering distribution of a lower-dimensional projection of the state. In our

application this projection is whether each component of the additive and innovative

noise is an outlier, and if it is how much the variance of the noise has been inflated.

Conditional on this information, the state space model becomes linear-Gaussian and

we can implement a Kalman Filter to calculate exactly the conditional filtering distri-

bution, while being able to fully capture multi modal posteriors. This idea is similar

to that which underpins the Mixture Kalman Filter (Chen and Liu, 2000).

Whilst Rao-Blackwellisation improves the Monte Carlo accuracy of the filter, such

a filter can still have the shortcomings noted by Chang (2014) and perform poorly

without good proposal distributions for the information we condition on. One of the

main contributions of this work is a proposal distribution that accurately approxi-

mates the conditional distribution of the variance inflation for each component of the

noise, and hence approximates the optimal proposal distribution (Pitt and Shephard,

1999). As a result of this proposal, we find that accurate results can be obtained even

with only a few particles.
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Another important challenge addressed by this chapter is that certain innovative

outliers can not immediately be detected. An innovative outlier in a latent trend

component for instance can cause a trend changes which may only become apparent

– i.e. produce a visible outlier in the observations – many observations after the in-

novative outlier in the trend occurred. It is nevertheless important to capture such

outliers as they can affect a potentially unlimited number of observations to come.

The proposed particle filter includes the possibility to back-sample the variance infla-

tion particles in light of more recent observations, which enables it to capture these

important anomalies.

The remainder of this chapter is organised as follows: We discuss our robust

noise model, consisting of a mixture distribution of Gaussian noise, representing typ-

ical behaviour, and heavy tailed noise, representing atypical behaviour, for both the

additive (observational) and innovative (system) noise process in Section 5.2. The

model is shown to be very similar to that considered by Huang et al. (2019). We

then introduce the proposal distribution for the scale of the noise in Section 5.3,

before extending it to anomalies which are not immediately identifiable in Section

5.4. The proposed filter is compared to others in Section 5.5 and applied to router

data and a benchmark machine temperature data-set in Section 5.6. The proposed

methodology, which we call Computationally Efficient Bayesian Anomaly detection

by Sequential Sampling (CE-BASS) has been implemented in the the R package RobKF

available from https://github.com/Fisch-Alex/Robkf. Derivations of theoretical

results and complete pseudocode are available in the appendix.
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5.2 Model And Examples

Throughout this chapter, we will consider inference about a latent state, Xt, through

partial observations, Yt, modelled as

Yt = CXt + V
1
2
t Σ

1
2
Aεt,

Xt = AXt−1 + W
1
2
t Σ

1
2
I νt.

(5.2.1)

Here the additive noise, εt ∈ Rp, and the innovations νt ∈ Rq are both i.i.d. standard

multivariate Gaussian. The diagonal matrices ΣA and ΣI denote the covariance of the

additive and innovation noise respectively. The diagonal matrices Vt and Wt are used

to capture additive and innovative outliers respectively, with large diagonal entries of

Vt corresponding to additive outliers and large diagonal entries of Wt corresponding

to innovative outliers. The classical Kalman model is recovered by setting Wt = I

and Vt = I for all times t.

The model in Equation (5.2.1) can be used to model a range of time series be-

haviours. We will use the following two examples throughout the chapter:

Example 1: The random walk model with both changepoints and outliers, similar

to the problem considered by Fearnhead and Rigaill (2019b). It can be formulated as

Yt = Xt + V
1
2
t σAεt, Xt = Xt−1 +W

1
2
t σIνt. (5.2.2)

Here atypically large values of Vt correspond to outliers, whilst atypically large values

of Wt correspond to changes. A realisation of this model can be found in Figure

5.2.1a.

Example 2: A time series with changes in trend, level shifts, as well as outliers,

similar to the model considered by Maeng and Fryzlewicz (2019). It can be formulated
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(a) Random walk (b) Random walk with trends

Figure 5.2.1: Two examples of time series which are realisations of outlier infested

Kalman models. (a) was simulated using the setup defined in Equation (5.2.2), with

σA = 1, σI = 0.1, and outliers defined by W100 = 3600, V400 = 100, and W700 = 10000.

Conversely (b) second example was simulated using the model defined in Equation

(5.2.3) using σA = 1, σ
(1)
I = 0.1, σ

(2)
I = 0.01 and outliers defined by W

(1)
100 = 3600,

V400 = 100, and W
(2)
700 = 40000.
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as

Yt = X
(1)
t + V

1
2
t σAεt

X
(1)
t = X

(1)
t−1 +X

(2)
t−1 +

(
W

(1)
t

) 1
2
σ

(1)
I ν

(1)
t ,

X
(2)
t = X

(2)
t−1 +

(
W

(2)
t

) 1
2
σ

(2)
I ν

(2)
t ,

(5.2.3)

with the first component of the hidden state denoting the current position and the

second indicating the trend. Here, outliers are modelled by large values of Vt whilst

level shift and changes in trend are modelled by atypically large values of W
(1)
t and

W
(2)
t respectively. A realisation of this model can be found in Figure 5.2.1b.

A key feature of this second model is that an outlier in the trend component, X
(2)
t ,

may only become detectable many observations after the outlier – this challenging

issue mentioned in the introduction is addressed via the methods in Section 5.4.

A wide rage of other commonly used time series features, such as auto-correlation,

moving averages, etc. can be incorporated in the model.

To infer the locations of anomalies we use the model

V
(i,i)
t = 1 + λ

(i)
t

1

Ṽ
(i,i)

t

W
(j,j)
t = 1 + γ

(j)
t

1

W̃
(j,j)

t

(5.2.4)

for 1 ≤ i ≤ p and 1 ≤ j ≤ q. The random variables λ
(i)
t ∼ Ber(ri) and γ

(j)
t ∼ Ber(sj)

are indicators that determine whether an anomaly is present or not for 1 ≤ i ≤ p and

1 ≤ j ≤ q respectively. For additional interpretability, we impose that at most one

anomaly is present at any given time t, and define ri and sj to be the probabilities that

λ
(i)
t = 1 and γ

(j)
t = 1 respectively. The inverse scale, or precision, of an anomaly (if

present) is given by the random variables Ṽ
(i,i)

t ∼ σ̃iΓ(ai, ai) and W̃
(j,j)

t ∼ σ̂jΓ(bj, bj)

for 1 ≤ i ≤ p and 1 ≤ j ≤ q respectively.
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The proposed model bears similarities to the model used by Huang et al. (2019).

Both use a mixture of Gaussian and heavy tailed noise. The main difference is that

the anomalous behaviour is characterised by noise which is the sum of a Gaussian and

a t-distribution in our model as opposed to just a t-distribution in the model used by

Huang et al. (2019). This ensures that anomalies coincide with strictly greater noise

and makes the result more interpretable. In practice, however, the noise distribution

considered in this chapter and in Huang et al. (2019) are likely to be of very similar

shape.

5.3 Particle Filter

We now turn to filtering the model defined by Equations (5.2.1) and (5.2.4). The main

feature we exploit is the fact that if we knew the value of (Vt,Wt) at all times t, we

could just run the classical Kalman filter over the data. Consequently, our approach

will consist of sampling particles for (Vt,Wt), conditional on which the classical

Kalman update equations for the hidden state xt can be used. This approach, very

similar to the mixture Kalman filter (Chen and Liu, 2000; Fearnhead and Clifford,

2003) is summarised by the pseudocode in Algorithm 1.

For each time, t, the code loops over the existing particles, (Vt,Wt), and simulates

M ′ descendants for each of them in step 4. They are stored in a set of candidate

particles. If we have N particles at time t, keeping all candidates would produce NM ′

particles at time t + 1. To avoid growing the number of particles exponentially with

t, Step 7 resamples the candidates to keep just N particles. The filtering distribution
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for each of these particles is then calculated using the Kalman Filter updates in step

10.

Algorithm 1 Basic Particle Filter (No Back-sampling)

Input: An initial state estimate (µ0,Σ0)

A number of descendants, M ′ = M(p+ q) + 1

A number of particles to be maintained, N .

A stream of observations Y1,Y2, ...

Initialise: Set Particles(0) = {(µ0,Σ0)}

1: for t ∈ N+ do

2: Candidates← {}

3: for (µ,Σ) ∈ Particles(t− 1) do

4: (V,W, prob)← Sample Particles(M ′,µ,Σ,Yt,A,C,ΣA,ΣI)

5: Candidates← Candidates ∪ {(µ,Σ,V,W, prob)}

6: end for

7: Descendants← Subsample(N,Candidates)

8: Particles(t)← {}

9: for (µ,Σ,V,W, prob) ∈ Descendants do

10: (µnew,Σnew)← KF Upd(Yt,µ,Σ,C,A,V
1/2ΣA,W

1/2ΣI)

11: Particles(t)← Particles(t) ∪ {(µnew,Σnew)}

12: end for

13: end for

The main challenge in the above approach consists of selecting a good sampling

procedure for the particles. Whilst it may be a natural choice to sample particles

(Vt+1,Wt+1) from their prior distribution, this is not suitable for the problem con-

sidered in this chapter. In particular, this sampling procedure would not be robust to

outliers: the stronger an anomaly was, the less likely we would be to sample a particle
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with an appropriate value of (Vt+1,Wt+1), as discussed by Chang (2014).

Adopting ideas from Pitt and Shephard (1999) and Arulampalam et al. (2002),

we overcome the above challenge by sampling particles from an approximation to the

conditional distribution of (Vt+1,Wt+1) given observation Yt+1. Denote the model’s

prior distribution for (Vt+1,Wt+1) in (5.2.4) by π0(·). The conditional distribution

π(Wt+1,Vt+1|Yt+1) for the descendants of a particle whose filtering distribution for

xt is N(µ,Σ) is then proportional to

π0(W,V)L
(
Y,CA,CAΣATCT + ΣAV + CΣIWCT

)
.

Here we have dropped time indices for convenience, and L (x,µ,Σ) denotes the like-

lihood of an observation x under a N(µ,Σ)-model. Since at most one component is

anomalous, we can re-write this as a sum over which, if any, component is anomalous

I{W=I,V=I}π(I, I|Y) +

q∑
j=1

I{
W=I+ I(j)

W̃
(j,j)

,V=I

}π̂j (W̃
(j,j)
)

+

p∑
i=1

I{
W=I,V=I+ I(i)

Ṽ
(i,i)

}π̃i (Ṽ
(i,i)
)
.

Here, we use the shorthand

π̃i

(
Ṽ

(i,i)
)

= π

(
I, I +

I(i)

Ṽ
(i,i)
|Y

)

and

π̂j

(
W̃

(j,j)
)

= π

(
I +

I(j)

W̃
(j,j)

, I|Y

)
.

Since the target distribution π(W,V|Y) is intractable, we construct an approxi-

mation to it, which we denote q(W,V|Y), and use this as our proposal distribution.

This proposal is proportional to

I{W=I,V=I}β0 +

q∑
j=1

I{
W=I+ I(j)

W̃
(j,j)

,V=I

}β̂j q̂j (W̃
(j,j)
)

+

p∑
i=1

I{
W=I,V=I+ I(i)

Ṽ
(i,i)

}β̃iq̃i (Ṽ
(i,i)
)
.

Clearly, there is no benefit in simulating multiple identical descendants, so we wish to

sample precisely one dependent that corresponds to no outliers. To do this, and also
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to have the same number of descendant particles for each possible type of outlier, we

set β0 = 1
1+M(p+q)

, β̃i = M
1+M(p+q)

, and β̂j = M
1+M(p+q)

, and use stratified subsampling

as in Fearnhead and Clifford (2003). This leads to M ′ = M(p+q)+1 total descendants

per particle, M for each of the p additive and q innovative outliers, and one for no

outlier. Each of these particles is then given a weight proportional to

π(Wt+1,Vt+1|Yt+1)

q(Wt+1,Vt+1|Yt+1)
.

The main challenge now consists of obtaining proposal distributions q̃i(·) for 1 ≤

i ≤ p and q̂j(·) for 1 ≤ j ≤ q that provide good approximations to the conditional pos-

teriors which are proportional to π̃i(·) and π̂j(·) respectively. In the next subsection,

we therefore derive proposal distributions that provide leading order approximations

to the conditional posteriors. To simplify notation, we define the predictive variance

Σ̂ = CAΣATCT +ΣA+CΣIC
T and use it throughout the remainder of this chapter.

We also begin by assuming that C contains no 0-columns. The proposal introduced in

the following subsection also forms the basis of back-sampling introduced in Section

5.4, which allows to relax this on C.

5.3.1 Proposal Distributions

For 1 ≤ i ≤ p, we would like the proposal distribution q̃i

(
Ṽ

(i,i)
)

for the precision,

Ṽ
(i,i)

, to be as close as possible to π̃i

(
Ṽ

(i,i)
)

or, equivalently, proportional to

fi

(
Ṽ

(i,i)
) exp

(
− 1

2 (Y−CAµ)
T

(
Σ̂ +

Σ
(i,i)
A

Ṽ
(i,i) I

(i)

)−1
(Y−CAµ)

)
√∣∣∣∣Σ̂ +

Σ
(i,i)
A

Ṽ
(i,i) I

(i)

∣∣∣∣
,

where fi() denotes the PDF of the σ̃iΓ(ai, ai)-distributed prior of Ṽ
(i,i)

.
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It should be noted that the intractable terms,∣∣∣∣∣Σ̂ +
Σ

(i,i)
A

Ṽ
(i,i)

I(i)

∣∣∣∣∣ and

(
Σ̂ +

Σ
(i,i)
A

Ṽ
(i,i)

I(i)

)−1

(5.3.1)

can both be expanded using the matrix determinant lemma and the Sherman Mor-

rison formula respectively, as they are rank 1 updates of a determinant and inverse

respectively. Indeed, by the matrix determinant lemma,∣∣∣∣∣Σ̂ +
Σ

(i,i)
A

Ṽ
(i,i)

I(i)

∣∣∣∣∣ =

∣∣∣Σ̂∣∣∣
Ṽ

(i,i)

(
1 + Σ

(i,i)
A

(
Σ̂−1

)(i,i)
+O

(
Ṽ

(i,i)
))

,

the leading order term is conjugate to the prior of Ṽ
(i,i)

. Moreover, by the Sherman

Morrison formula the second term in Equation (5.3.1) is equal to

Σ̂−1 − Σ̂−1I(i)Σ̂−1

 1(
Σ̂−1

)(i,i)
−

 1(
Σ̂−1

)(i,i)


2

Ṽ
(i,i)

Σ
(i,i)
A

 ,
up to O

((
Ṽ

(i,i)
)2
)

. Crucially, the first two terms are constant in Ṽ
(i,i)

, while the

third is linear in Ṽ
(i,i)

and therefore returns a term which is conjugate to the prior

of Ṽ
(i,i)

. Furthermore, we are most concerned about accurately sampling the particle

when an anomaly occurs in the ith component, which happens when the precision,

Ṽ
(i,i)

, and the higher order terms, become small.

Keeping only the leading order terms in the determinant and the exponential term

results in the proposal distribution

Ṽ
(i,i) ∼ σ̃iΓ

ai +
1

2
, ai +

σ̃i

2Σ
(i,i)
A


(
Σ̂−1

)(i,:)
(Y−CAµ)(

Σ̂−1
)(i,i)


2


for Ṽ
(i,i)

. More detailed derivations, including the associated weight are given by

Theorem 1 in the appendix. This proposal has the property that as the observed
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anomaly in the ith component becomes larger, i.e. as

1

Σ
(i,i)
A


(
Σ̂−1

)(i,:)

(Y−CAµ)(
Σ̂−1

)(i,i)


2

increases, the mean of the proposal for Ṽ
(i,i)

diverges from the prior mean and behaves

asymptotically like

(2ai + 1)Σ
(i,i)
A


(
Σ̂−1

)(i,i)

(
Σ̂−1

)(i,:)

(Y−CAµ)


2

.

Consequently, the variance and the squared residual will be on the same scale, thus

achieving computational robustness.

A very similar approach can be used to obtain a proposal distribution q̂j

(
W̃

(j,j)
)

which provides a leading order approximation for the distribution proportional to

π
(
I + 1

W̃
(j,j) I

(j), I|Y
)

. The proposal consists of sampling

W̃
(j,j) ∼ σ̂jΓ

bj +
1

2
, bj +

σ̂i

2Σ
(j,j)
I


(
CT
)(j,:)

Σ̂−1 (Y−CAµ)(
CT Σ̂−1C

)(j,j)


2


and is of very similar form to the proposal distribution for particles with an additive

outlier and well defined if C has no 0-columns. Further details, including the associ-

ated weight, are given in Theorem 2 in the appendix. Like the proposal distribution

for particles with an additive anomaly this proposal is computationally robust: it

ensures that the squared residual and the variance will be on the same scale as the

anomaly in the jth innovative component becomes stronger.

Finally, the “proposal” for particles without anomalies consists of deterministically

setting V = I and W = I. The weight associated with this particle is proportional to

the likelihood, the closed form of which is given in Theorem 3 in the appendix.
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5.3.2 Choices of Parameters

The choice of hyper-parameters, particularly σ̂i and σ̃i, has a significant effect of the

performance of the proposed filter. One reason for this is that an outlier observation

could be the result of either an additive or an innovative outlier. It may be that the

root cause can only be determined after further observations are made. Thus, we

wish to choose hyper-parameters in such a way as to ensure that observed anomalies,

which are equally well explained by different classes of anomalies, are given similar

importance weights. The following result describes such a choice:

Theorem 4. Let the prior for the hidden state Xt be N(µ,Σ) and an observation

Yt+1 := Y be available. When

σ̃i = Σ
(i,i)
A

(
Σ̂−1

)(i,i)

and σ̂j = Σ
(j,j)
I

(
CT Σ̂−1C

)(j,j)

,

and a1 = ... = ap = b1 = ... = bq = c, the weights of additive and innovative anomalies

are asymptotically proportional to

cc 1
M
ri

Γ(c+ 1
2

)

Γ(c)
exp

(
1
2
δ2
)(

δ2

2

)c and
cc 1
M
sj

Γ(c+ 1
2

)

Γ(c)
exp

(
1
2
δ2
)(

δ2

2

)c
when

Y−CAµ =
δei√(

Σ̂−1
)(i,i)

and Y−CAµ =
δC(:,j)√(

CT Σ̂−1C
)(j,j)

,

respectively, as δ →∞

The above choice of hyper-parameters therefore leads to all components being

given equal asymptotic importance weight under an anomaly they are able to account

for. I.e. one which satisfies C(:,j)√
(CT Σ̂−1C)

(j,j)
δ = Y−CAµ = δei√

(Σ̂−1)
(i,i)

. Setting all the
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(a) t=100 (b) t=101 (c) Full data

Figure 5.3.1: Robust particle filter output at various times. Additive anomalies are

denoted by red points, innovative anomalies by blue lines. Grey observations are yet

to be observed.

ais and bjs to the same constant is advisable due to the fact that the convolution of

two t-distributions whose means drift further and further apart yields two stable, i.e.

non-vanishing modes if and only if they have the same scale parameter.

While, Σ̂−1 is not fixed but time dependent, it nevertheless converges to a limit

under an observable Kalman filter model. In practice, we therefore use this limit to

set σ̃i and σ̂j.

5.3.3 Example 1 - revisited

The proposed filter can be applied to the data displayed in Figure 5.2.1a to detect

anomalies in an online fashion. It is worth pointing out that the filter re-evaluates past

anomalies as more data becomes available. This can be seen in Figure 5.3.1: When

initially encountering the anomaly at time t = 100 the filter gives approximately equal

weight to the possibility of it being an additive outlier and to it being an innovative
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one. It is only when the next observation becomes available, that the filter (correctly)

classifies it as an innovative anomaly. Note that only N = 20 particles were used and

only M = 1 descendent of each anomaly type was sampled per particle.

5.4 Particle Filter With Back-Sampling – CE-BASS

As mentioned in the introduction, it is possible that innovative outliers may not

immediately be observed. One such example are innovative outliers in the trend

component of the model described in (5.2.3). The filter as described in Algorithm

1 can not deal with such anomalies as it only inflates the variance of the innovative

process at time t when there is evidence in the observation at the same time t that

an outlier occurred. This can be remedied by back-sampling particles representing

innovative outliers at a later time, t+k, once more observations and therefore evidence

for an anomaly are available. This can be done using nearly identical approximation

strategies as used in the previous section and allows to relax the assumptions made in

the previous section from C not having any 0-columns to requiring that the system

be observable.

5.4.1 Back-Sampling Particles Using the Last k + 1 Observa-

tions

The proposed back-sampling strategy at time t consists of sampling particles for

(Vt+1−k, ...Vt+1,Wt+1−k, ...,Wt+1) given a N(µt−k,Σt−k) filtering distribution for

xt−k and observations Yt−k+1, ...,Yt−k. Specifically, we sample particles with a inno-
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vative single anomaly in Wt+1−k assuming no other innovative anomalies or additive

anomalies. Conditional on these augmented particles classical Kalman updates can

once more be used as shown in Algorithm 2. It should be noted that Algorithm 1 is

a special case of Algorithm 2 which arises from setting B1 = ... = Bq = {1}.

To sample a particle with an innovative anomaly in the jth component of Wt+1−k,

we define an augmented observation vector Ỹ
(k)

t+1−k = (YT
t+1−k, ...,Y

T
t+1)T . This is

normally distributed with mean C̃
(k)

Aµt−k and variance

C̃
(k)
(
AΣt−kA

T + Q̃
(k)
)(

C̃
(k)
)T

+ R̃
(k)
,

where C̃
(k)

= C
((

A0
)T
, ...,

(
Ak
)T)T

denotes the augmented matrix mapping the

hidden states to the observations,

R̃
(k)

=


V−1t+1−kΣA 0

. . .

0
. . . 0

. . . 0 V−1t+1ΣA


and

Q̃
(k)

=


W−1

t+1−kΣI 0
. . .

0
. . . 0

. . . 0 W−1
t+1ΣI


In a similar spirit, we define the augmented predictive variance to be

Σ̂(k) = C̃
(k) (

AΣt−kA
T + Ik+1 ⊗ΣI

) (
C̃

(k)
)T

+ Ik+1 ⊗ΣA.

As a result of this reformulation, we retrieve update equations consisting of a single

Kalman step, albeit with slightly different dimensions of the observation, (k + 1)p

instead of p. It is therefore possible to use the sampling procedure for innovative

outliers introduced in Section 5.3.1. This consists of sampling particles for W̃
(j,j)

t+1−k

from

σ̂jΓ

bj +
1

2
, bj +

σ̂j

2Σ
(j,j)
I


((

C̃
(k)
)T)(j,:) (

Σ̂(k)
)−1

z̃
(k)
t+1−k((

C̃
(k)
)T (

Σ̂(k)
)−1

C̃
(k)
)(j,j)


2
 .
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Algorithm 2 Particle Filter (With Back Sampling) – CE-BASS

Input: An initial state estimate (µ0,Σ0).

A number of descendants, M ′ = M(p+ q) + 1.

A number of particles to be maintained, N .

A stream of observations Y1,Y2, ...

Initialise: Set Particles(0) = {(µ0,Σ0, 1)}

Set max horizon = max (∪qi=1Bi)

1: for t ∈ N+ do

2: Cand← {} . To Store Candidates

3: for (µ,Σ, probprev) ∈ Particles(t− 1) do

4: (V,W, prob)← Sample typical(µ,Σ,Yt,A,C,ΣA,ΣI)

5: Cand← Cand ∪ {(µ,Σ,V,W, prob · probprev, 1)}

6: Add Des← Sample add(µ,Σ,Yt,A,C,ΣA,ΣI ,M)

7: for (V,W, prob) ∈ Add Des do

8: Cand← Cand ∪ {(µ,Σ,V,W, prob · probprev, 1)}

9: end for

10: end for

11: for hor ∈ {1, ...,max horizon} do

12: for (µ,Σ, probprev) ∈ Particles(t− hor) do

13: Ỹ←
[
YT
t−hor+1, ...,Y

T
t

]T
14: Inn Des← BS inn(µ,Σ, Ỹ,A,C,ΣA,ΣI ,M, hor)

15: for (V,W, prob) ∈ Inn Des do

16: Cand← Cand ∪ {(µ,Σ,V,W, prob · probprev, hor)}

17: end for

18: end for

19: end for

continues on next page
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20: Desc← Subsample(N,Cand) . Sampling proportional to prob

21: Particles(t)← {}

22: for (µ,Σ,V,W, prob, hor) ∈ Desc do

23: (µ,Σ)← KF Upd(Yt+1−hor,µ,Σ,C,A,V
1/2ΣA,W

1/2ΣI)

24: if hor > 1 then

25: for i ∈ {2, ..., hor} do

26: (µ,Σ)← KF Upd(Yt+i−hor,µ,Σ,C,A,ΣA,ΣI)

27: end for

28: end if

29: Particles(t)← Particles(t) ∪ {(µ,Σ, prob · |Cand||Desc| )}

30: end for

31: end for

for the residual z̃
(k)
t+1−kỸ

(k)

t+1−k−C̃
(k)

Aµt−k. The associated weight is given in Theorem

5 in the appendix.

As in Section 5.3.2, we want to give different particles equal weights if they explain

anomalies equally well. In particular, we therefore want to balance out the weights

given to the back-sampled particles and the descendants of particles with an anomaly

sampled at time t− k + 1 using just Yt+1−k. In order to do so, consider observations

Yt+1, ...,Yt+1−k which are such that they perfectly fit an innovative outlier in the ith

innovative component at time t− k + 1, i.e.

Ỹ
(k)
t+1−k −

(
C̃

(k)
)

Aµt−k =

(
C̃

(k)
)(:,j)

√((
C̃

(k)
)T (

Σ̂(k)
)−1 (

C̃
(k)
))(j,j)

δ.
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As δ grows, the importance weight behaves as

b
bj
j

1
M
sj

Γ(bj+
1
2

)

Γ(bj)
exp (−δ2) σ̂j

2Σ
(j,j)
I

((
C̃

(k)
)T

(Σ̂(k))
−1
(
C̃

(k)
))(j,j) δ2

bj
,

up to the likelihood term and the
(

1−
∑p

i=1 ri −
∑q

j=1 sj

)k
factor. However, these

terms are also present in the weights of the descendants of the particles sampled at

t + 1 − k if no further anomaly was sampled at times t + 2 − k, ..., t + 1. Therefore,

setting

σ̂j = Σ
(j,j)
I

((
C̃

(k)
)T (

Σ̂(k)
)−1 (

C̃
(k)
))(j,j)

results in the same asymptotic probabilities as the one obtained in Section 5.3.2.

Given σ̂j can only take a single value we set

σ̂j = max
k∈Bj

(
Σ

(j,j)
I

((
C̃

(k)
)T (

Σ̂(k)
)−1 (

C̃
(k)
))(j,j)

)
,

where Bj ⊂ N denotes the set of horizons used to back-sample the jth component of

the Wt.

A range of observations guide the choice of the sets Bj for 1 ≤ j ≤ q. We

assume that the Kalman model is observable, i.e. that there exists a k such that

the matrix
[
(C)T , (CA)T , ...,

(
CAk

)T]
has full column rank. Let k∗ denote the

lowest such k. It is advisable to choose the set Bj such that it contains at least

one element greater or equal to k∗. The reason for this being that any innovative

anomaly capable of eventually influencing the observations must do so within k∗

observations from occurring. It should also be noted that a horizon h can only be

in the set Bj if the jth column of the augmented mapping from the hidden states to



CHAPTER 5. OUTLIER ROBUST KALMAN FILTERING 118

(a) t=820 (b) t=821 (c) Full data

Figure 5.4.1: Robust particle filter output at various times. Additive anomalies are

denoted by red points, innovative anomalies by blue lines. Grey observations are yet

to be observed.

the observations, C̃
(h)

, is non-zero as this is required by the proposal. Consequently,

setting Bj =

{
k ∈ {1, ..., k∗} :

(
C̃

(k)
)(:,j)

6= 0

}
is a natural choice.

5.4.2 Example

With back-sampling, we are now able to tackle the example from Figure 5.2.1b. We

used B1 = {1, ..., 40}, B2 = {1, ..., 40}, to sample back up to 40 observations. We

maintained N = 40 particles and sampled M = 1 descendants of each type. The

output of the particle filter can be seen in Figure 5.4.1. As before, the filter updates

its output as new observations become available. Whilst the trend innovation occurs

at time t = 800, the anomaly is first detected around time t = 820. Even then, there

is a large amount of uncertainty regarding the precise location of the anomaly which

only gets resolved at a later time.
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5.5 Simulations

We now turn to comparing CE-BASS against other methods. In particular, we com-

pare against the t-distribution based additive outlier robust filter by Agamennoni

et al. (2011), the Huberisation based additive outlier robust filter by Ruckdeschel

et al. (2014), the Huberisation based innovative outlier robust filter by Ruckdeschel

et al. (2014), and the classical Kalman Filter (Kalman, 1960). All these algorithms

are implemented in the accompanying package.

We consider four different models and generate 1000 observations for each. For

each of the four models, we consider a case in which no anomalies are present, a case in

which only additive anomalies are present, a case in which only innovative anomalies

are present, and a case in which both additive and innovative anomalies are present.

When anomalies are added, they are added at times t = 100, t = 300, t = 600, and

t = 900. Specifically we considered the following three models:

1. The model of Example 1 with σA = 1 and σI = 0.1. We consider a case with

only additive outliers, a case with only innovative outliers, and a case where

an additive outlier at t = 100, is followed by two innovative outliers at times

t = 300 and t = 600, which were then followed by an additive outlier at time

t = 900. To simulate additive anomalies, we set V
1
2
t σAεt = 10 and to simulate

the innovative outliers we set W
1
2
t σIνt = 10.
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(a) Case 1 (b) Case 1, IOs (c) Case 1, AOs (d) Case 1, Both

(e) Case 2 (f) Case 2, IOs (g) Case 2, AOs (h) Case 2, Both

(i) Case 3 (j) Case 3, IOs (k) Case 3, AOs (l) Case 3, Both

(m) Case 4 (n) Case 4, IOs (o) Case 4, AOs (p) Case 4, Both

Figure 5.5.1: Average predictive log-likelihood of the five filters (IOAO: CE-BASS, KF: The

Kalman Filter, AO T: Agamennoni et al. (2011), AO H: Ruckdeschel et al. (2014), IO H: Ruckdeschel

et al. (2014)) under a range of models. Higher values correspond to better performance. Methods

are omitted if they can not be applied to the setting or if their performance is too poor.
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2. The random walk model with two measurements

Y
(1)
t = Xt +

(
V

(1)
t

) 1
2
σ

(1)
A ε

(1)
t , Xt = Xt−1 +W

1
2
t σIνt

Y
(2)
t = Xt +

(
V

(2)
t

) 1
2
σ

(2)
A ε

(2)
t ,

where σ
(1)
A = σ

(2)
A = 1 for i = 1, 2 and σI = 0.1. We consider a case with only

additive outliers (one in the first component, then two in the second, then one

in the first), a case with only innovative outliers, and a case where an additive

outlier in the first component at time t = 100 is followed by two innovative

outliers at times t = 300 and t = 600, which are then followed by an additive

outlier in the second component at time t = 900. For additive anomalies, we

set
(
V

(1)
t

) 1
2
σ

(1)
A ε

(1)
t = 10 or

(
V

(2)
t

) 1
2
σ

(2)
A ε

(2)
t = 10 and for innovative outliers, we

set W
1
2
t σIνt = 10.

3. The model of Example 2 with σA = 1, σ
(1)
I = 0.1 and σ

(2)
I = 0.01. We consider

a case with only additive outliers, a case with only innovative outliers (one in

the second component, then one in the first, then one in the second, then one in

the first), and a case with an additive outlier at t = 100, followed by an innova-

tive outlier affecting the first component of the hidden state at times t = 300,

followed by an innovative outlier affecting the second component of the hidden

state at times t = 600, followed by an additive outlier at time t = 900. The

additive anomalies were instances where we set V
1
2
t εt = 30 and the innovative

outliers were instances where we set
(
W

(1)
t

) 1
2
η

(1)
t = 100 or

(
W

(2)
t

) 1
2
η

(2)
t = 500.

