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29 Summary

30  The Triticum aestivum (wheat) genome encodes three isoforms of Rubisco activase (Rca) 

31 differing in thermostability, which could be exploited to improve the resilience of this crop 

32 to global warming. We hypothesised that elevated temperatures would cause an increase 

33 in the relative abundance of heat stable Rca1β.

34  Wheat plants were grown at 25/18°C (day/night) and exposed to heat stress (38/22°C) for 

35 up to 5 days at pre-anthesis. Carbon assimilation, Rubisco activity, CA1Pase activity, 

36 transcripts of Rca1β, Rca2β and Rca2α, and the quantities of the corresponding protein 

37 products were measured during and after heat stress.

38  The transcript of Rca1β increased 40-fold in 4 hours at elevated temperatures, and 

39 returned to the original level 4 hours upon return of plants to control temperatures. Rca1β 

40 comprised up to 2% of the total Rca protein in unstressed leaves, but increased 3-fold in 

41 leaves exposed to elevated temperatures for 5 days, and remained high 4 hours post heat 

42 stress.

43  These results show that elevated temperatures cause rapid changes in Rca gene 

44 expression and adaptive changes in Rca isoform abundance. The improved 

45 understanding of the regulation of carbon assimilation under heat stress will inform efforts 

46 to improve wheat productivity and climate resilience.

47

48 Running title: Wheat Rca pool composition under heat stress

49

50 Keywords: carbon assimilation, crop improvement, food security, heat stress, 

51 photosynthesis, Rubisco activase, Rubisco regulation, Triticum aestivum (wheat)

52
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53 Introduction
54 Wheat production is threatened by the increasing frequency of heat stress in combination 

55 with other abiotic factors (IPCC, 2014; Slattery & Ort, 2019; Ray et al., 2019). Field studies 

56 show that predicted benefits of increasing atmospheric CO2 for plant growth are offset by 

57 drought and heat stress (Ruiz-Vera et al., 2013; 2015; Gray et al., 2016). Moreover, 

58 increases in [CO2] result in increased canopy temperature (Long et al., 2006). Although 

59 plants can cool their leaves by transpiration (Ayeneh et al., 2002), increased drought 

60 frequencies limit water availability and increase leaf temperature (Carmo-Silva et al., 2012). 

61 As leaf temperature increases, respiration rates increase exponentially while photosynthesis 

62 declines above an optimum temperature threshold for each species (Way & Yamori, 2014). 

63 Acclimation of respiration to the growth temperature further compounds the balance between 

64 the two processes (Atkin et al., 2005). The photosynthetic machinery also adapts to the 

65 growth environment (Berry & Bjorkman, 1980; Yamori et al., 2013; Thomey et al., 2019), and 

66 depending on the extent of temperature changes, photosynthetic limitations may be 

67 reversible or cause permanent damage. Broadening the temperature range for optimal 

68 carbon assimilation in wheat is important because global production is predicted to decline in 

69 response to rising temperatures (Asseng et al., 2015; Liu et al., 2016).

70 The activity of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) 

71 has long been identified as the site of heat inactivation of the Calvin-Benson-Bassham Cycle 

72 (CBBC) (Weis, 1981). This inactivation is largely due to an inefficient regulation of Rubisco 

73 activity by the heat-sensitive molecular chaperone Rubisco activase, Rca (Crafts-Brandner & 

74 Salvucci, 2000; Salvucci et al., 2001). Rubisco itself remains active up to 50°C (Salvucci & 

75 Crafts-Brandner, 2004b; Galmés et al., 2016), but the reactions it catalyses are differently 

76 affected by temperature (Galmés et al., 2019). In addition to CO2 assimilation by reaction 

77 with RuBP, Rubisco can use O2 as an alternative gaseous substrate, which initiates 

78 photorespiration and results in a net loss of CO2 (Ogren, 1984). Oxygenation occurs at faster 

79 rates as temperature increases because the solubility of CO2 decreases more rapidly than O2 

80 with temperature (Ku & Edwards, 1977; Bauwe et al., 2010; Dusenge et al., 2019), leading to 

81 substantial crop yield losses under future climate scenarios (Walker et al., 2016).

82 Environmental factors such as [CO2] and growth temperature have been shown to 

83 affect the expression of Rubisco small subunit genes (RbcS) in Arabidopsis (Cheng et al., 

84 1998; Yoon et al., 2001; Cavanagh & Kubien, 2013), the relative abundance of RbcS 

85 isoforms in rye (Huner & Macdowall, 1979; Huner & Hayden, 1982), and Rubisco properties 

86 in spinach (Yamori et al., 2006). Specific residues in the Rubisco large subunit (rbcL) have 

87 also been linked to improved catalytic capacity at high temperatures (Prins et al., 2016; 

88 Sharwood et al., 2016). Thus, the temperature dependence of Rubisco activity appears to be 

89 determined by the inherent properties of the amino acid residues that make up the protein, 
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90 and by the combination of rbcL assembled with diverse RbcS isoforms. While phenotypic 

91 plasticity enables plants to adapt the photosynthetic machinery to warmer temperatures, 

92 short-term heat stress is likely to cause detrimental effects (Leakey et al., 2003).

93 The regulation of Rubisco activity by Rca is particularly sensitive to temperature 

94 (Salvucci et al., 2001; Carmo-Silva & Salvucci, 2011). The active site of Rubisco is prone to 

95 deactivation by tight-binding of inhibitory sugar-phosphate derivatives, the production of 

96 which increases with temperature (Salvucci & Crafts-Brandner, 2004c; Schrader et al., 

97 2006). Reactivation requires Rca to remodel the active site of Rubisco and facilitate the 

98 release of such inhibitors (Salvucci et al., 1985; Bhat et al., 2017). Subsequent removal of a 

99 phosphate group from these compounds by specific phosphatases, such as 2-carboxy-D-

100 arabinitol-1-phosphate (CA1P) phosphatase (CA1Pase) and xylulose-1,5-bisphosphate 

101 (XuBP) phosphatase (XuBPase), renders them non-inhibitory (Andralojc et al., 2012; Bracher 

102 et al., 2015). Overexpression of ca1pase decreased Rubisco abundance and grain yields in 

103 wheat (Lobo et al., 2019), but the temperature response of the phosphatases that act in 

104 concert with Rca to regulate the activity of Rubisco has received little attention to date. On 

105 the other hand, the temperature optimum of Rubisco activation by Rca has been shown to 

106 follow a pattern that resembles the species adaptation to growth at different temperatures 

107 (Carmo-Silva & Salvucci, 2011). In wheat, the optimal leaf temperature for photosynthesis is 

108 between 20-25°C (Porter & Gawith, 1999; Silva-Pérez et al., 2017) and decreased capacity 

109 for carbon assimilation at elevated temperatures has been linked to the heat sensitivity of 

