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Abstract

We consider a version of the continuum armed bandit where an action induces a filtered

realisation of a non-homogeneous Poisson process. Point data in the filtered sample are then

revealed to the decision-maker, whose reward is the total number of revealed points. Using

knowledge of the function governing the filtering, but without knowledge of the Poisson in-

tensity function, the decision-maker seeks to maximise the expected number of revealed points

over T rounds. We propose an upper confidence bound algorithm for this problem utilising

data-adaptive discretisation of the action space. This approach enjoys Õ(T 2/3) regret under a

Lipschitz assumption on the reward function. We provide lower bounds on the regret of any

algorithm for the problem, via new lower bounds for related finite-armed bandits, and show that

the orders of the upper and lower bounds match up to a logarithmic factor.

Keywords: Applied Probability; Poisson Processes; Multi-Armed Bandit; Machine Learning

1 Introduction

The challenge of detecting interesting events, using limited resources, arises in numerous settings.

In a defence context, surveillance teams wish to observe suspicious activity or gain intelligence.

In ecological and environmental data collection, scientists wish to observe behaviours of endan-

gered species or record notable measurements of environmental variables. In manufacturing and

logistics settings, it is desirable to observe faults in machine operation or a supply chain.

However, in all of these settings, practitioners may face the problem of having insufficient

resource to observe everything they wish to, and must optimise their resource allocation to

maximise the detection of events. In these settings “resource” may refer to human searchers,

fixed or mobile sensors, cameras, or a variety of other equipment with a capacity to observe

events of interest.

∗j.grant@lancaster.ac.uk; corresponding author
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Two factors play a particularly important role in the rate of detection. Crudely put, these

are where we look, and how good we are at looking. In any of these settings, we can only

expect to observe events in locations (spatial or temporal) where we deploy resource. Further,

the precision of the detection may also be affected by how resource is deployed. If resource is

spread over a large region, the probability of detecting events within this region may be lower

than if focused on a small area.

Inspired by these challenges, we consider a stylised model of resource allocation which cap-

tures the challenge of balancing coverage and detection probability. This framework is suffi-

ciently abstract to model problems across the various aforementioned applications and beyond.

Consider a decision-maker who aims to detect the maximum number of events occurring ac-

cording to a Non-homogeneous Poisson process (NHPP) on a segment [0, 1]. The decision-maker

selects a point y ∈ [0, 1] and then sweeps the sub-segment [0, y] searching for events. However,

the decision-maker’s search is imperfect, in that events in [0, y] are detected, independently of

each other, with filtering probability γ(y), where γ : [0, 1] → [0, 1], is a known, nonincreasing

function. The expected number of events detected by the decision-maker on a single sweep is

then determined by the filtering probability, and the cumulative intensity function (CIF) of the

NHPP,

Λ(y) =

∫ y

0

λ(z)dz, ∀ y ∈ [0, 1]

where λ : [0, 1] → R is the rate function of the NHPP. Given the decision-maker chooses to

sweep [0, y], the number of events detected has a Poisson(Λ(y)γ(y)) distribution.

Figure 1 illustrates this process. An example intensity function λ is represented by the

blue curve and a function γ giving the filtering probability is given by the black curve. The

blue points towards the bottom of the left pane illustrate a single sample of events from the

NHPP with intensity λ. The decision-maker selects y = 0.6 and sweeps the sub-segment [0, 0.6],

detecting each event therein with probability γ(0.6). The red piecewise-constant function in

the right pane illustrates the effective filtering probability over [0, 1]. The points plotted in red

then represent the events actually detected by the decision-maker during their imperfect search

- which we observe are a subset of the events that actually arose.

In this paper, we consider a sequential variant of this problem, where the CIF, Λ, is unknown

to the decision-maker, but the choice of endpoint y can be updated over a series of rounds, in

response to observing the locations of detected events in previous rounds. The decision-maker’s

aim is then to maximise the expected number of detected events over T ∈ N rounds. The study

of this problem is motivated both by its theoretical challenge and its practical interest.

Versions of this problem may arise in a number of settings such as ecological surveillance,

defence, and logistics, where sightings of endangered species, criminal activity, or machine faults

may for instance comprise the events of interest. As a motivating, and sufficiently general

example, consider a scenario where observations are made by searchers (representing cameras,

sensors, robotic and human searchers, etc.), that must restart at the same point after each round.

We note that while in the material that follows we will treat the line segment as indexing space

(for clarity and consistency), it could equivalently be thought of as indexing time or space-time

and apply to a yet broader range of examples.
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Figure 1: Graphical representation of the filtering process.

From a theoretical perspective, the problem is closely related to the one-dimensional case

of the stochastic continuum-armed bandit (CAB) problem (Agrawal 1995). This is a sequential

decision-making problem where in each of a series of rounds t ∈ [T ] ≡ {1, . . . , T}, a decision-

maker selects an action xt ∈ [0, 1] and receives a reward, which is a noisy realisation of some

unknown smooth function f : [0, 1] → [0, 1] evaluated at xt. The decision-maker’s aim is to

maximise the expected sum of rewards amassed over T rounds. To realise this aim, the decision-

maker must deploy a strategy which appropriately balances between exploring the action space

[0, 1] to learn the function f , and exploiting this information, selecting actions known to produce

larger rewards to maximise the cumulative total.

In the Poisson process-based problem at hand, a similar dilemma arises, we lack knowledge

of the filtered CIF - which corresponds to the reward function - and can only hope to maximise

the sum of rewards by exploring the action space - i.e. choosing a range of endpoints y ∈
[0, 1]. However, the feedback received on actions in our problem is much richer than in the

standard CAB problem. In addition to a noisy realisation of the filtered CIF, Λγ, we observe

the location of detected events, which can help with the estimation of the reward function beyond

the inferences from smoothness properties alone. Methods for the standard CAB problem are

therefore inappropriate for the problem we face, as is the existing unmodified theory. In this

paper we present a specific treatment of the previously described sequential endpoint selection

problem, which we henceforth refer to as a Filtered Poisson Process Bandit (FPPB), deriving a

bespoke decision-making algorithm and theoretical analysis of the problem.

1.1 Related Literature

Sequential decision-making problems on continuous action spaces have been studied extensively,

following from initial works of Agrawal (1995) and Kleinberg (2005). Most successful strategies
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have employed a combination of adaptive discretisation of the action space, and optimism in

the face of uncertainty. Our approach for the FPPB problem, also uses these techniques.

Adaptive discretisation, as used in the “Zooming” algorithm of Kleinberg et al. (2008) and

“hierarchical online optimisation” (HOO) algorithm of Bubeck et al. (2011a), reduces the avail-

able action space in round t to some At ⊂ [0, 1]. Restricting the action set ensures exploration

occurs at a predictable rate, and makes the action selection more straightforward. Gradually, as

the rounds proceed and more information is gathered, At is increased, usually in a data-adaptive

fashion to permit choice from a more granular set of actions. Intuitively, this is also appealing,

as when estimates of the reward are very crude, there is little motivation to make decisions at

a very granular level.

Optimistic approaches are those which encourage an appropriate balance of exploration and

exploitation by making decisions with respect to high probability upper confidence bounds

(UCBs) on the expected reward of the available actions. The Zooming and HOO algorithms

both calculate UCBs for the reward of available actions in each round and select the action

with the largest UCB. These approaches were the first to achieve order optimal performance, in

terms of regret, for this class of problems.

