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Abstract

In this memoir, we shall study Banach function algebras that have bounded pointwise approx-
imate identities, and especially those that have contractive pointwise approximate identities. A
Banach function algebra A is (pointwise) contractive if A and every non-zero, maximal modular
ideal in A have contractive (pointwise) approximate identities.

Let A be a Banach function algebra with character space ΦA. We shall show that the existence
of a contractive pointwise approximate identity in A depends closely on whether ‖ϕ‖ = 1 for
each ϕ ∈ ΦA. The linear span of ΦA in the dual space A′ is denoted by L(A), and this is
used to define the BSE norm ‖ · ‖BSE on A; the algebra A has a BSE norm if this norm is
equivalent to the given norm. We shall then introduce and study in some detail the quotient
Banach function algebra Q(A) = A′′/L(A)⊥; we shall give various examples, especially uniform
algebras and those involving algebras that are standard in abstract harmonic analysis, including
Segal algebras with respect to the group algebra of a locally compact group.

We shall characterize the Banach function algebras for which L(A) = ` 1(ΦA), and then
classify contractive and pointwise contractive algebras in the class of unital Banach function
algebras that have a BSE norm; they are uniform algebras with specific properties. We shall also
give examples of such algebras that do not have a BSE norm.

Finally we shall discuss when some classical Banach function algebras of harmonic analy-
sis have non-trivial reflexive closed ideals, and make some remarks on weakly compact homo-
morphisms between Banach function algebras.

2000 Mathematics Subject Classification: Primary 46B15; Secondary 46B28, 46B42, 47L10.
Key words and phrases: Banach algebra, Banach function algebra, regular, strongly regular,

Tauberian, uniform algebra, Cole algebra, disc algebra, Gleason part, group algebra, measure
algebra, Fourier algebra, Fourier–Stieltjes algebra, Beurling algebra, Figà-Talamanca–Herz
algebra, Lipschitz algebra, Segal algebra, approximate identity, pointwise contractive approx-
imate identity, contractive algebra, pointwise contractive algebra, separating ball property,
bidual algebra, Arens product, BSE norm, reflexive ideals, weakly compact homomorphisms,
Bochner–Schoenberg–Eberlein theorem, Markov–Kakutani fixed-point theorem, Schauder–
Tychonoff fixed-point theorem.
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1. Introduction

Let A be a Banach function algebra, so that A is a commutative, semi-simple Banach

algebra, with character space ΦA. There are many notions of ‘approximate identity’ asso-

ciated with A and its maximal modular ideals. Here we concentrate on studying bounded

pointwise approximate identities (BPAIs) and contractive pointwise approximate identi-

ties (CPAIs) in A. A net (eα) in a Banach function algebra A is a CPAI if ‖eα‖ ≤ 1 for

each α and limα eα(ϕ) = 1 (ϕ ∈ ΦA); as in [18], a Banach function algebra is defined

to be pointwise contractive if A and all its non-zero, maximal modular ideals have a

CPAI. These nets play an important role in the study of so-called BSE algebras, of the

BSE norm, and the determination of the space L(A) and the algebra A′′/L(A)⊥, where

L(A) = lin ΦA in A′. Here A′′ is the bidual space of a Banach algebra A, taken with the

first Arens product.

In this memoir, we shall characterize in various ways Banach function algebras that

have a CPAI and that are pointwise contractive, and give various properties of Banach

function algebras with a CPAI. In particular, we shall obtain new results about Segal

algebras with respect to a Banach function algebra. We shall also define and study the

quotient algebra Q(A) = A′′/L(A)⊥, showing that it is also always a Banach function

algebra; we shall discuss when this quotient algebra is a uniform algebra.

We shall give various examples of Banach function algebras to illustrate the above

concepts. These will mainly be uniform algebras and algebras that arise in harmonic

analysis, including group algebras, measure algebras, and Segal algebras.

Summary In Chapter 2, we shall recall some definitions and establish our notation; in

particular, we shall define Banach function algebras and recall some of their standard

properties, including regularity and strong regularity; we shall define multipliers on and

the bidual of a Banach function algebra using the Arens products, noting that sometimes

a Banach function algebra is an ideal in its bidual. We shall also define dual Banach

function algebras.

In Chapter 3, we shall give some preliminary results on pointwise contractive Banach

function algebras and, in particular, pointwise contractive uniform algebras. We shall

define an abstract Segal algebra with respect to a given Banach function algebra.

In Chapter 4, we shall define the separating ball property and weak separating ball

property for Banach function algebras, and shall obtain some results, in particular in-

volving strong boundary points and Gleason parts for uniform algebras.

In Chapter 5, we shall introduce the key space L(A) for a Banach function algebra

A, and use it to define the BSE norm on A. The terminology ‘BSE norm’ arises from the
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6 H. G. Dales and A. Ülger

Bochner–Schoenberg–Eberlein theorem, which shows, in particular, that the BSE norm

on a group algebra L1(G) for a locally compact abelian group G is equal to the given

norm. For example, in this chapter, we shall show that a Banach function algebra that

is an ideal in its bidual and has a bounded pointwise approximate identity has a BSE

norm.

The space L(A) will lead us in Chapter 6 to the definition of the Banach space

Q(A) = A′′/L(A)⊥, an apparently new abstract definition; we shall prove that Q(A) is

also a Banach function algebra for every Banach function algebra A. The algebra Q(A)

has an identity if and only if A has a bounded pointwise approximate identity. The

character space ΦA of A is naturally regarded as a subset of the character space ΦQ(A) of

Q(A) (although the embedding of ΦA in ΦQ(A) is rarely continuous). We shall consider

when ΦA, regarded as a subset of ΦQ(A), is open and discrete and when its closure is

compact. We shall see that ΦA is open and discrete when A has the weak separating ball

property; the closure of ΦA in ΦQ(A) is compact if and only if ΦA is weakly closed in A′.

In Chapter 7, we shall give a number of examples of Banach function algebras A, and

we shall determine the corresponding Banach function algebras Q(A) and the character

space ΦQ(A); most of these examples are uniform algebras or are related to well-known

Banach algebras that arise in abstract harmonic analysis. In particular, we shall identify

Q(A) when A is the disc algebra and when A is the group algebra of a locally compact

abelian group.

In Chapter 8, we shall characterize those Banach function algebras that have a con-

tractive pointwise approximate identity, and then use this to prove as a main result the

equality of two Banach function algebras Q(S1) and Q(S2), where S1 and S2 are Segal

algebras with respect to the same Banach function algebra and both have contractive

pointwise approximate identities. This implies that a Segal algebra S with respect to

a group algebra on a locally compact abelian group G such that S has a contractive

pointwise approximate identity has a BSE norm only in the special case that S = L1(G).

In Chapter 9, we shall first prove in Theorem 9.3 a classification theorem for contract-

ive and for pointwise contractive unital Banach function algebras A that have a BSE

norm: these Banach function algebras are equivalent to uniform algebras that have spe-

cific properties. It will be shown in Examples 9.11 and 9.12, respectively, that pointwise

contractive and contractive Banach function algebras do not necessarily have a BSE norm

and may not be equivalent to a uniform algebra.

We shall also in Chapter 9 compare, for a Banach function algebra A, the two Banach

spaces (L(A), ‖ · ‖) and (` 1(ΦA), ‖ · ‖1), and consider when these spaces are isomorphic or

isometrically isomorphic. For example, in Theorem 9.8, we shall show that the canonical

linear map ι : ` 1(ΦA) → L(A) is an isometric surjection if and only if A is pointwise

contractive and its BSE norm is equal to the uniform norm. We shall address the question

whenQ(A) is a uniform algebra. In Theorem 9.10(i), we shall show thatQ(A) is a uniform

algebra whenever it is the case that the above canonical linear map is an isometric

surjection; the converse holds whenever A is dense in the space (C 0(ΦA), | · |ΦA
), but the

disc algebra will show that the converse is not true in general. Further, Example 9.11 will

show that, for a certain Segal algebra M with respect to C0((0, 1]), the algebra Q(M) is
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a uniform algebra, but M is not itself a uniform algebra.

In Chapter 10, we shall show that, for each Banach function algebra A that has a

contractive pointwise approximate identity and whose norm is equal to its BSE norm,

the multiplier algebra of A embeds isometrically into the unital Banach function algebra

Q(A). This result extends a known theorem in which it is supposed that the algebra A

has a contractive approximate identity.

In Chapter 11, we shall use the earlier results to consider when certain Banach function

algebras contain non-trivial closed ideals that are reflexive Banach spaces, and consider

when there are non-trivial weakly compact homomorphisms between two Banach function

algebras.

We shall conclude with a list of some questions that we cannot resolve.

Acknowledgements The first author is grateful to the second author and Boğaziçi

University for generous hospitality on several occasions.

We are very grateful indeed to the referee for a very careful reading of the first and

second submissions of this manuscript, and for many valuable comments that led to

corrections and improvements of some initial theorems.
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2. Notation and terminology

We shall now recall some definitions and notations that we shall use in this memoir; in

general, we shall follow the notation of the monograph [12] and our earlier paper [18].

The natural numbers and integers are N = {1, 2, 3, . . . } and Z, respectively; the

complex plane is denoted by C; the open unit disc in C is denoted by

D = {z ∈ C : |z| < 1},

and the unit circle is T = {z ∈ C : |z| = 1}. The closed unit interval [0, 1] in the real line

R is denoted by I. For n ∈ N, set Nn = {1, 2, . . . , n}. The cardinality of a set S is denoted

by |S|.
All linear spaces are taken to be over C unless stated otherwise. Let E be a linear

space, with a non-empty subset S. Then the linear span of S is linS and the convex hull

in E of S is denoted by coS.

Let E be a normed space. Then we denote the Banach space which is the dual space

of E by E′, with the duality specified by

(x, λ) 7→ 〈x, λ〉 , E × E′ → C ;

sometimes this duality is written as 〈 · , · 〉E,E′ . The second dual space, or bidual space,

of E is E′′ = (E′)′, and we regard E as a subspace of E′′; the canonical embedding is

κE : E → E′′, where

〈κE(x), λ〉 = 〈x, λ〉 (x ∈ E, λ ∈ E′) .

The closed ball in E that is centred at 0 and of radius r ≥ 0 is E[r]; the weak topology

on E is σ(E,E′) and the weak-∗ topology on E′ is σ(E′, E). Thus the closed ball E′[r] is

weak-∗ compact and E[r] is weak-∗ dense in E′′[r] for each r ≥ 0.

Suppose that ‖ · ‖1 and ‖ · ‖2 are two norms on a linear space E. Then we say that

‖ · ‖1 � ‖ · ‖2 if there is a constant C > such that ‖x‖1 ≤ C ‖x‖2 (x ∈ E), and

‖ · ‖1 ∼ ‖ · ‖2
when the two norms are equivalent, so that ‖ · ‖1 � ‖ · ‖2 and ‖ · ‖2 � ‖ · ‖1.

Let E and F be two Banach spaces. The Banach space of all bounded linear operators

from E to F is denoted by

(B(E,F ), ‖ · ‖op) ,

with B(E) for B(E,E). Let T ∈ B(E,F ). Then T ′ ∈ B(F ′, E′) and T ′′ ∈ B(E′′, F ′′) are

the adjoint and the second adjoint of T , respectively; certainly, we have

‖T‖op = ‖T ′‖op = ‖T ′′‖op .

The two spaces E and F are isomorphic if there is an operator T ∈ B(E,F ) that is

bijective, and we then write

E ∼ F ;

the spaces are isometrically isomorphic if there is an isometry T ∈ B(E,F ) that is

bijective, and we then write

E ∼= F .
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Let E be a Banach space with a closed linear subspace F . Then the quotient space

E/F is a Banach space with respect to the quotient norm. The annihilator in E′ of a

non-empty subset S of E is

S⊥ = {λ ∈ E′ : λ | S = 0} ,

so that S⊥ is a weak-∗ closed linear subspace of E′ and E′/S⊥ ∼= F ′, where F is the

closed linear span of S. For each closed linear subspace F of E, we have∥∥λ+ F⊥
∥∥ = inf{‖λ+ µ‖ : µ ∈ F⊥} = sup

{
|〈ζ, λ〉| : ζ ∈ F[1]

}
(2.1)

for each λ ∈ E′; further, we always have (E/F )′ ∼= F⊥. Indeed, λ ∈ F⊥ acts on E/F by

setting

〈x+ F, λ〉 = 〈x, λ〉 (x ∈ E) . (2.2)

The space F ′′ is identified with the space (F⊥)⊥.

A closed subspace F of a Banach space E is complemented in E if there is a closed

subspace G of E such that E = F ⊕ G, or, equivalently, such that there is a projection

P ∈ B(E) with P (E) = F . We shall later consider Banach spaces that are complemented

in their biduals. For example, suppose that E is isomorphically a dual Banach space, so

that E ∼ F ′ for a Banach space F . Then the dual of the canonical embedding of F into

F ′′ is a bounded projection

P : Λ 7→ Λ | κF (F ), E′′ → E ,

such that ‖P : F ′′′ → F ′‖op = 1 (this is the Dixmier projection), and so we can regard F

as a closed subspace of E′ and write

E′′ = κE(E)⊕ F⊥ = E ⊕ F⊥ (2.3)

as a Banach space; this shows that E is complemented in its bidual.

All algebras considered here are linear (over C) and associative. The centre and char-

acter space of an algebra A are denoted by Z(A) and ΦA, respectively; the maximal

modular ideal that is the kernel of a character ϕ is denoted by Mϕ. An idempotent in A

is an element p ∈ A such that p2 = p. Let B be a subalgebra and I an ideal of A such

that A = B ⊕ I as linear spaces. Then A is the semi-direct product of B and I, and we

write

A = B n I .

The algebra formed by adjoining an identity to a non-unital algebra A is denoted by A];

in the case where A already has an identity, we set A] = A.

Let A be a Banach algebra. Each character ϕ on A is continuous, with ‖ϕ‖ ≤ 1, and

ΦA is a locally compact subspace of the dual space A′ of A (when A′ has the weak-∗
topology); in fact, ΦA∪{0} is always a weak-∗-compact subset of A′[1], and ΦA is compact

when A has an identity.

Let I be a closed ideal in a Banach algebra A, with quotient map q : A→ A/I. Then

the identification of ϕ ∈ ΦA/I with ϕ ◦ q ∈ ΦA gives a homeomorphism that identifies

ΦA/I as a closed subset of ΦA ∪ {0}.
A multiplier of a commutative algebra A is a linear map T : A→ A such that

T (ab) = aT (b) = T (a)b (a, b ∈ A) .
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The collection of all the multipliers on A is a unital, commutative subalgebra of the

algebra of all linear maps on A; it is called the multiplier algebra of A, and it is denoted

byM(A). For a study of multipliers on general (non-commutative) Banach algebras, see

the texts [12, 41, 42, 44], for example.

We denote by (C b(K), | · |K) the commutative Banach algebra of all bounded, contin-

uous functions on a non-empty, locally compact space K (always taken to be Hausdorff),

where | · |K is the uniform norm on K. The function that is constantly 1 on K is 1K ,

so that 1K is the identity of C b(K). We denote by C 0(K) the algebra of all continuous

functions that vanish at infinity on K (with C(K) for C 0(K) when K is compact), so

that C 0(K) is a closed ideal in C b(K). The ideal in C 0(K) consisting of the functions of

compact support is C 00(K), so that C 00(K) is uniformly dense in C 0(K).

Let S be a non-empty set, and let E be a subset of CS . The weakest topology τ on S

such that each f ∈ E is continuous with respect to τ is the E-topology on S; it is denoted

by τE .

Definition 2.1. Let K be a non-empty, locally compact space. A function algebra on

K is a non-zero subalgebra A of C b(K) that separates strongly the points of K, in the

sense that, for each x, y ∈ K with x 6= y, there exists f ∈ A with f(x) = 0 and f(y) = 1,

and is such that the given topology on K is τA.

In the case where A is a subalgebra of C 0(K) that separates strongly the points of K,

the topology τA is necessarily equal to the given topology on K [12, Proposition 4.1.2].

Definition 2.2. Let K be a non-empty, locally compact space. A Banach function al-

gebra on K is a function algebra A on K that is also a Banach algebra with respect to

a norm ‖ · ‖. In the case where 1K ∈ A and ‖1K‖ = 1, the algebra A is a unital Banach

function algebra on K.

Let (A, ‖ · ‖A) and (B, ‖ · ‖B) be Banach function algebras on the same locally compact

space K. Then we write write A = B to show that A and B consist of the same functions

on K; in this case, ‖ · ‖A ∼ ‖ · ‖B . We write ((A, ‖ · ‖A) = (B, ‖ · ‖B) to show that, further,

the norms ‖ · ‖A and ‖ · ‖B are equal on the algebra, so that A ∼= B as Banach spaces.

Each Banach function algebra A on a locally compact space is a commutative, semi-

simple Banach algebra and ‖f‖ ≥ |f |K (f ∈ A). Further, A is algebraically isomorphic

by the Gel’fand transform to a Banach function algebra on ΦA that is contained in

C 0(ΦA), and we shall usually identify A with its image by this transform. The space ΦA
is compact if and only if A has an identity. See [12, 18], etc.

Let A be a Banach function algebra. A subset Ω of ΦA is determining for A if f = 0

whenever f ∈ A and f | Ω = 0.

Definition 2.3. A Banach function algebra (A, ‖ · ‖) on a non-empty, locally compact

space K is a uniform algebra if ‖f‖ = |f |K (f ∈ A), and A is equivalent to a uniform

algebra on K if there is a constant C > 0 such that ‖f‖ ≤ C |f |K (f ∈ A), so that

‖ · ‖ ∼ | · |K .

Thus C b(K) is a unital uniform algebra on K, and C0(K) is a uniform algebra on K.

The Gel’fand transform of a uniform algebra A is a uniform algebra on ΦA.
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The classic texts on uniform algebras include those of Browder [7], Gamelin [31],

and Stout [51]. Note that, in these texts, a uniform algebra is, by definition, a closed

subalgebra A of C(K) for a (non-empty) compact space K such that A contains the

constant functions and separates the points of K, so our definition is somewhat more

general.

Let A be a Banach function algebra on a non-empty, locally compact space K. The

evaluation character at x ∈ K is the map

εx : f 7→ f(x) , A→ C . (2.4)

The map x 7→ εx, K → ΦA, is a homeomorphic embedding, and we regard K as a

subspace of ΦA. The algebra A is natural if K = ΦA. For x ∈ K, we write Mx for the

corresponding maximal modular ideal of A that is the kernel of the character εx, and, for

convenience, we also set M∞ = A. In the case where |K| ≥ 2, the ideal Mx is a Banach

function algebra on K \ {x} for each x ∈ K.

Let M be a uniform algebra, and suppose that M does not have an identity, so that

ΦM is not compact. Set K = ΦM ∪ {∞}, the one-point compactification of ΦM , and

regard M as a subalgebra of C(K) by setting f(∞) = 0 (f ∈ M). We identify A = M ]

with {z1K + f : z ∈ C, f ∈ A}, and define

‖z1K + f‖ = |z1K + f |K (z ∈ C, f ∈M) ,

so that A is a natural, unital uniform algebra on K and A contains M as a maximal

ideal.

The Banach space of all complex-valued, regular Borel measures on a locally compact

space K with the total variation norm is M(K), identified with the dual space, C 0(K)′,

of C 0(K) by the Riesz representation theorem. A particular closed subspace of M(K) is

` 1(K), identified with{
µ =

∑
x∈K

αxδx ∈M(K) : ‖µ‖ =
∑
x∈K
|αx| <∞

}
,

where δx is the point mass at x and αx ∈ C for x ∈ K.

Let K be a non-empty, locally compact space. Then f(x) = f(x) (x ∈ K) for

f ∈ C b(K). A natural Banach function algebra (A, ‖ · ‖) on K is self-adjoint if f ∈ A

and
∥∥f∥∥ = ‖f‖ for each f ∈ A, so that the map f 7→ f is an isometric involution on A.

Of course, every self-adjoint Banach function algebra on K is dense in (C 0(K), | · |K).

Let (A, ‖ · ‖) be a Banach function algebra, with multiplier algebraM(A). We regard

M(A) as a subalgebra of C b(ΦA) by setting

M(A) = {f ∈ C b(ΦA) : fA ⊂ A} ,

so that (M(A), ‖ · ‖op) is a unital Banach function algebra on ΦA, and we regard A as an

ideal in M(A) by identifying a function f ∈ A with the multiplier Lf : g 7→ fg, A→ A,

in M(A). Clearly we have

|f |ΦA
≤ ‖f‖op ≤ ‖f‖ (f ∈ A) . (2.5)

Let A be a Banach function algebra on a non-empty, locally compact space K. A

non-empty, closed subset S of K is a peak set for A if there is a function f ∈ A with
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f(x) = 1 (x ∈ S) and |f(y)| < 1 (y ∈ K \ S). A point x ∈ K is a peak point if {x} is a

peak set and a strong boundary point if, for each open neighbourhood U of x, there exists

f ∈ A with f(x) = |f |K = 1 and |f |K\U < 1. In the case where X is metrizable, every

strong boundary point for A is a peak point.

Let K be a non-empty, compact subspace of Cn, where n ∈ N. The coordinate pro-

jections on K are denoted by Z1, . . . , Zn. Consider the algebra of restrictions to K of

all polynomials; the uniform closure in C(K) of this algebra is denoted by P (K). The

uniform closure of the restrictions to K of the rational functions that are analytic on

a neighbourhood of K is denoted by R(K), and the space consisting of all functions in

C(K) that are analytic on intK, the interior of K, is denoted by A(K). Thus P (K),

R(K), and A(K) are unital uniform algebras on K with

P (K) ⊂ R(K) ⊂ A(K) ⊂ C(K) .

In particular, we shall mention the disc algebra, defined to be P (D) = A(D); A(D) is a

natural uniform algebra on D.

A Banach function algebra A on a locally compact space K is regular on K if, for

each non-empty, closed subspace S of K and each x ∈ K \ S, there exists f ∈ A with

f(x) = 1 and f | S = 0; a Banach function algebra A is regular if it is regular on ΦA. For

x ∈ K ∪ {∞}, we set

Jx = Jx(A) = {f ∈ A ∩ C 00(K) : x 6∈ supp f} ,

so that Jx is also an ideal in A, with Jx ⊂Mx. Here, supp f , the support of f ∈ A, is the

closure in K of the set {x ∈ K : f(x) 6= 0}. The Banach function algebra A is strongly

regular at x if Jx is dense in Mx, and A is strongly regular on K if this holds for each

x ∈ K ∪ {∞}. Every strongly regular Banach function algebra is natural and regular.

The algebra A is Tauberian if J∞(A) is dense in A, and so a strongly regular Banach

function algebra is Tauberian. For proofs of these remarks and more, related properties

of Banach function algebras, see [12, §4.1].

