- 1 Perspective paper
- 2 Adding forests to the water-energy-food nexus
- 3 Felipe P.L. Melo^{1*}; Luke Parry²; Pedro H. S. Brancalion³; Severino R.R. Pinto^{4,9}; Joaquim Freitas^{4;}
- 4 Adriana P Manhães⁴; Paula Meli⁵; Gislene Ganade⁶; Robin L. Chazdon^{7,8}

5

- 6 ¹Centro de Biociencias, Universidade Federal de Pernambuco, Recife-PE, Brazil
- 7 ²Lancaster Environment Centre, Lancaster University, Lancashire, United Kingdom
- 8 ³Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
- 9 ⁴Centro de Pesquisas Ambientais do Nordeste, Recife-PE, Brazil
- 10 ⁵Departamento de Ciencias Forestales, Universidad de la Frontera, Temuco, Chile
- ¹¹ ⁶Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal-RN, Brazil
- ¹² ⁷University of Connecticut, Storrs, CT USA.
- 13 ⁸Tropical Forests and People Research Centre, University of the Sunshine Coast, Queensland, AU
- 14 ⁹Department of Forest and Conservation Science, University of British Columbia, Vancouver,
- 15 Canada
- 16 * Corresponding author: <u>felipe.plmelo@ufpe.br</u>

17

18 Preface

Forest and landscape restoration (FLR) is a promising strategy for improving water, energy and food securities (WEF-Nexus). We advocate that 'forest security' should form a fourth, foundational dimension of a novel water, energy, food and forest security nexus (WEFF-Nexus) framework. Key principles of this new framework support an integrated role of forests in sustainable development, and engagement of local communities in nature-based solutions, particularly in the Global South. We believe that this new approach can help to accelerate the pace and magnitude of changes needed

25 for achieving the United Nations Sustainable Development Goals.

26 Main text

Safeguarding biodiversity and promoting a sustainable and equitable sharing of the planet's natural 27 resources is one of humanity's major challenges¹. Forests are irreplaceable for maintaining 28 29 biodiversity and provide crucial direct and indirect benefits to people². Unfortunately, high rates of deforestation and land degradation are transforming landscapes to the extent that they require 30 31 environmental protection to slow these processes and restoration interventions to support flows of 32 ecosystem services³. Severely degraded landscapes have low conservation value and reduced capacity to support human well-being now or in the future⁴. Additionally, three-quarters of poor 33 people worldwide live in rural areas⁵. Managing these altered landscapes to maintain agricultural 34 productivity as well as diverse ecosystem services that support sustainable livelihoods often 35 presents a "wicked problem" - i.e. trade-offs are common⁶. 36

37 Forest and landscape restoration (FLR) has emerged as a socio-ecological approach to expand restoration objectives and restore landscape characteristics such as productivity, resilience, 38 and sustainability⁷. However, FLR demands complex multidisciplinary approaches based on 39 40 reliable, coherent conceptual frameworks⁸. Understanding, foreseeing, and minimizing trade-offs is 41 crucial to achieve so-called 'win-win' outcomes for the environment and societies⁷. One possible solution lies in building a holistic framework that recognizes the role of forests as paramount for 42 43 ecosystem functionality and human well-being. This framework for guiding policy interventions would not eliminate trade-offs but should, ideally, help to recognize, anticipate, and minimize 44 them⁹. 45

Much forest restoration research focuses on targeting priority areas for increasing forest cover based on biophysical and socioeconomic features of landscapes. For instance, Banks-Leite and colleagues¹⁰ used biodiversity conservation thresholds to map and prioritize areas for strategically restoring the Brazilian Atlantic Forest and proposed that re-purposing only 6.5% of the existing agricultural subsidy for that region would support cost-effective restoration on private lands. Another comprehensive study⁷ calculated a restoration opportunity score for all tropical rainforests by mapping restoration benefits based on biodiversity conservation, climate change
mitigation and adaptation, and water security. Also, Strassburg and colleagues¹¹ incorporated both
ecological and economic efficiency to show that cost-effectiveness of FLR increases eight-fold
when planned systematically, compared with non-systematic baseline restoration efforts in Brazil's
Atlantic Forest region.

57 Despite the relevance of these analyses to inform priority areas, they privilege the costeffectiveness of restoration, rather than engaging with the needs, values and preferences of affected 58 59 social groups. Understanding the complex linkages between ecological and societal change demands more integrative approaches that incorporate interactions among local people needs, 60 61 opportunities for agricultural sector and biodiversity conservation. Whereas restoring forests to exclusively deliver environmental benefits is costly and reduces direct benefits to farmers¹², 62 63 harnessing agroforestry to integrate the production of food, firewood, and other forest goods helps to transform forest restoration into an economically-viable, scalable land use. Resolving some of the 64 socio-economic bottlenecks of forest restoration (e.g., avoiding rural unemployment by creating 65 local jobs within the restoration supply chain) is crucial to mainstream it as one of the mechanisms 66 for achieving the United Nations Sustainable Development Goals (hereafter SDGs), especially those 67 directly linked to forests, during the upcoming UN Decade of Ecosystem Restoration (2021-2030). 68

69 Among the many frameworks or paradigms proposed to promote sustainable development, the Water-Energy-Food Nexus (WEF-Nexus) is gaining attention because of its potential to help 70 understand synergies and trade-offs in an interdisciplinary way¹³. This framework is designed to 71 improve understanding and quantification of supply and demand of natural resources, economic 72 flows and social structures that affect water, energy, and food securities¹⁴. Since its launch at the UN 73 74 2011 Bonn Conference¹⁵, important advances have been made in both the theoretical foundations 75 and practical deployment of the WEF-Nexus approach to assess and hopefully resolve complex socio-ecological problems¹⁶. Work has highlighted the utility of WEF-Nexus framework for 76 77 assessing and accounting for people's vulnerabilities to both natural and socioeconomic hazards and

how it can contribute to achieving SDGs¹⁷. Compared to other integrative approaches such as 78 Integrated Water Resource Management¹⁸, WEF-Nexus has attracted more attention because it 79 involves multiple sectors, all affected by the current climate emergency¹³. The "perfect storm" 80 81 predicted by Sir John Beddington (a former UK Government Chief Scientist) foresaw that by 2030 the demands for water, food and energy will be the main challenges for a growing global 82 83 population. This warning still echoes in academia and governmental sectors that have adopted WEF-Nexus as a promising framework for mitigating against, and adapting to, this challenging 84 85 uncertain future. We think, however, that achieving WEF securities requires more than addressing supply/demand dynamics, but needs to focus on how to sustain and restore the forest ecosystems 86 that support the provisioning of such natural resources. Security can be progressively defined as the 87 fair access to quality resources in satisfying quantities, for all people, which can be impacted by 88 governance, institutions, and power relationships^{14,19,20}. 89

