Supplementary File S3: A graph-based approach to mapping human exposureoutcome associations for chemical contaminants

</center>

Taylor A. M. Wolffe^{1,2}, Paul Whaley^{1,3}, Crispin Halsall¹

¹Lancaster Environment Centre, Lancaster University, Lancaster, UK ²Yordas Group, Lancaster Environment Centre, Lancaster University, Lancaster, UK ³Evidence-Based Toxicology Collaboration, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA

Querying the graph

First, all packages required for the processing of the raw data were imported. A connection with the Neo4j graph database was also established:

In [7]: #Importing all required packages...
from py2neo import Graph, Node, Relationship
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
#Connecting to the neo4j graph database...
graph = Graph("http://localhost:7474/db/data/", auth=('UserHere', 'YourPasswordHere'))

Included Publications and Number of Associations

```
In [15]: #How many included Publications are there in the graph?
         included_pubs_count = """
         match (n:Publication)
         return count(n)"""
         results = graph.run(included pubs count)
         qresults = results.to_data_frame()
         aresults
Out[15]:
            count(n)
          0
            132
In [16]: #How many associations are there in the graph?
         included assocs count = """
         match (n:Association)
         return count(n)"""
         results = graph.run(included_assocs_count)
         qresults = results.to_data_frame()
         gresults
```

Out[16]:


```
In [17]: #How many individual (single) chemical exposures are there in the graph?
    chems_count ="""
    match (n:SingleChemicalExposure)
    return count(n)"""
    results = graph.run(chems_count)
    qresults = results.to_data_frame()
    qresults
Out[17]:
    Count(n)
    0 326
```

In [20]: #How many specific health outcomes are there?
 outcomes_count ="""
 match (n:HealthOutcome)
 return count(n)"""
 results = graph.run(outcomes_count)

```
qresults = results.to_data_frame()
gresults
```

Out[20]:

count(n) 0 265

```
In [21]: #What is the range and median for number of associations reported per publication?
    range_median_assocs = '''
    match (n:Publication)-[r:REPORTS]-(association)
    return n.RefID as Reference, count(r) as NumberAssociations'''
    results = graph.run(range_median_assocs)
    qresults = results.to_data_frame()
    print(qresults[qresults.NumberAssociations == qresults.NumberAssociations.min()])
    print(qresults[qresults.NumberAssociations == qresults.NumberAssociations.max()])
    print(qresults[qresults.NumberAssociations == qresults.NumberAssociations.median()])
```

	Reference	NumberAssociations
18	Braun et al. 2006	1
24	Min and Min 2013	1
27	Froehlich et al. 2009	1
37	Gallagher et al. 2011	1
48	Braun et al. 2008	1
56	Saraiva et al. 2007	1
57	Gallagher and Meliker 2011	1
58	Gallagher et al. 2010a	1
67	Golub et al. 2010	1
71	Ji et al. 2013	1
88	Lee et al. 2012	1
95	Teppala et al. 2012	1
105	Lakind and Naiman 2011	1
109	Bernard and McGeehin 2003	1
110	Arora et al. 2009	1
111	Ford 2000	1
120	Ng et al. 2013	1
125	Gallagher et al. 2013b	1
128	Mendola et al. 2013	1
131	Bhandari et al. 2013	1
	Reference NumberAss	ociations
75	Mendy et al. 2012	150
	Reference	NumberAssociations
6	Navas-Acien et al. 2009	4
8	Hoffman et al. 2010	4
26	Steinmaus et al. 2009	4
29	Gallagher and Meliker 2012	4
30	Geiger et al. 2013	4
38	Lanphear et al. 2000	4
49	Moss et al. 1999	4
50	Ballew et al. 1999	4
62	Trasande et al. 2013b	4
64	Fortenberry et al. 2012	4
82	Lee et al. 2006	4
85	JY Min et al. 2012	4
87	Clayton et al. 2011	4
90	Dye et al. 2002	4
107	Laks 2009	4
117	Sudakin et al. 2013	4

