
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING , VOL. XX, NO. C, XX 2019 1

Cross-VM Network Channel Attacks and
Countermeasures within Cloud Computing

Environments
Atif Saeed, Peter Garraghan and Syed Asad Hussain

Abstract—Cloud providers attempt to maintain the highest levels of isolation between Virtual Machines (VMs) and inter-user
processes to keep co-located VMs and processes separate. This logical isolation creates an internal virtual network to separate VMs
co-residing within a shared physical network. However, as co-residing VMs share their underlying VMM (Virtual Machine Monitor),
virtual network, and hardware are susceptible to cross VM attacks. It is possible for a malicious VM to potentially access or control
other VMs through network connections, shared memory, other shared resources, or by gaining the privilege level of its non-root
machine. This research presents a two novel zero-day cross-VM network channel attacks. In the first attack, a malicious VM can
redirect the network traffic of target VMs to a specific destination by impersonating the Virtual Network Interface Controller (VNIC). The
malicious VM can extract the decrypted information from target VMs by using open source decryption tools such as Aircrack. The
second contribution of this research is a privilege escalation attack in a cross VM cloud environment with Xen hypervisor. An adversary
having limited privileges rights may execute Return-Oriented Programming (ROP), establish a connection with the root domain by
exploiting the network channel, and acquiring the tool stack (root domain) which it is not authorized to access directly.
Countermeasures against this attacks are also presented

Index Terms—Cloud Computing, Virtual Machine Monitor, Cross-VM attack, Network-Channel attack, ROP, Impersonation.

F

1 INTRODUCTION

C LOUD computing has risen in prominence due to its
service model enabling elastic on-demand access to

computing resources and now underpins modern business
operations. Cloud computing security is an important con-
cern for enterprises when they shift critical information to
geographically distributed cloud platforms that are directly
not under their jurisdiction of control. There are many
security concerns for cloud computing as it utilizes different
technologies spanning networks, databases, operating sys-
tems, virtualization, resource scheduling, transaction man-
agement, load balancing, concurrency control and memory
management, which are potentially vulnerable to attacks.
Cloud computing security researchers work to introduce
new security exploitation events or attacks that may affect
the providers and users.
Cloud computing heavily leverage virtualization method-
ologies. Virtualization facilitates multiple operating systems
(different or same) to co-reside on the same physical server
concurrently. Virtualization technologies such as HyperV,
Xen, KVM, and VMWare are key enablers of cloud com-
puting systems. Their key benefit is in cost saving. Same
physical hardware is offered among multiple VMs along
with the ability to provide strong isolation between co-
resided VMs, i.e. a guest VM cannot interfere in the opera-
tion of other guest VMs running on the same machine. Such

• A. Saeed is with School of Computing and Communication, Lancaster
University, UK.E-mail:asaeed@cuilahore.edu.pk

• Peter Garraghan is with School of Computing and Communication,
Lancaster University, UK. E-mail:p.garraghan@lancaster.ac.uk

• Syed Asad Hussain is with Department of Computer Sci-
ence, Comsats University Islamabad, Lahore Campus. E-
mail:asadhussain@cuilahore.edu.pk

isolation is a key support for major public providers such
as Microsoft Azure, Amazon Elastic Compute Cloud (EC2),
Google Compute Engine (GCE), and Rackspace [1].

However, such logical isolation is not impenetrable.
A myriad of previous studies has demonstrated how co-
resident VMs could be vulnerable to attacks through shared
file systems [2], cache side-channels [3], [4] or through
compromising hypervisor layer using rootkits [5]. Thus, the
threat of cross-VM attacks remains [6], [7], [8] where an
attacker uses one VM to control or access other VMs on
the same hypervisor. As such, various methods have been
devised for strategic VM placement in order to exploit co-
residency. [9], [10].

Hypervisors virtualization attempt to realize this as-
sumption by implementing logical isolation between VMs
using traditional access-control approaches. However, it is
possible for attackers to circumvent them via side-channel
attacks.

Moreover the existence and threat of ROP (Return- Ori-
ented Programming) attack in real time systems has been
discussed in variety of settings. Researchers have demon-
strated that if an attacker can successfully exploit the earlier
version of Adobe reader and Acrobat by launching ROP,
they may be able to compromise and control the victimized
system [11], [12]. Furthermore, developers have developed
ROP-based rootkits to compromise Window operating Sys-
tems [13]. After the execution of these rootkits, the attackers
are successful in hiding a malicious process through which
these rootkits manage to bypass the integrity protection
system of the OS. So far, all ROP based attacks target either
the applications or operating systems and do not target
hypervisors directly. Hypervisors having large set of code



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING , VOL. XX, NO. C, XX 2019 2

are at high risk of bugs, due to which an attacker manages
to launch an ROP attack on them.

Despite the clear potential of cross-VM attacks for ex-
ploiting shared memory and disk, exhibition of cross-VM
network-channel and privilege escalation that uses the ROP
in conjunction with the network-channel attack has not
been demonstrated. Current network-based attacks exploit
existing vulnerabilities such as ARP spoofing and DNS poi-
soning that are difficult to use for VM-targeted attacks [14].
The most commonly discussed network-based challenges
focus on the fact that cloud providers place more layers of
isolation between co-resided VMs than in non-virtualized
settings because the attacker and victim are often assigned
to separate segmentations of virtual networks and domains.

Cloud providers mitigate cross-VM network channel
attacks by introducing the concept of isolation through an
internal virtual network. Logical isolation of hardware re-
sources can give protection against poor access-control poli-
cies, preventing VMs running on the same hardware from
interfering with each other’s execution or data ex-filtration.
However, such logical isolation may not be appropriate if
an attacker can bypass them by launching a different type
of attack.

This paper proposes novel methodologies in which the
attacker VM can redirect network traffic of the victim VM
and set the unobtrusive destination point to receive the
network traffic of the victim. It also launches a privilege
escalation attack by exploiting RoP in conjunction with
network-channel in cross-VM settings. The aim of these
investigations is to explore whether the isolation of cloud
systems, i.e., virtual machines and hypervisors, can be cir-
cumvented by the proposed attack (and if so, how?). We
demonstrate that these two attacks result in successful vi-
olation of isolation properties of virtualization and escalate
privilege level of non-root VMs. For responsible disclosure,
all vulnerabilities found in our research have been reported
to the OpenStack and Ravello security teams, we have also
provided solutions for fixing the identified issues.

This paper is an extension of our conference paper [15],
which proposed a novel zero-day network channel attack
for redirecting the traffic of other co-located VMs. In this
attack, the created dummy interface impersonates a TAP
(Test Access Point) device. Impersonated TAP device in
combination with the network mirror exploits the network
channel. The network mirror then redirects the network
traffic of other co-located VMs to the desired destination
point. This approach is further extended through another
novel zero-day privilege escalation attack in a cross VM
cloud environment. It works by escalating the privilege
level of non-root VMs. The exploitation of Return Oriented
Programming (ROP) in conjunction with the network chan-
nel is used to launch this attack. Non-Root VM will hijack
and control the ToolStack of the hypervisor, from this it can
control all other co-located VMs. This paper also discusses
the countermeasures for these attacks.