4. An extension of Example 2 where the position is also observed. The equations

governing the hidden state are as before whilst the equations governing the
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observations are

Y
(1)
t = X

(1)
t +

(
V

(1)
t

) 1
2

σ
(1)
A ε

(1)
t ,

Y
(2)
t = X

(2)
t +

(
V

(2)
t

) 1
2

σ
(2)
A ε

(2)
t ,

where σ
(1)
A = σ

(2)
A = 1. We consider a case with only additive outliers (in the

first component only), a case with only innovative outliers (one in the second

component, then one in the first, then one in the second, then one in the first),

and a case with an additive outlier at time t = 100, followed by an innovative

outlier affecting the first component of the hidden state at time t = 300, fol-

lowed by an innovative outlier affecting the second component of the hidden

state at time t = 600, followed by an additive outlier at time t = 900. For

additive anomalies, we set
(
V

(1)
t

) 1
2
σ

(1)
A ε

(1)
t = 30 and for innovative outliers, we

set
(
W

(1)
t

) 1
2
σ

(1)
I η

(1)
t = 100 or

(
W

(2)
t

) 1
2
σ

(2)
I η

(2)
t = 500.

We evaluate the different methods based on average predictive log-likelihood and

average predictive mean squared error. We exclude all observations corresponding to

anomalies from the calculation of these averages since the filters can not be expected

to predict them. When calculating the average mean squared error we additionally

remove one observation after the anomaly in the first setting and two observations

in the third setting from the performance metric. This is to give the filter enough

information to determine which type of anomaly the outlier corresponds to and return

to a unimodal posterior, as the MSE is only an appropriate metric for unimodal

posteriors.

The average log-likelihoods across all models can be found in Figure 5.5.1, while
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the qualitatively very similar results for the mean squared error can be found in the

appendix. We see that the performance of CE-BASS compares favourably with that

of the competing methods. In particular it is as accurate as the Kalman filter in the

absence of anomalies and is more accurate than the additive outlier and innovative

outlier robust filters even when only additive or innovative outliers are present, i.e.

the settings for which these algorithms were designed.

5.6 Application

In this section, we apply CE-BASS to two real datasets. We will use different types

of models for the two applications to illustrate the way in which CE-BASS can be

used. The first dataset is a labelled benchmark dataset which consists of temperature

readings on a large industrial machine. Here, we will use a model which considerably

restricts the movements of the hidden states when no anomalies are present, and thus

emulates a changepoint model. The second is an unlabelled dataset which consist

of repeated throughput measurements on a router. For that application we will use

a model which has a considerable amount of flexibility and where the hidden states

tend to follow the observations and therefore detect localised anomalies.

5.6.1 Machine Temperature Data

We now apply CE-BASS to the machine temperature data taken from the Numenta

Anomaly Benchmark (NAB, Lavin and Ahmad (2015)) which can be accessed at

https://github.com/numenta/NAB. The data consists of over 20000 readings from a
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(a) Raw data with labels (b) CE-BASS output

Figure 5.6.1: Machine temperature dataset. The labelled anomalies are: a planned

shutdown, an early warning sign of a problem, and the catastrophic system failure

caused by the problem.
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temperature sensor on a large industrial machine and is displayed in Figure 5.6.1a

along the three periods of anomalous behaviour labelled by an engineer. The first

corresponds to a planned shutdown and the second to an early warning sign of the

third anomaly – a catastrophic failure.

In order to do so, we use the random walk model from Example 1 with the aim

of detecting persistent changes in mean. We therefore use a maximum backsampling

horizon of 250 by setting B1 = {1, 5, 10, 20, 40, 80, 150, 250} and fix σI = 1/10000σA to

ensure that long and weak anomalies will not be interpreted as a persistent shift in the

typical state. We use the first 15% of the data, marked by Lavin and Ahmad (2015) as

train data, to estimate the standard deviation σA as well as the initial mean µ0 using

the median absolute deviation and the median respectively. Using robust covariance

methods we also detect very strong auto-correlation (ρ = 0.99) and therefore took the

default probabilities for anomalies to the power of 1
1−ρ .

The results of this analysis can be seen in Figure 5.6.1b. We note that all anomalies

flagged by the engineer are also being detected by CE-BASS. Two additional inno-

vative anomalies around a prolonged drop which preceded the planned shutdown are

also detected. They could be a false positive or an early warning sign of an anomaly

prevented by the shutdown which has not been noticed by the engineer.

5.6.2 Router Data

The online analysis of aggregated traffic data on servers is an important challenge

in both predictive maintenance and cyber security. This is because anomalies in

throughput can point towards problems in the network such as malfunctions or ma-
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(a) Day 11 (b) Day 12 (c) Day 13

(d) Day 14 (e) Day 15 (f) Day 16

(g) Day 17 (h) Day 18 (i) Day 19

Figure 5.6.2: CE-BASS applied to 9 days of de-seasonalised router data. Lines corre-

spond to innovative anomalies, i.e. spikes or level shifts.
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licious behaviour. Detecting anomalies as soon as possible therefore means that the

root cause can be addressed more quickly – potentially even before user experience is

affected or harm caused.

In this section, we consider 19 days worth of data from a network IP router which

has been gathered at a frequency of one observation every 30 seconds. To preserve

confidentiality, we de-seasonalised the data for days 11 to 19 using a seasonality model

trained on days 1 to 10 and, for the purpose of this chapter, consider only the de-

seasonalised data for days 11 to 19 which can be found in Figures 5.6.2a to 5.6.2i. The

main features apparent in the daily series are spikes, outliers, and changepoints. In

order to capture these, we use an AR(1) model with slowly changing mean to model

the observations Yt. Formally, we used the model

Yt = X
(1)
t +X

(2)
t + VtσAεt, X

(1)
t = X

(1)
t−1 +W

(1)
t σ

(1)
I η

(1)
t ,

X
(2)
t = ρX

(2)
t−1 +W

(2)
t σ

(2)
I η

(2)
t .

Here, anomalies in εt correspond to isolated outliers, anomalies in η
(1)
t correspond to

level shifts and outliers in η
(2)
t correspond to spikes.

We use the first 1000 observations of the first day, to obtain the estimates σA =

0.0516, σ
(1)
I = 0.0157, σ

(2)
I = 0.516, and ρ = 0.815. The result obtained from running

CE-BASS with these parameters on the daily router data is displayed in Figures 5.6.2a

to 5.6.2i. We note that very few of the anomalies returned can be classed as false

positives. At the same time, a large number of anomalies are flagged, including a large

number of outliers and spikes, but also some level shifts (Day 14). Discussion with

engineers highlighted that the anomalies detected matched well with their knowledge
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of the data. This shows CE-BASS’s ability to return a large number of diverse features

which can be used as inputs to a supervised algorithm should labels become available.



Chapter 6

Conclusions And Further Research

This thesis has contributed three new algorithms, CAPA, MVCAPA, and CE-BASS,

to the anomaly detection literature.

CAPA introduced in Chapter 3 is, to the best of our knowledge, the first algorithm

aiming to detect and distinguish between collective and point anomalies. We estab-

lished that CAPA can consistently detect collective anomalies in mean and variance.

No comparable consistency result for joint changes in mean and variance exists in

the literature. A simulation study shows that CAPA compares favourably with other

anomaly and changepoint detection methods.

One potentially interesting avenue of further research would be to apply CAPA

recursively: The observation CAPA identifies as typical can be used to re-estimate

the typical parameter. CAPA could then be re-run using this new estimate for the

typical distribution. Whilst this approach is not guaranteed to converge, it would

nevertheless be able to provide more accurate robust estimates in the presence of

collective anomalies than classical robust estimates like the Huber loss or Tukey’s

129
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Bi-weight loss which implicitly assume the presence of point anomalies only.

MVCAPA, introduced in Chapter 4, extends CAPA to the multivariate setting and

aims to detect point anomalies as well as collective anomalies which affect multiple

components. The main novelty of MVCAPA is that it does not assume that the

collective anomalies are perfectly aligned. The algorithm is proven to be consistent

at detecting changes in mean and to have optimal power.

It would be interesting to see whether an approach allowing for lags could be devel-

oped for the detection of classical (non-epidemic) multivariate changepoints. Another

avenue of further research would be to extend the intermediate penalty regime to the

chi2v-case with v ≥ 2 and to derive sharper penalties for other popular settings such

as the detection of anomalies characterised by joint changes in mean and variance.

CE-BASS, introduced in Chapter 5, is a novel Kalman filter which is robust to

both additive and innovative outliers whilst fully capturing the multimodality. The

algorithm is shown to be able to deal with identifiability issues through back-sampling

and applied to two real data applications.

Extending the algorithm to deal with anomalies affecting more than one compo-

nent of either the observations or the hidden states at a given time t would be an

interesting extension. Another avenue of further research would be to investigate ways

to tune the transition and noise parameters for a given model and to perform model

comparison. This is likely to be difficult given the non-convex nature of the likelihood.

The new algorithms have been implemented in the R packages anomaly and RobKF.

Both packages are available on CRAN and/or GitHub.



Appendix A

CAPA

A.1 Pseudocode for CAPA

Algorithm 3 CAPA Algorithm (No Pruning)

Input: A set of observations of the form, (x1, x2, . . . , xn) where xi ∈ R.

Penalty constants β and β′ for the introduction of a collective or a point anomaly

A minimum segment length l ≥ 2

Initialise: Set C(0) = 0, Anom(0) = NULL.

1: µ̂←MEDIAN(x1, x2, . . . , xn) . Obtain robust estimates of the mean and variance

2: σ̂ ← IQR(x1, x2, . . . , xn)

3: for i ∈ {1, ..., n} do

4: xi ← xi−µ̂
σ̂ . Centralise the data

5: end for

6: for m ∈ {1, ..., n} do

7: C1(m)← min
0≤k≤m−l

[
C(k) + (m− k)

[
log
(

1
m−k

∑m
t=k+1

(
xt − x̄(k+1):m

)2)
+ 1
]

+ β
]

continues on next page

131



APPENDIX A. CAPA 132

8: s← argmin
0≤k≤m−l

[
C(k) + (m− k)

[
log
(

1
m−k

∑m
t=k+1

(
xt − x̄(k+1):m

)2)
+ 1
]

+ β
]

9: C2(m)← C(m− 1) + x2m . No Anomaly

10: C3(m)← C(m− 1) + 1 + log
(
γ + x2m

)
+ β′

]
, . Point Anomaly

11: C(m)← min [C1(m), C2(m), C3(m)]

12: switch arg min [C1(m), C2(m), C3(m)] do . Select type of anomaly giving the lowest cost

13: case 1 : Anom(m)← [Anom(s), (s+ 1,m)]

14: case 2 : Anom(m)← Anom(m− 1)

15: case 3 : Anom(m)← [Anom(m− 1), (m)]

16: end for

Output The points and segments recorded in Anom(n)

Algorithm 4 CAPA Algorithm (With Pruning)

Input: A set of observations of the form, (x1, x2, . . . , xn) where xi ∈ R.

Penalty constants β and β′ for the introduction of a collective or a point anomaly

A minimum segment length l ≥ 2

Initialise: Set C(0) = 0, Anom(0) = NULL, τ = {}

1: µ̂←MEDIAN(x1, x2, . . . , xn) . Obtain robust estimates of the mean and variance

2: σ̂ ← IQR(x1, x2, . . . , xn)

3: for i ∈ {1, ..., n} do

4: xi ← xi−µ̂
σ̂ . Centralise the data

5: end for

6: for m ∈ {1, ..., n} do

7: if m ≥ l then

8: τ ← τ ∪ {(m− l, n)} . A tuple containing an option for the DP and the removal time

9: end if

continues on next page
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10: C1(m)← min
k∈τ

[
C(k[1]) + (m− k[1])

[
log
(

1
m−k[1]

∑m
t=k[1]+1

(
xt − x̄(k[1]+1):m

)2)
+ 1
]

+ β
]

.

Coll. Anom.

11: s← argmin
k∈τ

[
C(k[1]) + (m− k[1])

[
log
(

1
m−k[1]

∑m
t=k[1]+1

(
xt − x̄(k[1]+1):m

)2)
+ 1
]

+ β
]

12: C2(m)← C(m− 1) + x2m . No Anomaly

13: C3(m)← C(m− 1) + 1 + log
(
γ + x2m

)
+ β′

]
, . Point Anomaly

14: C(m)← min [C1(m), C2(m), C3(m)]

15: for k ∈ τ do

16: if (k[2] = n)∧
(
C(m) < C(k[1]) + (m− k[1])

[
log
(

1
m−k[1]

∑m
t=k[1]+1

(
xt − x̄(k[1]+1):m

)2)
+ 1
])

then

17: τ ← τ \ {k} ∪ {(k[1],m+ l − 1)} . Set destruction time

18: end if

19: if m ≥ k[2] then

20: τ ← τ \ {k} . Remove from solution space once destruction time reached

21: end if

22: end for

23: switch arg min [C1(m), C2(m), C3(m)] do . Select type of anomaly giving the lowest cost

24: case 1 : Anom(m)← [Anom(s[1]), (s[1] + 1,m)]

25: case 2 : Anom(m)← Anom(m− 1)

26: case 3 : Anom(m)← [Anom(m− 1), (m)]

27: end for

Output The points and segments recorded in Anom(n)
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A.2 Proofs of Propositions and Theorems

This Appendix contains proofs for all the results in this papers. Proofs for Lemmata

we use can be found in Appendix A.4.

A.2.1 Proof of Proposition 1

Let m′ ≥ m+ l̂. We have

C(m) + min
θ

(
m′∑

t=m+1

C(xt, θ)

)
+ β ≤ C(k) + min

θ

(
m∑
t=k

C(xt, θ)

)
+ min

θ

(
m′∑

t=m+1

C(xt, θ)

)
+ β

≤ C(k) + min
θ

(
m′∑

t=k+1

C(xt, θ)

)
+ β,

which shows that the cost of choosing k will always be larger than that of choosing

m. We can thus disregard k.

A.2.2 Proof of Proposition 2

Assume, without loss of generality, that µ = 0 and σ = 1. This Proof has two parts.

The first one consist of showing that P
(
Ô = ∅

)
≥ 1−C ′1ne−ψ, the second one consists

of showing that P
(
K̂ = 0

)
≥ 1− C ′1ne−ψ − C ′2

(
ne−ψ

)2

Part 1: We begin by proving that P
(
Ô = ∅

)
≥ 1− C ′1ne−ψ. Note that x2

i ∼ χ2
1.

We define a+(ψ) and a−(ψ) via the equation

P
(
χ2

1 > a+(ψ)
)

= P
(
χ2

1 < a−(ψ)
)

= e−ψ

for ψ > log(1/2) Therefore, by a Bonferroni correction,

P
(
a−(ψ) < x2

i < a+(ψ)
)
≥ 1− 2e−ψ.
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Note that

x2
i − log

(
γ + x2

i

)
− 1 < x2

i − log
(
x2
i

)
− 1

and that the function f(x) = (x− 1)− log(x) is decreasing for x ≤ 1 and increasing

thereafter. Consequently

x2
i − log

(
x2
i

)
− 1 ≤ max(f(a+(ψ)), f(a−(ψ)))

with probability 1− 2e−ψ. We also know that the Chernoff bounds

P
(
χ2

1 > a
)
≤ exp

(
−a+ 1 + log(a)

2

)
≡ a− 1− log(a) ≤ −2 log(P

(
χ2

1 > a
)
)

and

P
(
χ2

1 < a
)
≤ exp

(
−a+ 1 + log(a)

2

)
≡ a− 1− log(a) ≤ −2 log(P

(
χ2

1 < a
)
)

hold for a ≥ 1 and a ≤ 1 respectively. Hence, max(f(a+), f(a−)) ≤ 2ψ and thus

xi /∈ Ô ≡ x2
i − log

(
γ + x2

i

)
− 1 ≤ 2ψ.

holds with probability with probability 1 − 2e−ψ. A Bonferroni correction over

x1, ..., xn then gives the result.

Part 2: We now prove that P
(
K̂ = ∅

)
≥ 1− C ′1ne−ψ − C ′2

(
ne−ψ

)2
. First of all,

note that this is equivalent to showing that

P

(
j∑
s=i

x2s − (j − i+ 1)

[
1 + log

(∑j
s=i(xs − x̄i:j)2

(j − i+ 1)

)]
< 4 + 4ψ + 4

√
2ψ 1 ≤ i ≤ j − l + 1 < j ≤ n

)

≥ 1− C ′1ne−ψ − C ′2
(
ne−ψ

)2
.

For a fixed i and j, writing a = j − i+ 1, we have that
∑j

s=i x
2
s =

∑j
s=i(xs − x̄i:j)2 +

a (x̄i:j)
2. Note that a (x̄i:j)

2 ∼ χ2
1 and

∑j
s=i (xs − x̄i:j)

2 ∼ χ2
a−1. Moreover, these two
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random variables are independent. Consequently, the MGF of

a (x̄i:j)
2 − a log

(∑j
s=i (xs − x̄i:j)

2

a

)
+

j∑
s=i

(xs − x̄i:j)2 − a

is given by√
1

1− 2λ

∫ ∞
0

(a
x

)aλ
eλx−λa

(
Γ

(
a− 1

2

)
2
a−1
2

)−1
x
a−1
2 −1e−x/2dx

=

(
1

1− 2λ

) 1
2a(1−2λ) aλa

eλa2λa
Γ
(
a−1
2 − λa

)
Γ
(
a−1
2

) =

(
1

1− 2λ

) 1
2a(1−2λ) aλa

eλa2λa

a−1
2

a−1
2 − λa

Γ
(
a+1
2 − λa

)
Γ
(
a+1
2

)
We now use the following Stirling bounds from Artin (2015)

1 ≤ Γ(x)
ex

√
2πxx−

1
2

≤ e
1

12x

which imply that:

Γ
(
a+1
2 − λa

)
Γ
(
a+1
2

) ≤ e
1

12( a+1
2
−λa) eλa

(
a+1
2 − λa

)( a2−λa)(
a+1
2

)( a2 )
≤ e1/6eλa

(
1− 2

a

a+ 1
λ

)a/2(
a+ 1

2
− λa

)−λa
,

since λ ≤ 1
2
. Consequently, the MGF is bounded by:

e1/6

(
1

1− 2λ

) 1
2
a(1−2λ) aλa

2λa
1

1− 2 a
a−1λ

(
1− 2

a

a+ 1
λ

)a/2(a+ 1

2
− λa

)−λa

= e1/6 1

1− 2 a
a−1λ

( 1− 2λ
a+1
a − 2λ

)2λ(
1− 2 a

a+1λ

1− 2λ

)a/2

= e1/6 1

1− 2 a
a−1λ

( 1

1 + 1
a(1−2λ)

)2λ(
1 +

2 1
a+1λ

1− 2λ

)a/2

≤ e1/6 1

1− 2 a
a−1λ

( 1

1 + 1
a(1−2λ)

)2λ(
1 +

1

a(1− 2λ)

)a/2

= e1/6 1

1− 2 a
a−1λ

[
1 +

1

a(1− 2λ)

]a(1−2λ)/2

≤ e1/6e1/2 1

1− 2 a
a−1λ

≤ e 1

1− 2 a
a−1λ

.

This implies the following Chernoff bound

P

(
j∑
s=i

x2
s − a log

(∑j
s=i (xs − x̄i:j)

2

a

)
− a > a

a− 1

(
2 + 2ψ + 2

√
2ψ
))
≤ ee−ψ
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and therefore, as a ≥ l ≥ 2

P

(
j∑
s=i

x2
s − a log

(∑j
s=i (xs − x̄i:j)2

a

)
− a > 2 · 2 + 2

a

a− 1
ψ′ + 2

√
2 · 2 a

a− 1
ψ′

)
≤ ee−ψ′ .

substituting ψ′ = 2a−1
a
ψ yields

P

(
j∑
s=i

x2
s − a log

(∑j
s=i (xs − x̄i:j)

2

a

)
− a > 2 · 2 + 2 · 2ψ + 2

√
2 · 2ψ

)
≤ ee−2a−1

a
ψ.

Consequently, by a Bonferroni correction,

P

(
∃i, j :

j∑
s=i

x2
s − (j − i+ 1)

(
log

(∑j
s=i (xs − x̄i:j)2

j − i+ 1

)
− 1

)
> 4 + 4ψ + 4

√
ψ

)

≤
n∑
a=l

nee−2a−1
a
ψ ≤ ne

n∑
a=2

e−2a−1
a
ψ.

Now,

n∑
a=2

e−2a−1
a
ψ = e−ψ +

n∑
a=3

e−2a−1
a
ψ ≤ e−ψ +

∫ n

a=2
e−2a−1

a
ψda

= e−ψ + e−2ψ

∫ n

a=2
e

2
a
ψda = e−ψ + e−2ψ

∫ 1
2

x= 1
n

1

x2
e2ψxdx.

Next note that

e−2ψ

∫ 1
2ψ

x= 1
n

1

x2
e2ψxdx ≤ ee−2ψ

∫ ∞
x= 1

n

1

x2
e2ψxdx = ene−2ψ,

which proves the result if ψ ≤ 1. If ψ > 1 , the proof can be obtained by noting that

e−2ψ

∫ 1
2

x= 1
2ψ

1

x2
e2ψxdx ≤ e−2ψ 1

2
max

1
2ψ
≤x≤ 1

2

(
1

x2
e2ψx

)
≤ e−2ψ 1

2
4eψ = 2e−ψ.

A.2.3 Proof of Proposition 3

This proposition follows from the fact that CAPA will not fit xi as a point anomaly if

(
x− µ̂
σ̂

)2

− 1− log

(
γ +

(
x− µ̂
σ̂

)2
)
< β′
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and not fit not xi as typical if(
x− µ̂
σ̂

)2

− 1− log

(
γ +

(
x− µ̂
σ̂

)2
)
> β′.

It can be show by differentiation that the function f(y) = y − 1 − log(y + γ) is

decreasing from 0 to (y + γ)−1 and increasing thereafter. Since f(0) < β′, by the

lower bound on γ and since f(y) → ∞ as y → ∞, there exists a constant K(β′)

solving the equation f(K(β′)) = β′ such that f(y) < β′ if y < K(β′) and f(y) > β′ if

y > K(β′). Next note that

f(β′) = β′ − 1− log (γ + β′) < β′ − log
(
e−β

′
+ β′

)
< β′ − log (1− β′ + β′) = β′.

(A.2.1)

Moreover, we can show that

f(1 + β′ +
√

2(β′ + γ))− β′ =
√

2(β′ + γ)− log(1 + (β′ + γ) +
√

2(β′ + γ))

is equal to 0 when z = β′ + γ = 0. Moreover the derivative of the above expression

with respect to z is given by

z

1 + z +
√

2z

which is positive for all z > 0. Since z = β′ + γ > 0 the following result also holds:

f(1 + β′ +
√

2(β′ + γ)) > β′. (A.2.2)

This can be deduced from the fact that equality holds β′ = 0 and comparing the

derivatives. Equations (A.2.1) and (A.2.2) show that

β′ < K(β′) < β′ + 1 +
√

2(β′ + γ),

which finishes the proof.
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A.2.4 Proof of Theorem 1

Before proving this theorem, we introduce some notation. We define the cost of a

segment xi:j under the true partition {0, t1, ..., tK , n} and true parameters to be

C(xi:j) =

j∑
t=i

log(σ(t)2) +

j∑
t=i

η2
t .

Note that this cost is additive, i.e. for a < b−1 < b+1 < c we have C(xa:c) = C(xa:b)+

C(x(b+1):c), whilst the fitted cost satisfies the inequality C̃(xa:c) ≥ C̃(xa:b) + C̃(x(b+1):c).

We also define the residual sum of squares Yi:j =
∑j

k=i(ηk − η̄i:j)
2. Finally, we

will work on the event sets E1, E2, E3, E4, E5, and E6 which we define below using

notation a := a(i, j) = j − i+ 1

E1 :=
{
aη̄2i:j < 4(1 + ε) log(n), 1 ≤ i ≤ j ≤ n

}
,

E2 :=
{
Yi:j ≤ a− 1 + 2

√
(a− 1)(2 + ε) log(n) + (4 + 2ε) log(n), 1 ≤ i ≤ j ≤ n

}
,

E3 := {Yi:j ≥ c(a, n)(a− 1), 1 ≤ i < j ≤ n} ,

E4 :=

{∑tk+1
t=tk−1(xt − x̄(tk−1):(tk+1))

2

σ
2/3
k σ

4/3
k−1

> n−ε,

∑tk+2
t=tk

(xt − x̄tk:(tk+2))
2

σ
4/3
k σ

2/3
k−1

> n−ε, 1 ≤ k ≤ K − 1

}
,

E5 :=

{
(xtk − xtk+1)2

σkσk−1
> n−ε, 1 ≤ k ≤ K

}
,

E6 :=
{
Yi:j ≥ a− 1− 2

√
(a− 1)(2 + ε) log(n), 1 ≤ i ≤ j ≤ n

}
,

where c(a, n) < 1 satisfies

a

2
· c(a, n)− 1− log(c(a, n))

2
= (2 + ε) log(n).

Note that c(a, n) is guaranteed to exist by the intermediate value theorem. Indeed,

the function f(x) = x− 1− log(x) is continuous and satisfies f(1) = 0 and f(x)→∞

as x → 0+. The motivation for these events is as follows: E1 bounds the error in

the estimates of the mean, while E2, E3, and E6 bound the error in the estimates

of the variance. E5 and E4 are needed to prevent the existence of segments length
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two and three respectively in which the observations lie to close to each other, which

would encourage the algorithm to erroneously fit them in a short segment of low

variance. We also define E7 which guarantees that the signal strength of true changes

is utilised:

E7 =

{
tk+D∑
tk−D+1

(xt − x̄(tk−D+1):(tk+D))
2

2Dσkσk+1c(D,n) exp (4k)
≥ 1, 1 ≤ D ≤ min(tk+1 − tk, tk − tk−1), 1 ≤ k ≤ K

}
,

where c(D,n) < 1 satisfies D (c(D,n)− 1− log(c(D,n))) = 2(2+ε) log(n). We write

E = ∩Ei and now in a position to prove the following lemmata:

Lemma 1. (Yao 1988) P(E1) > 1− K̃1n
−ε, for some constant K̃1.

Lemma 2. P(E2) > 1 − K̃2n
−ε, P(E3) > 1 − K̃3n

−ε, P(E4) > 1 − K̃4n
−ε, P(E5) >

1− K̃5n
−ε, P(E6) > 1− K̃6n

−ε, and P(E7) > 1− K̃7n
−εfor some constants K̃2,K̃3,K̃4,

K̃5, K̃6, and K̃7.

Lemma 3. There exists a constant C̃1 such that Yi:j − a − a log(Yi:j/a) ≤ C̃1 log(n)

holds on E for all 1 ≤ i < j ≤ n.

Lemma 4. Let i, j be such that there exists some k such that tk−1 < i < j ≤ tk. The

following holds given E :

0 ≤ C (xi:j)− C̃ (xi:j) ≤ C̃2 log(n).

Lemma 5. Let i, j be such that ∃k such that tk−1 = i < j ≤ tk or tk−1 < i < j = tk+1.

The following then holds given E

C (xi:j)− C̃ (xi:j) ≤ C̃3 log(n)
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Lemma 6. Let a, b, c ∈ τ for some partition τ of xi,j such that ∃k such that tk−1 <

a < b < c ≤ tk. Then,

C̃ (xi:j, τ, α)− C̃ (xi:j, τ−b, α) ≥ 3

4
α log(n)1+δ,

where τ−b = τ \ {b} holds on E for large enough n.

Lemma 7. For all α > 0, there exists a constant κ̃(α, ε) such that C̃ (xi:j)−(C (xi:tk)+

C
(
x(tk+1):j

)
) ≥ α log(n)1+δ holds on E if

j − tk = tk + 1− i ≥ κ̃(α, ε)

min(4k,42
k)

log(n)1+δ

and j ≤ tk+1, i > tk−1 for all n > 2.

We now define

κ̃k = 2
κ̃(3α, ε)

min(4k,42
k)

and the set of partitions

B :=
{
{0, t′1, t′2, ..., t′K , n} | |t′k − tk| ≤ κ̃k log(n)1+δ 1 ≤ k ≤ K

}
,

which are within κ̃k log(n)1+δ of the true partition.

We will show that, for large enough n, the optimal partition lies in B given the

event set E. Given the probability of E, this proves Theorem 1. Our approach will

consist of showing that the cost of a partition τ /∈ B is higher than that of the true

partition with the true parameters (see Proposition 12). We will achieve this by

adding free changes to τ thus splitting up the series into multiple sub-segments each

containing a single true changepoint and κ̃k log(n)1+δ points either side of it. This
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also defines a projection of τ onto the partitions of the sub-segments. We define the

set of partitions

Bk :=
{
{i− 1, t′k, j} | |t′k − tk| ≤ κ̃k log(n)1+δ

}
for segments xi:j for which there exist a k such that: tk−1 +1 ≤ i ≤ tk− κ̃k log(n)1+δ <

tk + κ̃k log(n)1+δ ≤ j ≤ tk+1 as an analogue of B for the whole of x.

If τ /∈ B, there must be at least one sub-segment for which the projection of τ

does not lie in Bk. We will show in Proposition 11, that the cost of the true partition

using the true parameters is at least O(log(n)1+δ) lower than that of the projection

of τ on such a segment. We will also show in Proposition 10 that the projections of

τ which are in Bk have a cost which is at most O(log(n)) lower than that of the true

partition with true parameters.

Proposition 10. Let i, j ∈ N , be such that there exists a k such that: tk−1 + 1 ≤ i <

tk < j ≤ tk+1, then there exists a constant C̃4 such that given E,

[
C (xi:j) + α log(n)1+δ

]
− C̃(xi:j, τ, α) ≤ C̃4 log(n)

for all valid partitions τ of the form τ = {i− 1, t̂, j}, if n is large enough.

Proof of Proposition 10: The following cases are possible:

Case 1: t̂ = tk. Then:

[
C (xi:j) + α log(n)1+δ

]
− C̃(xi:j , {i− 1, t̂, j}, α) = C (xi:j)−

[
C̃(xi:tk) + C̃(x(tk+1):j)

]
≤ 2C̃2 log(n),

where the inequality follows from Lemma 4.
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Case 2: t̂ = tk + 1. Then:

[
C (xi:j) + α log(n)1+δ

]
− C̃(xi:j, {i− 1, t̂, j}, α)

= C (xi:j)−
[
C̃(xi:(tk+1)) + C̃(x(tk+2):j)

]
≤ (C̃2 + C̃3) log(n),

where the inequality follows from Lemmata 4 and 5.

Case 3: t̂ > tk + 1. Then:

[
C (xi:j) + α log(n)1+δ

]
− C̃(xi:j, {i− 1, t̂, j})

≤ C (xi:j) + 2α log(n)1+δ − C̃(xi:j, {i− 1, tk, t̂, j}, α)

= C (xi:j)−
[
C̃(xi:tk) + C̃(x(tk+1):t̂) + C̃(x(t̂+1):j)

]
≤ 3C̃2 log(n),

where the first inequality follows from the fact that introducing an unpenalised change-

point reduces cost and the second is a consequence of Lemma 4.

Case 4: t̂ = tk − 1. Symmetrical to case 2.

Case 5: t̂ < tk − 1. Symmetrical to case 3.

This finishes our proof.

Proposition 11. There exists a constant n4(α, δ, ε), such that ∀i, j for which ∃k such

that tk−1 + 1 ≤ i ≤ tk − κ̃k log(n)1+δ < tk + κ̃k log(n)1+δ ≤ j ≤ tk+1

C̃(xi:j, τ, α)−
[
C (xi:j) + α log(n)1+δ

]
≥ 1

3
α log(n)1+δ

holds for all τ /∈ Bk given E and n > n4(α, δ, ε).

Proof of Proposition 11: Consider τ ′ /∈ Bk. We consider the following three

cases and denote H := d1
2
κ̃k log(n)1+δe, noting that it is larger than

κ̃(3α, ε)

min(4k,42
k)

log(n)1+δ
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Case 1: |τ ′| = 2. We have τ ′ = {i− 1, j}. Hence:

C̃(xi:j, τ ′, α) ≥ C̃(xi:(tk−H)) + C̃(x(tk−H+1):(tk+H)) + C̃(x(tk+H+1):j)

≥C̃(xi:(tk−H)) + C(x(tk−H+1):(tk+H)) + 3α log(n)1+δ + C̃(x(tk+H+1):j)

≥2α log(n)1+δ − 2C̃2 log(n) +
[
C (xi:j) + α log(n)1+δ

]
,

where the second inequality follows from the definition of H and Lemma 7 and the

third from Lemma 4.