118	Menke et al.	2009	4
119	Shargorodsky et al.	2011	4

Exposure Queries

In [23]: #Which chemical group has the largest number of associations across publications? No_Assocs_ChemGroup = '''match (n:Association)-[r:ASSOCIATES]->(m)-[t:CODED_AS]->(p:SobusCode) with n, p, m return p.name as Name, count(n) as NoAssociations''' results = graph.run(No_Assocs_ChemGroup) Assocs_ChemGroup = results.to_data_frame() Assocs_ChemGroup #Visualised as Figure 3 in the manuscript which accompanies this Supplementary Information

Out[23]:

	Name	NoAssociations
0	`PFCs`	142
1	`phthalates`	226
2	`VOCs`	71
3	`BFRs`	23
4	`other`	14
5	`pesticides`	139
6	`environmental phenols`	131
7	`metals/metalloids`	583
8	`Dioxins, furans, PCBs`	267
9	`PAHs`	60


```
In [26]: #How are these associations distributed across publications?
pub_breakdown = '''match (a:Publication)-[s]->(n:Association)-[r:ASSOCIATES]->(m)-[t:CODED_AS]->(p:SobusCode)
with n, p, m, a
return p.name as Name, count(distinct a) as NoPubs'''
```

```
results = graph.run(pub_breakdown)
qresults = results.to_data_frame()
qresults
```

Out[26]:

	Name	NoPubs
0	`PFCs`	11
1	`phthalates`	12
2	`VOCs`	4
3	`BFRs`	2
4	`other`	5
5	`pesticides`	17
6	`environmental phenols`	18
7	`metals/metalloids`	84
8	`Dioxins, furans, PCBs`	9
9	`PAHs`	7

```
In [27]: #How many chemicals make-up each exposure group?
         NoChemsperGroup ='''match (n:Association)-[r:ASSOCIATES]->(m)-[t:CODED_AS]->(p:SobusCode)
         with n, p, m
         return p.name as Name, count(distinct m) as NoChems'''
         results = graph.run(NoChemsperGroup)
         gresults = results.to data frame()
         aresults
```

Out[27]:

	Name	NoChems
0	`PFCs`	13
1	`phthalates`	38
2	`VOCs`	19
3	`BFRs`	7
4	`other`	7
5	`pesticides`	50
6	`environmental phenols`	17
7	`metals/metalloids`	47
8	`Dioxins, furans, PCBs`	110
9	`PAHs`	35

In []: #Which chemicals make up each exposure group and what is their frequency within the graph? nochemstext = '''match (n:Association)-[r:ASSOCIATES]->(m)-[t:CODED AS]->(p:SobusCode) return p.name as Code, m.name as Chem, n.AssocID as Assocs'''

results = graph.run(nochemstext) qresults = results.to_data_frame()

#Visualised as Supplementary File S4

```
In [33]: #Whic chemical exposure groups are studied as mixtures most often?
ExpGroups = '''match (n:Association)-[r:ASSOCIATES]->(m:MixedChemicalExposure)-[t:CODED_AS]->(p:SobusCode)
with n, p, m
return p.name as Name, count(distinct m) as NoMixes'''
results = graph.run(ExpGroups)
qresults = results.to_data_frame()
qresults
```

Out[33]:

	Name	NoMixes
0	`phthalates`	10
1	`pesticides`	6
2	`environmental phenols`	2
3	`metals/metalloids`	4
4	`Dioxins, furans, PCBs`	12

In [36]: #How many single chemicals were those mixtures typically associated with? SingleChemsperGroupperExpGroup = '''match (n:Association)-[r:ASSOCIATES]->(m:MixedChemicalExposure)-[t:CODED_AS]->(p:S obusCode) with n, p, m match (m)-[s:COMPRISED_OF]-(1) return p.name as Name, m.name as Mix, count(distinct 1)''' results = graph.run(SingleChemsperGroupperExpGroup) qresults = results.to_data_frame() qresults