Strong results have also been obtained by approaches which use Gaussian processes and avoid

discretisation of the action space. The GP-UCB (Gaussian Process - Upper Confidence Bound)

algorithm of Srinivas et al. (2010) constructs an upper confidence bound on the reward function

over all actions, rather than at specific points, and selects the action which maximises this UCB

function. This method also has order optimal performance guarantees, but with respect to a

Bayesian measure of regret, rather than the frequentist one used in the analysis of the Zooming

and HOO algorithms.

It is worth noting that none of these algorithms can sensibly be applied to the FPPB, and

that their theoretical guarantees do not carry to the FPPB problem. Principally, this is because

they lack a means to handle the additional feedback in terms of the location data, but a more

subtle point is that without modification, these methods are not suited to unbounded rewards,

as we have in this setting, with the Poisson distributed reward.

Grant et al. (2020) consider a filtered Poisson bandit problem which is similar in some senses

to ours, but theirs employs a fixed discretisation of the action space, such that the spatial

locations of the events are irrelevant. They focus instead on the challenges of choosing multiple

non-overlapping sub-segments and analyse performance with respect to the best possible action

among a fixed discrete set. Grant et al. (2019) considers a continuous action space, but without

filtering of the observations. Inference is therefore more straightforward in this setting, and

the Thompson Sampling method proposed is not applicable to the FPPB setting. Recently, Lu

et al. (2019) provide an algorithm combining the adaptive discretisation of Kleinberg et al. (2008)

and heavy tailed UCBs of Bubeck et al. (2013) for a version of the CAB problem with heavy-

tailed reward noise distributions. While the Poisson does fit in to this class of distributions, it

also enjoys tighter bespoke concentration results, and a general heavy-tailed approach is overly

conservative for the FPPB - even if event locations were not observed.
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1.2 Key Contributions and Structure

The main contribution is a UCB algorithm with Õ(T 2/3) regret over T rounds. By derivation

of a lower bound, we show that under the assumptions on the CIF, this is optimal up to a

logarithmic factor. From the methodological viewpoint, we extend the Lipschitz multi-armed

bandit framework (Kleinberg et al. 2008) to deal with a filtered Poisson process on continuum.

The remainder of the paper is structured as follows. In Section 2 we precisely state the

problem of interest. In Section 3 we present our UCB approach to the problem. Sections 4 and

5 provide the upper and lower bounds on regret respectively. We conclude with a simulation of

our method in Section 6, and discussion in Section 7.

2 Model

The formal specification of the FPPB problem is as follows. In rounds t ∈ [T ], the decision-

maker selects an endpoint yt ∈ [0, 1] and makes an observation on the sub-segment [0, yt].

The environment generates a realisation of the NHPP with CIF Λ, consisting of an increasing

sequence of event locations {Xt,1, Xt,2, . . . , Xt,Nt} ∈ [0, 1]Nt , where Nt ∼ Poisson(Λ(1)). The

end-point selected by the decision-maker implies a filtering probability γ(yt) ∈ [0, 1], such that

events to the left of yt are detected independently of each other with probability γ(yt), and all

events to the right of yt are not detected. As a result, a sequence of i.i.d. Bernoulli(γ(yt)) random

variables, B1, B2, . . . , BNt , is generated. The decision maker receives the count of detected events

Rt ≡ Rt(yt) =
∑Nt
k=1 1(Bt,k = 1, Xt,k ≤ yt) as a reward, and observes the locations of detected

events Xt,k with Bt,k = 1 and Xt,k ≤ yt. By construction, Rt ∼ Poisson(Λ(yt)γ(yt)).

The decision-maker’s objective is to maximise the sum of rewards obtained over T rounds,∑T
t=1Rt. To realise this objective we aim to determine a policy, A, which maps from a history of

actions and observations to a next action, which maximises the expected reward, or equivalently

minimises the regret,

RegA(T ) = E

(
T∑
t=1

Rt(z
∗)−Rt(yt)

)
, (1)

where z∗ ∈ argmaxy∈[0,1] Λ(y)γ(y) is an optimal endpoint which maximises the expected per-

round reward. Here the expectation is with respect to both the random process governing the

generation and filtering of events and the decision-maker’s actions. We will be interested in

upper bounding the regret as a function of T for our proposed algorithm, and comparing the

order of this upper bound to that of lower bounds on the best achievable regret of any algorithm.

Bounded regret is achievable only if the reward function is suitably well-behaved as to admit

learning from a finite sample of observations. This is ensured through assumptions on the

form of the CIF and filtering function. These assumptions, enforced throughout the paper, are

Lipschitz continuity of the filtered CIF and a rate bound,

A1: |γ(y)Λ(y)− γ(x)Λ(x)| ≤ m|y − x|,∀x, y ∈ [0, 1],

A2: λ(y) ≤ λmax,
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for m,λmax ≥ 0 known and finite. Assumptions A1–A2 are used to bound the estimation error

for the expected number of detected events in each cell; this can be achieved by including in

the cell index an additive term proportional to the cell length. We also assume that γmin =

infy∈(0,1]{γ(y) > 0} > 0; this is without loss of generality, as segments with γ(·) = 0 do not

contain the optimal endpoint.

3 Algorithm

In this section we present our algorithm for the FPPB problem, CIF-UCB, given as Algorithm

1.

Algorithm 1 CIF-UCB (Cumulative Intensity Function - Upper Confidence Bound)

1: Input: Rate bound λmax, filtering probabilities γ(·), Lipschitz constant m, active cell set
A1 = {(0, 1]}, effective number of samples V1(0, 1) = ∅, index I1(0, 1) = m.

2: for t = 1 to T do
3: Selection Rule:
4: Find cell

(at, bt] = argmax
(x,y]∈At

It(x, y),

breaking ties randomly.
5: Do a sweep up to bt.
6: Update Vt+1(at, bt) = Vt(at, bt) ∪ {t}, and

ζt+1(bt) =
6 max{1, λmax} log(T )∑|Vt+1(at,bt)|

i=1 γ(bτi)
+

√
6λmax log(T )∑|Vt+1(at,bt)|
i=1 γ(bτi)

.

7: Update Λ̄t+1(bt) as in (2).
8: Division Rule:
9: if m(bt − at) ≥ ζt+1(bt) then

10: Update the active cell set At+1 = At \ {(at, bt]} ∪ {(at, (at + bt)/2], ((at + bt)/2, bt]}.
11: Set Vt+1((at, (at + bt)/2) = Vt+1(((at + bt)/2, bt) = Vt+1(at, bt), and

ζt+1

(
at + bt

2

)
=

6 max{1, λmax} log(T )∑|Vt+1(at,(at+bt)/2)|
i=1 γ(bτi)

+

√
6λmax log(T )∑|Vt+1(at,(at+bt)/2)|

i=1 γ(bτi)
,

ζt+1(bt) =
6 max{1, λmax} log(T )∑|Vt+1((at+bt)/2,bt)|
i=1 γ(bτi)

+

√
6λmax log(T )∑|Vt+1((at+bt)/2,bt)|

i=1 γ(bτi)
.