90 We argue that bridging the gap between WEF-Nexus and FLR approaches and policy agendas could help accelerate the pace of the kinds of socio-environmental transformations needed 91 92 to achieve SDGs. Large-scale FLR programs should, ideally, help countries and sub-national 93 regions to meet SDG targets and guarantee water, energy, and food security through sustainable development. The goals to end poverty (SDG-1), zero hunger (SDG-2), deliver clean water and 94 95 sanitation (SDG-6), affordable clean energy (SDG-7), and life on land (SDG-15) can be achieved faster if the promising policy intervention strategies from different ministerial remits can dialogue 96 and create partnerships (SDG-17) in order to strengthen synergies and align agendas. For instance, 97 if a nation's environmental and agricultural policies are complimentary, rather than antagonistic²¹. 98 However, scholars are only beginning to understand the many possible and complex interactions 99 100 among the 169 SDG targets.

Among the interactions between SDGs (both trade-offs and synergies), some present strong positive correlations such as ending poverty (SDG-1), and ensuring health and well-being (SDG-3) and water (SDG-6), all tending to follow advances in most of the SDGs²². On the other hand,

ensuring responsible consumption and production (SDG-12) seems to negatively interact with other 104 SDGs, including those directly related to forests, water, energy and food [i.e. the WEF-Nexus] 105 $(SDGs 2;6;7 and 15)^{22}$. Forest restoration initiatives can help to overcome these trade-offs and 106 107 potentialize the sinergies. FLR programs aim to increase tree cover, improve the resilience of managed ecosystems, and safeguard biodiversity in the hope that healthy landscapes provide a 108 balance of functions that support sustainable livelihoods^{3,7,8}. This goal resonates with the WEF-109 Nexus focus on integrating water, energy and food securities, which all depend on the capabilities 110 111 of human societies to organize themselves in order to manage natural resources.

Forest and landscape restoration can, evidently, improve the resilience of socio-ecological 112 systems²³. Replenishing forests where they have been cleared or degraded can increase the capacity 113 of socio-ecological systems to cope with the risks of climate change (SDG-13). Many international 114 agreements and tree planting initiatives aim to strengthen forest restoration worldwide²⁴. Examples 115 include: Aichi Target 15; Convention on Biological Diversity (CDB - Decision XI/16); Objective 116 3(b)(i) of the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES), and the 117 Decade on Ecosystem Restoration 2021-2030 (United Nations). One global initiative, the Bonn 118 Challenge, denotes pledges of up to 170 million hectares of lands destined for restoration activities, 119 but only 18% of these targets have been achieved, mainly due to insufficient funding and economic 120 121 incentives or poor governance mechanisms²⁵.

This scenario of under-funding may change because, to date, over 60 national and sub-122 national commitments to restore degraded and deforested landscapes by 2030 were made to the 123 Bonn Challenge, and several other reforestation programs were included through National 124 Determined Contributions to the Paris Climate Agreement. Tree planting in general was prominent 125 126 in the 2020 Davos' World Economic Forum, posited as helping national economies to mitigate climate change, and many investors and business-people have declared their support for tree 127 128 planting initiatives. Expectations are high that the political and financial support for forest 129 restoration based on tree planting and natural regeneration approaches will be boosted soon, during the UN thematic decade on ecosystem restoration (2021-2030). This period coincides with nationallevel implementation of action plans for achieving SDGs²⁶.

Here, we present a novel framework for mainstreaming forest restoration into the WEF-Nexus approach that may help societies to meet SDGs. Our aim is to demonstrate the benefits of restoring degraded and deforested landscapes as a way to achieve water, energy and food securities, from landscape to regional scales. Because almost any intervention aiming to support livelihoods relies on decision-making processes around land-use, our integrated approach can address the shortcomings of stand-alone FLR and WEF-Nexus frameworks while emphasizing the best principles of these frameworks.

139

140 Water, energy, food and forest securities

141 We propose a hybrid framework, called WEFF-Nexus (the nexus among water, energy, food and forest security), which highlights the foundational role of forests in achieving water, energy and 142 food security (Table 1; Fig. 1). This merging of WEF-Nexus and FLR involves, conceptually, 143 adding "forests" (both planted and natural) as an inter-connected meta-dimension of the classic 144 WEF-Nexus triangle (Table 1; Fig. 1). Below we summarize the role of forests in promoting water, 145 energy and food securities. Our presentation is not comprehensive, given that we exclude non-forest 146 147 ecosystems from our perspective and most of the examples cited are focused on tropical regions due to our research experience. However, the rationale behind our arguments can be applied to other 148 ecosystems and forest biomes. It's worth stating that we do not use the term "security" as a 149 synonym of availability or balanced supply/demand dynamics but instead as representative of broad 150 societal access to resources, thus taking in account social and economic determinants of security¹⁴. 151 Access can be defined as "the ability to derive benefits from things"²⁰ which expands the notion of 152 security as going beyond property, thus including diverse socioeconomic and socio-ecological 153 154 relationships (e.g., allowing for community management of natural resources, for example) that determine how people benefit from natural resources²⁰. 155

157 Water security and forests

Water scarcity can reflect ecological or socioeconomic constraints and is worsening globally, with a 158 159 cascade of consequences for both livelihoods and ecosystem health²⁷. The depletion of freshwater resources has many causes, but is coupled to deforestation locally and globally. Restoring forests 160 can contribute to reversing this trend²⁸. Planting or regenerating forests are key strategies to protect 161 and recover degraded watersheds²⁹: however, maintaining or increasing forest cover within 162 watersheds tend to compete with land uses that provide more immediate economic returns, such as 163 pastures or crops³⁰. Longer-term decision-making that accounts for externalities such as floods, soil 164 erosion, and reduced water quality should show stronger net-benefits of restoring forests, yet the 165 restoration of ecosystems usually has lagged responses in the provisioning of ecosystem services 166 such as carbon storage, water regulation, and biodiversity recovery³¹. 167

