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Robust localized zero-energy modes from locally embedded PT -symmetric defects
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We demonstrate the creation of robust localized zero-energy states that are induced into topologically trivial
systems by the insertion of a PT -symmetric defect with local gain and loss. A pair of robust localized states
induced by the defect turns into zero-energy modes when the gain-loss contrast exceeds a threshold, at which
the defect states encounter an exceptional point. Our approach can be used to obtain robust lasing or perfectly
absorbing modes in any part of the system.
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Introduction. Interest in topological band-structure sys-
tems [1] has widely expanded into different areas of physics
and engineering, including condensed matter physics [2,3],
photonics [4,5], Floquet systems and quantum walks [6,7],
ultracold atomic gases [8], acoustics [9,10], mechanics and
robotics [11–13], and electronics [14].

This widespread study of topological systems originated
from the classification of the Hermitian topological system
[15]. Currently, nontrivial extensions of closed topological
systems to their open counterparts attract increasing interest,
connecting this area to non-Hermitian concepts such as parity-
time (PT ) symmetry [16], and resulting in novel topological
applications and phenomena such as topological mode selec-
tion and lasing [17–22].

While not completely settled, an understanding of such
genuinely non-Hermitian topological effects is also emerging
[23–33], where one has to account for a much larger range
of possible symmetries and resulting universality classes
[34–36]. A major complication in these endeavors is the
breakdown of the conventional bulk-boundary principle. In
particular, a range of studies have identified non-Hermitian
degeneracies known as exceptional points (EPs) as a mecha-
nism to create robust defect states, even when starting from
systems that are trivial in their Hermitian limit [37–40].

These observations suggest that the boundary at the inter-
face of two non-Hermitian systems can be enough to induce a
topological transition, even when the coupling configuration
in the bulk—which completely determines the topological
phase in Hermitian systems—does not change. Nonetheless,
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so far, most studies of this phenomenon still utilized sys-
tems that either already possessed topological states in the
Hermitian limit [17,18,34,41–45], or altered the coupling con-
figuration in some suitable way [37–40,46,47].

In this Rapid Communication, we demonstrate that a PT -
symmetric defect embedded into the topologically trivial
phase of a Hermitian system is indeed sufficient to create
localized symmetry-protected defect states. The creation of
these states is again manifested by an EP, and the states
reside in the band gap, as desired for many applications
[48,49]. In particular, single-site non-Hermitian defects are
good candidates for designing conventional photonic crystal
lasers [50–53], and a wide range of other applications such as
strain field traps [54] and strong photon localization [55].

Utilizing a PT -symmetric defect has a range of addi-
tional benefits. The PT symmetry facilitates the emergence
of exceptional points, which have been used in optics and
photonics to control lasing emission [56], enhance sensing
[57,58], create coherent perfect absorption [59], and can in-
duce asymmetric transport [60–62] and conical diffraction
[63,64]. However, the relation of these effects to topological
transitions still needs to be addressed in these studies. Given
that we demonstrate the appearance of the defect states with-
out any change of the coupling configuration, our study paves
the path to create robust localized states on demand and at
any part of the lattice. This widens the scope for practical
applications in quantum sensing, topological memories, and
topological lasing, where one might desire to create or elim-
inate a robust localized zero mode at any location within a
given structure.

With such practical applications in mind, we demonstrate
the creation of these states for a specific structure of exper-
imental interest, namely, a periodic dimer chain that in the
passive case corresponds to a Su-Schrieffer-Heeger (SSH)
chain [65] in its trivial coupling configuration. In its topolog-
ically nontrivial counterpart configuration, topological lasing
utilizing edges or interfaces has been demonstrated in a num-
ber of studies [19–22]. In particular, in Ref. [19], the lasing of
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FIG. 1. Sketch of coupled-dimer resonators lattices with an em-
bedded defect. (a) A Hermitian lattice with N = 10 resonators (light
blue circles), hence N = 5 dimers, where all the resonators are
passive with no net gain or loss. Resonators in the same dimer are
coupled by the intradimer coupling strength k, while the interdimer
coupling strength c is assumed to fulfill c < k. The defect is created
by changing the intradimer coupling strength in a single dimer,
denoted as n = 1, from k to d . In this system, the defect modes are al-
ways hybridized, and never become zero modes. (b) PT -symmetric
version of the lattice of (a), where the orange (green) circles depict
resonators with the gain (loss) of strength γ . We show that this lattice
can support localized zero modes, which emerge through an excep-
tional point when d is sufficiently small and γ sufficiently large.
(c) Modified setup in which the PT -symmetric defect is embedded
into the Hermitian system. This lattice can support the same type
of zero modes as the model in (b), which demonstrates that such
modes can be induced by embedding a non-Hermitian defect into a
topologically trivial Hermitian system.

an SSH edge state was facilitated by pumping the system only
at the edge. In contrast, we create a localized defect mode
suitable for lasing inside the trivial phase, by only utilizing
the non-Hermiticity induced by gain and loss. This long-living
state is pinned to the center of the band gap, and, as is typical
for states emerging in EPs, is accompanied by a second robust
mode of shorter lifetime.