12: Define Λ̄t+1((at + bt)/2) and Λ̄t+1(bt) as in (2).
13: end if
14: UCB Computation:
15: Set It+1(x, y) = γ(y)Λ̄t+1(y) +m(y − x) + γ(y)ζt+1(y) for all cells (x, y] ∈ At+1.
16: end for

At a high level, CIF-UCB proceeds as follows. For each round t = 1, . . . , T , the algorithm
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maintains a set of active cells, At, which form a partition of [0, 1]. An index, It, taking the form

of optimistic estimate of the expected reward, is computed for each cell in At. The algorithm

selects the right endpoint of the active cell with largest index as the action for that round.

Initially, the active set contains the unit interval, A1 = {(0, 1]}, so that the algorithm does a

complete sweep in the first round. If the number of sweeps of a cell exceeds some threshold

in relation to its length, the cell is split in half. Hence, active cells make up a partition of the

interval [0, 1] for all rounds. A new cell inherits the number of sweeps and detection count that

fall in its interval from the parent cell.

Accumulating rewards over the interval to the left of the selected endpoint makes the problem

structure combinatorial in nature, which poses a challenge for the analysis. The insight that

makes the analysis tractable is that, by the independent increment property of the Poisson

process, the filtered Poisson counts corresponding to the active cells that lie to the left of the

endpoint selected by the algorithm in each round are independent. This leads to a CIF estimator

for each active cell with tight error bounds.

We complete the notation needed to define the CIF estimator. Let {Ft}Tt=1 be the filtration

induced by the sequence of event locations and cell selections ((at, bt])
T
t=1. Also, let

Vt(x, y) = {τ1, τ2, . . .} ⊆ [t]

be the collection of (random) times when active cell (x, y] is swept by round t and let,

Zτi(y) =

Nτi∑
k=1

1(Bτi,k = 1, Xτi,k ≤ y)

be the filtered Poisson count to the left of y in round τi. Finally, let
∑|Vt(x,y)|
i=1 Zτi(y) be the

total filtered Poisson count to the left of y over the rounds when cell (x, y] is swept. When the

context is clear, we write V in lieu of Vt(x, y)

For active cell (x, y], Λ(y) is estimated by dividing the cumulative filtered Poisson counts up

to y by its effective number of sweeps by round t,

Λ̄t(y) =

∑|Vt(x,y)|
i=1 Zτi(y)∑|Vt(x,y)|
i=1 γ(bτi)

. (2)

Essentially, in (2) the filtered Poisson count is unfiltered by dividing it by
∑|Vt(x,y)|
i=1 γ(bτi). It’s

easy to see that Λ̄t(y) is an unbiased estimator of Λ(y).

CIF-UCB samples from the origin to the endpoint of the active cell with largest index, and

divides the latter cell if its length exceeds certain threshold. The complexity of the CIF-UCB is

O(T ) for the variable updates, and O(
∑T
t=1 t log t) = O(T 2 log T ) for sorting the indices, since

there are at most t active cells by round t.
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4 Upper Bound on Regret

In this section we present the first of our main theoretical contributions, an upper bound on the

regret of CIF-UCB.

Theorem 1. The regret of CIF-UCB applied to the FPPB problem, with CIF and filtering

function satisfying Assumptions A1 and A2 satisfies

Reg(T ) = Õ(T 2/3).

Proof. The proof has three main stages. We first bound the CIF estimator error for each active

cell (Lemma 1), and then use the Lipschitz assumption to extend the bound to include all the

points inside an active cell (knowing that one of these points is an optimal endpoint for some

active cell; Corollary 1). Second, we use the Division rule to express the confidence bound of

each active cell in terms of its length (Lemma 2), which yields a bound for the per-round regret

of the cell selected by the algorithm (Lemma 3). Finally, we accumulate these per-round regrets

to obtain an upper bound for the regret over T rounds.

Firstly, we present the following concentration result, which asserts that the difference be-

tween the true CIF and the estimated CIF is unlikely to exceed the upper confidence terms used

in Algorithm 1.

Lemma 1. Let (x, y] be an active cell in round t. Then,

P
(∣∣Λ̄t(y)− Λ(y)

∣∣ > ζt(y)
)
≤ 2T−2,

where

ζt(y) =
6 log(T ) max{1, λmax}∑|Vt(x,y)|

i=1 γ(bτi)
+

√
6λmax log(T )∑|Vt(x,y)|
i=1 γ(bτi)

.

Proof. The Poisson count Zτi(y) is Fτi measurable and,

E[Zτi(y)|Fτi−1
] = Λ(y)γ(bτi), a.s.

Defining,

Mk(y) =

k∑
i=1

(Zτi(y)− Λ(y)γ(bτi)),

it follows that {Mk∧|V |(y),Fτk}k≥1 is a martingale, and Mk∧|V |(y)−M(k−1)∧|V |(y) = (Zτk(y)−
Λ(y)γ(bτi))1(k ≤ |V |) is a martingale difference sequence. By Lemma 1 in (Grant et al. 2020),

P

k∧|V |∑
i=1

(Zτi(y)− Λ(y)γ(bτi)) > η

 ≤ exp

(
− η2

2Λ(y)
∑|V |
i=1 γ(bτi) + 2 max{1,Λ(y)}η

)
.

8



Solving for the r.h.s. above equal to T−3 leads to,

η = 3 log(T ) max{1,Λ(y)}+

√√√√(3 log(T ) max{1,Λ(y)})2 + 6Λ(y) log(T )

|V |∑
i=1

γ(bτi)

≤ 6 log(T ) max{1, λmax}+

√√√√6λmax log(T )

|V |∑
i=1

γ(bτi).

It follows that the probability that

k∧|V |∑
i=1

(Zτi(y)− Λ(y)γ(bτi)) > 6 log(T ) max{1, λmax}+

√√√√6λmax log(T )

|V |∑
i=1

γ(bτi),

is at most T−3 for each k ≤ T . Taking a union bound over all k ≤ T , and replacing for the

definition of Λ̄t(y) and ζt(y) results in

P
(
Λ̄t(y)− Λ(y) > ζt(y)

)
≤ T−2.

Finally, using the same approach it can be shown that

P
(
Λ̄t(y)− Λ(y) < −ζt(y)

)
≤ T−2,

so the proof is complete.

The Lipschitz assumption can be used to extend this to a high probability bound on the

filtered CIF for active cells.

Corollary 1. Let (x, y] ∈ At. Then, with probability at least 1− 2T−2

sup
x<c≤y

∣∣γ(y)Λ̄t(y)− γ(c)Λ(c)
∣∣ ≤ m(y − x) + γ(y)ζt(y).

Proof. By the Lipschitz assumption,

sup
x<c≤y

|γ(y)Λ(y)− γ(c)Λ(c)| < m(y − x).

Hence,

P
(

sup
x<c≤y

∣∣γ(y)Λ̄t(y)− γ(c)Λ(c)
∣∣ > m(y − x) + γ(y)ζt(y)

)
≤ P (|Λ̄t(y)− Λ(y)| > ζt(y)).

The index of a cell (x, y] active in round t is

It(x, y) = γ(y)Λ̄t(y) +m(y − x) + γ(y)ζt(y).
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The γ(y)Λ̄t(y) part of the index induces exploitation, while the m(y − x) + γ(y)ζt(y) term

promotes exploration.