110 Rca (Law & Crafts-Brandner, 2001; Yang et al., 2020).

111 The potential for greater photosynthetic thermotolerance by improving Rca 

112 thermostability has been shown for Arabidopsis (Kurek et al., 2007; Kumar et al., 2009) and 

113 rice (Wang et al., 2010; Scafaro et al., 2016; Shivhare & Mueller-Cajar, 2017; Scafaro et al., 

114 2018), making it a promising target for improving photosynthesis at high temperatures in 

115 other crops. This could be achieved by exploiting natural diversity in species adapted to 

116 warm environments. Light activation of Rubisco by Rca was inhibited by moderately high 

117 temperatures to a greater extent in wheat than in heat-tolerant cotton (Feller et al., 1998; Law 

118 et al., 2001). In two wild rice species, higher capacity for Rubisco activation at high 

119 temperatures resulted in photosynthetic thermotolerance (Scafaro et al., 2012), and was 

120 associated with improved Rca thermostability compared to cultivated rice (Scafaro et al., 

121 2016). Heat stress was also shown to increase abundance of the large Rca isoform in 

122 domesticated rice, with plants overexpressing this isoform having increased seedling 

123 aboveground biomass dry weight when exposed to heat stress (Wang et al., 2010).

124 Wheat contains two Rca genes as do the majority of grass species, with exceptions 

125 including rice where the OsRca1 gene is thought to be non-functional (Nagarajan & Gill, 

126 2018). Wheat Rca1 produces a 42.9 kDa Rca1β isoform and Rca2 produces a 42.3 kDa 
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127 Rca2β and a 46.2 kDa Rca2α isoform via alternative splicing (Carmo-Silva et al., 2015). 

128 Recent detailed analyses of the temperature response of wheat Rca isoforms showed that 

129 Rca1β is more thermostable than Rca2β and Rca2α (Scafaro et al., 2019; Degen et al., 

130 2020). However, Rubisco activation by Rca1β is relatively inefficient at elevated temperature, 

131 due to high rates of ATPase activity in relation to Rubisco activation (Degen et al., 2020). 

132 Gene expression of Rca1β increased by varying extents in two wheat cultivars exposed to 

133 short-term (2 days) heat stress at two growth stages (Scafaro et al., 2019). Rca protein 

134 abundance may also be regulated post-transcriptionally as suggested by the observation of a 

135 decrease in total Rca transcript accompanied by an apparent increase in total Rca protein 

136 abundance under short-term heat stress (2 days; Law & Crafts-Brandner, 2001). Wheat 

137 leaves developed under longer-term heat stress (2 weeks) showed no significant change in 

138 Rca protein abundance, but Rcaβ was more abundant in leaves that were simultaneously 

139 exposed to drought and heat (Perdomo et al., 2017). Importantly, studies to date did not 

140 distinguish between the abundance of the two short protein isoforms, Rca1β and Rca2β, 

141 which have similar molecular weights (Carmo-Silva et al., 2015), but differ in heat sensitivity 

142 (Scafaro et al., 2019; Degen et al., 2020).

143 A detailed understanding of the temperature response of Rubisco regulation will 

144 become increasingly important with predictions of increased frequency of future heat waves 

145 (Slattery & Ort, 2019) and more variable leaf temperatures (Vico et al., 2019). Given the 

146 previously characterised differences in the temperature response of Rubisco activation by 

147 wheat Rca isoforms (Degen et al., 2020), here we set out to investigate how whole-plant heat 

148 stress impacts Rca protein levels. Specifically, we tested the hypothesis that the relative 

149 abundance of wheat Rca isoforms would change so that leaves of heat-stressed plants 

150 contain relatively more of the thermostable Rca1β, and these changes would be 

151 accompanied by altered photosynthetic biochemistry, physiology and grain yield. This was 

152 tested by exposing plants to a five-day period of heat stress at pre-anthesis (a critical stage 

153 of wheat plant development). Net CO2 assimilation, Rubisco activity and abundance, 

154 CA1Pase activity, and the abundance of the three Rca isoforms were determined during and 

155 immediately after heat stress. Findings are interpreted in relation to the thermostability of 

156 wheat Rca isoforms and will inform approaches to improve photosynthetic regulation under 

157 increasingly warm and variable temperatures for enhanced crop productivity and resilience to 

158 climate change.
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159 Materials and Methods
160 Plant growth and heat stress conditions

161 Triticum aestivum L. cv. Cadenza seeds were soaked in de-ionised H2O for 24h at 7°C prior 

162 to sowing in a wheat mix growth medium (Petersfield compost, Hewitt & Son Ltd., Cosby, 

163 UK). Twenty plants per experiment were grown in a heated glasshouse for three weeks in 3 

164 L pots before being divided into two groups and transferred to two controlled environment 

165 cabinets (Snijders Labs, Tilburg, Netherlands). Cabinets were set to 25/18°C day/night, with 

166 a 16 h photoperiod, photosynthetic photon flux density (PPFD) at the plant level of 450 µmol 

167 m-2 s-1, and 60% relative humidity until the flag leaf of the main tiller was fully expanded 

168 (approximately 3 weeks). For the heat stress treatment, once the flag leaves were visible, the 

169 temperature in one of the two cabinets was raised to 34/22°C day/night for one day, followed 

170 by five days at 38/22°C day/night (Fig. 1a). Night-time warming causes increased dark 

171 respiration (e.g. Rashid et al., 2020) and decreased yields of crops such as wheat and rice 

172 (Sadok & Jagadish, 2020). Effects on productivity are complex, genotype-specific, and may 

173 be more pronounced when night-time elevated temperatures occur at the reproductive stage 

174 (Hein et al., 2019; Impa et al., 2019) compared to earlier growth stages (Frantz et al., 2004; 

175 Peraudeau et al., 2015). In the present study, both day- and night-time temperatures were 

176 increased in the heat stress cabinets to replicate real-world conditions, and measurements 

177 were taken during the day focusing on photosynthetic traits. After 5 days at 38/22°C, the 

178 cabinet was returned to control temperatures (25/18°C) at the end of the photoperiod on 

179 experiment day 7. Temperatures in each cabinet were increased over the course of 1 h at 

180 the start of the photoperiod and decreased over the course of 1 h at the end of the 

181 photoperiod. Air temperature and relative humidity in each cabinet were measured 

182 continuously during the course of the heat stress treatment (OM-EL-USB temperature and 

183 humidity data logger, Omega Engineering, UK; Fig. 1b, Fig. S1).

184 Two consecutive experiments were completed switching the cabinets used for control 

185 conditions and the heat stress treatment. In each experiment, a set of 5 plants (i.e. 10 plants 

186 in total for control and 10 plants in total for heat stress) was used for non-destructive 

187 repeated measures of in vivo gas-exchange over the course of the heat stress treatment. 

188 This same set of plants was used for final biomass and grain yield. A separate set of 4 plants 

189 per experiment (i.e. 8 plants in total for control and 8 plants in total for heat stress) was used 

190 for collecting samples for biochemical analysis.