Let A be a Banach function algebra, and suppose that I is a closed ideal in A. The

hull of I is the closed subset

h(I) = {ϕ ∈ ΦA : ϕ(f) = 0 (f ∈ I)}

of ΦA. We can identify ΦI with ΦA \ h(I) and ΦA/I with h(I). For a closed subset S of

ΦA, set

I(S) = {f ∈ A : f | S = 0} ,

so that I(S) is a closed ideal in A, and also set

J(S) = {f ∈ J∞ : supp f ∩ S = ∅} ,

an ideal in A. When A is a regular Banach function algebra, h(I(S)) = S and

J(S) ⊂ I ⊂ I(S) , where S = h(I) , (2.6)

for each closed ideal I in A. The set S is a set of synthesis if J(S) = I(S).

A Banach sequence algebra on a non-empty set S is a Banach function algebra A

on S (taken with the discrete topology) such that c 00(S) ⊂ A ⊂ `∞(S), where c 00(S)

denotes the algebra of functions of finite support on S and `∞(S) is the algebra of all
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bounded functions on S. A natural Banach sequence algebra on S is contained in c 0(S).

For Banach sequence algebras, J∞(A) = c 00(S), and so a Banach sequence algebra is

Tauberian if and only if c 00(S) is dense in A. A Tauberian Banach sequence algebra is

natural, a natural Banach sequence algebra is always regular, and it is strongly regular

if and only if it is Tauberian. For example, the space ` p of all p–summable sequences on

N is a Tauberian Banach sequence algebra whenever 1 ≤ p <∞.

Let A be a Banach algebra. Then the dual and bidual spaces A′ and A′′ are Banach A-

bimodules for operations denoted by · . There are two products, 2 and 3, on the Banach

space A′′, called the first and second Arens products, that extend the module actions on

A′′. We recall the definition of the product 2. Let a ∈ A , λ ∈ A′, and M ∈ A′′. Then

a · λ ∈ A′ and λ · M ∈ A′ are defined by

〈b, a · λ〉 = 〈ba, λ〉 (b ∈ A) , 〈a, λ · M〉 = 〈M, a · λ〉 (a ∈ A) ,

and then, for M,N ∈ A′′, we define M2N ∈ A′′ by

〈M2N, λ〉 = 〈M, N · λ〉 (λ ∈ A′) .

The basic theorem of Arens is that κA : A → A′′ is an isometric algebra mono-

morphism of a Banach algebra A into both (A′′, 2 ) and (A′′, 3 ). The algebra A is

Arens regular if the two products 2 and 3 agree on A′′.

For detailed terminology and a full definition of the two Arens products, see [12, §2.6].

Let A be a Banach algebra. We shall usually identify A with κA(A) and write just

A′′ for (A′′, 2 ). For each N ∈ A′′, the map

RN : M 7→ M2N , A′′ → A′′ ,

is always weak-∗ continuous on A′′, and the map La : M 7→ a · M, A′′ → A′′, is weak-∗
continuous for each a ∈ A. The algebra A is Arens regular if and only if the map

LN : M 7→ N2M , A′′ → A′′ ,

is also weak-∗ continuous for each N ∈ A′′. ( For certain ‘strongly Arens irregular’ Ba-

nach function algebras, including the group algebra of a locally compact group, the map

LN : M 7→ N2M, A′′ → A′′, is continuous only when N ∈ A; see [16, 17].)

Let A be a commutative Banach algebra. We see that

M · ϕ = ϕ · M = 〈M, ϕ〉ϕ (M ∈ A′′, ϕ ∈ ΦA) , (2.7)

and so

〈M2N, ϕ〉 = 〈M, ϕ〉 〈N, ϕ〉 (M,N ∈ A′′, ϕ ∈ ΦA) . (2.8)

For each ϕ ∈ ΦA, define ϕ̃ on A′′ by setting ϕ̃(M) = 〈M, ϕ〉 (M ∈ A′′). Then it follows

from (2.8) that ϕ̃ ∈ ΦA′′ , and so we shall regard ΦA as a subset of ΦA′′ via the embedding

ϕ 7→ ϕ̃. However the embedding of ΦA into ΦA′′ is not necessarily continuous; this occurs

if and only if the weak and weak-∗ topologies of A′ coincide when restricted to ΦA. There

is a natural projection

πA : ϕ→ ϕ | κA(A) , ΦA′′ → ΦA ∪ {0} .

A commutative Banach algebra A is Arens regular if and only if (A′′,2) is commuta-

tive, i.e., if and only if Z(A′′) = A′′. For example, for each locally compact space K, the
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algebra C 0(K) is Arens regular, and the bidual C 0(K)′′ is identified with C(K̃), where

K̃ is the compact space which is the hyper-Stonean envelope of the locally compact space

K; see [13] for a discussion and several ‘constructions’ of K̃. Since closed subalgebras

(and quotients) of Arens regular Banach algebras are Arens regular, it follows that every

uniform algebra A is Arens regular, and A′′ is a closed subalgebra of C(K̃) (although it

may not separate the points of K̃). Thus A′′ is a uniform algebra on ΦA′′ .

A Banach function algebra A is an ideal in its bidual if κA(A) is an ideal in (A′′, 2 ).

This is the case if and only if the map

Lf : g 7→ fg, A→ A ,

is weakly compact for each f ∈ A. Let A be a Tauberian Banach sequence algebra. Then

it is easy to see that A is an ideal in its bidual [18, Proposition 2.8].

For the next definition, we follow the new book of V. Runde [49, Chapter 5], where

references to earlier work are given.

Let A be a Banach algebra, with dual module A′, and take a closed subspace F of

A′. Then there is a canonical operator θ : a 7→ κA(a) | F, A→ F ′, so that

θ(a)(λ) = 〈a, λ〉 (a ∈ A, λ ∈ F ) .

Clearly θ is a contraction, and θ is a module homomorphism when F is a submodule

of A′. A predual for A is a closed submodule F of A′ such that the above map θ is an

isomorphism. The algebra A is a dual Banach algebra if it has a predual; A is an isometric

dual Banach algebra if the map θ is an isometry. A predual for A is unique if it is the

only closed submodule of A′ with respect to which A is a dual Banach algebra.

We note that a predual of a Banach algebra is not necessarily unique. For example,

let E be any non-zero Banach space, so that E is a Banach algebra for the zero product.

Then any Banach space F such that F ′ = E, regarded as a closed subspace of F ′′ = E′ is

a predual for E, so that E is a dual Banach algebra. Certainly the Banach space ` 1 has

many Banach-space preduals no two of which are mutually isomorphic as Banach spaces.

Thus, strictly, we should refer to a pair (A,F ) when discussing dual Banach algebras.

However, when the predual is clear from the context, as will almost always be the case

in this memoir, we shall not indicate F in the notation, and just say that ‘A is a dual

Banach algebra’. A dual Banach function algebra is a Banach function algebra that is a

dual Banach algebra.

For example, let G be a locally compact group. Then it is standard that the measure

algebra (M(G), ? , ‖ · ‖) on G is a dual Banach algebra with predual C 0(G); for details,

see [49, Example 5.1.3]. The uniqueness of preduals for various examples, including M(G)

and some semigroup algebras, is explored in the papers [20, 21]. A C∗-algebra is a dual

Banach algebra if and only if it is a von Neumann algebra.

Let A be a Banach algebra that is a dual Banach algebra with predual F . Then it is

clear that the product in A is separately σ(A,F )-continuous. On the other hand, as in

[49], a Banach space F that is an isomorphic predual of A and such that the product in

A is separately σ(A,F )-continuous is a predual of A in a natural way.

Let (A,F ) be a dual Banach algebra. Then it follows that

A′′ = κA(A)⊕ F⊥ = A⊕ F⊥ (2.9)
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as a Banach space, where the projection P : A′′ → A is the restriction map given by

P (M) = M | F (M ∈ A′′), and hence F⊥ is a weak-∗-closed ideal in A′′, and

A′′ = An F⊥ (2.10)

as an algebra.

Let A be a Banach algebra. Then it is immediate from the definition that A′′ is a dual

Banach algebra, with Banach-algebra predual A′, if and only if A is Arens regular. In

particular, in the case where A is a uniform algebra, the bidual A′′ is a uniform algebra

on ΦA′′ that is a dual Banach function algebra.

We shall several times use the following famous Markov–Kakutani fixed-point theorem;

see [23, V.10.6] or [45, Proposition (0.14)] for classical proofs.

Theorem 2.4. Let L be a non-empty, compact, convex set in a locally convex space.

Suppose that F is a commuting family of continuous, affine maps from L to L. Then the

operators in F have a common fixed point in L.

We shall also use the Schauder–Tychonoff fixed-point theorem [23, V.10.5].

Theorem 2.5. Let K be a non-empty, compact, convex set in a locally convex space.

Then every continuous function from K to K has a fixed point.
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3. Approximate identities

We shall recall the definitions of various types of approximate identities that we shall

consider in a commutative Banach algebra, and give some preliminary results.

Definition 3.1. Let A be a commutative Banach algebra. A net (eα) in A is an approx-

imate identity if limα eαa = a (a ∈ A); it is a bounded approximate identity (BAI) if,

further, supα ‖eα‖ <∞, and in this case the bound is supα ‖eα‖. A BAI is a contractive

approximate identity (CAI) if the bound is 1.

The following result is immediate.

Proposition 3.2. Let A be a Banach function algebra with a bounded approximate iden-

tity of bound m. Then

‖f‖op ≤ ‖f‖ ≤ m ‖f‖op (f ∈ A) ,

and so ‖ · ‖ and ‖ · ‖op are equivalent on A.

Definition 3.3. Let (A, ‖ · ‖A) be a Banach function algebra. A Banach function algebra

(S, ‖ · ‖S) on ΦA is a Segal algebra (with respect to A) if S is an ideal in A and if there

is a net in S that is an approximate identity for both (A, ‖ · ‖A) and (S, ‖ · ‖S).

Thus, in this situation, S is dense in A; the Banach function algebra S is natural on

ΦA, and we may, and shall, suppose that

‖f‖A ≤ ‖f‖S (f ∈ S) and ‖fg‖S ≤ ‖f‖A ‖g‖S (f ∈ A, g ∈ S) .

This shows that a Segal algebra is a Banach A-module in the sense of [12, p. 239].

Examples of Segal algebras will be given later. For more information on Segal algebras,

see [12, pp. 409–410, 491–492].

The following two definitions were essentially given as [18, Definitions 2.3 and 2.11].

Definition 3.4. Let A be a Banach function algebra. Then A is contractive if A and

each of its non-zero, maximal modular ideals have a contractive approximate identity.

For example, for any non-empty, locally compact spaceK, the Banach function algebra

C 0(K) is contractive. Note that C 0(K) = C when |K| = 1.

Definition 3.5. Let A be a Banach function algebra. A net (eα) in A is a pointwise

approximate identity (PAI) if

lim
α
eα(ϕ) = 1 (ϕ ∈ ΦA) ;

the pointwise approximate identity (eα) is bounded , with bound m > 0, if

sup
α
‖eα‖ = m,

and then (eα) is a bounded pointwise approximate identity (BPAI); a bounded pointwise

approximate identity of bound 1 is a contractive pointwise approximate identity (CPAI).

The algebra A is pointwise contractive if A and each of its non-zero, maximal modular

ideals have a contractive pointwise approximate identity.
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We note that, despite the use of the term ‘approximate identity’ in the above def-

inition, a bounded pointwise approximate identity need not be an approximate identity

in the sense of Definition 3.1.

Thus a Banach function algebra (A, ‖ · ‖) with |ΦA| ≥ 2 is pointwise contractive if

and only if, for each ϕ ∈ ΦA ∪ {∞}, each non-empty, finite subset F of ΦA with ϕ 6∈ F ,

and each ε > 0, there exists f ∈ Mϕ with ‖f‖ < 1 + ε and |1− f(ψ)| < ε (ψ ∈ F ), and

this holds if and only if, for each ϕ ∈ ΦA ∪{∞}, there exists M ∈M ′′ϕ such that ‖M‖ = 1

and 〈M, ψ〉 = 1 (ψ ∈ ΦA \ {ϕ}).
Examples of Banach function algebras with contractive pointwise approximate iden-

tities, but no approximate identities, were first given by Jones and Lahr in [37]; further

examples are given in [18] and [35]. We shall note in Example 7.7 that there are natural,

unital uniform algebras A on a compact space with maximal ideals M such that M has a

contractive pointwise approximate identity, but such that M has no approximate identity.

The following is clear.

Proposition 3.6. Let A be a Banach function algebra, and take ϕ ∈ ΦA such that Mϕ is

non-zero. Suppose that A and Mϕ have bounded pointwise approximate identities. Then

there exists an element M ∈ A′′ such that 〈M, ϕ〉 = 1 and 〈M, ψ〉 = 0 (ψ ∈ ΦA \ {ϕ}).

Proposition 3.7. Let A be a Banach function algebra that is an ideal in its bidual, and

suppose that A has a bounded pointwise approximate identity. Then A has a bounded

approximate identity with the same bound.

Proof. This is [18, Proposition 3.1].

Proposition 3.8. Let A be a pointwise contractive Banach function algebra.

(i) Take F and G to be disjoint, non-empty, finite subsets of ΦA, and take ε > 0. Then

there exists f ∈ A[1] such that |1− f(ϕ)| < ε (ϕ ∈ F ) and such that f(ψ) = 0 (ψ ∈ G).

(ii) Let ϕ1, . . . , ϕn be distinct points in ΦA, take α1, . . . , αn ∈ D, and take ε > 0. Then

there exists f ∈ A[4] such that |f(ϕi)− αi| < ε (i ∈ Nn).

Proof. (i) Set k = |G|, and choose η ∈ (0, ε/k). For each ψ ∈ G, there exists fψ ∈ A[1]

with fψ(ψ) = 0 and |1− fψ(ϕ)| < η (ϕ ∈ F ). Now define

f =
∏
{fψ : ψ ∈ G} .

Then clearly f ∈ A[1] and f(ψ) = 0 (ψ ∈ G). For each ϕ ∈ F , we have

|1− f(ϕ)| ≤
∑
{|1− fψ(ϕ)| : ψ ∈ G} < kη < ε ,

as required.

(ii) First suppose that α1, . . . , αn ∈ [0, 1], say 0 ≤ α1 ≤ · · · ≤ αn ≤ 1, and set

α0 = 0. By (i), for each j ∈ Nn, there exists fj ∈ A with ‖fj‖ ≤ αj − αj−1, with

fj(ϕi) = 0 (i = 1, . . . , j − 1), and with

|fj(ϕi)− (αj − αj−1)| < ε

4n
(i = j, . . . , n) .

Define f = f1 + · · ·+ fn. Then f ∈ A[1] and |f(ϕi)− αi| < ε/4 (i ∈ Nn).
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Now consider the general case, where α1, . . . , αn ∈ D. For j ∈ Nn, there exist

α1,j , α2,j , α3,j , α4,j ∈ [0, 1] such that

αj = α1,j − α2,j + i(α3,j − α4,j) .

For each i = 1, 2, 3, 4, choose fi ∈ A[1] with |fi(xj)− αi,j | < ε/4 (j ∈ Nn), and then set

f = f1 − f2 + i(f3 − f4), so that f ∈ A[4]. Clearly we have |f(ϕj)− αj | < ε (j ∈ Nn), as

required.

Lemma 3.9. Fix ε > 0 and ζ0 ∈ T. Then there exist δ > 0 and h ∈ A(D)[1] with

|h(0)− ζ0| < ε and |h(z)− 1| < ε whenever z ∈ D with |z − 1| < δ.

Proof. Take r ∈ (1− ε, 1), and set

h(z) =

(
1− rζ
1− rζ

)
·
(
z − rζ
1− rζz

)
(z ∈ D) ,

where ζ ∈ T is to be specified. Then h ∈ A(D)[1]. Since h(1) = 1, clearly there exists

δ > 0 such that |h(z)− 1| < ε whenever z ∈ D is such that |z − 1| < δ. We see that

h(0)/r = (r − ζ)/(1− rζ). Since the map

ζ 7→ (r − ζ)/(1− rζ) , T→ T,

is a continuous surjection, there is a choice of ζ ∈ T such that h(0) = rζ0, and this implies

that |h(0)− ζ0| = 1− r < ε, as required.

We shall now show that, in the case where A is a uniform algebra, we can reduce the

bound ‘4’ that occurs in Proposition 3.8(ii) to ‘1’.

Proposition 3.10. Let A be a pointwise contractive, unital uniform algebra. Take ε > 0,

n ∈ N, ϕ1, . . . , ϕn to be distinct points in ΦA, and ζ1, . . . , ζn ∈ T. Then there exists

f ∈ A[1] with

|f(ϕj)− ζj | < ε (j ∈ Nn) .

Proof. We have shown in Lemma 3.9 that there are δ1 > 0 and h1 ∈ A(D)[1] with

|h1(0)− ζ1| < ε/n and |h1(z)− 1| < ε/n whenever z ∈ D with |z − 1| < δ1. By Prop-

osition 3.8(i), there is g1 ∈ A[1] with g1(ϕ1) = 0 and |g(ϕj)− 1| < δ1 (j = 2, . . . , n). Set

f1 = h1 ◦ g1, so that f1 ∈ A[1]. Then |f1(ϕ1)− ζ1| < ε/n and |f1(ϕj)− 1| < ε/n for

j = 2, . . . , n.

Similarly, there exist functions f1, . . . , fn ∈ A[1] such that |fj(ϕj)− ζj | < ε/n and

|fi(ϕj)− 1| < ε/n for i, j ∈ Nn with i 6= j.

Set f = f1 · · · fn, so that f ∈ A[1] and

|f(ϕj)− ζj | ≤ |fj(ϕj)− ζj |+
n∑

i=1,i6=j

|fi(ϕj)− 1| < n · (ε/n) = ε

for each j ∈ Nn, as required.
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4. The separating ball property

In this section, we shall introduce the separating ball property for Banach function alge-

bras. The notion originates in the paper [57]. We shall also introduce a related notion by

defining when a Banach function algebra ‘has norm-one characters’.

Definition 4.1. Let A be a Banach function algebra, and take ϕ ∈ ΦA. Then A has the

separating ball property at ϕ if, given ψ ∈ ΦA ∪ {∞} with ψ 6= ϕ, there is f ∈ (Mψ)[1]

with f(ϕ) = 1. The algebra A has the separating ball property if it has the separating

ball property at each ϕ ∈ ΦA.

Many Banach function algebras that arise in the theory of harmonic analysis have the

separating ball property. For example, the Fourier algebra A(Γ) has the separating ball

property for each locally compact group Γ [57, Proposition 2.5] (see also Example 11.3(ii)),

but it has a bounded pointwise approximate identity if and only if Γ is amenable [8]. The

Banach sequence algebras ` p for 1 ≤ p < ∞ also have the separating ball property, but

no bounded pointwise approximate identity.

Note that, for each non-empty, locally compact space K, the algebra C 0(K) has

the separating ball property; in particular, the one-dimensional algebra (C, | · |) has the

separating ball property.

Proposition 4.2. Let A be a Banach function algebra, and take ϕ ∈ ΦA. Suppose that

A has the separating ball property at ϕ. Then ϕ is a strong boundary point for A.

Proof. There exists f0 ∈ A[1] with f0(ϕ) = 1. Set L = {ψ ∈ ΦA : |f0(ψ)| ≥ 1/2}, so that

L is a compact subset of ΦA.

Take an open neighbourhood U of ϕ in ΦA. For each ψ ∈ L \ U , there exists

fψ ∈ (Mψ)[1] with fψ(ϕ) = 1, and then there is a neighbourhood Uψ of ψ such that

|fψ(x)| < 1/2 (x ∈ Uψ). Since L \ U is compact, there are n ∈ N and ψ1, . . . , ψn ∈ L \ U
such that ⋃

{Uψi
: i ∈ Nn} ⊃ ΦA \ U .

Set f = f0fψ1
· · · fψn

, so that f ∈ A[1], f(ϕ) = 1, and |f(ψ)| < 1/2 (ψ ∈ ΦA \ U). This

shows that ϕ is a strong boundary point for A.

We shall see in Theorem 4.12 that the converse of the above proposition holds for

certain uniform algebras, but it does not hold for arbitrary Banach function algebras.

The first main result of this section is an extension of [57, Lemma 5.1].

Theorem 4.3. Let A be a Banach function algebra.

(i) Take ϕ ∈ ΦA, and suppose that A has the separating ball property at ϕ. Then there

is an idempotent Eϕ ∈ A′′[1] with 〈Eϕ, ϕ〉 = 1 and 〈Eϕ, ψ〉 = 0 (ψ ∈ ΦA \ {ϕ}).
(ii) Suppose that A has the separating ball property. Then the space ΦA is discrete

with respect to the relative weak topology, σ(A′, A′′).

Proof. (i) Define the set

S = {f ∈ A[1] : f(ϕ) = 1} .
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Since A has the separating ball property at ϕ, the set S is not empty, and it is clearly a

convex subset of the space A. Consider S as a subset of A′′[1], and take L to be its weak-∗
closure in A′′. Then L is a non-empty, compact, convex set in the locally convex space

(A′′, σ(A′′, A′)). For each f ∈ S, the map

Tf : M 7→ f · M , A′′ → A′′ ,

is linear, and so Tf | L is affine, and Tf is continuous with respect to the weak-∗ topology

σ(A′′, A′). Further, Tf (S) ⊂ S, and hence Tf (L) ⊂ L, for each f ∈ S, and the operators

Tf commute. By the Markov–Kakutani theorem, Theorem 2.4, there exists Eϕ ∈ L ⊂ A′′[1]

such that f · Eϕ = Eϕ (f ∈ S). By taking a net in S that converges to Eϕ weak-∗, we

see that Eϕ is an idempotent in A′′. Clearly 〈Eϕ, ϕ〉 = 1. For each ψ ∈ ΦA \ {ϕ}, there

exists f ∈ S with f(ψ) = 0, and so 〈Eϕ, ψ〉 = f(ψ)〈Eϕ, ψ〉 = 0.

From this, it follows that ϕ is isolated in ΦA with respect to the weak topology.

(ii) It follows immediately that ΦA is discrete with respect to the weak topology when

A has the separating ball property.

As a first application of the above theorem, we present the following result.

Corollary 4.4. Let A be a Banach function algebra with the separating ball property,

and suppose that A has a bounded pointwise approximate identity with bound m. Then:

(i) each non-zero, maximal modular ideal of A has a bounded pointwise approximate

identity with bound m+ 1;

(ii) the algebra A is reflexive if and only if it is a finite-dimensional space.

Proof. (i) Take ϕ ∈ ΦA, and consider the maximal modular ideal Mϕ, assumed to be non-

zero. Let Eϕ be the idempotent in A′′[1] specified in Theorem 4.3(i), and let E be a weak-∗
accumulation point in A′′[m] of the BPAI in A. Set Fϕ = E − Eϕ, so that Fϕ ∈ A′′[m+1].