All the results that follow in this section are on the sample paths where

sup
x<c≤y

∣∣γ(y)Λ̄t(y)− γ(c)Λ(c)
∣∣ ≤ m(y − x) + γ(y)ζt(y) (3)

holds for all rounds t = 1, . . . , T . By Corollary 1, the contribution to the regret of the sample

paths that violate (3) is of order O(1), after accounting for the T rounds and up to T cells by

round T .

Our next result bounds the upper confidence term ζt for an active cell on the high probability

event of Corollary 1.

Lemma 2. For (x, y] ∈ At,

ζt(y) ≤ 4m2(y − x)2 max{1, 1/λmax}+ 2m(y − x).

Proof. Let V (p)(x, y) be the set of rounds the parent cell of (x, y] got swept. The Division rule

for the parent cell implies

2m(y − x) ≥ 6 max{1, λmax} log(T )∑|V (p)(x,y)|
i=1 γ(bτi)

+

√
6λmax log(T )∑|V (p)(x,y)|
i=1 γ(bτi)

.

Then, we obtain the conservative lower bound,

|V (p)(x,y)|∑
i=1

γ(bτi) ≥
3λmax log(T )

2m2(y − x)2
. (4)

Next we upper bound ζt(y),

ζt(y) ≤ 6 max{1, λmax} log(T )∑|V (p)(x,y)|
i=1 γ(bτi)

+

√
6λmax log(T )∑|V (p)(x,y)|
i=1 γ(bτi)

≤ 4m2(y − x)2 max{1, 1/λmax}+ 2m(y − x),

where the first inequality follows from the definition of ζt(y), and the second inequality follows

from the lower bound (4).

Let z∗ be an optimal endpoint (i.e., γ(z∗)Λ(z∗) ≥ γ(y)Λ(y) for all y ∈ [0, 1]), and (ut, vt] ∈ At
the cell that contains z∗ in round t. The next result bounds the regret

∆(at, bt) = γ(z∗)Λ(z∗)− γ(bt)Λ(bt),

incurred in each round in terms of the length of the cell selected by the algorithm.
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Lemma 3. The round t regret ∆(at, bt) satisfies

∆(at, bt) ≤ 8m2(bt − at)2 max{1, 1/λmax}+ 5m(bt − at).

Proof. We will show that

γ(z∗)Λ(z∗) ≤ It(at, bt) ≤ γ(bt)Λ(bt) + 5m(bt − at) + 8m2(bt − at)2 max{1, 1/λmax},

from where the claim follows.

For the first inequality, we observe that,

It(at, bt) ≥ It(ut, vt) ≥ γ(vt)Λ(vt) +m(vt − ut)

≥ γ(vt)Λ(vt) +m(vt − z∗) ≥ γ(z∗)Λ(z∗).

In order, these inequalities follow from the Selection rule, the definition of the index function It
and Corollary 1, the fact that z∗ ∈ (ut, vt], and the Lipschitz assumption. In the other direction,

we have by application of Corollary 1, and then Lemma 2,

It(at, bt) ≤ γ(bt)Λ(bt) +m(bt − at) + 2γ(bt)ζt(bt)

≤ γ(bt)Λ(bt) + 5m(bt − at) + 8m2(bt − at)2 max{1, 1/λmax}.

The final stage of the proof combines these results to realise the bound on regret. By Lemma

3, the regret of cells with length at most ` is bounded by

T (8m2`2 max{1, 1/λmax}+ 5m`) (5)

over all rounds.

Cells with final length ` have three properties: (i) there are at most 1/` such cells; (ii) their

regret per round is at most 8m2`2 max{1, 1/λmax}+ 5m` (Lemma 3); and (iii), satisfy (Division

rule)

m` ≤ 6 log(T ) max{1, λmax}∑|V |
i=1 γ(bτi)

+

√
6λmax log(T )∑|V |

i=1 γ(bτi)
.

Solving the quadratic inequality leads, after some algebra, to

|V |∑
i=1

γ(bτi) ≤
12 max{1, λmax} log(T )

m`
+

6λmax log(T )

m2`2
.

Since |V |γmin ≤
∑|V |
i=1 γ(bτi), the number of selections is bounded above by

|V | ≤ 12 max{1, λmax} log(T )

γminm`
+

6λmax log(T )

γminm2`2
.
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Hence, the total regret from cells of length ` is at most

(8m2`max{1, 1/λmax}+ 5m)|V |

≤ (8m2`max{1, 1/λmax}+ 5m)

(
12 max{1, λmax} log(T )

γminm`
+

6λmax log(T )

γminm2`2

)
=

log(T )

γmin

(
96mmax{λmax, 1/λmax}+

108 max{1, λmax}
`

+
30λmax

m`2

)
. (6)

Using Eqs. (5) and (6) with ` = 2−k results in,

Reg(T ) ≤ T (8m24−k max{1, 1/λmax}+ 5m2−k)

+
log(T )

γmin

(
96mmax{λmax, 1/λmax}+ 108 max{1, λmax}

k−1∑
i=0

2i +
30λmax

m

k−1∑
i=0

4i
)

≤ T (8m24−k max{1, 1/λmax}+ 5m2−k)

+
log(T )

γmin

(
96mmax{λmax, 1/λmax}+ 36 max{1, λmax}2k +

10λmax

m
4k
)
. (7)

for all integer k ≥ 0. The value of k that minimises regret equalises the leading growth rates of

both summands in (7), meaning that 2k = T 1/3. The claim follows from here.

5 Lower Bound on Regret

In this section we give a lower bound on the regret obtained by any algorithm for the filtered

Poisson process bandit. The result is given below as Theorem 2, and we see, subject to further

minor conditions on the filtering function, that the order of the lower bound on regret matches

that of the upper bound on the regret of CIF-UCB up to a logarithmic factor. In this sense,

CIF-UCB is therefore asymptotically order optimal (up to the exclusion of logarithmic factors).

Theorem 2. For the filtered Poisson process bandit problem on [0, 1] as described in Section 2

with filtering function γ satisfying

γ(a)− γ(b)

b− a
≥ 1

4
γ

(
a+ b

2

)
(8)

for any 0 ≤ a ≤ b ≤ 1, there exists a valid CIF such that the regret of any algorithm is bounded

below as

Reg(T ) = Ω(T 2/3).

The proof of this lower bound is based on an established analytical technique of relating the

regret of an algorithm for a continuum armed bandit problem to that of an algorithm for an

associated finite-armed bandit problem. A lower bound on regret for the finite-armed problem

is then utilised to lower bound the regret of the continuum armed bandit algorithm.

Here, such an associated finite-armed bandit problem must share the filtering structure of

the FPPB to relate regret across the problems, and as such we require a bespoke finite-armed
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problem. Therefore, before giving the proof of Theorem 2, we introduce a filtered Poisson multi-

armed bandit (FPMAB) problem which can be viewed as a discretised version of the FPPB. We

derive a lower bound on the regret of any algorithm for the FPMAB, which is a key component

of the proof of Theorem 2.

We define the FPMAB problem as follows. The problem is instantiated by K arms with mean

parameters µk ∈ [0, λm]. Each mean parameter may be decomposed as the product of a CIF

parameter Λk ∈ [0, λm] and filtering parameter γk ∈ [0, 1] - i.e. µk = Λkγk, k ∈ [K]. The ordered

CIF parameters comprise a monotonically increasing sequence, Λ1 ≤ Λ2 ≤ · · · ≤ ΛK , and the

ordered filtering parameters comprise a monotonically decreasing sequence, γ1 ≥ γ2 ≥ · · · ≥ γK .