191 Measurements and samples were taken at four time-points during the experiment: (1) 

192 the day prior to the start of the heat treatment, corresponding to experiment day 1, when all 

193 plants were exposed to control conditions; (2) four hours and (3) five days into the heat 

194 stress exposure period, corresponding to experiment days 3 and 7, when plants were either 

195 exposed to control or elevated temperatures; and (4) the day after the end of the heat 
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196 treatment, when plants were exposed to control conditions to assess recovery from heat 

197 stress, corresponding to experiment day 8 (Fig. 1a). No samples or measurements were 

198 taken on the other days of the experiment.

199 Samples were collected 4 hours into the beginning of the photoperiod and in vivo 

200 measurements were taken 5-6 hours into the photoperiod. At each of the four time-points, 

201 samples for biochemistry were taken from a flag leaf in a separate tiller of each plant 

202 (repeated sampling from each biological replicate throughout the experiment). Leaf segments 

203 of known area were immediately snap frozen in liquid nitrogen and kept at -80°C until 

204 analysis. Sampling for biochemistry resulted in approximately half of the flag leaf being 

205 removed from the sampled tiller and each plant contained on average 15 fertile tillers. 

206 Measurements and sampling were always taken from flag leaves of tillers at the booting 

207 stage, i.e. prior to ear emergence. Leaf temperature was measured before sampling using a 

208 thermocouple (CDH-SD1, Omega Engineering, UK; Fig. 1c) and light level was measured 

209 with a PAR meter (MQ-200, Apogee Instruments, Canada).

210

211 Gas-exchange measurements

212 Steady-state measurements of net CO2 assimilation (A) and stomatal conductance to water 

213 vapour (gs) used an open gas-exchange system (LI-6400XT, Li-COR, Lincoln, NE, USA) at a 

214 PPFD of 400 µmol m-2 s-1, a reference CO2 concentration of 400 µmol mol-1 and a flow rate of 

215 300 µmol s-1. The gas-exchange system was placed inside the respective growth cabinets, 

216 under control or heat stress conditions. The temperature of the block in the leaf chamber was 

217 set to 25°C for plants in the control cabinet and to 38°C for plants in the heat stress cabinet 

218 (experiment days 3 and 7). The water vapour pressure deficit (VPD) was maintained at 1-1.6 

219 kPa by adjusting the humidity inside the leaf chamber of the gas-exchange system as 

220 needed, and calculated from the leaf temperature during gas-exchange measurements.

221

222 Gene expression analyses

223 Gene expression of ca1pase, Rca1β, Rca2β+α, Rca2α, RbcS1-25 and rbcL, were 

224 determined by reverse-transcription quantitative PCR (RT-qPCR). mRNA was extracted from 

225 plant tissue using a NuceloSpin® Tri Prep kit (Macherey-Nagel, Düren, Germany), including 

226 a DNase treatment. mRNA yield and purity were assessed using a spectrometer by 

227 measuring absorbance at 230, 260 and 280 nm (SpectroStar Nano, BMG Labtech GmbH, 

228 Ortenberg, Germany). cDNA synthesis used 1 µg mRNA and the Precision nanoScript™ 2 

229 Reverse Transcription kit (Primer design Ltd., Camberley, UK). qPCR reactions used 40 ng 

230 of cDNA and the primer pair for the target gene in a Mx3005P qPCR system (Stratagene, 

231 Agilent Technologies, Stockport, UK). RT-qPCR details including cycle conditions are 

232 described in the MIQE checklist (Table S1). Ta2291 (ADP-ribosylation factor) and Ta2776 
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233 (similar to RNase L inhibitor-like protein) were used for normalisation due to their high 

234 expression stability across various environmental conditions (Paolacci et al., 2009). Primer 

235 efficiency for each primer set was analysed according to Pfaffl et al. (2001). Primers were 

236 designed to bind to all three sub genomes (Table S2), except for rbcL, which is encoded in 

237 the chloroplast genome. Primers for Rca2 amplified both splicing products. EnsemblPlants 

238 was used to search for genes annotated as RbcS; 25 genes were identified and divided into 

239 three groups according to the similarity of the respective protein sequences (Table S3). 

240 Primer pairs were designed to quantify the expression of each of the three RbcS groups 

241 (Table S2).

242

243 Enzyme activity assays

244 Photosynthetic proteins were extracted essentially as described by Carmo-Silva et al. (2017) 

245 with slight modifications, as follows. Leaf samples were ground using an ice-cold mortar and 

246 pestle containing 0.8 mL of (final concentrations) 50 mM Bicine-NaOH pH 8.2, 20 mM MgCl2, 

247 1 mM EDTA, 2 mM benzamidine, 5 mM ε-aminocaproic acid, 50 mM 2-mercaptoethanol, 10 

248 mM dithiothreitol, 1% (v/v) plant protease inhibitor cocktail (Sigma-Aldrich Co., St Louis, MO, 

249 USA), and 1 mM phenylmethylsulphonyl fluoride.

250 Rubisco activity was determined by incorporation of 14CO2 into acid-stable products at 

251 30°C (Parry et al., 1997; Carmo-Silva et al., 2017) in reaction mixtures containing (final 

252 concentrations) 100 mM Bicine-NaOH pH 8.2, 20 mM MgCl2, 10 mM NaH14CO3 (9.25 kBq 

253 μmol−1), and 0.6 mM RuBP (added to tubes individually). Initial activity assays started with 

254 leaf extract addition, while total activity assays started with RuBP addition after allowing 

255 carbamylation of Rubisco for 3 min. Reactions were quenched after 30 s with 4N formic acid, 

256 then dried, rehydrated with de-ionised H2O, mixed with scintillation cocktail (Gold Star 

257 Quanta, Meridian Biotechnologies, Epsom, UK) and subject to liquid scintillation counting 

258 (Packard Tri-Carb, PerkinElmer). Rubisco activation state was calculated from the ratio of 

259 initial/total Rubisco activity. Rubisco amounts were determined by a [14C]carboxyarabinitol-

260 1,5-bisphosphate (14C-CABP) binding assay (Whitney et al., 1999).