Case 2: |τ ′| = 3. We have τ ′ = {i − 1, tk + L, j}, where |L| > κ̃k log(n)1+δ. We

assume L > 0, the other case being very similar. We have:

C̃(xi:j , {i− 1, tk + L, j}, α) = C̃(xi:(tk+L)) + C̃(x(tk+L+1):j) + α log(n)1+δ

≥C̃(xi:(tk−H−1)) + C̃(x(tk−H):(tk+H)) + C̃(x(tk+H+1):(tk+L))− C̃2 log(n) + C(x(tk+L+1):j) + α log(n)1+δ

≥3α log(n)1+δ − 3C̃2 log(n) +
[
C (xi:j) + α log(n)1+δ

]
,

where the inequalities follow from of the definition of H as well as Lemmata 7 and 4.

Case 3: |τ ′| ≥ 4. Let τ ′ = {a1, a2, ..., a|τ ′|}, where a1 = i− 1 and a|τ ′| = j. There

must exist a l ∈ {2, ..., |τ ′| − 1}, such that al−1 < tk and al+1 > tk + 1. We thus have:

C̃(xi:j , τ ′, α)

= (|τ ′| − 3)α log(n)1+δ +

 l−2∑
m=1

+

|τ ′|−1∑
m=l+1

[C̃(xam+1,am+1
)
]

+ C̃(x(al−1+1):al+1
, {al−1, al, al+1}, α)

≥ (|τ ′| − 2)α log(n)1+δ +

 l−2∑
m=1

+

|τ ′|−1∑
m=l+1

[C(xam+1,am+1
)
]

+ C(x(al−1+1):al+1
)− ((|τ ′| − 3)C̃2 + C̃4) log(n)

= C(xi:j , τ, α) + α log(n)1+δ + (|τ ′| − 3)α log(n)1+δ −
[
(|τ ′| − 3)C̃2 + C̃4

]
log(n),

by Lemma 4 and Proposition 10. This finishes the proof.

Proposition 12. There exists a constant ñ5(α, δ, δ̃, ε) such that given E, we have

C̃(x1:n, τ, α)−
[
C(x1,n) +Kα log(n)1+δ

]
≥ 1

4
α log(n)1+δ
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for all τ /∈ B if n ≥ ñ5(α, δ, δ̃, ε).

Proof of Proposition 12: First, consider the special case K = 0. For this case,

τ /∈ B implies that K̂ ≥ 1. We have

C̃(x1:n, τ, α) ≥ C̃(x1:n, {0, n}, α)+K̂
3

4
α log(n)1+δ ≥ C(x1:n)+K̂

3

4
α log(n)1+δ−C̃2 log(n),

where the first inequality follows from Lemma 6 and the second from Lemma 4.

Next assume K ≥ 1. Let τ /∈ B. We now introduce free changepoints l0, l1, ..., lK

to break up the series into multiple sub-series with one true changepoint each. We

impose l0 = 0, lK = n, |lk − tk| > 4κ̃k log(n)1+δ for 0 < k ≤ K and |lk − tk+1| >

4κ̃k log(n)1+δ for 0 ≤ k < K. We also require that τ ∪ {l0, ..., lK} is a valid partition

(i.e. one which has segments of length at least two) and that there exists a k̂ such

that τk̂ := τ ∩ {lk̂−1 + 1, lk̂−1 + 2, ..., lk̂} /∈ Bk̂. We are guaranteed to find such points

l0, l1, ..., lK if n is such that

1

min(4k,42
k)

log(n)1+δ+δ̃ ≥ 12κ̃k log(n)1+δ,

which is satisfied if n > ñ5(α, δ̃, ε). Indeed, we can choose points near the middle of

the true segments which are not in τ , or by select points in τ if the former is impossible

because there are too many point in τ near the middle of some segment.

Since introducing free changes reduces the cost we then have

C̃(x1:n, τ, α) ≥
K∑
k=1

C̃(x(lk−1+1):lk , τk, α) = C̃(x(lk̂−1+1):lk̂
, τk̂, α) +

∑
k 6=k̂

C̃(x(lk−1+1):lk , τk, α)

≥ C(x1:n, τ, α) +
1

3
α log(n)1+δ − (K − 1)C̃4 log(n),

where the second inequality follows from Propositions 10 and 11. This finishes the

proof.
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Proof of Theorem 1: B contains the true partition with fitted parameters which

is cheaper than the true partition with true parameters. Proposition 12 shows that

conditional on E the true partition with true parameters will be cheaper than all

τ /∈ B fo n > ñ5(α, δ, δ̃, ε). The optimal partition must therefore be in B, given

event set E. This proves Theorem 1, since Lemmata 1 and 2 imply that P(E) ≥

1− (K̃1 + K̃2 + K̃3 + K̃4 + K̃5 + K̃6 + K̃7)n−ε.

A.2.5 Proof of Theorem 2

In order to prove this result, we will use the following notation in this section: We de-

fine C̃E (x1:n, τE, α, µ, σ) to be the cost of an epidemic partition τE = {ŝ1, ê1, ...ŝK̂ , êK̂}

under a penalty α log(n)1+δ and inferred parameters of the typical distribution µ, σ.

We define CE (x1:n, α, µ, σ), to be the cost under the true partition using the true

parameters for the epidemic segments and µ, σ as estimates for the parameters of the

typical distribution. We also define the set of epidemic partitions

BE =
{
{ŝ1, ê1, ..., ŝK , êK} | |êk − ek| < κ̃k log(n)1+δ, |ŝk − sk| < κ̃k log(n)1+δ, 1 ≤ k ≤ K

}
as an epidemic equivalent of B. Finally, we note that we can extend the definition

of the event set E to epidemic changepoints by treating the sk and ek like classical

changepoints.

We will begin by proving a simplified version of the theorem in which we run our

epidemic changepoint detection algorithm without allowing for epidemic changes of

length one in variance only and imposing that each segment of the data allocated

to the typical distribution is of length at least two. The reason for this is that this

allows us to define an equivalent non-epidemic partition, whose segments must be of
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length at least two, for each epidemic partition. We also begin by assuming that the

parameter of the typical distribution is known.

This simplified version captures the main ideas of the full proof. We will proceed to

showing that the result also holds when the typical mean and variance are unknown.

This will be followed by a proof of the full result by means of introducing and proving

the consistency of a modified version of the classical changepoint detection algorithm

described in the previous section which also allows for segments of length one.

For now, we assume that all segments are of length at least two and that the

true parameters µ0 and σ0 are known. This allows us to use the fact that the cost

of the true epidemic partition using the true parameters is exactly the same as the

cost of the corresponding true non-epidemic partition using the true parameters with

twice the penalty. We can therefore prove the following proposition, as a corollary of

Proposition 12.

Proposition 13. There exists a constant ñ6(α, δ, δ̃, ε), such that for all τ ′E /∈ BE

C̃E (x1:n, τ
′
E, α, µ0, σ0)− CE (x1:n, α, µ0, σ0) ≥ 1

5
α log(n)1+δ/2

holds on E for n > ñ6(α, δ, δ̃, ε).

Proof of Proposition 13: We note that

C̃E (x1:n, τ
′
E, α, µ0, σ0) ≥ C̃

(
x1:n, τ

′
E ∪ {0, n},

1

2
α

)
+
α

2

K̂∑
k=2

I{sk = ek−1} log(n)1+δ,

because using fitted parameters instead of µ0 and σ0 for segments allocated to the

typical distribution under τ ′E can only reduce the cost. Additionally, two epidemic

changes correspond to three classical changepoints if their end and starting points
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coincide. Moreover,

CE (x1:n, α, µ0, σ0) = C (x1:n) +Kα log(n)1+δ.

Therefore:

C̃E (x1:n, τ
′
E, α, µ0, σ0)− CE (x1:n, α, µ0, σ0)

≥ C̃
(
x1:n, τ

′
E ∪ {0, n},

1

2
α

)
+
α

2

K̂∑
k=2

I{sk = ek−1} log(n)1+δ −
[
C (x1:n) + 2K

α

2
log(n)

]
.

This leaves two possibilities. If τ ′E ∪ {0, n} /∈ B then the above will exceed

1

4
α log(n)1+δ,

by proposition 12. Since τ ′E /∈ BE, the only way we can have τ ′E ∪ {0, n} ∈ B is if

there exists a k such that sk = ek−1. In that case the difference will exceed

1

2
α log(n)1+δ − (2K + 1)C̃4 log(n),

by Proposition 10. This finishes the proof.

We can now use this proposition to prove Theorem 2 in the same way we used 12

to prove Theorem 1.

Proof of Theorem 2: Proposition 13 proves Theorem 2 as Lemmata 1 and 2

imply that P(E) ≥ 1− (K̃1 + K̃2 + K̃3 + K̃4 + K̃5 + K̃6 + K̃7)n−ε.

We now introduce the following lemma about the distribution of the median and

inter-quantile range. It will allow us to prove Theorem 2 when the true parameters

are unknown.
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Lemma 8. There exists a constants K̃8, D1, and D2 such that for large enough n

P

(
|µ̂− µ0| ≤ D1σ0

√
log(n)

n
,

∣∣∣∣ σ̂2

σ2
0

− 1

∣∣∣∣ ≤ D2

√
log(n)

n

)
≥ 1− K̃8n

−ε

We can use this Lemma above to introduce a new event E8 stating that the

estimated parameters are close to the true parameters.

E8 :=

{
|µ̂− µ0| ≤ D1σ0

√
log(n)

n
,

∣∣∣∣ σ̂2

σ2
0

− 1

∣∣∣∣ ≤ D2

√
log(n)

n

}
.

This event bounds the effect of using the estimated typical parameters instead

of the true parameters for the cost of the true distribution with true non-typical

parameters. Indeed, the following lemma holds:

Lemma 9. There exists a constant C̃7 such that given E and E8 and n large enough

we have:

C̃E (x1:n, α, µ̂, σ̂)− CE (x1:n, α, µ0, σ0) ≤ C̃7 log(n).

We can use this lemma to prove the following extension of Proposition 13 to the

case when the typical parameters are inferred.

Proposition 14. There exists a constant ñ7(α, δ, δ̃, ε) such that for all τ ′E /∈ BE

C̃E (x1:n, τ
′
E, α, µ̂, σ̂)− CE (x1:n, α, µ̂, σ̂) ≥ 1

5
α log(n)1+δ/2

holds on E ∩ E8 for n > ñ7(α, δ, δ̃, ε).

Proof of Proposition 14: We note that, as before,

C̃E (x1:n, τ
′
E, α, µ̂, σ̂) ≥ C̃

(
x1:n, τ

′
E ∪ {0, n},

1

2
α

)
+
α

2

K̂∑
k=2

I{sk = ek−1} log(n)1+δ

CE (x1:n, α, µ, σ) = C (x1:n) +Kα log(n)1+δ,
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Therefore we now have

C̃E (x1:n, τ
′
E , α, µ̂, σ̂)− CE (x1:n, α, µ̂, σ̂)

≥ C̃
(
x1:n, τ

′
E ∪ {0, n},

1

2
α

)
+
α

2

K̂∑
k=2

I{sk = ek−1} log(n)1+δ −
[
C (x1:n) + 2K

α

2
log(n)1+δ

]
− C̃7 log(n),

by applying Lemma 9. The rest of the proof is identical to that of Proposition 13,

with an added O(log(n)) term.

In order to be able to extend Proposition 14 to the case in which we allow epidemic

changes of length one in variance only, as well as segments of the typical distribution

which are of length one, we will prove the consistency of the following adaptation of

the algorithm detecting classical changepoints we introduced in the previous section.

We now let the segment costs be

C̃(xi:j) = C̃(xi:j, {i−1, j}) =


(t̂k+1 − t̂k)

(
log

(∑t̂k+1

t̂k+1
(xt−x̄(t̂k+1):t̂k+1

)2

(t̂k+1−t̂k)

)
+ 1

)
i < j,

min
{

log(σ̃2) + (xi−µ̃)2

σ̃2 , 1 + log(γσ̃2 + (xt − µ̃)2)
}

i = j,

where |µ̃ − µk′ | ≤ D1σk′
√

log(n)
n

and | σ̃2

σ2
k′
− 1| < D2

√
log(n)
n

for k′ either k − 1,k, or

k + 1, when i belongs to the kth segment. Given E8 the range of allowed σ̃2 and µ̃

is therefore guaranteed to contain the estimated typical parameters σ̂2 and µ̂ when

applied to x. The algorithm can obviously not be implemented in practice, as it

requires knowledge of the true parameters. It is nevertheless a consistent method.

To prove this, we need to define a last event set E9 which controls the newly

introduced segments of length one:

E9 :=
{
|xt − µk+1| ≥ σkn

−2+ε, |xt − µk−1| ≥ σkn
−2+ε, 1 ≤ t ≤ n

}
,

We can prove the following probability bounds
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Lemma 10. There exists a constant K̃9 such that P(E9) ≥ 1− K̃9n
−ε

We can now prove the following proposition, adapted from Proposition 12 for this

modified penalised cost approach:

Proposition 15. There exists a constant ñ7(α, δ, δ̃, ε) such that given E∩E9, we have

C̃(x1:n, τ, α)−
[
C(x1,n) +Kα log(n)1+δ

]
≥ 1

5
α log(n)1+δ

for all τ /∈ B if n ≥ ñ7(α, δ, δ̃, ε)

Proof of Proposition 15: Identical to the proof of Proposition 12. We just need

to replace Lemma 4 by

Lemma 11. There exists a constant C̃ ′2 such that if i, j are such that there exists

some k such that tk−1 < i ≤ j ≤ tk, then given E ∩ E8 and n large enough

C (xi:j)− C̃ (xi:j) ≤ C̃ ′2 log(n).

to also account for the newly added segments of length one. We can now prove that

Proposition 16. There exists a constant ñ8(α, δ, δ̃, ε) such that for all τ ′E /∈ BE

C̃E (x1:n, τ
′
E, α, µ̂, σ̂)− CE (x1:n, α, µ̂, σ̂) ≥ 1

5
α log(n)1+δ/2

holds on E ∩ E8 ∩ E9 for n > ñ8(α, δ, δ̃, ε).

holds even when we allow for epidemic changes of length one in variance only and do

not impose that segments allocated to the typical distribution have to be of length at

least two.
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Proof of Proposition 16: Identical to the proof of Proposition 14 using Propo-

sition 15 instead of Proposition 12.

Proof of Theorem 2: Proposition 16 proves Theorem 2 since Lemmata 1, 2, 8,

and 10 show that P(E∩E8∩E9) ≥ 1−(K̃1+K̃2+K̃3+K̃4+K̃5+K̃6+K̃7+K̃8+K̃9)n−ε.

A.3 Additional Lemmata

Lemma 12. Let weights W1, ...,Wp > 0 and A1, ..., Ap > 0. Define µ =
∑p

1 WiAi.

Then

min
λ<0

[(
p∏
i=1

(
1

1− Aiλ

)Wi

)
e−λcµ

]
≤ exp

((
p∑
i=1

Wi

)
(log(c) + 1− c)

)

holds for 0 < c < 1

Proof of Lemma 12: This Lemma proves a multiplicative Chernoff lower bound

for a weighted sum of chi-squared random variables. We define

Z(λ) =

(
p∏
i=1

(
1

1− Aiλ

)Wi

)
e−λcµ

and note that it has derivative

d

dλ
(Z(λ)) =

(
p∑
i=1

AiWi

1− Aiλ
− cµ

)
Z(λ).

The minimise λ∗ of Z(λ) thus satisfies

p∑
i=1

AiWi

1− Aiλ∗
= cµ.

Note that the LHS is strictly increasing from 0 to µ as λ∗ increases from −∞ to 0.
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Consequently λ∗ is well defined and unique. Moreover,

cµλ∗ =

p∑
i=1

AiWiλ
∗

1−Aiλ∗
= −

p∑
i=1

Wi +

p∑
i=1

Wi

1−Aiλ∗

≥ −
p∑
i=1

Wi +
(
∑p

i=1Wi)
2∑p

i=1 (Wi −WiAiλ∗)
= −

p∑
i=1

Wi +
(
∑p

i=1Wi)
2∑p

i=1Wi − µλ∗

=

(
p∑
i=1

Wi

)
µλ∗∑p

i=1Wi − µλ∗
,

with the inequality following from the fact that the arithmetic mean exceeds the

harmonic mean (a special case of Jensen’s inequality). This can be recomposed to

yield

λ∗cµ ≤ (c− 1)

p∑
i=1

Wi. (A.3.1)

We can now use these results to bound Z(λ∗) by noting

Z(λ∗) =

(
p∏
i=1

(
1

1−Aiλ∗

)Wi
)
e−λ∗cµ ≤

(
1∑p

i=1Wi

p∑
i=1

Wi

1−Aiλ∗

)∑p
i=1 Wi

e−λ
∗cµ

=

(
1 +

1∑p
i=1Wi

p∑
i=1

WiAiλ
∗

1−Aiλ∗

)∑p
i=1 Wi

e−λ
∗cµ =

[(
1 +

λ∗cµ∑p
i=1Wi

)
e
− λ∗cµ∑p

i=1
Wi

]∑p
i=1 Wi

,

where the first inequality follows form The AMGM inequality. It can be shown by

differentiation that the above bound is increasing in λ∗. Consequently, using (A.3.1)

we have that

Z(λ∗) ≤ exp

((
p∑
i=1

Wi

)
(log(c) + 1− c)

)

Lemma 13. Let c < 1 solve the equation c − 1 − log(c) = t for some t > 0. Then

c− 1 ≥ −
√

2t

Proof of Lemma 13: This Lemma helps bound c(D,n) from the event set E7.

t = c− 1− log(c) = c− 1− log(1− (1− c)) ≥ c− 1 + (1− c) +
1

2
(1− c)2 =

1

2
(1− c)2

which implies that c− 1 ≥ −
√

2t. This finishes the proof.
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A.4 Proofs of Main Lemmata

A.4.1 Proof of Lemma 1

See Yao (1988).

A.4.2 Proof of Lemma 2:

We note that Yi:j ∼ χ2
a−1. Laurent and Massart (2000) proved that

P
(
−2
√
kx ≤ χ2

k − k ≤ 2
√
kx+ 2x

)
≥ 1− 2e−x.

Therefore:

P
(
−2
√

(a− 1)(2 + ε) log(n) ≤ Yi:j − (a− 1) ≤ 2
√

(a− 1)(2 + ε) log(n) + 2(2 + ε) log(n)
)

≥ 1− 2n−(2+ε).

A Bonferroni correction therefore gives P(E2 ∩ E6) > 1− 2n−ε.

We can derive the following Chernoff bound for k ≥ 1 and 0 ≤ c̃ < 1:

P
(
χ2
k ≤ kc̃

)
= P

(
exp

[
θ(χ2

k − kc̃)
]
≥ 1
)
≤ E

(
exp

[
θ(χ2

k − kc̃)
])

= e−kc̃θE
(
eθχ

2
k

)
= e−kc̃θ

(
1

1− 2θ

)k/2
,

holds for all θ < 0. Setting θ = 1
2
(1− 1

c̃
) we thus get

P
(
χ2
k ≤ kc̃

)
≤ exp

(
−k

2
(c̃− 1− log(c̃))

)
.

Thus if we let c(a, n) < 1 be such that

a

2
· c(a, n)− 1− log(c(a, n))

2
= (2 + ε) log(n),
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and write c := c(a, n) for simplicity, we have

P (Yi:j ≤ c(a− 1)) ≤ exp

(
−a− 1

2
(c− 1− log(c))

)
≤ exp

(
−a

4
(c− 1− log(c))

)
= n−(2+ε),

for a ≥ 2. A Bonferroni correction then gives P(E3) > 1− n−ε.

Next we note that

σkηtk+1 + µk+1 − µk − σkηtk√
σk+1σk

∼ N

(
µk+1 − µk√
σk+1σk

,
σ2
k+1 + σ2

k

σk+1σk

)
.

Consequently, we have that:

P
(
|σk+1ηtk+1 + µk+1 − µk − σkηtk |√

σk+1σk
≤ n−ε

)
≤
√

2σk+1σk
π(σ2

k+1 + σ2
k−1)

n−ε ≤
√

1

π
n−ε.

A Bonferroni correction then gives P(E5) > 1−K/
√
πn−ε.

Finally, we have:

xt − x̄tk:(tk+2) ∼


N
(

2µk−2µk+1

3
,

4σ2
k+2σ2

k+1

9

)
t = tk,

N
(
µk+1−µk

3
,

2σ2
k+5σ2

k+1

9

)
t = tk + 1, tk + 2,

which means that

(xt − x̄tk:(tk+2))
2 ≥

4σ2
k + 2σ2

k+1

9
n−ε, t = tk,

(xt − x̄tk:(tk+2))
2 ≥

1σ2
k + 5σ2

k+1

9
n−ε, t = tk + 1, tk + 2,

holds with probability exceeding 1−3n−ε. Adding up the three inequalities then gives

tk+2∑
t=tk

(xt − x̄tk:(tk+2))
2 ≥

12σ2
k+1 + 6σ2

k

9
n−ε ≥ 2σ

4/3
k+1σ

2/3
k n−ε.

By a similar argument,

tk+1∑
t=tk−1

(xt − x̄(tk−1):(tk+1))
2 ≥ 2σ

2/3
k+1σ

4/3
k n−ε
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must also hold with probability 1−3n−ε. A Bonferroni correction then gives P(E4) ≥

1− 6K4n
−ε.

Next, note that the MGF of

tk+D∑
tk−D+1

(xt − x̄(tk−D+1):(tk+D))
2

= σ2
kY(tk−D+1):tk + σ2

k+1Y(tk+1):(tk+D) +
D

2

(
µk + σkη̄(tk−D+1):tk − µk+1 − σk+1η̄(tk+1):(tk+D)

)2

is given by

(
1

1− 2σ2
kλ

)D−1
2
(

1

1− 2σ2
k+1λ

)D−1
2
(

1

1− (σ2
k + σ2

k+1)λ

) 1
2

exp

(
D
2

(µk+1 − µk)2λ

1− (σ2
k + σ2

k+1)λ

)

since Y(tk−D+1):tk and Y(tk+1):(tk+D) are independently χ2
D−1 distributed. Moreover,

η̄(tk−D+1):tk and η̄(tk+1):(tk+D) are normally distributed and independent of the chi-

squared random variables. The MGF is therefore the product of two chi-squared

random variables and that of a noncentral chi-squared. Noting that

ex =

√
1

e−2x
≤
√

1

1− 2x

holds for all x < 1/2 shows that the MGF can be bounded by

(
1

1− 2σ2
kλ

)D−1
2
(

1

1− 2σ2
k+1λ

)D−1
2

 1

1− 2
(
σ2
k+σ2

k+1

2
+ D

2
(µk+1 − µk)2

)
λ

 1
2

.

Lemma 12 then proves the following Chernoff bound for 0 < c < 1:

P

(
tk+D∑
tk−D+1

(xt − x̄(tk−D+1):(tk+D))
2 < 2Dσk+1σkc

(
1 +

(
1− 1

2D

)
42
σ,k +

42
µ,k

4

))

< exp

(
2D − 1

2
(log(c)− 1− c)

)
.
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Since D ≥ 1 this implies,

P

 tk+D∑
tk−D+1

(xt − x̄(tk−D+1):(tk+D))
2 < 2Dσk+1σkc

(
1 +

1

2
42
σ,k +

1

4
42
µ,k

)
< exp

(
D

2
(log(c)− 1− c)

)
.

and therefore,

P

 tk+D∑
tk−D+1

(xt − x̄(tk−D+1):(tk+D))
2 < 2Dσk+1σkc(D,n) exp

(
42
k

)
< exp

(
D

2
(log(c(D,n))− 1− c(D,n))

)
= n−2+ε.

A Bonferroni correction over all possible tk and D, of which there are guaranteed to

be fewer than n2 gives P (E7) ≥ 1− n−ε. This finishes the proof.

A.4.3 Proof of Lemma 3

Consider the function f(x) = x−a−a log(x/a). This function decreases monotonically

on (0, a) and increases monotonically on (a,∞). Since E2 and E3 bound Yi:j from

above and below respectively we only have to show that Yi:j − a − a log(Yi:j/a) ≤

C̃1 log(n) holds for the bounds in order to prove the lemma.

Part 1: Upper bound: By E2 there exist constants M and M ′ such that

Yi:j ≤ a+M
√
a log(n) +M ′ log(n). Substituting this upper bound for Yi:j gives:

Yi:j − a− a log

(
Yi:j
a

)
≤M

√
a log(n) +M ′ log(n)− a log

(
1 +

M
√
a log(n) +M ′ log(n)

a

)
.

(A.4.1)

Case 1: a ≤ log(n). In that case we can bound equation (A.4.1) by

M
√
a log(n) +M ′ log(n) ≤ (M +M ′) log(n).
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Case 2: a ≥ log(n). We can use the fact that log(1 + x) ≥ x− x2, ∀x > 0 to bound

equation (A.4.1) by

(M
√
a log(n) +M ′ log(n))2

a
≤ (M +M ′)2 log(n).

Part 2: Lower bound: E3 implies that Yi:j ≥ c(a, n)(a − 1). Substituting this

bound gives

Yi:j − a− a log

(
Yi:j
a

)
≤ a(c(a, n)− 1− log(c(a, n))− c− a log

(
a− 1

a

)
≤ 4(4 + ε) log(n) + a log

(
a

a− 1

)
≤ 4(4 + ε) log(n) +

a

a− 1
≤ 4(4 + ε) log(n) + 2.

This finishes the proof.

A.4.4 Proof of Lemma 4

This lemma bounds the reduction in cost we can obtain by using a mean and variance

fitted to a segment rather than the true mean and variance of the segment. The

left bound follows from the fact C̃ (xi:j) fits the mean and variance to minimise the

log likelihood on the segment xi:j. The right bound follows from Lemma 3 and E1.

Indeed,

C (xi:j)− C̃ (xi:j) = (j − i+ 1) log(σ2
k) +

j∑
t=i

η2
t − (j − i+ 1)

(
log

(
σ2
kYi:j

j − i+ 1

)
+ 1

)

= aη̄i:j
2 + Yi:j − a log

(
Yi:j
a

)
− a ≤

(
C̃1 + 4 + ε

)
log(n),

which finishes the proof.
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A.4.5 Proof of Lemma 5

This Lemma is very similar to Lemma 4, except that we slightly relax the constraint

that all the data has to be located between two changepoints. This is needed because

of the minimum segment length of two. We will prove this lemma for the case where

tk−1 = i, the other case being very similar. We consider 3 cases:

Case 1: j = tk−1 + 1. We have that:

C (xi:j)− C̃ (xi:j) = log(σ2
k) + log(σ2

k−1) + η2
tk−1

+ η2
tk−1+1 − 2 log

(
(xtk+1 − xtk)2

4

)
− 2

≤ (8 + 2ε) log(n)− 2 log

(
(xtk+1 − xtk)2

4σk−1σk

)
− 2 ≤ (8 + 4ε) log(n) + 2 log(4)− 2,

where the first inequality follows from E1 and the second from E5.

Case 2: j = tk−1 + 2. We have:

C (xi:j)− C̃ (xi:j)

= 2 log(σ2
k) + log(σ2

k−1) +

tk−1+2∑
t=tk−1

η2
t − 3 log

(∑tk−1+2
t=tk−1

(xt − x̄(tk−1):(tk−1+2))
2

3

)
− 3

≤ 2 log(σ2
k) + log(σ2

k−1) + (12 + 3ε) log(n)− 3 log

(
n−εσ

4/3
k σ

2/3
k−1

3

)
− 3

= (12 + 6ε) log(n) + 3 log(3)− 3,

where the inequality follows from E1 and E4.

Case 3: j > tk−1 + 2. We have:

C (xi:j)− C̃ (xi:j) ≤
[
C
(
xi:(i+1)

)
− C̃

(
xi:(i+1)

)]
+
[
C
(
x(i+2):j

)
− C̃

(
x(i+2):j

)]
≤ (8 + 4ε) log(n) + 2 log(4)− 2 + C̃2 log(n),

where the second inequality follows from case 1 and Lemma 4.
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A.4.6 Proof of Lemma 6

This lemma applies Lemma 4 to show that removing false positives reduces the overall

cost.

C̃ (xi:j, τ, α)− C̃ (xi:j, τ−b, α) = C̃
(
x(a+1):b

)
+ C̃

(
x(b+1):c

)
− C̃

(
x(a+1):c

)
+ α log(n)1+δ

≥ C
(
x(a+1):b

)
+ C

(
x(b+1):c

)
− C

(
x(a+1):c

)
+ α log(n)1+δ − 2C̃2 log(n) ≥ 3

4
α log(n)1+δ,

for large enough n.

A.4.7 Proof of Lemma 7

This lemma shows that not having an estimated changepoint near a true changepoint

leads to high costs. Let j − tk = tk + 1− i = D. We have

C̃ (xi:j)− (C (xi:tk) + C
(
x(tk+1):j

)
) = 2D log

(
1

2Dσkσk+1

j∑
t=i

(xt − x̄i:j)2
)

+ 2D − Yi:j − 2Dη̄i:j .

We note that E1 and E2 imply that

2D − Yi:j − 2Dη̄i:j ≥ 1− 2
√

2(2 + ε)D log(n)− (4 + 2ε) log(n)− (8 + 2ε) log(n).

This in conjunction with E7 implies that C̃ (xi:j)− (C (xi:tk) +C
(
x(tk+1):j

)
) is bounded

below by

2D4k + 2D log(c(D,n))− 2
√

2(2 + ε)D log(n)− (4 + 2ε) log(n)− (8 + 2ε) log(n)

≥ 2D4k − 4(2 + ε) log(n) + 2D(c(D,n)− 1)− 2
√

2(2 + ε)D log(n)− 4(3 + ε) log(n)

≥ 2D4k − 4(5 + 2ε) log(n)− 2
√

2(2 + ε)D log(n)− 2
√

2(2 + ε)D log(n),

where the first inequality follows from E7 and the second one from Lemma 13. Writing

the above lower bound as

D4k − 4(5 + 2ε) log(n) +

(√
D42

k − 4
√

2(2 + ε) log(n)

)√
D
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proves the result for

κ̃(α, ε) = a+ 4
√

2(2 + ε).

A.4.8 Proof of Lemma 8

Without loss of generality, we assume that µ0 = 0 and σ0 = 1. Since µ̂ and σ̂ only

depend upon x(0.25n),x(0.5n), and x(0.75n) it is sufficient to show that there exists a

constant D3 such that

P

(
|x(cn) − qc| < D3

√
log(n)

n

)
≥ 1− n−ε,

where qc is the cth quantile of the normal, holds for c = 0.25, 0.5, 0.75.

In order to do so, we first define y(i) to be the ith largest observation belonging

to the typical distribution. We note that y(cn−m) < x(cn) < y(cn+m), where m =

O(K
√
n) is the number of points belonging to one of the anomalous windows. Since

q(cn±m)/(n−m)− qc = O(Kn−
1
2 ), it is sufficient to show that there exists a constant D4

such that

P

(
|y(a(n−m)) − qa| ≤ D4

√
log(n)

n

)
≥ 1− n−ε

for a = (cn±m)/(n−m). We note that

y(a(n−m)) ∼ Φ−1
(
U(a(n−m)),(n−m)

)
,

where Φ is the CDF of the normal distribution and Us,t the sth largest of t i.i.d. U(0, 1)

random variables. The following concentration inequality (Reiss (2012)) applies to the

uniform distribution

P
(√

n

v

∣∣∣Ur,n − r

n

∣∣∣ > t

)
≤ exp

(
− t2

3(1 + t
v

√
n)

)
,
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where v2 = (r/n) (1− r/n) ≤ 1/4 by the AMGM inequality. This means that the

event {∣∣Ua(n−m),(n−m) − a
∣∣ ≤ √ε√ log(n)

n

}

for the six values of a which are of interest to us holds with probability at least

1− 6 exp

−ε log(n)

(
3

4
+ 3

√
ε log(n)

n

)−1
 ,

by a Bonferroni correction, which is 1−O(n−ε). We note that this event implies that

∣∣Φ(ya(n−m))− a
∣∣ = O

(√
log(n)

n

)

holds for all six a of interest, which will be confined to the interval [0.1, 0.9] for large

enough n. Hence we must also have

∣∣Φ−1(Φ(ya(n−m)))− Φ−1(a)
∣∣ = O

(√
log(n)

n

)

for large enough n. This finishes our proof.