The rest of this paper is organized as follows: section 2
describes the background, section 3 presents related work
for cross-VM attacks. Cloud system model and network
traffic flow in OpenStack and Xen hypervisor are discussed
in section 4. Section 5 presents the attack methodology.
Section 6 presents the experimentation setup followed by

the evaluation in Section 8. Countermeasures are discussed
in section 8. Section 9 concludes the paper.

2 BACKGROUND

Cross-VM attacks and their ability to exploit shared re-
sources to extract or leak the sensitive information from co-
located VMs have been investigated by many researchers.
There has been an assumption that collocated VMs which
share network interfaces trust each other [16]. This assump-
tion is challenged due to the sharing of physical hardware
in public clouds and the existence of co-residency attacks
[9].

Zhang et al. [17] categorized co-residency attacks into
three types of side-channel classes; access driven side-channel
attack, time driven side-channel attack and trace driven side-
channel attack. Access driven side-channel attack exploit
shared micro-architectural modules such as caches. A time-
driven side-channel attack occurs when the total execution
times of cryptographic operations with a fixed key are
influenced by the value of the key. Trace driven attack
captures a profile of cache activity. In [5], [18] researchers
have demonstrated methods to leak sensitive data through
TCP/IP. Ranjith et al. [19] provides a method for using
timing channel for data leakage.

There are numerous methods that are used to harden
hypervisors i.e, Xen, which in turn enhances system se-
curity. Trustvisor [20] is a special-purpose thin hypervisor
that offers code reliability as well as data privacy for an
application. Another category of thin hypervisor is Bitvi-
sor [21] that is designed to focus on the security of I/O
devices. However, it has a very small piece of code that
helps in reducing the jeopardy of attacks at runtime, the
main drawback of its functionality is that, it supports only
one VM. This is the reason that it has very limited usage.
NOVA [22] uses microkernel-like access to virtualization
level by moving maximum functionality to the user level. It
is designed and implemented with very little performance
overhead by using modern hardware virtualization. But
there is still a room for improvement.

Researchers have also revealed some methods that are
used to protect running commercial hypervisors i.e., Xen,
KVM, etc. without compromising their functionalities [23],
[24]. HyperGuard and HyperCheck [25] place the hyper-
visor measurement agent (MA) in the CPU System Man-
agement Mode (SMM) available in x86 system to separate
MA from the hypervisor it defends. However, MA can
measure the reliability of the hypervisor code, its security
modules confined as SMM does not deliver all the relative
data required by the MA. HyperSentry [23] resolves such
complexities by placing MA in the hypervisor but uses SMM
to protect it.

HyperSafe [24] is a specially designed hypervisor for
protection against the control-flow hijacking attack. It uses
features of the hardware to implement a non-bypassable
memory lockdown technique through which only a spe-
cial routine in the hypervisor can allow to write in the
memory. Moreover, it also implements more fine-grained
control-flow integrity using a strict pointer base indexing
structure through which all function calls in the hypervisor
are converted to point in a special table.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING , VOL. XX, NO. C, XX 2019 3

There is a number of different real-time attacks that
manipulate ROP systems. On the application layer, Adobe
has declared that a critical vulnerability has existed in
Adobe Flash Player 10.0.45.2 and earlier versions [11]. These
vulnerabilities also occur in Adobe Reader and Acrobat
9.x. These vulnerabilities are exploited by applying ROP, it
bypasses data execution prevention (DEP) [26], a security
system implemented by Windows, that may compromise
the full system and the attacker can potentially take control
of the victimized system [13].

In [27], the authors proposed an offline automated
framework for auditing consistent isolation between virtual
networks in the OpenStack cloud. Cloud insider attack
detector and locator (CIADL) on multi-tenant network iso-
lation for OpenStack is presented in [28]. The authors [29]
presented an approach to attack on the Xen hypervisor
utilizing return-oriented programming (ROP). It modifies
the data in the hypervisor that controls whether a VM is
privileged or not and thus can escalate the privilege of an
unprivileged domain (domU) at run time.

3 RELATED WORK

Researchers have identified a number of cross-VM attacks.
In [14] the authors categorized the network channel attacks
into three different categories; spoofed ARP, virtual hub,
and ARP Poisoning. The attacking VM launches an ARP
spoofing attack by forging an identical IP address within
the target VM and sends an ARP request to the virtual
router. The virtual router updates the routing table when
the spoofed ARP request is received. As a result, any traffic
directed to a target VM is instead mistakenly sent to the
attacking VM, which can then decide to either perform
sniffing or modification. In bridge network configuration
mode, the bridge acts as a virtual hub. All VMs share the
virtual hub to communicate with the network. An attacking
VM is able to sniff the virtual network by using a sniffing
tool, Wireshark [30]. In router network mode [16], the router
plays the role of a virtual switch using a dedicated virtual
interface to connect each VM. Here, a malicious VM can
undertake ARP poisoning [31], thus redirecting the packets
towards itself, and then sniffing packets going to and com-
ing from other VMs.

ROP-based rootkits have been offered in the Windows
operating system at the kernel layer. SecVisor [1] upon
execution can manage to hide the malicious processes, files
and network connections in Windows. These rootkits can
circumvent kernel integrity protection systems.ROP tech-
nique can be used to exploit Apple iPhone [32] in which
an unauthorized user installs applications or leak customers
SMS database [33].

In [34], the authors presented the ZombieLoad attack
which uncovers a novel Meltdown-type effect in processor’s
previously unexplored fill-buffer logic. Their analysis shows
that faulting load instructions (i.e., loads that have to be re-
issued for either architectural or micro-architectural reasons)
may transiently de-reference unauthorized destinations pre-
viously brought in the fill buffer by the current or a sibling
logical CPU. Hence, they reported data leakage of recently
loaded stale values across logical cores.

In [35], the authors proposed MemJam, which utilizes
aliasing to establish a side-channel attack that exploits the
false dependency of memory read-after-write events and
provides a high-quality intra-cache line timing channel. As
a proof of concept, they demonstrated the first key recovery
attacks on constant-time implementations of all symmetric
block ciphers supported in the current Intel integrated per-
formance primitives (Intel IPP) cryptographic library: triple
DES, AES, and SM4.

All these methodologies are based on the measurement
of code reliability, which can be helpful in detecting the at-
tacks for modifying the hypervisor code or injecting external
malicious code. So, the proposed attack model that utilizes
ROP cannot be detected by such defense mechanisms. This
is because in the proposed attack scheme no such injection
of external code or modification of the hypervisor code has
been performed.

3.1 Our Contribution

This paper explores the risk of cross-VM attacks, using a
concrete cloud service provider (OpenStack and Azure [36],
[37]) as a case study. It proposes a method of privilege es-
calation by exploiting the ROP method in conjunction with
a network channel in the cross-VM setting of a virtualized
system.