261 CA1Pase activity was measured according to Lobo et al. (2019) and Andralojc et al. 

262 (2012) in reaction mixtures (90 µL) containing (final concentrations) 50 mM BisTrisPropane-

263 HCl pH 7.0, 200 mM KCl, 1 mM EDTA, 1 mM ε-aminocaproic acid, 1 mM benzamidine, 10 

264 mM CaCl2, 0.5 mg mL-1 BSA and 1% (v/v) protease inhibitor cocktail. For each sample, two 

265 technical replicates containing 0.5 mM 2-carboxy-D-ribitol-1,5-bisphosphate (CRBP, a 

266 substrate for CA1Pase) and two replicates without CRBP were prepared, in addition to a 

267 blank containing no leaf extract. Reactions were initiated by adding 5 µL of leaf extract and 

268 quenched after 60 min at 22°C in a temperature-controlled dry bath (Echotherm, Torrey 

269 Pines Scientific, USA) by adding 30 µL of 1 M trichloroacetic acid. Reactions were 
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270 centrifuged for 3 min at 14,000 g to sediment BSA, then 100 µL of supernatant was 

271 transferred into a microplate well to determine inorganic phosphate by adding 200 µL of 

272 2.2% (w/v) ammonium molybdate in 1.6 M H2SO4, incubating 10 min, adding 50 µL of 

273 0.035% (w/v) malachite green in 0.35% (w/v) polyvinyl alcohol, incubating 60 min at room 

274 temperature, and measuring absorbance at 610 nm. Inorganic phosphate in the samples was 

275 calculated from a standard curve of 0-10 nmol KH2PO4.

276

277 Gel electrophoresis and immunoblotting

278 Total soluble proteins (TSP) in leaf extracts were quantified by the Bradford method 

279 (Bradford, 1976), then separated by sodium dodecyl sulfate polyacrylamide gel 

280 electrophoresis (SDS-PAGE) followed by immunoblotting, essentially as described by 

281 Perdomo et al. (2018). A primary antibody anti-Rca produced in rabbit against cotton Rca 

282 (Salvucci, 2008) was used for quantification of all Rca α and β isoforms using 2 µg TSP per 

283 sample. A primary polyclonal antibody that specifically detects the wheat Rca1β isoform was 

284 produced in rabbit (Cambridge Research Biochemicals Ltd., Cleveland, UK) using a short 

285 peptide at the N-terminal region where the protein differed sufficiently from Rca2β 

286 (KKELDEGKQTNADR, corresponding to residues 3-16 of the mature sequence, Fig. S2). 

287 Detection of Rca1β required the use of 6 µg TSP per sample. A dilution series of 20, 50 and 

288 100 ng purified recombinant Rca2β+α at a 90:10 ratio was added to each gel for 

289 quantification of total Rca α and β isoforms; and a dilution series of 1, 5 and 20 ng purified 

290 recombinant Rca1β was added to each gel for quantification of Rca1β (Fig. S2). 

291 Recombinant Rca proteins used for standards were purified as described in Barta et al. 

292 (2011). A fluorescent secondary antibody (anti-rabbit, 800CW, Li-COR Biosciences) was 

293 used to detect Rca by imaging blots at 800 nm using an Odyssey system (Li-COR 

294 Biosciences, Lincoln, NE, USA). Protein levels were calculated from the standard curves of 

295 purified Rca. Quantities of Rca2β were calculated by subtracting Rca1β from the total Rca β 

296 isoform.

297

298 Biomass and yield traits

299 After the heat stress treatment, at the end of experiment day 8, plants were transferred back 

300 into the glasshouse and kept well-watered until reaching full maturity. Aboveground biomass 

301 and grain yield traits were determined for each plant as described by Lobo et al. (2019).

302

303 Statistical analysis

304 Significance of differences between control and heat stress plants was analysed using 

305 Restricted Maximum Likelihood (REML), which gives the same P values and multiple 

306 comparisons tests as repeated measures ANOVA. The mixed model was fitted in GraphPad 
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307 Prism 8 using the Geisser-Greenhouse correction to account for possible violations of 

308 sphericity. The lack of significant differences in biochemical (destructive flag leaf sampling) 

309 and physiological (non-destructive flag leaf sampling) traits between control plants analysed 

310 at different time-points suggests that repeated sampling caused no significant wounding 

311 effect on Rca gene expression and protein levels in flag leaves from adjacent tillers. 

312 Significance of differences in grain yield and biomass between treatments was assessed by 

313 two-sided t-tests with alpha set to 0.05 using R (version 3.6.0; R Core Development Team, 

314 2013) and RStudio (version 1.2.5001; R Studio Team, 2019). Box and whiskers plots were 

315 prepared using ggplot2 (Wickham, 2017); boxes show medians and first and third quartiles 

316 (25th and 75th percentiles), and whiskers extend from the hinge to the largest or smallest 

317 value. Symbols represent individual data points and black diamonds represent the mean 

318 values. Plants in the two cabinets on the day prior to the onset of heat stress (i.e. under 

319 control conditions) were not statistically different in their rates of CO2 assimilation or Rubisco 

320 properties and were combined for data analysis (Table S4).
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322 Results
323 Wheat plants were exposed to heat stress conditions over a period of 5 days before reaching 

324 anthesis (booting stage) in a pot experiment and using plant growth cabinets for 

325 environmental control. The air temperature in the control cabinet corresponded with the set 

326 temperatures of 25/18°C, while the day temperature in the heat stress cabinet was slightly 

327 below the setting of 38/22°C (Fig. 1a, b). Leaf temperature (Tleaf) was measured to assess 

328 the extent to which plants experienced heat stress. Plants in the control cabinet had mean 

329 Tleaf of 22.5°C and plants in the heat stress cabinet had mean Tleaf of 28.7°C, corresponding 

330 to a difference between air temperature (Tair) and Tleaf of 2.5°C for control and 9.3°C for heat 

331 stress plants (Fig. 1c). Plants were maintained well-watered and in a humid environment 

332 (Fig. S1) throughout the experiment, which would have enabled the greater extent of 

333 evaporative cooling during heat stress (Carmo-Silva et al., 2012). Once Tair returned to 

334 control values on experiment day 8, Tleaf in the heat stress cabinet (22.6°C) was again 

335 comparable to control plants.

336 In order to assess the effect of heat stress on carbon assimilation, gas exchange 

337 measurements were taken under steady-state conditions resembling those used for plant 

338 growth, i.e. a PPFD of 400 µmol m-2 s-1 and 25°C for control or 38°C for heat stress plants 

339 (Fig. 2). Net CO2 assimilation (A) in the wheat flag leaves remained unchanged throughout 

340 the experiment days for control plants but decreased significantly in plants measured after 4 

341 h of heat stress. The decline in A was greater after 5 days of heat stress, and still observed 

342 after the cabinet temperature was returned to control levels (4 h of recovery at control 

343 temperatures; Fig. 2a). Stomatal conductance to water vapour (gs) was highly variable but 

344 remained unchanged in control plants and after 4 h of heat. However, gs was reduced after 5 

345 days of heat stress and remained significantly lower after 4 h of recovery compared to control 

346 plants (Fig. 2b). Despite attempts to maintain constant cabinet humidity, the vapour pressure 

347 deficit based on leaf temperature (VPDL) increased after 5 days of heat stress compared to 

348 control conditions (Fig. 2c). The intercellular CO2 concentration did not decrease in response 

349 to heat stress, in fact after 4 h of heat there was a slight increase relative to the values prior 

350 to heat stress (Fig. 2d), likely as a result of decreased assimilation (Fig. 2a).