A.4.9 Proof of Lemma 9

First of all we note that

CE (x1:n, α, µ̂, σ̂)− CE (x1:n, α, µ0, σ̂) =
1

σ̂2

K+1∑
i=1

si+1∑
t=ei+1

[
(xt − µ̂)2 − (xt − µ0)2

]
≤ 1

σ̂2

K+1∑
i=1

[
(si+1 − ei)(µ̂− µ0)2 + 2σ0(si+1 − ei)|η̄(si+1+1):ei ||(µ̂− µ0)|

]
≤ 2

σ2
0

n(µ̂− µ0)2 +
2

σ0

|(µ̂− µ0)|
K+1∑
i=1

√
(si+1 − ei)(4 + ε) log(n)

≤ 2D2
1 log(n) + 2(2 + ε)(K + 1)D1 log(n),
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where the second inequality follows from E1 and the third from E8. Moreover,

CE (x1:n, α, µ0, σ̂)− CE (x1:n, α, µ0, σ0) =

K+1∑
i=1

si+1∑
t=ei+1

[
log(σ̂2)− log(σ2

0) +

(
1

σ̂2
− 1

σ2
0

)
(xt − µ0)2

]

=

K+1∑
i=1

[
−(si+1 − ei) log

(
σ2
0

σ̂2

)
+

(
σ2
0

σ̂2
− 1

) si+1∑
t=ei+1

η2t

]

≤
K+1∑
i=1

[
−(si+1 − ei)

[(
σ2
0

σ̂2
− 1

)
+O

((
σ2
0

σ̂2
− 1

)2
)]

+

(
σ2
0

σ̂2
− 1

)(
Y(ei+1):(si+1) + (4 + ε) log(n)

)]

≤
K+1∑
i=1

[(
σ2
0

σ̂2
− 1

)(
Y(ei+1):(si+1) − (si+1 − ei)

)
+O(log(n))

]
= O(K log(n)),

where the first inequality follows from expanding log(x) around x = 1 and E1, while

the second inequality uses E8 and E2.

A.4.10 Proof of Lemma 10

Let k′ = k ± 1. Clearly, xt − µk′ ∼ N(µk − µk′ , σ2
k). Consequently,

P
(
|xt − µk′ | < n−(2+ε)σk

)
≤ 2n−(2+ε)σk

√
1

2πσ2
k

=

√
2

π
n−(2+ε).

A Bonferroni correction therefore gives P(E9) > 1−
√

8
π
n−ε.

A.4.11 Proof of Lemma 11

We have to consider two cases:

Case 1: i < j. The result holds by Lemma 4.

Case 2: i = j, with the proxy for segments of length one. We have:

C (xi:j)− C̃ (xi:j) = log(σ2
k) + η2i − log(σ̃2)− (xi − µ̃)2

σ̃2
≤ (4 + ε) log(n) + log

(
σ2
k

σ̃2

)
− (xi − µ̃)2

σ̃2
,

where the inequality follows from E1. We now bound the above for all choices of µ̃ and

σ̃. First of all we consider the case |µ̃− µk| < D1

√
log(n)
n
σk and | σ̃2

σ2
k
− 1| < D2

√
log(n)
n

.
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Then for large enough n:

log

(
σ2
k

σ̃2

)
− (xi − µ̃)2

σ̃2
≤ log

(
1 + 2D2

√
log(n)

n

)
≤ 2D2

√
log(n)

n
.

Next we consider the cases |µ̃ − µk′ | < D1

√
log(n)
n
σk′ and

∣∣∣ σ̃2

σ2
k′
− 1
∣∣∣ < D2

√
log(n)
n

,

where k′ = k + 1 or k′ = k − 1. We have:

log

(
σ2
k

σ̃2

)
− (xi − µ̃)2

σ̃2
≤ 2D2

√
log(n)

n
+ log

(
σ2
k

σ2
k′

)
− (xi − µ̃)2

2σ2
k′

for large enough n. If
σ2
k

σ2
k′
< n4 the above is bounded by 5 log(n) for large enough n.

Otherwise we have:

log

(
σ2
k

σ2
k′

)
− (xi − µ̃)2

2σ2
k′

≤ log

(
σ2
k

σ2
k′

)
+

(|xi − µk′ | − |µk′ − µ|)2
0

2σ2
k′

≤ log

(
σ2
k

σ2
k′

)
− 1

2

(
σk
σk′

n−(2+ε) −D1

√
log(n)

n

)2

0

≤ log

(
σ2
k

σ2
k′

)
− 1

8

(
σk
σk′

n−(2+ε)

)2

≤ log(8n4+2ε)− 1 = (4 + 2ε) log(n) + log(8)− 1.

Case 3: i = j, with the proxy for epidemic changes. We have:

C (xi:j)− C̃ (xi:j) = log(σ2
k) + η2

i − log(σ̃2γ + (xi − µ̃)2)− 1

≤ (4 + ε) log(n)− log

(
σ̃2

σ2
k

γ +
(xi − µ̃)2

σ2
k

)
,

by E1. We again bound the above for all choices of µ̃ and σ̃. First of all we consider

the case |µ̃− µk| < D1

√
log(n)
n
σk and

∣∣∣ σ̃2

σ2
k
− 1
∣∣∣ < D2

√
log(n)
n

. Then, for large enough n

− log

(
σ̃2

σ2
k

γ +
(xi − µ̃)2

σ2
k

)
≤ − log

([
1−D2

√
log(n)

n

]
γ

)
≤ − log(γ) + 2D2

√
log(n)

n

Next, we consider the cases |µ̃ − µk′| < D1

√
log(n)
n
σk′ and | σ̃2

σ2
k′
− 1| < D2

√
log(n)
n

,
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where k′ = k + 1 or k′ = k − 1. We have

− log

(
σ̃2

σ2
k

γ +
(xi − µ̃)2

σ2
k

)
≤ − log

(
σ̃2

σ2
k′

)
− log

(
σ2
k′

σ2
k

γ +
σ2
k′

σ̃2

(xi − µ̃)2

σ2
k

)
≤ 2D2

√
log(n)

n
− log

(
σ2
k′

σ2
k

γ +
1

2

(|xi − µk′| − |µk′ − µ|)2

σ2
k

)

for large enough n. If
σ2
k

σ2
k′
< n4 the above is bounded by 4 log(n)− log(γ). Otherwise

we have:

− log

(
σ2
k′

σ2
k

γ +
1

2

(|xi − µk′ | − |µk′ − µ|)2
0

σ2
k

)
≤ − log

σ2
k′

σ2
k

γ +
1

2

(
n−2+ε −D1

√
log(n)

n

σk′

σk

)2

0


≤ − log

1

2

(
n−2+ε −D1

√
log(n)

n
n−2

)2

0

 ≤ − log

(
1

8

(
n−2+ε

)2)
= log(8) + (4 + 2ε) log(n),

for large enough n. This finishes the proof.
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A.5 Further Simulation Study Results
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(a) Weak (b) Weak, PAs (c) Strong, PAs (d) Short, PAs

(e) Weak (f) Weak, PAs (g) Strong, PAs (h) Short, PAs

(i) Weak, AR (j) Weak, AR, PAs (k) Strong, AR, PAs (l) Short, AR, PAs

(m) Weak, T (n) Weak, T, PAs (o) Strong, T, PAs (p) Short, T, PAs

Figure A.5.1: Data examples and ROC curves for changes in variance for CAPA

(black), PELT (red), BreakoutDetection (green), and luminol (blue).
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(a) Weak (b) Weak, PAs (c) Strong, PAs (d) Short, PAs

(e) Weak (f) Weak, PAs (g) Strong, PAs (h) Short, PAs

(i) Weak, AR (j) Weak, AR, PAs (k) Strong, AR, PAs (l) Short, AR, PAs

(m) Weak, T (n) Weak, T, PAs (o) Strong, T, PAs (p) Short, T, PAs

Figure A.5.2: Data examples and ROC curves for joint changes in mean and variance

for CAPA (black), PELT (red), BreakoutDetection (green), and luminol (blue).



APPENDIX A. CAPA 169

A.6 Application of CAPA to Further Stars

We applied the approach detailed in Section 6 to the light curves of five further

stars with known exoplanets (Morton et al. (2016)). Figure A.6.1 depicts the largest

detected change in mean as measured by maxk (4µ,k) per period for the five stars. We

found that the 20 periods exhibiting the largest change in mean correspond to integer

fractions of the orbital period of a known exoplanet in all cases. We thus observed

no false positives. The results are summarised in Figure A.6.2. We note that not all

planets appear in the 20 periods with largest change in mean. This is due to the fact

that their signal is weaker than the resonance of the signal of larger planets. CAPA

can nevertheless detect the transit signal of the missing planet at their orbital period,

with the exception of Kepler 454-c. This planet however was discovered by a different

method than the transit method.
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(a) Kepler 356. (b) Kepler 454.

(c) Kepler 275. (d) Kepler 235.

(e) Kepler 264.

Figure A.6.1: The strongest change in mean, as measured by maxk (4µ,k), detected

by CAPA for the lightcurves of five stars with known exoplanets. All periods from 1

to 200 days at 0.01 day increment were examined.
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Star Planet Period Period (or integer fraction) in top 20 modes

Kep. 275 Kep.275-b 10.3007 No

Kep. 275 Kep.275-c 16.0881 Yes

Kep. 275 Kep.275-d 35.6761 Yes

Kep. 264 Kep.264-b 40.806 Yes

Kep. 264 Kep. 264-c 140.101261 No

Kep. 356 Kep. 356-b 13.1216 Yes

Kep. 356 Kep. 356-c 4.6127 No

Kep. 454 Kep. 454-b 10.5738 Yes

Kep. 454 Kep. 454-c 523.90 No

Kep. 235 Kep. 235-b 3.340 Yes

Kep. 235 Kep. 235-c 7.824 No

Kep. 235 Kep. 235-d 20.0605 Yes

Kep. 235 Kep. 235-e 46.1836 Yes

Figure A.6.2: Five stars orbited by known exoplanets and whether their period or an

integer fraction thereof was in the 20 periods with strongest change in mean according

to CAPA.
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MVCAPA

B.1 Additional Theoretical Results

B.1.1 Pruning Without Lags

The following proposition holds:

Proposition 17. Let the costs Ci(, ) be such that

min
θ

(
c∑

t=a+1

Ci (xt,θ)

)
≥ min

θ

(
b∑

t=a+1

Ci (xt,θ)

)
+ min

θ

(
c∑

t=b+1

Ci (xt,θ)

)

holds for all x and a, b, c such that b− a ≥ l and c− b ≥ l. Then, if for some t there

exists an m ≥ t− l such that

S(m)− α−
p∑
1

βi > S(t) + S (t,m) ,

then, for all m′ ≥ m+ l,

S(m′) > S(t) + S (t,m′) .

172
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A wide range of cost functions (see Killick et al., 2012) satisfy the condition re-

quired by the above proposition. The proposition implies that if for some t there

exists an m ≥ t− l such that

S(m)− α−
p∑
1

βi > S(t) + S (t,m)

holds, t can be dropped as an option from the dynamic programme for all steps after

step m+ l, thus reducing the cost of the algorithm.

B.1.2 Bounds on Lagged Savings

The following result provides a general way to extend the stochastic bound (and thus

the penalties) from the lagged free to the lagged setting:

Proposition 18. Let the cost function Ci()be such that the un-lagged saving

Ci
(
x

(i)
(s+1):e,θ

(i)
0

)
−min

θ

(
Ci
(
x

(i)
(s+1):e,θ

))
be stochastically bounded by aχ2

v, then the saving Si (s, e) as defined in (4.6.2) satisfies

P (Si (s, e) > x) ≤ (w + 1)2P
(
aχ2

v > x
)
.

consequently; replacing ψ by ψ+2 log(w+1) when going from the perfectly aligned

case to the lagged case achieves at least the same error control.

B.1.3 Pruning the Dynamic Programme in the Presence of

Lags

Even when lags are included in the model, the solution space of the dynamic pro-

gramme can still be pruned in a fashion similar to Killick et al. (2012) and Fisch et al.
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(2018a). Indeed, the following generalisation of Proposition 17 holds:

Proposition 19. Let the costs Ci(, ) be such that

min
θ

(
c∑

t=a+1

Ci (xt,θ)

)
≥ min

θ

(
b∑

t=a+1

Ci (xt,θ)

)
+ min

θ

(
c∑

t=b+1

Ci (xt,θ)

)

holds for all x and a, b, c such that b− a ≥ l and c− b ≥ l. Then, if for some t there

exists an m ≥ t− l − w such that

S(m)− α−
p∑
1

βi > S(t) + S (t,m)

holds,

S(m′) > S(t) + S (t,m′)

must also holds for all m′ ≥ m+ l + w.

It implies that if for some t there exists an m ≥ t− l − w such that

C(m)− α−
p∑
1

βi > C(t) + S (t,m)

holds, t can be dropped as an option from the dynamic programme for all steps after

step m + l + w, thus reducing the cost of the algorithm. Moreover, we only need to

maintain the savings S(a, b) for all a exceeding the smallest option not yet dropped

from the dynamic programme, which further reduces the computational cost. As a

result of this pruning we found the runtime of MVCAPA to be close to linear in n,

when the number of anomalies increased linearly with n.
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B.2 Proofs for Theorems and Propositions

B.2.1 Proof of Proposition 4

We will prove the existence of such a constant for each the three penalty regimes. The

result follows from this.

Regime 1

Let 0 ≤ s < e ≤ n. The probability that the segment (s + 1, e) is not flagged up as

anomalous is given by

P

(∑
c∈Jm

Sc (s, e) < a
(
pv + 2

√
pvψ + 2ψ

)
, ∀Sm ⊂ {1, ..., p} : |Jm| = m, 1 ≤ m ≤ p

)

= P

(
p∑
c=1

Sc (s, e) < a
(
pv + 2

√
pvψ + 2ψ

))

≥ P
(
χ2
pv < pv + 2ψ + 2

√
pvψ

)
≥ 1− e−ψ,

where the first inequality follows from the stochastic bound on Sc (s, e) and the second

inequality follows from the bounds on the chi-squared distribution in Laurent and

Massart (2000). A Bonferroni correction over all possible pairs s, e then finishes the

proof.

Regime 2

Let 1 ≤ s ≤ e ≤ n. For this pair (s, e) define Yc = Sc(s+1, e), noting that they are all

independent and stochastically bounded by aZc where Z1, ..., Zp are i.i.d. χ2
v random
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variables. The probability that the segment s, e will not be considered anomalous is

P

(∑
c∈Sm

Yc < 2(1 + ε)aψ + 2ma(1 + ε) log(p), ∀Sm ⊂ {1, ..., p} : |Sm| = m, 1 ≤ m ≤ p

)

≥ P

(
p∑
i=1

(
Yi − 2(1 + ε)a log(p)

a

)+

< 2(1 + ε)ψ

)

≥ P

(
p∑
i=1

(Zi − 2(1 + ε) log(p))+ < 2(1 + ε)ψ

)

≥ 1− E
(
eλ(Z1−2(1+ε) log(p))+

)p
e−2λ(1+ε)ψ,

for all λ > 0, where the final inequality corresponds to a Chernoff bound. Next set

λ = 1
2

1
1+ε

and note that the following Lemma holds:

Lemma 14. Let X ∼ χ2
v. Then the MGF of (X − c)+ is given by:

P
(
χ2
v < c

)
+

e−λc

(1− 2λ)
v
2

P
(
χ2
v > c(1− 2λ)

)
.

Consequently,

E
(
eλ(Z1−2(1+ε) log(p))+

)p
e−ψ

=

[
P
(
χ2
v < 2(1 + ε) log(p)

)
+
e−2(1+ε)λ log(p)

(1− 2λ)
v
2

P
(
χ2
v > 2(1 + ε)(1− 2λ) log(p)

)]p
e−ψ

≤

[
1 +

e−2(1+ε)λ log(p)

(1− 2λ)
v
2

]p
e−ψ =

[
1 +

1

p

(
1 + ε

ε

) v
2

]p
e−ψ ≤ exp

((
1 + ε

ε

) v
2

)
e−ψ.

A Bonferroni correction over all possible pairs s, e then finishes the proof.

Regime 3

Let 1 ≤ s ≤ e ≤ n. For this pair (s, e) define Yi = Sc(s+1, e), noting that they are all

independent and stochastically bounded by aZi where Z1, ..., Zp are i.i.d. χ2
v random

variables. Next, define their order statistic Z(1) ≥ ... ≥ Z(p) The probability that the
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segment (s, e) is not flagged up as anomalous is given by

P

(
m∑
i=1

Y(i) < a
(

2ψ′ +mv + 2pcmf(cm) + 2
√

(mv + 2pcmf(cm))ψ′
)
, 1 ≤ m ≤ p

)

≥ 1−
p∑

m=1

P

(
m∑
i=1

(
Y(i) − acm

a

)
> 2ψ′ +m(v − cm) + 2pcmf(cm) + 2

√
(mv + 2pcmf(cm))ψ′

)

≥ 1−
p∑

m=1

P

(
m∑
i=1

(
Y(i) − acm

a

)+

> 2ψ′ +m(v − cm) + 2pcmf(cm) + 2
√

(vm+ 2pcmf(cm))ψ′

)

≥ 1−
p∑

m=1

P

(
p∑
i=1

(
Yi − acm

a

)+

< 2ψ′ +m(v − cm) + 2pcmf(cm) + 2
√

(vm+ 2pcmf(cm))ψ′

)
.

≥ 1−
p∑

m=1

P

(
p∑
i=1

(Zi − cm)
+
< 2ψ′ +m(v − cm) + 2pcmf(cm) + 2

√
(mv + 2pcmf(cm))ψ′

)
,

where we use the shorthand ψ′ := ψ + log(p). We will now use the following lemma,

which shows that (Zc − cm)+ is sub-gamma.

Lemma 15. Let Z ∼ χ2
v for v ≤ 2. Then (Z − c)+ − [2cf(c) + (v − c)P (χ2

v > c)] is

sub-gamma with scale parameter 2 and variance V = 4cf(c) + 2vP (χ2
v > c).

Using Lemma 15 and the bounds on sub-gamma random-variables in Boucheron

and Thomas (2012), we have that

p∑
m=1

P

(
p∑
i=1

(Zi − cm)+ < 2ψ′ +m(v − cm) + 2pcmf(cm) + 2
√

(mv + 2pcmf(cm))ψ′

)

=

p∑
m=1

P

(
p∑
i=1

(
(Zi − cm)+ − (v − cm)P

(
χ2
v > cm

)
+ 2cmf(cm)

)
< 2ψ′ + 2

√
pv (P (χ2

v > cm) + 2cmf(cm))ψ′

)

≤
p∑

m=1

e−ψ
′

=

p∑
m=1

p−1e−ψ = e−ψ ,

again using the shorthand ψ′ = ψ + log(p). A Bonferroni correction over all possible

pairs s, e then finishes the proof.

B.2.2 Proof of Proposition 5

Proof of Proposition 5: We will show that the penalised saving for the true anoma-

lous segment is positive with probability converging to 1 as p increases. By the defi-

nition of signal strength, the distribution of the true anomalous segment’s penalised
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saving does not depend on the length, s− e, of the segment. Thus, we assume, with-

out loss of generality, that e = s + 1 and treat the cases 0 < ξ ≤ 1
2
, 1

2
< ξ < 3

4
, and

3
4
< ξ < 1, separately. We write Xi := x

(i)
e , for 1 ≤ i ≤ p.

Case 1: 0 < ξ ≤ 1
2
. Remember that the composite penalty used is the minimum

between regimes 1, 2, and 3. It is therefore sufficient to show that the saving will

exceed the penalty specified by one of these three regimes (regime 1 in this case)

at some point. By definition, Xi = (εi + viµ)2, where ε1, ..., εp are i.i.d. N(0, 1) and

v1, ..., vp are i.i.d. Ber(p−ξ). Therefore

P

(
∃m :

m∑
i=1

X(i) ≥ α +
m∑
i=1

βi

)
≥ P

(
p∑
i=1

Xi > p+ 2
√
pψ + 2ψ

)

= P

(
p∑
i=1

ε2i +

p∑
i=1

vi
(
2µεi + µ2

)
> p+ 2

√
pψ + 2ψ

)

≥ 1− P

(
p∑
i=1

ε2i < p− 2
√
pψ

)
− P

(
p∑
i=1

vi
(
2µεi + µ2

)
< 4
√
pψ + 2ψ

)

≥ 1− e−ψ − P

(
N

(
µ2

(
p∑
i=1

vi

)
, 4µ2

(
p∑
i=1

vi

))
< 4
√
pψ + 2ψ

)

Furthermore,

P

(
N

(
µ2

p∑
i=1

vi, 4µ
2

p∑
i=1

vi

)
> 4
√
pψ + 2ψ

)
> P

(
N
(
kµ2, 4kµ2

)
> 4
√
pψ + 2ψ

)
P

(
p∑
i=1

vi > k

)
,

for all k such that 1 ≤ k ≤ p. We therefore only have to show that there exists some

sequence of integers kp such that the right hand side converges to 1 as p→∞. Note

that Hoeffding’s inequality implies that

P

(
p∑
i=1

vi > p1−ξ − p
1
2
− 1

2
ξ
√

log(p)

)
→ 1 as p → ∞
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and therefore

P

(
p∑
i=1

vi >
1

2
p1−ξ

)
→ 1 as p → ∞.

Setting kp = d1
2
p1−ξe, it is therefore sufficient to show that

P

(
N (0, 1) >

4
√
pψ + 2ψ − 1

2
µ2p1−ξ√

2µ2p1−ξ

)
= P

(
N (0, 1) >

4
√
pψ + 2ψ − 1

2
p1−ξ−2rp√

2µ2p1−ξ−2rp

)

converges to 1 as p tends to infinity. This is the case if rp <
1
2
(1

2
− ξ), which finishes

the proof.

Case 2: 3
4
< ξ < 1. By an argument similar to that made for case 1, it is sufficient

to show that the saving will exceed the penalty specified by regime 2. We have that:

P

(
∃m :

m∑
i=1

X(i) ≥ α+
m∑
i=1

βi

)
≥ P

(
X(1) > 2ψ + 2 log(p)

)
= 1− (1− P (X1 > 2ψ + 2 log(p)))p

By definition, X1 = (µv1 + ε1)2, where ε1 ∼ N(0, 1) and v1 ∼ Ber(p−ξ). We can

therefore bound the above by

1− (1− P (X1 > 2ψ + 2 log(p), v1 = 1))p

= 1−

(
1− p−ξP

((
ε1 +

√
2rp log(p)

)2

> 2ψ + 2 log(p)

))p

> 1−
(

1− p−ξP
(
N(0, 1) >

√
2ψ + 2 log(p)−

√
2rp log(p)

))p
≥ 1− exp

(
−p1−ξP

(
N(0, 1) >

√
2ψ + 2 log(p)−

√
2rp log(p)

))
,

where the second inequality follows from the fact that 1−x ≤ e−x. We consider sepa-

rately the cases
√

2ψ + 2 log(p)−
√

2rp log(p) > 1 and
√

2ψ + 2 log(p)−
√

2rp log(p) ≤

1. In the latter case the above clearly converges to 1 as p goes to infinity. In the former

case we can use the lower tail bound P (N(0, 1) > x) > 1√
2π

x
x2+1

exp
(
−x2

2

)
, for x > 0
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to bound the above by

1− exp

− 1√
2π
p1−ξ p

(√
1+ 2ψ

2 log(p)
−√rp

)2

1 +
(√

2ψ + 2 log(p)−
√

2rp log(p)
)2

 .

Thus, for a fixed rp >
(
1−
√

1− ξ
)2

this converges to 1, as ψ/ log(p) converges to 0.

Case 3: 1
2
< ξ < 3

4
. By an argument similar to that made for case 1, it is

sufficient to show that the saving will exceed the penalty specified by regime 3. We

assume, without loss of generality, that µ > 0. If rp ≥ 1
4
. Our approach is to define

a threshold, b, and a number of excesses, k̃, such that the number of savings in cost

that exceed b will be great than k̃ with probability going to 1 as p increases. We then

show that the overall sum of the k̃ largest savings will be greater than the penalty for

fitting k̃ components as anomalous.

We introduce the following new random variable:

Yi =


[(µ+ εi)

+]
2

if vi = 1

ε2i if vi = 0,

where (x)+ denotes the positive part of x. Note that Yi ≤ Xi. We also introduce the

following four technical lemmata

Lemma 16. Let a > 0 and let Z ∼ χ2
1. Then, for all positive x ∈ R

P (Yi ≥ a+ x|Yi ≥ a) ≥ P (Z > a+ x|Z ≥ a) .

Lemma 17. Let Zi
i.i.d.∼ χ2

1 for 1 ≤ i ≤ k and a > 0. Then for all t ∈ R

P

(
k∑
i=1

(Zi − a)|(Zi > a) < kP
(
χ2
1 > a

)−1 E ((Z − a)+
)
− 2

√
kP (χ2

1 > a)
−1

(P (χ2
1 > a) + 2af(a))t

)
< e−t
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Lemma 18. Let ak be defined implicitly as P (χ2
1 > ak) = k

p
and let f(·) denote the

probability density function of the χ2
1 distribution. Then

pE
(
(χ2

1 − ak)+
)

+ kak = k + 2pakf(ak) ≤ 2k + 2k log(p/k)

Lemma 19. For all b > 0:

E
(
(χ2

1 − b)+|χ2
1 > b

)
> 1.

Next write b = 8rp log(p) and let k̃ be an integer such that both pP (χ2
1 > b) ≤ k̃ ≤

p and ak̃ < b. Note that since rp <
1
4
, we have b ≤ 2 log(p) and such a k̃ is guaranteed

to exist for sufficiently large values of p. For convenience, write µ̃ = E ((χ2
1 − ak̃)+).

Using the shorthand ψ′ = ψ + log(p), the following holds:

P

(
∃m :

m∑
i=1

X(i) ≥ α+

m∑
i=1

βi

)
≥ P

 k̃∑
i=1

Y(i) ≥ 2ψ′ + k̃ak̃ + pµ̃+ 2

√
(k̃ak̃ + pµ̃)ψ′


≥ P

 k̃∑
i=1

Y(i) ≥ 2ψ′ + k̃ak̃ + pµ̃+ 2

√
(k̃ak̃ + pµ̃)ψ′

∣∣∣∣∣
p∑
i=1

I (Yi > b) ≥ k̃

P

(
p∑
i=1

I (Yi > b) ≥ k̃

)
,

where the first inequality follows from substituting the third penalty regime (using

the equality from Lemma 18) and the second inequality follows from conditioning on

the number of Yi exceeding b. Next note that

P

 k̃∑
i=1

Y(i) ≥ 2ψ′ + k̃ak̃ + pµ̃+ 2

√
(k̃ak̃ + pµ̃)ψ′

∣∣∣∣∣
p∑
i=1

I (Yi > b) ≥ k̃


≥ P

 k̃∑
i=1

Y(i) ≥ 2ψ′ + k̃ak̃ + pµ̃+ 2

√
(k̃ak̃ + pµ̃)ψ′

∣∣∣∣∣
p∑
i=1

I (Yi > b) = k̃


= P

 k̃∑
i=1

(Yi − b)+ ≥ 2ψ′ − k̃ (b− ak̃) + pµ̃+ 2

√
(k̃ak̃ + pµ̃)ψ′

∣∣∣∣∣Y1, ..., Yk̃ > b


Let Z1, ..., Zk̃ be i.i.d. χ2

1 distributed. Lemma 16 then implies that the above exceeds

P

 k̃∑
i=1

(Zi − b)+ ≥ 2ψ′ − k̃ (b− ak̃) + pµ̃+ 2

√
(k̃ak̃ + pµ̃)ψ′

∣∣∣∣∣Z1, ..., Zk̃ > b

 .
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Using the inequality in Lemma 18 and the fact that ψ < log(p) for sufficiently large

values of p we can further bound the above by

P

 k̃∑
i=1

(Zi − b)+ ≥ 4 log(p) + pµ̃− k̃
(
b− ak̃

)
+ 2

√
4(k̃ + k̃ log(p/k̃)) log(p)

∣∣∣∣∣Z1, ..., Zk̃ > b

 .

Defining Wi = (Zi − b) |(Zi > b), we can further bound the above by

P

 k̃∑
i=1

Wi ≥ pµ̃− k̃ (b− ak̃) + 8

√
k̃ log(p)2

 , (B.2.1)

provided p is large enough. Next, note that since b ≥ ak̃

µ̃ = E
[(
χ2

1 − ak̃
)+
]
≤ E

[(
χ2

1 − b
)+
]

+ P
(
χ2

1 > ak̃
)

(b− ak̃) .

Consequently, we can bound (B.2.1) by

P

 k̃∑
i=1

Wi ≥ pE
[(
χ2
1 − b

)+]
+ 8

√
k̃ log(p)2


= P

 k̃∑
i=1

[
Wi − E

(
χ2
1 − b|χ2

1 > b
)]
≥
(
pP
(
χ2
1 > b

)
− k̃
)
E
(
χ2
1 − b|χ2

1 > b
)

+ 8

√
k̃ log(p)2



≥ 1− exp

−
[(

(k̃ − pP
(
χ2
1 > b

)
)E
(
(χ2

1 − b)+|χ2
1 > b

)
− 8
√
k̃ log(p)2

)+
]2

4k̃P (χ2
1 > b)

−1
(P (χ2

1 > b) + 2bf(b))

 ,

where the inequality follows from Lemma 17. Given Lemma 19 and the fact that

Lemma 18 implies that P (χ2
1 > b) + 2bf(b) < 2P (χ2

1 > b) (1 + log(p)), we can further

bound the above by

1− exp

−
[(

(k̃ − pP (χ2
1 > b))− 8

√
k̃ log(p)

)+
]2

8(k̃(1 + log(p)))

 .

The arithmetic-mean-geometric-mean-inequality can be used to show that ((a−b)+)2 >

((a)+)
2

2
− 4b2. The above quantity is therefore bounded by

1− exp

− 1

16(1 + log(p))

([
k̃ − pP (χ2

1 > b)√
k̃

]+)2

+ 72 log(p)

 .
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Note that if k̃ ≥ pP (χ2
1 > b) + p

1
2
−2rp+δ for some δ > 0, then

k̃ − pP (χ2
1 > b)√
k̃

≥ p
1
2
−2rp+δ√

pP (χ2
1 > b) + p

1
2
−2rp+δ

≥ p
1
2
−2rp+δ√

p1−4rp + p
1
2
−2rp+δ

≥ 1

2
p
δ
2 ,

with the first inequality following from the fact that the left-hand side is increasing

in k̃, the second one following from the fact that P (χ2
1 > b) < P (χ2

2 > b) = p−4rp and

the last one following from the fact that rp <
1
4
.

Consequently, it is sufficient to show that there exists a δ > 0 such that

P

(
p∑
i=1

I (Yi ≥ b) > pP
(
χ2

1 > b
)

+ p
1
2
−2rp+δ

)
→ 1 as p→∞

This can be seen from the fact that
∑p

i=1 I (Yi > b) is Bin(p, q)-distributed with

q = P (Yi > 8rp log(p)) = (1− p−ξ)P
(
χ2

1 > b
)

+ p−ξP
(
N(0, 1) >

√
2rp log(p)

)
.

Note that

q > P
(
χ2

1 > b
)
− p−ξ−4rp + p−ξP

(
N(0, 1) >

√
2rp log(p)

)
,

since P (χ2
1 > b) < p−4rp . Moreover,

q < P
(
χ2

1 > b
)

+ p−ξP
(
N(0, 1) >

√
2rp log(p)

)
≤ p−4rp + p−ξ−rp ,

by standard tail bounds of the normal distribution and the definition of b. Standard

Hoeffding bounds show that

P

(
p∑
i=1

I (Yi > b) > pq −
√
pq log(p)

)
→ 1 as p→∞

Hence,

P

(
p∑
i=1

I (Yi > b) > pP
(
χ2
1 > b

)
+ p1−ξP

(
N(0, 1) >

√
2rp log(p)

)
− p1−ξ−4rp −

√
p(p−4rp + p−ξ−rp) log(p)

)
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converges to 1 as p→∞. Note that

p1−ξP
(
N(0, 1) >

√
2rp log(p)

)
− p1−ξ−4rp −

√
p(p−4rp + p−ξ−rp) log(p) > p

1
2
−2rp+δ

for all δ such that rp − ξ + 1
2
> δ, provided p is large enough. This follows from the

fact that

p1−ξP
(
N(0, 1) >

√
2rp log(p)

)
>

1√
2π
p1−ξ−rp

√
2rp log(p)

1 + 2rp log(p)
,

by standard tail bounds on the normal distribution. Since 0 < rp, the the above

dominates p1−ξ−4rp as p increases. Similarly, because rp − ξ + 1
2
> 0, it dominates√

p1−4rp , since, rp <
1
4

and ξ < 3
4
, 1−rp−ξ > 0 and the above therefore also dominates√

p1−rp−ξ. Finally, if δ is such that rp − ξ + 1
2
> δ it must also dominate p

1
2
−2rp+δ.