The problem takes place over a series of rounds t ∈ [T ], in each of which the decision-maker

selects an arm at ∈ [K] and receives a stochastic reward Rt = R(at). In addition, the decision-

maker observes filtered observations, R̃k,t for 1 ≤ k ≤ at. These observations are distributed

as

R̃k,t ∼ Poisson(γat(Λk − Λk−1)).

The reward is defined as the sum of the filtered observations Rt =
∑at
k=1 R̃k,t, and therefore

follows a Poisson distribution with parameter µa, by the superposition property of the Poisson

distribution.

Similarly as to the FPPB, the decision-maker’s aim is to minimise regret in T rounds, defined

as

Reg(T ) = E
( T∑
t=1

Rt(a
∗)−Rt(at)

)
,

where a∗ ∈ argmaxk∈[K] µk is an optimal arm. We have the following minimax lower bound on

the regret of any algorithm for the FPMAB problem.

Theorem 3. For any number of arms K ≥ 2, horizon T ∈ N, a set of filtering parameters

γ1, . . . , γK satisfiying

γk ≥
(

1 + ε
)
γk+1 (9)

for k ∈ [K − 1], and some small ε > 0 there exist a set of CIF parameters Λ1, . . . ,ΛK and a

known constant C > 0 such that the regret of any algorithm for the FPMAB problem is at least

Cε

(
T − T

K
− T

2

√
3ε2T

K

)
. (10)

This Theorem is similar in spirit to the lower bound on regret for stochastic multi-armed

bandits with bounded rewards in Theorem 5.1 of Auer et al. (2002), and its generalisation in

Bubeck et al. (2011b). Indeed Theorem 3 has the same order with respect to ε and T however

there are key differences in the proof of the result. Firstly, Theorem 3 considers filtered Poisson

random variables, and therefore parts of the analysis are specific to the KL divergence between

two Poisson random variables rather than Bernoulli random variables in the bounded case.

Secondly, here we deal with the additional combinatorial feedback of FPMAB problem, and

require further analyses to handle the resulting complexities.

In the remainder of this section we prove Theorems 2 and 3.
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5.1 Proof of Theorem 2

Proof. Consider the instance of the filtered Poisson process bandit problem referred to as

I(x∗, ε), for x∗ ∈ [0, 1] and ε > 0, and specified by the following reward function

νx∗,ε(x) =

 mε(1 + ε− |x− x∗|), x : |x− x∗| ≤ ε

min(mx,mε), othw.
(11)

Such a reward function is realised by setting the CIF to

Λx∗,ε(x) =


(γ(x))−1mε

[
1 + ε− (x∗ − x)

]
, x ∈ [x∗ − ε, x∗)

(γ(x))−1mε
[
1 + ε− (x− x∗)

]
, x ∈ [x∗, x+ ε)

(γ(x))−1 min(mx,mε), othw.

(12)

To verify that this CIF is increasing, consider the derivative,

dΛx∗,ε(x)

dx
=



d( 1
γ )

dx mε
[
1 + ε− x∗ + x

]
+mε(γ(x))−1, x ∈ [x∗ − ε, x∗)

d( 1
γ )

dx mε
[
1 + ε+ x∗ − x

]
−mε(γ(x))−1, x ∈ [x∗, x∗ + ε)

d( 1
γ )

dx mx+m(γ(x))−1, x ∈ [0, ε)
d( 1
γ )

dx mε othw.

We note that (γ(x))−1 > 1 for all x ∈ [0, 1] since γ : [0, 1]→ [0, 1], and that d(γ(x))−1/dx ≥ 0 for

all x ∈ [0, 1] since γ is assumed to be strictly increasing on [0, 1]. It follows that for x ∈ [x∗−ε, x∗),

dΛx∗,ε(x)

dx
≥ d(γ(x))−1

dx
mε

[
1 + ε− ε

]
+mε(γ(x))−1 =

d(γ(x))−1

dx
mε+mε(γ(x))−1 > 0.

For x ∈ [x∗, x∗ + ε), consider

dΛx∗,ε(x)

dx
≥ d(γ(x))−1

dx
mε

[
1 + ε− ε

]
−mε(γ(x))−1 = mε

(
d(γ(x))−1

dx
− (γ(x))−1

)
. (13)

In the limit as b− a→ 0 condition (8) implies that −dγ(x)dx ≥ γ(x). We have, for a differentiable

function f such that f(x) 6= 0 that the derivative of g(x) = 1/f(x), that

dg(x)

dx
=
−df(x)dx

(f(x))2
.

Thus,

d(γ(x))−1

dx
=
−dγ(x)dx

(γ(x))2
≥ −γ(x)

(γ(x))2
= (γ(x))−1,

and it follows from (13) that dΛx∗,ε(x)/dx > 0 for x ∈ [x∗, x∗ + ε). For all other values of

x ∈ [0, 1] it should be obvious that the derivative of the CIF is positive since it comprises a

sum of non-negative terms. As such Λx∗,ε satisfies the necessary increasing assumption, and the

instance I(x∗, ε) is a valid instance of the FPPB.
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We will lower bound the regret of any algorithm for the problem instance I(x∗, ε) by relating

it to an instance of the filtered Poisson MAB problem.

We fix K ∈ N to be defined later and let ε = (2K)−1. Further we introduce the function

fε : [K]→ [0, 1] with

fε(a) = (2a− 1)ε, a ∈ [K].

This function is used to map between actions in the MAB problem and the CAB problem. We

then define an instance J (a∗, ε) of the K-armed filtered Poisson MAB problem as that with

arm means

µa = νx∗,ε(fε(a)), a ∈ [K],

and filtering probabilities

γa = γ

(
2a− 1

K

)
, a ∈ [K].

It follows that in the problem instance J (a∗, ε) there is a single optimal arm a∗ ∈ [K] : x∗ ∈
[a−1K , aK ] with expected reward µa∗ = mε(1 + ε) and all other arms, a 6= a∗, have expected

reward µa = mε.

Let ALG be any algorithm for the CAB problem I(x∗, ε). We will define ALG’ as an associated

algorithm for the MAB problem J (a∗, ε). These algorithms are related as follows. When ALG

selects an action xt ∈ [0, 1], ALG’ selects an arm at ≡ a(xt) ∈ [K] such that

xt ∈
(
fε(at)−

1

2K
, fε(at) +

1

2K

)
.

By definition of the FPMAB, ALG’ will receive reward R′(at) ∼ Pois(µat) and per-arm

observations R̃′i,t ∼ Pois(γ(at)(Λi−Λi−1)) for i ≤ at. Similarly, ALG will receive reward R(xt) ∼
Pois(νx∗,ε(xt)) and observe point data in [0, xt] derived from the filtered Poisson process. We

shall also, however, demonstrate that R(xt) can be shown to have the same distribution as a

certain probabilistic function of R̃′(at) and use this representation to relate the regret of ALG

and ALG’.