351 After the heat stress exposure, all plants were transferred to the glasshouse until 

352 maturity to determine the effect of the 5 days heat stress exposure during booting on final 

353 biomass and grain yield. Aboveground biomass at 100% dry matter (DM) showed no 

354 significant difference between control and heat stress plants (Table 1). However, the grain 

355 weight per plant at 85% DM was significantly lower in plants exposed to the heat treatment. 

356 The number of spikes per plant remained constant, suggesting that grain weight per spike 

357 was negatively impacted by the heat stress exposure pre-anthesis.
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358 To investigate the impact of heat stress on the regulation of Rubisco activity, flag leaf 

359 samples of plants in the control and heat conditions were taken prior to, during, and after the 

360 exposure to stress. Initial and total activities and content of Rubisco were not significantly 

361 affected during heat stress (Fig. 3), but total activity and Rubisco content declined slightly in 

362 recovery plants on experiment day 8 compared to control plants on experiment day 1 (Fig. 

363 3b, c, P = 0.0062 and P = 0.0451, respectively). When expressing the activities of Rubisco 

364 per quantity of enzyme (specific activities), no significant differences were observed 

365 throughout the experiment (Fig. S3). The same was largely true for total soluble protein 

366 (TSP), Rubisco content as a fraction of TSP (Fig. S3), and chlorophyll a, chlorophyll b and 

367 total carotenoids (Fig. S4).

368 Initial and total activities were used to calculate Rubisco activation states (Fig. 3d), 

369 which declined significantly after 4h of heat stress (P = 0.0006) but showed no significant 

370 difference to control after 5 days of heat stress (P > 0.05). Rubisco activation state increased 

371 after 4h of recovery on experiment day 8, compared to control plants at the start of the 

372 experiment (P = 0.0014) and to heat stress plants on experiment day 3 (P = 0.0044).

373 The activation state of Rubisco reflects the balance between inhibition due to binding 

374 of inhibitors to active sites, and activation via removal of such inhibitors by Rca and 

375 subsequent dephosphorylation of inhibitors by enzymes such as CA1Pase. The activity of 

376 CA1Pase remained constant in control plants throughout the experiment, showed a mild, 

377 non-significant increase after 5 days of heat stress and was significantly increased in 

378 recovery plants post heat stress, on experiment day 8 (Fig. 4; P = 0.0442). These results 

379 suggest increased capacity to dephosphorylate sugar-phosphate derivatives that would 

380 otherwise inhibit Rubisco activity upon stress relief.

381 Wheat Rca isoforms differ in their regulatory and thermal properties (Scafaro et al., 

382 2019; Perdomo et al., 2019; Degen et al., 2020). Wheat flag leaves presented very little 

383 Rca1β protein compared to both Rca2β, which was most abundant, and Rca2α (Fig. 5). The 

384 amount of Rca1β remained similar to control levels after 4 h of heat stress, but after 5 days 

385 of heat stress (68 h of cumulative heat), Rca1β protein levels increased ca. 2.5-fold, and 

386 remained at this level the day after heat stress (4 h of recovery at control temperatures). 

387 Rca2β and Rca2α abundance remained similar between control and heat stress. The relative 

388 abundance of each wheat Rca isoform in the flag leaf highlighted that under control 

389 conditions Rca1β was only 1% of the total Rca pool, and that Rca2β was the most abundant 

390 isoform corresponding to more than 85% of the total Rca pool (Fig. 6). The relative 

391 abundance of Rca2α appeared to decline slightly as the leaves aged (from experiment day 3 

392 to experiment day 8), but this was not significant (P > 0.05). While the total Rca pool size (ca. 

393 6.5 ± 0.9 mg m-2) was unaffected by heat stress, the relative abundance of Rca1β increased 

394 from 1% in leaves under control conditions to 6% after 5 days of heat stress (Fig. 6, Fig. S5). 
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395 The abundance of Rubisco active sites relative to total Rca monomers (RA.S.:Rcatotal) in wheat 

396 flag leaves did not change significantly throughout the experiment and remained at 103 ± 11 

397 mol RA.S. mol-1 Rcatotal (Table S5). Because of the increase in Rca1β abundance during heat 

398 stress, the abundance of RA.S.:Rca1β decreased ca. 5-fold under heat stress.

399 The timing of changes in Rca gene expression during and post heat stress was 

400 investigated to assess whether gene expression might contribute to explain the observed 

401 changes in relative abundance of the three isoforms. Control plants showed virtually no 

402 expression of Rca1β, whereas heat-stressed plants showed a ca. 40-fold increase in Rca1β 

403 expression after 4 h of heat (Fig. 7). Rca1β expression was still increased relative to control 

404 plants after 5 days of heat stress exposure, and decreased to near-control levels the day 

405 after heat stress. By comparison, expression of the Rca2 gene splice variants Rca2β and 

406 Rca2α showed less clear changes in response to heat stress. To investigate the possibility 

407 that heat responsive elements could be driving the change in Rca1β expression in response 

408 to heat stress, the promoter regions of Rca were investigated for presence of such elements 

409 based to consensus sequences identified by Jung et al. (2013). This revealed the presence 

410 of a heat responsive element upstream of Rca1 genes in all three genomes and interestingly 

411 also upstream of the Rca2 gene copy in the A genome only (Fig. S6).

412 The expression of other genes related to Rubisco function was investigated after 5 

413 days of heat stress exposure only (experiment day 7; Fig. 7). Despite some heat stress 

414 plants showing higher values of rbcL expression, there were no significant differences in the 

415 expression of ca1pase, rbcL or RbcS genes between control and heat stress plants. The 

416 wheat genome encodes at least 25 RbcS genes (Table S2), which were divided into three 

417 groups based on sequence similarity (Fig. S7, Table S3). The relative expression of RbcS 

418 G2 and G3 was 4-fold higher than G1, and none of the groups showed changes in 

419 expression in response to heat stress. Based on data available in the gene expression atlas 

420 expVIP (Borrill et al., 2016; Ramirez-Gonzalez et al., 2018), RbcS G3 appears to be the 

421 RbcS group most consistently highly expressed in all wheat plant organs, including roots, 

422 and across different plant developmental stages and growth conditions (Fig. S8). 

423 Interestingly, the predicted wheat RbcS G3 protein sequences share an isoleucine residue 

424 with the unusual T-type RbcS1 variant from rice (Morita et al., 2014; Pottier et al., 2018), 

425 while the other wheat and rice RbcS isoforms share a valine in the same residue position 

426 (Fig. S9). The functional significance of this isoleucine residue and potential significance of 

427 RbcS presence in non-photosynthetic tissue could warrant further study.
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428 Discussion
429 Rubisco activation is sensitive to moderate heat stress due to the thermolabile nature of Rca 

430 (Salvucci et al., 2001; Salvucci & Crafts-Brandner, 2004a,c; Scafaro et al., 2012; 2016; 

431 Shivhare & Mueller-Cajar, 2017; Degen et al., 2020). In wheat, the isoform Rca1β has 

432 recently been shown to be more thermostable than the other two native isoforms, Rca2β and 

433 Rca2α (Scafaro et al., 2019, Degen et al., 2020). Here, pre-anthesis heat stress promoted a 

434 rapid increase in gene expression and a longer-term adaptive increase in protein abundance 

435 of Rca1β compared to the less thermostable wheat Rca isoforms.