This finishes the proof.

B.2.3 Proof of Proposition 6

Standard tail bounds on the subgaussian distribution give that for all ℵ > 0

P
((

x
(i)−µi
t

)2

< 2ℵ
)
≥ 1− Ae−ℵ/λ

holds for a constant A under the null hypothesis. A Bonferroni correction therefore

gives P
(
Ô = ∅

)
≥ 1− Anp exp(− 1

2λ
β′).

B.2.4 Proof of Propositions 17 and 19

We give the proof of Proposition 19, as Proposition 17 corresponds to as special case.

We write

S (s, e,d, f,J) =
∑
i∈J

(
Ci
(
x
(i)

(s+1+d(i)):(e−f(i))
,θ

(i)
0

)
−min

θ

[
Ci
(
x
(i)

(s+1+d(i)):(e−f(i))
,θ
)])

− α−
|J|∑
i=1

βi
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and note that

S (t,m) = max
d,f,J: m−t−d−f≥l

[S (t,m,d, f,J)]

The proof of Proposition 19 is then a corollary of the observation that for all d, f < w

S (t,m′,d, f,J) =
∑
i∈J

(
Ci
(
x
(i)

(t+1+d(i)):(m′−f(i))
,θ

(i)
0

)
−min

θ

[
Ci
(
x
(i)

(t+1+d(i)):(m′−f(i))
,θ
)])

− α−
|J|∑
i=1

βi

≤
∑
i∈J

(
Ci
(
x
(i)

(t+1+d(i)):(m′−f(i))
,θ

(i)
0

)
−min

θ

[
Ci
(
x
(i)

(t+1+d(i)):m
,θ
)]
−min

θ

[
Ci
(
x
(i)

(m+1):(m′−f(i))
,θ
)])

− α− 2

|J|∑
i=1

βi +

p∑
i=1

βi

= S (t,m,d, 0,J) + S (m,m′, 0, f,J) +

p∑
i=1

βi + α,

since m− t− w ≥ l and m′ −m− w ≥ l. Indeed, the above inequality shows that

S(t) + max
d≤w,f≤w,J: m−t−d−f≥l

[S (t,m′,d, f,J)]

≤ S(t) + max
d≤w,f≤w,J: m−t−d−f≥l

[S (t,m,d,0,J) + S (m,m′,0, f,J)] + α+

p∑
i=1

βi

≤ S(t) + max
d≤w,J: m−t−d≥l

[S (t,m,d,0,J)] + max
f≤w,J: m−t−f≥l

[S (m,m′,0, f,J)] + α+

p∑
i=1

βi

≤ S(t) + max
d≤w,f≤w,J: m−t−d−f≥l

[S (t,m,d, f,J)] + max
d≤w,f≤w,J: m−t−d−f≥l

[S (m,m′,d, f,J)] + α+

p∑
i=1

βi

< S(m) + max
d,f,J: m−t−d−f≥l

[S (m,m′,d, f,J)] ≤ S(m′).

This finishes the proof.

B.2.5 Proof of Proposition 18

We prove the more general case of the savings being stochastically bounded by aχ2
v+b.

The result follows from a Bonferroni correction:



APPENDIX B. MVCAPA 186

P (Si (s, e) > y) ≤
w∑
d=0

w∑
f=0

P
(
Ci
(
x

(i)
(s+1+d):(e−f ,θ

(i)
0

)
−min

θ

(
Ci
(
x

(i)
(s+1+d):(e−f),θ

))
> y
)

≤
w∑
d=0

w∑
f=0

P
(
aχ2

v + b > y
)

= (w + 1)2P
(
aχ2

v + b > y
)

B.2.6 Proof of Proposition 7

The proof of Proposition 7 follows almost directly from the following Lemma:

Lemma 20. Let ηt
i.i.d.∼ N(0, 1) for i ≤ t ≤ j. Then

P
(

max
0≤j,d≤w:j−f−d−i≥0

(
(j − f − d− i+ 1)

(
η̄
(c)
(i+d):(j−f)

)2)
> u

)
≤ 6(w + 1)

1 + log(w + 1)

log(b)
e−

u
2b .

for all b ∈ R such that 1 < b ≤ 2.

Setting b = 1 + ε, we can therefore see that

max
0≤j,d≤w:j−f−d−i≥0

(
(j − f − d− i+ 1)

(
η̄

(c)
(i+d):(j−f)

)2
)

(B.2.2)

is stochastically bounded by

(1 + ε)χ2
2 + 2(1 + ε) (log (w + 1) + log(6)− log(log(1 + ε)) + log(1 + log(w + 1)))

B.2.7 Proof of Proposition 8

Let δ = rp − (1−
√

1− ξ)2 > 0. Then Penalty regime 2’ with ε = δ
2

and ψ = 3 log(n)

controls false positives. Given MVCAPA examines all possible lags up to w, we

can bound the power by the probability that the test statistic for the true collective

anomaly with true lags for each anomalous series is greater than the threshold for the

test. Thus it is sufficient to show that

P
(

max
i

((√
e− s− wx̄

(i)
(s+1+di):(e−fi)

)2
)
> 2(1 + ε)ψ + 2(1 + ε) log(p) + 2(1 + ε) log(w + 1)

)
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goes to 1 as p→∞. This holds by a very similar argument as case 2 in the proof of

Proposition 5 since

√
e− s− wx̄

(i)
(s+1+di):(e−fi)

i.i.d.∼ N(
√

2rp log(p(w + 1)), 1).

B.2.8 Proof of Theorem 3

We define the penalised cost of a segment xi:j under a partition τ = {τ̂1, ..., τ̂K̂}, where

τ̂k = (ŝk, êk, Ĵk) to be

C (xi:j, τ̂) =
K̂∑
k=1

[
C(x(ŝk+1):êk , Ĵk)

]
.

Here the penalised cost of introducing the kth anomalous window is

C
(
x(s+1):e, {(s, e,J)}

)
= C(x(s+1):e,J) := −S(x(s+1):e,J) +

|J|∑
i=1

βi. := −(e− s)
∑
i∈J

C
(
x̄

(i)
(s+1):e

)2

+

|J|∑
i=1

βi,

where S(x(s+1):e,J), is defined as the saving made by fitting the segment x(s+1):e with

J and x̄
(i)
(s+1):e := (e − s)−1

∑e
t=s+1 xit is defined as the arithmetic mean of the ith

component from time t = s + 1 to t = e. It should be noted that minimising the

penalised cost, is equivalent to maximising the penalised saving. We call the partition

which minimises the penalised cost, C (x1:n, τ̂), over all feasible partitions, τ̂ , the

optimal partition.
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(a) Multiple true anomalies merged. (b) False positives and negatives.

(c) Anomaly fitted using multiple segments (d) Bad fit to true anomalies

Figure B.2.1: Examples of the four ways a fitted partition (in red) can be outside the

set of good partitions, BC , defined in Equation (B.2.3). True anomalies are indicated

in blue.
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We also define the following event sets over all pairs i, j such that 1 ≤ i ≤ j ≤ n

E1 :=

{∑
c∈S

(j − i+ 1)
(
η̄
(c)
i:j

)2
< 2ψ + 2|S| log(p) ∀S ⊂ {1, ..., p}

}

E2 :=

{∑
c∈S

(j − i+ 1)
(
η̄
(c)
i:j

)2
< p+ 2ψ + 2

√
pψ ∀S ⊂ {1, ..., p}

}

E3 :=

{
p∑
c=1

(j − i+ 1)
(
η̄
(c)
i:j + µ̄

(c)
i:j

)2
> p− 2

√
pψ

}

E4 :=

{∣∣∣∣∣∑
c∈S

√
j − i+ 1η̄

(c)
i:j

∣∣∣∣∣ <√2|S|ψ + 2|S|2 log(p) ∀S ⊂ {1, ..., p}

}

E5 :=

{∑
c/∈S

(j − i+ 1)
(
η̄
(c)
i:j + µ̄

(c)
i:j

)2
> p− 2

√
pψ − 2ψ − 2|S| log(p) ∀S ⊂ {1, ..., p}

}

E6 :=


∣∣∣∑c∈S

(∑j
t=i

(
µ

(c)
t − µ̄

(c)
i:j

)
η
(c)
t

)∣∣∣√∑
c∈S

∑j
t=i

(
µ

(c)
t − µ̄

(c)
i:j

)2 ≤
√

2ψ + 2 |S ∩Wi,j | log(p) ∀S ⊂ {1, ..., p}


E7 :=

{∑
c∈S

(j − j′)(j′ − i+ 1)

j − i+ 1

(
η̄
(c)
i:j′ − η̄

(c)
(j′+1):j

)2
< 2ψ + 2|S| log(p) ∀S ⊂ {1, ..., p}

}

E8 :=

{∑
c∈S

(j − j′)(j′ − i+ 1)

j − i+ 1

(
η̄
(c)
i:j′ − η̄

(c)
(j′+1):j

)2
< p+ 2ψ + 2

√
pψ ∀S ⊂ {1, ..., p}

}

E9 :=

{
p∑
c=1

(j − j′)(j′ − i+ 1)

j − i+ 1

(
x̄
(c)
i:j′ − x̄

(c)
(j′+1):j

)2
> p− 2

√
pψ

}

E10 :=

{∣∣∣∣∣∑
c∈Jk

√
j − i+ 1η̄

(c)
i:j

∣∣∣∣∣ <√2|Jk|ψ ∀i, j : ∃k ∈ {1, ...,K} : ek−1 < i, j ≤ sk+1

}

E11 :=


∣∣∣∣∑c∈Jk

√
(j−ek)(ek−i+1)

j−i+1

(
η̄
(c)
i:ek
− η̄(c)

(ek+1):j

)∣∣∣∣√
2|Jk|ψ

< 1 ∀i, j : ∃k ∈ {1, ...,K} : ek−1 < i, j ≤ sk+1

 ,

where the set Wi,j of components with non constant mean in the interval [i, j] is

defined as

Wi,j =
{
c ∈ {1, ..., p} : ∃t ∈ [i, j − 1] : µ

(c)
t 6= µ

(c)
t+1

}
.

The intuition behind these events is as follows: Events E1 and E2 bound the saving

obtained from fitting an anomalous region on data belonging to the typical distribution

and so ensure no false positives are fitted. Events E7, E8, E9, and E11 provide bounds

on the additional un-penalised cost of splitting a fitted segment in two or merging
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two existing segments, assuring that anomalous regions are fitted by one rather than

multiple adjacent segments. They are assisted by events E3 and E5 which bound the

additional un-penalised cost incurred by fitting any given segment by a dense change,

extending the result to showing the sub-optimality of a collective anomaly being fitted

by multiple non-adjacent segments. Events E4, E6, and E10 bound the interaction

between the signal and the noise thus ensuring that anomalous regions are detected.

For brevity, we denote E = ∩Ei and note that it occurs with high probability. Indeed,

the following Lemma holds:

Lemma 21. There exists a constant A such that

P (E) > 1− An3e−ψ

We now define the set of good partitions BC to be

BC =

{
τ : |τ | = K, |ŝk − sk| ≤

10C

42
k

|êk − ek| ≤
10C

42
k

}
. (B.2.3)

It is sufficient to prove the following proposition in order to prove Theorem 3

Proposition 20. Let the assumptions of Theorem 1 hold. Given E holds and C

exceeds a global constant, the partition τ0 minimising the penalised cost C (x1:n, τ)

satisfies τ0 ∈ BC

The main ideas of the proof of Proposition 20 are that given E:

I Each fitted anomalous segment overlaps with at most one true anomalous seg-

ment; this excludes the situation depicted in Figure B.2.1a.

II Each fitted anomalous segment overlaps with at least one true anomalous region;

this excludes the situation depicted in Figure B.2.1b.
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III Each true anomalous segment overlaps with at most one fitted anomalous region,

i.e. there exists a bijection between fitted and true segments; this excludes the

situation depicted in Figure B.2.1c.

IV Each fitted anomalous segment is close (in the sense of BC) to the true segment

it fits; this excludes the situation depicted in Figure B.2.1d.

We will prove these properties which exclude the various types of poor partitions

in Figure B.2.1 in the following order: First we will prove property II, then IV, then

III, and then I. We will then use these to prove Proposition 20. In the subsequent

proofs we will use a certain number of technical Lemmata, all proved in Section B.3.

Throughout these proofs we will use the following two lemmata. The first one

describes the increase in un-penalised cost incurred by splitting a fitted segment into

two fitted segments and the second one bounds this increase in penalised cost for

splitting fitted dense collective anomalies.

Lemma 22. Let i ≤ j′ < j′ + 1 ≤ j. The following property is satisfied for all J

S (xi:j′ ,J)+S
(
x(j′+1):j,J

)
= S (xi:j,J)+

∑
c∈J

(
(j′ − i+ 1)(j − j′)

j − i+ 1

(
x̄

(c)
i:j′ − x̄

(c)
(j′+1):j

)2
)

Lemma 23. Let i ≤ j′ < j′ + 1 ≤ j The following holds given E

C (xi:j′ ,1) + C
(
x(j′+1):j,1

)
≤ C (xi:j,1) + Cψ + C

√
pψ + 2

√
pψ,

provided C exceeds some global constant.

We will also use the following lemma which shows that merging two adjacent

fitted collective anomalies which are both contained within a true anomalous segment

reduces the penalised cost substantially.
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Lemma 24. Let i, j′, and j be such that there exists a k such that sk < i ≤ j′ <

j′ + 1 ≤ j ≤ ek. Then,

C (xi:j,Jk) ≤ C (xi:j′ ,Jk) + C
(
x(j′+1):j,Jk

)
− 79

80
C (ψ + |Jk| log(p))

and

C (xi:j,1) ≤ C (xi:j′ ,1) + C
(
x(j′+1):j,1

)
− 79

80
C
(
ψ +

√
pψ
)

when |Jk| ≤ k∗ and |Jk| > k∗ respectively , provided C exceeds some global constant

and the event E holds.

The proof of part IV will mostly rely on the following three lemmata. The first

one shows that fitting a true collective anomaly as anomalous reduces the penalised

cost. The second and third one show that if a fitted sparse or dense collective anomaly

contains a large number of observations both from a true anomalous segment and from

a typical segment, then removing the typical data from the fitted anomaly reduces

the penalised cost.

Lemma 25. Let i and j be such that there exists a k such that sk < i ≤ j ≤ ek.

Moreover assume that

j − i+ 1 ≥ 4C

42
k

.

Then given E

C (xi:j,Jk) < 0

holds if the kth anomalous window is sparse; i.e. if |Jk| ≤ k∗; and

C (xi:j,1) < 0
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holds if the kth anomalous window is dense; i.e. if |Jk| > k∗; provided C exceeds some

global constant and the event E holds.

Lemma 26. Let i and j be such that there exists a k such that either of the following

holds:

1. sk < i ≤ j ≤ sk+1 and

min(ek − i+ 1, j − ek) ≥
10C

42
k

.

2. ek−1 < i ≤ j ≤ ek and

min(sk − i+ 1, j − sk) ≥
10C

42
k

.

Then the corresponding holds given E

1. if the kth anomalous window is sparse; i.e. if |Jk| ≤ k∗

C (xi:j,Jk) ≥ C (xi:ek ,Jk) + 6C(ψ + log(p))

if the kth anomalous window is dense; i.e. if |Jk| > k∗

C (xi:j,1) ≥ C (xi:ek ,1) + 6C(ψ +
√
pψ)

2. if the kth anomalous window is sparse; i.e. if |Jk| ≤ k∗

C (xi:j,Jk) ≥ C
(
x(sk+1):j,Jk

)
+ 6C(ψ + log(p))

if the kth anomalous window is dense; i.e. if |Jk| > k∗

C (xi:j,1) ≥ C
(
x(sk+1):j,1

)
+ 6C(ψ +

√
pψ)
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provided C exceeds some global constant and the event E holds.

Lemma 27. Let i and j be such that there exists a k such that the kth anomalous

window is dense, |Jk| > k∗, and either of the following holds:

1. sk < i ≤ j ≤ sk+1 and

min(ek − i+ 1, j − ek) ≥
10C

42
k

.

2. ek−1 < i ≤ j ≤ ek and

min(sk − i+ 1, j − sk) ≥
10C

42
k

.

Then the corresponding holds for all J given E

1.

C (xi:j,J) ≥ C (xi:ek ,1) + 4C(ψ +
√
pψ)

2.

C (xi:j,J) ≥ C
(
x(sk+1):j,1

)
+ 4C(ψ +

√
pψ)

provided C exceeds some global constant and the event E holds.

For Part II, we will require the following six lemmata. The first one proves that

merging two fitted collective anomalies contained within a truly anomalous segment

reduces the overall penalised cost substantially, even if they are non-adjacent. The

second one shows that if a fitted collective anomaly contains both typical and atypical

data, then the atypical data can be removed from the fitted collective anomaly without

increasing the penalised cost too much. The remaining Lemmata are mostly used to
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show that if a true anomaly has been fitted using the wrong set of components (i.e.

fitting a sparse anomaly as a dense one, a dense anomaly as a sparse one, or a sparse

anomaly as a sparse anomaly but not with the correct set of components), then it is

possible to replace this fitted collective anomaly by one with the right components

without increasing the overall penalised cost by too much.

Lemma 28. Let i, j′, and j be such that there exists a k such that sk < i ≤ j′ <

j′′ + 1 ≤ j ≤ ek. Then,

C (xi:j,Jk) ≤ C (xi:j′ ,Jk) + C
(
x(j′′+1):j,Jk

)
− 19

20
C (ψ + |Jk| log(p))

and

C (xi:j,1) ≤ C (xi:j′ ,1) + C
(
x(j′′+1):j,1

)
− 19

20
C
(
ψ +

√
pψ
)

when |Jk| ≤ k∗ and |Jk| > k∗ respectively, provided C exceeds some global constant

and the event E holds.

Lemma 29. Let i, j be such that there exists a k such that [sk + 1, ek] ∩ [i, j] 6= ∅,

ek−1 < i, and sk+1 ≥ j. Then,

C (xi′:j′ ,J)− C (xi:j,J) ≤ 8ψ + 8|J| log(p)

for |J| ≤ k∗and

C (xi′:j′ ,1)− C (xi:j,1) ≤ 8ψ + 8
√
pψ

where i′ = max(i, sk + 1) and j′ = min(j, ek) both hold given E.

Lemma 30. Let E hold and C exceed a global constant. Moreover, let i and j be such

that there exists a k such that sk < i ≤ j ≤ ek. Then

S(xi:j,J) ≥ α (Cψ + C|J| log(p))
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for some α > 0 implies that

√
|J|(j − i+ 1)µ2

k ≥
(√

αC −
√

2
)√

ψ + |J| log(p)

for any sparse J.

Lemma 31. Let i and j be such that there exists a k such that sk < i ≤ j ≤ ek. If

the kth anomalous window is sparse; i.e. if |Jk| ≤ k∗; and

S (xi:j,J) ≥ 19

20
C (|J| log(p) + ψ) ,

then

C (xi:j,Jk)− C (xi:j,J) ≤ 1

10
C|Jk| log(p) + 2ψ

holds for all sparse J, i.e. J satisfying |J| ≤ k∗, if C is larger than some global

constant and the event E holds.

Lemma 32. Let i and j be such that there exists a k such that sk < i ≤ j ≤ ek. If

the kth anomalous window is dense; i.e. if |Jk| > k∗; and

S (xi:j,J) ≥ 19

20
C (|J| log(p) + ψ) ,

then

C (xi:j,1)− C (xi:j,J) ≤ 1

10
C
√
pψ + 2ψ

holds for all sparse J, i.e. J satisfying |J| ≤ k∗, if C is larger than some global

constant and the event E holds.

Lemma 33. Let the event E hold. Moreover, let i and j be such that there exists a

k such that sk < i ≤ j ≤ ek. Then, if the kth anomalous window is sparse; i.e. if
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|Jk| ≤ k∗;

C (xi:j ,Jk)−C (xi:j ,1) ≤ 13

20
C|Jk| log(p)− 6

10
C
√
pψ+2ψ ≤ 1

10
C|Jk| log(p)− 1

20
C
√
pψ+2ψ

holds if C is larger than some global constant

For Part I we will then require the following lemmata, which are again concerned

with bounding the increase in penalised cost for replacing fitted segments with the

wrong number of components by fitted segments with the right number of components.

Lemma 34. Let i and j be such that there exists a k such that sk < i ≤ j ≤ ek. If

the kth anomalous window is dense; i.e. if |Jk| > k∗; and

S (xi:j,J) ≥ 3

10
C (|J| log(p) + ψ) ,

then

C (xi:j,1)− C (xi:j,J) ≤ 8

10
C
√
pψ − 6

10
C|J| log(p) + 2ψ

holds for all sparse J, i.e. J satisfying |J| ≤ k∗, if C is larger than some global

constant and the event E holds..

Lemma 35. Let i and j be such that there exists a k such that sk < i ≤ j ≤ ek. If

the kth anomalous window is sparse; i.e. if |J| ≤ k∗; and

S (xi:j,J) ≥ 3

10
C (|J| log(p) + ψ) ,

then

C (xi:j,1)− C (xi:j,J) ≤ 8

10
C|Jk| log(p)− 6

10
C|J| log(p) + 2ψ

holds for all sparse J, i.e. J satisfying |J| ≤ k∗, if C is larger than some global

constant and the event E holds.
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Property III

We can prove that a fitted segment must overlap with at least one true anomalous

segments:

Proposition 21. Let the assumptions of Theorem 1 hold. Let τ be an optimal par-

tition and E hold. Then, ∀(s, e,J) ∈ τ ∃k : [s + 1, e] ∩ [sk + 1, ek] 6= ∅, provided

C > 2.

Proof of Proposition 21: By contradiction: If (s, e,J) overlaps with no true

anomalous it can be shown that the partition τ \(s, e,J) has lower penalised cost than

τ , because of E1 if J is sparse and E4 if J is dense.

Property IV

We now prove the following proposition, which shows that if each true anomalous

region is fitted by exactly one segment, then the boundaries of that segment are close

to the boundaries of the corresponding anomalous region. To this end, we define the

set of partitions T1 as the set of all partitions fitting exactly K anomalous segments

in such a way that each fitted anomalous segment overlaps with exactly one true

anomalous region and each true anomalous region overlaps with exactly one fitted

anomalous segment. More formally,

T1 = {τ : |τ | = K ∧ (∀(s, e,J) ∈ τ ∃k : sk+1 ≥ e ∧ ek−1 ≤ s ∧ [s+ 1, e] ∩ [sk + 1, ek] 6= ∅)

∧ (∀k ∃(s, e,J) ∈ τ : [s+ 1, e] ∩ [sk + 1, ek] 6= ∅)}.

The following proposition then holds:
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Proposition 22. Let the assumptions of Theorem 1 hold. Given E, if a partition

τ ∈ T1 is optimal it must also satisfy τ ∈ BC, if C exceeds a global constant.

Proof of Proposition 22: Let τ be optimal. Consider the kth true anomalous

segment [sk+1, ek], which τ fits with the segment (ŝk, êk, Ĵ). We begin by showing this

fitted segment needs to cover most of the true anomalous region, because otherwise

adding an additional segment to τ would reduce the penalised cost.

Indeed, ŝk ≤ sk + 10C
42
k

, as otherwise either the partition τ ∪ (sk, sk + d10C
42
k
e,Jk), if

the kth anomalous segment is sparse, or the partition τ ∪ (sk, sk + d10C
42
k
e,1), if the

kth anomalous segment is dense, would have a lower overall penalised cost than τ by

Lemma 25, which would contradict the optimality of τ . êk ≥ ek − 10C
42
k

holds by a

similar argument.

The next step consists of showing that (ŝk, êk, Ĵ) does not extend too far beyond

the kth anomalous region. Our approach consists of using Lemmata 26 and 27 to show

that if this were to happen we could replace (ŝk, êk, Ĵ) by a different fitted segment

in a way which reduces penalised cost. We will just show that êk ≤ ek + 10C
42
k

, as a

similar argument implies that ŝk ≥ sk − 10C
42
k

.

We already know that ŝk ≤ sk+ 10C
42
k

. Thus, if êk > ek+ 10C
42
k

, the segment [ŝk+1, êk]

would contain at least d10C
42
k
e observations both from the typical distribution and the

kth anomalous window. It is possible to show that this partition can be replaced by

splitting up [ŝk + 1, êk] in such a way that the penalised cost is reduced.

• If Jk is dense, we can replace (ŝk, êk, Ĵ) first with (ŝk, ek − b10C
42
k
c, Ĵ) and (ek −

b10C
42
k
c, êk, Ĵ), increasing the penalised cost by no more than Cψ + C|J| log(p) if
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Ĵ is sparse and Cψ+(C+2)
√
pψ if Ĵ = 1 (By event E9). Lemma 27 then shows

that replacing (ek − b10C
42
k
c, êk, Ĵ) with (ek − b10C

42
k
c, ek,1) reduces the penalised

cost by at least 4Cψ+4C|Ĵ| log(p) if Ĵ is sparse and 4Cψ+4C
√
pψ when Ĵ = 1

respectively. Chaining these two transformations therefore leads to a reduction

in penalised cost contradicting optimality of τ .

• If Jk is sparse, the cases Ĵ = 1, and |Ĵ| ≤ k∗ have to be considered separately.

If Ĵ = 1,

C
(
x(ŝk+1):êk ,1

)
= C

(
x(ŝk+1):êk ,Jk

)
+ p+ C

√
pψ −

∑
c/∈Jk

(êk − ŝk)
(
η̄(ŝk+1):êk

)2
+ C|Jk| log(p)

≥ C

(
x
(ŝk+1):

(
ek−d 10C42

k

e
),Jk

)
+ C

(
x(

ek−b 10C42
k

c
)
:êk
,Jk

)
− 2C|Jk| log(p)− (C + 2)ψ + (C − 2)

√
pψ,

with the inequality following from E2 and the fact that splitting a segment

does not increase the un-penalised cost. Lemma 26, then shows that the above

quantity exceeds

C

(
x
(ŝk+1):

(
ek−d 10C42

k

e
),Jk

)
+C

(
x(

ek−b 10C42
k

c
)
:ek
,Jk

)
+6Cψ+4C|Jk| log(p)−(C+2)ψ+(C−2)

√
pψ,

which exceeds

C

(
x

(ŝk+1):

(
ek−d 10C

42
k

e
),Jk

)
+ C

(
x(

ek−b 10C

42
k

c
)

:ek
,Jk

)
,

thus contradicting the optimality of τ . Similarly, if |Ĵ| ≤ k∗,

C
(
x(ŝk+1):êk , Ĵ

)
≥ C

(
x(ŝk+1):êk ,Jk

)
−

∑
c∈Ĵ\Jk

(êk − ŝk)
(
η̄(ŝk+1):êk

)2
+ C(|Ĵ| − |Jk|) log(p)

≥ C

(
x
(ŝk+1):

(
ek−d 10C42

k

e
),Jk

)
+ C

(
x(

ek−b 10C42
k

c
)
:êk
,Jk

)
− 2C|Jk| log(p)− Cψ − 2ψ

− 2|Ĵ \ Jk| log(p) + C|Ĵ| log(p)

≥ C

(
x
(ŝk+1):

(
ek−d 10C42

k

e
),Jk

)
+ C

(
x(

ek−b 10C42
k

c
)
:ek
,Jk

)
− 2Cψ − 2C|Jk| log(p),
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with the second inequality following from E1 and the fact that splitting a seg-

ment does not increase the un-penalised cost. The third equality holds for large

enough values of C. As before, Lemma 26 shows that the above quantity exceeds

C

(
x

(ŝk+1):

(
ek−d 10C

42
k

e
),Jk

)
+ C

(
x(

ek−b 10C

42
k

c
)

:ek
,Jk

)
,

thus contradicting the optimality of τ .

Property II

We now prove that if all fitted segments of the optimal partition overlap with at most

one true anomalous segment, then each true anomalous segment must overlap with

exactly one fitted segment. To this end, we now define T2 as the set of partitions

in which each fitted anomalous segment overlaps with exactly one truly anomalous

region. More formally we define

T2 = {τ : ∀(s, e,J) ∈ τ ∃k : sk+1 ≥ e ∧ ek−1 ≤ s ∧ [s+ 1, e] ∩ [sk + 1, ek] 6= ∅}.

and note that T1 ⊂ T2. The following proposition holds:

Proposition 23. Let the assumptions of Theorem 1 hold. Given E, if a partition

τ ∈ T2 is optimal it must also satisfy τ ∈ T1 if C exceeds a global constant.

Proof of Proposition 23: The proof has two parts:

1. We need to show that the optimality of τ implies that each true anomalous

segment overlaps with at least one fitted segment in τ .

2. We need to show that the optimality of τ implies that each true anomalous

segment overlaps with at most one fitted segment in τ .
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We prove both statements by contradiction: First assume that τ is optimal but

that there exists a k such that [sk + 1, ek] is not covered at all by any fitted segment

in τ . Then by Lemma 25, the partition τ ∪ (sk, ek,Jk), if the kth change is sparse,

or τ ∪ (sk, ek,1), if the kth change is dense, has a lower penalised cost than τ , so

contradicting its optimality.

Now assume that there exists a k such that τ contains two or more fitted segments

overlapping with [sk + 1, ek]. We will show that it is possible to merge any two fitted

segments (called (a, b,J1), (c, d,J2), where c ≥ b without loss of generality) in a way

which reduces the total penalised cost thereby contradicting the optimality of τ . In

order to do so, we define a′ = max(sk, a) and d′ = min(ek, d). The following two

cases have to be considered separately, but share in the following idea: Merging

(a, b,J1), (c, d,J2), into a single fitted segment increases the un-penalised cost by at

most O(
√
C). At the same time merging reduces the penalty by O(C). Hence, if C

is large enough, merging reduces the overall penalised cost.

1. Jk is dense : We will show that replacing (a, b,J1), (c, d,J2) with (a′, d′,1)

reduces the penalised cost. Lemma 28, implies that it is sufficient to show that

C(xa′:b,1)− C(xa:b,J1) ≤ 5

40
C
(
ψ +

√
pψ
)

and

C(xc:d′ ,1)− C(xc:d,J2) ≤ 5

40
C
(
ψ +

√
pψ
)
.

We limit ourselves to proving the first statement, as the second one can be proven via

a symmetrical argument. If J1 = 1, the statement follows directly from Lemma 29.
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If |J1| ≤ k∗, we first note that Lemma 29 implies that

C(xa′:b,J1) ≤ C(xa:b,J1) + 8ψ + 8|J1| log(p) ≤ C(xa:b,J1) + 8ψ + 8
√
pψ (B.2.4)

By optimality of τ , C(xa:b,J1) < 0, must hold. This implies that

S(xa′:b,J1) ≥ 19

20
C (ψ + |J| log(p)) .

Consequently, Lemma 32 shows that

C(xa′:b,1) ≤ C(xa′:b,J1) +
1

10
C
(
ψ +

√
pψ
)
. (B.2.5)

Combining (B.2.4) and (B.2.5) finishes the proof.

2. Jk is sparse : We will show that replacing (a, b,J1), (c, d,J2) with (a′, d′,Jk)

reduces the penalised cost. Lemma 28, implies that it is sufficient to show that

C(xa′:b,Jk)− C(xa:b,J1) ≤ 5

40
C (ψ + |Jk| log(p))

and

C(xc:d′ ,Jk)− C(xc:d,J2) ≤ 5

40
C (ψ + |Jk| log(p)) .

These proofs for both statements are symmetrical. We therefore only prove the first

one. As before we begin by considering the case J1 = 1. We have

C(xa′:b,Jk) = C(xa:b,1) + (C(xa′:b,1)− C(xa:b,1)) + (C(xa′:b,Jk)− C(xa′:b,1))

≤ C(xa:b,1) +
(

8ψ + 8
√
pψ
)

+

(
2ψ +

1

10
C|Jk| log(p)− 1

20
C
√
pψ

)
≤ C(xa:b,1) + 10ψ +

1

10
C|Jk| log(p),

where the first inequality follows from Lemmata 29 and 33, while the second inequality

golds if C exceeds a fixed constant. Turning to the case in which |J1| ≤ k∗, we note
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that the same strategy of proof used for the case in which Jk is dense can be reapplied,

the only difference being that Lemma 31 has to be used instead of Lemma 32.

Property I

We will now prove that an optimal partition can not contain a fitted segment overlap-

ping with more than one true anomalous segment. We formalise this in the following

Proposition:

Proposition 24. Let the assumptions of Theorem 1 hold. Let τ be an optimal par-

tition. Then, τ ∈ T2, given that the event E holds and that the constant C exceeds a

global constant.