The authors in [38] leveraged an approach in which
an unprivileged VM using the ROP technique can man-
age to modify the code of a hypervisor through which it
can escalate its privilege level. However, there are still a
number of potential channels to explore. The authors have
not suggested any indication for the privilege escalation of
bonding of ROP and exploitation of network channels. This
work focuses on the exploitation of network channels for a
variety of reasons: (i) it arguably has the highest potential to
escalate the privilege level of unprivileged VM, (ii) prior
work only escalates the privilege level using traditional
approaches that can now be easily countered in virtualiza-
tion. The proposed approach provides an in-depth analysis
of the techniques used and their effects, both qualitative
and quantitative in various settings, (iii) the result of this
proposed approach is so effective that if it is successful it can
not only terminate other VMs running on the same physical
hardware but can also launch a DOS attack.

To the best of our knowledge, no work yet has demon-
strated redirection of a co-residing target VM’s network
traffic, by exploiting the network channel through a com-
bination of mirroring and impersonation along with the
exploitation of cross-VM network channel through ROP.
This is used in conjunction with a side-channel attack. This
approach is a first step towards using ROP to attack the
leading cloud providers in cross-VM settings. Moreover, as
discussed next, the features of mounting the proposed attack
in a virtualized system are only successful if the proposed
attack settings are successful.

4 SYSTEM MODEL AND NETWORK TRAFFIC FLOW
IN OPENSTACK CLOUD AND HYPERVISOR (XEN)
Investigation of our approach has been conducted in Open-
Stack deployed within Xen hypervisor. Before presenting



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING , VOL. XX, NO. C, XX 2019 4

the details, we define the fundamental concepts of Open-
Stack and Xen.

4.1 OpenStack
OpenStack is an open-source platform for cloud deploy-
ment. It attempts to provide sufficient compatibility to Ama-
zon’s external interfaces. It provisions scalability as well as a
wide diversity of hypervisors, network infrastructures, and
storage systems. The OpenStack section that is used in this
research is neutron [39] that enables the network component
and is available under the Apache-2 license.

OpenStack offers a cloud service with an infrastructure-
as-a-service (IaaS) model with many forms of paired ser-
vices. Each service offers an application programming in-
terface (API) that facilitates this integration. It offers the
options to developers to rent virtual machine instances in
a pay-as-you-go manner from its data center. The types of
instances are micro, small, large, and extra-large in size, and
each type has different capabilities for memory, I/O, and
CPU. Among all the instances types, a small instance is
allocated to a single virtual CPU (vCPU). In addition, mul-
tiple small instances share a single physical machine. Thus,
small instances are used in our experiments to evaluate the
proposed attack.

OpenStack can easily be connected with other 3rd party
tools like Open vSwitch (OVS), an open-source virtual
switch, for smooth functioning. The main purpose of im-
plementing the OVS in OpenStack is to support advance
network features such as layer-2 switch and offers different
features of Access Control List, VLAN, and subnet or private
network to VMs.

4.2 OpenStack Architectural Description
Following are the node specifications and their descriptions
used in OpenStack architecture.
Controller: Responsible for executing the services of man-
agement software that are needed for functioning of Open-
Stack platform.
Compute: Compute nodes execute virtual machine in-
stances in Open-Stack. KVM is used as a hypervisor in this
node. This node is also responsible for providing firewall
services. One can deploy more than one compute node in a
setup.
Network: The responsibilities of network nodes ensure the
creation of virtual networks needed by the customers to
create public or private networks. It connects their virtual
machines with the external networks, i.e. the Internet.
Deployment: All these nodes can be configured in the form
of a single machine or multiple machines as shown in Figure
1. In a single node setup, all nodes are deployed within the
same physical machine for facilitating all VMs and network-
ing capability. In a multi-node setup, a single controller is
responsible for system management of all compute nodes
executing VMs.

4.3 Xen
Xen is a hypervisor that provides strong isolation between
VMs co-residing on the same physical machine. It is open-
source (GPLv2) and is operated by Xen.org, a cross-industry
organization [40]. The Xen architecture is shown in Figure 2.

Xen can be configured with any leading cloud provider.
In this study, we have configured Xen underneath Open-
Stack. A brief description of OpenStack Xen architecture and
its domains is as follows:
Privileged and unprivileged domains: A number of VMs
or domains can run on Xen. When the system boots, boot-
loader first loads Xen which loads its main domain called
dom0. As Xen does not manage any device drivers, dom0 is
used to access the hardware and can handle device requests.
It is also the only administrative domain responsible for
creating, pausing, unpausing, saving, and destroying other
VMs residing on the same physical hardware. Contrary to
this, other domains that dom0 launches have no such admin
privileges and are called unprivileged domain (domU). The
data that controls whether a domain is privileged or not is a
boolean value in a domain structure within the hypervisor
code(set as 1 for dom0 and 0 for domU). If we want
to escalate the privilege of a domU, we need to modify
this allocated value for this domU from zero to one. The
OpenStack architecture having Xen running underneath is
shown in Figure 3.

Toolstack and Console: Domain 0 consists of a special
management tool called control stack (also termed Tool-
stack) that lets a user to manage virtual machine creation,
destruction, and configuration.

4.4 Cloud Network Architecture

Each VM has an assigned IP address visible to virtual
switch and all VMs are connected to br-int, i.e. open virtual
switch (OVS), br-int and br-ex are OpenVSwitches which
are responsible for managing ingress and egress requests
respectively. OVS is a virtualized switch which is a part of
the hypervisor.

A virtual switch is similar to a virtual network interface
that is organized by combining one or more virtual Ethernet
interfaces. A virtual switch is further connected to a virtual
router which is used for maintaining a routing table for
ingress and egress traffic. Routers are implemented with
the strict configuration of the firewall (FWaaS) that imple-
ments a security perimeter. The router further transmits the
packets to its next hop, i.e. on the br-ex. The br-ex contains
a physical network interface, eth0 which finally passes the
packets on the external network, i.e. the Internet.
There are four types of distinct virtual networking devices
TAP devices, veth pairs, Linux bridges (L.B), and Open
vSwitch bridges as shown in Figure 4. The Ethernet frame
is transmitted from the vnic of a VM to the Internet, go
through the devices; TAP, bridges, veth pair, Open vSwitch
bridge within the host.
Hypervisors such as KVM and Xen configure a virtual
network interface card (VIF or vNIC) using a TAP device.
An Ethernet frame transmitted towards the TAP device is
received by the guest operating system.
A veth pair is a pair that is directly connected to virtual
network interfaces i.e., vNIC. This pair acts as a network
cable. Veth pairs are used as virtual patch cables to create
connections between virtual bridges.
A Linux bridge (L.B) acts like a switch that follows the MAC
learning principle. Multiple network interfaces devices can
be connected to such bridges. There are MAC caching tables



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING , VOL. XX, NO. C, XX 2019 5

Compute

Controller Controller

Compute1 Compute2 Compute3 Computen…

Controller

Compute1 Compute2 Computen

Network1 Network2

…

Mgmt Network

Data Network Data NetworkMgmt NetworkData NetworkNetwork

API Network

Single Node Double Node Triple Node

Internet

Fig. 1. OpenStack Setups.