Model. We consider a non-Hermitian one-dimensional
dimer lattice with periodic boundary conditions, represent-
ing, e.g., evanescently coupled microdisk resonators [66] as
shown in Fig. 1. While non-Hermiticity can be obtained in
different ways, we consider the case where the real part of the
resonance frequency of the coupled modes is ω0, while the
imaginary part γ (with γ > 0 representing gain and γ < 0
representing loss) in each dimer unit cell is antisymmetric.
The coupled-mode equations that describe the dynamics in
this lattice are given by

i∂tψn = −kϕn − cϕn−1 + iγψn,

i∂tϕn = −kψn − cψn+1 − iγ ϕn, (1)

where ψn and ϕn are the modal field amplitudes in the nth
gain and loss disk. We assume that the intradimer couplings
k and interdimer coupling c between the adjacent disks are
real and fulfill k > c, and without loss of generality set ω0 =
0. Periodic boundary conditions are obtained by requiring
��N+n ≡ (ψN+n ϕN+n)T = ��n ≡ (ψn ϕn)T , with N being
the total number of dimers in the lattice.

The Hermitian system corresponds to a periodic variant
of the celebrated SSH chain [65]. This system possesses
a chiral symmetry, which guarantees that the real energy
spectrum is symmetric about E = 0, as well as separate par-
ity and time-reversal symmetries. In the non-Hermitian case
these symmetries are broken, but the balanced gain and loss

makes the system PT symmetric [16], i.e., the combination
of parity and time reversal still holds. As a consequence,
the complex resonance-energy spectrum is symmetric with
respect to the axis Im E = 0, where the occurrence of pairs
of complex-conjugated energies signifies the so-called PT -
broken phase. Furthermore, instead of the chiral symmetry,
the non-Hermitian system displays a non-Hermitian charge-
conjugation or particle-hole symmetry [17,38,39], i.e., the
combination of the chiral symmetry with the time-reversal
symmetry, which guarantees that the resonance-energy spec-
trum is symmetric with respect to the axis Re E = 0. Notably,
this permits the existence of unpaired modes with Re E = 0,
which is the key feature that we will exploit in the following.

For an infinitely long homogeneous system, the band
structure of the above model is given by E (±)(q) =
±

√
c2 + k2 − γ 2 + 2ck cos(q), where q is the Bloch wave

number [67]. For the Hermitian case with γ = 0, schemati-
cally depicted in Fig. 1(a), the two bands are separated by a
gap of size �H = 2(k − c). This gap closes when k = c, when
the chain becomes nondimerized, signaling a band inversion
as one passes from one topologically distinct coupling con-
figuration to the another. For a nonzero value of γ [Fig. 1(b)]
the gap size reduces to �NH = 2

√
(k − c)2 − γ 2, which for

small values of γ can be approximated as �NH ≈ �H −
γ 2

k−c + O(γ 3). Therefore, the gap for the non-Hermitian lattice
is smaller than the gap for the Hermitian lattice. In particular,
the gap becomes zero at γ = γEP = k − c, where the first two
modes at the edge of the Brillouin zone merge with each
other in an exceptional point. For k − c < γ < k + c, a part
of the dispersion is purely imaginary, corresponding to states
with degenerate resonance frequency Re E (±)(q) = 0. For
γ = k + c all the modes from both bands have merged, creat-
ing a flat band of states with different lifetimes [68,69]. The
same features hold for the finite system, where the periodic
boundary conditions lead to the quantization q = qm = 2πm

N of
the Bloch wave number. This gives rise to discrete resonance
frequencies E (±)

m = E (±)(qm), where m = 0, 1, 2, . . . , N is the
index of the associated supermode.

At this point let us assume that we can adiabatically change
the value of one of the intradimer couplings k to some other
value d < k [see Fig. 1(a)]. This defect continues to preserve
the symmetries of the system with the exception of translation
symmetry, and causes the emergence of two defect modes in
the gap. The situation for the Hermitian case is illustrated in
Fig. 2. Figure 2(a) shows the band structure of the periodic
system with d = k, which is symmetric as dictated by the
chiral symmetry, and gapped. As shown in Fig. 2(b), by de-
creasing the value of d from k toward zero, two defect modes
appear, which depart from the band edges and move into the
gap. Both modes are related by the chiral symmetry, and each
mode has a finite weight at both edges of the system. For a
finite system, these two defect modes are therefore hybridized
edge modes separated by a nonzero gap, and thus not topolog-
ically robust.