Note that this result trivially holds when K = 1. In order to prove this proposition,

we will use a variation of Proposition 23. For this we introduce the set of fitted sparse

segments, which either begin or end at the start of a true anomalous segment and

only contain a small fraction of the true anomalous segment

A1 =

{
(s, e,J) : |J| < k∗ ∧ ∃k :

(
s = sk ∧ e ≤ sk +

10C

42
k

)
∨
(
e = ek ∧ s ≥ ek −

10C

42
k

)}
,

as well as its analogue for dense changes

A2 =

{
(s, e,1) : ∃k :

(
s = sk ∧ e ≤ sk +

10C

42
k

)
∨
(
e = ek ∧ s ≥ ek −

10C

42
k

)}
.

The following two propositions can then be proven

Proposition 25. Let the assumptions of Theorem 1 hold. Let τ ′ ∈ T2 and E hold

true. Then there exists another partition τ ′′ ∈ T2 such that

C (x1:n, τ
′′) ≤ C (x1:n, τ

′)− 6

10

 ∑
(s,e,J)∈τ ′∩A1

(Cψ + C|J| log(p)) +
∑

(s,e,1)∈τ ′∩A2

(
Cψ + C

√
pψ
) ,

if C exceeds a global constant.
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Proposition 26. Let the assumptions of Theorem 1 hold. Let τ be an optimal parti-

tion and E hold true. Then, there exists a partition τ ′ ∈ T2 such that

C (x1:n, τ
′) ≤ C (x1:n, τ) +

11

20

 ∑
(s,e,J)∈τ∩A1

(Cψ + C|J| log(p)) +
∑

(s,e,1)∈τ∩A2

(
Cψ + C

√
pψ
) ,

with equality if and only if τ ∈ T2, if C exceeds a global constant.

Note that Proposition 25 does not assume that τ ′ is optimal. Using these two

propositions it is easy to derive the following:

Proof of Proposition 24: Assume that the optimal partition τ is such that

τ /∈ T2. Then, by Proposition 26 there exists a partition τ ′ ∈ T2 such that

C (x1:n, τ) > C (x1:n, τ
′)− 11

20

 ∑
(s,e,J)∈τ∩A1

(Cψ + C|J| log(p)) +
∑

(s,e,1)∈τ∩A2

(
Cψ + C

√
pψ
) ,

Moreover, Proposition 25 implies that there exists another partition τ ′′ ∈ T2 such that

C (x1:n, τ
′) ≥ C (x1:n, τ

′′) +
6

10

 ∑
(s,e,J)∈τ ′∩A1

(Cψ + C|J| log(p)) +
∑

(s,e,1)∈τ ′∩A2

(
Cψ + C

√
pψ
) ,

Consequently,

C (x1:n, τ) > C (x1:n, τ
′′) ,

which contradicts the optimality of τ .

Proof of Proposition 25: Proposition 23 shows that fitting an anomalous region

with two segments, or with one very short segment leaving most of the anomalous

region uncovered is sub-optimal. This proposition goes further by showing it is subop-

timal by at least O( 6
10
C). Crucially, this is larger than O(1

2
C) and will help us break

up fitted segments spanning multiple anomalous regions. The proof of this Proposi-

tion is similar in flavour to the proof of the second part of Proposition 23. The main

idea is that there are at most two fitted partitions ∈ τ ′ ∩ (A1 ∪ A2) overlapping with

the kth true anomalous region. These partitions therefore leave at least 20C
42
k

of the
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kth anomalous region uncovered. Therefore, if no other segment in τ ′ overlaps with

the kth anomalous region, one can be added without increasing the penalised cost. It

can then be merged with the fitted partitions in ∈ τ ′∩(A1 ∪ A2) and overlap with the

kth true anomalous region. This yields a new partition still in T2 with the claimed

reduction in penalised cost.

Since τ ′ ∈ T2, we can consider each of the K true anomalous regions separately.

We define the set of fitted segments in τ ′ which overlap with the kth anomalous region

to be

τ ′k = {(s, e,J) ∈ τ ′ : [s+ 1, e] ∩ [sk + 1, ek] 6= ∅} .

Proving the full result is therefore equivalent to proving the existence of a τ ′′k which

yields the required reduction in penalised cost. The following 3 cases are possible:

1. |τ ′k ∩ (A1 ∪ A2) | = 0, which happens when τ ′ does not contain a short fitted

segment at either the beginning or the end of the kth anomalous region. No

further transformation is required in this case, i.e. τ ′′k = τ ′k

2. |τ ′k ∩ (A1 ∪ A2) | = 1.

3. |τ ′k ∩ (A1 ∪ A2) | = 2.

We will only explicitly describe the transformation for the second case, as applying

it twice yields a transformation for the third case. Without loss of generality we further

assume that τ ′k ∩ (A1 ∪ A2) = (s, ek,J), i.e. that the short fitted segment lies at the

end of the kth anomalous window. A first special case can be treated very quickly.

If |J| ≤ k∗ and C
(
x(s+1):ek ,J

)
≥ 6

10
C(ψ + |J| log(p)), removing (s, ek,J) from τ ′k is
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sufficient. If |J| ≤ k∗ and C
(
x(s+1):ek ,J

)
< 6

10
C(ψ + |J| log(p)), we nevertheless have

C
(
x(s+1):ek ,Jk

)
≤ C

(
x(s+1):ek ,J

)
+

8

10
C|Jk| log(p)− 6

10
C|J| log(p) + 2ψ

if Jk is sparse and

C
(
x(s+1):ek ,1

)
≤ C

(
x(s+1):ek ,J

)
+

8

10
C
√
pψ − 6

10
C|J| log(p) + 2ψ

if Jk is dense, by Lemmata 35 and 34 respectively. Similarly, if J = 1 we have that

C
(
x(s+1):ek ,Jk

)
≤ C

(
x(s+1):ek ,J

)
+

8

10
C|Jk| log(p)− 6

10
C
√
pψ + 2ψ

if Jk is sparse as a direct consequence of Lemma 33 and, trivially,

C
(
x(s+1):ek ,1

)
≤ C

(
x(s+1):ek ,J

)
+

8

10
C
√
pψ − 6

10
C
√
pψ + 2ψ

if Jk is dense.

Consequently, if the next fitted change in τ ′k to the left of (s, e,J) is of the form

(s̃, ẽ,Jk), if Jk is sparse or (s̃, ẽ,1) if Jk is dense, for some s̃ ≥ sk, Lemma 28 shows

that the required reduction in penalised cost can be obtained by merging these two

fitted segments. If there is no other fitted change in τ ′k, or if the next fitted segment

in τ ′k to the left of (s, e,J) is (s̃, ẽ,J), where ẽ satisfies s− ẽ ≥ 10C
42
k

, Lemma 25 implies

that adding (s − d10C
42
k
e, s,Jk), if Jk is sparse or (s − d10C

42
k
e, s,1) if Jk is dense, does

not increase the penalised cost. Lemma 28 can then be applied as before to show that

merging this new fitted segment with (s, e,J) yields a new partition exhibiting the

required reduction in penalised cost.

Hence, in order to finish proving the result we only need to show that any (s̃, ẽ,J) ∈

τ ′k can either be removed without increasing the penalised cost or replaced by (max(s̃,
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sk), ẽ,Jk) in a way which increases the penalised cost by at most 5
40
C(|Jk| log(p) +ψ)

if Jk is sparse or (max(s̃, sk), ẽ,1) in a way which increases the penalised cost by at

most 5
40
C
(√

pψ + ψ
)

if Jk is dense. This however, was already shown in the proof of

Proposition 23. This finishes the proof.

Proof of Proposition 26: If τ ∈ T2, the result trivially holds. In order to prove

the result when τ ′ /∈ T2, we consider all possible fitted segments (s, e,J) ∈ τ \T2 which

overlap with at least two anomalous regions and show that

1. No such segment can overlap a true fitted dense change, the k′th say, by more

than 10C
4′2k

as this would contradict the optimality of τ .

2. All other fitted segments, overlapping with at least two anomalous regions, in-

cluding, potentially, a certain number of sparse changes by more that 10C
4 can

be replaced by fitted segments each overlapping with exactly one true anoma-

lous segment in a way which strictly bounds the increase in penalised cost as

stipulated by the proposition.

1) First of all we can show that the optimality of τ implies that no partition

(s, e,J) ∈ τ \ T2 can overlap a dense change (the k′th change say) by more than 10C
4′2k

.

Otherwise, the interval [s+1, e] would also contain at least 10C
4′2k

observations belonging

to the typical distribution. We could therefore split it up into three segments (increas-

ing the penalised cost by at most 2Cψ+ 2C|J| log(p) or 2Cψ+ 2(C + 2)
√
pψ), one of

which containing exactly d10C
4′2k
e of observations belonging to the typical distribution

and d10C
4′2k
e of observations belonging to the k′th anomalous window. Lemma 27 shows

that such a segment can be replaced in a way which reduces the penalised cost by
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at least 4Cψ + 4C
√
pψ. Overall, we would thus obtain a new partition with a lower

penalised cost than τ contradicting the optimality of τ .

2) Consider now, a segment (s, e,J) ∈ τ \ T2 not overlapping with any dense

changes by more than 10C
42
k

. For this segment define the set of true anomalous segments

it overlaps by more than 10C
42
k

to be

De,s :=

{
k : |[s+ 1, e] ∩ [sk + 1, ek + 1]| ≥ 10C

42
k

}
.

and note that |Jk| is sparse if k ∈ Ds,e for some (s, e,J) ∈ τ \ T2. We have to consider

the following 4 scenarios

1. The beginning of the fitted segment (s, e,J) ∈ τ \T2 overlaps with a true anoma-

lous region [sk′ + 1, ek′ ], but does so by less than 10C
42
k′

. i.e. ∃k′ : ek′ − 10C
42
k′
≤

s+ 1 ≤ ek′ .

2. The end of the fitted segment (s, e,J) ∈ τ \ T2 overlaps with a true anomalous

region [sk′′ + 1, ek′′ ], but does so by less than 10C
42
k′′

. i.e. ∃k′′ : sk′′ + 1 + 10C
42
k′′
≥

e ≥ sk′′ + 1.

3. Both apply

4. None of 1 and 2 apply. Note that this allows for the beginning and or the end

of (s, e,J) ∈ τ \ T2 to lie in a truly anomalous region provided the overlap with

that region exceeds the critical threshold of 10C
42 .

We then replace (s, e,J) in τ to obtain a new partition τ̃ . depending on the cases

above we define τ̃ to be
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1.

(τ \ {(s, e,J)}) ∪ {(s, ek′ ,J)} ∪

 ⋃
k∈De,s

{(sk, ek,Jk)}


2.

(τ \ {(s, e,J)}) ∪

 ⋃
k∈De,s

{(sk, ek,Jk)}

 ∪ {(sk′′ , e,J)}

3.

(τ \ {(s, e,J)}) ∪ {(s, ek′ ,J)} ∪

 ⋃
k∈De,s

{(sk, ek,Jk)}

 ∪ {(sk′′ , e,J)}

4.

(τ \ {(s, e,J)}) ∪
⋃

k∈De,s

{(sk, ek,Jk)}

depending on which case applies. The main effect of this transformation is the same

across all cases: It results in all true anomalous regions contained in (s, e,J) to be fit-

ted separately and according to the ground truth. Only the number of fitted segments

belonging to A1 and/or A2 depends on the case. Since applying this transformation

for all (s, e,J) ∈ τ \ T2 leads to a new partition τ ′ which is contained in T2, it is

sufficient to prove that each transformation individually increases the penalised cost

by strictly less than

1. 11
20
C (ψ + |J| log(p)) if J is sparse or 11

20
C
(
ψ +
√
pψ
)

if J is dense.

2. 11
20
C (ψ + |J| log(p)) if J is sparse or 11

20
C
(
ψ +
√
pψ
)

if J is dense.

3. 22
20
C (ψ + |J| log(p)) if J is sparse or 22

20
C
(
ψ +
√
pψ
)

if J is dense.

4. 0
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depending on the case in order to prove the proposition. The fourth case follows

directly from the following Lemma:

Lemma 36. Let the event E hold and C exceed some global constant. Let s and e be

such the fourth scenario applies, i.e.

1. @k′ : ek′ − 10C
42
k′
≤ s+ 1 ≤ ek′.

2. @k′′ : sk′′ + 1 + 10C
42
k′′
≥ e ≥ sk′′ + 1

Then, the following holds true for all sparse J

C (xs,e,J) ≥ 19

20
C (ψ + |J| log(p)) +

∑
k∈Ds,e

(
C
(
x(sk+1):ek ,Jk

))
Moreover, the following statement is also true:

C (xs,e,1) ≥ 19

20
C
(
ψ +

√
pψ
)

+
∑
k∈Ds,e

(
C
(
x(sk+1):ek ,Jk

))
.

This Lemma can also be used to bound the increase in penalised cost obtained for

the other three cases. The only difference is that (s, e,J) is first split up to twice in

order to remove the short overlap with the true anomalous region at the beginning

and/or the end. For the sake of brevity, we limit ourselves to write out the proof for

the third case, for which the result is tightest. If, J is sparse, we have that

C
(
x(s+1):e,J

)
≥ C

(
x(s+1):ek′

,J
)

+ C
(
x(ek′+1):sk′′

,J
)

+ C
(
x(sk′′+1):e,J

)
− 2C (ψ + |J| log(p))

> C
(
x(s+1):ek′

,J
)

+
∑

k∈Ds,e

(
C
(
x(sk+1):ek ,Jk

))
+ C

(
x(sk′′+1):e,J

)
− 22

20
C (ψ + |J| log(p)) ,

where the inequality follows from Lemma 36. Similarly, if, J = 1 is dense, we have

that

C
(
x(s+1):e,1

)
≥ C

(
x(s+1):ek′

,1
)

+ C
(
x(ek′+1):sk′′

,1
)

+ C
(
x(sk′′+1):e,1

)
− 2(C + 1)

(
ψ +

√
pψ
)

> C
(
x(s+1):ek′

,1
)

+
∑
k∈Ds,e

(
C
(
x(sk+1):ek ,Jk

))
+ C

(
x(sk′′+1):e,1

)
− 22

20
C
(
ψ +

√
pψ
)
,
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where the inequalities follow from Lemma 36, E9, and C exceeding a global constant.

This finishes the proof.

Proof of Proposition 20

Propositions 23, 21, 24, and 24 give the result.

B.3 Proofs for Lemmata

B.3.1 Proof of Lemma 14

The MGF of Z = (X − c)+ is given by

E
(
eλZ
)

= P
(
χ2
v < c

)
+

∫ ∞
c

eλ(x−c) 1

Γ
(
v
2

)
2
v
2

x
v
2
−1e−

1
2
xdx

= P
(
χ2
v < c

)
+

e−λc

Γ
(
v
2

)
2
v
2

∫ ∞
c

x
v
2
−1e−(1−2λ)xdx

using the substitution y = (1− 2λ)x the above can be shown to be equal to

P
(
χ2
v < c

)
+

e−λa

Γ
(
v
2

)
2
v
2 (1− 2λ)

v
2

∫ ∞
c

y
v
2−1e−ydy = P

(
χ2
v < c

)
+

e−λc

(1− 2λ)
v
2
P
(
χ2
v > c(1− 2λ)

)
.

B.3.2 Proof of Lemma 15

As shown by Lemma 14, the MGF of Z = (x− c)+ is given by

P
(
χ2
v < c

)
+

e−λc

(1− 2λ)v/2
P
(
χ2
v > c(1− 2λ)

)
,

for 0 ≤ λ ≤ 1/2. Consequently,

d

dλ

(
E
(
eλZ
))

=
2cf(c)

1− 2λ
+

(
v

1− 2λ
− c
)

e−λc

(1− 2λ)v/2
P
(
χ2
v > c(1− 2λ)

)
.
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Evaluating the above at λ = 0 shows that the mean of Z is indeed µ = 2cf(c) + (v −

c)P (χ2
v > c). We therefore have

d

dλ

(
log
(
E
(
eλZ
)))
− µ

=
d
dλ

(
E
(
eλZ
))

E (eλZ)
− µ =

2cf(c)
1−2λ

+
(

v
1−2λ
− c
)

e−λc

(1−2λ)v/2
P (χ2

v > c(1− 2λ))

P (χ2
v < c) + e−λc

(1−2λ)v/2
P (χ2

v > c(1− 2λ))
− µ

=
1

1− 2λ

[
2cf(c) + (v − (1− 2λ) c) e−λc

(1−2λ)v/2
P (χ2

v > c(1− 2λ))

P (χ2
v < c) + e−λc

(1−2λ)v/2
P (χ2

v > c(1− 2λ))
− (1− 2λ)µ

]

=
1

1− 2λ

[
2cf(c)− (v − c)P (χ2

v < c)− 2λcP (χ2
v < c)

P (χ2
v < c) + e−λc

(1−2λ)v/2
P (χ2

v > c(1− 2λ))
+ (v − (1− 2λ) c)− (1− 2λ)µ

]

=
1

1− 2λ

[
µ− (v − c)− 2λcP (χ2

v < c)

P (χ2
v < c) + e−λc

(1−2λ)v/2
P (χ2

v > c(1− 2λ))
+ (v − c− µ) + 2(µ+ c)λ

]
.

Next note that

P
(
χ2
v > c(1− 2λ)

)
=

∫ ∞
c(1−2λ)

1

2
v
2 Γ
(
v
2

)x v2−1e−x/2dx

=
1

2
v
2 Γ
(
v
2

)eλc ∫ ∞
c

(
y

y − 2λc

)1− v
2

y
v
2
−1e−y/2dx.

When v ≤ 2, this shows that:

P
(
χ2
v > c

)
< e−λcP

(
χ2
v > c(1− 2λ)

)
<

P (χ2
v > c)

(1− 2λ)1− v
2

. (B.3.1)

We can now use this result to further bound the MGF of the truncated χ2
1. We

consider two cases separately:

Case 1: µ − (v − c) − 2λcP (χ2
v < c) ≥ 0. The lower bound in B.3.1 shows that

d
dλ

(
log
(
E
(
eλZ
)))
− µ is bounded by

1

1− 2λ

 µ− (v − c)− 2λcP
(
χ2
v < c

)
P (χ2

v < c) + 1

(1−2λ)
v
2
P (χ2

v > c)
+ (v − c− µ) + 2(µ+ c)λ


≤ 1

1− 2λ

[
µ− (v − c)− 2λcP

(
χ2
v < c

)
+ (v − c− µ) + 2(µ+ c)λ

]
=

1

1− 2λ

[
2(µ+ cP

(
χ2
v > c

)
)λ
]

≤ 2λ(1− λ)

(1− 2λ)2
(µ+ cP

(
χ2
v > c

)
) =

2λ(1− λ)

(1− 2λ)2
(2cf(c) + vP

(
χ2
v > c

)
)



APPENDIX B. MVCAPA 214

Case 2: µ − (v − c) − 2λcP (χ2
v < c) < 0. The upper bound in B.3.1 shows that

d
dλ

(
log
(
E
(
eλZ
)))
− µ is bounded by

1

1− 2λ

[
µ+ (v − c)− 2λcP

(
χ2
v < c

)
P (χ2

v < c) + 1
1−2λP (χ2

v > c)
+ (v − c− µ) + 2(µ+ c)λ

]

=
1

1− 2λ

[
(v − c− µ)

(
1− 1

P (χ2
v < c) +

P(χ2
v>c)

1−2λ

)
+ 2λc

(
1−

P
(
χ2
v < c

)
P (χ2

v < c) +
P(χ2

v>c)
1−2λ

)
+ 2λµ

]

=
1

1− 2λ

[
(v − c− µ)

1
1−2λP

(
χ2
v > c

)
− P

(
χ2
v > c

)
P (χ2

v < c) + 1
1−2λP (χ2

v > c)
+ 2λc

(
1

1−2λP
(
χ2
v > v

)
P (χ2

v < c) + 1
1−2λP (χ2

v > c)

)
+ 2λµ

]

=
1

1− 2λ

[
(v − c− µ)

2λP
(
χ2
v > c

)
1− 2λP (χ2

v < c)
+ 2λc

P
(
χ2
v > c

)
1− 2λP (χ2

v < c)
+ 2λµ

]

=
2λ

1− 2λ

[
µ+ (v − µ)

P
(
χ2
v > c

)
1− 2λP (χ2

v < c)

]

=
2λ

(1− 2λ)2

[
µ (1− 2λ) + (v − µ)P

(
χ2
v > c

) 1− 2λ

1− 2λP (χ2
v < c)

]
=

2λ

(1− 2λ)2

[
µ (1− 2λ) + (v − µ)P

(
χ2
v > c

)
− (v − µ)P

(
χ2
v > c

) 2λP
(
χ2
v > c

)
1− 2λP (χ2

v < c)

]

Using the fact that µ+ (v − c)− 2λcP (χ2
v < c) < 0 and that v−µ ≥ 0, we can bound

this by

=
2λ

(1− 2λ)2

[
µ (1− λ) + (v − µ)P

(
χ2
v > c

)
− 2λcP

(
χ2
v > c

)2]
=

2λ

(1− 2λ)2

[(
µ+ cP

(
χ2
v > c

))
(1− λ) + (v − µ− c)P

(
χ2
v > c

)
− 2λcP

(
χ2
v > c

)2
+ cλP

(
χ2
v > c

)]
Since λ < 1

2
and v − c− µ ≤ 0, we have that

(v − µ− c)P
(
χ2
v > c

)
− 2λcP

(
χ2
v > c

)2
+ cλP

(
χ2
v > c

)
≤ λP

(
χ2
v > c

) (
2 (v − c− µ) + c− 2cP

(
χ2
v > c

))
= λP

(
χ2
v > c

) (
2
(
E
(
χ2
v|χ2

v < c
)
P
(
χ2
v < c

)
− cP

(
χ2
v < c

))
+ c− 2cP

(
χ2
v > c

))
= λP

(
χ2
v > c

) (
2E
(
χ2
v|χ2

v < c
)
P
(
χ2
v < c

)
− c
)
≤ 0

where the last inequality follows from the fact that E (χ2
v|χ2

v < c) ≤ c/2, which is due

to the fact that the pdf of the χ2
v-distribution is decreasing.

Consequently,

d

dλ

(
log
(
E
(
eλZ

))
− λµ

)
≤ 2λ(1− λ)

(1− 2λ)2
(2cf(c) + vP

(
χ2
v > c

)
) =

d

dλ

(
2(2cf(c) + vP

(
χ2
v > c

)
)λ2

2(1− 2λ)

)
.
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This shows that

log
(
E
(
eλ(Z−µ)

))
≤ 2(2cf(c) + vP (χ2

v > c))λ2

2(1− 2λ)
,

which finishes the proof.

B.3.3 Proof of Lemma 16

It is sufficient to show that

P (Yi ≥ a+ x|Yi ≥ a, vi = 1) ≥ P (Z > a+ x|Z ≥ a) .

We have that

P (Yi ≥ a+ x|Yi ≥ a, vi = 1) =
P
(
εi >
√
a+ x− µ

)
P (εi >

√
a− µ)

The derivative of left hand side with respect to µ is

P
(
εi >
√
a+ x− µ

)
P (εi >

√
a− µ)

(
φ(
√
a+ x− µ)

P
(
εi >
√
a+ x− µ

) − φ(
√
a− µ)

P (εi >
√
a− µ)

)

This is greater than 0, since the hazard rate of the Gaussian is increasing. Hence,

P (Yi ≥ a+ x|Yi ≥ a, vi = 1) =
P
(
εi >
√
a+ x− µ

)
P (εi >

√
a− µ)

≥
P
(
εi >
√
a+ x

)
P (εi >

√
a)

= P (Z > a+ x|Z ≥ a) .

B.3.4 Proof of Lemma 17

Let Z ∼ χ2
1 and write µ = E

(
(Z − a)+). The MGF G(λ) of the random variable

W = (a− Z)|(Z > a) +
µ

P (χ2
1 > a)
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is then

G(λ) = exp

(
λµ

P (χ2
1 > a)

)
1

P (χ2
1 > a)

∫ ∞
0

1√
2πx

eλa−λzx−
1
2xdx

= exp

(
λµ

P (χ2
1 > a)

+ λa

)
P
(
χ2
1 > a(1 + 2λ)

)
P (χ2

1 > a)
√

1 + 2λ
.

Consequently, dG(λ)
dλ

is equal to

1

P (χ2
1 > a)

[
−2af(a)

1 + 2λ
e−λa +

(
µ

P (χ2
1 > a)

+ a− 1

1 + 2λ

)
P
(
χ2
1 > a(1 + 2λ)

)
√

1 + 2λ

]
exp

(
λµ

P (χ2
1 > a)

+ λa

)
.

Therefore,

d log (G(λ))

dλ
=

µ

P (χ2
1 > a)

+ a− 1

1 + 2λ
− 2af(a)√

1 + 2λ

e−λa

P (χ2
1 > a(1 + 2λ))

Since,

P
(
χ2

1 > a(1 + 2λ)
)

=

∫ ∞
a(1+2λ)

1√
2πx

e−
x
2 dx

= e−λa
∫ ∞
a

1√
2πy

√
1

1 + 2λa
y

e−
y
2 dy ≤ e−λaP

(
χ2

1 > a
)
,

we must also have

d log (G(λ))

dλ
<

2λ

1 + 2λ

(
1 +

2af(a)

P (χ2
1 > a)

)
≤ 2λ

(
1 +

2af(a)

P (χ2
1 > a)

)
and therefore

G(λ) ≤
λ22

(
1 + 2af(a)

P(χ2
1>a)

)
2

.

This proves that W is sub-Gaussian. Standard tail bounds for sub-Gaussian random

variables then imply that independent random variables W1, ...,Wk obeying the same

law as W satisfy

P

(
k∑
i=1

> 2

√(
1 +

2af(a)

P (χ2
1 > a)

)
kt

)
< e−t,

for positive integers k and all t ∈ R. This finishes the proof.
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B.3.5 Proof of Lemma 18

The equality follows from Lemma 15. To prove the inequality, writeG(τ) = τ+2af(a),

where 0 ≤ τ ≤ 1 and a is defined by the equation P (χ2
1 > a) = τ . Note that G(0) = 0

and

dG

dτ
= 1 +

da

dτ
(f(a)− af(a)) = 1− 1

f(a)
(f(a)− af(a)) = a > 0

Hence, m + 2paf(a) = pG(m
p

) is increasing in m. Moreover the following bounds

hold on a:

2τ = 2P
(
χ2

1 > a
)
< P

(
χ2

2 > 2a
)

= exp(−a).

Therefore, we have that

G(τ) ≤
∫ τ

0

−2 log(x)dx = −2τ log(τ) + 2τ = 2τ log

(
1

τ

)
+ 2τ.

Noting that m+ 2paf(a) = pG(m
p

), finishes the proof.

B.3.6 Proof of Lemma 19

We know from Lemma 15, that

E
(
(χ2

1 − b)+|χ2
1 > b

)
= 1− b+ 2bf(b)P

(
χ2

1 > b
)−1

.

Next note that

P
(
χ2

1 > b
)

=

∫ ∞
b

√
2

πx
e−x/2dx ≤

∫ ∞
b

√
2

πb
e−x/2dx = 2f(b)

Hence,

E
(
(χ2

1 − b)+|χ2
1 > b

)
= 1− b+ 2bf(b)P

(
χ2

1 > b
)−1 ≥ 1− b+ b = 1.

This finishes the proof.
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B.3.7 Proof of Lemma 20

Let η1, ..., ηs+w
i.i.d.∼ N(0, 1) for some positive integer s. Define

Zs := max
0≤a≤w

(s+ a)
(
η̄1:(s+a)

)2
.

Write Ta =
∑a

t=1 ηt and note that eλTa is a super-martingale for all λ > 0. The

following holds:

P (Zs > u) ≤
dlogb(s+w)e∑
i=blogb(s)c

P
(

max
bi≤s+a≤bi+1

(s+ a)
(
η̄1:(s+a)

)2
> u

)

≤
dlogb(s+w)e∑
i=blogb(s)c

P
(

max
bi≤a′≤bi+1

(Ta′)
2 > biu

)

≤ 2

dlogb(s+w)e∑
i=blogb(s)c

P
(

max
bi≤a′≤bi+1

Ta′ >
√
biu

)
= 2

dlogb(s+w)e∑
i=blogb(s)c

min
λ

[
P
(

max
bi≤a′≤bi+1

eλTa′ > e
√
biuλ

)]

≤ 2

dlogb(s+w)e∑
i=blogb(s)c

min
λ

[
E
(
e
λTbbi+1c

)
e−
√
biuλ
]

= 2

dlogb(s+w)e∑
i=blogb(s)c

min
λ

[
e
bbi+1c

2
λ2−
√
biuλ

]

≤ 2

dlogb(s+w)e∑
i=blogb(s)c

min
λ

[
e
bi+1

2
λ2−
√
biuλ

]
= 2

dlogb(s+w)e∑
i=blogb(s)c

e−
u
2b = 2(1 + dlogb(s+ w)e − blogb(s)c)e−

u
2b

≤ 2(3 + logb(s+ w)− logb(s))e
− u

2b = 2(3 + logb(1 + w/s))e−
u
2b ≤ 2(3 + logb(w + 1))e−

u
2b

≤ 6
1 + log(w + 1)

log(b)
e−

u
2b .

Here the fifth inequality follows from Doob’s martingale inequality.

Next note that

P
(

max
0≤f,d≤w:j−f−d−i≥0

(
(j − f − d− i+ 1)

(
η̄

(c)
(i+d):(j−f)

)2
)
> u

)
≤

w∑
d=0

P
(

max
0≤f≤min(w,j−i−d)

(
(j − f − d− i+ 1)

(
η̄

(c)
(i+d):(j−f)

)2
)
> u

)

≤
w∑
d=0

P
(
Zmax(1,j−i−2w) > u

)
≤ 6(w + 1)

1 + log(w + 1)

log(b)
e−

u
2b .
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B.3.8 Proof of Lemma 21

In this section, we define the event that Ea holds for a given set tuple (i, j) to be

E
(i,j)
a , for a = 1, ..., 11. We know from the proof of Propositions 4 that

P
(
E

(i,j)
1

)
> 1− A1e

−ψ

holds. A Bonferroni correction over all possible tuples (i, j) then gives P (E1) >

1− A1n
2e−ψ. Furthermore, we have that

P
(
E

(i,j)
2

)
= P

(
p∑
c=1

(j − i+ 1)
(
η̄

(c)
i:j

)2

< p+ 2ψ + 2
√
pψ

)
= P

(
χ2
p < p+ 2ψ + 2

√
pψ
)

≥ 1− e−ψ,

with the inequality following from the tail bounds proven in Laurent and Massart

(2000). A Bonferroni correction then gives P (E2) > 1 − n2e−ψ. Next note that for

any fixed fixed i, j, and c

P
(

(j − i+ 1)
(
η̄

(c)
i:j + µ̄

(c)
i:j

)2

> s

)
≥ P

(
(j − i+ 1)

(
η̄

(c)
i:j

)2

> s

)
holds for all s ≥ 0. Therefore,

P

(
p∑
c=1

(j − i+ 1)
(
η̄
(c)
i:j + µ̄

(c)
i:j

)2
> p− 2

√
pψ

)
≥ P

(
p∑
c=1

(j − i+ 1)
(
η̄
(c)
i:j

)2
> p− 2

√
pψ

)
≥ 1−e−ψ,

with the last inequality again flowing from Laurent and Massart (2000). A Bonferroni

correction then gives P (E3) > 1− n2e−ψ. Next note that

1√
|S|

∑
c∈S

√
j − i+ 1η̄i:j ∼ N(0, 1)

We can then use the well known tail bounds on the Normal distribution to show that

P

(∣∣∣∣∣ 1√
|S|

∑
c∈S

√
j − i+ 1η̄i:j

∣∣∣∣∣ <√2ψ + 2|S| log(p)

)
≥ 1− A4p

−|S|e−ψ,
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for a constant A4. A Bonferroni correction over all possible sets S then shows that

P

(∣∣∣∣∣ 1√
|S|

∑
c∈S

√
j − i+ 1η̄i:j

∣∣∣∣∣ <√2ψ + 2|S| log(p) ∀S ⊂ {1, ..., p}

)

≥ 1−
p∑

m=1

|{S|S ⊂ {1, ..., p}, |S| = m}|A4p
−|m|e−ψ ≥ 1−

p∑
m=1

p!