These trade-offs are typical of water management challenges but can be overcome through 168 effective policy. Landscape planning must consider the long-term social and economic benefits of 169 170 managed tree cover that is expected to exceed the immediate costs (including foregone opportunities) of conservation or restoration³⁰. In Brazil, for example, the Native Vegetation 171 Protection Law (NVPL) of 2012 established a legal environment that regulates land occupancy and 172 made conservation set-asides a recognized land-use that need to be restored as a legal requirement 173 aiming to protect water springs and riparian zones for the common good³². This legal instrument 174 provided a huge opportunity for forest restoration, because 21 million hectares need to be restored 175 on private land in that country in order for farmers follow the law and access agricultural credit³³. 176 An assessment of degraded watersheds the Rio Doce, Brazil, estimated that recovery of 716,000 177 hectares of forest is: a) economically feasible; b) could meet 6% of national restoration 178 commitments; c) improve water quality; and d) improve resilience to both drought and floods ³⁴. 179 180 The impacts of forest restoration on water yields remain uncertain, but a few systematic reviews have assessed them and showed that increasing tree cover can reduce water yields³⁵. But 181

this is not necessarily a major limitation of FLR, as reforestation approaches like agroforestry 182 establish low densities of trees, in order to allow the integration of pastures or crops to the system, 183 with consequent lower evapotranspiration and reduced impacts on water vield³⁶. Because water use 184 185 is principally local, water balance has mostly been calculated at the catchment scale, resulting in apparently negative effects of forest cover on water yields calculation because forest reduces water 186 187 runoff³⁵. However, evapotranspiration is a trans-boundary process that contributes with most of the rainfall in regions such as Southeastern Brazil and Northern Argentina and Uruguay³⁷. FLR focuses 188 on landscapes and benefits of restoration at landscape scale and provides a strong argument for 189 protecting the continental movements of water as a direct result of forest metabolism³⁸. 190

Water security – as we conceptualize it - also includes water quality and fair access to water 191 resources. Water quality is improved when native vegetation is present across the catchment area. 192 193 Across the tropics, many ongoing payments for ecosystem services (PES) schemes are based around improving water quality through the restoration of degraded water springs and riversides^{39,40}. 194 Increasing catchment-level forest cover can also reduce the economic costs of water treatment. For 195 196 example, avoiding 1% conversion of native forest to non-forest land uses decreases the costs of water treatment by 1.16% in Malaysian catchments⁴¹. These "forest-to-water" services help to find 197 the (needed) money for restoration through PES schemes that generate restoration jobs and transfer 198 199 economic resources to landowners that both conserve and restore watersheds⁴². The economics of forest-water relationships is developing rapidly as evidence accumulates and win-win schemes 200 based on water-restoration relationships are increasingly easy to communicate to a general 201 audience³⁵. This is due to the popularization of examples such as the "flying rivers" generated 202 through evapotranspiration from Amazonian forests that transfer rain down south into Brazil's 203 204 soybean belt ⁴³. To support water security and provide water in quantity and quality for human wellbeing, FLR should be developed as a foundational step for improving future water provision and 205 206 equitable access to those living in forest biomes. Water security goes beyond the technical problem 207 of reducing water scarcity and should be viewed as a socio-political problem of ensuring access to

safe water supply. Undoubtedly, aiming the resilience of currently degraded socio-ecological
landscapes through forest restoration must play an important role in achieving water security for all.

211 Energy security and forests

Nearly 2.5 billion people depend on fuelwood to attend their basic needs for cooking and heating⁴⁴. 212 213 Native forests and woodlands are the main sources of this enormous amount of biomass, which is consumed mostly by poor households in the Global South⁴⁴. Fuelwood demand represents a 214 continuous source of degradation to natural ecosystems that may deplete other ecosystem services 215 provided by forests, especially biodiversity safeguarding and carbon storage⁴⁵. Biomass burning 216 217 accounts for over 70% of all renewable energy consumed globally⁴⁶. The consumption of fuelwood is expected to respond for 42% of the primary energy sources in the year 2035 in sub-Saharan 218 Africa⁴⁷. Under this scenario, FLR emerges as one of the main tools to deal with the growing 219 fuelwood challenge. 220

The Food and Agriculture Organization (FAO) regards forests as "nature's powerhouses" 221 and crucial for meeting the SDG's on sustainable energy sources because fuelwood is affordable 222 and mainly important in the Global South⁴⁸. Around half of the global wood production is used by 223 the wood-energy sector, which employs almost 900 million people on a part or full-part basis, 224 mostly in low and middle income countries⁴⁸. Supporting the sustainable production of fuelwood in 225 tree-covered, human-modified landscapes through forest restoration or commercial tree plantations 226 should help to reduce the degradation of native forests and improve the resilience of managed 227 ecosystems⁴⁶. Another role for forests in enhancing energy security is supporting hydropower 228 generation because tree cover reduces local soil erosion and siltation, which is a major problem for 229 230 hydropower dams⁴⁹. Finally, as forests can regrow, any human activity relying on wood-energy can contribute to carbon-neutrality if transparent and accurate measures of carbon dynamics of all types 231 232 of forests (primary, managed, or planted) are adopted across different economic sectors that adopt 233 such source of energy 50 .

Summarizing, we argue that FLR should be adopted as a key strategy for achieving energy security, particularly in the topical Global South, where there is a greater reliance on biomass energy and alternative energy sources are less likely to substitute fuelwood in the short-to-medium term⁵¹. Nevertheless, discourses on forest restoration rarely explore potential benefits for providing sustainable energy sources, which could be integrated into agroforestry approaches that provide both food and the energy to cook it. FLR can provide multiple benefits based on diverse ecosystem services supply, and providing energy security is among the most promising ones²⁶.

241

242 Food security and forests

Food insecurity is mainly caused by insufficient reliable access to food rather than food shortages⁵². 243 Inequitable land distribution is part of this problem because many poor people lack access to arable 244 lands, and instead live in marginal degraded landscapes or their access to food supplies from forests 245 is diminished by property rights⁵³. Worldwide, over 2 billion hectares of land are both deforested 246 and unproductive⁴⁶, failing to provide food for people or to safeguard biodiversity (both native and 247 agrobodiversity). We strongly support calls for cost-effective techniques to allow restoration of 248 degraded landscapes which can meet multiple demands, especially food production⁵⁴. Moreover, 249 when forest restoration promotes the recovery of biodiversity, it ultimately improves pollinator 250 251 communities and natural enemies of agricultural pests, increasing food production in neighboring rural areas⁵⁵. Returning degraded lands to a functional state means that forests must help people to 252 have equitable opportunities to grow, harvest or purchase food. This should be among the main 253 goals for any restoration initiative. Of course achieving these goals relies on good governance and 254 effective, diverse institutions⁵⁶. Sustainably producing food for people under a changing climate 255 256 depends on ecosystem services that can only be delivered by functional landscapes⁵⁷.