Further, 〈Fϕ, ϕ〉 = 0 and 〈Fϕ, ψ〉 = 1 (ψ ∈ ΦA \ {ϕ}). A net in (Mϕ)[m+1] that converges

weak-∗ to Fϕ is the required BPAI in Mϕ.

(ii) Suppose that A is reflexive, and hence an ideal in A′′. By Proposition 3.7 and

clause (i), the algebra A and every non-zero, maximal modular ideal of A has a BAI;

since A is reflexive, each of these ideals has an identity, and so ΦA is compact and each

point of ΦA is isolated. Hence ΦA is finite, and so A is a finite-dimensional space.

A bound for a bounded pointwise approximate identity in Mx that arises in clause

(i) of the above corollary is ‖E− Eϕ‖, which is at most m + 1. In general, the bound

m + 1 cannot be improved. For example, let Γ be an infinite, locally compact abelian

group. Then the Fourier algebra A(Γ) has a contractive approximate identity, and so, by

the corollary, every non-zero, maximal modular ideal in A(Γ) has a bounded pointwise

approximate identity of bound 2. It is shown in [18, Example 3.15] that 2 is the minimum

such bound.

The maximal ideal {f ∈ A(D) : f(0) = 0} in the disc algebra does not have a bounded

pointwise approximate identity, and so A(D) is not pointwise contractive; this shows that

we cannot remove the hypothesis that A have the separating ball property in Corollary

4.4 when obtaining clause (i).
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We also introduce the following definition.

Definition 4.5. Let A be a Banach function algebra, and take ϕ ∈ ΦA. Then A has the

weak separating ball property at ϕ if, given ψ ∈ ΦA ∪ {∞} with ψ 6= ϕ, there is net (fν)

in (Mψ)[1] such that limν fν(ϕ) = 1. The algebra A has the weak separating ball property

if it has the weak separating ball property at each ϕ ∈ ΦA.

Each pointwise contractive Banach function algebra and each Banach function algebra

with the separating ball property has the weak separating ball property.

Let A be a Banach function algebra with |ΦA| ≥ 2, and take ϕ ∈ ΦA. Suppose

that, for each ψ ∈ ΦA \ {ϕ}, there is a net (gν) in A[1] such that limν gν(ϕ) = 1 and

limν gν(ψ) = 0. Set

fν = (g2
ν − gν(ψ)gν)/

∥∥g2
ν − gν(ψ)gν

∥∥
for each ν. Then the net (fν) is contained in (Mψ)[1] and limν fν(ϕ) = 1. It follows that

A has the weak separating ball property.

Definition 4.6. Let A be a Banach function algebra. Then A has norm-one characters

if ‖ϕ‖ = 1 (ϕ ∈ ΦA).

Certainly each unital Banach function algebra has norm-one characters; also, A has

this property whenever A has the weak separating ball property. On the other hand,

consider the maximal ideal M = {f ∈ A(D) : f(0) = 0} in the disc algebra, so that

ΦM = D \ {0}. Then, for each z ∈ C with 0 < |z| ≤ 1, we have ‖εz‖ = |z|, and so M does

not have norm-one characters.

The following remark is obvious.

Proposition 4.7. Let A be a Banach function algebra with |ΦA| ≥ 2. Then A has

the weak separating ball property if and only if Mϕ has norm-one characters for each

ϕ ∈ ΦA.

Proposition 4.8. Let A be a Banach function algebra that is reflexive as a Banach space

and is such that ΦA is connected. Then the following are equivalent;

(a) A is unital;

(b) A has norm-one characters;

(c) there exists ϕ ∈ ΦA such that ‖ϕ‖ = 1.

Proof. (a) ⇒ (b) ⇒ (c) These implications are immediate.

(c) ⇒ (a) Take ϕ ∈ ΦA with ‖ϕ‖ = 1. Since A is reflexive, it follows from the Hahn–

Banach theorem that there exists u ∈ A with ‖u‖ = 1 and u(ϕ) = 1. Define

K = co {un : n ∈ N},

so that K is a convex and weakly compact set in A with K ⊂ A[1], and v(ϕ) = 1 (v ∈ K).

The map Lu | K : K → K is weakly continuous on K, and so, by the Schauder–Tychonoff

fixed point theorem, Theorem 2.5, this map has a fixed point: there exists v ∈ K such

that uv = v. Clearly wv = v (w ∈ K), and, in particular, v2 = v, so that v is an
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idempotent in A. Since v(ϕ) = 1 and ΦA is connected, the element v is the identity of A.

Also ‖v‖ = 1, and so A is unital.

In Example 3.3 of [18], there are examples of Banach function algebras that are

reflexive as Banach spaces and are defined on connected, compact, infinite spaces. These

algebras are unital.

Theorem 4.9. Let A be a dual Banach function algebra, with predual F ⊂ A′. Suppose

that ΦA ∩F 6= ∅ and that ϕ ∈ ΦA ∩F is such that ‖ϕ‖ = 1 . Then there is an idempotent

e ∈ A[1] such that e(ϕ) = 1 and fe = e for each f ∈ A[1] with f(ϕ) = 1.

Proof. Again consider the set

Sϕ = {f ∈ A[1] : f(ϕ) = 1} .

Since ‖ϕ‖ = 1, there is a net (fν) in A[1] with limν fν(ϕ) = 1. Let f ∈ A[1] be an

accumulation point of (fν) with respect to the topology σ(A,F ). Then f ∈ Sϕ because

ϕ ∈ F , and so Sϕ is not empty. Clearly Sϕ is convex, and it is compact with respect to

the topology σ(A,F ). For f ∈ Sϕ, the maps

Lf : g 7→ fg , Sϕ → Sϕ ,

form a commuting family of affine maps that are continuous with respect to σ(A,F ), and

so, again by Theorem 2.4, the family has a fixed point, say e ∈ Sϕ ⊂ A[1]. Thus fe = e

for each f ∈ Sϕ, and, in particular, e2 = e.

The following example shows that the condition that ϕ ∈ F in the above theorem

cannot be removed when seeking an idempotent.

Example 4.10. Let A = (` 1(Z+), ? ) be the standard semigroup algebra on Z+, where

? denotes the convolution product, so that A is isomorphic to the natural, unital Banach

function algebra on D consisting of the continuous functions on T with absolutely conver-

gent Taylor series. The maximal ideal M of functions in A that vanish at 0 corresponds

to the algebra ` 1 = ` 1(N); c 0 = c 0(N) is a closed submodule of M ′ = `∞(N), and clearly

M is a dual Banach function algebra with predual c 0. Let ϕ be a character on M that

corresponds to evaluation at a point of T. Then ‖ϕ‖ = 1, but ϕ 6∈ c 0. There is no non-zero

idempotent in A.

The following example shows that the condition that ϕ ∈ F in the above theorem

cannot be removed when obtaining the conclusion that fe = e for each f ∈ Sϕ.

Example 4.11. Let A = `∞ = C(βN), where βN is the Stone–Čech compactification of

N, so that A is a dual Banach function algebra, with predual ` 1. Of course, ΦA = βN.

Take x ∈ βN. In the case where x ∈ N, so that εx ∈ ` 1, the corresponding idempotent

of the above theorem is the characteristic function of x. However, when x ∈ βN \ N, so

that εx 6∈ ` 1, there is no idempotent e ∈ A[1] such that fe = e for each f ∈ A[1] with

f(x) = 1.
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4.1. Uniform algebras. We now recall some background concerning uniform algebras.

Let A be a uniform algebra on a non-empty, locally compact space K. The set of strong

boundary points for A is now called the Choquet boundary of A, and is denoted by Γ0(A).

A closed subset S of K is a closed boundary for A if |f |S = |f |K (f ∈ A); the intersection

of all the closed boundaries for A is a closed boundary, called the Šilov boundary, Γ(A).

Suppose that K is compact. Then, by [12, Corollary 4.3.7(i)], Γ(A) = Γ0(A) and Γ(A) is a

closed boundary. For example, let A = A(D) be the disc algebra. Then Γ0(A) = Γ(A) = T.

The next theorem relates approximate identities in a maximal ideal of a unital uniform

algebra to strong boundary points. We recall that M ′′x is commutative because uniform

algebras are Arens regular, and that M ′′x is itself a natural uniform algebra on ΦA′′ \{x}.
The result is an extension of [18, Theorem 4.7].

Theorem 4.12. Let A be a unital uniform algebra on a non-empty, compact space K

such that |K| ≥ 2, and take x ∈ K. Then the following conditions on x are equivalent:

(a) x ∈ Γ0(A) ;

(b) Mx has a bounded approximate identity;

(c) M ′′x has an identity;

(d) Mx has a contractive approximate identity;

(e) x is an isolated point of ΦA′′ ;

(f) A has the separating ball property at x.

Proof. The equivalence of (a) and (b) is [12, Theorem 4.3.5, (d) ⇔ (e)]. Clauses (b) and

(c) are clearly equivalent; trivially, (d) implies (b), and (f) implies (a) by Proposition 4.2.

Now suppose that (c) holds; the identity of M ′′x is E. Since E is a non-zero idempotent

in the uniform algebra C(K̃), necessarily |E|K̃ = 1, and so a net in (Mx)[1] that converges

weak-∗ to E is a contractive approximate identity for Mx, giving (d).

Clearly (c) ⇒ (e). On the other hand, suppose that (e) holds. Then, by Šilov’s idem-

potent theorem, there exists E ∈ A′′ that is the characteristic function of ΦA′′ \ {x}, and

then E is the identity of M ′′x , giving (c).

Suppose that (a) holds, so that x is a strong boundary point for A, and take y ∈ K
with y 6= x. Then there exists f ∈ A[1] with f(x) = 1 and |f(y)| < 1, say f(y) = α.

Define

B(ζ) =
(1− α)(ζ − α)

(1− α)(1− αζ)
(ζ ∈ D) .

Then B ∈ A(D)[1], and so g := B ◦ f ∈ A[1]. Clearly g(x) = 1 and g(y) = 0, and hence

A has the separating ball property at x, giving (f).

Definition 4.13. A natural uniform algebra A on a non-empty, compact space K is a

Cole algebra if Γ0(A) = K.

It was a long-standing conjecture, called the peak-point conjecture that C(K) is the

only Cole algebra on a compact space K. The first counter-example was due to Cole [10],

and is described in [51, §19]; an example of Basener [3], also described in [51, §19], gives
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a compact space K in C 2 such that R(K) is a non-trivial Cole algebra. Further, Fein-

stein [25] obtained examples of non-trivial, regular Cole algebras on compact, metrizable

spaces.

The next result is an immediate consequence of Theorem 4.12.

Corollary 4.14. Let A be a natural uniform algebra on a non-empty, compact space

K. Then the following conditions are equivalent:

(a) A is a Cole algebra;

(b) A has the separating ball property;

(c) A is contractive;

(d) each point of K is an isolated point of ΦA′′ .

Let A be a natural uniform algebra on a non-empty, compact space K, and take

x, y ∈ K. Then

x ∼ y if dA(x, y) < 2 ,

where dA is the Gleason metric given by

dA(x, y) = ‖εx − εy‖ (x, y ∈ K) .

Then ∼ is an equivalence relation on K; the equivalence classes with respect to this

relation are the Gleason parts for A. These parts form a partition of K, and each part

is a completely regular and σ-compact topological space with respect to the Gel’fand

topology; by a theorem of Garnett, these are the only topological restrictions on Gleason

parts. For a discussion of Gleason parts, including Garnett’s theorem, see [31, Chapter VI]

and [51, §16]. Clearly, {x} is a one-point Gleason part whenever x is a strong boundary

point, but the converse fails, as we shall see below and in examples to be given in Chapter

7.

The Gleason parts of D for the disc algebra A(D) are the one-point parts that cor-

respond to points of the circle T together with the open disc D. We shall write H∞ for

H∞(D), the uniform algebra of all bounded, analytic functions on D (taken with respect

to the uniform norm on D); take Φ to be the character space of H∞. Then the Gleason

parts of Φ are well known; an early fine exposition is given in [34]; see also [31, 51]. In

particular, each point of the Šilov boundary Γ(H∞) is a strong boundary point, but there

are one-point parts that are not in Γ(H∞). In fact, each part of Φ is either a one-point

part or an ‘analytic disc’.

A related paper on Gleason parts and biduals of uniform algebras is [40].

The next proposition is standard [51, Lemma 16.1]; our proof is slightly different.

Proposition 4.15. Let A be a natural uniform algebra on a non-empty, compact space

K, and take x, y ∈ K. Then the following are equivalent:

(a) ‖εx − εy‖ = 2 ;

(b) for each ε > 0, there exists f ∈ (My)[1] with |f(x)| > 1− ε.

Proof. (a) ⇒ (b) Take ε > 0. There exists g ∈ A[1] with |g(x)− g(y)| > 2 − ε. Set

f = (g − g(y)1K)/2. Then f ∈ (My)[1] and |f(x)| > (2− ε)/2 > 1− ε.
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(b) ⇒ (a) Take ε > 0. By Lemma 3.9, there exist δ > 0 and h ∈ A(D)[1] with

|h(0) + 1| < ε and |h(z)− 1| < ε whenever z ∈ D with |z − 1| < δ. Take f ∈ (My)[1] with

|f(x)| > 1− δ, and set g = h ◦ f ∈ A[1]. Then

‖εx − εy‖ ≥ |g(x)− g(y)| > 2− 2ε .

This holds for each ε > 0, and so ‖εx − εy‖ = 2.

Corollary 4.16. Let A be a natural uniform algebra A on a non-empty, compact space

K. Then a point x ∈ K is such that {x} is a one-point part if and only if A has the weak

separating ball property at x.

The following theorem is an extension of Theorem 4.3(i) to uniform algebras; in general

these algebras do not have the separating ball property.

Theorem 4.17. Let A be a natural, uniform algebra on a non-empty, compact space K.

(i) Let P be a Gleason part for A, and take x0 ∈ P . Then there is an idempotent

element E ∈ A′′[1] such that E | K = χP and such that F E = E whenever F ∈ A′′[1] with

F (x0) = 1.

(ii) For each Gleason part P , there is an idempotent EP ∈ A′′[1] with EP | K = χP
and such that EP EQ = 0 in A′′ whenever P and Q are distinct parts.

Proof. (i) We may suppose that P 6= K. Set

S = {F ∈ A′′[1] : F (x0) = 1} .

Since 1K ∈ S, the set S is not empty. Since A′′ is a dual uniform algebra, with predual

A′, and since εx0
∈ ΦA′′ ∩ A′ with ‖εx0

‖ = 1, it follows from Theorem 4.9 that there

exists an idempotent E ∈ S such that F E = E whenever F ∈ S
Suppose that y ∈ K and E(y) = 0, so that E ∈ (M ′′y )[1]. Then there is a net (fν) in

(My)[1] such that limν fν(x0) = 〈E, εx0〉 = 1, and so, by Proposition 4.15, y 6∈ P .

Suppose that y ∈ K \P . By Proposition 4.15, there is a sequence (fn) in (My)[1] with

fn(x0) → 1 as n → ∞. Let F be an accumulation point of (fn) in A′′. Then F ∈ S and

F (y) = 0, and so E(y) = FE(y) = 0.

It follows that {y ∈ K : E(y) = 0} = K \ P , and so E | K = χP , as required.

(ii) Now choose xP ∈ P for each part P , so that there exists an idempotent element

EP ∈ A′′[1] such that EP | K = χP and such that F EP = EP whenever F ∈ A′′[1] with

F (xP ) = 1. Take distinct parts P and Q, and set F = 1−EP . Then F is an idempotent

in A′′, and so F ∈ A′′[1]. Also F (xQ) = 1, and so (1 − EP )EQ = FEQ = EQ, and hence

EP EQ = 0.

Corollary 4.18. Let A be a natural uniform algebra on a non-empty, compact space K.

Then each Gleason part of K is clopen in K with respect to the relative weak topology,

σ(A′, A′′). Further, each weakly compact subset of K has non-empty intersection with

only finitely many parts.

Proof. Let the Gleason part be P . Then the idempotent E of Theorem 4.17(i) belongs

to C(ΦA′′) and E | K is the characteristic function of P , and so the result holds.
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The following theorem is a main result of this section; for a generalization, see Theorem

8.4.

Theorem 4.19. Let A be a uniform algebra. Then A has a contractive pointwise approx-

imate identity if and only if A has norm-one characters.

Proof. The uniform algebra A′′ is a dual Banach function algebra, with predual A′.

Suppose that A has norm-one characters, and take a non-empty, finite subset S of

ΦA and ε > 0. Take ϕ ∈ S. Then ‖ϕ‖ = 1 when we regard ϕ as an element of ΦA′′ . Since

ϕ ∈ ΦA′′ ∩ A′, it follows from Theorem 4.9 that there is an idempotent Eϕ ∈ A′′ such

that Eϕ(ϕ) = 1. For each ϕ ∈ S, set Uϕ = {ψ ∈ ΦA′′ : Eϕ(ψ) = 1}, so that Uϕ is a

compact and open subset of ΦA′′ with ϕ ∈ Uϕ. Thus S ⊂ U :=
⋃
{Uϕ;ϕ ∈ S}. The set U

is compact and open in ΦA′′ , and so, by Šilov’s idempotent theorem, the characteristic

function of U , say E, belongs to A′′; E is an idempotent and E(ϕ) = 1 (ϕ ∈ S). Since

A′′ is a uniform algebra, |E|ΦA′′ = 1. It follows that there exists f ∈ A[1] with

|f(ϕ)− 1| = |f(ϕ)− E(ϕ)| < ε (ϕ ∈ S) .

Thus A has a CPAI.

The converse is immediate.

Corollary 4.20. Let A be a uniform algebra with |ΦA| ≥ 2. Then the following condi-

tions on A are equivalent:

(a) A is pointwise contractive;

(b) A has the weak separating ball property;

(c) Mϕ has norm-one characters for each ϕ ∈ ΦA ∪ {∞}.
Proof. (a) ⇒ (b) ⇒ (c) These are trivial.

(c) ⇒ (a) This follows from Theorem 4.19.

The following results extend those given in [18, Theorem 4.6]; they are also immediate

from the above results.

Proposition 4.21. Let A be a natural uniform algebra on a compact space K with

|K| ≥ 2.

(i) Take x ∈ K. Then {x} is a one-point part if and only if Mx has a contractive

pointwise approximate identity if and only if Mx has norm-one characters.

(ii) The algebra A is pointwise contractive if and only if each point of K is a one-point

part.

(iii) Take x ∈ K, and suppose that Mx has a bounded pointwise approximate identity.

Then x is isolated in (K, dA).

We note that it will be shown in Example 7.6 that, in the above notation, it may be

that x is an isolated point of (K, dA), but {x} is not a one-point part. We do not know

whether a maximal ideal Mx in a natural, uniform algebra on K has a bounded pointwise

approximate identity whenever x is isolated in (K, dA), but we have the following result

that applies in a special case.
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A unital uniform algebra A with Šilov boundary Γ(A) is logmodular if the set of

functions log |f |, where f is an invertible function in A, when restricted to Γ(A), forms

a dense subset of CR(Γ(A)), the space of real-valued continuous functions on Γ(A); see

[51, §17]. For example, H∞ is a logmodular algebra [51, Example 17.4(d)].

Proposition 4.22. Let A be a natural, logmodular uniform algebra on a compact space

K with |K| ≥ 2. Take x ∈ K, and suppose that x is isolated in (K, dA). Then Mx has a

contractive pointwise approximate identity.

Proof. By Proposition 4.21(i), we must show that {x} is a one-point part. Assume to

the contrary that there is a part P with x ∈ P and |P | ≥ 2. Consider the metric dA
on P . Then x is an isolated point of (P, dA). Since A is logmodular, it follows from [57,

Lemma 4.5] (extending [51, Theorem 17.1]) that there is a homeomorphism between D
and (P, dA). Since D has no isolated point, the point x is also not isolated in (P, dA), a

contradiction. Thus {x} is a one-point part.

Let A be a natural, uniform algebra on a non-empty, compact space K, and take

x ∈ K such that {x} is a one-point part. Then, by Theorem 4.17, there is an idempotent

element Ex ∈ A′′ such that Ex(x) = 1 and Ex(y) = 0 (y ∈ K \ {x}). As in Theorem

4.12, in the case where x is a strong boundary point for A, we may suppose that Ex ∈ A′′
is the characteristic function of {x} as a subset of ΦA′′ , but this is not the case when x

is not a strong boundary point. Indeed, suppose that the characteristic function of {x}
belongs to A′′. Then x is an isolated point of ΦA′′ , and hence, by Theorem 4.12, (e) ⇒
(a), x is a strong boundary point for A.

Let {x} be a one-point part of K (with respect to A). Then we claim that x is always

an isolated point of K, the closure of K in ΦA′′ . Indeed, take ϕ ∈ K \ {x}. Then there is

a net (yα) in K \ {x} such that limα yα = ϕ in (ΦA′′ , σ(A′′′, A′′)). In particular,

0 = lim
α
Ex(yα) = 〈Ex, ϕ〉 ,

and so Ex | K is the characteristic function of {x} as a subset of K, giving the claim. In

the case where x is not a strong boundary point for A, it follows that

{ϕ ∈ ΦA′′ : 〈Ex, ϕ〉 = 1} 6⊂ K
and so K is not an open set in ΦA′′ .

This gives the following result.

Proposition 4.23. Let A be a unital uniform algebra such that every point of ΦA is

a one-point part. Then ΦA is open in ΦA′′ if and only if each point of ΦA is a strong

boundary point for A.

We shall exhibit in Example 7.7 several examples that show that one-point parts in

the character space of a uniform algebra are not necessarily strong boundary points, or

even in the Šilov boundary.
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5. The space L(A) and BSE norms

In this section, we shall introduce the key space L(A) for a Banach function algebra A,

and use it to define the BSE norm on A.

Definition 5.1. Let A be a Banach function algebra, and take a non-empty subset Ω of

ΦA. Then L(A,Ω) is the linear span of Ω as a subset of A′, with L(A) for L(A,ΦA).

Clearly

L(A)⊥ = Φ⊥A = {M ∈ A′′ : 〈M, ϕ〉 = 0 (ϕ ∈ ΦA)} .

As Banach spaces, we have

L(A)′ = A′′/L(A)⊥ . (5.1)

The space L(A) is always weak-∗ dense in A′; L(A) is an A-submodule of A′ because

f · ϕ = ϕ(f)ϕ (f ∈ A, ϕ ∈ ΦA), and so

L(A) ⊂ AA′ := lin {f · λ : f ∈ A, λ ∈ A′} . (5.2)

Note that it follows from equation (2.7) that M · λ = λ · M ∈ L(A,Ω) whenever M ∈ A′′
and λ ∈ L(A,Ω). The space L(A,Ω)⊥ is a closed ideal in A′′ for each non-empty subset

Ω of ΦA.