436 Wheat plants exposed to 38°C during the day had leaf temperatures around 28°C 

437 and showed a large (40-fold) increase in Rca1β expression after 4 h heat stress, with 

438 expression remaining high after 5 days heat stress. These findings agree with previous 

439 studies in wheat (Law & Crafts-Brandner, 2001; Scafaro et al., 2019). In cotton, there were 

440 no significant changes in either mRNA or protein levels of constitutive Rcaβ or Rcaα 

441 isoforms, but an additional Rca isoform was found to account for 5% of the total Rca pool 

442 after 2 days heat stress (Law et al., 2001). These findings suggest that synthesis of heat-

443 inducible isoforms of Rca may occur and be wide-spread among plant species. The promoter 

444 region of the wheat gene Rca1 contains a heat responsive element in all three genomes, 

445 whilst this is only present in the A genome for Rca2. These regions have been associated 

446 with increased Rca expression under heat stress in Arabidopsis (Jung et al., 2013), and are 

447 likely related to the increased Rca1β expression in wheat.

448 Rca1β protein abundance did not increase significantly at the onset of heat stress (4 

449 h), but increased 3-fold after 5 days heat stress. Young wheat plants at the 3rd leaf stage 

450 showed increased abundance of the 42 kDa protein (Rca1β+Rca2β) after 24-48 h exposure 

451 to a 38/34°C day/night heat stress (Law & Crafts-Brandner, 2001). The relative abundance of 

452 Rca1β and Rca2β was not assessed in that study, and was only assessed after 4 h and 5 

453 days heat stress in the present study. Further research is required to test whether 

454 abundance of thermostable Rca1β protein in wheat increases within 24 h of exposure to heat 

455 stress during the day and/or in response to elevated temperatures during the night. The 

456 observed response might also differ between cultivars and wheat growth stages (Scafaro et 

457 al., 2019). The much larger fold-change in Rca abundance at the transcript level compared to 

458 the protein level shows that gene expression and protein abundance are not directly coupled, 

459 and suggest that Rca protein abundance might be regulated by a post-transcriptional 

460 mechanism (Law & Crafts-Brandner 2001; Law et al., 2001). Understanding such regulatory 

461 mechanisms warrants further investigation to inform efforts aimed at optimising Rca levels 

462 and Rubisco activation in planta.

463 Leaf temperatures in plants experiencing heat stress (Fig. 1c) closely matched the 

464 temperature optimum for Rubisco activation by Rca1β in vitro, whereas in control plants leaf 
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465 temperatures approximated those at which Rca2β and Rca2α are most active in vitro (Degen 

466 et al., 2020). The activation state of Rubisco was lower after 4 h heat stress compared to 

467 control plants analysed on the same day, but after 5 days heat stress was not significantly 

468 different from control plants. It is possible that the increase in the abundance of the 

469 thermostable Rca1β protein contributed to maintaining Rubisco activity during heat stress. It 

470 has recently been shown that while Rca2β and Rac2α become unable to activate Rubisco at 

471 moderately high temperatures (Scafaro et al., 2019; Degen et al., 2020), Rca1β continues to 

472 operate at higher temperatures, but is relatively inefficient compared to the other two 

473 isoforms. An increase in Rubisco activation state was observed in both control plants and 

474 heat-stressed plants at the end of the experiment (following a 4 h recovery period under 

475 control conditions). As the wheat flag leaves age, decreasing Rubisco abundance can be 

476 accompanied by an increase in Rubisco activation state (Carmo-Silva et al., 2017). In 

477 addition, increased Rubisco activation in recovery plants could also be partly explained by 

478 the increase in CA1Pase activity, decreasing the abundance of Rubisco inhibitors.

479 The properties of a particular Rca isoform can impact the overall properties of the 

480 Rca holoenzyme composed of a mixture of isoforms, both in vitro and in vivo (Zhang et al., 

481 2001; 2002). Scafaro et al. (2019) showed that the effects of mixing wheat Rcaβ isoforms in 

482 vitro were strongly temperature-dependent. At leaf temperatures up to ca. 30°C, it is possible 

483 that the small increase in the relative abundance of Rca1β in wheat flag leaves observed in 

484 the present study could confer stability to the Rca holoenzyme during heat stress. Testing 

485 this hypothesis more thoroughly warrants further detailed study as it raises the possibility that 

486 the combination of Rca isoforms present in the leaf might be adjustable to maximise overall 

487 efficiency of Rubisco activation in wheat. Importantly, our previous in vitro study highlighted 

488 that the two activities of Rca have different temperature optima, with fast rates of ATP 

489 hydrolysis continuing well above the moderately high temperatures that cause a 50% 

490 decrease in Rubisco activation rates (Degen et al., 2020). ATP levels do not decrease under 

491 heat stress (Schrader et al., 2004) and the ability of Rca to continue hydrolysing ATP above 

492 30°C may act as a significant ATP sink during heat stress, contributing to prevent irreversible 

493 damage of thylakoid membranes (Sharkey & Zhang, 2010).

494 Catalytic misfire events by Rubisco increase with temperature, resulting in increased 

495 production of inhibitory sugar-phosphate derivatives (Schrader et al., 2006; Parry et al., 

496 2008). In vitro inhibition of Rubisco by these compounds, termed fallover (Edmondson et al., 

497 1990), declines at high temperature due to a more flexible active site (Schrader et al., 2006; 

498 Parry et al., 2008). In planta, accumulation of these inhibitors is thought to occur under heat 

499 stress due to increased proportion of oxygenation to carboxylation and increased misfire 

500 events. Inhibitors that accumulate during heat stress may still be present in increased levels 

501 after plants are returned to control conditions, potentially preventing rapid recovery of 

Page 15 of 43 New Phytologist



Degen et al. Wheat Rca pool composition under heat stress

16

502 Rubisco activity. CA1Pase metabolises sugar-phosphate derivatives (Andralojc et al., 2012), 

503 and there was significantly more CA1Pase activity in wheat the day after heat stress 

504 compared to plants that did not experience heat stress, suggesting up-regulation of the 

505 capacity to restore Rubisco activity for continued carbon assimilation upon relief from stress.