Fig. 2. Xen Hypervisor Architecture [40]

Fig. 3. OpenStack Xen Architecture [41]

in these bridges that are used to keep records of which
interfaces on the bridge are communicating with a host on
the link. An Ethernet frame arrives at an interface connected
to the bridge, the host MAC address and port on which the
frame received is saved in a MAC caching table for a limited
time. When the bridge needs to send a frame, it first looks
up the table to see if the destination address of the frame
is saved or not. If so, the Linux bridge in such a case will
forward the frame only through port where the frame is
received. If its record is not saved in a table, then the bridge
will flood the frame to all network ports, with the exclusion
of the port where the frame received.

An Open vSwitch bridge works like a virtual switch.
The network interface devices are connected to the Open
vSwitch bridge’s ports, and the configuration of the ports
are similar to the physical switch port, including VLAN
configuration.
The Integration bridge i.e. br-int is an Open vSwitch bridge.
All guest VMs running on the host connects to this bridge.
Cloud providers use advance networking techniques to im-
plement isolation between the guest VMs by configuring the
br-int ports. The integration bridge is responsible for doing
VLAN tagging and un-tagging of network traffic coming to
and from VMs.

4.5 Network Flow
The VM creates data and keeps it on the VNIC (Virtual
NIC card) that is associated with VM’s eth0. The data is
then transmitted to the TAP (Test Access Point) device on
the compute host. Generally, a TAP offers a path to access
the data passing through a network. The TAP devices are
further linked to the Linux bridges that pass the data to the
veth pair which acts as a one-side of the cable. Data sent to
one side of the veth pair can be received at the other end.
The other end of the pair is on the integration bridge (br-
int). This bridge is responsible for attachment of all the VM
TAP devices and any other bridge on the system.
OVS int-br further connects with br-eth1 to pass the traffic to
an external interface. The int-br-eth1 from br-int is respon-
sible for connecting with phy-br-eth1 of br-eth1. The int-br-
eth1 is one-half part of a veth pair connecting with phy-br-
eth1 bridge that is the other half of veth pair, which manages
VLAN systems is trunked over the physical ethernet device
i.e., eth1. VLAN configured at each interface keeps network
traffic of all VMs separated from each other. VLAN ID has
been assigned at br-int and traffic of each VLAN follows its
own path.

5 THE ATTACKS

The main focus of this research is to exploit the network
channel of cloud computing by launching two zero-day
attacks. Attack methodologies, their challenges, limitations,
and stages are discussed in this section.

5.1 Impersonation Attack
There is a potential to observe network traffic of the tar-
get machine on a network-channel. The main objective of



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING , VOL. XX, NO. C, XX 2019 6

veth pair veth pair veth pair veth pair

int-br-eth1

Port VLAN tag 1 Port VLAN tag 2

br-int

VM01

vNIC
IP

VM03

vNIC
IP

VM02

vNIC
IP

TAP2 TAP3

veth pair veth pair veth pair

L.Bwww

TAP1

veth pair

L.Bxxx L.Byyy L.Bzzz

Phy-br-eth1

int-br-eth1 br-eth1

VLAN101 VLAN102 L2 switch for
private network

Configured
by L2 agentInternet

TAP0

vNIC Dummy
1

2

3

4

A�ack Machine

MIRRORED

Fig. 4. Impersonation Attack

this attack is to compromise the internal interface of the
network, i.e. OpenVswitch (OVS) through which all VMs
are connected. By compromising the OVS, an attacker is
capable of penetrating within the running system. To do so,
the attacker needs to investigate the internal interface of the
network, i.e. the bridge interface through which the traffic
of all VMs passes.(1) Firstly, a dummy network device is
configured in an attacking VM that does not have an active
NIC adapter installed or disconnected from the network.
Secondly, it is impersonated into the TAP device. By remov-
ing all types of interface identity, the network card behaves
like a TAP. The main reason for this impersonation is that
TAP devices cannot be used to attach network namespaces
to the bridge. To overcome this gap, Ethernet is needed
to be impersonated with TAP. (2) Connectivity requests
are sent to the bridge that presumes it to be a valid TAP
interface and is automatically added as a conventional TAP
device. This bridge also contains the interfaces of other VMs.
Moreover, the identity of this dummy interface is hidden
by removing its footprints, so that it cannot be traced on
the network routes. (3) A network mirror is set up in an
unobtrusive way at this interface and the dummy interface
is configured as a destination point. The mirror redirects the
network traffic passing through it to or from the port onto
the set destination point. (4) This attack hides all the details
about routing and the host information. This is achieved
by assigning 0 to this dummy interface. Zeros remove all
the identities, i.e. IP and route information assigned to this
interface. The attack scenario and its steps are shown in
Figure 4. Cloud providers permit bridging of a TAP interface
that has no valid private Ethernet interface at the backend
is the main vulnerability in the network architecture [15].

Fig. 5. TAP vs NIC

A cloud provider does not allow the bridging of a TAP
interface that does not have a private Ethernet interface
at the backend. But in the ‘TAP Impersonation attack’, the
attacker misleads the cloud provider by going through the
aforementioned steps. The difference between the TAP and
regular devices can be seen in Figure 5. In this Figure, test0
is a TAP device and enp0s3 is a regular network device.

5.2 Privilege Escalation Attack

There is a potential to take over the control of Toolstack of
hypervisor at dom0 through the attacking machine which
resides at domU. This experiment circumvents the security
perimeter of OpenStack by introducing the concept of Re-
turn oriented Programming (ROP) technique in conjunction
with the exploitation of network channel.
The basic idea of Return-oriented programming is as fol-
lows:
Return-oriented programming is an effective code-reuse
methodology in which an attacker executes code that is
already present in the address space of a cloud model to
undermine the security perimeter [42]. This attack works by
escalating the privilege level of non-root VMs. The exploita-
tion of Return Oriented Programming (ROP) in conjunction
with the network channel is used to launch this attack. In
this attack, code-reuse methodology has been applied in
which malicious VM copies the code of OpenStack in its
own memory/domain. By doing so, it re-uses the code of
the actual open stack in its own memory. The reason for this
activity is that OpenStack allows the guest VM to further
sublet their resources. To manage their own resources, guest
VMs need to be a host of their own machine. Due to this
reason, OpenStack allows the guest VMs to copy the code.

Figure 6 illustrates the general ROP attack based on
code-reuse instructions. It shows a simplified version of
a program’s memory layout consisting of a code section,
libraries (lib), a data section, and a control structure (CS)
section. To mount an ROP attack based on code-reuse, the
attacker exploits a buffer overflow vulnerability of a specific
program. Hence, the attacker is able to overflow the local
buffer and overwrite adjacent control-flow information of
the CS section (step 1). In Figure 6, the attacker injects a
subset of OpenStack code (code-reuse) whereas program
execution is redirected to code i.e., to an instruction se-
quence in the lib section (step 2). The instruction sequence
of the linked library is executed until a subset of OpenStack
code has been reached which redirects the execution to the



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING , VOL. XX, NO. C, XX 2019 7

Fig. 6. Return Oriented Programming

next sequence of instructions by using a trampoline (step
3). The trampoline is also part of the linked libraries and is
responsible for loading the address of the next instruction
sequence from the CS section and redirecting execution to
it (step 4). This procedure is repeated until the attacker
terminates the program.