Proposition 5.2. Let A be a Banach function algebra that is an ideal in its bidual. Then

AA′ = L(A), A+ L(A)
⊥

is an ideal in A′′, and

(f + M)2 (g + N) = fg (f, g ∈ A, M,N ∈ L(A)
⊥

) . (5.3)

Proof. Always L(A) ⊂ AA′.
Take f ∈ A and λ ∈ A′, and assume towards a contradiction that f · λ 6∈ L(A). Then

there exists M ∈ A′′ with 〈M, f · λ〉 = 1 and with 〈M, ϕ〉 = 0 (ϕ ∈ ΦA). Now M · f ∈ A
because A is an ideal in A′′, and so

〈M · f, ϕ〉 = 〈M, f · ϕ〉 = 〈M, ϕ(f)ϕ〉 = ϕ(f)〈M, ϕ〉 = 0 (ϕ ∈ ΦA) .

Thus M · f = 0, a contradiction of the fact that 〈M · f, λ〉 = 1. This shows that

A · A′ ⊂ L(A), and hence that AA′ ⊂ L(A).

Thus AA′ = L(A).

Since both A and L(A)⊥ are ideals in A′′, so is A+ L(A)
⊥

.

Now take elements f, g ∈ A and M,N ∈ L(A)
⊥

. We have λ · f ∈ A′A = AA′ ⊂ L(A)

for each λ ∈ A′, and so 〈f · N, λ〉 = 〈N, λ · f〉 = 0. Hence f · N = 0. Similarly. M · g = 0.

Since RN is weak-∗ continuous, it follows that M2N = 0. This gives equation (5.3).

Corollary 5.3. Let A be a Banach function algebra that is an ideal in its bidual and

has a bounded approximate identity. Then L(A) = A · A′.

Proof. Since A has a BAI, it follows from Cohen’s factorization theorem [12, §2.9] that

AA′ = A · A′.
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Proposition 5.4. Let A be a dual Banach function algebra, with predual F ⊂ A′, and

suppose that Ω ⊂ ΦA is a determining set for A with Ω ⊂ F . Then

L(A,Ω) = F and A′′ = An L(A,Ω)⊥ .

Proof. By equation (2.10), A′′ = An F⊥. Since Ω ⊂ F , we have L(A,Ω) ⊂ F . Now take

µ ∈ F ′ with µ | L(A,Ω) = 0. Then µ is an element, say f , of A with ϕ(f) = 0 (ϕ ∈ Ω),

and so µ = f = 0 because Ω is a determining set for A. It follows from the Hahn–Banach

theorem that L(A,Ω) = F , and then A′′ = An L(A,Ω)⊥.

For example, let G be a compact, abelian group, and set A = (M(G), ? ), the measure

algebra on G, regarded as the Banach sequence algebra B(Γ) consisting of the Fourier–

Stieltjes transforms of measures in M(G) on the discrete dual group Γ = Ĝ of G. Then

Γ is determining for A and Γ ⊂ C(G), and so, by the proposition, L(A,Γ) = C(G) and

M(G)′′ = M(G) n C(G)⊥ .

We now define the BSE norm of a Banach function algebra.

Definition 5.5. Let A be a Banach function algebra. Then

‖f‖BSE = ‖f‖BSE,A = sup{|〈f, λ〉| : λ ∈ L(A)[1]} (f ∈ A) .

The function ‖ · ‖BSE is clearly a norm on A such that

|f |ΦA
≤ ‖f‖BSE ≤ ‖f‖ (f ∈ A) .

By equation (2.1), ‖f‖BSE =
∥∥f + L(A)⊥

∥∥ (f ∈ A). Further, it is clear that ‖ · ‖BSE is

an algebra norm, in the sense that

‖fg‖BSE ≤ ‖f‖BSE ‖g‖BSE (f, g ∈ A) .

This was first proved in [52]. The norm ‖ · ‖BSE is called the BSE norm on A.

Definition 5.6. A Banach function algebra A has a BSE norm if ‖ · ‖BSE is equivalent

to the given norm, in the sense that there is a constant C > 0 such that

‖f‖ ≤ C ‖f‖BSE (f ∈ A) .

Clearly every uniform algebra has a BSE norm.

The notion of a BSE norm and the related notion of a BSE algebra were introduced

by Takahasi and Hatori in [52] and further studied in [39, 53, 54]; see also [19].

The BSE norm has particular significance because key examples in harmonic anal-

ysis have a BSE norm. For example, let G be a locally compact group, and write

A = (L1(G), ? , ‖ · ‖1) for the group algebra on G. Then A has a contractive approx-

imate identity. In the case where G is abelian, A is identified via the Fourier transform

with the Banach function algebra A(Γ), where Γ = Ĝ, and then L(A) is identified with

AP (G), the subspace of L∞(G) = L1(G)′ consisting of the almost periodic functions, so

that AP (G) is a self-adjoint, closed subalgebra of C b(G). Here ‖ · ‖BSE = ‖ · ‖1 on A;

this is a consequence of the Bochner–Schoenberg–Eberlein theorem that is proved in [47,

Theorem 1.9.1] and also follows easily from Kaplansky’s density theorem, which shows

that AP (G)[1] is weak-∗ dense in C 0(G)′′[1]. Of course, it is this theorem that leads to the

terminology ‘BSE norm’.
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More generally, let Γ be an arbitrary locally compact group, and let A(Γ) and B(Γ)

denote the Fourier and Fourier–Stieltjes algebras, respectively, on Γ (see the classic thesis

of Eymard [24] and the new book [38] of Kaniuth and Lau, where proofs of the following

statements can be found). Then A(Γ) is the closed ideal J∞(B(Γ)) in B(Γ), A(Γ) is a

natural, self-adjoint, strongly regular Banach function algebra on Γ, and ΦB(Γ) = Γ∪H,

where H is the hull of A(Γ) as an ideal in B(Γ). Let C∗(Γ) be the group C∗-algebra of

Γ. Then C∗(Γ)′ ∼= B(Γ). Further, by [8], the following are equivalent:

(a) Γ is amenable;

(b) A(Γ) has a contractive approximate identity;

(c) A(Γ) has a contractive pointwise approximate identity;

(d) A(Γ) has a bounded pointwise approximate identity.

In this case, it is also true that ‖f‖ = ‖f‖BSE (f ∈ B(Γ)), and so B(Γ) and A(Γ) have

BSE norms; this also follows from Kaplansky’s density theorem, as in [24, Lemma (2.13)].

For other examples of Banach function algebras that have a BSE norm, see [39, 52,

53, 54]. There will be an account in [19], where more general results will be established.

Proposition 5.7. Let A be a Banach function algebra with a BSE norm, and let B be

a Banach function algebra that is isomorphic to a closed subalgebra of A. Then B has a

BSE norm.

Proof. There are constants C1, C2 > 0 such that

‖f‖A ≤ C1 ‖f‖B (f ∈ B) and ‖f‖A ≤ C2 ‖f‖BSE,A (f ∈ A) .

Take λ ∈ L(A)[1]. Then λ | B ∈ L(B)[C1], and so ‖f‖BSE,A ≤ C1 ‖f‖BSE,B for each

f ∈ B. Thus ‖f‖B ≤ C2
1C2 ‖f‖BSE,B for f ∈ B, and so B has a BSE norm.

Although ‖f‖BSE ≤ ‖f‖ (f ∈ A), we have the following result.

Proposition 5.8. Let A be a Banach function algebra. Then

‖λ‖ = sup {|〈f, λ〉| : f ∈ A, ‖f‖BSE ≤ 1} (λ ∈ L(A)) . (5.4)

Proof. Take λ ∈ L(A), and let the supremum on the right be k.

Since ‖f‖BSE ≤ ‖f‖ (f ∈ A), certainly ‖λ‖ ≤ k. On the other hand,

‖λ‖ = sup
{∣∣〈M + L(A)⊥, λ〉

∣∣ : M ∈ A′′,
∥∥M + L(A)⊥

∥∥ ≤ 1
}

because L(A)′ ∼= A′′/L(A)⊥. But ‖f‖BSE =
∥∥f + L(A)⊥

∥∥ (f ∈ A), and so ‖λ‖ ≥ k.

Equation (5.4) follows.

Theorem 5.9. Let A be a Banach function algebra with a bounded pointwise approximate

identity of bound m. Then ‖f‖BSE ≤ m ‖f‖op (f ∈ A).

Proof. Take f ∈ A. For each λ =
∑n
i=1 αiϕi ∈ L(A)[1] and ε > 0, there exists g ∈ A[m]

such that
n∑
i=1

|αi| |f(ϕi)| |1− g(ϕi)| < ε ,
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and so

|〈f, λ〉| ≤ |〈fg, λ〉|+ |〈f − fg, λ〉| ≤ ‖fg‖+

n∑
i=1

|αi| |f(ϕi)| |1− g(ϕi)| ≤ m ‖f‖op + ε .

It follows that ‖f‖BSE ≤ m ‖f‖op, as required.

Corollary 5.10. Let (A, ‖ · ‖) be a Banach function algebra, and suppose that A has

a BSE norm and a bounded pointwise approximate identity. Then ‖ · ‖ and ‖ · ‖op are

equivalent on A.

Proof. By Theorem 5.9, there is m > 0 such that ‖f‖BSE ≤ m ‖f‖op (f ∈ A). By

hypothesis, there is a constant C > 0 such that ‖f‖ ≤ C ‖f‖BSE (f ∈ A), and so

‖f‖op ≤ ‖f‖ ≤ C ‖f‖BSE ≤ Cm ‖f‖op (f ∈ A) .

Thus ‖ · ‖ and ‖ · ‖op are equivalent on A.

Example 5.11. Let A be a natural uniform algebra on a compact space K with |K| ≥ 2,

and take x ∈ K such that {x} is a one-point part. By Proposition 4.21(i), Mx has a

contractive pointwise approximate identity. Then it follows from the above corollary (with

control of the constants) that the uniform norm and the operator norm on Mx are equal.

However, in the case where x is not a strong boundary point, it follows from Theorem

4.12 that the maximal ideal Mx does not have a bounded approximate identity.

Theorem 5.12. Let (A, ‖ · ‖) be a Banach function algebra that is an ideal in its bidual.

Then

| · |ΦA
≤ ‖ · ‖op ≤ ‖ · ‖BSE ≤ ‖ · ‖ .

Proof. Certainly | · |ΦA
≤ ‖ · ‖BSE ≤ ‖ · ‖ and | · |ΦA

≤ ‖ · ‖op ≤ ‖ · ‖, and so it suffices to

show that ‖ · ‖op ≤ ‖ · ‖BSE.

Take f ∈ A, M ∈ L(A)⊥, and g ∈ A[1]. Then there exists λ ∈ A′[1] with ‖fg‖ = 〈fg, λ〉.
By Proposition 5.2, AA′ = L(A), and so g · λ ∈ L(A), and this implies that 〈M, g · λ〉 = 0.

Since g · λ ∈ A′[1], necessarily

‖f + M‖ ≥ |〈f + M, g · λ〉| = |〈f, g · λ〉| = |〈fg, λ〉| = ‖fg‖ .
Thus sup{‖fg‖ : g ∈ A[1]} ≤ inf{‖f + M‖ : M ∈ L(A)⊥}, i.e., ‖f‖op ≤ ‖f‖BSE. The

result follows.

Corollary 5.13. Let A be a Banach function algebra that is an ideal in its bidual.

(i) Suppose that A has a bounded pointwise approximate identity. Then A has a BSE

norm.

(ii) Suppose that A has a contractive pointwise approximate identity. Then

‖f‖BSE = ‖f‖ (f ∈ A) .

Proof. (i) By Proposition 3.7, A has a BAI, say the bound is m. By Proposition 3.2,

‖ · ‖ ≤ m ‖ · ‖op. Thus it follows from Theorem 5.12 that ‖ · ‖ and ‖ · ‖BSE are equivalent.

(ii) This follows by taking m = 1 in the above calculation.
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6. The algebra A′′/L(A)⊥

Let A be a Banach function algebra. In this section, we shall introduce the Banach space

Q(A) = A′′/L(A)⊥ = L(A)′

(taken with the quotient norm, ‖ · ‖Q(A)), which we shall see is also a Banach function

algebra, and establish some general results. We find it to be somewhat surprising that it

seems that there has been little earlier study of this Banach algebra in an abstract setting;

however, there is an implicit definition of our algebra Q(A) in [44, Theorem 3.1.14], where

some of the properties of Q(A) that we develop are given.

For M ∈ A′′, the corresponding element in Q(A) is denoted by [M]. Note that, given

f ∈ Q(A), there exists M ∈ A′′ with [M] = f and ‖M‖ = ‖f‖Q(A). Indeed, for each

n ∈ N, there exists Mn ∈ A′′ with [Mn] = f and ‖Mn‖ < ‖f‖Q(A) +1/n, and a σ(A′′, A′)-

accumulation point M ∈ A′′ of the sequence (Mn) has the required properties.

The space L(A) is canonically embedded in L(A)
′′

= Q(A)′ by setting

〈[M], λ〉 = 〈M, λ〉 (M ∈ A′′)

for λ ∈ L(A), so that

‖[M]‖Q(A) = sup{|〈M, λ〉| : λ ∈ L(A)[1]} . (6.1)

First we verify that Q(A) is always a semi-simple, commutative Banach algebra.

It follows from (2.8) that the space L(A)⊥ is a weak-∗ closed ideal in A′′. Thus

Q(A) = A′′/L(A)⊥ is a Banach algebra.

Take M,N ∈ A′′. Then it follows from equation (2.8) that M2N − N2M ∈ L(A)⊥,

and so [M] [N] = [N] [M]. Hence Q(A) is a commutative algebra. For each ϕ ∈ ΦA, the

map

ϕ̃ : M + L(A)⊥ 7→ 〈M, ϕ〉 , Q(A)→ C ,

is a well-defined character on Q(A), and M + L(A)⊥ = 0 whenever ϕ̃(M + L(A)⊥) = 0

for all ϕ ∈ ΦA, and so Q(A) is semi-simple. Hence Q(A) is (identified with) a Banach

function algebra and as a subalgebra of `∞(ΦA). Take ϕ ∈ ΦA. By identifying ϕ with ϕ̃,

defined above, we can, and shall, regard ΦA as a determining subset of ΦQ(A).

Clearly A ∩ L(A)⊥ = {0} in A′′, and so A+ L(A)
⊥

is an algebraic direct sum. Each

element f ∈ A determines [f ] in Q(A), and [f ] | ΦA = f , and so we can regard A as a

subalgebra of Q(A) by identifying f ∈ A with [f ] ∈ Q(A). It follows that

‖f‖Q(A) = ‖f‖BSE (f ∈ A) .

Since Q(A)′ = L(A)′′ and L(A)′′ is identified with the annihilator of L(A)⊥ in A′′′,

each Λ ∈ L(A)′′ acts on Q(A) through the formula

〈[M], Λ〉Q(A),Q(A)′ = 〈M, Λ〉A′′,A′′′ (M ∈ A′′) . (6.2)

In particular, equation (6.2) holds when Λ ∈ ΦQ(A).

It follows that L(A) is a closed submodule of Q(A)′, and it is clear that Q(A) is a

dual Banach function algebra, with isometric predual L(A).
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Given [M] ∈ Q(A), say with ‖[M]‖Q(A) = ‖M‖ = m, there is a net (fα) in A[m] that

converges weak-∗ to M in A′′. Since

m ≤ lim inf
α
‖fα‖ ≤ lim sup

α
‖fα‖ ≤ m,

it follows that limα ‖fα‖ = m. Further, limα fα = [M] in the space(
Q(A), σ(Q(A), L(A)

)
,

and so A[1] is weak-∗ dense in Q(A)[1].

The relative topology on ΦA from ΦQ(A) is the weak topology σ(A′, A′′), and so

Q(A) = {M | ΦA : M ∈ A′′} ⊂ `∞(ΦA) .

As we shall see in Example 7.3, the embedding of ΦA in ΦQ(A) need not be continuous.

Since

ΦA ⊂ ΦQ(A) ⊂ L(A)′′ ⊂ A′′′ ,

each ψ ∈ ΦQ(A) is of the form ψ = ϕ+ ξ, where ϕ = ψ | A ∈ ΦA ∪ {0} and ξ ∈ A⊥, and

so 〈[f ], ψ〉 = 〈f, ϕ〉 (f ∈ A). In particular, it follows that

f(ΦA) ⊂ [f ](ΦQ(A)) ⊂ f(ΦA) ∪ {0} and | [f ] |ΦQ(A)
= |f |ΦA

(f ∈ A) . (6.3)

We see that Q(A)′′ = L(A)′′′ = L(A)′ ⊕ L(A)⊥ = Q(A) ⊕ L(A)⊥ as Banach spaces,

and that L(A)⊥ is an ideal in Q(A)′′, so that

Q(A)′′ = Q(A) n L(A)⊥ .

We have established the following theorem.

Theorem 6.1. Let A be a Banach function algebra. Then L(A)
⊥

is a closed ideal in A′′

and A+ L(A)⊥ is a subalgebra of A′′. The quotient Banach algebra

Q(A) := A′′/L(A)
⊥

= L(A)′

is commutative and semi-simple, so that Q(A) is a Banach function algebra, Q(A) is a

subalgebra of `∞(ΦA), and Q(A) contains A as a subalgebra. Further, Q(A) is a dual

Banach function algebra, with isometric predual L(A), A[1] is σ(Q(A), L(A))-dense in

Q(A)[1], and

Q(A)′′ = L(A)′ ⊕ L(A)⊥ and Q(A)′′ = Q(A) n L(A)⊥ .

In fact, the quotient algebra A′′/L(A,Ω)
⊥

is a Banach function algebra for each non-

empty subset Ω of ΦA. The set Ω is always a determining set for A′′/L(A,Ω)
⊥

.

Since ΦQ(A) ⊂ L(A)′′, the Gel’fand topology on ΦQ(A) is the relative weak-∗ topology

σ(L(A)′′, L(A)′). We shall write ΦA for the weak-∗-closure of ΦA in ΦQ(A). In the case

whereQ(A) is regular as a Banach function algebra on ΦQ(A), it is clear that ΦA = ΦQ(A).

However, in general, ΦA ( ΦQ(A); for example, see Example 7.8.

In the following result, τp is the topology of pointwise convergence on the space ΦA.

Proposition 6.2. Let (A, ‖ · ‖) be a Banach function algebra. Then, given [M] ∈ Q(A)

with ‖[M]‖ = m, there is a net (fα) in A[m] such that limα fα = M with respect to τp and

limα ‖fα‖ = limα ‖fα‖Q(A) = m.
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Proof. Take M ∈ A′′ with ‖[M]‖ = m. Then, as noted above, there is a net (fα) in A[m]

such that limα fα = M with respect to τp and limα ‖fα‖ = m. The net (fα) is contained

in Q(A)[m], and so limα fα = [M] in the topology σ(Q(A), L(A)). Hence

m = |[M]‖Q(A) ≤ lim inf
α
‖fα‖Q(A) ≤ lim sup

α
‖fα‖Q(A) ≤ m,

and this gives the required result.

The above proposition immediately gives the following corollary, which characterizes

the elements of Q(A) in `∞(ΦA).

Corollary 6.3. Let A be a Banach function algebra. Then Q(A) is the set of functions

f ∈ `∞(ΦA) for which there is a bounded net (fα) in A with limα fα = f in (`∞(ΦA), τp);

for f ∈ Q(A), the infimum of the bounds of such nets is equal to ‖f‖Q(A).

Proposition 6.4. Let A be a Banach function algebra. Then:

(i) ‖[M]‖Q(A) = ‖[M]‖BSE,Q(A) (M ∈ A′′), and so Q(A) has a BSE norm;

(ii) the algebra A has a BSE norm if and only if A is isomorphic to a closed subalgebra

of Q(A);

(iii) the algebra Q(A) has an identity if and only if A has a bounded pointwise approx-

imate identity.

Proof. (i) The space L(Q(A)) is the closure in L(A)′′ of L(Q(A)), and

L(A) ⊂ L(Q(A)) ⊂ L(A)′′

isometrically. Thus, for each M ∈ A′′, we have∥∥M + L(A)⊥
∥∥ = sup{|〈M, λ〉| : λ ∈ L(A)[1]} .

Since sup
{∣∣〈M + L(A)⊥,Λ〉

∣∣ : Λ ∈ L(Q(A))[1]

}
≤
∥∥M + L(A)⊥

∥∥, we see that∥∥M + L(A)⊥
∥∥ = sup{

∣∣〈M + L(A)⊥, Λ〉
∣∣ : Λ ∈ L(Q(A))[1]} ,

and so

‖[M]‖Q(A) = ‖[M]‖BSE,Q(A) (M ∈ A′′) .

In particular, this shows that Q(A) has a BSE norm.

(ii) We have ‖[f ]‖Q(A) = ‖f‖BSE,A ≤ ‖f‖A (f ∈ A), and so A has a BSE norm if

and only if A is closed in Q(A).

(iii) First, suppose that A has a BPAI, say (fα), and let E be a weak-∗ accumulation

point of the net (fα) in A′′. Clearly 〈E, ϕ〉 = 1 (ϕ ∈ ΦA), and so

E2M−M ∈ L(A)⊥ (M ∈ A′′) .

Hence [E] is the identity of the commutative Banach algebra Q(A).

Conversely, suppose that E ∈ A′′ and that [E] is the identity of Q(A). Then

〈E, ϕ〉 = 〈E + L(A)⊥, ϕ〉 = 1 (ϕ ∈ ΦA) .

There is a net, say (fα), in A that is bounded in norm by ‖E‖ and that converges weak-∗
to E in A′′, and clearly (fα) is a BPAI for A.
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The norm of the identity of Q(A) that arises in clause (iii), above, is not necessarily

equal to 1. Of course, in the case where A has a contractive pointwise approximate

identity, the corresponding element E ∈ A′′ is such that ‖[E]‖ = 1, and so Q(A) is a

unital Banach function algebra.

It follows from clause (iii), above, that ΦQ(A) and ΦA are compact when A has a

bounded pointwise approximate identity.

Corollary 6.5. Let A be a Banach function algebra, and suppose that (eα) and (fβ)

are bounded pointwise approximate identities in A. Then:

(i) [E] = [F] for any weak-∗ accumulation points E and F of (eα) and (fβ), respectively,

in A′′;

(ii) for each weak-∗ accumulation point E of (eα) in A′′, there exists µ ∈ L(A)⊥ with

‖E + µ‖ = ‖[E]‖.

Proof. (i) This follows because an identity of Q(A) is uniquely defined.

(ii) This follows because ‖[E]‖ = inf{‖E + µ‖ : µ ∈ L(A)⊥} and the space L(A)⊥ is

weak-∗ closed in A′′, so that the infimum is attained.