The contrasting situation of the non-Hermitian system with
γ �= 0 is shown in Fig. 3. As depicted in Fig. 3(a), for γ < k −
c the band structure of the periodic system (d = k) remains
symmetric and real, as dictated by PT and particle-hole sym-
metry, but the gap is smaller than the corresponding Hermitian
case. As shown in Fig. 3(b), when reducing d below the value
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FIG. 2. Defect modes in the Hermitian model of Fig. 1(a).
(a) Quantized band structure for a system of 100 resonators with cou-
plings c = 0.5 and k = 1, and no defect, d = k = 1. (b) Changing
the defect coupling to d < k moves two modes from the band edges
[identified by the red dots in (a)] into the gap. (c) Energy spectrum
for d = 0, upon which the two sites on the defect dimer become
the edges of a system with open boundary conditions. (d) The two
modes always remain weakly hybridized, with mode profiles that
are localized symmetrically on both of these effective edges. Note
that in this and the following representations of the mode profiles,
resonators are numbered so that the first and last resonators are those
of the defect dimer.

of k, two defect modes again emerge from the band edges
and move into the gap. However, unlike in the Hermitian
case, these modes meet in an exceptional point for a nonzero
value of d [Fig. 3(c)], meaning that the non-Hermitian system
can support zero-energy modes without changing the coupling
configuration in the bulk of the system. These zero-energy
modes remain exponentially localized around the defect po-
sition, and right at the exceptional point are symmetrically
localized around the defect, as shown in Fig. 3(d).

We note that the position of exceptional points in a
PT -symmetric system is not robust, but their existence is—
changing parameters, such as introducing disorder, simply
shifts the exceptional point to another position in parameter
space. Recently, robust exceptional points have been proposed
in Ref. [70] with application in robust exceptional point sens-
ing, however, those robust exceptional points are not spatially
localized and thus may not provide strong feedback for lasing
applications. Here, we encounter an exceptional point that
signals the emergence of a pair of modes with robust fre-
quency Re E = 0, in a system in which the bulk band structure
remains real and has not undergone a topological transition.
At the same time, this represents a mechanism to selectively
break the PT symmetry of one predetermined mode in the
whole system.

We now continue to characterize these modes in detail as
one passes over the exceptional point into the PT -broken
phase. We note that this can be done in two ways, by fixing
γ and decreasing d , or by fixing d and increasing γ . In Fig. 4
we show the mode profile for a fixed defect coupling d = 0.27
and different values γ = 0.2, 0.3, and 0.4 of the gain and loss
parameter, while other parameters of the lattice are the same

FIG. 3. Defect modes in the non-Hermitian model of Fig. 1(b),
in analogy to Fig. 2 but with a finite gain-loss parameter γ = 0.2.
(a) Compared to the Hermitian case, the band structure of the system
without a defect is similar, but the gap is reduced. (b) Changing
the defect coupling to d < k again creates two defect modes, but
these now undergo an additional transition in which they become
zero modes with Re E = 0. This corresponds to an exceptional point,
which for the given parameters occurs at d = 0.272. (c) Energy spec-
trum at the exceptional point. (d) At the exceptional point the mode
profiles are still symmetric, but this symmetry is violated beyond the
exceptional point, as shown in Fig. 4.

as in Fig. 3. Larger values of γ indicate that the system is
deeper in the broken phase. The upper panels are associated
with the zero-energy mode with a positive imaginary part
of their eigenvalues, Im E > 0, while lower panels show the
mode profiles of the mode with a negative imaginary part,
Im E < 0. As γ is increased, these modes become asym-
metric, preferentially localized either on the gain site of the

FIG. 4. Mode profiles for the zero modes described in Fig. 3, but
for fixed defect coupling d = 0.27 with (a), (b) γ = 0.2, (c), (d) γ =
0.3, and (e), (f) γ = 0.4. The upper panels show the zero mode with
Im E > 0, which is preferentially localized on the gain site of the
defect dimer, while the lower panels show the mode with Im E < 0,
which is preferentially localized on the lossy site. This asymmetry
increases for increasing γ , hence, as one moves deeper into the PT -
broken phase.
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FIG. 5. Same as Fig. 4, but for the model of Fig. 1(c), where
the zero modes are induced by a PT -symmetric defect, without any
changes to the coupling configuration (again c = 0.5 and k = 1).
This transition occurs at an exceptional point at γ = 1; the panels
show the modes for (a), (b) γ = 1, (c), (d) γ = 1.2, and (e), (f)
γ = 1.5.

defect (for Im E > 0) or on the corresponding loss site (for
Im E < 0), as is typical for PT -broken states. We confirmed
numerically [see Supplemental Material (SM) [71]] that these
features remain robust under the introduction of disorder in
the couplings, up to a threshold that depends on how deep one
is situated inside the broken phase. In addition, we found that
when keeping d fixed, the imaginary part of the zero modes
changes only weakly with such disorder.