It has been shown that by compromising the network
channel, the attacker manages to penetrate into the domain
i.e. dom0 of a running system where the privilege VM
resides.

In OpenStack cloud having Xen architecture running
underneath, the root or admin VMs reside at dom0 and
are able to access the underlying hardware directly. These
root/admin VMs have special privileges i.e., they are able
to control other VMs. Dom0 is the first machine activated
by the system. There is a special stack (called Toolstack) in
this domain that allows a VM to manage virtual machine
creation, destruction, and resource allocation. Guest VMs
residing in domU (an unprivileged domain) cannot directly
access the hardware. These guest VMs cannot interfere with
other guests’ operations and management. In guest VM,
which is an attacking machine, a special feature of Open-
Stack named as OpenStack client has been configured. The
main concept behind the configuration of this special feature
of OpenStack is that, through this feature,(1) a malicious VM
copies the code of OpenStack in its own domain i.e. domU.
By doing so, the technique of code-reuse is applied in its
internal memory. This in-memory code is already testified
and scrutinized within security perimeter of OpenStack and
is already in an active state and hence security perimeters
are unable to block it. The main benefit of code-reuse scheme
in a guest VM is that this malicious guest VM becomes a
host of its own local machine (sub-host from main root).
After becoming a host of its own local machine, it is granted
a “dom0” for managing its own sub-guest VMs. This model
looks like a tree in which there is a main root that resides
in dom0 and have further guest VMs belonging to domU.
Among these guest VMs, one guest VM acts as a root of its
local system which has its own guests VMs, but globally it
acts as a sub-root. This malicious guest VM avail both the

Fig. 7. Privilege Escalation Attack

privileges (dom0 and domU). Dom0 manage its own local
guest VMs which can be further sublet and domU is added
by its inherent characteristic. There is a special python
API in dom0 i.e., xapi that make a connection between
other domains through network bridge i.e. br0. To make
a connection between domU and dom0, a special python
API i.e., XenAPI at domU is used to connect with xapi of
dom0. This connection follows a network path from ethernet
device to bridge and it uses internal management network
to reach from domU to dom0. Figure 7 shows concept of
attack model for OpenStack Xen architecture.

In this attack scenario, (2) an adversary establishes a
connection with dom0 by connecting a veth bridge pair that
connects xapi with xapi of python library. In veth bridge
pair, one bridge already exists in main root and other bridge
is part of the malicious guest VM that the attacker acquires
by applying code reusing technique. Whenever xapi con-
nects with other xapi through bridge, it presumes that root
of one cloud attempts to connect with root of other cloud
for cloud expansion or hybrid cloud and it automatically
allows the connection. (3)Due to this, attacking machine
penetrates into dom0, gain root privileges and takes over
control of tool stack to manage guest VMs. After getting
control of Toolstack the attacker is not only able to manage
other guest VMs running on same physical machine but
also can cause DoS attack by creating unnecessary VMs and
assigning them huge resources.

6 EXPERIMENTAL SETUP

Previous section presents the attacks settings and method-
ologies through which (i) a malicious VM can utilize net-
work channel to learn about the traffic of a co-resident VM
and (ii) a non-privilege VM can escalate its privilege level
by applying ROP in conjunction with a network channel. It
has been shown that after exploitation of an internal net-
work bridge, it allows an attacker to determine when other
VMs are transmitting traffic. Leakage of such information
appears secure, but it can be pretty valuable to attackers. The
attack is launched through penetration into the current sys-
tem, surreptitious redirection of the network traffic and even
the combination of mirroring and impersonation attack.
These steps have been practically checked on OpenStack
cloud testbed. The other experiment shows that after the



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING , VOL. XX, NO. C, XX 2019 8

privilege escalation, an attacker takes over the control of
Toolstack through which it can manage other co-resided
VMs. Controlling Toolstack is not only valuable to attackers
but also a serious threat to other VMs and cloud providers.
The steps that have been introduced to execute this attack
are, penetration into the root domain, illegal possession
of Toolstack and the usage of ROP in combination with
network channel OpenStack cloud testbed.

6.1 Experimental Settings
These experiments have been evaluated on OpenStack local
testbed that is configured with different types of setups.
Three guest VMs are launched and all VMs are assigned
IP addresses of different classes. Two types of networks
that have been configured in the experiments are NAT and
bridge network. In impersonation attack, NAT network has
been configured. VMs have been assigned local IP addresses
of 10.1.1.6, 10.1.1.7 and the attacking machine is assigned an
IP address of 10.1.1.8 respectively. However in ROP attack,
bridge network has been configured through which VMs
assigned real-time IPs. In our experiment, VM and the host
machine have been assigned IP addresses of 192.168.10.8
and 192.168.10.1 respectively. Each guest holds two VCPUs,
co-residing on a quad-core processor, specifically an Intel
Core 2 Q9650 with an operating frequency of 3.0 GHz.
All guest VMs are separated by using internal network
to ensure isolation. One guest VM acts as the attacking
machine and the others as the target. KVM is configured
as the hypervisor. Different flavors of operating systems i.e.
Ubuntu 16.04 server with a Linux kernel 4.8 and Cirros
are configured. Cirros is the tiny branch of Ubuntu. The
size of memory in all guest VMs are large (1-3GB) enough
to meet requirements of the experiment. In general, the
attacker can either passively wait for the victim VM to start
communicating and then spy messages, or actively spy on
communication by redirecting its traffic. In our experiments,
we consider the scenario which is in attacker’s advantage, in
this situation co-located VMs (VM2 and VM3) communicate
with each other by sending ping command.
It is also pertinent to mention that the experimental settings
are a realistic secure setup for virtualized environments. In
fact, in a cloud datacenter isolation among multiple VMs
may improve the security as one VM cannot interfere with
the operations of other VMs.

6.2 Network setup
OpenStack offers the facility of public and private types of
networks. IP addresses assigned to VMs from the public
network are accessed externally which is through the In-
ternet. The private network is only used for internal cloud
communication and cannot be accessed from the Internet.

6.3 Security Configuration
Attackers can intrude in a system at any point, hence mul-
tiple levels of security are required in a network to secure
data. In such an environment, cloud providers cannot fully
trust the traditional physical network security alone. They
need to add their own security rules to secure the cloud.
Security models hence need to be investigated and change

Fig. 8. Traffic capturing of Attacking VM

from centralized to distributed and from physical to virtual
configuration. Networking uses IPtables to achieve security
group functions. It enables the IPset option that uses a hash
table to improve security group’s performance. When a new
port is created, an additional IPset option is added to its
iptables chain. If a member of a security group is changed,
iptables rules are reloaded. However, by enabling the IPset
option, iptables are not needed to be reloaded, if only the
members of the security group are changed, it should just
update IPset rules.
A security group has been presented to avoid change of
settings when VM’s security group is created. These settings
are initiated by the individuality check of a new security
group name. A table of a security group that implements
such a group has a VM ID field as a primary key and a
security group ID. This is the identifier of a security group.
These two zero-day attacks are based on the exploitation of
network channel and their hypothesis areas:
Hypothesis 1: The penetration of external devices in current
running virtualized system.
Hypothesis 2: Attacking machine belonging to domU should
penetrate into dom0 and control the tool stack. Through this,
it can exploit other VMs running on the system.