In particular, when A has a bounded pointwise approximate identity, the norm of the

identity in Q(A) does not depend on the choice of the bounded pointwise approximate

identity.

In the following corollary, note that neither A nor A′′ is necessarily unital.

Corollary 6.6. Let A be a Banach function algebra, and suppose that A has a bounded

pointwise approximate identity. Take an element f ∈ A such that f(ϕ) 6= 1 (ϕ ∈ ΦA).

Then there exists M ∈ A′′ such that

〈M, ϕ〉(1− f(ϕ)) = 1 (ϕ ∈ ΦA) .

Proof. By Proposition 6.4(iii), Q(A) has an identity, say [E]. It follows from the hypo-

thesis and equation (6.3) that 〈[f ], ψ〉 6= 1 (ψ ∈ ΦQ(A)), and hence

〈[E]− [f ], ψ〉 6= 0 (ψ ∈ ΦQ(A)) .

Thus E− [f ] is invertible in Q(A), i.e., there exists M ∈ A′′ with [M] · ([E]− [f ]) = [E]

in Q(A). The result follows.

We shall now regard Q(A) as a Banach function algebra, and usually write f , u, etc.,

for generic elements of Q(A).

Proposition 6.7. Let A be a Banach function algebra, and take ϕ ∈ ΦA with ‖ϕ‖ = 1.

Then there is an idempotent u ∈ Q(A)[1] such that u(ϕ) = 1 and fu = u whenever

f ∈ Q(A)[1] with f(ϕ) = 1.

Proof. Since Q(A) is a dual Banach function algebra with predual L(A) and since

ϕ ∈ L(A), this is a special case of Theorem 4.9.

The following is immediate from Proposition 5.4.
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Proposition 6.8. Let A be a dual Banach function algebra, with predual F ⊂ A′, and

suppose that ΦA ⊂ F . Then L(A) = F , A′′ = An L(A)⊥, and Q(A) = A.

6.1. The subset ΦA of ΦQ(A). In the next results, we continue to regard ΦA as a subset

of ΦQ(A), and will give conditions that imply that it is an open subset of ΦQ(A).

Lemma 6.9. Let A be a Banach function algebra, and let S be a non-empty subset of ΦA.

Then the following are equivalent:

(a) each point of S is isolated in ΦQ(A);

(b) S is open and discrete in ΦQ(A).

Proof. (a) ⇒ (b) This is immediate.

(b) ⇒ (a) Take ϕ ∈ S, and suppose that (ϕα) is a net in ΦQ(A) that converges to ϕ.

Since S is open in ΦQ(A), the net (ϕα) is eventually in S. Since S is discrete in ΦQ(A),

eventually ϕα = ϕ. Thus ϕ is isolated in ΦQ(A).

Theorem 6.10. Let A be a Banach function algebra.

(i) Suppose that ϕ ∈ ΦA and that A has the weak separating ball property at ϕ. Then

ϕ is an isolated point of ΦQ(A).

(ii) Suppose that A has the weak separating ball property. Then ΦA is the set of isolated

points of ΦQ(A), and so ΦA is open and discrete as a subspace of ΦQ(A).

Proof. (i) Note that ‖ϕ‖ = 1 because A has the weak separating ball property at ϕ, and

so, by Proposition 6.7, there is an idempotent u ∈ Q(A)[1] such that u(ϕ) = 1 and fu = u

whenever f ∈ Q(A)[1] with f(ϕ) = 1.

We may suppose that |ΦA| ≥ 2. Take ψ ∈ ΦA with ψ 6= ϕ. Then there is a net (gν) in

(Mψ)[1] with limν gν(ϕ) = 1. Since ‖gν‖Q(A) ≤ ‖gν‖A, this net has a weak-∗ accumulation

point, say g, in Q(A)[1] with g(ϕ) = 1; further, g(ψ) = 0. It follows that u(ψ) = 0, and

so (fu − f(ϕ)u)(ψ) = 0 for each f ∈ Q(A). Thus (fu − f(ϕ)u) | ΦA = 0 (f ∈ Q(A)).

Since ΦA is a determining set for Q(A), we have

fu = f(ϕ)u (f ∈ Q(A)) .

Suppose that ΦA ( ΦQ(A), and take ψ ∈ ΦQ(A) with ψ 6= ϕ. Then there exists

f ∈ Q(A) with f(ϕ) = 1 and f(ψ) = 0, and hence u(ψ) = 0. This shows that u is the

characteristic function of {ϕ} in ΦQ(A), and hence ϕ is an isolated point of ΦQ(A). This

is immediate when ΦA = ΦQ(A).

(ii) By (i), each point of ΦA is an isolated point of ΦQ(A). Since ΦA is determining

for Q(A), each isolated point of ΦQ(A) belongs to ΦA. By Lemma 6.9, ΦA is open and

discrete as a subspace of ΦQ(A).

Proposition 6.11. Let A be a Banach function algebra.

(i) Take ϕ ∈ ΦA such that Mϕ is non-zero, and suppose that Mϕ has a bounded

pointwise approximate identity. Then ϕ is weakly isolated in ΦA and an isolated point of

the space ΦQ(A).
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(ii) Each isolated point of ΦQ(A) is in ΦA, and is weakly isolated in ΦA.

Proof. (i) Let E be a weak-∗ accumulation point of the BPAI of Mϕ in A′′, so that E | ΦA
is the characteristic function of Φ \ {ϕ}. This implies that ϕ is weakly isolated in ΦA.

For each F ∈ A′′ with F(ϕ) = 0, we have (FE − F) | ΦA = 0, and so [F] [E] = [F]

in Q(A). It follows that [E] is the characteristic function of ΦQ(A) \ {ϕ}, and so ϕ is an

isolated point of ΦQ(A).

(ii) Let ψ be an isolated point of ΦQ(A). By Šilov’s idempotent theorem, the character-

istic function χψ of {ψ} is in Q(A). Since ΦA is a determining set for ΦQ(A), necessarily

ψ ∈ ΦA, and clearly ψ is weakly isolated in ΦA.

Theorem 6.12. Let A be a Banach function algebra such that |ΦA| ≥ 2, and take ϕ ∈ ΦA.

Then the following are equivalent:

(a) the ideal Mϕ has a bounded pointwise approximate identity;

(b) the algebra A has a bounded pointwise approximate identity and ϕ is an isolated

point of ΦQ(A).

Proof. The characteristic function of {ϕ} on ΦQ(A) is denoted by χϕ.

(a) ⇒ (b) Take E to be a weak-∗ accumulation point in A′′ of a BPAI in Mϕ. By

Proposition 6.11(i), ϕ is an isolated point of ΦQ(A), and so χϕ ∈ Q(A). Then [E] + χϕ is

the identity of Q(A), and so, again by Proposition 6.4(iii), A has a BPAI.

(b) ⇒ (a) Since A has a BPAI, there exists E ∈ A′′ such that [E] is the identity of

Q(A). Since ϕ is an isolated point of ΦQ(A), it follows that χϕ ∈ Q(A), and so there

exists F ∈ A′′ such that [F] = χϕ. The element E − F is in M ′′ϕ , and is such that

〈E − F, ψ〉 = 1 (ψ ∈ ΦA \ {ϕ}), and so Mϕ has a bounded pointwise approximate

identity.

Corollary 6.13. Let A be a Banach function algebra with a bounded pointwise approx-

imate identity and such that |ΦA| ≥ 2, and take ϕ ∈ ΦA. Then the ideal Mϕ has a bounded

pointwise approximate identity if and only if ϕ is an isolated point of ΦQ(A).

For example, let A be the disc algebra, so that A has an identity. The maximal ideal

M0 does not have a bounded pointwise approximate identity, and so 0 is not an isolated

point of ΦQ(A). We shall identify Q(A) in Example 7.5. Again, take Γ to be a locally

compact group. Then A(Γ) has the separating ball property (see Example 11.3(ii)), and

so, by Theorem 6.10(i), each point of Γ is isolated in ΦQ(A(Γ)). However, as noted on

page 30, in the case where Γ is not amenable, A(Γ) does not have a bounded pointwise

approximate identity, and so no maximal modular ideal in A(Γ) has a bounded pointwise

approximate identity.

Let A be a natural uniform algebra on a non-empty, compact space K. In the following

proposition, we again regard K as a subset of ΦQ(A). Also, we write G(A) for the set of

points x ∈ K such that {x} is a one-point Gleason part in K. Recall that dA denotes the

Gleason metric on K.
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Proposition 6.14. Let A be a natural uniform algebra on a non-empty, compact space

K.

(i) Each point of G(A) is an isolated point of ΦQ(A), and so the set G(A) is open and

discrete in ΦQ(A).

(ii) Each isolated point of ΦQ(A) is an isolated point of (K, dA).

(iii) In the case where Q(A) is a uniform algebra on ΦQ(A), the space G(A) is equal

to the set of isolated points of ΦQ(A).

Proof. (i) Suppose that x ∈ G(A). Then, by Corollary 4.16, A has the weak separating

ball property at x, and so, by Theorem 6.10(i), x is an isolated point of ΦQ(A).

(ii) Suppose that x is an isolated point of ΦQ(A), so that x ∈ K by Proposition 6.11(ii).

Then there exists F ∈ A′′ such that F | ΦQ(A) is the characteristic function of {x} as a

subset of ΦQ(A), and again x ∈ K. Set r = ‖F‖, and take y ∈ K with y 6= x. Then

dA(y, x) ≥ |〈F, εy〉 − 〈F, εx〉| /r = 1/r ,

and so x is an isolated point of (K, dA).

(iii) Now suppose that Q(A) is a uniform algebra on ΦQ(A). By (i), we must show

that each isolated point ϕ of ΦQ(A) is in G(A). Such a point ϕ is an isolated point of

(K, dA) by (ii).

Since x is isolated in ΦQ(A), the function χx belongs to Q(A); since Q(A) is a uniform

algebra, ‖χx‖ = 1. Take F ∈ A′′[1] with F | ΦQ(A) = χx, and again take y ∈ K \{x}. Then

〈F, εy〉 = 0 and 〈F, εx〉 = 1, and so there is a net (fν) in A[1] with limν fν(y) = 0 and

limν fν(x) = 1. It follows that y is not in the same Gleason part as x, and so x ∈ G(A).

We shall give an example in Example 7.6, below, to show that an isolated point of

ΦQ(A) need not belong to G(A), and so we shall have an example of a uniform algebra

A such that Q(A) is not a uniform algebra.

6.2. Compactness in ΦQ(A). Let A be a Banach function algebra, and consider the

closure, ΦA, of ΦA in the space ΦQ(A), where the latter space has its usual weak-∗
topology, σ(Q(A)′,Q(A)), identified with σ(L(A)′′, L(A)′). Here we consider the question

when this closure is compact. We shall show that this is the case if and only if ΦA is

weakly closed in A′.

Let A be a Banach function algebra, and suppose that ΦA is not weakly closed in A′.

Then, as noted several times before, the weak closure of ΦA in A′ is ΦA ∪ {0}.
Now let F be a Banach space such that its dual B = F ′ is a Banach function algebra.

Then B′ = F ′′. Let Ω be a non-empty subset of ΦB that is contained in F . We note that

a net (ϕα) in Ω converges to zero in the topology σ(B′, B) if and only if (ϕα) converges

to zero in the weak topology, σ(F, F ′). On the other hand, no net (ϕα) in Ω converges

to zero in the weak-∗ topology σ(B′, B) of B′ if and only if the closure Ω of Ω in ΦB is

compact.

These comments prove the following result.
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Lemma 6.15. Let F be a Banach space such that its dual B = F ′ is a Banach function

algebra. Suppose that the set Ω := ΦB ∩ F is non-empty, and let Ω be its closure in ΦB.

Then Ω is compact as a subset of ΦB if and only if Ω is weakly closed in F .

Now let A be a Banach function algebra, and set F = L(A) and Q(A) = A′′/F⊥, as

before.

Theorem 6.16. Let A be a Banach function algebra. Then the following conditions are

equivalent:

(a) ΦA is weakly closed in A′;

(b) the closure of ΦA in ΦQ(A) is compact.

Proof. This follows from Lemma 6.15, taking B = Q(A) and Ω = ΦA.

Proposition 6.17. Let A be a Banach function algebra, and suppose that A has a

bounded pointwise approximate identity. Then ΦA is weakly closed in A′.

Proof. By Proposition 6.4(iii), Q(A) has an identity, and so ΦQ(A) is compact. Hence,

the closure of ΦA in ΦQ(A) is compact, and so ΦA is weakly closed in A′ by Theorem

6.16.

We do not know whether the converse of the above proposition holds.
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7. Examples

We now present some examples of classical Banach function algebras A, and describe

the corresponding Banach function algebra Q(A) = A′′/L(A)⊥ and its character space

ΦQ(A).

7.1. Elementary examples. We first give examples that show that, for a Banach

function algebra A, we can have Q(A) = A and that we can have Q(A) = A′′.

Example 7.1. Let A = (` 1, · ), the space of summable sequences with pointwise product,

so that A is a natural, Tauberian Banach sequence algebra on N, and hence an ideal in

its bidual. Further, A is a dual Banach function algebra with predual c 0. Here

A′ = `∞ = C(βN) ,

so that L(A) = c 00 ⊂ c0 and A′′ = M(βN). Thus L(A)⊥ = c⊥0 = M(N∗), where

N∗ = βN \ N is the growth of N in βN, and A′′ ∼= A⊕1 L(A)⊥. As in equation (5.3), the

product in A′′ is given by

(α, µ)2 (β, ν) = (αβ, 0) (α, β ∈ ` 1, µ, ν ∈M(N∗)) .

Thus the algebra A is Arens regular, Q(A) = A, and ΦA = ΦQ(A) = N. Also we have

A′′ = Q(A) n L(A)⊥ as a Banach algebra.

Since L(A)[1] is weak-∗ dense in A′[1], the algebra A has a BSE norm; this also follows

from Proposition 6.4(i).

Example 7.2. Take α such that 0 < α < 1, and consider the Banach function algebras

A = lipαI and LipαI of Lipschitz functions on the closed interval I, as in [12, §4.4]. Then

the Lipschitz algebra A is Arens regular and A′′ = LipαI [12, Theorem 4.4.34]. The

Banach function algebras A and A′′ are regular, natural, and self-adjoint on I. However

these algebras do not have the separating ball property, and maximal ideals in them do

not have a bounded pointwise approximate identity. Here L(A)⊥ = {0} and Q(A) = A′′,

so that ΦQ(A) = I.

7.2. Uniform algebras. We now consider the case where A is a uniform algebra on a

locally compact space.

Example 7.3. Set A = C 0(K), where K is a non-empty, locally compact space, so

that A has the separating ball property. Then A′ = M(K) and A′′ = C(K̃), where K̃,

the hyper-Stonean envelope of K, is a hyper-Stonean space, as we noted earlier. Thus

ΦA′′ = K̃.

We recall that M(K) = Mc(K) ⊕1 Md(K), where Mc(K) and Md(K) denote the

closed subspaces of M(K) consisting of the continuous and discrete measures, respect-

ively. We have Md(K) = ` 1(K), and so Md(K)′ = `∞(K) = C(βKd), where Kd denotes

the space K with the discrete topology and βS denotes the Stone–Čech compactification

of a discrete space S. We regard βKd as a clopen subspace of K̃, and set K̃c = K̃ \ βKd,

so that Mc(K)′ = C(K̃c). For details of these remarks, see [13].
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Here it is clear that L(A) ∼= ` 1(K), and hence that

Q(A) = `∞(K) = C(βKd) and ΦQ(A) = βKd .

Thus the predual of Q(A) is ` 1(K), and ΦA and ΦQ(A) can be identified with K and

βKd, respectively, so that ΦA = ΦQ(A) and ΦA is the set of isolated points in ΦQ(A), in

accord with Theorem 6.10(ii). It follows that

L(A)⊥ = {F ∈ C(K̃) : F | βKd = 0} = I(βKd)

and A′′ = Q(A) n L(A)⊥ as a Banach algebra. In fact, since βKd is a clopen subset of

K̃, we can identify Q(A) with the closed ideal

{F ∈ C(K̃) : F | K̃c = 0} = I(K̃c)

in A′′, so that Q(A) is a uniform algebra, and hence is itself Arens regular.

Here the embedding of ΦA in ΦQ(A) is continuous only in the special case that K is

discrete. In particular, consider the case where A = c 0. Then

Q(A) = A′′ = `∞ = C(βN) .

Again set A = C(K) for a compact space K, so that Q(A) = C(βKd). Then Q(Q(A))

is equal to C(β((βKd)d)), usually a far bigger space than Q(A).

The natural continuous surjection from K̃ onto K∞, the one-point compactification

of K, is denoted by πK . Take x ∈ K∞. Then

K{x} = π−1
K ({x}) = {p ∈ K̃ : πK(p) = x}

is the fibre in K̃ at x. Each fibre K{x} is a closed subspace of K̃, and clearly we have

K̃ =
⋃
{K{x} : x ∈ K∞}. It is easy to see that, when C0(K) is regarded as a subspace of

C(K̃) via the canonical embedding, the space C0(K) consists of the functions F ∈ C(K̃)

such that F | K{x} is constant for each x ∈ K and also such that F | K{∞} = 0.

Example 7.4. Let A be a natural uniform algebra on a compact space K. Then A′′ is

a closed subalgebra of C(K̃), and A is Arens regular; the canonical image of A in A′′

consists of the functions in A′′ that are constant on each fibre in K̃. However A′′ does

not necessarily separate the points of K̃, and so A′′ may not be a uniform algebra on K̃.

The character space of A′′ is again denoted by ΦA′′ , and we again regard K as a subset of

ΦA′′ ; its closure in ΦA′′ is K. For a study of the algebra A′′ (for a special class of ‘tight’

uniform algebras), see [11].

Denote by I = I(K) the closed ideal in A′′ (when defined on ΦA′′) consisting of all

functions in A′′ that vanish on K, so that Q(A) = A′′/I. The hull of I in ΦA′′ is h(I), so

that Q(A) is a natural Banach function algebra on h(I).

We now determine Q(A) and ΦQ(A) in the case where A is the disc algebra. We are

greatly indebted to Professor Ken Davidson for some valuable explanations.

Example 7.5. Let A = A(D) be the disc algebra. Our main source for results that we

use in this example is the book of Garnett [30].
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We shall write H1 for the Hardy space H1(D) that consists of the analytic functions

f on D such that

‖f‖H1 := sup
0<r<1

1

2π

∫ 2π

0

∣∣f(reiθ)
∣∣ dθ <∞ ,

with H1
0 for {f ∈ H1 : f(0) = 0}. For these spaces, see [30, Chapter II and p. 133].

We regard A as a closed subalgebra of C(T), and we denote the Lebesgue measure

on T by m. The space of measures that are absolutely continuous with respect to m is

identified with L1(T,m) and Msc(T) is the space of continuous measures on T that are

singular with respect to m, and then

C(T)′ = M(T) = L1(T,m)⊕1 `
1(T)⊕1 Msc(T) .

The space A⊥ is the annihilator of A in M(T). The fact that A⊥ can be identified

as a closed subspace of L1(T,m) is the classical F. and M. Riesz theorem for the disc

algebra, and, as explained in [30, p. 133], this implies that A⊥ can be identified with the

space H1
0 (see also [31, Theorem II.7.10]). Thus we conclude that

A′ = (L1(T,m)/H1
0 )⊕1 `

1(T)⊕1 Msc(T) . (7.1)

By a theorem of Ando [2] that is given in [30, Theorem V.5.4], L1(T,m)/H1
0 is the unique

isometric predual of H∞ as a Banach space. Thus it follows from equation (7.1) that

A′′ = H∞ ⊕∞ `∞(T)⊕∞Msc(T)′

as a Banach space.

Each character on A, given by z ∈ D, has a unique representing measure, say µz, on

T, so that

f(z) =

∫
T
f dµz (f ∈ A) ;

see [30, p. 200].

Take z ∈ T. Then the unique representing measure for εz is the point mass, δz, at z,

and so lin {εz : z ∈ T} = ` 1(T), i.e., L(A,T) = ` 1(T).

Each element of L(A,D)′ extends by Hahn–Banach to an element of A′′. The re-

striction to L(A,D) of each element of `∞(T)⊕∞Msc(T)′ is the zero functional, and so

L(A,D)′ is a identified with a subspace of H∞. Now take f ∈ H∞. Then the map

Λf : λ =

n∑
i=1

αiεzi 7→
n∑
i=1

αif(zi) , L(A,D)→ C ,

is a linear functional on L(A,D). Fix ε > 0. There exists z ∈ D with |f(z)| > |f |D−ε, and

so ‖Λf‖ ≥ |〈Λf , εz〉| = |f(z)| > |f |D − ε, whence ‖Λf‖ ≥ |f |D. Set fr(z) = f(rz) (z ∈ D)

for 0 < r < 1, so that fr ∈ A, and take λ ∈ L(A,D). Then |λ(fr)| ≤ ‖λ‖ |fr|D (0 < r < 1),

and hence

|〈Λf , λ〉| = lim
r→1
|λ(fr)| ≤ ‖λ‖ |f |D .

Thus Λf ∈ L(A,D)′ with ‖Λf‖ = |f |D, and the element of H∞ corresponding to Λf is f .

It follows that L(A,D)′ ∼= H∞.
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It now follows from equation (7.1) that L(A) = (L1(T,m)/H1
0 ) ⊕1 `

1(T), and hence

that

Q(A) = L(A)′ = H∞(D)⊕∞ `∞(T)

as a Banach space.

Take f ∈ Q(A). It is clear that f is identified with the pair (f | D, f | T) in the space

H∞(D)⊕∞ `∞(T) and that the product in this latter space is given by

(F1, G1) (F2, G2) = (F1F2, G1G2) (F1, F2 ∈ H∞(D), G1, G2 ∈ `∞(T)) ,

and so Q(A) is identified with the uniform algebra H∞(D)⊕∞ `∞(T).

The character space of Q(A) is the disjoint union of ΦH∞ and β Td. We recall that,

by Carleson’s corona theorem [30, Chapter VIII], the character space of H∞ is a compact

space containing D as a dense subset, and so the set D is dense in ΦQ(A) and ΦQ(A) is

exactly the hull of L(A(D))⊥.

The above proof can be generalized to apply to uniform algebras defined on suitable

subsets of Cn using the techniques of [9], [11], and [48].

Example 7.6. In [26, Theorem 2.1], Feinstein constructed a separable, strongly regular,

natural uniform algebra A on a compact space K such that there is a two-point Gleason

part, say P := {x1, x2}, in K and such that all other points of K are peak points, and

hence one-point Gleason parts. Here Γ(A) = K and Γ0(A) = K \ P .

Take a finite set F in K \ {x1}; we may suppose that x2 ∈ F , so that F has the

form {x2, x3, . . . , xn}, where x2, x3, . . . , xn are distinct points in K. Take f2 ∈Mx2
with

f2(x1) = 1, and set m = |f2|K . Fix ε ∈ (0, 1), and take δ > 0 such that (1 − δ)n < ε.