Hundreds of millions of poor people depend on forests for income through the harvesting of non-timber forest products⁵⁸. Wild-meat is an important source of nutrients for poor people living in rural areas, especially in west Africa and Amazonia^{59,60}. Beyond being a source of wild-meat, forests

are used as rangelands and help to feed millions of people⁶¹. Multi-functionality (the ability to 260 deliver several benefits for nature and sustain livelihoods) is, increasingly, a desired feature of 261 working, biodiversity-friendly landscapes. In this sense, restoration can play a crucial role in 262 263 diversifying land uses through the implementation of productive agroforestry systems, including silvopasture⁶². Diversifying food production and planting trees in degraded lands could also 264 265 improve food sovereignty and boost economic and social returns from currently unproductive landscapes⁶³. Making restored forests productive would help to offset conservation and restoration 266 costs and also improve food security for local communities⁶⁴. Therefore, regrowing forests in 267 degraded landscapes is key to establishing a sustainable system of production based on forest goods 268 and services that help societies to achieve or regain food sovereignty. The integration of trees in 269 productive landscapes would be a smart and effective way to make a better use of the inherent 270 271 biophysical features of deforested and degraded landscapes, in which trees maximize the ecological 272 efficiency of natural resources use.

273

274 Forest security matters

Forests can be defined, qualified, qualified (i.e. whether natural, mature, secondary or planted), 275 monitored and managed as well as any other natural resource. The benefits of forests for people can 276 277 be assessed both globally and locally through their interconnections with water, food and energy securities as well as for their role in climate mitigation and adaptation. Forest security encompasses 278 the protection and the ability to recognize and generate broad, equitable benefits from both existing 279 natural forests and planted ones wherever they can help to create better landscapes for people and 280 nature³⁰. Forests matter because they also cool the planet and are a major component of nature-281 based solutions to fight and adapt to the climate emergency²⁴. There have been several recent 282 attempts to assess other urgent problems of the humanity through the lens of WEF-Nexus 283 284 framework. Climate-related issues are currently central to any major analytical sustainability 285 framework, and it not surprising to see attempts to make climate a fourth node of WEF-Nexus. A

recent effort focuses on climate vulnerability and proposes that balancing the WEF securities
requires a fourth pillar, social-ecological security⁶⁵. This modified framework, based on case study
research in the Brazilian semi-arid region, represents an important advance in expanding WEFNexus but remains detached from forest policy agendas. Whereas water, energy and food are
resources, climate is a systemic planetary condition and social-ecological security is an abstract
multivariate meta-dimension. Conversely, forests can be seen as a natural resource and their
integration with WEF securities, livelihoods and climate is heuristically straightforward.

293

294 Keystone principles of WEFF-Nexus

295 Mainstreaming forest restoration

Tree planting has become something of a "holy grail" for environmentalists and land managers. In 296 2015, post-COP 21, the Paris Agreement put reforestation for carbon mitigation at the centre of the 297 global climate change agenda, and a few 'Trillion Trees' initiatives were launched recently, 298 including in 2020 by the World Economic Forum²⁶. Increasing the planet's tree cover through 299 300 restoration was considered a reliable tool for mitigating and adapting to climate change⁶⁶. The 301 benefits of FLR go beyond carbon sequestration and can include land management, soil protection and biodiversity conservation⁶⁷. Given these myriad benefits, regrowing forests became an attractive 302 303 policy discourse for achieving sustainability and livelihoods goals in human-managed landscapes. These mixed-use landscapes now prevail worldwide and demand interventions to recover or keep 304 their long-term capacity to provide services and goods⁶⁸. Some reforestation approaches like 305 agroforestry, maximize multiple benefits within the same area, while other approaches such as 306 exotic tree plantings, silvopastures and riparian forests must be carefully distributed across 307 308 deforested and degraded landscapes in order to achieve the social and ecological conditions for creating heterogeneous, multipurpose landscapes. 309

Forest and landscape restoration thinking has been developed by a diverse global
community of researchers and practitioners, yet it has moved beyond academia, and begun to shape

policy agendas (Table 2)^{7,11}. Important advances have been made toward understanding the 312 economics of planting and regrowing trees in terms of spatial prioritization¹⁰, opportunity costs⁶⁹, 313 trade-offs⁷⁰ and job generation⁷¹. Forest restoration as a global movement has reached a level of 314 315 maturity to the point that also enables self-criticism and recognition of limitations²⁶. This knowledge now allows interested parties to estimate costs and benefits, map stakeholders, maximize 316 economic and social returns, and reduce undesirable consequences of restoration initiatives. 317 Drawing on these FLR advances can help to accelerate policies towards the SDG's, ensure WEF 318 securities and avoid unintentional perverse outcomes of simplistic actions and planning (Table 2). 319 320

321 *Empowering local communities*

Both FLR and WEF-Nexus approaches rightly take the role of local communities seriously and 322 consider them crucial for achieving sustainable use of natural resources. Large-scale policy 323 programs such as Forest and Farm Facility (FAO) recognize that local people must be the main 324 decision-makers and beneficiaries of restoration in order to ensure progress towards the SDGs⁷². 325 Admittedly, however, FLR and WEF-Nexus underplay social differences and tend to homogenize 326 diverse actors and local governance institutions. This is problematic because inter-group and intra-327 group inequities hinder collective action to manage forests⁷³. Many examples with important lessons 328 on how FLR promote empowerment of local communities can be found within scientific and grav 329 literature (Table 3). Also, principles and guidelines regarding the roles of local people in restoration 330 are outlined on the website of the People and Restoration in the Tropics Network (https://partners-331 rcn.org/). Ensuring that local communities – including marginalized social groups - have equitable 332 access to forest resources, as that forest management is participatory, is key to making forest 333 restoration a long-term enterprise based on people's needs and wills⁷⁴. In the same way, the WEF-334 Nexus approach must adopt participatory schemes to map both challenges and opportunities for 335 local communities to align decisions with their WEF-securities⁷⁵. 336