7 EVALUATION

This section evaluates working of both attack experiments
discussed in Section 5.1 and 5.2.

7.1 Impersonation attack

By applying an attack strategy discussed in Section 5.1,
attacking VM1 can observe the traffic between target VMs
as shown in Figure 8. The attacking VM receives an ICMP
echo reply. The echo request and echo reply show successful
communication between two of the VMs.

The attack is effective when it is possible to determine
the sender and receiver communication between target VMs
(e.g., packet header source IP address).

Figure 9 shows VM network traffic prior, during, and
after the attack. Experiment time between 0 - 30 minutes
depicts that attacking VM1 exhibits random network traffic
not different from that of VM2 and VM3 (point A). The
attack commences at 25 minutes (point B), where it is
observable that attacking VM1 receives substantial network



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING , VOL. XX, NO. C, XX 2019 9

0

5

10

15

20
VM3
VM2
VM1

Th
ro

ug
hp

ut
 (K

bp
s)

5 10 15 20 25 30
Time (mins)

A

B C

D

Fig. 9. Network Traffic of Co-residing VM

traffic compared to target VMs, and continues to do so for
6 minutes until attack completion (point C). The reason for
this sudden increase in throughput is because all target VM
network traffic is being redirected through the attacking
VM.

While comparing network traffic of VM1 with other VMs
during the entire experiment, it is possible that the cloud
administrator could detect this as anomalous behavior due
to the sudden spike in network usage. This may lead to
the deployment of a countermeasure to restrict VM network
traffic that reaches a defined threshold. However, we believe
that in the context of cloud computing such a countermea-
sure would be challenging to implement. Firstly in many
public cloud settings, VM resource usage is seen as a black
box by the provider. If resource demands do not violate
resource capacity requested by a customer, this is seen as
typical of acceptable behavior. Secondly, even if the system
is attempting to monitor typical resource patterns using
bandwidth monitoring tools such as prtg [43], countermea-
sures will likely include a time delay for determining irreg-
ular resource patterns. Therefore, if a VM is compromised
even for a few minutes this may give sufficient time to an
attacker to achieve his/her objectives. For example, in 2008
the defense solution of a system operated by the Georgia
Government during an HTTP attack [44] remained activated
for 5 minutes after the attack was launched. Finally, the
detection of typical network traffic patterns becomes in-
credibly difficult if the attacking VM is capable of creating
cyclical network patterns before an attack, as shown in
Figure 10. The potential detection strategy for such attacks
is to place a Network Intrusion Detection System (NIDS)
[45] at points within the network to monitor traffic to and
from all sources on the network. It performs traffic analysis
at different time intervals and compares the traffic to find
out the attacks. Once an abnormal behavior in network
traffic is observed, an alert can be sent to the administrator.
But in this case, the attacking machine is generating the
same amount of traffic periodically and in the third peak
executes an attack following a similar resource pattern seen
previously (point A to B). Hence, the abnormality in the
traffic pattern cannot be observed. In this particular case,
ideally, the administrator would need to scan all inbound
and outbound traffic, but the limitation in doing so might
create a bottleneck that would affect the overall performance
of the network.

0

5

10

15

20

5 10 15 20 25 30
Time (mins)

Th
ro

ug
hp

ut
 (K

bp
s)

A B

Fig. 10. Cyclic Behavior of attacking VM

Fig. 11. Resource Comparison before and after attack

7.2 Privilege Escalation

Table 1 shows the total resource allocation and resource
utilization statistics of each VM for one-week. The value
of resource utilization mentioned in Table 1 is not fixed; it
varies from time to time depending upon the VM and the
programs running on them.

To demonstrate the effectiveness of the proposed ap-
proach, the attacking scheme described in section 5.2 is ap-
plied in an open-source cloud platform i.e. OpenStack, and
Microsoft Azure. For each cloud platform, the experimen-
tal setting described in section 6.1 has been implemented.
Three VMs have been launched to perform this experiment.
Initially, we have assigned some basic resources to all these
three VMs as shown in Table 1. After the execution of
a privilege escalation attack, a run-time measurement has
been performed to observe the resource utilization of at-
tacking VMs. Figure 11 compares resource utilization of the
attacking VM before and after the implementation of the
attack. Blue lines show resource utilization before the attack.
The main reason behind the variation in resource utilization
is that attacking VM uses ROP to escalate its privilege level,
hence it puts more processing load by executing the same
set of code in its local memory.

A network analyzer tool, prtg [43] is used to analyze the
network traffic of attacking VM. The prtg is a third-party
tool and can be configured on any open-source platform. To
evaluate the experiment setting, prtg has been configured in
the OpenStack host machine to monitor the network traffic



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING , VOL. XX, NO. C, XX 2019 10

TABLE 1
Resource Allocation and Utilization of Each VM.

Co-located VMs Memory (MB) Disk (GB) CPU (Hrs) Memory (MB) Disk (GB) CPU (Hrs)
VM1 1024 15 1 745.8482 6.25 709.45
VM2 2048 25 2 937.6591 9.13 1054.764
VM3 3072 40 3 3109.675 17.45 989.243

of co-residing VMs.
Figure 12 shows the output of a network traffic packet

analyzer of an attacking VM. The IP configurations of
attacking VM and the host machine are 192.168.10.8 and
192.168.10.1 respectively.

Figure 12 exhibits that the attacking VM can access the
host machine which it is not authorized to do so through a
network channel. There is no logic for an attacking VM to
access the host machine as they have been assigned their
own gateways and routing paths for ingress and egress
network traffic.

Figure 13 shows the I/O graph of an attacking VM.
I/O graph is a convenient tool for measuring the network
traffic and throughput of any selective VM. This graph
demonstrates that high network traffic is transmitted from
the attacking VM to the host machine and very low traffic
from the host machine is received. The routing table of host
and attacking VM has separate routes and there are no inter-
section communication points between these two machines,
hence there is no logic for attacking VM to communicate
with the host machine with such a high network traffic.
Orange line in this graph shows the network traffic received
by the attacking machine while blue line shows the network
traffic sent out to the host machine. The line graph indicates
that the attacking VM is attempting to communicate with
the host machine with a very high traffic.