For j = 3, . . . , n, take fj ∈ Mxj
with |fj(x1)− 1| < δ and |fj |K = 1, and then define

f = f2f3 · · · fn ∈ A, so that |f |K ≤ m and |f(x1)− 1| < (1 − δ)n < ε. Finally, define

g = f(x1)1K − f , so that g ∈ Mx1 with |g(xj)− 1| < ε and |g|K ≤ m+ 1 + ε. It follows

that Mx1
has a bounded pointwise approximate identity with bound m + 1. Similarly,

Mx2 has a bounded pointwise approximate identity, and each other maximal ideal of the

algebra A has a contractive pointwise approximate identity.

By Theorem 4.17(i), there exists an idempotent E ∈ A′′ such that 〈E, εx〉 = 1 (x ∈ P )

and 〈E, εy〉 = 0 (y ∈ K \ P ). For M ∈ A′′, consider the element

FM = (M E − 〈M, εx1〉E) (M − 〈M, εx2〉E) ∈ A′′ .

As in Theorem 6.10, 〈[FM ], εy〉 = 0 (y ∈ K), and this implies that [FM ] = 0 inQ(A). Take

ϕ ∈ ΦQ(A) \ P , so that 〈[E], ϕ〉 = 0 or 〈[E], ϕ〉 = 1, and assume towards a contradiction

that 〈[E], ϕ〉 = 1. Then there exists M ∈ A′′ with 〈[M ], εx1
〉 = 〈[M ], εx2

〉 = 1 and

〈[M ], ϕ〉 = 0, and hence 〈FM , ϕ〉 = 1, a contradiction. We conclude that [E] is the

characteristic function of P in ΦQ(A), and so each of the two points x1 and x2 is isolated

in ΦQ(A).

Certainly x1 and x2 are isolated in (K, dA), but {x1} and {x2} are not one-point

parts. As we remarked, Proposition 6.14(iii) implies that Q(A) is not a uniform algebra,

but it is equivalent to a uniform algebra. It follows from Proposition 4.4 that the maximal

ideal Mx1
does not have norm-one characters because it clearly does not have the weak

separating ball property. Nevertheless, ΦMx1
is weakly closed in M ′x1

. Indeed, there exists
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F ∈ M ′′x1
with 〈F, εy〉 = 1 (y ∈ K \ P ), and this implies that ΦMx1

is weakly closed in

M ′x1
.

An example that is a development of the above example will give a uniform algebra

A such that Q(A) is not even equivalent to a uniform algebra on ΦQ(A); see [15].

Example 7.7. In [50], Sidney constructed a natural, separable uniform algebra on a

compact space K and a point x ∈ K such that {x} is a one-point Gleason part, but such

that M2
x is not dense in Mx, and so Mx does not have an approximate identity.

In [32], it is shown that there is a natural, separable, regular uniform algebra A on a

compact space K and x ∈ K such that Γ0(A) = K \ {x} (so that each point of K is a

one-point part, and hence A is pointwise contractive), but again M2
x is not dense in Mx.

In [14, Theorem 2.3], it is shown that there is a natural, separable uniform algebra

on a compact metric space K such that each point of K is a one-point Gleason part, but

Γ(A) ( K, so that A is not a Cole algebra, and hence not contractive.

Recall that it was shown in Proposition 4.21(i) that a maximal ideal Mx in a natural

uniform algebra on a non-empty, compact space has a contractive pointwise approximate

identity if and only if {x} is a one-point part. Thus the above examples show that there

are maximal ideals in uniform algebras that have a contractive pointwise approximate

identity, but such that they do not have any approximate identity.

7.3. Harmonic analysis. Here we give some examples related to Banach function alge-

bras that arise in harmonic analysis. Again the group algebra of a locally compact group

G is (L1(G), ? ) and A(Γ) and B(Γ) are the Fourier and Fourier–Stieltjes algebras of a

locally compact group Γ.

Example 7.8. Let G be a compact, abelian group, and set A = (L1(G), ? ), so that

ΦA = Γ, the dual group of G. Then Γ is discrete and A(Γ) is a Tauberian Banach

sequence algebra on Γ, and hence an ideal in its bidual. Also A′ = L∞(G), a C∗-algebra

for the pointwise product, L(A) = C(G), and A′′ = M(G)⊕1 C(G)⊥, so that

Q(A) = Q(L1(G)) = M(G) . (7.2)

Since (M(G), ? ) is a closed subalgebra of (A′′, 2 ), we again see that

A′′ = Q(A) n L(A)⊥

as a Banach algebra. We have ΦQ(A) = Γ ∪ H, where H is the hull of A when A is

considered as an ideal in M(G). Here, the embedding of ΦA into ΦQ(A) is continuous.

Since M(G) is a unital Banach algebra, ΦQ(A) is compact and so ΦA is also compact.

In the case where G is infinite, the Wiener–Pitt phenomenon shows that ΦA is a proper

subset of ΦQ(A).

Example 7.9. Let G be a locally compact abelian group, with dual group Γ. Then bG,

the dual group to Γd, is the compact abelian group that is the Bohr compactification of

G, so that the Banach function algebra B(Γd) is identified with (M(bG), ? ).
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Set A = (L1(G), ? ), identified with the Banach function algebra A(Γ). We have noted

that L(A) is identified with AP (G), and hence with C(bG).

As Banach spaces, we have

Q(A) = L(A)′ = C(bG)′ = M(bG),

and (Q(A), · ) is Banach-algebra isometrically isomorphic to (M(bG), ? ) and hence to

(B(Γd), · ).

Example 7.10. Let Γ be a locally compact group. The dual space A(Γ)′ is identified

with V N(Γ), the group von Neumann algebra of Γ; see [38, Theorem 2.3.9]. For x ∈ Γ

and h ∈ L2(Γ), set

(λxh)(y) = h(x−1y) (y ∈ Γ) ,

so that λx ∈ V N(Γ) ⊂ B(L2(Γ)) and V N(Γ) is the weak-operator closure of the space

lin {λx : x ∈ Γ} [24, Définition (3.9)]. Each operator λx acts as a character on A(Γ),

and indeed we can identify ΦA(Γ) with {λx : x ∈ Γ}; for this, see [38, Lemma 2.3.1

and Theorem 2.3.8]. Thus L(A(Γ)) can be identified with the C∗-subalgebra of V N(Γ)

generated by {λx : x ∈ Γ}. This latter C∗-algebra is denoted by C∗δ (Γ) in the literature;

see [43, §4] and [8]. Thus

Q(A(Γ)) = C∗δ (Γ)′ .

We shall make some remarks on the identification of C∗δ (Γ)′.

The reduced C∗-algebra of Γ is denoted by C∗ρ(Γ); when Γ is amenable, we have

C∗ρ(Γ) = C∗(Γ). It was shown by Bédos in [4] that there is a natural surjection

R : C∗δ (Γ)→ C∗ρ(Γd) ,

where Γd is the group Γ with the discrete topology, and so we can say that the algebra

Q(A(Γ)) contains the reduced Fourier–Stieltjes algebra Bρ(Γd) = C∗ρ(Γd)
′, and hence

Bρ(Γd) ⊂ Q(A(Γ)) .

In the two cases where Γ is discrete and where Γd is amenable, it is shown in [4,

Theorem 3] that C∗δ (Γ) = C∗ρ(Γd). It follows that, in the case where Γ is discrete,

Q(A(Γ)) = C∗δ (Γ)′ = C∗ρ(Γ)′ = Bρ(Γ) ,

and that, when Γd is amenable,

Q(A(Γ)) = C∗δ (Γ)′ = C∗ρ(Γd)
′ = C∗(Γd)

′ = B(Γd) .

These equations recover the previous example, equation (7.2), in the case where Γ is

abelian and discrete.

In the case where the locally compact group Γ is amenable, the above map R is an

injection if and only if Γd is amenable; in this case, we have Q(A(Γ)) = Bρ(Γd). An

extension of this result was given in [5, Theorem 1]: for an arbitrary locally compact

group Γ, the map R : C∗δ (Γ) → C∗ρ(Γd) is an isomorphism if and only if Γ contains an

open subgroup ∆ such that ∆d is amenable. It seems to be an open question whether

Q(A(Γ)) = B(Γd) in the case where Γ = SO(3); in this case Γ is amenable, but Γd is not

amenable.
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We now give a separate, explicit identification of the isometric algebra isomorphism

from B(Γd) onto Q(A(Γ)) in the case where Γd is amenable.

Indeed, let Γ be a locally compact group such that Γd is amenable. For u ∈ B(Γd),

define

Lu : λ 7→ 〈u, λ〉 , C∗δ (Γ)→ C .

Since C∗δ (Γ) = C∗(Γd) and C∗(Γd)
′ = B(Γd), we see that

‖Lu‖ = ‖u‖ (u ∈ B(Γd)) .

Since C∗δ (Γ) is a C∗-subalgebra of V N(Γ), the functional Lu on C∗(Γd) has a Hahn–

Banach extension ũ ∈ V N(Γ)′ = A(Γ)′′ with ‖ũ‖ = ‖u‖. Suppose that v ∈ A(Γ)′′ is

another such extension of u. Then ũ− v ∈ L(A(Γ))⊥, and so the map

θ : u 7→ [ũ] , B(Γd)→ Q(A(Γ)) ,

is a well-defined linear isometry, easily seen to be an algebra homomorphism.

To show that θ is a surjection, take M ∈ A(Γ)′′. Then there is a bounded net, say

(fα), in A(Γ) that converges weak-∗ to M. Since

A(Γ) ⊂ B(Γ) ⊂ B(Γd)

isometrically, the net (fα) is bounded in B(Γd) = C∗(Γd)
′, and so has a weak-∗ accumu-

lation point, say u, in B(Γd), and θ(u) = [M] ∈ Q(A(Γ)). Thus θ : B(Γd) → Q(A(Γ)) is

an isometric algebra isomorphism.

Again suppose that Γ is a locally compact group such that Γd is amenable. Then

ΦQ(A(Γ)) = ΦB(Γd) ,

and so Γ = ΦA(Γ) ⊂ ΦB(Γd). Since A(Γd) is a closed ideal in B(Γd), it follows that

ΦQ(A(Γ)) = Γd ∪H, where H is the hull of A(Γd) considered as a closed ideal in B(Γd),

and ΦA(Γ) is identified with the set of isolated points in ΦQ(A(Γ)), as in Theorem 6.10.

Note that Example 7.9 is a special case of the above example.

Example 7.11. Let ω = (ωn : n ∈ Z) be a weight on the group (Z,+), so that the

map ω : Z → [1,∞) is such that ω0 = 1 and ωm+n ≤ ωmωn (m,n ∈ Z), and let Bω be

the weighted space ` 1(Z, ω), with convolution product ? , so that Bω is a subalgebra of

(` 1(Z), ? ). The commutative Banach algebra Bω is an example of a Beurling algebra; for

a study of considerably more general versions of these algebras, see [12, §4.6] and [16].

The algebras Bω can be identified with a natural Banach function algebra on a certain

compact subspace of C; the algebra Bω is a dual Banach function algebra with predual

c0(Z, 1/ω) = {(βn : n ∈ Z) : lim
|n|→∞

|βn| /ωn = 0} .

In fact, we shall consider just the case where

inf{ω1/n
n : n ∈ N} = sup{ω−1/n

−n : n ∈ N} = 1 , (7.3)

so that Bω is identified with a natural Banach function algebra on the unit circle T.

Suppose further that lim|n|→∞ ωn = ∞ (for example, we can take ω = (ωn : n ∈ Z),

where

ωn = (1 + |n|)α (n ∈ Z)
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for some α > 0). Then each character on Bω has the form (ζn : n ∈ Z) for some ζ ∈ T,

and so ΦBω
⊂ c0(Z, 1/ω). It follows from Proposition 5.4 that L(Bω) = c0(Z, 1/ω) and

that Q(Bω) = Bω.

We are not clear on the identification of Q(Bω) when ω satisfies (7.3) and is un-

bounded, but it is not the case that lim|n|→∞ ωn =∞; such weights exist.

Example 7.12. Let Γ be a locally compact group, and take p such that 1 < p < ∞.

Then the Figà-Talamanca–Herz algebra A = Ap(Γ) is defined in [12, Definition 4.5.29]; it

was studied by Herz [33], and is described in the book of Derighetti [22, Chapter 3]. It is

known that (Ap(Γ), · ) is a natural, self-adjoint, strongly regular Banach function algebra

on Γ with the separating ball property; for this, see [22, Chapter 3], [33, Propositions 2

and 3], and [57, Proposition 2.5].

As noted in [8], ΦA = Γ is weakly closed in A′ if and only if Γ is amenable, and so,

by Theorem 6.16, the closure of ΦA in ΦQ(A) is compact if and only if Γ is amenable.

Let Γ be a discrete, amenable group, and again set A = Ap(Γ). Then A is an ideal in

A′′ and A has a bounded approximate identity. Let Bρ(Γ) be the multiplier algebra of

A. Then, as in Example 7.8, we have Q(A) = Bρ(Γ) and

A′′ = Bρ(Γ) n L(A)⊥ ,

so that ΦQ(A) = Γ ∪ H, where H is the hull of A when A is regarded as an ideal in

Bρ(Γ).
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8. Existence of contractive pointwise approximate identities

As we stated in the introduction, we are interested in finding necessary and sufficient

conditions on a Banach function algebra to have a bounded pointwise approximate iden-

tity and, especially, a contractive pointwise approximate identity. We shall obtain such

conditions in this section, and then give some applications.

Recall that a Banach function algebra A with a contractive pointwise approximate

identity has norm-one characters.

Theorem 8.1. Let A be a Banach function algebra. Then A has a contractive pointwise

approximate identity if and only if ‖λ‖ = 1 (λ ∈ co ΦA).

Proof. Certainly ‖λ‖ ≤ 1 (λ ∈ co ΦA).

Suppose that A has a CPAI. Then there exists an element E ∈ A′′ such that ‖E‖ = 1

and 〈E, ϕ〉 = 1 (ϕ ∈ ΦA). Take λ ∈ co ΦA. Then 〈E, λ〉 = 1, and so ‖λ‖ ≥ 1. Hence

‖λ‖ = 1.

Conversely, suppose that ‖λ‖ = 1 (λ ∈ co ΦA). Then, for each λ ∈ co ΦA, there

exists M ∈ A′′ with ‖M‖ = 1 and 〈M, λ〉 = 1. In particular, take n ∈ N and a subset

S = {ϕ1, . . . , ϕn} of ΦA. Set λS = (
∑n
j=1 ϕj)/n ∈ co ΦA. Since ‖λS‖ = 1, there exists

MS ∈ A′′ with ‖MS‖ = 1 and 〈MS , λS〉 = 1. Since |〈MS , ϕ〉| ≤ 1 (ϕ ∈ ΦA), the latter is

possible only if 〈MS , ϕj〉 = 1 (j ∈ Nn). Thus, for each non-empty, finite subset S of ΦA,

there is MS ∈ A′′[1] with 〈MS , ϕ〉 = 1 (ϕ ∈ S), and this easily gives a CPAI in A.

As a first application of the above theorem, we present the following result.

Let A and B be Banach function algebras, and suppose that θ : A → B is a homo-

morphism. We recall the standard fact [12, Theorem 2.3.3] that θ is automatically con-

tinuous, and so it has a dual map θ′ : B′ → A′ that restricts to a continuous map

θ′ : ΦB → ΦA ∪ {0}.

Theorem 8.2. Let A and B be Banach function algebras, and suppose that θ : A→ B is a

monomorphism with dense range such that θ′(ΦB) = ΦA. Then the map θ′ : L(B)→ L(A)

is a surjective isometry if and only if

‖θ(f)‖BSE, B = ‖f‖BSE, A (f ∈ A) . (8.1)

In this case, Q(A) and Q(B) are isometrically isomorphic as Banach algebras.

Proof. Since θ(A) = B, it follows that θ(A) is also dense in (B, ‖ · ‖BSE, B), and so

{θ(f) : f ∈ A, ‖θ(f)‖BSE, B ≤ 1} is dense in the set {g ∈ B : ‖g‖BSE, B ≤ 1}.
Now suppose that equation (8.1) holds. It follows that {θ(f) : f ∈ A, ‖f‖BSE, A ≤ 1}

is dense in the set {g ∈ B : ‖g‖BSE, B ≤ 1}.
Next take λ ∈ L(B), so that θ′(λ) ∈ L(A). By Proposition 5.8,

‖θ′(λ)‖A′ = sup{|〈f, θ′(λ)〉| : f ∈ A, ‖f‖BSE, A ≤ 1} ,
and so

‖θ′(λ)‖A′ = sup{|〈g, λ〉| : g ∈ B, ‖g‖BSE, B ≤ 1} .

Thus, again by Proposition 5.8, ‖θ′(λ)‖A′ = ‖λ‖B′ , and so θ′ : L(B) → L(A) is an

isometry. Since θ′(ΦB) = ΦA, this map is a surjection.
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The converse is immediate from the definitions.

Set µ = θ′ | L(B) : L(B)→ L(A). In the case where µ is a surjective isometry, the dual

map µ′ : L(A)′ → L(B)′ is also a surjective isometry, and so µ′ : Q(A) → Q(B) is also

a surjective isometry. Moreover, µ′ is a homomorphism because θ is a homomorphism.

Hence Q(A) and Q(B) are isometrically isomorphic as Banach algebras.

Corollary 8.3. Let A and B be Banach function algebras, and suppose that θ : A→ B

is a monomorphism with dense range such that θ′(ΦB) = ΦA and such that

‖θ(f)‖BSE, B = ‖f‖BSE, A (f ∈ A) .

Then A has a contractive pointwise approximate identity if and only if B has a contractive

pointwise approximate identity.

Proof. This now follows from Theorems 8.1 and 8.2.

Theorem 8.4. Let A be a Banach function algebra such that ‖f‖BSE = |f |ΦA
(f ∈ A).

Then A has a contractive pointwise approximate identity if and only if A has norm-one

characters.

Proof. Suppose that A has norm-one characters. Take B to be the uniform closure of A

in C0(ΦA), so that ΦB = ΦA and B has norm-one characters. Since ‖ · ‖BSE, B = | · |ΦA
,

it follows from the hypothesis that ‖f‖BSE, B = ‖f‖BSE, A (f ∈ A). By Corollary 8.3, A

has a CPAI if and only if B has a CPAI. By Theorem 4.19, B has a CPAI, and so A has

a CPAI.

The converse is immediate.

Let (A, ‖ · ‖A) be a Banach function algebra. Then (A, ‖ · ‖BSE) is complete if and only

ifA has a BSE norm, and this is not always the case. Let (B, ‖ · ‖B) be the Banach function

algebra that is the completion of (A, ‖ · ‖BSE), so that ΦB = ΦA and L(B) = L(A). It

follows from equation (5.4) that ‖λ‖B′ = ‖λ‖A′ (λ ∈ L(A)), and so

‖f‖BSE,A = ‖f‖B = ‖f‖BSE,B (f ∈ A) .

Let θ : A→ B be the identity map. Then equation (8.1) is satisfied, and so Theorem 8.2

applies, and so we have the following corollary, which also uses Corollary 8.3.

Corollary 8.5. Let A be a Banach function algebra, and let B be the Banach function

algebra that is the completion of (A, ‖ · ‖BSE). Then

(Q(A), ‖ · ‖Q(A)) = (Q(B), ‖ · ‖Q(B)) ,

and B has a contractive pointwise approximate identity if and only if A has a contractive

pointwise approximate identity.

The following isomorphic form of Theorem 8.2 also holds.

Proposition 8.6. Let A and B be Banach function algebras, and suppose that θ : A→ B

is a monomorphism with dense range such that θ′(ΦB) = ΦA. Suppose that A and B both

have BSE norms. Then θ′ : L(B) → L(A) is an isomorphism if and only if θ is a

surjection.
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For example, let Γ1 and Γ2 be two locally compact groups, and suppose that there

is a monomorphism θ : A(Γ1) → A(Γ2) such that θ has dense range. Since A(Γ1) is a

regular Banach function algebra, it follows that θ′(ΦA(Γ2)) = ΦA(Γ1). Thus Proposition

8.6 shows that θ′ : C ′δ(Γ2)→ C ′δ(Γ1) is an isomorphism if and only if θ is a surjection.

Recall that, whenever A is a natural Banach function algebra on a locally compact

space K and S is Segal algebra with respect to A, the Banach function algebra S is also

a natural Banach function algebra on K, and so we can regard L(A) as a subspace of

both A′ and S′.

Let S be a Segal algebra with respect to a Banach function algebra A, and take

j : L(A)→ L(S) to be the identity mapping, so that j is a contraction. The adjoint map

is j′ : L(S)′ → L(A)′, so that

j′(M + L(S)⊥) = M + L(A)⊥ (M ∈ S′′) .

(In the above equation, the M on the left is an element of S′′ ⊂ A′′, but the M on the right

is regarded as an element of A′′.) The map j′ : Q(S) → Q(A) is a contractive algebra

homomorphism, and it is clearly injective. Thus j′ : Q(S) → Q(A) is a Banach-algebra

monomorphism, but, in general, the image j′(Q(S)) is not dense in Q(A). Clearly we

have

j(ΦA) = ΦS and j′′(ΦQ(A)) ⊂ ΦQ(S) ∪ {0} .

In the case where ΦQ(A) is compact, j′′( ΦA ) is a compact subset of ΦQ(S) ∪ {0}, but it

can be that 0 ∈ j′′( ΦA ). For example, take A = c 0 and S = ` 1, so that ΦQ(A) = βN and

ΦQ(S) = N.

The following theorem implies that, in the case where S has a contractive pointwise

approximate identity, the map j : L(A)→ L(S) is an isometry, and so j′ : Q(S)→ Q(A)

is an isometric Banach-algebra isomorphism.

Theorem 8.7. Let (A, ‖ · ‖A) be a Banach function algebra, and suppose that (S, ‖ · ‖S)

is a Segal algebra with respect to A. Then the following are equivalent:

(a) S has a contractive pointwise approximate identity;

(b) A has a contractive pointwise approximate identity and

‖λ‖S′ = ‖λ‖A′ (λ ∈ L(A)) . (8.2)

(c) A has a contractive pointwise approximate identity and

‖f‖BSE,S = ‖f‖BSE,A (f ∈ S) . (8.3)

Proof. (a)⇒ (b) Suppose that S has a CPAI, say (eα). Then the net (eα) is also a CPAI

for A because ‖f‖A ≤ ‖f‖S (f ∈ S). Also we clearly have ‖λ‖S′ ≤ ‖λ‖A′ (λ ∈ L(A)).