(p−m)!m!
A4p

−|m|e−ψ

≥ 1−
p∑

m=1

1

m!
pmA4p

−|m|e−ψ ≥ 1− (A4e) e
−ψ.

A Bonferroni correction over the indices i and j then proves that P (E4) > 1 −

(A4e)n
2e−ψ. Next, for fixed i and j,

P

(∑
c/∈S

(j − i+ 1)
(
η̄
(c)
i:j + µ̄

(c)
i:j

)2
> p− 2

√
pψ − 2ψ − 2|S| log(p)

)

≥ P

(∑
c/∈S

(j − i+ 1)
(
η̄
(c)
i:j

)2
> p− 2

√
pψ − 2ψ − 2|S| log(p)

)

≥ 1− P

(
p∑
i=1

(j − i+ 1)
(
η̄
(c)
i:j

)2
≤ p− 2

√
pψ

)
− P

(∑
c∈S

(j − i+ 1)
(
η̄
(c)
i:j

)2
> 2ψ − 2|S| log(p)

)

≥ 1− (1 +A1)e−ψ.

A Bonferroni correction over all indices i and j then gives P (E5) > 1− (1+A1)n2e−ψ.

Next we note that(∑
c∈S

(
j∑
t=i

(
µ

(c)
t − µ̄

(c)
i:j

)
η

(c)
t

))
√√√√∑

c∈S

j∑
t=i

(
µ

(c)
t − µ̄

(c)
i:j

)2

−1

∼ N(0, 1).

Consequently,

P


∣∣∣∣∣∣∣
(∑
c∈S

(
j∑
t=i

(
µ

(c)
t − µ̄

(c)
i:j

)
η
(c)
t

))
√√√√∑

c∈S

j∑
t=i

(
µ

(c)
t − µ̄

(c)
i:j

)2−1
∣∣∣∣∣∣∣ >

√
2ψ + 2 |S ∩Wi,j | log(p)


≤ A4p

−|S∩Wi,j |e−ψ,
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for some constant A4. A Bonferroni correction over the sets S then gives that

P


∣∣∣(∑c∈S

(∑j
t=i

(
µ

(c)
t − µ̄

(c)
i:j

)
η
(c)
t

))∣∣∣√∑
c∈S

∑j
t=i

(
µ

(c)
t − µ̄

(c)
i:j

)2 ≤
√

2ψ + 2 |S ∩Wi,j | log(p) ∀S ⊂ {1, ..., p}



= P


∣∣∣(∑c∈S∩Wi,j

(∑j
t=i

(
µ

(c)
t − µ̄

(c)
i:j

)
η
(c)
t

))∣∣∣√∑
c∈S∩Wi,j

∑j
t=i

(
µ

(c)
t − µ̄

(c)
i:j

)2 ≤
√

2ψ + 2 |S ∩Wi,j | log(p) ∀S ⊂ {1, ..., p}



= P


∣∣∣(∑c∈W

(∑j
t=i

(
µ

(c)
t − µ̄

(c)
i:j

)
η
(c)
t

))∣∣∣√∑
c∈W

∑j
t=i

(
µ

(c)
t − µ̄

(c)
i:j

)2 ≤
√

2ψ + 2 |W | log(p) ∀W ⊂Wi,j



≤ 1−
∑

W⊂Wi,j

P


∣∣∣(∑c∈W

(∑j
t=i

(
µ

(c)
t − µ̄

(c)
i:j

)
η
(c)
t

))∣∣∣√∑
c∈W

∑j
t=i

(
µ

(c)
t − µ̄

(c)
i:j

)2 >
√

2ψ + 2 |W | log(p) ∀W ⊂Wi,j


≤ 1−

|Wi:j |∑
|W |=1

p!

(p− |W |)!(|W |)!
A4p

−|W |e−ψ ≤ 1− (A4e)e
−ψ

We note that

(j − j′)(j′ − i+ 1)

j − i+ 1

(
η̄

(c)
i:j′ − η̄

(c)
(j′+1):j

)2

∼ χ2
1,

and

P
(

(j − j′)(j′ − i+ 1)

j − i+ 1

(
x̄

(c)
i:j′ − x̄

(c)
(j′+1):j

)2

> t

)
≥ P

(
χ2

1 > t
)
∀t > 0.

Therefore, proving that constants A7, A8, and A9 exist such that P
(
E

(i,j′,j)
7

)
>

1 − A7e
−ψ, P

(
E

(i,j′,j)
8

)
> 1 − A8e

−ψ, and P
(
E

(i,j′,j)
9

)
> 1 − A9e

−ψ hold for fixed

i, j′, and j is equivalent to proving the existence of constants A1, A2, and A3 such

that P
(
E

(i,j)
1

)
> 1 − A1e

−ψ, P
(
E

(i,j)
2

)
> 1 − A2e

−ψ, and P
(
E

(i,j)
3

)
> 1 − A3e

−ψ

hold. This was already done earlier in the proof. A Bonferroni correction over all

possible i, j′, and j then yields P (E7) > 1 − A7n
3e−ψ, P (E8) > 1 − A8n

3e−ψ, and

P (E9) > 1− A9n
3e−ψ.
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The fact that (∑
c∈Jk

√
j − i+ 1η̄

(c)
i:j

)(√
2|Jk|ψ

)−1

∼ N(0, 1)

shows that P
(
E

(i,j)
10

)
> 1−A10e

−ψ for some constant A10. The cardinality of the set

of allowed tuples (i, j) is strictly less than n2. Consequently P (E10) > 1−A10n
2e−ψ.

The same argument can be used to show that P
(
E

(i,ek,j)
11

)
> 1−A11e

−ψ. A Bonferroni

correction over all triplets (i, ek, j) then proves that P (E11) > 1− A11n
3e−ψ

B.3.9 Proof of Lemma 22

This Lemma can be proven using straightforward algebra.

S (xi:j,J) =
∑
c∈J

(j − i+ 1)
(
x̄

(c)
i:j

)2

=
∑
c∈J

(j − i+ 1)−1
(
x̄

(c)
i:j

)2

=
∑
c∈J


(

(j′ + 1− i)x̄(c)
i:j′ + (j − j′)x̄(c)

(j′+1):j

)2

j − i+ 1

 .
Next we note that the following holds for all a, b, y, and z:

(ay + bz)2

a+ b
=
a2y2 + 2abyz + b2z2

a+ b
= ay2 + bz2 +

−aby2 + 2abyz − baz2

a+ b

= ay2 + bz2 − ab

a+ b
(y − z)2.

Thus,

S (xi:j ,J) =
∑
c∈S

(j′+1−i)
(
x̄
(c)
i:j′

)2
+
∑
c∈S

(j−j′)
(
x̄
(c)
(j′+1):j

)2
−
∑
c∈S

(j − j′)(j′ − i+ 1)

j − i+ 1

(
x̄
(c)
i:j′ − x̄

(c)
(j′+1):j

)2
,

which finishes the proof.

B.3.10 Proof of Lemma 23

This result deals with the p term of the penalty incurred for splitting a sparse fitted

segment into two and follows directly from E9 and Lemma 22. Indeed, by Lemma 22
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implies that

C (xi:j′ ,1)+C
(
x(j′+1):j ,1

)
−C (xi:j ,1) = p+Cψ+C

√
pψ−

p∑
c=1

(j − j′)(j′ − i+ 1)

j − i+ 1

(
x̄
(c)
i:j′ − x̄

(c)
(j′+1):j

)2
.

Given E9, the above is bounded by

p+ Cψ + C
√
pψ − p+ 2

√
pψ = Cψ + C

√
pψ + 2

√
pψ.

This finishes the proof.

B.3.11 Proof of Lemma 24

This lemma shows that merging two neighbouring fitted segments reduces the pe-

nalised cost by O(C) and follows almost immediately from Lemma 22. We consider

the cases |Jk| ≤ k∗ and |Jk| > k∗ separately. Let |Jk| ≤ k∗. Then

C (xi:j′ ,Jk) + C
(
x(j′+1):j,Jk

)
− C (xi:j,Jk)

= Cψ + C|Jk| log(p)−
∑
c∈Jk

(j − j′)(j′ − i+ 1)

j − i+ 1

(
η̄

(c)
i:j′ − η̄

(c)
(j′+1):j

)2

≥ Cψ + C|Jk| log(p)− 2ψ − 2|Jk| log(p) ≥ 79

80
C (ψ + |Jk| log(p)) ,

where the first inequality follows from E7 and the second one holds if C exceeds some

global constant. Now let |Jk| ≥ k∗

C (xi:j′ ,1) + C
(
x(j′+1):j,1

)
− C (xi:j,1)

= p+ Cψ + C
√
pψ −

p∑
c=1

(j − j′)(j′ − i+ 1)

j − i+ 1

(
η̄

(c)
i:j′ − η̄

(c)
(j′+1):j

)2

≥ p+ Cψ + C
√
pψ − 2ψ − 2

√
pψ − p ≥ 79

80
C
(
ψ +

√
pψ
)
,

where the first inequality follows from E8 and the second one holds if C exceeds some

global constant.
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B.3.12 Proof of Lemma 25

This Lemma proves MVCAPA has power at detecting anomalous regions. We begin

by considering the case in which Jk is dense. We have:

C (xi:j ,1) = p+ Cψ + C
√
pψ −

p∑
c=1

(j − i+ 1)
(
x
(c)
i:j

)2
= p+ Cψ + C

√
pψ −

p∑
c=1

(j − i+ 1)
(
η̄
(c)
i:j

)2
− |Jk|µ2

k(j − i+ 1)− 2µk
√
j − i+ 1

∑
c∈Jk

(√
j − i+ 1η̄i:j

)
≤ Cψ + (C + 2)

√
pψ − |Jk|µ2

k(j − i+ 1) + 2
√

(j − i+ 1)µ2
k

√
2|Jk|ψ

≤ Cψ + (C + 2)
√
pψ − 1

2
|Jk|µ2

k(j − i+ 1) + 4ψ ≤ Cψ + (C + 2)
√
pψ − 1

2
|Jk|µ2

k

4C

42
k

+ 4ψ

= (C + 4)ψ + (C + 2)
√
pψ − 2C(ψ +

√
pψ) ≤ 0

with the first inequality following form E10 and E3, the second from the AM-GM

inequality, the third from the condition on j − i + 1, and the last one holds if C

exceeds a global constant.

The proof for when Jk is sparse is almost identical. We have that:

C (xi:j ,Jk) = Cψ + C|Jk| log(p)−
∑
c∈Jk

(j − i+ 1)
(
µk + η̄

(c)
i:j

)2
= Cψ + C|Jk| log(p)−

∑
c∈Jk

(j − i+ 1)
(
η̄
(c)
i:j

)2
− |Jk|µ2

k(j − i+ 1)− 2µk
√
j − i+ 1

∑
c∈Jk

(√
j − i+ 1η̄i:j

)
≤ Cψ + C|Jk| log(p)− |Jk|µ2

k(j − i+ 1) + 2
√

(j − i+ 1)µ2
k

√
2|Jk|ψ + 2|Jk|2 log(p)

≤ Cψ + C|Jk| log(p)− 1

2
|Jk|µ2

k(j − i+ 1) + 4ψ + 4|Jk| log(p)

s ≤ (C + 4)ψ + (C + 4)|Jk| log(p)− 1

2
|Jk|µ2

k

4C

42
k

= (C + 4)ψ + (C + 4)|Jk| log(p)− 2C(ψ + |Jk| log(p)) ≤ 0,

where the first inequality follows from E4, the second from the AM-GM inequality,

the third from the condition on j− i+ 1, and the last one holds if C exceeds a global

constant.
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B.3.13 Proof of Lemma 26

This Lemma prevents fitted changes from containing too many observations belonging

to the typical distribution. We limit ourselves to proving the result for the first case,

since the proof of the second case is symmetrical. We begin by proving the result for

the case in which |Jk| ≤ k∗. Writing, e′ = ek + d10 C
42
k
e and s′ = ek − d10 C

42
k
e

C (xi:j,Jk) ≥ C (xi:s′ ,Jk) + C
(
x(s′+1):e′ ,Jk

)
+ C

(
x(e′+1):j,Jk

)
− 2Cψ − 2C|Jk| log(p)

≥ C (xi:s′ ,Jk) + C
(
x(s′+1):e′ ,Jk

)
− (C + 2) (ψ + |Jk| log(p))

Next, note that Lemma 22 implies that C
(
x(s′+1):e′ ,Jk

)
is equal to

C
(
x(s′+1):ek ,Jk

)
+C

(
x(ek+1):e′ ,Jk

)
−C (ψ + |Jk| log(p))+

∑
c∈Jk

e′ − s′

2

(
µk + η̄(s′+1):ek − η̄(ek+1):e′

)2
Moreover, we have that

∑
c∈Jk

e′ − s′

2

(
µk + η̄(s′+1):ek − η̄(ek+1):e′

)2
=
e′ − s′

2
|Jk|µ2

k − µk(e′ − s′)
∑
c∈Jk

(
η̄(s′+1):ek − η̄(ek+1):e′

)
+
e′ − s′

2

∑
c∈Jk

(
η̄(s′+1):ek − η̄(ek+1):e′

)2
≥ e′ − s′

2
|Jk|µ2

k − 2
√

(e′ − s′)µ2
k

√
2|Jk|ψ ≥

e′ − s′

3
|Jk|µ2

k − 12ψ =
20

3
C (ψ + |Jk| log(p))− 12ψ,

where the first inequality follows from E11 and the second inequality from the AM-GM

inequality. Combining all the above, we obtain that

C (xi:j ,Jk)

≥ C (xi:s′ ,Jk) + C
(
x(s′+1):ek ,Jk

)
+ C

(
x(ek+1):e′ ,Jk

)
+

(
14

3
C − 14

)
ψ +

(
14

3
C − 2

)
|Jk| log(p)

≥ C (xi:ek ,Jk) +
19

20
C (ψ + |Jk| log(p)) + (C − 2) (ψ + |Jk| log(p)) +

(
14

3
C − 14

)
ψ

+

(
14

3
C − 2

)
|Jk| log(p)

≥ 6C (ψ + |Jk| log(p)) ,
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where the second inequality follows from Lemma 24 and E2. The proof for the case

in which |Jk| > k∗ is very similar. We the have that

C (xi:j,1) ≥ C (xi:s′ ,1) + C
(
x(s′+1):e′ ,1

)
+ C

(
x(e′+1):j,1

)
− 2Cψ − 2(C + 2)

√
pψ

≥ C (xi:s′ ,1) + C
(
x(s′+1):e′ ,1

)
− (C + 6)

(
ψ +

√
pψ
)
,

with the first inequality following from Lemma 22 and the event E3 the second being

due to E2. The remainder of the proof of the Lemma is very similar to the sparse

case and has therefore been omitted.

B.3.14 Proof of Lemma 27

This Lemma shows that the optimal partition can not contain fitted segments con-

taining more than 10 C
42
k

observations from both the typical distribution and a dense

anomalous region. If J = 1 the result follows a fortiori from Lemma 26. Assume now

that |J| ≤ k∗. As in the proof of Lemma 26, we limit ourselves to proving the first

case, the proof of the other one being symmetrical. The following holds:

C (xi:j ,J) = C (xi:j ,1)− (p+ Cψ + C
√
pψ) +

∑
c/∈J

(j − i+ 1) (x̄i:j)
2 + Cψ + C|J| log(p)

≥ C (xi:j ,1)− C(ψ +
√
pψ)− 2

√
pψ − 2ψ − 2|J| log(p) + Cψ + C|J| log(p)

≥ C (xi:ek ,1) + 4C(ψ +
√
pψ),

where the first inequality follows from the event E5 and the second one from Lemma

26 and a choice of C exceeding some global constant.
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B.3.15 Proof of Lemma 28

This lemma shows that merging two neighbouring fitted segments reduces penalised

cost by O(C) – even when they are separated by a gap. The proof is very similar to

that of Lemma 24. In fact, Lemma 28 follows a fortiori from Lemma 24 when j′ = j′′.

When j′ 6= j′′ we consider the |Jk| ≤ k∗ and |Jk| > k∗ separately. Let |Jk| ≤ k∗.

Then,

C (xi:j′ ,Jk) + C
(
x(j′′+1):j,Jk

)
− C (xi:j,Jk)

≥ C (xi:j′ ,Jk) +
[
C
(
x(j′+1):j′′ ,Jk

)
− Cψ − C|Jk| log(p)

]
+ C

(
x(j′′+1):j,Jk

)
− C (xi:j,Jk)

≥ −Cψ − C|Jk| log(p) +
79

80
C (ψ + |Jk| log(p)) +

79

80
C (ψ + |Jk| log(p))

≥ 19

20
C (ψ + |Jk| log(p)) ,

where the second inequality follows from applying Lemma 24 twice. The proof for the

case in which |Jk| > k∗ is very similar. We have that

C (xi:j′ ,1) + C
(
x(j′′+1):j,1

)
− C (xi:j,1)

≥ C (xi:j′ ,1) +
[
C
(
x(j′+1):j′′ ,1

)
− Cψ − (C + 2)

√
pψ
]

+ C
(
x(j′′+1):j,1

)
− C (xi:j,1)

≥ −Cψ − (C + 2)
√
pψ +

79

80
C
(
ψ +

√
pψ
)

+
79

80
C
(
ψ +

√
pψ
)
≥ 19

20
C
(
ψ +

√
pψ
)
,

where the first inequality follows from E3, the third inequality follows from applying

Lemma 24 twice, and the third holds if C exceeds a global constant.

B.3.16 Proof of Lemma 29

This Lemma shows that if a fitted segment contains observations belonging to the

typical distribution it can be trimmed to containing only anomalous observations
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without increasing the penalised cost by more than O(1) . We begin by proving the

sparse case

C (xi:j,J) ≥ C (xi:j′ ,J) +
(
C
(
x(j′+1):j,J

)
− Cψ − C|J| log(p)

)
≥ C (xi:j′ ,J)− 2ψ − 2|J| log(p)

≥ (C
(
xi:(i′−1),J

)
− Cψ − C|J| log(p)) + C (xi′:j′ ,J)− 2ψ − 2|J| log(p)

≥ C (xi′:j′ ,J)− 4ψ − 4|J| log(p),

where the first and third inequality follows from the fact that introducing free splits

reduces un-penalised cost whilst the second and third inequality follows from E1. Note

that if j′ = j and/or i′ = i the first and second and/or the third and forth step are

not necessary. The result nevertheless holds. A similar proof can be derived for the

dense case:

C (xi:j,J) ≥ C (xi:j′ ,J) +
(
C
(
x(j′+1):j,J

)
− Cψ − C

√
pψ
)
− 2
√
pψ

≥ C (xi:j′ ,J)− 2ψ − 4
√
pψ

≥ (C
(
xi:(i′−1),J

)
− Cψ − C

√
pψ) + C (xi′:j′ ,J)− 2ψ − 6

√
pψ

≥ C (xi′:j′ ,J)− 4ψ − 8
√
pψ,

with the first and third inequalities following form Lemma 23, and the second and

fourth from E2.
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B.3.17 Proof of Lemma 30

This Lemma links the savings of a fitted segment to the signal strength of the corre-

sponding segment. We have that

α (Cψ + C|J| log(p)) ≤
∑
c∈J

(
µk + η̄

(c)
i:j

)2
(j − i+ 1)

= |J ∩ Jk|(j − i+ 1)µ2
k + 2

√
j − i+ 1µk

∑
c∈J∩Jk

√
j − i+ 1η̄

(c)
i:j +

∑
c∈J

(√
j − i+ 1η̄

(c)
i:j

)2

≤ |J ∩ Jk|(j − i+ 1)µ2
k + 2

√
j − i+ 1|µk|

√
2ψ|J ∩ Jk|+ 2|J ∩ Jk|2 log(p) + 2ψ + 2|J| log(p)

≤ |J|(j − i+ 1)µ2
k + 2

√
j − i+ 1|µk|

√
2ψ|J|+ 2|J|2 log(p) + 2ψ + 2|J| log(p)

=

(√
|J|(j − i+ 1)µ2

k +
√

2ψ + 2|J| log(p)

)2

,

with the first inequality following from E1 and E4 and th second from the fact that |J∩Jk| ≤ |J|.This

therefore implies that

√
|J|(j − i+ 1)µ2

k ≥
(√

αC −
√

2
)√

ψ + |J| log(p)

B.3.18 Proof of Lemma 31

This Lemma shows that if removing a fitted sparse segment does not result in a reduction in penalised

cost of O( 1
20C), the increase in penalised cost incurred for replacing it with the sparse ground truth

is O( 1
20C). We will use a very similar strategy to the one we used to prove Lemma 32. We begin by

noting that

C (xi:j ,Jk)−C (xi:j ,J) = C (|Jk| − |J|) log(p)−
∑

c∈Jk\J

(j−i+1)
(
µ+ η̄

(c)
i:j

)2
+
∑

c∈J\Jk

(j−i+1)
(
η̄
(c)
i:j

)2
(B.3.2)

If |J| > 19
20
|Jk|, E1 bounds (B.3.2) by

C (|Jk| − |J|) log(p) + 2ψ + 2|J| log(p) ≤ 1

10
C|Jk| log(p) + 2ψ +

(
2− 1

20
C

)
|J| log(p)

≤ 1

10
C|Jk| log(p) + 2ψ,
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with the last inequality holding if C exceeds some global constant. If |J| ≤ 19
20
|Jk| we

write A = Jk \ J and bound (B.3.2) by

C (|Jk| − |J|) log(p)+2ψ+2|J| log(p)−|A|µ2
k(j−i+1)+2

√
µ2
k(j − i+ 1)

√
|A|ψ + |A|2 log(p)

using E1 and E4. Lemma 30 implies that

√
(j − i+ 1)µ2

k ≥
1√
|J|

(√
19

20
C − 2

)√
ψ + |J| log(p).

Consequently, copying parts of the proof of Lemma 32 , we have that

|A|µ2
k(j − i+ 1)− 2

√
µ2
k(j − i+ 1)

√
|A|ψ + |A|2 log(p) >

37

40
C|A| log(p),

which shows that (B.3.2) is bounded by

C (|Jk| − |J|) log(p) + 2ψ + 2|J| log(p)− 37

40
C|A| log(p) ≤ 1

10
C|Jk| log(p) + 2ψ + (2− 1

40
C)|J| log(p)

≤ 1

10
C|Jk| log(p) + 2ψ,

where the first inequality follows from the fact that |Jk| < |J| + |A| and the second

one holds if C exceeds a global constant. This finishes the proof.

B.3.19 Proof of Lemma 32

This Lemma shows that if removing a fitted sparse segment does not result in a

reduction in penalised cost of O( 1
20
C), the increase in penalised cost incurred for

replacing it with the dense ground truth is O( 1
20
C). We have that

C (xi:j,1)− C (xi:j,J) = p+ C
√
pψ − C|J| log(p)−

∑
c/∈J

(j − i+ 1)
(
x̄

(c)
i:j

)2

(B.3.3)
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We consider 2 cases separately. If |J| > 19
20
k∗, the event E5 implies that the above can

be bounded by

p+ C
√
pψ − C|J| log(p)−

(
p− 2

√
pψ − 2ψ − 2|J| log(p)

)
≥ 2ψ + (C + 2)

√
pψ − (C − 2)

19

20

√
pψ

≥ 1

10
C
√
pψ + 2ψ,

provided C exceeds some global constant. If |J| ≤ 19
20
k∗, we introduce the set A =

Jk \ J. The quantity in (B.3.3) is then equal to

p+ C
√
pψ − C|J| log(p)− |A|(j − i+ 1)µ2

k + 2
√

(j − i+ 1)µk
∑
c∈A

√
(j − i+ 1)η̄

(c)
i:j

−
∑
c/∈J

(j − i+ 1)
(
η̄

(c)
i:j

)2

≤ (C + 2)
√
pψ − (C − 2)|J| log(p) + 2ψ − |A|(j − i+ 1)µ2

k

+ 2
√

(j − i+ 1)µ2
k

√
2|A|ψ + 2|A|2 log(p),

where the inequality flows from E1, E4, and E5. If C exceeds a fixed constant, the

above is less than

41

40
C
√
pψ−37

40
C|J| log(p)+2ψ−|A|(j−i+1)µ2

k+2
√

(j − i+ 1)µ2
k

√
2|A|ψ + 2|A|2 log(p)

(B.3.4)

Lemma 30 now implies that√
(j − i+ 1)µ2

k ≥
1√
|J|

(√
19

20
C − 2

)√
ψ + |J| log(p).

Therefore

|A|
√

(j − i+ 1)µ2
k − 2

√
2|A|ψ + 2|A|2 log(p)

≥

(√
19

20
C − 2

)√
|A|
|J|
|A|ψ + |A|2 log(p)− 2

√
2|A|ψ + 2|A|2 log(p)

≥

(√
19

20
C − 2

)√
1

20
|A|ψ + |A|2 log(p)− 2

√
2|A|ψ + 2|A|2 log(p),
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which exceeds 0 if C exceeds a global constant. Therefore

|A|2(j − i+ 1)µ2
k − 2|A|

√
(j − i+ 1)µ2

k

√
2|A|ψ + 2|A|2 log(p)

≥ |A|
|J|

(√
19

20
C − 2

)2

(ψ + |J| log(p))− 2

√
19
20C − 2

|J|
√

2|A|ψ + 2|A|2 log(p)
√
ψ + |J| log(p)

≥

(√
19

20
C − 2

)2(
|A|
|J|

ψ + |A| log(p)

)
− 2

√
19

20
C
√

2ψ + 2|A| log(p)

√
|A|
|J|

ψ + |A| log(p)

≥

(√
19

20
C − 2

)2(
|A|
|J|

ψ + |A| log(p)

)
−
√

19

20
C

((
2 +
|A|
|J|

)
ψ + 3|A| log(p)

)

=

(√19

20
C − 2

)2

− 3

√
19

20
C

 |A| log(p) +

(√19

20
C − 2

)2

−
√

19

20
C

 |A|
|J|
− 2

ψ,

where the third inequality follows from the AM-GM-inequality. If C exceeds a fixed

constant this will exceed

37

40
C|A| log(p),

Hence the quantity in (B.3.4) is bounded by

41

40
C
√
pψ−37

40
C (|J|+ |A|) log(p)+2ψ ≤ 41

40
C
√
pψ−37

40
Ck∗ log(p)+2ψ =

1

10
C
√
pψ+2ψ.

This finishes the proof.
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B.3.20 Proof of Lemma 33

This Lemma bounds the increase in penalised cost incurred when transitioning from

a fitted dense segment to the sparse ground truth. We have that

C (xi:j,Jk)− C (xi:j,1) = C|Jk| log(p)−
(
C
√
pψ + p

)
+
∑
c/∈Jk

(j − i+ 1)
(
η̄ci:j
)2

≤ C|Jk| log(p)−
(
C
√
pψ + p

)
+
(
p+ 2ψ + 2

√
pψ
)

= C|Jk| log(p)− C
√
pψ + 2

√
pψ + 2ψ

≤ 13

20
C|Jk| log(p)− 6

10
C
√
pψ + 2ψ ≤ 1

10
C|Jk| log(p)− 1

20
C
√
pψ + 2ψ,

for large enough C. Here the first inequality follows from E2 and the second inequality

holds because |Jk| ≤ k∗.

B.3.21 Proof of Lemma 34

The proof is very similar to that of Lemma 32 and has therefore been omitted.

B.3.22 Proof of Lemma 35

The proof is very similar to that of Lemma 31 and has therefore been omitted.

B.3.23 Proof of Lemma 36

This Lemma shows that splitting up long fitted changes containing multiple sparse

anomalous regions along the ground truth reduces the penalised cost by O(C) We
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begin by considering

C (xs,e,1)−
∑

k∈Ds,e

(
C
(
x(sk+1):ek ,Jk

))
= p+ Cψ + C

√
pψ +

p∑
c=1

(
e∑
t=s

(
x
(c)
t − x̄(c)

s:e

)2)
−

p∑
c=1

∑
t:@k: c∈Jk∧t∈[sk+1,ek]

(
η
(c)
t

)2
−
∑

k∈Ds,e

(∑
c∈Jk

(
ek∑

t=sk+1

(
x
(c)
t − x̄

(c)
(sk+1):ek

)2)
+ Cψ + C|Jk| log(p)

)

≥ p+ Cψ + C
√
pψ +

p∑
c=1

(
e∑
t=s

(
µ

(c)
t − µ̄(c)

s:e + η
(c)
t − η̄(c)

s:e

)2)

−
∑

k∈Ds,e

(∑
c∈Jk

(
ek∑

t=sk+1

(
η
(c)
t

)2)
+ Cψ + C|Jk| log(p)

)
−

p∑
c=1

∑
t:@k: c∈Jk∧t∈[sk+1,ek]

(
η
(c)
t

)2
= p+ Cψ + C

√
pψ +

p∑
c=1

(
e∑
t=s

(
η
(c)
t − η̄(c)

s:e

)2)
+

p∑
c=1

(
e∑
t=s

(
µ

(c)
t − µ̄(c)

s:e

)2)

+ 2

p∑
c=1

(
e∑
t=s

(
µ

(c)
t − µ̄(c)

s:e

)(
η
(c)
t − η̄(c)

s:e

))
−

p∑
c=1

(
e∑
t=s

(
η
(c)
t

)2)
−
∑

k∈Ds,e

(Cψ + C|Jk| log(p))

= p+ Cψ + C
√
pψ −

p∑
c=1

(
(e− s+ 1)

(
η̄(c)
s:e

)2)
+

p∑
c=1

(
e∑
t=s

(
µ

(c)
t − µ̄(c)

s:e

)2)

−
∑

k∈Ds,e

(Cψ + C|Jk| log(p)) + 2

p∑
c=1

(
e∑
t=s

(
µ

(c)
t − µ̄(c)

s:e

)(
η
(c)
t

))

≥ 19

20
C
(
ψ +

√
pψ
)

+

p∑
c=1

(
e∑
t=s

(
µ

(c)
t − µ̄(c)

s:e

)2)
−
∑

k∈Ds,e

(Cψ + C|Jk| log(p))

− 2

√√√√ p∑
c=1

e∑
t=s

(
µ

(c)
t − µ̄

(c)
s:e

)2√
2ψ + 2 |Ws,e| log(p)

≥ 19

20
C
(
ψ +

√
pψ
)

+
1

2

p∑
c=1

(
e∑
t=s

(
µ

(c)
t − µ̄(c)

s:e

)2)
−
∑

k∈Ds,e

(Cψ + C|Jk| log(p))− 8ψ − 8 |Ws,e| log(p),

where the first inequality follows from the fact that the residual sum of squares is

minimised at the mean, the second inequality follows from E2 and E6, and the last

inequality follows from the AM-GM inequality.