506 In addition to regulation by Rca and CA1Pase, variations in Rubisco subunit 

507 composition have been proposed as a mechanism for adaption to growth temperature (Yoon 

508 et al., 2001; Yamori et al., 2006; Cavanagh & Kubien, 2013). Although expression of rbcL 

509 and RbcS groups was not significantly different between plants exposed to control 

510 temperatures and heat stress, there was a trend for increased expression of rbcL and 

511 decreased expression of RbcS G2 and G3 under heat stress. These trends might become 

512 significant in wheat plants exposed to prolonged heat stress, and could result in altered 

513 Rubisco catalytic properties, as shown by Yamori et al. (2006). Rubisco is highly abundant 

514 (Ellis, 1979; Carmo-Silva et al., 2015; Lobo et al., 2019) and constituted 30-40% of the total 

515 soluble protein in the flag leaf of the wheat plants studied here. Therefore, variation in 

516 Rubisco subunit composition is likely to be a long-term adaptation response, in part because 

517 of the large amount of protein synthesis required. Changes in Rca and CA1Pase activity, on 

518 the other hand, could be regarded as a shorter-term mechanism for mitigating the impact of 

519 heat stress and maintaining Rubisco functionality.

520 Carbon assimilation decreased throughout heat stress exposure, and remained low 

521 the day after heat stress, which was accompanied by reduced stomatal conductance, in line 

522 with previous reports (Law & Crafts-Brandner, 1999; Galmés et al., 2007; Silva-Pérez et al., 

523 2017; Lawson & Vialet-Chabrand, 2018). The intercellular CO2 concentration (Ci) remained 

524 above 250 µmol mol-1 throughout the experiment, which is well above the level thought to 

525 promote Rubisco decarbamylation and consequent inactivation (Galmés et al., 2010). At high 

526 light, the transition of photosynthetic limitation by Rubisco activity to electron transport (and 

527 RuBP regeneration) has been reported to occur at Ci values around 300 µmol mol-1 (Silva-

528 Pérez et al., 2017). At a non-saturating PPFD of ~400 µmol mol-1, used for both plant growth 

529 and gas-exchange measurements in this study, photosynthesis would be more likely limited 

530 by the rate of RuBP regeneration than by Rubisco activity (Lauerer et al. 1993, von 

531 Caemmerer 2000). The large decrease in A observed under heat stress cannot be directly 

532 compared to the observed effect of heat stress on productivity traits or Rubisco biochemistry, 

533 since gas-exchange was measured at a higher leaf temperature (ca. 37.1°C) than the leaf 

534 temperature of plants during the heat stress treatment (ca. 28.7°C).

535 The 5-day heat stress treatment pre-anthesis significantly decreased plant grain 

536 weight at full maturity; a similar impact on grain yield was reported in wheat plants exposed 

537 to 5 days heat stress at anthesis (Chavan et al., 2019). These findings support other studies 

538 suggesting that flag leaf photosynthesis makes a significant contribution towards grain yield 
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539 (e.g. Carmo-Silva et al., 2017). Heat priming wheat plants at pre-anthesis has been shown to 

540 result in reduced damage to the flag leaf and increased carbon assimilation in plants 

541 exposed to post-anthesis heat stress (Wang et al., 2011). While the priming study was 

542 conducted at moderate heat stress (34/30°C day/night for 7 days), it suggests wheat plants 

543 can, to some extent, adapt to the growth temperature. However, current evidence and the 

544 findings reported herein suggest that isolated events of heat stress affecting flag leaf 

545 photosynthetic properties cause a significant decline in wheat productivity.

546

547 In summary, the biochemical and molecular responses of pre-anthesis wheat plants 

548 exposed to heat stress showed short-term increased gene expression and longer-term 

549 increased protein abundance of the more thermostable wheat Rca1β isoform. These findings 

550 support previous wheat heat stress reports (Law & Crafts-Brandner, 1999; 2001; Silva-Pérez 

551 et al., 2017; Yang et al., 2020) and in vitro wheat Rca temperature responses (Scafaro et al., 

552 2019; Degen et al., 2020) suggesting that Rubisco activity and regulation by Rca in wheat 

553 are primarily optimised for leaf temperatures between 20-25°C, but with room to improve 

554 climate resilience. Manipulation of the relative abundance of Rca isoforms, alongside 

555 introduction of superior forms of Rca, through breeding or genetic engineering, offers scope 

556 to make Rubisco regulation in wheat more resilient to an increasingly warm and variable 

557 climate.
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Table 1. Final biomass and yield traits of wheat plants exposed to heat stress for five 
days during booting.

Treatment n Aboveground biomass Grain Yield Spike no.
(g plant-1 @100% DM) (g plant-1 @85% DM) (plant-1)

Control 10 38.2 ± 4.3 11.2 ± 2.5 14.5 ± 2.9

Heat stress 10 38.1 ± 2.6 8.4 ± 1.8 16.6 ± 2.8

P-value 0.9608 0.0139 0.1129

Plants were grown at 25/18°C day/night (control) and at booting stage half of the plants were 

exposed to heat stress (1 day at 34/22°C, 5 days at 38/22°C, then returned to 25/18°C). 

Values are means ± SEM (n = 10 biological replicates). The heat stress treatment had no 

significant effect on aboveground biomass or number of spikes, but significantly affected 

grain yield (two-sided t-tests, significant P-value indicated in bold).
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Figure Legends

Figure 1. Experimental design, air and leaf temperatures of wheat plants during heat 
stress. Plants were grown at 25/18°C day/night (control conditions); at booting stage one of 

the two plant growth cabinets was set to 34/22°C for 1 day (experiment day 2) followed by 

38/22°C for 5 days (heat stress, experiment days 3-7), then back to control temperatures 

(recovery, experiment day 8). Blue = control, red = heat stress, orange = recovery. (a) 

Experimental setup of control and heat stress cabinets. The cabinet temperature during the 

day is indicated and was gradually increased to induce heat stress in the respective cabinet, 

then maintained for 5 days prior to returning to control conditions. Vertical arrows indicate 

experiment days when measurements and sampling took place. (b) Air temperature in the 

two plant growth cabinets. (c) Leaf temperature of wheat plants, measured before sampling. 

Over the course of the experiment, mean leaf temperature (black diamond) ± SD was 

22.5±0.7°C for control, 28.7±1.3°C for heat stress and 22.6±0.9°C for recovery. Significant P-

values for pairwise comparisons are shown (REML, alpha = 0.05).

Figure 2. (a) Net CO2 assimilation (A), (b) stomatal conductance to water vapour (gs), 
(c) vapour pressure deficit (VPD) based on leaf temperature, and (d) intercellular CO2 
concentration (Ci) in wheat plants under heat stress. Measurements were taken under 

steady-state conditions at PPFD = 400 µmol m-2 s-1, reference [CO2] = 400 µmol mol-1 and 

Tblock = 25°C for control plants and 38°C for heat-stress plants. Tleaf during measurements 

was 25.3±0.5°C for control, 37.1±0.8°C for heat stress and 25.7±0.3°C for recovery plants. 

Box lines represent the median, first and third quartiles, whiskers the range, black diamonds 

the mean, and circles individual samples (n = 4-12 biological replicates). Significant P-values 

for pairwise comparisons are shown (REML, alpha = 0.05).