Now take λ ∈ L(A) and ε > 0. Then there exists f ∈ A[1] with |〈f, λ〉| > ‖λ‖A′ − ε. The

net (eαf) is in S, and ‖eαf‖S ≤ ‖eα‖S ‖f‖A ≤ 1, and so

|〈f, λ〉| = lim
α
|〈eαf, λ〉| ≤ lim sup

α
‖eαf‖S ‖λ‖S′ ≤ ‖λ‖S′ ,

which shows that ‖λ‖A′ − ε < ‖λ‖S′ . It follows that ‖λ‖A′ ≤ ‖λ‖S′ , and then equation

(8.2) follows.
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(b)⇒ (a) By Theorem 8.1, ‖λ‖A′ = 1 (λ ∈ co ΦA), and so, immediately from equation

(8.2), ‖λ‖S′ = 1 (λ ∈ co ΦA). Hence, by Theorem 8.1 again, S has a CPAI.

(b) ⇒ (c) By the definition of the BSE norm, (8.2) implies (8.3).

(c) ⇒ (b) It follows from equation (8.3) that the set {f ∈ S : ‖f‖BSE, A ≤ 1} is dense

in the set {g ∈ A : ‖g‖BSE, A ≤ 1}. It now follows from equation (5.4) that equation (8.2)

also holds, giving (b).

The above result has some rather unexpected consequences; the next theorem is a

main result of this work.

Theorem 8.8. Let A be a Banach function algebra, and let S1 and S2 be two Segal

algebras with respect to A. Suppose that S1 and S2 both have contractive pointwise ap-

proximate identities. Then

(L(S1), ‖ · ‖S′
1
) = (L(S2), ‖ · ‖S′

2
) = (L(A), ‖ · ‖A′)

as Banach spaces and

(Q(S1), ‖ · ‖Q(S1)) = (Q(S2), ‖ · ‖Q(S2)) = (Q(A), ‖ · ‖Q(A)) . (8.4)

Proof. By the above theorem, the identifications of L(S1) and L(S2) with L(A) are

both isometries, and so L(S1) = L(S2), whence L(S1)′ = L(S2)′ = L(A)′. Thus the

identifications of Q(S1) and Q(S2) with Q(A) are both Banach-algebra isometries, and

hence equation (8.4) follows.

Corollary 8.9. Let G be a locally compact abelian group, and let S be a Segal algebra

with respect to L1(G). Suppose that S has a contractive pointwise approximate identity.

Then (L(S), ‖ · ‖S′) ∼= (AP (G), | · |G) and

(Q(S), ‖ · ‖Q(S)) = (M(bG), ‖ · ‖) .

Further, ‖f‖BSE,S = ‖f‖1 (f ∈ S), and hence the Banach function algebra S has a BSE

norm if and only if S = L1(G).

Proof. By the Bochner–Schoenberg–Eberlein theorem, ‖f‖BSE,L1(G) = ‖f‖1 for each

f ∈ L1(G)), and so this follows from Theorems 8.7 and 8.8 and earlier examples.

Thus, in the case where the Segal algebra S has a contractive pointwise approximate

identity, the biduals of S and L1(G) are equal modulo the ideals L(S)⊥ and AP (G)⊥,

respectively.

Examples 8.10. (i) Set A = c 0 and S = ` 1, regarded as natural Banach sequence

algebras on N, so that S is a Segal algebra with respect to A. Then A has an obvious

contractive approximate identity, but S does not have a bounded pointwise approximate

identity; this easy example shows that a Segal algebra with respect to a Banach function

algebra that has a contractive pointwise approximate identity need not itself have a

contractive pointwise approximate identity.

(ii) Let G be a locally compact abelian group that is neither discrete nor compact;

the dual group is Γ. Take p with 1 < p <∞.
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Set S1 = L1(G) ∩ Lp(G), taken with the norm given by

‖f‖S1
= max{‖f‖1 , ‖f‖p} (f ∈ S1) .

Also set S2 = {f ∈ L1(G) : f̂ ∈ Lp(Γ)}, taken with the norm given by

‖f‖S2
= max

{
‖f‖1 ,

∥∥∥f̂∥∥∥
p

}
(f ∈ S2) .

Then S1 and S2 are both Segal algebras with respect to L1(G) [12, Examples 4.5.27].

Neither S1 nor S2 has a bounded approximate identity, but it is proved in [35] that

both S1 and S2 have contractive pointwise approximate identities. Thus we can conclude

from the above results that L(S1) ∼= L(S2) and

(Q(S1), ‖ · ‖Q(S1)) = (Q(S2), ‖ · ‖Q(S2)) = (M(bG), ‖ · ‖) ,
that ∥∥f + L(S)⊥

∥∥ =
∥∥f +AP (G)⊥

∥∥ (f ∈ S)

for S = S1 and S = S2, and that neither S1 nor S2 has a BSE norm. Indeed, by Theorem

8.7 and the fact that the BSE norm for L1(G) is equal to the given norm, we have

‖f‖BSE,S = ‖f‖1 (f ∈ S)

for S = S1 and S = S2.
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9. ` 1-norms on L(A)

In this section, our aim is to compare the spaces L(A) and ` 1(ΦA) for a Banach function

algebra A, and determine when these two Banach spaces are mutually isometric or iso-

morphic. Equality of these two spaces is closely related to the equality of the two norms

| · |ΦA
and ‖ · ‖BSE, and is connected to the weak separating ball property.

Let A be a Banach function algebra. Then there is a natural contraction

ι : f 7→
∑
{f(ϕ)ϕ : (ϕ ∈ ΦA)} , (` 1(ΦA), ‖ · ‖1)→ (A′, ‖ · ‖) .

Clearly ι(` 1(ΦA)) contains L(A) and is contained in L(A), and so ι(` 1(ΦA)) is a dense

subspace of L(A). However, the map ι is not always an injection: it may be that there

exist a sequence (ϕn) in ΦA and an element α = (αn) ∈ ` 1 such that
∑∞
n=1 αnϕn = 0

(with convergence of the sum in A′), but with α 6= 0. For example, this occurs in the case

where A is the disc algebra A(D). For a discussion of this point, see [27]. Fortunately, the

following lemma shows that this difficulty does not arise in the cases of interest to us.

Recall from Corollary 4.4(i) that a Banach function algebra that has a bounded point-

wise approximate identity and has the separating ball property is such that every non-

zero, maximal modular ideal has a bounded pointwise approximate identity.

Lemma 9.1. Let A be a Banach function algebra such that Mϕ is non-zero and has a

bounded pointwise approximate identity for each ϕ ∈ ΦA∪{∞}. Take a set {αϕ : ϕ ∈ ΦA}
in C with ∑

{|αϕ| : ϕ ∈ ΦA} <∞ and
∑
{αϕ ϕ : ϕ ∈ ΦA} = 0 .

Then αϕ = 0 (ϕ ∈ ΦA).

Proof. Assume towards a contradiction that there exists ϕ0 ∈ ΦA such that αϕ0
6= 0.

Since both A and Mϕ0
have bounded pointwise approximate identities, it follows from

Proposition 3.6 that there exists an element M ∈ A′′ such that 〈M, ϕ〉 = δϕ,ϕ0
(ϕ ∈ ΦA).

Then

0 =

〈
M,

∑
ϕ∈ΦA

αϕϕ

〉
=
∑
ϕ∈ΦA

αϕ〈M, ϕ〉 = αϕ0 ,

a contradiction. Thus αϕ = 0 (ϕ ∈ ΦA).

It follows that, in the case where A satisfies the conditions of the above lemma, the

map ι : ` 1(ΦA) → A′ is an injection, and so we can regard ` 1(ΦA) as a subspace of

L(A). For λ = ι(f), where f ∈ ` 1(ΦA), we set ‖λ‖1 = ‖f‖1; in particular, for an element

λ =
∑n
i=1 αiϕi ∈ L(A), we have ‖λ‖1 =

∑n
i=1 |αi|.

Proposition 9.2. Let A be a Banach function algebra, and suppose that A is pointwise

contractive. Then ‖f‖BSE ≤ 4 |f |ΦA
(f ∈ A).

Proof. Take λ =
∑n
i=1 αiϕi ∈ L(A), and take ε > 0. Since A is pointwise contractive,

Proposition 3.8(ii) shows that there is f ∈ A[4] such that |αif(ϕi)− |αi| | < ε (i ∈ Nn).

Hence

‖λ‖1 =

n∑
i=1

|αi| ≤ |〈f, λ〉|+ nε ≤ ‖f‖ ‖λ‖+ nε ≤ 4 ‖λ‖+ nε .
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Thus ‖λ‖1 ≤ 4 ‖λ‖.
Now take f ∈ A. For each ε > 0, there exists λ =

∑n
i=1 αiϕi in L(A)[1] such that

|〈f, λ〉| > ‖f‖BSE − ε. and then

‖f‖BSE ≤

∣∣∣∣∣
n∑
i=1

αif(ϕi)

∣∣∣∣∣+ ε ≤
n∑
i=1

|αi| |f |ΦA
+ ε = ‖λ‖1 |f |ΦA

+ ε ≤ 4 |f |ΦA
+ ε ,

and so ‖f‖BSE ≤ 4 |f |ΦA
, giving the result.

We can now give our main classification theorem for unital Banach function algebras

that have a BSE norm.

Theorem 9.3. Let A be a unital Banach function algebra with a BSE norm.

(i) Suppose that A is contractive. Then A is equivalent to a Cole algebra.

(ii) Suppose that A is pointwise contractive. Then A is equivalent to a uniform algebra

for which each singleton in ΦA is a one-point part.

Proof. The result is trivial when |ΦA| = 1 (and then A is a Cole algebra), and so we may

suppose that |ΦA| ≥ 2.

In both cases, A is pointwise contractive, and so, by Proposition 9.2, A is equivalent

to a uniform algebra.

(i) Since A is contractive, (A, | · |ΦA
) is also contractive, and so it is a Cole algebra by

Corollary 4.14.

(ii) Since A is pointwise contractive, (A, | · |ΦA
) is also pointwise contractive, and so

each singleton in ΦA is a one-point part by Proposition 4.21(ii).

It is not true that every contractive or pointwise contractive Banach function algebra

is necessarily equivalent to a uniform algebra; this will be shown in Examples 9.11 and

9.12. In this case, of course, the algebras cannot have a BSE norm.

Proposition 9.4. Let A be a self-adjoint Banach function algebra. Then the linear map

ι : ` 1(ΦA)→ L(A) is a surjective isometry if and only if ‖f‖BSE = |f |ΦA
(f ∈ A).

Proof. The embedding of A into C0(ΦA) is a continuous monomorphism with dense range,

and so Theorem 8.2 applies. The result follows because L(C0(ΦA)) ∼= ` 1(ΦA).

Proposition 9.5. Let A be a pointwise contractive, unital uniform algebra. Then the

linear map ι : ` 1(ΦA)→ L(A) is a surjective isometry.

Proof. Consider λ =
∑n
i=1 αiϕi ∈ L(A)[1], and take ε > 0. By Proposition 3.10, there

exists f ∈ A[1] with |αif(xi)− |αi| | < ε (i ∈ Nn) and then, as in Proposition 9.2,

‖λ‖1 = ‖λ‖. Thus the specified map is a surjective isometry.

Corollary 9.6. Let A be a natural uniform algebra on a non-empty, compact space K.

Then the following are equivalent:

(a) each singleton in K is a one-point Gleason part;
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(b) (Q(A), ‖ · ‖Q(A)) = (`∞(K), | · |K).

In particular, Q(A) is a uniform algebra in this case.

Proof. (a) ⇒ (b) By Proposition 4.21(ii), A is pointwise contractive, and so the map

ι : ` 1(K)→ L(A) is a surjective isometry by Proposition 9.5. Thus

ι′ : Q(A) = L(A)
′
→ `∞(K)

is a surjective isometry. Since Q(A) is a subalgebra of `∞(K), (b) follows.

(b) ⇒ (a) Take x, y ∈ K with x 6= y. Then there exists f ∈ `∞(K)[1] with f(x) = 1

and f(y) = −1. By (b), f ∈ Q(A)[1], and so there exists F ∈ A′′[1] with F | K = f . This

shows that ‖εx − εy‖ = 2, and so x 6∼ y. Thus (a) follows.

Proposition 9.7. Let A be a Tauberian Banach sequence algebra on a non-empty set S

such that A has a bounded pointwise approximate identity. Then the following conditions

on A are equivalent:

(a) the linear map ι : ` 1(S)→ L(A) is an isomorphism;

(b) A = c 0(S).

Proof. The norm on A is denoted by ‖ · ‖.
(a) ⇒ (b) There is a constant m > 0 such that ‖λ‖1 ≤ m ‖λ‖ (λ ∈ L(A)). Take

f ∈ A. As in the proof of Proposition 9.2, ‖f‖BSE ≤ m |f |ΦA
, and so ‖ · ‖BSE ∼ | · |S on

A. By Corollary 5.13(i), A has a BSE norm, and so ‖ · ‖ ∼ ‖ · ‖BSE on A. Thus | · |S and

‖ · ‖ are equivalent on A. Since A is dense in c 0(S), necessarily A = c 0(S).

(b) ⇒ (a) Since A = c 0(S), it follows that ι : ` 1(S) → A′ is an isomorphism. As

before, L(A) = ` 1(S), and so A′ = L(A), giving (a).

The following is a further main theorem of this work.

Theorem 9.8. Let A be a Banach function algebra. Then the following conditions on A

are equivalent:

(a) the linear map ι : ` 1(ΦA)→ L(A) is an isometric surjection;

(b) A has the weak separating ball property and ‖f‖BSE = |f |ΦA
(f ∈ A);

(c) A is pointwise contractive and ‖f‖BSE = |f |ΦA
(f ∈ A).

In the case where |ΦA| ≥ 2, the above conditions are also equivalent to:

(d) for each ϕ ∈ ΦA, the maximal modular ideal Mϕ has norm-one characters and

‖f‖BSE = |f |ΦA
(f ∈ A).

Proof. Take B to be the uniform closure of A in C0(ΦA), so that B is a natural uniform

algebra on ΦA. Then the embedding of A into B is a continuous monomorphism with

dense range.

(a) ⇒ (c) Take ϕ ∈ ΦA ∪ {∞}, and consider the corresponding ideal Mϕ in A.

Define Fϕ ∈ `∞(ΦA) ∼= ` 1(ΦA)′ to be the characteristic function of ΦA \ {ϕ}, so that

‖Fϕ‖∞ = 1. Then, as a continuous linear functional on (L(A), ‖ · ‖), we have ‖Fϕ‖ = 1

because L(A) ∼= ` 1(ΦA). Extend Fϕ to be an element Fϕ of A′′ with ‖Fϕ‖ = 1. Then
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there is a net (fν) in A[1] that converges weak-∗ to Fϕ, and we may suppose that (fν) is

in (Mϕ)[1]. Clearly (fν) is a CPAI in Mϕ, and hence A is pointwise contractive.

Take f ∈ A. Then

‖f‖BSE = sup{|〈f, λ〉| : λ ∈ L(A)[1]} = sup{|〈f, λ〉| : λ ∈ ` 1(ΦA)[1]} = |f |ΦA
,

as required.

(c) ⇒ (b) This is immediate.

(b) ⇒ (a) Since A has the weak separating ball property, B also has the weak sep-

arating ball property, and so B is pointwise contractive by Corollary 4.20. By Proposition

9.5, (L(B), ‖ · ‖) ∼= (` 1(ΦA), ‖ · ‖1).

For each f ∈ A, we have ‖f‖BSE,A = |f |ΦA
by hypothesis, and ‖f‖BSE,B = |f |ΦA

,

and so ‖f‖BSE,A = ‖f‖BSE,B . It follows from Theorem 8.2 that L(B) ∼= L(A), and so

(L(A), ‖ · ‖) ∼= (` 1(ΦA), ‖ · ‖1), giving (a).

Now suppose that |ΦA| ≥ 2. Then (b) ⇔ (d) by Proposition 4.7.

Example 9.11, to be given below, will show that a Banach function algebra M such

that map ι : ` 1(ΦM ) → L(M) is an isometric surjection is not necessarily equivalent to

a uniform algebra.

The following is the isomorphic analogue of the above theorem.

Theorem 9.9. Let A be a Banach function algebra. Then the following conditions on A

are equivalent:

(a) the linear map ι : ` 1(ΦA)→ L(A) is an isomorphism;

(b) ‖ · ‖BSE ∼ | · |ΦA
on A and A and each non-zero maximal modular ideal of A has

a bounded pointwise approximate identity.

Proof. (a) ⇒ (b) This is essentially the same argument as that contained in the proof of

Theorem 9.8, (a) ⇒ (c).

(b) ⇒ (a) This implication is trivial when A = (C, | · |), and so we may suppose that

|ΦA| ≥ 2. By Lemma 9.1, the map ι is an injection. Since ‖ · ‖BSE ∼ | · |ΦA
, there is a

constant β > 0 such that ‖f‖BSE ≤ 1 whenever f ∈ A with |f |ΦA
≤ β. It follows from

equation (5.4) that ‖ι(λ)‖ ≥ β ‖λ‖1 (λ ∈ L(A)), and so ‖ι(f)‖ ≥ β ‖f‖1 (f ∈ ` 1(ΦA))

because L(A) is dense in ` 1(ΦA). This implies clause (a).

The next theorem concerns the question when Q(A) is a uniform algebra on its char-

acter space ΦQ(A).

Theorem 9.10. Let A be a Banach function algebra.

(i) Suppose that the linear map ι : ` 1(ΦA) → L(A) is an isometric surjection. Then

Q(A) is a uniform algebra on ΦQ(A), and ΦQ(A) = βKd, where K = ΦA.

(ii) Suppose that A is dense in the uniform algebra (C 0(ΦA), | · |ΦA
) and that Q(A)

is a uniform algebra on ΦQ(A). Then the linear map ι : ` 1(ΦA) → L(A) is an isometric

surjection.
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Proof. (i) As in Corollary 9.6, (Q(A), ‖ · ‖Q(A)) = (`∞(K), | · |K), and so Q(A) is identi-

fied with the uniform algebra C(βKd).

(ii) Since Q(A) is a uniform algebra on ΦQ(A), necessarily

‖ [f ] ‖Q(A) = |f |ΦQ(A)
(f ∈ Q(A)) .

Take f ∈ A. By equation (6.3), | f |ΦQ(A)
= |f |ΦA

. Also ‖f‖BSE = ‖ [f ] ‖Q(A). Hence

‖f‖BSE = |f |ΦA
.

Now take λ ∈ L(A). It again follows from equation (5.4) that

‖λ‖ = sup{|〈f, λ〉| : f ∈ A, |f |ΦA
≤ 1} .

Since A is dense in C 0(ΦA), the set {f ∈ A : |f |ΦA
≤ 1} is dense in C 0(ΦA)[1], and so

‖λ‖ = sup{|〈f, λ〉| : f ∈ C 0(ΦA)[1]} .

This implies that ‖λ‖ = ‖λ‖1, and hence that ι : ` 1(ΦA)→ L(A) is an isometric surjec-

tion.

Let A = A(D) be the disc algebra. By Example 7.5, Q(A) is a uniform algebra on

ΦQ(A). However, it is not true that each point of ΦA = D is a one-point part, and so,

by Proposition 4.21(ii), A is not pointwise contractive. By Theorem 9.8, (c) ⇒ (a), it

is also not true that ι : ` 1(ΦA) → L(A) is an isometric surjection. It follows that we

cannot delete the hypothesis that A be dense in the space (C 0(ΦA), | · |ΦA
) in clause (ii)

of Theorem 9.10.

Suppose that A is a natural uniform algebra on a compact space K such that each

singleton in K is a one-point part. Then ι : ` 1(ΦA)→ L(A) is an isometric surjection by

Theorem 9.5 and Q(A) is a uniform algebra by Corollary 9.6. However we noted on page

23 that there are Cole algebras A that are not equal to C(K) (and hence not dense in

C(K)). Thus the converse to Theorem 9.10(ii) does not hold.

In the following example, we shall exhibit a Banach function algebra M that is not

equivalent to a uniform algebra, but is such that Q(M) is a uniform algebra; the algebra

M does not have a BSE norm.

Example 9.11. Let A be the example constructed in [18, Example 5.1] and expounded

in [19]. Briefly, A consists of the functions f ∈ C(I) such that

I(f) :=

∫ 1

0

|f(t)− f(0)|
t

dt <∞ ;

we define

‖f‖ = |f |I + I(f) (f ∈ A) .

Then (A, ‖ · ‖) is a natural, self-adjoint, unital Banach function algebra on I. The algebra

A is a dense, proper subalgebra of C(I), and so A is not equivalent to a uniform algebra.

Set

M = {f ∈ A : f(0) = 0} .

Then the maximal ideal M of A does not have a bounded approximate identity, but it

does have a contractive pointwise approximate identity; indeed, it is noted in [18, Example

5.1] that A is pointwise contractive. As in Theorem 8.4, M has norm-one characters.
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This example A of a unital Banach function algebra that is pointwise contractive, but

not equivalent to a uniform algebra, shows that the requirement in Theorem 9.3 that A

have a BSE norm cannot be dropped for the proof of clause (ii).

Set K = (0, 1] and C 0 = C 0(K), so that C 0 has a contractive approximate identity.

Then M is a Segal algebra with respect to C 0, and so, by Theorem 8.7, (a) ⇒ (c),

‖f‖BSE,M = |f |I (f ∈M) ,

which shows that M does not have a BSE norm. Further, by Theorem 8.8, we have

L(M) = L(C 0) = ` 1(K) and (Q(M), ‖ · ‖Q(M) = (C(βKd), | · |βKd
) .

Also Q(A) = C(β Id), and so Q(A) and Q(M) are isometrically isomorphic as Banach

algebras.

The Banach function algebra M is such that Q(M) is a uniform algebra, but M itself

is not equivalent to a uniform algebra.

Example 9.12. Let A be the example constructed in [18, Example 5.2]. The algebra

A is a natural, unital Banach function algebra on the circle T such that A is dense in

(C(T), | · |T), but A is not equivalent to the uniform algebra (C(T), | · |T). It is shown that

A is contractive. For this example, ‖f‖BSE ≤ 4 |f |T (f ∈ A) by Proposition 9.2, and so

A does not have a BSE norm. (In fact, ‖f‖BSE = |f |T (f ∈ A).)

This example A of a unital Banach function algebra that is contractive, but not

equivalent to a uniform algebra, shows that the requirement in Theorem 9.3 that A have

a BSE norm cannot be dropped for the proof of clause (i).
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10. Embedding multiplier algebras

Our aim in this section is to show that, for each Banach function algebra A that has a

contractive pointwise approximate identity and whose norm is equal to its BSE norm,

the multiplier algebra of A embeds isometrically into the unital Banach function algebra

Q(A) = A′′/L(A)⊥.