	Name	Mix	count(distinct I)
0	`Dioxins, furans, PCBs`	`Polychlorinated dibenzofurans (PCDFs), serum	3
1	`phthalates`	`Phthalates (high molecular weight (HMW)), uri	6
2	`metals/metalloids`	`Lead & Cadmium, urine (Gollenberg et al. 2010)`	2
3	`metals/metalloids`	`Cadmium , urine AND blood (Ferraro et al. 2010)`	2
4	`phthalates`	`ΣDiethylhexyl phtalate (ΣDEHP), urine (Hoppin	4
5	`Dioxins, furans, PCBs`	`Dioxin-like polychlorinated biphenyls (PCBs),	8
6	`Dioxins, furans, PCBs`	`Non dioxin-like polychlorinated biphenyls (PC	22
7	`phthalates`	`Phthalates, urine (Buttke et al. 2012)`	11
8	`metals/metalloids`	`Arsenic (total NOT Arsenobetaine), urine (Jon	4
9	`Dioxins, furans, PCBs`	`Non dioxin-like polychlorinated biphenyls (PC	5
10	`pesticides`	`Organochlorine pesticides, serum (Lee et al	4
11	`phthalates`	`Phthalates (high molecular weight (HMW)), uri	6
12	`phthalates`	`Phthalates (Low molecular weight (LMW)), urin	3
13	`Dioxins, furans, PCBs`	`Non dioxin-like polychlorinated biphenyls (PC	28
14	`Dioxins, furans, PCBs`	`Dioxin-like polychlorinated biphenyls (PCBs),	4
15	`Dioxins, furans, PCBs`	`Polychlorinated dibenzodioxins (PCDDs), serum	3
16	`phthalates`	`DBPCOM, urine (Ferguson et al. 2011)`	2
17	`pesticides`	`Organochlorine pesticides, serum (Lee et al	7
18	`phthalates`	`Di-2-ethylhexylphthalate (DEHP) metabolites,	4
19	`Dioxins, furans, PCBs`	`Dioxin-like polychlorinated biphenyls (PCBs),	9
20	`Dioxins, furans, PCBs`	`Polychlorinated dibenzofurans (PCDFs), serum	3
21	`environmental phenols`	`Parabens, urine (Buttke et al. 2012)`	2
22	`metals/metalloids`	`Arsenic (total), urine (Jones et al. 2011)`	5

	Name	Mix	count(distinct I)
23	`Dioxins, furans, PCBs`	`Polychlorinated dibenzodioxins (PCDDs), serum	3
24	`phthalates`	`Phthalates (Low molecular weight (LMW)), urin	3
25	`pesticides`	`Diethyl alkylphosphate (DEAP), urine (Bouchar	3
26	`Dioxins, furans, PCBs`	`PCB-196 & PCB-203, serum (Cave et al. 2010)`	2
27	`Dioxins, furans, PCBs`	`PCB-138 & PCB-158, serum (Cave et al. 2010)`	2
28	`environmental phenols`	`Environmental phenols, urine (Buttke et al. 2	2
29	`pesticides`	`Dichlorophenols, urine (Jerschow et al. 2012)`	2
30	`phthalates`	`Mono-butyl phthalates (MBP), urine (Stahlhut	2
31	`pesticides`	`Dimethyl alkylphosphate (DMAP), urine (Boucha	3
32	`phthalates`	`Di-2-ethylhexylphthalate (DEHP) metabolites,	4
33	`pesticides`	`ΣTotal Dialkyl phosphate (DAP), urine (Boucha	6

Health Outcome Queries

In [38]:	#What health outcome category was most often employed to categorize an association? HealthOutcomeFrequency = '''match (n:HealthOutcomeCode)<-[r]-(m)<-[t]-(s:Association) return n.name as HealthOutcome, count(distinct s) as NoAssocs'''	
	results = graph.run(HealthOutcomeFrequency) qresults = results.to_data_frame()	
	#Visualised as Figure 4 in the manuscript which accompanies this supplementary information qresults	

Out	[38]	:
	L J	

	HealthOutcome	NoAssocs
0	`Bones and Joints`	35
1	`Blood`	27
2	`Teeth and Oral Health`	10
3	`Heart and circulatory`	216
4	`Kidneys`	51
5	`Reproductive System`	163
6	`Body Weight and Metabolism`	681
7	`Cognition and Mental Health`	39
8	`Other`	12
9	`Cancer`	58
10	`Mortality`	81
11	`Gene Expression`	3
12	`Audio-Visual System`	16
13	`Liver`	136
14	`Heart and Circulatory`	17
15	`Endocrine System`	245
16	`Lungs`	93
17	`Imunne System`	84