Next note that
e∑
t=s

(
µ

(c)
t − µ̄(c)

s:e

)2

corresponds to the residual sum of squares obtained by fitting µ
(c)
e , ...,µ

(c)
s as a single

segment. Consequently, breaking it up into smaller segments does not increase un-
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penalised cost. More precisely, for any partition τs:e = {s, τ1, ..., τm, e} of the segment

(s+ 1, e),

e∑
t=s+1

(
µ

(c)
t − µ̄

(c)
(s+1):e

)2

≥
m∑
k=0

(
τm+1∑

t=τm+1

(
µ

(c)
t − µ̄

(c)
(τm+1):τm+1

)2
)

holds. In particular, we therefore have that

1

2

p∑
c=1

(
e∑
t=s

(
µ

(c)
t − µ̄(c)

s:e

)2
)

≥
∑

k:ek∈[s,e]

1

2

∑
c∈Jk


ek+b 10C

42
k

c∑
ek−d 10C

42
k

e

µ(c)
t − µ̄

(c)(
ek−d 10C

42
k

e
)

:

(
ek+b 10C
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c
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+
∑

k:sk∈[s,e]

1

2

∑
c∈Jk


sk+d 10C

42
k

e∑
sk−b 10C

42
k

c

µ(c)
t − µ̄

(c)(
sk−b 10C

42
k

c
)

:

(
sk+d 10C

42
k

e
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=
1

2

∑
k:ek∈[s,e]

(
|Jk|2

⌈
10C

42
k

⌉
µ2
k

4

)
+

1

2

∑
k:sk∈[s,e]

(
|Jk|

20C

42
k

µ2
k

4

)
≥ 1

2

∑
k∈Ds,e

(
|Jk|

20C

42
k

µ2
k

4

)

=
∑
k∈Ds,e

5

2
C (ψ + |Jk| log(p)) ,

where the first inequality follows from using a partition which cuts 10C
42
k

either side of

the starting points and end points of true anomalous regions contained in [s, e] and

the second inequality follows from the definition of Ds,e. Consequently, we have that

C (xs,e,1)−
∑

k∈Ds,e

(
C
(
x(sk+1):ek ,Jk

))
≥ 19

20
C
(
ψ +

√
pψ
)

+
∑

k∈Ds,e

5

2
C (ψ + |Jk| log(p))−

∑
k∈Ds,e

(Cψ + C|Jk| log(p))− 8ψ − 8 |Ws,e| log(p)

≥ 19

20
C
(
ψ +

√
pψ
)
,

where the first inequality follows from assembling the previous two results, and the
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second one holds if C exceeds a global constant. We also have that:

C (xs,e,J)−
∑

k∈Ds,e

(
C
(
x(sk+1):ek ,Jk

))
= Cψ + C|J | log(p) +

∑
c∈J

(
e∑
t=s

(
x
(c)
t − x̄(c)

s:e

)2)

−
∑

k∈Ds,e

( ∑
c∈Jk∩J

(
ek∑

t=sk+1

(
x
(c)
t − x̄

(c)
(sk+1):ek

)2)
+ Cψ + C|Jk| log(p)

)

−
∑
c∈J

∑
t:@k: c∈Jk∧t∈[sk+1,ek]

(
η
(c)
t

)2
+
∑

k∈Ds,e

 ∑
c∈Jk\J

(
(ek − sk)

(
x̄
(c)
(sk+1):ek

)2)
≥ Cψ + C|J | log(p) +

∑
c∈J

(
e∑
t=s

(
µ

(c)
t − µ̄(c)

s:e

)2)
+
∑
c∈J

(
e∑
t=s

(
η
(c)
t − η̄(c)

s:e

)2)

+ 2
∑
c∈J

(
e∑
t=s

(
η
(c)
t − η̄(c)

s:e

)(
µ

(c)
t − µ̄(c)

s:e

))
−
∑
c∈J

(
e∑
t=s

(
η
(c)
t

)2)
−
∑

k∈Ds,e

(Cψ + C|Jk| log(p))

+
∑

k∈Ds,e

 ∑
c∈Jk\J

(ek − sk)µ2
k + 2(ek − sk)µk

∑
c∈Jk\J

(
η̄
(c)
(sk+1):ek

)
≥ (C − 2)(ψ + |J | log(p))−

∑
k∈Ds,e

(Cψ + C|Jk| log(p)) +
∑
c∈J

(
e∑
t=s

(
µ

(c)
t − µ̄(c)

s:e

)2)
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k∈Ds,e
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k − 2
√

(ek − sk)µ2
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c∈J

(
e∑
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(
µ

(c)
t − µ̄(c)

s:e

)
η
(c)
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)
.

This can further be bounded below by

(C − 2)(ψ + |J | log(p))−
∑

k∈Ds,e

(Cψ + C|Jk| log(p)) +
∑
c∈J

(
e∑
t=s

(
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(c)
t − µ̄(c)

s:e

)2)
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√√√√∑
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(
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(c)
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(c)
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2ψ + 2|Ws:e| log(p)
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2
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∑
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(
e∑
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(
µ

(c)
t − µ̄(c)

s:e
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+
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∑
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e∑
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(
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20
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+
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c∈J
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(
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A very similar argument as the one used for the dense case can be used to show that

1

2

∑
c∈J

(
e∑
t=s

(
µ

(c)
t − µ̄(c)

s:e

)2
)
≥
∑
k∈Ds,e

5

2
C|Jk ∩ J|µ

2
k

42
k

.

Consequently,

C (xs,e,J)−
∑

k∈Ds,e

(
C
(
x(sk+1):ek ,Jk

))
≥ 19

20
C(ψ + |J| log(p))−

∑
k∈Ds,e

2C (ψ + |Jk| log(p)) +
∑

k∈Ds,e

[
5

2
C|Jk ∩ J|µ

2
k

42
k

+
5Cµ2

k

242
k

|Jk \ J|
]

=
19

20
C(ψ + |J| log(p))−

∑
k∈Ds,e

2C (ψ + |Jk| log(p)) +
∑

k∈Ds,e

5

2
C (ψ + |Jk| log(p))

≥ 19

20
C(ψ + |J| log(p)),

where the first inequality follows from the condition on the segment length ek − sk.
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B.4 Further Simulations And Tables

In this section, we present additional results from the simulation study and application

section. Figures B.4.1 to B.4.4 display the full comparison between MVCAPA, PASS,

and Inspect over the four settings and data generating processes described in Section

4.7. We repeated setting 1 and 3 from the main paper with joint changes in mean

and variance. The number, location, rate of occurrence, and strength of the change

in mean is as in the mean paper. The only difference is that within each anomaly

the variance changes away from the typical variance, to a new, Γ−1(5, 5)-distributed

variance. The results for settings 1 and 3 are displayed in Figures B.4.5 and Figures

B.4.6 respectively. Table B.4.7 gives the results of PASS and MVCAPA at detecting

known CNVs from data from chromosome 6.
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(a) Example (b) Example with pt. anomalies

(c) p=10 (d) p=10, AR (e) p=10, PAs (f) p=10, AR, PAs

(g) p=100 (h) p=10, T (i) p=100, PAs (j) p=10, T, PAs

Figure B.4.1: Example series and ROC curves for setting 1. MVCAPA is in red, PASS

in green, and Inspect in blue. The x-axis denotes the number of false discoveries

normalised by the total number of real anomalies present in the data.
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(a) Example (b) Example with pt. anomalies

(c) p=10 (d) p=10, AR (e) p=10, PAs (f) p=10, AR, PAs

(g) p=100 (h) p=10, T (i) p=100, PAs (j) p=10, T, PAs

Figure B.4.2: Example series and ROC curves for setting 2. MVCAPA is in red, PASS

in green, and Inspect in blue. The x-axis denotes the number of false discoveries

normalised by the total number of real anomalies present in the data.
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(a) Example (b) Example with pt. anomalies

(c) p=10 (d) p=10, AR (e) p=10, PAs (f) p=10, AR, PAs

(g) p=100 (h) p=10, T (i) p=100, PAs (j) p=10, T, PAs

Figure B.4.3: Example series and ROC curves for setting 3. MVCAPA is in red, PASS

in green, and Inspect in blue. The solid red line corresponds to w = 0, the dashed

one to w = 10 and the dotted one to w = 20. The x-axis denotes the number of false

discoveries normalised by the total number of real anomalies present in the data.
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(a) Example (b) Example with pt. anomalies

(c) p=10 (d) p=10, AR (e) p=10, PAs (f) p=10, AR, PAs

(g) p=100 (h) p=10, T (i) p=100, PAs (j) p=10, T, PAs

Figure B.4.4: Example series and ROC curves for setting 4. MVCAPA is in red, PASS

in green, and Inspect in blue. The solid red line corresponds to w = 0, the dashed

one to w = 10 and the dotted one to w = 20. The x-axis denotes the number of false

discoveries normalised by the total number of real anomalies present in the data.
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(a) Example (b) Example, with pt. anomalies

(c) p=10 (d) p=10, with pt. anomalies

Figure B.4.5: Example series and ROC curves for setting 1. MVCAPA is in red, PASS

in green, and Inspect in blue. The x-axis denotes the number of false discoveries

normalised by the total number of real anomalies present in the data.
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(a) Example (b) Example, with pt. anomalies

(c) p=10 (d) p=10, with pt. anomalies

Figure B.4.6: Example series and ROC curves for setting 3. MVCAPA is in red, PASS

in green, and Inspect in blue. The x-axis denotes the number of false discoveries

normalised by the total number of real anomalies present in the data.
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Truth PASS MVCAPA (w = 40) MVCAPA (w = 0)

Start Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3

202314

243582

29945146

30569918

31388628

31388628

32562531

32605305

32717397

74648424

77073620

77155147

77496587

78936685

103844990

126226035

139645437

165647651

...

Figure B.4.7: Analysis of Chromosome 6 as detailed in the caption of Figure 4.8.1.

Note that the chromosome contains two different CNVs (of different lengths) begin-

ning at 31388628.
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B.5 Pseudocode

Algorithm 5 Update

Input: A vector of past lagged savings S
(j)
T .

A new saving S.

A maximum lag w ≥ 0.

1: for k ∈ {w, ..., 1} do

2: S
(j)
T (k)← S

(j)
T (k − 1)

3: end for

4: S
(j)
T (0)← S

5: Ê
(j)

T ← arg max0≤k≤w

(
S
(j)
T

)
(k)

6: Ĉ
(j)

T ← max0≤k≤w

(
S
(j)
T

)
(k)

Output An updated by-end-lag savings vector S
(j)
T , and optimal end-lag Ê

(j)

T and the corresponding

saving Ĉ
(j)

T .

Algorithm 6 ComputeSaving

Input: A vector of savings C
(1:p)
T .

Penalty constants β1:p for the components of a collective anomalies.

1: σ1, ..., σp ← order(C
(1)
T , ...,C

(p)
T ) . In decreasing order

2: CT ← max1≤k≤p

(∑k
i=1 C

(σi)
T − βi

)
3: k̂ ← arg max1≤k≤p

(∑k
i=1 C

(σi)
T − βi

)
4: CP(T )← {σ1, ..., σk̂}

Output The optimal set of components CP(T ), as well as the corresponding penalised saving CT .
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Algorithm 7 ComputePtSaving

Input: A vector of observations x
(1:p)
t .

Penalty constants β′ for a point anomaly.

1: C′t ←
∑p
i=1

((
x
(i)
t

)2
− β′

)+

2: CP′t ←
{
i|i ∈ {1, ..., p} :

(
x
(i)
t

)2
> β′

}
Output The optimal set of components CP′t, as well as the corresponding penalised saving C′t.
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Algorithm 8 MVCAPA Algorithm (No Pruning)

Input: A set of multivariate observations of the form, (x1,x2, . . . ,xn) where xi ∈ Rp.

Penalty constants β1:p and β′ for the components of a collective anomaly and for point anomalies.

A minimum segment length l ≥ 2, a maximum segment length m ≥ l, a maximum lag w ≥ 0.

Initialise: Set C(0) = 0, Anom(0) = NULL, Comp(0) = NULL, Lags(0) = NULL

1: for j ∈ {1, ..., p} do

2: µ̂(j) ←MEDIAN(x
(j)
1 ,x

(j)
2 , . . . ,x

(j)
n ) . Obtain robust estimates of the mean and variance

3: σ̂(j) ← IQR(x
(j)
1 ,x

(j)
2 , . . . ,x

(j)
n )

4: for i ∈ {1, ..., n} do

5: x
(j)
i ←

x
(j)
i −µ̂

(j)

σ̂(j) . Centralise the data

6: for k ∈ {0, ..., w} do

7: S
(j)
i (k)← 0 . Initialise saving per end-lag

8: end for

9: end for

10: end for

11: for t ∈ {1, ..., n} do

12: for T ∈ {1, ..., t} ∩ {t−m, ..., t− l + 1} do

13: for j ∈ {1, ..., p} do

14: S ← (t+ 1− T )
(

1
t+1−T

∑t
i=T x

(j)
i

)2
. Calculate saving without any lag

15: S
(j)
T , Ẽ

(j)

T , C̃
(j)

T ← Update(S
(j)
T , S, w) . Update saving per end-lag, and associated

saving

16: end for

17: end for

continues on next page
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18: for T ∈ {1, ..., t} ∩ {t−m, ..., t− l + 1} do

19: for j ∈ {1, ..., p} do

20: C
(j)
T ← max0≤t′≤w

(
C̃

(j)

T+t′

)
. Find the lowest starting cost

21: L
(j)
T ← arg max0≤t′≤w

(
C̃

(j)

T+t′

)
. Find the best start lag

22: E
(j)
T ← Ẽ

(j)

T+L
(j)
T

. And deduce the best end lag

23: end for

24: end for

25: for T ∈ {1, ..., t} ∩ {t−m, ..., t− l + 1} do

26: CT ,Cp(T )← ComputeSaving(C
(1:p)
T , β1:p)

27: end for

28: C′t,Cp′ ← ComputeP tSaving(x
(1:p)
t , β′) . Cost and components of point anomaly

29: C1(t)← maxt−m+1≤T≤t−l+1

[
C(k) + CT

]
. Collective Anom.

30: s← C(t− 1) + arg maxt−m+1≤T≤t−l+1

[
C(k) + CT

]
31: C2(t)← C(t− 1) . No Anomaly

32: C3(t)← C(t− 1) + C ′t . Point Anomaly

33: C(m)← max [C1(m), C2(m), C3(m)]

continues on next page
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34: switch arg max [C1(m), C2(m), C3(m)] do . Select type of anomaly giving the lowest cost

35: case 1 :

36: Anom(m)← [Anom(s), (s+ 1,m)]

37: Comp(m)← [Comp(s),Cp(s)]

38: Lags(m)← [Lags(s), (L(1:p)
s ,E(1:p)

s )]

39: case 2 :

40: Anom(m)← Anom(m− 1)

41: case 3 :

42: Anom(m)← [Anom(m− 1), (m)]

43: Comp(m)← [Comp(m− 1),Cp′]

44: end for

Output The points and segments recorded in Anom(n), the sets of components in Comp(n) and

the sets of start and end lags in Lags(n).
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CE-BASS

C.1 Theorems and Derivations

C.1.1 Theorem 5

Theorem 5. Let the prior for the hidden state Xt be N(µ,Σ) and an observation

Yt+1 := Y be available. Then the samples for Ṽ
(i,i)

t+1 from

σ̃iΓ

ai +
1

2
, ai +

σ̃i

2Σ
(i,i)
A


(
Σ̂−1

)(i,:)

(Y−CAµ)(
Σ̂−1

)(i,i)


2


have associated weight

1

M
ri

Γ(ai + 1
2 )

Γ(ai)

√
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aaii(
ai + σ̃i

2Σ
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A

(
(Σ̂−1)

(i,:)
(Y−CAµ)

(Σ̂−1)
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)2
)ai+ 1

2

exp
(
− 1

2 (Y−CAµ)
T

Σ̂−1 (Y−CAµ)
)

√
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√(
Ṽ
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+ Σ
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A

(
Σ̂−1
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exp

1
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 Ṽ
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(
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2

Σ
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A

(
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Σ

(i,i)
A

(
Σ̂−1

)(i,i)
+ Ṽ

(i,i)

t+1



(
Σ̂−1

)(i,:)
(Y−CAµ)√(

Σ̂−1
)(i,i)


2 .

Proof : We wish to sample from the posterior distribution of Ṽ
(i,i)

t+1 which is pro-

251
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portional to

rifi

(
Ṽ

(i,i)

t+1

) exp

(
− 1

2 (Y−CAµ)
T

(
Σ̂ +

Σ
(i,i)
A

Ṽ
(i,i)
t+1

I(i)
)−1

(Y−CAµ)

)
√∣∣∣∣Σ̂ +

Σ
(i,i)
A

Ṽ
(i,i)
t+1

I(i)
∣∣∣∣

, (C.1.1)

where fi() denotes the PDF of a σ̃iΓ(ai, ai)-distribution. The intractable part in the

above consists of (
Σ̂ +

Σ
(i,i)
A

Ṽ
(i,i)

t+1

I(i)

)−1

,

where I(i) = eie
T
i is a matrix which is 0 everywhere with the exception of the ith entry

of the ith row, which is 1. Note that I(i) has rank 1 and therefore, by the Sherman

Morrison formula,(
Σ̂ +

Σ
(i,i)
A

Ṽ
(i,i)

t+1

I(i)

)−1

= Σ̂−1 − Σ̂−1I(i)Σ̂−1

1 + tr(Σ̂−1I(i))
Σ

(i,i)
A

Ṽ
(i,i)
t+1

Σ
(i,i)
A

Ṽ
(i,i)

t+1

= Σ̂−1 − 1

tr(Σ̂−1I(i))

Σ̂−1I(i)Σ̂−1

1 + 1

tr(Σ̂−1I(i))Σ
(i,i)
A

Ṽ
(i,i)

t+1

.

Furthermore, given tr(Σ̂−1I(i)) =
(
Σ̂−1

)(i,i)

, the above is equal to

Σ̂−1 − Σ̂−1I(i)Σ̂−1

 1(
Σ̂−1

)(i,i) −
 1(

Σ̂−1
)(i,i)


2

Ṽ
(i,i)

t+1

Σ
(i,i)
A

+

 Ṽ
(i,i)

t+1

Σ
(i,i)
A

(
Σ̂−1

)(i,i)


2

1(
Σ̂−1

)(i,i)
+

Ṽ
(i,i)
t+1

Σ
(i,i)
A

 .
Crucially, the first term is constant in Ṽ

(i,i)

t+1 , while the second is linear in Ṽ
(i,i)

t+1 and

therefore conjugate to the prior of Ṽ
(i,i)

t+1 . The last term is quadratic in Ṽ
(i,i)

t+1 and

therefore vanishing much faster than the other two terms as Ṽ
(i,i)

t+1 goes to 0, i.e. as

the anomaly becomes stronger.

A very similar result for rank 1 updates of determinants, the matrix determinant

Lemma, can be used to show that∣∣∣∣∣Σ̂ +
Σ

(i,i)
A

Ṽ
(i,i)

t+1

I(i)

∣∣∣∣∣ =
∣∣∣Σ̂∣∣∣(1 +

Σ
(i,i)
A

Ṽ
(i,i)

t+1

(
Σ̂−1

)(i,i)
)
.
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Furthermore, given that

−1

2
(Y−CAµ)T Σ̂−1I(j)Σ̂−1 (Y−CAµ)

is equal to

−1

2

((
Σ̂−1

)(i,:)

(Y−CAµ)

)2

,

we can rewrite the posterior of Ṽ
(i,i)

t+1 in Equation (C.1.1) as

rif(V
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t+1 )

√
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t+1 | exp
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+ Ṽ
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(
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)(i,:)
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2

Using conjugacy, we can therefore sample M particles for Ṽ
(i,i)

from

σ̃iΓ

ai +
1

2
, ai +

σ̃i

2Σ
(i,i)
A


(
Σ̂−1

)(i,:)

(Y−CAµ)(
Σ̂−1

)(i,i)


2


and give each particle an importance weight proportional to

1

M
ri

Γ(ai + 1
2 )

Γ(ai)

√
σ̃i

aaii(
ai + σ̃i

2Σ
(i,i)
A

(
(Σ̂−1)

(i,:)
(Y−CAµ)

(Σ̂−1)
(i,i)

)2
)ai+ 1

2

exp
(
− 1

2 (Y−CAµ)
T

Σ̂−1 (Y−CAµ)
)

√
|Σ̂|

√(
Ṽ

(i,i)
+ Σ

(i,i)
A

(
Σ̂−1

)(i,i))

exp

1
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 Ṽ
(i,i)

t+1

Σ
(i,i)
A

(
Σ̂−1

)(i,i)


2

Σ
(i,i)
A

(
Σ̂−1

)(i,i)
Σ

(i,i)
A

(
Σ̂−1

)(i,i)
+ Ṽ

(i,i)

t+1



(
Σ̂−1

)(i,:)
(Y−CAµ)√(

Σ̂−1
)(i,i)


2 .

C.1.2 Theorem 6

Theorem 6. Let the prior for the hidden state Xt be N(µ,Σ) and an observation

Yt+1 := Y be available. Then the samples for W̃
(j,j)

from

σ̂iΓ

bj +
1

2
, bj +

σ̂j

2Σ
(j,j)
I

(CT
)(j,:)

Σ̂−1 (Y−CAµ)(
CT Σ̂−1C

)(j,j)


2
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have associated weight

1

M
sj

Γ(bi + 1
2

)

Γ(bj)

√
σ̂j

b
bj
j(

bj + σ̂i

2Σ
(j,j)
I

(
(CT )(j,:)Σ̂−1(Y−CAµ)

(CT Σ̂−1C)(j,j)

)2
)bi+ 1

2

exp
(
− 1

2
(Y−CAµ)T Σ̂−1 (Y−CAµ)

)
√
|Σ̂|

√(
W̃

(j,j)
+ Σ

(j,j)
I

(
CT Σ̂−1C

)(j,j)
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exp

1
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(
1 +

 W̃
(j,j)

Σ
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I

(
CT Σ̂−1C

)(j,j)


2

Σ
(j,j)
I

(
CT Σ̂−1C

)(j,j)

Σ
(j,j)
I

(
CT Σ̂−1C

)(j,j)
+ W̃

(j,j)
t+1

)
(
CT
)(j,:)

Σ̂−1 (Y−CAµ)√(
CT Σ̂−1C

)(j,j)


2

The proof is almost identical to that of Theorem 5 and has been omitted.

C.1.3 Theorem 7

Theorem 7. Let the prior for the hidden state Xt be N(µ,Σ) and an observation

Yt+1 := Y be available. Then the proposal particle (Ip, Iq) for (Vt,Wt) has weight

proportional to

(1−
p∑
i=1

ri −
q∑
j=1

sj)
exp

(
−1

2
(Y−CAµ)T Σ̂−1 (Y−CAµ)

)
√
|Σ̂|

.

This is immediate from the Gaussian likelihood and the Bernoulli priors for λ
(i)
t

and γ
(j)
t .

C.1.4 Proof of Theorem 4

Removing the likelihood term common to all particles the importance weights can be

summarised as being

1

M
ri

Γ(ai + 1
2

)

Γ(ai)

√
σ̃i

a
ai
i(

ai + σ̃i

2Σ
(i,i)
A

(
(Σ̂−1)(i,:)(Y−CAµ)

(Σ̂−1)(i,i)

)2
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2

1√(
Ṽ
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A

(
Σ̂−1

)(i,i)
)
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2
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 Ṽ
(i,i)
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Σ
(i,i)
A

(
Σ̂−1

)(i,i)


2

Σ
(i,i)
A

(
Σ̂−1

)(i,i)

Σ
(i,i)
A

(
Σ̂−1

)(i,i)
+ Ṽ

(i,i)
t+1



(
Σ̂−1

)(i,:)
(Y−CAµ)√(

Σ̂−1
)(i,i)


2 .
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for the particles containing an anomaly in the ith additive component, and

1

M
sj

Γ(bi + 1
2

)

Γ(bj)

√
σ̂j

b
bj
j(

bj + σ̂i

2Σ
(j,j)
I

(
(CT )(j,:)Σ̂−1(Y−CAµ)

(CT Σ̂−1C)(j,j)

)2
)bi+ 1

2

1√(
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(j,j)
+ Σ

(j,j)
I

(
CT Σ̂−1C

)(j,j)
)

exp

(
1

2

1 +

 W̃
(j,j)

Σ
(j,j)
I

(
CT Σ̂−1C

)(j,j)


2

Σ
(j,j)
I

(
CT Σ̂−1C

)(j,j)

Σ
(j,j)
I

(
CT Σ̂−1C

)(j,j)
+ W̃

(j,j)
t+1

)
(
CT
)(j,:)

Σ̂−1 (Y−CAµ)√(
CT Σ̂−1C

)(j,j)


2

for the particles containing an anomaly in the jth innovative component.

As mentioned in Section II that the mean of the proposal of the ith additive

component behaves asymptotically as

(2ai + 1)Σ
(i,i)
A


(
Σ̂−1

)(i,i)

(
Σ̂−1

)(i,:)

(Y−CAµ)


2

.

Furthermore, the standard deviation is on the same scale. We therefore have that

Ṽ
(i,i)

t+1 ∼
1

δ2

as δ → ∞. The weight of an anomaly in the ith additive component therefore

asymptotically behaves as

aaii
1
M
ri

Γ(ai+
1
2

)

Γ(ai)
exp

(
1
2
δ2
)(

σ̃i

2Σ
(i,i)
A (Σ̂−1)

(i,i) δ2

)ai
when Y−CAµ = 1√

(Σ̂−1)
(i,i)
δei as δ →∞. A very similar reasoning can be used to

show that the weight of an anomaly in the jth innovative component converges to

b
bj
j

1
M
sj

Γ(bj+
1
2

)

Γ(bj)
exp

(
1
2
δ2
)

(
σ̂j

2Σ
(j,j)
I (CT Σ̂−1C)

(j,j) δ2

)bj
when Y−CAµ = C(:,ij√

(CT Σ̂−1C)
(j,j)

δ as δ →∞.

The result then follows when all the bjs and the ais are equal to the same constant

c and

σ̃i = Σ
(i,i)
A

(
Σ̂−1

)(i,i)

and σ̂j = Σ
(j,j)
I

(
CT Σ̂−1C

)(j,j)

.
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C.1.5 Theorem 8

Theorem 8. Let the prior for the hidden state Xt−k be N(µ,Σ). Then the samples

for W̃
(j,j)

t−k+1 from

σ̂jΓ

bj +
1

2
, bj +

σ̂j

2Σ
(j,j)
I
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)T)(j,:) (

Σ̂(k)
)−1
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)T (
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2
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M
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2)

Proof : Identical (up to variable names) to that of Theorem 6.

C.2 Additional Simulations

Violin plots for the predictive mean squared error are displayed in Figure C.2.1

C.3 Complete pseudocode
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(a) Case 1 (b) Case 1, IOs (c) Case 1, AOs (d) Case 1, Both

(e) Case 2 (f) Case 2, IOs (g) Case 2, AOs (h) Case 2, Both

(i) Case 3 (j) Case 3, IOs (k) Case 3, AOs (l) Case 3, Both

(m) Case 4 (n) Case 4, IOs (o) Case 4, AOs (p) Case 4, Both

Figure C.2.1: Average predictive mean squared error of the five filters over the four

different scenarios under a range of models. Lower values correspond to better per-

formance. Methods are omitted if they can not be applied to the setting or if their

performance is too poor.
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Algorithm 9 KF Upd(Y,µ,Σ,C,A,ΣA,ΣI)

1: µp ← Aµ

2: Σp ← AΣAT + ΣI

3: z = Y− µp

4: Σ̂← CΣpC
T + ΣA

5: K← ΣpC
T Σ̂−1

6: µnew ← µp + Kz

7: Σnew ← (I−KC) Σp

Output: (µnew,Σnew)

Algorithm 10 Sample typical(µ,Σ,Y,A,C,ΣA,ΣI)

1: V← Ip

2: W← Iq

3: Σ̂← C
(
AΣAT + ΣI

)
CT + ΣA

4: z← Y−CAµ

5: prob←
(

1−
∑p
i=1 ri −

∑q
j=1 sj

)
exp

(
− 1

2zT Σ̂−1z
)
/

√∣∣∣Σ̂∣∣∣
Output: (V,W, prob)
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Algorithm 11 Sample add comp(i, z, Σ̂,ΣA,M)

1: V← Ip

2: V← Iq

3: V(i,i) ← σ̃iΓ

(
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2 , ai + σ̃i
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2 .

Output: (V,W, prob)

Algorithm 12 Sample add(µ,Σ,Y,A,C,ΣA,ΣI ,M)

1: Σ̂← C
(
AΣAT + ΣI

)
CT + ΣA

2: z← Y−CAµ

3: Add Pt← {} . Additive Anom. Particles

4: for i ∈ {1, ..., p} do

5: Add Pt← Add Pt ∪ {Sample add comp(i, z, Σ̂,ΣA,M)}

6: end for

Output: Add Pt
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Algorithm 13 Sample inn comp(j, z, Σ̂,ΣI ,M)

1: V← Ip

2: V← Iq

3: W(i,i) ← σ̂iΓ

(
bi + 1

2 , bi + σ̂i
2Σ
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I

(
(CT )

(i,:)
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2
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Σ
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I

(
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+ W̃

(j,j)
t+1

)
(
CT
)(j,:)

Σ̂−1z√(
CT Σ̂−1C

)(j,j)


2

Output: (V,W, prob)

Algorithm 14 Sample inn(µ,Σ,Y,A,C,ΣA,ΣI ,M)

1: Σ̂← C
(
AΣAT + ΣI

)
CT + ΣA

2: z← Y−CAµ

3: Inn Pt← {} . Innovative Anom. Particles

4: for i ∈ {1, ..., q} do

5: Inn Pt← Inn Pt ∪ {Sample inn comp(i, z, Σ̂,ΣI ,M)}

6: end for

Output: Inn Pt
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Algorithm 15 Sample Particles(M,µ,Σ,Y,A,C,ΣA,ΣI)

1: Desc← {} . To store Descendants

2: Desc← Desc ∪ Sample typical(µ,Σ,Y,A,C,ΣA,ΣI)

3: for i ∈ 1, ...,M do

4: Desc← Desc ∪ Sample add(µ,Σ,Y,A,C,ΣA,ΣI ,M)

5: end for

6: for i ∈ 1, ...,M do

7: Desc← Desc ∪ Sample inn(µ,Σ,Y,A,C,ΣA,ΣI ,M)

8: end for

Output: Desc

Algorithm 16 BS inn (µ,Σ, Ỹ,A,C,ΣA,ΣI ,M, horizon)

1: C̃← C

[(
A0
)T
, ...,

(
Ahorizon

)T]T
2: z̃← Ỹ− C̃Aµ

3: Σ̃← C̃
(
AΣAT + Ihorizon ⊗ΣI

)
C̃
T

+ Ihorizon ⊗ΣA

4: Cd← {} . To store Candidates.

5: for i ∈ {1, .., q} do

6: if horizon ∈ Bi then

7: for j ∈ {1, ...,M} do

8: Cd← Cd ∪ {Sample inn comp(i, z̃, Σ̃,A, C̃,ΣI ,M · |Bi|)}

9: end for

10: end if

11: end for

Output: Cand
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Algorithm 17 Basic Particle Filter (No Back-sampling)

Input: An initial state estimate (µ0,Σ0)

A number of descendants, M ′ = M(p+ q) + 1

A number of particles to be maintained, N .

A stream of observations Y1,Y2, ...

Initialise: Set Particles(0) = {(µ0,Σ0)}

1: for t ∈ N+ do

2: Candidates← {}

3: for (µ,Σ) ∈ Particles(t− 1) do

4: (V,W, prob)← Sample Particles(M,µ,Σ,Yt,A,C,ΣA,ΣI)

5: Candidates← Candidates ∪ {(µ,Σ,V,W, prob)}

6: end for

7: Descendants← Subsample(N,Candidates)

8: Particles(t)← {}

9: for (µ,Σ,V,W, prob) ∈ Descendants do

10: (µnew,Σnew)← KF Upd(Yt,µ,Σ,C,A,V
1/2ΣA,W

1/2ΣI)

11: Particles(t)← Particles(t) ∪ {(µnew,Σnew)}

12: end for

13: end for
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Algorithm 18 Particle Filter (With Back Sampling) – CE-BASS

Input: An initial state estimate (µ0,Σ0).

A number of descendants, M ′ = M(p+ q) + 1.

A number of particles to be maintained, N .

A stream of observations Y1,Y2, ...

Initialise: Set Particles(0) = {(µ0,Σ0, 1)}

Set max horizon = max (∪qi=1Bi)

1: for t ∈ N+ do

2: Cand← {} . To Store Candidates

3: for (µ,Σ, probprev) ∈ Particles(t− 1) do

4: (V,W, prob)← Sample typical(µ,Σ,Yt,A,C,ΣA,ΣI)

5: Cand← Cand ∪ {(µ,Σ,V,W, prob · probprev, 1)}

6: Add Des← Sample add(µ,Σ,Yt,A,C,ΣA,ΣI ,M)

7: for (V,W, prob) ∈ Add Des do

8: Cand← Cand ∪ {(µ,Σ,V,W, prob · probprev, 1)}

9: end for

10: end for

11: for hor ∈ {1, ...,max horizon} do

12: for (µ,Σ, probprev) ∈ Particles(t− hor) do

13: Ỹ←
[
YT
t−hor+1, ...,Y

T
t

]T
14: Inn Des← BS inn(µ,Σ, Ỹ,A,C,ΣA,ΣI ,M, hor)

15: for (V,W, prob) ∈ Inn Des do

16: Cand← Cand ∪ {(µ,Σ,V,W, prob · probprev, hor)}

17: end for

18: end for

19: end for

20: Desc← Subsample(N,Cand) . Sampling proportional to prob

continues on next page
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21: Particles(t)← {}

22: for (µ,Σ,V,W, prob, hor) ∈ Desc do

23: (µ,Σ)← KF Upd(Yt+1−hor,µ,Σ,C,A,V
1/2ΣA,W

1/2ΣI)

24: if hor > 1 then

25: for i ∈ {2, ..., hor} do

26: (µ,Σ)← KF Upd(Yt+i−hor,µ,Σ,C,A,ΣA,ΣI)

27: end for

28: end if

29: Particles(t)← Particles(t) ∪ {(µ,Σ, prob · |Cand||Desc| )}

30: end for

31: end for
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