The described mechanism of zero-mode creation trans-
lates to a wide class of PT -symmetric defects. Consider, for
instance, a periodic lattice where there is no defect in the cou-
plings, and gain and the loss parameter are zero everywhere
except in one unit cell, as schematically depicted in Fig. 1(c).
In practice, this means that all the resonators remain passive
with no net gain or loss except for the two resonators of one
unit cell, one with net gain γ > 0 and the other with net loss
−γ . With this defect embedded into the ring, we find that
localized defect states occur for any finite value of γ , and that
their spectral position moves inside the gap when γ � k − c,
mimicking the scenario with gain and loss at the edges of a
finite system [37]. The defect states again turn into zero modes
in an exceptional point, which occurs at γ = k and hence
coincides precisely with the exceptional point for an isolated
dimer. Similar to the case with defect coupling, the defect
states are spatially symmetric at the exceptional point, but
become increasingly asymmetric deeper in the broken phase,
as shown in Fig. 5.

Eigenfunction analysis. To further illuminate the condi-
tions under which the defect states enter the PT -broken
phase, where they become robust zero-energy modes, we turn
to the analysis and characterization of the biorthogonal set of
the eigenvectors [72]. Let 〈Ln| and |Rn〉 denote the left and
right eigenvectors corresponding to the eigenvalue En of a
general non-Hermitian Hamiltonian H, i.e.,

〈Ln|H = 〈Ln|En, H|Rn〉 = En|Rn〉. (2)

FIG. 6. Inverse of the mean Petermann factor K as an indicator
of exceptional points. In the main panel, this indicator is shown as
a function of γ for the model of Fig. 1(c), and the two system sizes
N = 10 (blue) and N = 100 (red). This confirms the existence of an
exceptional point at γ = 1, beyond which one encounters the robust
zero modes. For the model of Fig. 1(b), the inset shows K

−1
as a

color density plot as a function of γ and d . As in the other figures,
the couplings are fixed to k = 1 and c = 0.5. For d → 1, where the
defect disappears, the exceptional point merges with the exceptional
point of the bulk band structure, γEP = k − c = 0.5.

The vectors can be normalized to satisfy 〈Ln|Rm〉 = δnm, upon
which

∑N
n=1 |Rn〉〈Ln| = 1. Here, N is the dimension of the

Hilbert space, which for our systems is equivalent to the total
number of resonators, N = 2N .

An observable that measures the nonorthogonality of the
modes, and can be used to identify the proximity to the ex-
ceptional point in the presence of finite-size effects, is the
so-called Petermann factor

Kn = 〈Ln|Ln〉〈Rn|Rn〉, (3)

which determines the quantum-limited linewidth of lasers
[73–75]. At an exceptional point, the eigenvectors associated
with the degenerate eigenvalue coalesce, leading to a Peter-
mann factor that diverges as [76,77]

K ∼ 1/|γ − γPT |. (4)

We have studied the averaged Petermann factor,

K = 1

N

N∑

n=1

Kn, (5)

which takes the value 1 if the eigenfunctions of the system are
orthogonal, while it is larger than one otherwise.

As shown in the main panel of Fig. 6, for the model of
Fig. 1(c) the mean Petermann factor indeed diverges at γ = 1,
which signals the transition of the defect modes into the
symmetry-broken phase. For the model in Fig. 1(b), the inset
of Fig. 6 shows how the transition depends on the interplay
of d and γ in a system of N = 100 resonators. In this inset,
the red ridge delineates the transition line, so that the phase
with robust localized zero modes is found above this curve.
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Therefore, this technique can be used to determine the tran-
sition reliably for finite systems as a function of the system
parameters.

Conclusions. In summary, we demonstrated that robust
zero modes can appear when a non-Hermitian defect is em-
bedded into the topologically trivial phase of a Hermitian
system. Our detailed analysis reveals that these states be-
come robust in an exceptional point that is independent of
the bulk structure, and that this phenomenon carries over to
a range of PT -symmetric defects. In the form as presented
here, the described systems could be realized on a variety
of platforms in which SSH models with gain and loss have
already been realized [18–21,41,42,44,78]. Our approach can

be easily extended to higher dimensions, and could provide
useful insights also for the study of disordered systems, for
which robust dynamical effects of localized modes have been
recently reported [79].
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