Figure 3. Rubisco activities and content in wheat plants under heat stress. Rubisco 

initial and total activities, content, and activation state in flag leaves of wheat plants exposed 

to control (25°C), heat (38°C), and recovery (25°C) conditions. Box lines represent the 

median, first and third quartiles, whiskers the range, black diamonds the mean, and circles 

individual samples (n = 4-16 biological replicates). Significant P-values for pairwise 

comparisons are shown (REML, alpha = 0.05).

Figure 4. CA1Pase activity in wheat plants under heat stress. Activity of CA1Pase was 

measured in flag leaves of wheat plants exposed to control (25°C), heat (38°C), and 

recovery (25°C) conditions. Box lines represent the median, first and third quartiles, whiskers 
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the range, black diamonds the mean, and circles individual samples (n = 7-16 biological 

replicates). Significant P-values for pairwise comparisons are shown (REML, alpha = 0.05).

Figure 5. Rca protein amounts in wheat plants under heat stress. Protein levels in flag 

leaves of wheat plants exposed to control (25°C), heat (38°C), and recovery (25°C) 

conditions were quantified using Rca1β-specific and Rca polyclonal antibodies, and purified 

Rca proteins as standards (Fig. S2). Box lines represent the median, first and third quartiles, 

whiskers the range, black diamonds the mean, and circles individual samples (n = 4-8 

biological replicates). Significant P-values for pairwise comparisons are shown (REML, alpha 

= 0.05).

Figure 6. Relative abundance of Rca isoforms in wheat plants under heat stress. The 

abundance of Rca1β, Rca2β and Rca2α is shown as a percentage of the total Rca pool in 

flag leaves of wheat plants exposed to control (25°C), heat stress (38°C), and recovery 

(25°C) conditions.

Figure 7. Relative expression of Rca, ca1pase, RbcL and RbcS genes in wheat plants 
under heat stress. Gene expression was determined in flag leaves of wheat plants exposed 

to control (25°C), heat (38°C), and recovery (25°C) conditions on experiment days 3, 7 and 8 

for Rca (a), and solely on experiment day 7 for the other genes (b). Normalised relative 

quantification (NRQ) was estimated for each gene using both Ta2291 and Ta2776 as 

reference genes. Box lines represent the median, first and third quartiles, whiskers the range, 

black diamonds the mean, and circles individual samples (n = 5-8 biological replicates). 

Significant P-values for pairwise comparisons are shown (REML, alpha = 0.05).
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Figure 1. Experimental design, air and leaf temperatures of wheat plants during heat 
stress. Plants were grown at 25/18°C day/night (control conditions); at booting stage one of 

the two plant growth cabinets was set to 34/22°C for 1 day (experiment day 2) followed by 

38/22°C for 5 days (heat stress, experiment days 3-7), then back to control temperatures 

(recovery, experiment day 8). Blue = control, red = heat stress, orange = recovery. (a) 

Experimental setup of control and heat stress cabinets. The cabinet temperature during the 

day is indicated and was gradually increased to induce heat stress in the respective cabinet, 

then maintained for 5 days prior to returning to control conditions. Vertical arrows indicate 

experiment days when measurements and sampling took place. (b) Air temperature in the 

two plant growth cabinets. (c) Leaf temperature of wheat plants, measured before sampling. 

Over the course of the experiment, mean leaf temperature (black diamond) ± SD was 

22.5±0.7°C for control, 28.7±1.3°C for heat stress and 22.6±0.9°C for recovery. Significant P-

values for pairwise comparisons are shown (REML, alpha = 0.05).
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Figure 2. (a) Net CO2 assimilation (A), (b) stomatal conductance to water vapour (gs), 
(c) vapour pressure deficit (VPD) based on leaf temperature, and (d) intercellular CO2 
concentration (Ci) in wheat plants under heat stress. Measurements were taken under 

steady-state conditions at PPFD = 400 µmol m-2 s-1, reference [CO2] = 400 µmol mol-1 and 

Tblock = 25°C for control plants and 38°C for heat-stress plants. Tleaf during measurements 

was 25.3±0.5°C for control, 37.1±0.8°C for heat stress and 25.7±0.3°C for recovery plants. 

Box lines represent the median, first and third quartiles, whiskers the range, black diamonds 

the mean, and circles individual samples (n = 4-12 biological replicates). Significant P-values 

for pairwise comparisons are shown (REML, alpha = 0.05).
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Figure 3. Rubisco activities and content in wheat plants under heat stress. (a) Rubisco 

initial and (b) total activities, (c) content, and (d) activation state in flag leaves of wheat plants 

exposed to control (25°C), heat (38°C), and recovery (25°C) conditions. Box lines represent 

the median, first and third quartiles, whiskers the range, black diamonds the mean, and 

circles individual samples (n = 4-16 biological replicates). Significant P-values for pairwise 

comparisons are shown (REML, alpha = 0.05).
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Figure 4. CA1Pase activity in wheat plants under heat stress. Activity of CA1Pase was 

measured in flag leaves of wheat plants exposed to control (25°C), heat (38°C), and 

recovery (25°C) conditions. Box lines represent the median, first and third quartiles, whiskers 

the range, black diamonds the mean, and circles individual samples (n = 7-16 biological 

replicates). Significant P-values for pairwise comparisons are shown (REML, alpha = 0.05).
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Figure 5. Rca protein amounts in wheat plants under heat stress. Protein levels in flag 

leaves of wheat plants exposed to control (25°C), heat (38°C), and recovery (25°C) 

conditions were quantified using Rca1β-specific and Rca polyclonal antibodies, and purified 

Rca proteins as standards (Fig. S2). Box lines represent the median, first and third quartiles, 

whiskers the range, black diamonds the mean, and circles individual samples (n = 4-8 

biological replicates). Significant P-values for pairwise comparisons are shown (REML, alpha 

= 0.05).
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Figure 6. Relative abundance of Rca isoforms in wheat plants under heat stress. The 

abundance of Rca1β, Rca2β and Rca2α is shown as a percentage of the total Rca pool in 

flag leaves of wheat plants exposed to control (25°C), heat stress (38°C), and recovery 

(25°C) conditions.
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Figure 7. Relative expression of Rca, ca1pase, RbcL and RbcS genes in wheat plants 
under heat stress. Gene expression was determined in flag leaves of wheat plants exposed 

to control (25°C), heat (38°C), and recovery (25°C) conditions on experiment days 3, 7 and 8 

for Rca (a), and solely on experiment day 7 for the other genes (b). Normalised relative 

quantification (NRQ) was estimated for each gene using both Ta2291 and Ta2776 as 

reference genes. Box lines represent the median, first and third quartiles, whiskers the range, 

black diamonds the mean, and circles individual samples (n = 5-8 biological replicates). 

Significant P-values for pairwise comparisons are shown (REML, alpha = 0.05).
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