In []: #Which specific outcomes make up each health outcome group and what is their frequency within the graph?
AllHealthOutcomes = '''match (n:Association)-[r:ASSOCIATES]->(m)-[t:CODED_AS]->(p:HealthOutcomeCode)
return p.name as Code, m.name as Outcome, n.AssocID as Assocs'''

```
results = graph.run(AllHealthOutcomes)
qresults = results.to_data_frame()
```

#visualised as Supplementary File S5

In [39]:	#Which health outcome category was the most diverse?
		<pre>diversity_of_outcome_categories = '''match (n:HealthOutcomeCode)<-[r]-(m)<-[t]-(s:Association)</pre>
		return n.name as HealthOutcome, count(distinct m) as NoOutcomes'''
		<pre>results = graph.run(diversity_of_outcome_categories)</pre>
		<pre>qresults = results.to_data_frame()</pre>
		qresults

Out[39]:

	HealthOutcome	NoOutcomes
0	`Bones and Joints`	11
1	`Blood`	15
2	`Teeth and Oral Health`	10
3	`Heart and circulatory`	21
4	`Kidneys`	12
5	`Reproductive System`	19
6	`Body Weight and Metabolism`	61
7	`Cognition and Mental Health`	21
8	`Other`	5
9	`Cancer`	23
10	`Mortality`	33
11	`Gene Expression`	3
12	`Audio-Visual System`	2
13	`Liver`	15
14	`Heart and Circulatory`	9
15	`Endocrine System`	26
16	`Lungs`	16
17	`Imunne System`	23

```
In [40]: #how are the health outcomes distributed across publications?
health_outcome_pub = '''match (a:Publication)-[s]->(n:Association)-[r:ASSOCIATES]->(m)-[t:CODED_AS]->(p:HealthOutcomeC
ode)
with n, p, m, a
return p.name as Name, count(distinct a) as NoPubs'''
results = graph.run(health_outcome_pub)
qresults = results.to_data_frame()
qresults
```

	Name	NoPubs
0	`Bones and Joints`	8
1	`Blood`	11
2	`Teeth and Oral Health`	4
3	`Heart and circulatory`	26
4	`Kidneys`	10
5	`Reproductive System`	9
6	`Body Weight and Metabolism`	34
7	`Cognition and Mental Health`	13
8	`Other`	4
9	`Cancer`	14
10	`Mortality`	16
11	`Gene Expression`	2
12	`Audio-Visual System`	3
13	`Liver`	12
14	`Heart and Circulatory`	9
15	`Endocrine System`	16
16	`Lungs`	10

16

Association Queries

17 `Imunne System`

```
In [15]: #Which exposure-outcome pairs (coded groups) were investigated most often?
exp_outcome_cat_frequency = '''match (n:HealthOutcomeCode)<-[r]-(m:HealthOutcome)<-[t]-(s:Association)-[q]-(1)-[w]->
(d:SobusCode)
return n.name as HealthOutcomeCat, d.name as ChemicalExpCat, count(distinct s) as NoAssocs'''
results = graph.run(exp_outcome_cat_frequency)
qresults = results.to_data_frame()
#Visualised as Figure 5a in the manuscript which accompanies this supplementary information
In []: #How are these associations broken down by publication?
exp_outcome_cat_pub_frequency = '''match (n:HealthOutcomeCode)<-[r]-(m:HealthOutcome)<-[t]-(s:Association)-[q]-(1)-[w]
->(d:SobusCode)
with n, m, s, d, 1
match (a:Publication)-[o]->(s)
return n.name as HealthOutcomeCat, d.name as ChemicalExpCat, count(distinct a) as NoPubs'''
results = graph.run(exp_outcome_cat_pub_frequency)
qresults = results.to_data_frame()
```

#Visualised as Figure 5b in the manuscript which accompanies this supplementary information