8 COUNTERMEASURES

8.1 Impersonation Attack

The main defense against this attack might seek to modify
the open-source code of OpenStack cloud to at least limit
the granularity of network-based side-channels. The main
step that helps in launching the experimented attack is
penetration in the network. We can inhibit this attack ef-
fectively if we are successful in restricting the penetration of
any external device in the current running system. Multiple
VMs’ interfaces are ultimately connected to the OpenStack
internal network bridge, i.e. br-int that further connects
with a physical device for connection with the Internet. As
described already, the attacker manages to place itself in the
internal network through an impersonated TAP interface
and these TAP interfaces do not have any private Ethernet
interfaces. The security check ensures to only bridge TAP
interfaces that have some private Ethernet interfaces which
are protected through a security perimeter or IP table rules.
The vulnerabilities and assumptions that make such com-
promise possible are because of, cloud providers that allow
bridging of a TAP interface with the same Ethernet which
is used to connect to the Internet. This creates a serious
security problem. The direct connection of the TAP interface
that does not have any private Ethernet at the backend
with the bridge provides an opportunity for an attacker to

penetrate into the network.
The modification in the open-source code of OpenStack
ensures elimination of data leaks by restricting direct con-
nection of all the TAP Interfaces with a bridge that accesses
the Internet with the same Ethernet. The analysis of the
interface has revealed that each valid interface has three
attributes: - tag, interface, and type. The tag indicates that
VLAN is enabled to ensure the isolation between VMs,
interface exhibits its association with backend private Eth-
ernet and type shows the behavior of the interfaces. The
security checks need to ensure all these three attributes
of TAP play their role before connecting with the bridge.
This strategy can restrict penetration of the attacker into the
running system, thus providing an effective defense against
network-channel attacks.

8.2 Privilege Escalation Attack
The strategy to limit the privilege escalation attack modifies
open-source code of the OpenStack cloud. The main phase
that helps in launching the privilege escalation attack is
the reuse of the code to circumvent the security perimeter
which ultimately penetrates into the root domain of the
system. This attack can be inhibited if we are successful to
thoroughly scrutinize the code and restrict penetration into
the running system.

A new security perimeter has been introduced that
defends the system in a way akin to a network firewall.
The job of such a security perimeter is to protect/block
unauthorized users from accessing the root domain. The
underlying logic of the newly introduced security perime-
ter examines the internal state of the code and identifies
the malicious connectivity of unauthorized users. Already
existing security rules cannot prevent such attacks because
the codes for these rules are already stored in the internal
memory of the system, and the security perimeter already
examined such codes, so it treats all of these codes the same
as the original ones and thus has already checked.
To expand the cloud network, establishment of a root-to-
root connection is required. Such connections are estab-
lished through Xen special API called xapi. The proposed
security API upon connection request will internally check
xapi and whether is there any dual registration of this VM
or not. A connection request will be declined if it has dual
registration otherwise it grants the connection. A special API
has been implemented in the proposed security perimeter
that will check on run-time whether this xapi has any Xenapi
connection in its local domain? If it finds any Xenapi con-
nection, its connection request would be blocked otherwise
connection will be granted. The only limitation of applying
this security perimeter is network delay. Figure 14a shows
the normal root-to-root connection for cloud expansion.
Figure 14b shows enabling of security check for root-to-root
connection through xapi. This security check will examine



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING , VOL. XX, NO. C, XX 2019 11

Fig. 12. Traffic Capturing through Host Machine

Fig. 13. I/O Graph between an attacking VM and Host Machine

Fig. 14. (a): Root-Root Connection (b) Root-Root Secure Connection

the internal code of xapi and then decides to allow or block
the connection.

9 CONCLUSION

This research demonstrates two successful zero-day cross-
VM network attacks within a leading cloud platform i.e
OpenStack. The first attack applies a combination of imper-
sonating a TAP interface and a network mirror in the bridge
interface. The consequence of this combination allows at-
tackers to successfully redirect and monitor target VM net-
work traffic within the same physical machine unbeknownst
to customers. The second attack exploits ROP in conjunction
with a network channel for the escalation of the privilege
level of non-root VMs. This exploitation allows a non-root
VM to make a connection with the root VM and control Tool
Stack from where it can manage other co-located VMs.

The countermeasure solutions of these two zero-day
attacks have also been presented. They block penetration of

any external device into the system and properly scrutinize
the connection request before granting the root connection.

We have highlighted the challenge for cloud providers
to observe and detect such attacks due to an attacking
VM which neither violates assigned VM resource capacity
nor it makes any illegal connection with the root user for
privilege escalation. Future work will focus on improving
the current heuristics that prevent penetration of external
devices into the network and also observe the request for
root-connection. Furthermore, we will investigate how to
overcome the challenges of distinguishing between normal
resource patterns and target attacks.

REFERENCES

[1] A. Seshadri et al., “Secvisor: A tiny hypervisor to provide lifetime
kernel code integrity for commodity oses,” in ACM SIGOPS Oper-
ating Systems Review, vol. 41, pp. 335–350, ACM, 2007.

[2] http://cve.mitre.org/cgibin/cvename.cgi?name=CVE-2008-0923.
[3] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you,

get off of my cloud: exploring information leakage in third-party
compute clouds,” in Proceedings of the 16th ACM conference on
Computer and communications security, pp. 199–212, ACM, 2009.

[4] Z. Wu, Z. Xu, and H. Wang, “Whispers in the hyper-space: High-
speed covert channel attacks in the cloud.,” in USENIX Security
symposium, pp. 159–173, 2012.

[5] J. Rutkowska, “Subverting vistatm kernel for fun and profit,” Black
Hat Briefings, 2006.

[6] D. Hyde, “A survey on the security of virtual machines,” Dept. of
Comp. Science, Washington Univ. in St. Louis, Tech. Rep, 2009.

[7] S. R. Kumari and V. Kathiresan, “Virtual environment security-
considerations & practices,” Networking and Communication Engi-
neering, vol. 3, no. 2, pp. 87–92, 2011.

[8] S. Zhang, “Deep-diving into an easily-overlooked threat: Inter-vm
attacks,” tech. rep., Technical Report). Manhattan, Kansas: Kansas
State University, 2012.

[9] A. Bates, Mood, et al., “On detecting co-resident cloud instances
using network flow watermarking techniques,” International Jour-
nal of Information Security, vol. 13, no. 2, pp. 171–189, 2014.

[10] V. Varadarajan et al., “A placement vulnerability study in multi-
tenant public clouds,”

[11] Adobe, “Adobe systems. security advisory for flash
player, adobe reader and acrobat: Cve-2010-1297..”
http://www.adobe.com/support/security/advisories/apsa10
-01.html, 2010.

[12] S. Ragan. http://www.thetechherald.com/articles/Adobe-
confirms-Zero-Day-ROP-used-to-bypass-Windows-
defenses/11273/.

[13] R. Hund, T. Holz, and F. C. Freiling, “Return-oriented rootkits: By-
passing kernel code integrity protection mechanisms,” in USENIX
Security Symposium, pp. 383–398, 2009.

[14] C. Modi, D. Patel, B. Borisaniya, A. Patel, and M. Rajarajan, “A
survey on security issues and solutions at different layers of cloud
computing,” The journal of supercomputing, vol. 63, no. 2, pp. 561–
592, 2013.

[15] A. Saeed et al., “A cross-virtual machine network channel attack
via mirroring and tap impersonation,” in IEEEInternational Confer-
ence on Cloud Computing (CLOUD), pp. 606–613, IEEE, 2018.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING , VOL. XX, NO. C, XX 2019 12

[16] H. Wu, Y. Ding, C. Winer, and L. Yao, “Network security for
virtual machine in cloud computing,” in Computer Sciences and
Convergence Information Technology (ICCIT), 2010 5th International
Conference on, pp. 18–21, IEEE, 2010.