337 In order to ensure social accountability, water, energy, food and forest securities should be: 1) mapped; 2) quantified; 3) ordered in terms of importance; and, 4) used as feedback for project 338 design and implementation⁷⁵. The role of local communities in this accountability process is to 339 340 participate in the decision-making processes around recognizing, interpreting and resolving the trade-offs which inevitably emerge among WEFF securities to help achieve a fair distribution of 341 environmental goods and bads (in other words, seeking environmental justice). Local voices must 342 be heard and communities need to be engaged partners with the power to decide how and where 343 widespread degraded lands can be turned into biodiversity-friendly landscapes through agroforestry 344 or instead, to produce wood for many purposes (e.g., fuel, fiber, pulp, timber) or set aside for 345 biodiversity conservation. (see examples in Table 3). Developing institutions for collective, effective 346 management of natural resources requires the promotion of social capital, organization, leadership 347 and autonomy 76 . To have a long-term chance of success, the restoration of degraded lands must be 348 anchored in a bottom-up process that accounts for the needs and values of rural communities which 349 are sufficiently empowered to influence political decisions and resolve disputes. Communities must 350 therefore work alongside, or when necessary, push back against, different scales of government and 351 non-local institutions. 352

353

354 Nature-based solutions

Currently, technological solutions to global challenges are privileged over other forms of social 355 transformation. However, emerging technologies tend to be inaccessible to poor rural communities, 356 who depend instead on natural capital for attending food, energy and water needs. Fortunately, 357 however, nature-based solutions are gaining traction as an efficient, affordable and multi-beneficial 358 359 alternative to technological innovation (e.g., agricultural mechanization, dams)⁷⁷. Nature-based solutions rest on ethical principles including benefit-sharing between people and the nature of 360 sustainable management of both degraded and natural areas⁷⁸. Restoration is an important nature-361 362 based solution through approaches that recover degraded natural systems (e.g., ecosystem-based

adaptation, climate adaptation services, etc.)⁷⁸. We therefore argue for adopting forest restoration as 363 a guiding principle aiming to improve water, energy and food security. Forest restoration can 364 strengthen a community's self-sufficiency (e.g. in food or building materials), and helps facilitate 365 366 access to alternative markets such as certified organics. Finally, global-scale forest policy initiatives such as REDD+ and the Bonn Challenge encourage the protection of existing forest-related 367 ecosystem services and the recovery of degraded forested ecosystems through forest restoration. 368 Nature-based solutions could thus be used as a 'toolbox' to boost water, energy and food securities 369 370 through forest restoration⁷⁹.

371

372 Conclusions

We propose the careful integration of FLR into the WEF-Nexus framework. This ambitious, novel 373 374 approach for achieving water, energy, food *and* forest securities can, we argue, facilitate better policy-making and action in areas that once supported native forest ecosystems. Our starting point 375 is that forests should be treated as a natural resource whose security must be guaranteed for, and be 376 accessible to, diverse social groups. In this sense, forest security (in forested ecosystems) is 377 foundational for sustainable livelihoods and accelerating progress towards the SDGs. Restored 378 forest rarely substitute natural forest habitats and the ecosystem services they provide, but can 379 380 certainly help to alleviate pressure on old-growth forests. Forest restoration has gained momentum and related benefits must now be expanded far beyond helping nature. Bringing back forest to 381 degraded landscapes is a chance to materialize "political forests" - an emerging idea that recognizes 382 these landscapes as dynamic territories which are produced through politics (i.e. speaking to 383 political ecology)⁸⁰. Accordingly, forests must not be seen as purely natural entities but as 384 385 continually being (re)created. Forests are strongly related to politics and culture as well as holding material significance for different sectors of society⁸⁰. Moreover, we believe that recognizing the 386 387 histories, values and desires of marginalized social groups in forested regions will help progress 388 towards achieving broader development goals. The community-centric approach that we advocate

- 389 would help to incorporate a currently degraded or deforested landscape's social and ecological
- 390 components; essential for effective and long-lasting restoration²⁴. We hope that the interdisciplinary
- 391 nature of WEFF-Nexus can enhance communication with, and maximize influence on, policy-
- 392 makers working within and beyond the state.

393 References

- 1. Díaz, S. *et al.* Pervasive human-driven decline of life on Earth points to the need for transformative change. *Science* **366**, (2019).
- 2. At the human-forest interface. Nature Communications 9, 1153 (2018).
- Melo, F. P. L., Arroyo-Rodriguez, V., Fahrig, L., Martinez-Ramos, M. & Tabarelli, M. On the hope for biodiversity-friendly tropical landscapes. *Trends in Ecology & Evolution* 28, 462–468 (2013).
- Arroyo□Rodríguez, V. *et al.* Designing optimal human-modified landscapes for forest biodiversity conservation. *Ecology Letters* (in press) doi:10.1111/ele.13535.
- Castañeda, A. *et al.* A New Profile of the Global Poor. *World Development* 101, 250–267 (2018).
- DeFries, R. & Nagendra, H. Ecosystem management as a wicked problem. *Science* 356, 265–270 (2017).
- Brancalion, P. H. S. *et al.* Global restoration opportunities in tropical rainforest landscapes. *Science Advances* 5, eaav3223 (2019).
- Meli, P. *et al.* Four approaches to guide ecological restoration in Latin America. *Restoration Ecology* 25, 156–163 (2017).
- Robertson, M., Nichols, P., Horwitz, P., Bradby, K. & MacKintosh, D. Environmental Narratives and the Need for Multiple Perspectives to Restore Degraded Landscapes in Australia. *Ecosystem Health* 6, 119–133 (2000).
- 10. Banks-Leite, C. *et al.* Using ecological thresholds to evaluate the costs and benefits of setasides in a biodiversity hotspot. *Science* **345**, 1041–1045 (2014).
- 11. Strassburg, B. B. N. *et al.* Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. *Nature Ecology & Evolution* **3**, 62 (2019).
- 12. Brancalion, P. H. S. *et al.* What makes ecosystem restoration expensive? A systematic cost assessment of projects in Brazil. *Biological Conservation* **240**, 108274 (2019).
- Simpson, G. B. & Jewitt, G. P. W. The Development of the Water-Energy-Food Nexus as a Framework for Achieving Resource Security: A Review. *Frontiers in Environmental Science* 7, 8 (2019).