Define Z to be a Poisson random variable with parameter mε(1 + ε), and Y to be a Poisson

random variable with parameter mε. Then define rx, a random variable whose distribution

depends on x ∈ [0, 1], as follows,

rx ≡

 Z, with probability px

Y, othw.
(14)

where

px =
1− νx∗,ε(x)

1− µa(x)
. (15)

It follows that

E(rx|x) = mε

(
(1− px)E(Y ) + pxE(Z)

)
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= mε

(
1− 1− νx∗,ε(x)

1− µa(x)
+

1− νx∗,ε(x)

1− µa(x)
(1 + ε)

)

= mε

(
1 + ε

1− νx∗,ε(x)

1− µa(x)

)

=

 mε
(
1 + ε

1−1−ε (1− 1− ε+m|x− x∗|)
)
, x : |x∗ − x| ≤ ε

mε, othw.

= E(R(xt)).

We notice that for both I(x∗, ε) and J (a∗, ε) the reward of the optimal action is mε(1 + ε).

Further we have that E(R(xt)) ≤ E(R′(a(xt))) for all xt ∈ [0, 1]. It therefore follows that the

regret of ALG’ serves as a lower bound on the regret of ALG, i.e. we have

E(RegALG(T )) ≥ E(Reg′ALG′(T )).

As ALG’ is an algorithm for the FPMAB problem, its regret is lower bounded as in Theorem 3,

and we therefore have

E(RegALG(T )) ≥ Cε

(
T − T

K
− T

2

√
3ε2T

K

)
,

for a known constant C > 0.

We complete the proof of Theorem 2 by optimising our choice of K as a function of T .

Substituting ε = 1/2K, we have

E(RegALG(T )) ≥ CT

2K
− CT

2K2
− CT

4K

√
3T

4K3
,

and choosing K = O(T 1/3) yields the stated result.

5.2 Proof of Theorem 3

Proof. Given a set of filtering parameters γ1, . . . , γK we construct a problem instance where

there is a single “good” arm, i ∈ [K], with mean reward µi = 1+ ε, for small ε ∈ (0, 1/2], and all

other arms, k 6= i, have mean rewards µk = 1. This is achieved by setting the CIF parameters

as follows

Λ
(i)
i =

1 + ε

γi
, Λ

(i)
k =

1

γk
, ∀k 6= i.

Here the superscript ·(i) denotes that i is the good arm under this choice of parameters, and we

notice that the condition of the filtering parameters (9) is required for Λ
(i)
1 , . . .Λ

(i)
K to constitute

a valid (i.e. increasing) sequence of CIF parameters.

We define three notions of probability and expectation, relevant to the analysis of problem

instances of this type. Let P∗(·) denote probability with respect to the above construction of

the FPMAB where the good arm is chosen uniformly at random from [K]. Let Pi(·) be defined
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similarly, but denote probability conditioned on the event that i ∈ [K] is the good arm. Finally

let Pequ denote probability with respect to a version where µk = 1 for all k ∈ [K]. We let E∗(·),
Ei(·), and Eequ(·) be respective associated expectation operators.

Let A be the decision-maker’s algorithm, let

rt = (R(a1), . . . , R(at))

denote the sequence of observed rewards in t rounds, and

r̃t =
(

(R̃1,1, . . . , R̃a1,1), . . . , (R̃1,t, . . . , R̃at,t)
)

denote the sequence of filtered observations in t rounds. Any algorithm A may then be thought

of a deterministic function from {rt−1, r̃t−1} to at for all t ∈ [T ]. Even an algorithm with

randomised action selection can be viewed as deterministic, by treating a given run as a single

member of the population of all possible instances of that algorithm.

Further, we define GA =
∑T
t=1Rt to be the reward accumulated by A in T rounds and

Gmax = maxj∈[K]

∑T
t=1Rt(j) to be the reward accumulated by playing the best action. The

regret of A in T rounds may be expressed as

RegA(T ) = E
(
Gmax −GA

)
.

Let Nk be the number of times an arm k ∈ [K] is chosen by A in T rounds. The first step of

the proof is to bound the difference in the expectation of Ni when measured using Ei and Eequ,

i.e. to bound the difference in the number of times an algorithm with play i between when i is

the good arm and when all arms are equally valuable.

Lemma 4. For any arm i there exists a constant C(γi−1, γi, γi+1) > 0 such that we have

Ei(Ni) ≤ Eequ(Ni) +
T

2

√
2ε2
(
Eequ(Ni)

γi−1
2(γi−1 − γi)

+ Fi

)
where

Fi = C(γi−1, γi, γi+1)

K∑
k=i+1

γkEequ(Nk), (16)

for ε ≤ γi
2γi+1

− γi
2γi−1

, and C(γi−1, γi, γi+1) is a known positive constant.

By construction of the CIF paramters Λ
(i)
1 , . . . ,Λ

(i)
K we have that for any t ∈ [T ], E(Rt) =

1 + εPi(at = i). It follows that the expected reward of algorithm A, GA satisfies Ei(GA) =

T + εEi(Ni). The expectation in the regret measure is taken with respect to P∗, rather than

any Pi, as such E∗(GA) is the quantity of interest. We recall that under P∗ the “good” arm is

chosen uniformly at random, and thus, it follows that

E∗(GA) =
1

K

K∑
k=1

Ek(Ga) ≤ T +
1

K

K∑
k=1

εEk(Nk)
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≤ T +
ε

K

K∑
k=1

(
Eequ(Nk) +

T

2

√
2ε2
(
Eequ(Nk)

γk−1
2(γk−1 − γk)

+ Fk

))

= T +
εT

K
+
εT

2K

K∑
k=1

√
2ε2
(
Eequ(Nk)

γk−1
2(γk−1 − γk)

+ Fk

)
, (17)

where the second inequality uses Lemma 4.

Considering the final term of (17), we have by Cauchy-Schwarz,

K∑
k=1

√
2ε2
(
Eequ(Nk)

γk−1
2(γk−1 − γk)

+ Fk

)
≤

√√√√K

K∑
k=1

2ε2
(
Eequ(Nk)

γk−1
2(γk−1 − γk)

+ Fk

)

≤

√√√√ε2KT + 2ε2K

K∑
k=1

C(γk−1, γk, γk+1)

K∑
j=k

γjEequ(Nj)

≤
√

3ε2KT max
k∈[K]

C(γk−1, γk, γk+1)

Thus

E∗(GA) ≤ T +
εT

K
+
εT

2

√
3ε2T maxk∈[K] C(γk−1, γk, γk+1)

K
,

and the regret is bounded as

E∗|Gmax −GA| ≥ (1 + ε)T − T − εT

K
− εT

2

√
3ε2T maxk∈[K] C(γk−1, γk, γk+1)

K

= εT − εT

K
− εT

2

√
3ε2T maxk∈[K] C(γk−1, γk, γk+1)

K
.

5.3 Proof of Lemma 4

We first introduce some further notation used in the proof. Define for any distributions P and

Q over vector sequences r̃ ∈ NK×T , the variational distance as

||P−Q||1 ≡
∑

r∈NK×T
|P(r̃)−Q(r̃)|,

and the KL divergence as

KL(P || Q) ≡
∑

r∈NK×T
P(r) log

(
P(r)

Q(r)

)
.

By Pinsker’s inequality, we have the following relationship between these distances

||P−Q||1 ≤
√

2KL(Q || P). (18)
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Finally, the KL divergence between two Poisson distributions with parameters λ and ν is given

as,

KL(λ||ν) ≡ λ log

(
λ

ν

)
+ ν − λ.