[17] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-
of-the-art and research challenges,” Journal of internet services and
applications, vol. 1, no. 1, pp. 7–18, 2010.

[18] S. J. Murdoch and S. Lewis, “Embedding covert channels into
tcp/ip,” in International Workshop on Information Hiding, pp. 247–
261, Springer, 2005.

[19] P. Ranjith, C. Priya, and K. Shalini, “On covert channels between
virtual machines,” Journal in Computer Virology, vol. 8, no. 3,
pp. 85–97, 2012.

[20] N. Q. Z. Z. A. D. V. G. Jonathan M. McCune, Yanlin Li and
A. Perrig., “Trustvisor: Efficient tcb reduction and attestation. in
ieee symposium on security and privacy, 2010..”

[21] T. Shinagawa et al., “Bitvisor: a thin hypervisor for enforcing i/o
device security,” in Proceedings of the 2009 ACM SIGPLAN/SIGOPS
international conference on Virtual execution environments, pp. 121–
130, ACM, 2009.

[22] U. Steinberg and B. Kauer, “Nova: a microhypervisor-based se-
cure virtualization architecture,” in Proceedings of the 5th European
conference on Computer systems, pp. 209–222, ACM, 2010.

[23] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C.
Skalsky, “Hypersentry: enabling stealthy in-context measurement
of hypervisor integrity,” in Proceedings of the 17th ACM conference
on Computer and communications security, pp. 38–49, ACM, 2010.

[24] Z. Wang and X. Jiang, “Hypersafe: A lightweight approach to
provide lifetime hypervisor control-flow integrity,” in Security and
Privacy (SP), 2010 IEEE Symposium on, pp. 380–395, IEEE, 2010.

[25] J. Wang, A. Stavrou, and A. Ghosh, “Hypercheck: A hardware-
assisted integrity monitor,” in International Workshop on Recent
Advances in Intrusion Detection, pp. 158–177, Springer, 2010.

[26] DEP, “Microsoft. data execution prevention (dep).
http://support.microsoft.com/kb/875352/en-us/, 2006.”

[27] J. Zhan, X. Fan, J. Han, Y. Gao, X. Xia, and Q. Zhang, “Ciadl:
cloud insider attack detector and locator on multi-tenant network
isolation: an openstack case study,” Journal of Ambient Intelligence
and Humanized Computing, pp. 1–23, 2019.

[28] T. Madi, Y. Jarraya, A. Alimohammadifar, S. Majumdar, Y. Wang,
M. Pourzandi, L. Wang, and M. Debbabi, “Isotop: auditing vir-
tual networks isolation across cloud layers in openstack,” ACM
Transactions on Privacy and Security (TOPS), vol. 22, no. 1, pp. 1–35,
2018.

[29] B. Ding, Y. Wu, Y. He, S. Tian, B. Guan, and G. Wu, “Return-
oriented programming attack on the xen hypervisor,” in 2012 Sev-
enth International Conference on Availability, Reliability and Security,
pp. 479–484, 2012.

[30] https://www.wireshark.org/.
[31] H.-C. Li et al., “Analysis on cloud-based security vulnerability

assessment,” in e-Business Engineering (ICEBE), 2010 IEEE 7th
International Conference on, pp. 490–494, IEEE, 2010.

[32] V. Iozzo, “Ralf-philipp weinmann & vincenzo iozzo own the
iphone at pwn2own,” 2010.

[33] B. Ding et al., “Return-oriented programming attack on the xen
hypervisor,” in Availability, Reliability and Security (ARES), 2012
Seventh International Conference on, pp. 479–484, IEEE, 2012.

[34] M. Schwarz et al., “Zombieload: Cross-privilege-boundary data
sampling,” arXiv preprint arXiv:1905.05726, 2019.

[35] A. Moghimi et al., “Memjam: A false dependency attack against
constant-time crypto implementations,” International Journal of Par-
allel Programming, vol. 47, no. 4, pp. 538–570, 2019.

[36] https://www.openstack.org/.
[37] https://azure.microsoft.com/.
[38] B. Ding, F. Yao, Y. Wu, and Y. He, “Improving flask implementa-

tion using hardware assisted in-vm isolation,” in IFIP International
Information Security Conference, pp. 115–125, Springer, 2012.

[39] OpenStack, “OpenStack Networking (”Neutron”).” [Accessed:
Jan-18].

[40] https://www.xenproject.org.
[41] https://wiki.openstack.org/wiki/XenServer/XenAndXenServer.
[42] L. Davi and othes, “Privilege escalation attacks on android,” in in-

ternational conference on Information security, pp. 346–360, Springer,
2010.

[43] https://www.paessler.com/prtg.

[44] A. Kozlowski, “Comparative analysis of cyberattacks on estonia,
georgia and kyrgyzstan,” European Scientific Journal, ESJ, vol. 10,
no. 7, 2014.

[45] B. R. Raghunath et al., “Network intrusion detection system
(nids),” in International Conference on Emerging Trends in Engineering
and Technology. ICETET’08., pp. 1272–1277, IEEE, 2008.

Atif Saeed is an active computer scientist and
has published over 10 peer-reviewed articles in
the field of networks and distributed systems. His
primary research expertise is studying the com-
plexity of Cyber Security, Hacking ,Cloud com-
puting, Data-centers, Internet of Things, Net-
works. He is an active member of Communica-
tion and Networks research at COMSATS Uni-
versity Islamabad, Lahore campus. Atif Saeed
received his doctorate degree from Lancaster
University UK.

Peter Garraghan is a Lecturer (Assistant Pro-
fessor) in Distributed Systems at Lancaster Uni-
versity. He is the leader of the Evolving Dis-
tributed Systems Laboratory (EDS Lab). Pe-
ter has industrial experience building production
distributed systems at scale. His research inter-
ests include Cloud computing, Machine Learn-
ing Systems, Energy-efficiency, Dependability,
and Resource Management.

Syed Asad Hussain received the master’s de-
gree from Cardiff University, UK and the Ph.D.
degree from Queen’s University Belfast, UK. He
was the Head of the Computer Science Depart-
ment, COMSATS University Islamabad Lahore,
Pakistan, from August 2008 to August 2017.
He has been serving as the Dean of Faculty
of Information Sciences and Technology since
2015. He is currently leading communications
and networks research at COMSATS University
Islamabad Lahore. He is supervising Ph.D. stu-

dents at COMSATS University and split-site Ph.D. students at Lancaster
University, UK in the fields of cloud computing and cybersecurity. He
was funded for his Ph.D. by Nortel Networks UK at Queen’s University
Belfast. He has taught at Queen’s University Belfast, Lahore University
of Management Sciences (LUMS), and the University of the Punjab.
He was awarded prestigious endeavour research fellowship for his post
doctorate at The University of Sydney, Australia, in 2010, where he
conducted research on VANETs. He regularly reviews IEEE, IET, and
ACM journal articles.