- Biggs, E. M. *et al.* Sustainable development and the water–energy–food nexus: A perspective on livelihoods. *Environmental Science & Policy* 54, 389–397 (2015).
- Hoff, H. Understanding the nexus : Background paper for the Bonn2011 Nexus Conference. (Stockholm Environment Institute, 2011).
- Bazilian, M. *et al.* Considering the energy, water and food nexus: Towards an integrated modelling approach. *Energy Policy* **39**, 7896–7906 (2011).
- Liu, J. *et al.* Nexus approaches to global sustainable development. *Nature Sustainability* 1, 466–476 (2018).
- Ibisch, R. B., Bogardi, J. J. & Borchardt, D. Integrated water resources management: Concept, research and implementation. in *Integrated Water Resources Management: Concept, Research and Implementation* 3–32 (2016). doi:10.1007/978-3-319-25071-7_1.
- 19. Díaz, S. et al. Assessing nature's contributions to people. Science 359, 270-272 (2018).
- 20. Ribot, J. C. & Peluso, N. L. A Theory of Access*. Rural Sociology 68, 153-181 (2003).
- 21. Nations, F. and A. O. of the U. *Voluntary guidelines for agro-environmental policies in Latin Amrica and The Caribbean*. (Food & Agriculture Org., 2018).
- Pradhan, P., Costa, L., Rybski, D., Lucht, W. & Kropp, J. P. A Systematic Study of Sustainable Development Goal (SDG) Interactions. *Earth's Future* 5, 1169–1179 (2017).
- Cole, L. E. S., Bhagwat, S. A. & Willis, K. J. Recovery and resilience of tropical forests after disturbance. *Nature Communications* 5, 3906 (2014).
- Chazdon, R. & Brancalion, P. Restoring forests as a means to many ends. *Science* 365, 24–25 (2019).
- 25. NYDF Assessment Partners. Protecting and Restoring Forests: A story of large commitments yet limited progress. New York Declaration on Forests Five-Year Assessment Report. (2019).
- Holl, K. D. & Brancalion, P. H. S. Tree planting is not a simple solution. *Science* 368, 580–581 (2020).
- 27. Albrecht, T. R., Crootof, A. & Scott, C. A. The Water-Energy-Food Nexus: A systematic review of methods for nexus assessment. *Environmental Research Letters* **13**, 043002 (2018).
- Townsend, P. V. *et al.* Multiple environmental services as an opportunity for watershed restoration. *Forest Policy and Economics* 17, 45–58 (2012).

- 29. Vörösmarty, C. J. *et al.* Global threats to human water security and river biodiversity. *Nature* 467, 555–561 (2010).
- 30. van Noordwijk, M. Integrated natural resource management as pathway to poverty reduction: Innovating practices, institutions and policies. *Agricultural Systems* **172**, 60–71 (2019).
- Moreno-Mateos, D. *et al.* Anthropogenic ecosystem disturbance and the recovery debt. *Nature Communications* 8, 1–6 (2017).
- Brancalion, P. H. S. *et al.* A critical analysis of the Native Vegetation Protection Law of Brazil (2012): updates and ongoing initiatives. *Natureza & Conservação* 14, 1–15 (2016).
- 33. Soares-Filho, B. et al. Cracking Brazil's Forest Code. Science 344, 363-364 (2014).
- Pires, A. P. F., Rezende, C. L., Assad, E. D., Loyola, R. & Scarano, F. R. Forest restoration can increase the Rio Doce watershed resilience. *Perspectives in Ecology and Conservation* 15, 187– 193 (2017).
- Filoso, S., Bezerra, M. O., Weiss, K. C. B. & Palmer, M. A. Impacts of forest restoration on water yield: A systematic review. *PLOS ONE* 12, e0183210 (2017).
- Ellison, D. *et al.* Trees, forests and water: Cool insights for a hot world. *Global Environmental Change* 43, 51–61 (2017).
- 37. Ent, R. J. van der, Savenije, H. H. G., Schaefli, B. & Steele □ Dunne, S. C. Origin and fate of atmospheric moisture over continents. *Water Resources Research* **46**, (2010).
- 38. Sheil, D. Forests, atmospheric water and an uncertain future: the new biology of the global water cycle. *Forest Ecosystems* **5**, 19 (2018).
- 39. Karabulut, A. *et al.* Mapping water provisioning services to support the ecosystem-water-foodenergy nexus in the Danube river basin. *Ecosystem Services* **17**, 278–292 (2016).
- 40. Richards, R. C. *et al.* Governing a pioneer program on payment for watershed services:
 Stakeholder involvement, legal frameworks and early lessons from the Atlantic forest of Brazil. *Ecosystem Services* 16, 23–32 (2015).
- 41. Vincent, J. R. *et al.* Valuing water purification by forests: An analysis of Malaysian panel data. *Environmental and Resource Economics* **64**, 59–80 (2016).
- Brancalion, P., Viani, R., Strassburg, B. & Rodrigues, R. Finding the money for tropical forest restoration. *Unasylva* 239, 41–50 (2012).

- 43. Zemp, D. C. *et al.* On the importance of cascading moisture recycling in South America. *Atmospheric Chemistry and Physics* **14**, 13337–13359 (2014).
- 44. International Energy Agency. Energy access outlook: From poverty to prosperity. (2017).
- 45. Specht, M. J., Pinto, S. R. R., Albuquerque, U. P., Tabarelli, M. & Melo, F. P. L. Burning biodiversity: Fuelwood harvesting causes forest degradation in human-dominated tropical landscapes. *Global Ecology and Conservation* **3**, 200–209 (2015).
- 46. FAO. The state of the world's forests 2018 Forest pathways to sustainable developmen.(2018).
- 47. UNEP. *Review of Woodfuel Biomass Production and Utilization in Africa: A Desk Study*. (United Nations Environment Programme, 2019).
- FAO. Forests and Energy. http://www.fao.org/resources/infographics/infographics-details/en/c/ 852816/ (2017).
- 49. Arias, M. E., Cochrane, T. A., Lawrence, K. S., Killeen, T. J. & Farrell, T. A. Paying the forest for electricity: a modelling framework to market forest conservation as payment for ecosystem services benefiting hydropower generation. *Environmental Conservation* 38, 473–484 (2011).
- 50. Moomaw, W. R., Law, B. E. & Goetz, S. J. Focus on the role of forests and soils in meeting climate change mitigation goals: summary. *Environmental Research Letters* **15**, 045009 (2020).
- Tesfaye, M. A. *et al.* Selection of tree species and soil management for simultaneous fuelwood production and soil rehabilitation in the Ethiopian Central highlands. *Land Degradation & Development* 26, 665–679 (2015).
- 52. Beddington, J. Food security: contributions from science to a new and greener revolution. *Philosophical Transactions of the Royal Society B: Biological Sciences* **365**, 61–71 (2010).
- 53. van Noordwijk, M. *et al.* SDG synergy between agriculture and forestry in the food, energy, water and income nexus: reinventing agroforestry? *Current Opinion in Environmental Sustainability* 34, 33–42 (2018).
- Vieira, D. L. M., Holl, K. D. & Peneireiro, F. M. Agro-successional restoration as a strategy to facilitate Tropical Forest recovery. *Restoration Ecology* 17, 451–459 (2009).
- Dainese, M. *et al.* A global synthesis reveals biodiversity-mediated benefits for crop production. *Science Advances* 5, eaax0121 (2019).