Proof. For any function f : NK×T → [0,M ], with M > 0 constant, we have,

Ei(f(r̃))− Eequ(f(r̃)) =
∑

r̃∈NK×T+

f(r̃)
(
Pi(r̃)− Pequ(r̃)

)
≤

∑
r̃:Pi(r̃)≥Pequ(r̃)

f(r̃)
(
Pi(r̃)− Pequ(r̃)

)
≤ M

2
||Pi − Pequ||1

≤ M

2

√
2KL(Pequ||Pi), (19)

where the final inequality follows from (18). Considering the KL divergence term in isolation,

we have, by Theorem 2.5.3 of Cover and Thomas (2012)

KL(Pequ || Pi) =

T∑
t=1

KL
(
Pequ(r̃t | r̃1:t−1)

∣∣∣∣ Pi(r̃t | r̃1:t−1)
)

=

T∑
t=1

K∑
k=1

Pequ
(
at = k

)
KL

(
Pequ(r̃t | at = k)

∣∣∣∣ Pi(r̃t | at = k)
)

=

T∑
t=1

K∑
k=i

Pequ
(
at = k

)
KL

(
Pequ(r̃t | at = k)

∣∣∣∣ Pi(r̃t | at = k)
)

=

T∑
t=1

K∑
k=i

Pequ
(
at = k

) k∑
j=1

KL
(
γk(Λequj − Λequj−1), γk(Λ

(i)
j − Λ

(i)
j−1)

)

=

T∑
t=1

K∑
k=i

Pequ
(
at = k

) k∑
j=1

KL
(
γk(

1

γj
− 1

γj−1
), γk(Λ

(i)
j − Λ

(i)
j−1)

)
.

Here the parameters Λequk , k ∈ [K] refer to the choice of CIF parameters which yields µk = 1 for

all k ∈ [K]. The final equality follows from the observation that if at < i then the distribution

of the filtered observations is identical under Pequ and Pi. Decomposing on the sum over k, with

the observation that for j > i + 1 the CIF parameters under the “single good arm” and “all

arms equal” constructions will also match, meaning KL(γk(Λequj −Λequj−1), γk(Λ
(i)
k −Λ

(i)
j−1)) = 0,

for any j > i+ 1 we have

KL(Pequ || Pi)

=

T∑
t=1

Pequ(at = i)KL
(
γi(

1

γi
− 1

γi−1
), γi(

1 + ε

γi
− 1

γi−1
)
)

+

T∑
t=1

K∑
k=i+1

Pequ
(
at = k

) ∑
j∈{i,i+1}

KL
(
γk(

1

γj
− 1

γj−1
), γk(Λ

(i)
j − Λ

(i)
j−1)

)
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= Eequ(Ni)

(
(1− γi

γi−1
) log

( 1− γi
γi−1

1 + ε− γi
γi−1

)
+ ε

)

+

K∑
k=i+1

Eequ(Nk)

[(
(
γk
γi
− γk
γi−1

) log
( 1

γi
− 1

γi−1

1+ε
γi
− 1

γi−1

)
+ ε

γk
γi

)

+

(
(
γk
γi+1

− γk
γi

) log
( 1

γi+1
− 1

γi
1

γi+1
− 1+ε

γi

)
− εγk

γi

)]
≤ Eequ(Ni)

γi−1
2(γi−1 − γi)

ε2

+

K∑
k=i+1

Eequ(Nk)
γk
γi

[
γi−1 − γi
γi−1

log

(
1

1 + γi−1

γi−1−γi ε

)
+
γi − γi+1

γi+1
log

(
1

1− γi+1

γi−γi+1
ε

)]
, (20)

for ε ≤ γi−γi+1

γi+1
. The inequality uses the identity

2ax+ 2a2 log

(
a

a+ x

)
≤ x2, x > 0, a < 1.

It remains to bound the summation in (20) with an o(ε2) term. For general a ∈ [0, 1],

b ∈ [0, 1], and 0 ≤ x ≤ b, consider the function

g(x) = a log

(
1

1 + x
a

)
+ b log

(
1

1 + x
b

)
.

We have its derivative
dg(x)

dx
=

a

a− x
+

b

x− b
,

and thus for some C > 1 we have the following linear bound on the derivative

dg/dx ≤ 2Cx, ∀ x ∈
[
0,
a+ b

2
+

√
(a+ b)2

4
− ab+ (a− b)

4C

]
. (21)

Solutions to g(x) = Cx2 are not available in closed-form, but since g(0) = 0, and dg/dx|x=0 = 0

we have as a minimum that g(x) ≤ Cx2 for x as in (21). Choosing C = ab+a−b
(a+b)2 gives g(x) ≤ Cx2

for x ∈ [0, a+b2 ].

It therefore follows that

γi−1 − γi
γi−1

log

(
1

1 + γi−1

γi−1−γi ε

)
+
γi − γi+1

γi+1
log

(
1

1− γi+1

γi−γi+1
ε

)

≤

(
γi(γi−1 − 2γi + γi+1)

γi+1

γi−1
(γi−1 − γi)2 + 2(γi−1 − γi)(γi − γi+1) + γi−1

γi+1
(γi − γi+1)2

)
ε2, (22)

for all x ∈
[
0, γi

2γi+1
− γi

2γi−1

]
.

Combining (20) and (22) we therefore have that the KL divergence from Pequ to Pi may be
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bounded as follows,

KL(Pequ || Pi) ≤ ε2
(

γi−1
2(γi−1 − γi)

Eequ(Ni) + C(γi−1, γi, γi+1)

K∑
k=i+1

γkEequ(Nk),

)
(23)

for ε ≤ γi
2γi+1

− γi
2γi−1

, where C(γi−1, γi, γi+1) is a known positive constant. Finally, as Ni :

NK×T → [0, T ], we have the stated result by the combination of (19), and (23).

6 Experiments

In this section we illustrate the performance of CIF-UCB via numerical examples. We work

with a linear intensity function λ(x) = 20 − 20x and exponential filtering probability γ(x) =

exp(−x), both for x ∈ [0, 1]. The plot of Λ(x)γ(x) is shown in Figure 2, with x∗ = 0.586

and Λ(x∗)γ(x∗) = 4.61 (found numerically). In the experiment, we set the Lipschitz constant

m = 20, which equals max0≤x≤1(Λ(x)γ(x))′ (since Λ(x)γ(x) is concave), and λmax = 20.
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Figure 2: Plot of Λ(x)γ(x).

We ran 100 independent sample paths over a time horizon of T = 50000, and computed the

average cumulative regret over the 100 sample paths. The resulting average cumulative regret

is shown in Figure 3, along with the upper regret bound, as determined in Theorem 1.
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Figure 3: Plot of average cumulative regret.

Several observations are in order. First, the dotted curve in Figure 3 doesn’t include the

constant terms (equal to 360 in this case) nor the sub log(t)t2/3 terms that come up in the regret

upper bound derivation (cf. Eq. (7)). Still, we note that the regret growth is plausibly of order

Õ(t2/3).