Let (A, ‖ · ‖) be a natural Banach function algebra on a locally compact space K, with

multiplier algebra M(A), as on page 11, so that

M(A) = {f ∈ C b(K) : fA ⊂ A} ,

and

|f |K ≤ ‖f‖op ≤ ‖f‖ (f ∈ A) . (10.1)

For example, M(c 0) = `∞ = C(βN).

For a general algebra A, there is also a definition of left multipliers on A and of the

multiplier algebra, M(A); see [12, §1.4], for example. In the case where A is a Banach

algebra with a contractive approximate identity, it is proved in [12, Theorem 2.9.49] that

there is a specific isometric algebra embedding θ of M(A) into (A′′, 3 ).

Now let A be a Banach function algebra with a contractive approximate identity.

Then it follows easily that, in the case where ‖f‖BSE = ‖f‖ (f ∈ A), the above map θ

gives an isometric algebra embedding of M(A) into Q(A). The theorem below gives the

same conclusion when A has just a contractive pointwise approximate identity, rather

than a contractive approximate identity.

Let A be a Banach function algebra, and take T ∈M(A). Then

T ′′(M2N) = T ′′(M)2N (M,N ∈ A′′) . (10.2)

Suppose that A has a contractive pointwise approximate identity, say (eα), and let

T = Lf ∈M(A). Then

lim
α

(Teα)(ϕ) = f(ϕ) (ϕ ∈ ΦA) . (10.3)

Take E and F to be weak-∗ accumulation points of (eα) in A′′[1]. Then (10.3) shows that

T ′′(E) − T ′′(F) ∈ Φ⊥A, and hence [T ′′(E)] = [T ′′(F)] in Q(A). Thus the map θ in the

following theorem does not depend on the choice of E.

Theorem 10.1. Let A be a Banach function algebra such that ‖f‖BSE = ‖f‖ (f ∈ A).

Suppose that A has a contractive pointwise approximate identity with a weak-∗ accumu-

lation point E in A′′. Then the map

θ : T 7→ [T ′′(E)] , (M(A), ‖ · ‖op)→ (Q(A), ‖ · ‖Q(A)) ,

is an isometric algebra embedding.

Proof. It is clear that θ is a linear map. Take T ∈ M(A). Since E ∈ A′′[1], it follows that

‖θ(T )‖Q(A) ≤ ‖T‖op, and so θ is a contraction.

Take S, T ∈M(A), and take ϕ ∈ ΦA. First note that

〈fg, S′(ϕ)〉 = 〈f, ϕ〉 〈g, S′(ϕ)〉 (f, g ∈ A) .
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Thus 〈f · T ′′(E), S′(ϕ)〉 = 〈f, ϕ〉 〈T ′′(E), S′(ϕ)〉 (f ∈ A), and hence

〈S′′(E2T ′′(E)), ϕ〉 = 〈E2T ′′(E), S′(ϕ)〉 = 〈T ′′(E), S′(ϕ)〉 = 〈(S′′ ◦ T ′′)(E), ϕ〉 .

It follows that

〈(S ◦ T )′′(E), ϕ〉 = 〈(S′′ ◦ T ′′)(E), ϕ〉 = 〈S′′(E2T ′′(E)), ϕ〉
= 〈S′′(E)2T ′′(E), ϕ〉 by (10.2) ,

and so (S ◦ T )′′(E)− S′′(E)2T ′′(E) ∈ L(A)⊥. This shows that

[(S ◦ T )′′(E)] = [S′′(E)] [T ′′(E)]

in Q(A). Hence θ :M(A)→ Q(A) is an algebra homomorphism.

Now take a multiplier T ∈ M(A). For each ε > 0, there exists f ∈ A[1] such that

‖Tf‖ > ‖T‖op − ε. Since ‖Tf‖BSE = ‖Tf‖, there also exists λ ∈ L(A)[1] such that

|〈Tf, λ〉| > ‖T‖op − ε. Now

|〈Tf, λ〉| = |〈E · Tf, λ〉| = |〈T ′′(E) · f, λ〉| = |〈T ′′(E), f · λ〉| .

Since f · λ ∈ L(A)[1], it follows that |〈Tf, λ〉| ≤ ‖[T ′′(E)]‖Q(A), and this implies that

‖T‖op ≤ ‖[T ′′(E)]‖Q(A) + ε. Thus ‖T‖op ≤ ‖[T ′′(E)]‖Q(A) = ‖θ(T )‖Q(A), and so the map

θ is an isometry.

Example 10.2. In general, the above map θ is not a surjection.

For example, suppose that A = lipαI, as in Example 7.2, so that Q(A) = A′′ = LipαI.
Then M(A) = A because A is unital, and so the range of θ is A ( Q(A).

Again, let A = L1(G) for a locally compact abelian group G. Then M(A) = M(G)

andQ(A) = M(bG), as in Example 7.9. Clearly, M(G) embeds isometrically into M(bG),

but the embedding is rarely a surjection.

Example 10.3. Let M be the Segal algebra mentioned in Example 9.11. Then it is easy

to see thatM(M) = C b((0, 1]), and soM(M) embeds isometrically and algebraically in

`∞((0, 1]) = Q(M).

Proposition 10.4. Let A be a Banach function algebra that is an ideal in its bidual and

that has a contractive pointwise approximate identity. Then Q(A) =M(A).

Proof. By Corollary 5.13(ii), ‖f‖BSE = ‖f‖ (f ∈ A), and so, by Theorem 10.1, the map

θ : T 7→ [T ′′(E)], M(A)→ Q(A), is an isometric algebra embedding.

Take M ∈ A′′. Then the map RM : f 7→ f ·M, A→ A, is a multiplier on A because A

is an ideal in A′′, and θ(RM) = [M]. Hence the map θ :M(A)→ Q(A) is a surjection.

Example 10.5. Let A be a Banach function algebra with a contractive approximate

identity such that A is an ideal in A′′. Then L(A) = A · A′ by Corollary 5.3. In the

case where A is also Arens regular, AA′ = A′ by [56, Corollary 3.2], and so L(A) = A′

and hence L(A)⊥ = {0}. Thus Q(A) = A′′. By Proposition 10.4, M(A) = Q(A). Hence

ΦQ(A) = ΦA ∪H, where H is the hull of A considered as an ideal in M(A).

For example, let A = c0 ⊗̂ c0. Then the algebra A satisfies the specified conditions,

and so Q(A) = M(A) = A′′. Indeed, A is a Tauberian Banach sequence algebra, and
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so A is an ideal in A′′; further, A has a bounded approximate identity, and A is Arens

regular by [55, Corollary 4.17(a)].

Example 10.6. Let G be a locally compact abelian group that is neither discrete nor

compact, and let S be either of the Segal algebras S1 or S2 that were considered in

Example 8.10(ii). Then, as we have seen in Corollary 8.9, S does not have a BSE norm,

but Q(S) = Q(L1(G)) = M(bG). By [28], M(S) = M(G). As M(G) embeds in M(bG),

we see that M(S) embeds into Q(S), although S does not have a bounded approximate

identity.
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11. Reflexive ideals and weakly compact homomorphisms

In this final section, we shall consider when Banach function algebras contain non-trivial,

closed ideals that are reflexive as Banach spaces and also when there are non-zero, weakly

compact homomorphisms between two Banach function algebras; our proofs use notions

that are given above.

11.1. Reflexive ideals. We first consider the consequences of assumptions that certain

closed ideals in and quotients of a Banach function algebra are reflexive.

Definition 11.1. Let A be a Banach function algebra, and let I be a non-zero, closed

ideal in A. Then I is reflexive if I is reflexive as a Banach space.

Suppose that A is a Banach function algebra and that S is a finite set of isolated

points in ΦA. Then the closed ideal I(ΦA \ S) is a finite-dimensional Banach space, and

hence reflexive. However it is not true that all reflexive ideals in a Banach function algebra

are finite dimensional. Indeed, [18, Example 3.3] exhibits an infinite-dimensional, unital,

Banach function algebra A that is reflexive as a Banach space and is such that ΦA is

connected. Thus A has many non-trivial reflexive ideals, although ΦA has no isolated

points and no non-zero, finite-dimensional, closed ideals.

Let A be a regular Banach function algebra, and suppose that I is a reflexive ideal.

Then it follows from (2.6) that J(h(I)) is also reflexive, and so we concentrate on closed

ideals of this latter form.

Definition 11.2. Let A be a Banach function algebra, and take ϕ ∈ ΦA. Then A has

the strong separating ball property at ϕ if, for each neighbourhood U of ϕ in ΦA, there

exists f ∈ A[1] with f(ϕ) = 1 and supp f ⊂ U . The algebra A has the strong separating

ball property if it has the strong separating ball property at ϕ for each ϕ ∈ ΦA.

Examples 11.3. (i) Let K be a non-empty, locally compact space. Then C0(K) has the

strong separating ball property.

(ii) Let Γ be a locally compact group. The Figà-Talamanca–Herz algebras Ap(Γ) were

mentioned in Example 7.12. We claim that each Banach function algebra Ap(Γ) has the

strong separating ball property; in particular, the Fourier algebra A(Γ) has this property.

Indeed, take x ∈ Γ and U ∈ Nx. There is a symmetric, open, relatively compact

neighbourhood V of eΓ such that xV 2 ⊂ U , say α = 1/mΓ(V ). Set f = α1/pχxV and

g = α1/qχV , where q = p′. Then ‖f‖p = ‖g‖q = 1. Set u = f ? g, so that u ∈ Ap(Γ)[1].

Clearly

u(x) = α1/p+1/q

∫
V

χxV (xy) dmΓ(y) = α · (1/α) = 1

and supp u ⊂ xV 2 ⊂ U . Hence Ap(Γ) has the strong separating ball property.

Theorem 11.4. Let A be a Banach function algebra with the strong separating ball prop-

erty, and take a proper, closed subset S of ΦA. Suppose that J(S) is a reflexive ideal in

A. Then the space ΦA \ S is discrete.



Pointwise approximate identities 63

Proof. Take ϕ ∈ ΦA \ S, and consider the set

Kϕ = {f ∈ J(S)[1] : f(ϕ) = 1} .

Since A has the strong separating ball property at ϕ, the set Kϕ is non-empty, and clearly

it is convex. Since J(S) is reflexive, the set Kϕ is weakly compact in A. For g ∈ Kϕ, the

maps Lg : f 7→ gf, Kϕ → Kϕ, form a commuting family of continuous, affine maps, and

so, again by Theorem 2.4, the family has a fixed point, say h ∈ A. Thus h(ϕ) = 1 and

gh = h for each g ∈ Kϕ

For each ψ ∈ ΦA \ S with ψ 6= ϕ, there exists g ∈ Kϕ with g(ψ) = 0. This implies

that h(ψ) = g(ψ)h(ψ) = 0, and so h is the characteristic function of {ϕ}. It follows that

ϕ is isolated in ΦA, and so ΦA \ S is discrete.

Since there are reflexive Banach function algebras that have connected character

space, we cannot delete the hypothesis that A have the strong separating ball property

in the above theorem.

Corollary 11.5. Let Γ be a locally compact group, and take p with 1 < p < ∞. Then

Ap(Γ) contains a non-zero, reflexive closed ideal if and only if Γ is discrete.

Proof. Set A = Ap(Γ).

As noted above, A has many reflexive closed ideals when Γ is discrete.

Conversely, suppose that A contains a non-zero, reflexive closed ideal I. Set S = h(I),

so that S is a proper, closed subset of Γ = ΦA. Since A is regular, J(S) ⊂ I, and so the

ideal J(S) is reflexive. Since A has the strong separating ball property, it follows from

Theorem 11.4 that each point in Γ \ S is isolated in Γ. Since Γ is a group, each point of

Γ is isolated, and so Γ is discrete.

Let E be a Banach space that is weakly sequentially complete. By Rosenthal’s ` 1-

theorem [1, Corollary 10.2.2], either E is reflexive or it contains an isomorphic copy of

` 1. The Fourier algebra A(Γ) = A2(Γ) is weakly sequentially complete, being the predual

of a von Neumann algebra, and so we have the following result.

Corollary 11.6. Let Γ be a non-discrete, locally compact group. Then every non-zero,

closed ideal of A(Γ) contains an isomorphic copy of ` 1.

In the case where G is abelian and non-compact, the above corollary (for the algebra

A = L1(G)) was obtained by Rosenthal in his seminal memoir [46, Theorem 2.12 and

Corollary 2.13] as a consequence of more general results.

Theorem 11.7. Let A be a Banach function algebra with the separating ball property

such that ΦA is weakly closed in A′. Suppose that I is a proper closed ideal in A such

that A/I is reflexive. Then h(I) is finite.

Proof. Since A/I is reflexive, the space I⊥ ∼= (A/I)′ is a reflexive subspace of A′, and

h(I) is a subset of I⊥. Since A has the separating ball property, it follows from Theorem

4.3(ii) that ΦA is weakly discrete, and so h(I) is relatively weakly compact as a subset

of (I⊥)[1]. Since ΦA is weakly closed, the weak closure of h(I) in A′ is contained in the

discrete space ΦA, and hence h(I) is finite.
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Corollary 11.8. Let Γ be a locally compact, amenable group, and take p such that

1 < p < ∞. Suppose that I is a proper closed ideal in Ap(Γ) such that Ap(Γ)/I is

reflexive. Then h(I) is finite.

Proof. Set A = Ap(Γ). As we remarked in Example 7.12 , ΦA = Γ is weakly closed in A′

whenever Γ is amenable. By Example 11.3(ii), A has the strong separating ball property,

and so the result follows from Theorem 11.7.

The above corollary does not hold for an arbitrary locally compact group Γ. Indeed,

let Γ be a locally compact group that contains F2 as a closed subgroup (so that Γ is not

amenable). Then Ap(F2) is a quotient of Ap(Γ) by a result of Herz (see [22, Theorem 5

of §7.8]). The space F2 contains an infinite so-called Leinert set, say S. It follows from

clause (b) of the proof of [6, Proposition 1] that, for 1 < p ≤ 2, the restriction map

R : Ap(Γ)→ `∞(S)

is such that ‖R(f)‖q ≤ Cp ‖f‖Ap(Γ) (f ∈ Ap(Γ)), where q = p′. That is, the map

R : Ap(Γ) → ` q(S) is a bounded linear surjection. Let I = kerR, a closed ideal in

Ap(Γ). Then I is such that the quotient Ap(Γ)/I is a reflexive space, but h(I) is infinite.

Since Ap(Γ) is isometrically isomorphic to Aq(Γ) for each locally compact group Γ, it

follows that, whenever Γ contains F2 as a closed subgroup, the algebra Ap(Γ) contains a

reflexive ideal I such that h(I) is infinite. Thus, we cannot omit the word ‘amenable’ in

the hypotheses of Corollary 11.8.

The above remark, in the case where p = 2, is essentially contained in [57, p. 362].

11.2. Weakly compact homomorphisms. We now consider weakly compact homo-

morphisms between two Banach function algebras; these are algebra homomorphisms

that are weakly compact as bounded linear operators. There are many papers in the lit-

erature on weakly compact homomorphisms between Banach algebras; for example, see

[29, 36].

Theorem 11.9. Let A and B be Banach function algebras. Suppose that A has norm-

one characters and that the only idempotent in B is zero. Then the only weakly compact

homomorphism from A into B is the zero homomorphism.

Proof. Assume towards a contradiction that θ : A → B is a non-zero, weakly compact

homomorphism. Then θ′ | ΦB : ΦB → ΦA ∪ {0} is a continuous map, and there exists

ψ0 ∈ ΦB such that ϕ0 := θ′(ψ0) ∈ ΦA because θ 6= 0. By hypothesis, ‖ϕ0‖ = 1, and so,

by Proposition 6.7, there is an idempotent u ∈ Q(A)[1] with u(ϕ0) = 1.

Since θ is weakly compact, the range of the map θ′′ : A′′ → B′′ is contained in B. Take

M ∈ L(A)⊥. For each ψ ∈ ΦB , we have 〈θ′′(M), ψ〉 = 〈M, θ′(ψ)〉 = 0, and so θ′′(M) = 0

in B. Thus the map

θ̃ : [M] 7→ θ′′(M) , Q(A)→ B ,

is well defined; clearly, θ̃ is a continuous homomorphism.

Set g = θ̃(u) ∈ B. Then g is an idempotent in B, and so g = 0. However we have

g(ψ0) = u(φ0) = 1, the required contradiction.
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Thus the only weakly compact homomorphism from A into B is the zero homo-

morphism.

Corollary 11.10. Let A be a Banach function algebra such that A has norm-one char-

acters, and let B = A(Γ), where Γ is a locally compact group that is connected and

non-compact. Then the only weakly compact homomorphism from A into B is the zero

homomorphism.
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12. Open questions

We conclude with a list of some questions that we have not resolved.

1. Let A be a unital uniform algebra. Is every subset P of ΦA that is a Gleason part

with respect to A also a Gleason part with respect to A′′ when it is regarded as a

subset of ΦA′′? In particular, is this true when the part P is a singleton?

2. Let (A, ‖ · ‖) be a Banach function algebra such that inf{‖ϕ‖ : ϕ ∈ ΦA} > 0. Is

there a norm ||| · ||| on A that is equivalent to ‖ · ‖ and such that (A, ||| · |||) is a

Banach function algebra and |||ϕ||| = 1 for each ϕ ∈ ΦA?

3. Let A be a Banach function algebra. Since the only possible weak-∗ accumulation

point of ΦA in A′ is 0, the set ΦA is weakly closed in A′ whenever there exists

M ∈ A′′ such that inf{|〈M, ϕ〉| : ϕ ∈ ΦA} > 0. Is the converse always true?

4. Let A be a Banach function algebra, and take ϕ ∈ ΦA. We know from Proposition

6.11(ii) that ϕ is weakly isolated in ΦA whenever ϕ is an isolated point when

regarded as an element of ΦQ(A). Is the converse always true?

5. Let A be a Banach function algebra. We know from Proposition 6.17 that ΦA is

weakly closed in A′ whenever A has a bounded pointwise approximate identity. Is

the converse always true?

6. Let A be a natural uniform algebra on a compact space K. We do not know whether

each point x that is isolated in (K, dA) is also isolated in ΦQ(A), and so, by Corollary

6.13, we do not know whether the corresponding maximal ideal Mx always has a

bounded pointwise approximate identity.

7. Is there a Banach function algebra A that does not have a bounded pointwise

approximate identity, but is such that the norms ‖ · ‖op and ‖ · ‖BSE are equivalent

on A?

8. Let A be a Banach function algebra that is an ideal in its bidual and is such that

‖f‖BSE = ‖f‖op (f ∈ A). Does A necessarily have a contractive pointwise approx-

imate identity?

9. In Example 7.5, we identified Q(A) in the case where A is the disc algebra. It is

likely that similar, but more complicated, arguments will identify Q(A) for more

general unital uniform algebras, such as the tight uniform algebras of [11].

10. Let Γ be a locally compact group. In Example 7.10, we identified Q(A(Γ)) in certain

cases. Can these results be extended to more general groups?

11. Let ω be a weight on the group (Z, + ) such that

inf{ω1/n
n : n ∈ N} = sup{ω−1/n

−n : n ∈ N} = 1 ,

with corresponding Beurling algebra Aω. In Example 7.11, we showed that we have

Q(Aω) = Aω for many weights ω. Is this true for all such weights ω?

12. Let Γ be a locally compact group, and take p with 1 < p < ∞. We do not have

any identification of Q(Ap(Γ)) for groups that are not both discrete and amenable,

save in the case where p = 2.



Pointwise approximate identities 67

References

[1] F. Albiac and N. J. Kalton, Topics in Banach Space Theory, Graduate Texts in Mathe-

matics 233, Springer, New York, 2006.

[2] T. Ando, On the predual of H∞, Comment. Math., Special Issue 1 (1978), 33–40.

[3] R. F. Basener, On rationally convex hulls, Trans. American Math. Soc 182 (1973), 353–381.

[4] E. Bédos, On the C∗-algebra generated by the left regular representations of a locally com-

pact group, Proc. American Math. Soc. 120 (1994), 603–608.

[5] M. B. Bekka, E. Kaniuth, A. T.-M. Lau, and G. Schlichting, On C∗-algebras associated

with locally compact groups, Proc. American Math. Soc. 124 (1996), 3151–3158.
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Banach function algebra, 10
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approximate identity, 16

approximate identity, bounded, 16

approximate identity, bounded

pointwise, 16

approximate identity, contractive, 16

approximate identity, contractive

pointwise, 16

approximate identity, pointwise, 16

approximate identity, pointwise
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approximate identity, pointwise
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Arens products, 13

Arens regular, 13

Banach algebra, 9

Banach algebra, dual, 14

Banach algebra, dual, isometric, 14

Banach function algebra, contractive,

16, 54

Banach function algebra, dual, 14, 33

Banach function algebra, has a BSE
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Banach function algebra, ideal in its

bidual, 14

Banach function algebra, natural, 11

Banach function algebra, norm-one

characters, 21

Banach function algebra, pointwise

contractive, 16

Banach function algebra, regular, 12

Banach function algebra, self-adjoint,
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Banach function algebra, strongly
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Banach function algebra, Tauberian, 12

Banach sequence algebra, 12

Beurling algebra, 46

bidual space, 8

Bochner–Schoenberg–Eberlein theorem,

29, 51

boundary, 23

boundary, Choquet, 23

boundary, closed, 23

boundary, Šilov, 23

BSE norm, 29
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character space, 9

character, evaluation, 11

classification theorem, 54

Cohen’s factorization theorem, 28

Cole algebra, 23, 54

compactification, Bohr, 44

compactification, one-point, 11

compactification, Stone–Čech, 40

complemented, 9

determining set, 10

disc algebra, 12, 20, 41, 57

Dixmier projection, 9

dual group, 29

fibre, 41

Figà-Talamanca–Herz algebra, 47, 62

Fourier algebra, 19, 20, 30

Fourier–Stieltjes algebra, 30

function algebra, 10

Gleason metric, 24, 37

Gleason part, 24

group algebra, 29

hull, 12

hyper-Stonean envelope, 14, 40

idempotent, 9

isomorphic, isometrically isomorphic, 8

Kaplansky’s density theorem, 29, 30
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Leinert set, 64

Lipschitz algebra, 40, 60

Markov–Kakutani fixed-point theorem,

15, 20

measure algebra, 14

multiplier, 9

multiplier algebra, 10, 59

peak set, peak point, 11

peak-point conjecture, 23

predual, 14

predual, unique, 14

reflexive ideal, 62

Rosenthal’s theorem, 63

Schauder–Tychonoff fixed-point

theorem, 15

Segal algebra, 16, 50, 51, 61

semi-direct product, 9

separating ball property, 19

separating ball property, strong, 62

separating ball property, weak, 21

set of synthesis, 12

strong boundary point, 12

support, 12

uniform algebra, 10, 40

uniform algebra, Cole algebra, 23, 44

uniform algebra, equivalent to, 10

uniform algebra, logmodular, 27

weakly compact homomorphism, 64
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