- 56. Biggs, R. *et al.* Toward principles for enhancing the resilience of ecosystem services. *Annual Review of Environment and Resources* **37**, 421–448 (2012).
- 57. Munang, R. T., Thiaw, I. & Rivington, M. Ecosystem management: Tomorrow's approach to enhancing food security under a changing climate. *Sustainability* **3**, 937–954 (2011).
- 58. Souza, S. E. X. F. de, Vidal, E., Chagas, G. de F., Elgar, A. T. & Brancalion, P. H. S. Ecological outcomes and livelihood benefits of community-managed agroforests and second growth forests in Southeast Brazil. *Biotropica* 48, 868–881 (2016).
- Cawthorn, D. M. & Hoffman, L. C. The bushmeat and food security nexus: A global account of the contributions, conundrums and ethical collisions. *Food Research International* 76, 906–925 (2015).
- Parry, L., Barlow, J. & Peres, C. A. Hunting for sustainability in tropical secondary forests. *Conserv. Biol.* 23, 1270–1280 (2009).
- Mbiba, M., Muvengwi, J. & Ndaimani, H. Environmental correlates of livestock depredation by spotted hyaenas and livestock herding practices in a semi-arid communal landscape. *African Journal of Ecology* 56, 984–992 (2018).
- Calle, A. Partnering with cattle ranchers for forest landscape restoration. *Ambio* 49, 593–604 (2020).
- Woolf, D., Solomon, D. & Lehmann, J. Land restoration in food security programmes: synergies with climate change mitigation. *Climate Policy* 18, 1260–1270 (2018).
- 64. Miccolis, A., Peneireiro, F. M., Vieira, D. L. M., Marques, H. R. & Hoffmann, M. R. M. Restoration through agroforestry: Options for reconciling livelihoods with onservation in the Cerrado and Caatinga biomes in Brazil. *Experimental Agriculture* 55, 208–225 (2019).
- Araujo, M. *et al.* The socio-ecological Nexus+ approach used by the Brazilian Research Network on Global Climate Change. *Current Opinion in Environmental Sustainability* **39**, 62– 70 (2019).
- 66. Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76-79 (2019).
- Latawiec, A. E., Strassburg, B. B., Brancalion, P. H., Rodrigues, R. R. & Gardner, T. Creating space for large-scale restoration in tropical agricultural landscapes. *Frontiers in Ecology and the Environment* 13, 211–218 (2015).

- 68. Chazdon, R. L. *et al.* A policy-driven knowledge agenda for global forest and Landscape restoration. *Conservation Letters* **10**, 125–132 (2017).
- 69. Possingham, H. P., Bode, M. & Klein, C. J. Optimal conservation outcomes require both restoration and protection. *PLOS Biology* **13**, e1002052 (2015).
- 70. Suding, K. et al. Committing to ecological restoration. Science 348, 638-640 (2015).
- Calmon, M. *et al.* Emerging threats and opportunities for large-scale ecological restoration in the Atlantic Forest of Brazil. *Restoration Ecology* 19, 154–158 (2011).
- Adams, C., Rodrigues, S. T., Calmon, M. & Kumar, C. Impacts of large-scale forest restoration on socioeconomic status and local livelihoods: what we know and do not know. *Biotropica* 48, 731–744 (2016).
- Andersson, K. & Agrawal, A. Inequalities, institutions, and forest commons. *Global Environmental Change* 21, 866–875 (2011).
- Galabuzi, C. *et al.* Strategies for empowering the local people to participate in forest restoration. *Agroforestry Systems* 88, 719–734 (2014).
- Terrapon-Pfaff, J., Ortiz, W., Dienst, C. & Groene, M.-C. Energising the WEF nexus to enhance sustainable development at local level It. *Journal of Environmental Management* 223, 409–416 (2018).
- Van Laerhoven, F. Governing community forests and the challenge of solving two-level collective action dilemmas: A large-N perspective. *Global Environmental Change* 20, 539–546 (2010).
- 77. Rizvi, A. R. Nature based solutions for human resilience. (2014).
- Nature-based solutions to address global societal challenges. (IUCN International Union for Conservation of Nature, 2016). doi:10.2305/IUCN.CH.2016.13.en.
- Keesstra, S. *et al.* The superior effect of nature based solutions in land management for enhancing ecosystem services. *Science of The Total Environment* 610–611, 997–1009 (2018).
- 80. Peluso, N. L. & Vandergeest, P. Writing Political Forests. Antipode 52, 1083-1103 (2020).
- Barrow, E. 300,000 Hectares Restored in Shinyanga, Tanzania but what did it really take to achieve this restoration? S.A.P.I.EN.S. Surveys and Perspectives Integrating Environment and Society (2014).

- Reij, C. & Garrity, D. Scaling up farmer-managed natural regeneration in Africa to restore degraded landscapes. *Biotropica* 48, 834–843 (2016).
- 83. Paudyal, K., Baral, H., Lowell, K. & Keenan, R. J. Ecosystem services from community-based forestry in Nepal: Realising local and global benefits. *Land Use Policy* **63**, 342–355 (2017).
- 84. Viani, R. A. G., Braga, D. P. P., Ribeiro, M. C., Pereira, P. H. & Brancalion, P. H. S. Synergism between payments for water-related ecosystem services, ecological restoration, and Landscape Connectivity Within the Atlantic Forest hotspot. *Tropical Conservation Science* 11, 1940082918790222 (2018).

394

395	Correspondence	should b	be addressed	to F.P.L.M.
-----	----------------	----------	--------------	-------------

396

397 Acknowledgments

- 398 Thanks to research partners and students of our labs that made this possible. Thank to funding
- agencies: CNPq-Brazil (grant 441292/2017-8), and a Fondecyt (grant 11191021).