The second observation concerns the shape of the average cumulative regret. Note that

the cumulative regret appears to be piece-wise convex increasing, such that the regret of each

extra convex piece grows at a slower rate; this observation is even more noticeable on individual

sample paths (not shown). This growth pattern is due to the splitting condition of CIF-UCB,

whereby the algorithm initially samples the best of the two segments that result from a split,

and explores other (typically worse) segments as t gets larger. As t grows, the algorithm exploits

more often, and thus each convex piece grows slower.

The final observation is about the splitting pattern. We include in Table 6 the data frame

for the final round of a sample path in the R implementation, which includes the two endpoints

(x and y), the effective number of samples of each final segment
∑|VT (x,y)|
i=1 γ(bτi), the index

IT (x, y), and the CIF estimator Λ̄T (y) in the rightmost column. The finer spatial grid around

x∗ is appreciable, suggesting that the algorithm gravitates towards the segment that contains

the optimal solution x∗. Note also that the estimates of Λ(x) = 20x−10x2 are very precise (the

largest relative error is .62% for y large, since the segments close to 1 have the fewest number of

effective samples
∑|VT (x,y)|
i=1 γ(bτi)). The index values are similar across the final segments, as is

22



typical with UCB algorithms, and the effective number of samples drops off significantly to the

right of x∗. On the other hand, the effective number of samples to the left of x∗ is large, since

the algorithm needs to cover that space to reach (and exploit) the neighborhood around x∗.

x y
∑|VT (x,y)|
i=1 γ(bτi ) IT (x, y) Λ̄T (y)

0.0000000 0.1250000 24118.996 4.740275 2.348149
0.1250000 0.1875000 24118.996 4.225897 3.398939
0.1875000 0.2500000 24118.996 4.802038 4.370248
0.2500000 0.2812500 24117.438 4.413122 4.827627
0.2812500 0.3125000 24117.438 4.615670 5.263785
0.3125000 0.3437500 24116.707 4.794795 5.689541
0.3437500 0.3750000 24116.707 4.943961 6.093245
0.3750000 0.3906250 24115.332 4.692382 6.282144
0.3906250 0.4062500 24115.332 4.747511 6.466840
0.4062500 0.4218750 24114.666 4.797825 6.648402
0.4218750 0.4375000 24114.666 4.843334 6.826593
0.4375000 0.4531250 24113.375 4.882826 6.999228
0.4531250 0.4687500 24113.375 4.916710 7.166604
0.4687500 0.4843750 24112.749 4.946188 7.330313
0.4843750 0.4921875 24112.749 4.803775 7.411888
0.4921875 0.5000000 24112.749 4.814192 7.488694
0.5000000 0.5078125 23996.902 4.825221 7.566727
0.5078125 0.5156250 23996.902 4.834771 7.643570
0.5156250 0.5234375 23996.304 4.845463 7.723064
0.5234375 0.5312500 23996.304 4.852431 7.796992
0.5312500 0.5390625 23995.129 4.858238 7.869597
0.5390625 0.5468750 23995.129 4.861613 7.938653
0.5468750 0.5546875 23994.550 4.865409 8.009027
0.5546875 0.5625000 23994.550 4.868062 8.078001
0.5625000 0.5703125 23875.465 4.869991 8.145726
0.5703125 0.5781250 23875.465 4.870570 8.212154
0.5781250 0.5859375 23726.253 4.870049 8.276444
0.5859375 0.5937500 23726.253 4.869350 8.341604
0.5937500 0.6015625 23314.273 4.869802 8.407425
0.6015625 0.6093750 23314.273 4.867215 8.470133
0.6093750 0.6171875 21772.366 4.866196 8.528425
0.6171875 0.6250000 21772.366 4.861871 8.588823
0.6250000 0.6328125 20964.657 4.860349 8.650464
0.6328125 0.6406250 20964.657 4.854130 8.708132
0.6406250 0.6484375 18021.041 4.851132 8.753434
0.6484375 0.6562500 18021.041 4.843125 8.808425
0.6562500 0.6640625 16849.088 4.842293 8.868670
0.6640625 0.6718750 16849.088 4.833623 8.923094
0.6718750 0.6796875 14015.447 4.831297 8.963610
0.6796875 0.6875000 14015.447 4.820711 9.014911
0.6875000 0.6953125 11653.144 4.823237 9.062533
0.6953125 0.7031250 11653.144 4.811218 9.111618
0.7031250 0.7187500 7729.984 4.954881 9.151894
0.7187500 0.7343750 6535.462 4.945111 9.240815
0.7343750 0.7500000 6535.462 4.910583 9.319769
0.7500000 0.7656250 6072.071 4.885203 9.399100
0.7656250 0.7812500 6072.071 4.848842 9.474527
0.7812500 0.7968750 5608.286 4.820870 9.546411
0.7968750 0.8125000 5608.286 4.778192 9.607749
0.8125000 0.8281250 4692.391 4.770177 9.693565
0.8281250 0.8437500 4692.391 4.723798 9.746417
0.8437500 0.8593750 3776.720 4.714856 9.810630
0.8593750 0.8750000 3776.720 4.664373 9.853260
0.8750000 0.9062500 2290.606 4.954441 9.899998
0.9062500 0.9375000 1757.278 4.886901 9.906228
0.9375000 0.9687500 1236.443 4.740351 9.937378
0.9687500 1.0000000 1236.443 4.746599 9.954363

Table 1: Summary of main parameters after a sample path

To test the sensitivity of the algorithm to multiple local maximums, we ran a second ex-

periment with parameters identical to those of the first experiment, except for the filtering
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probability γ(·), which now is set to be piece-wise linearly decreasing,

γ(x) =



1, for x ∈ [0, 0.25)

1.5− 2x for x ∈ [0.25, 0.5)

0.5, for x ∈ [0.5, 0.8)

1.3− x for x ∈ [0.8, 1].

This filtering probability leads to a Λ(x)γ(x) objective as in Figure 4, with x∗ = 0.8 and

Λ(x∗)γ(x∗) = 4.8.
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Figure 4: Plot of Λ(x)γ(x).

We tested CIF-UCB over 100 independent sample paths, with a time horizon T = 50000.

This resulted in an average cumulative regret as shown in Figure 5.

Two main observations can be drawn. First, the Õ(T 2/3) upper bound of Theorem 1 holds

over t ∈ {1, . . . , T}. Second, the average cumulative regret is about 10% larger than in the first

experiment for t = T . This can be ascribed to the fact that the optimal value of the objective

function is 4.8 versus 4.61 in the first experiment, and to the extra exploration induced by the

local maximum at x = .33.
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Figure 5: Plot of average cumulative regret.

7 Discussion

This work considers a sequential variant of the problem faced by a decision-maker who attempts

to maximise the detection of events generated by a filtered non-homogeneous Poisson process,

where the filtering probability depends on the segment selected by the decision-maker, and the

Poisson cumulative intensity function is unknown. The independent increment property of the

Poisson process makes the analysis tractable, enabling the use of the machinery developed for

the continuum bandit problem. The problem of efficient exploration/exploitation of a filtered

Poisson process on a continuum arises naturally in settings where observations are made by

searchers (representing cameras, sensors, robotic and human searchers, etc.), and the events

that generate observations tend to disappear (or renege, in a queueing context), before an

observation can be made, as the interval of search increases. Besides extending the state-of-the-

art to such settings, the main contributions are an algorithm for a filtered Poisson process on a

continuum, and regret bounds that are optimal up to a logarithmic factor.
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