400

401 Author contributions

- 402 FPLM conceived the original idea and wrote the outline of the perspective. FPLM, LP, RLC and PB
- 403 conceived tables, figures and work on writing and revisions. SP, AM, JF, GG and PM contributed to
- 404 content development, writing and revisions.

405

406 **Competing interests**

407 Authors declare no competing interests

408 Figure lengends

409	Figure 1. Water-energy	-food-forest nexus	- WEFF-Nexus.	The left	panel (a) shows	peop	ole's
-----	------------------------	--------------------	---------------	----------	----------	---------	------	-------

- 410 livelihoods representing the balance between trade-offs and synergies among each of the four
- 411 securities. The right panel (b) represents the unfolding of the left one and shows all two-way
- 412 interactions among securities. We highlight examples of how forests, both natural and restored, can
- 413 improve water, energy and food security.

414

415

416 Tables

- 417 Table 1. How key principles of Forest and Landscape Restoration are put in practice in restoration
- 418 interventions and how they can improve Water, Energy and Food securities. Table modified from
- 419 Chazdon et al. (2020).

Key principles	Applied to Forest and Landscape Restoration (FLR)	Applied to Water, Energy and Food Securities (WEF-Nexus)
Focus on landscapes	FLR takes place within and across landscapes representing mosaics of interacting land uses and management practices.	WEF securities are better assessed from a landscape perspective as trade-offs and synergies are likely to operate mainly at the landscape scale.
Participatory governance	FLR actively engages stakeholders at different scales, including vulnerable groups, in planning and decision- making regarding land use, restoration goals and strategies, implementation methods, benefit sharing and monitoring.	Diverse and comprehensive group of stakeholders are likely to provide a better picture on the challenges and opportunities when pursuing WEF securities, anticipate trade-offs to be avoided and boost synergies.
Multifunctional landscapes for multiple benefits	FLR interventions aim to restore multiple ecological, social, and economic functions across a landscape and generate a range of ecosystem goods and services that benefit multiple stakeholder groups.	WEF securities, by definition, must be addressed simultaneously as they are interliked. Landscapes must ideally be able to offer guarantee as many securities as possible.
Prioritize natural ecosystems	FLR does not lead to the conversion or destruction of natural forests or other ecosystems. It enhances the conservation, recovery, and sustainable management of forests and other ecosystems.	WEF securities must rely on ecosystem services delivered by native biomes and prioritize nature-based solutions that emphasize how livelihoods depend on healthy ecosystems.
Adaptive management	FLR uses a variety of approaches that are adapted to the local social, cultural, economic, and ecological values, needs, and landscape history. It draws on latest science and best practice, and traditional and indigenous knowledge to enhance adaptive management	Long-term WEF securities must promote the adaptive management of the landscapes though diverse and adaptable institutions that promote responsive governance arrangements
Long-term resilience	FLR seeks to enhance the resilience of the landscape and its stakeholders over the medium and long-term. Restoration approaches should be adjusted over time to reflect enviornmenyal and societal changes to be integrated into management plans.	WEF securities must be guaranteed in the long run via improving resilience of the socio-ecological systems in face of future environmental changes, economic shocks and societal transformation.

421 Table 2. Definition of water-energy-food (WEF) securities, the diverse potential role of restoration

Type of security	Definition	Potential role of forest restoration	Broad scale programs and/ or institutions
Water security	Access to water in adequate quantity and acceptable quality for human consumption, agriculture, power generation and livestock	Restore and protect watersheds; keep large-scale water balance; improve local people power on decision- making	International Water Resource Management - IWRM; Watershed restoration programs (USA).
Energy security	Fair access to sustainable and affordable sources of energy that guarantees human welfare	Fuelwood; biofuels; guarantee water supply for hydropower	International Energy Agency - IEA
Food security	Transportation, storage and distribution of good quality, environmentally friendly and affordable food	Diversify agriculture with agroforestry; reduce food imports; soil remediation, restore degraded lands; increase pollination and pest control	World Agroforestry – ICRAF; Center for International Forestry Research – CIFOR; FAO Forest and Farm Facility

422 program to achieve securities, and large-scale restoration programs that can help to meet the goals.

423

424 Table 3. Forest and Landscape Restoration projects and large-scale interventions in developing

425 countries indicating the securities attended according to our proposed water, energy, food and forest

426 securities framework (WEFF-Nexus). A common feature of all projects/interventions is that they

427 mainstream forest restoration, aiming forest security that allows for the adoption of nature-based

428 solutions that promote empowerment of local communities.

Intervention or project/Country	Description	Securities attended
HASHI/ Tanzania	Grazing exclosures were established in 833 villages to control desertification and restore native woodlands. Trees and catchment conservation improved water quality, provided fodder for cattle, and fuelwood ⁸¹ .	Forest; Water; Energy; Food
Farmer-managed natural regeneration / Niger and Burkina Faso	Combat desertification thorugh increased tree cover on farms using exclosures. Farmers select the best rootstocks to grow into mature trees, which they nurture through thinning and pruning. These practices provide fuelwood, fodder, and improve crop yields and water retention in soils ⁸² .	Forest; Water; Energy; Food
Community- based forest management and rehabilitation/ Nepal	Local communities restore and manage degraded forests to get access to forest products. The watershed is largely recovered due to forest management and natural regeneration processes and supports livelihoods, wildlife, tourism, and crop irrigation ⁸³ .	Forest; Water; Energy; Fores; Food
The Water Conservation Program/ Brazil	Over the first 10 years, the program coordinated restoration activities that increased native forest cover by 60% through contracts of payment for ecosystem services with landowners, and established long-term collaborations among government agencies, civil society, and landowners ⁸⁴ .	Forest; Water
Community- managed agroforests / Brazil	Local rural communities involvement in forest management and agroforestry systems, centred on harvesting fruits of the palm <i>Euterpe edulis</i> Mart. (Arecaceae), an endemic, threatened species, improving livelihoods by supplying market valuable and culturally important plants ⁵⁸ .	Forest; Food
Mainstreaming Sustainable Cattle Ranching/ Colombia	The program reached more than 2800 ranchers and transformed more than 50,000 hectares of formerly degraded pastures into silvopastoral systems, helping to protect over 12,000 hectares of existing and recovering forests ⁶² .	Forest; Water; Food