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1. Introduction

The determination of rigidity and flexibility of bar-joint frameworks consisting of rigid bars
connected at their ends by idealised joints is a highly active research area in discrete geometry
with a long and rich history dating back to considerations of linkages, trusses and polyhedral
structures by Maxwell, Cauchy and Euler, among others. Since bar-joint frameworks are suitable
models for a variety of both man-made and natural structures (buildings, linkages, molecules,
crystals, etc.), rigidity theory has a broad range of modern practical applications in fields such
as engineering, robotics, CAD and materials science. (See [18, 19, 20] e.g.). This transfer of
knowledge between fundamental and applied researchers is one of the motivations for exploring
constraint systems in new geometric contexts, such as the normed spaces considered in this article
(see also [1, 2] for related problems). Another strong motivation comes from the potential for
developing combinatorial Laman-type characterisations ([8]) of rigid graphs in any dimension,
due to the amenability of the matroidal sparsity counts arising in some of these contexts.

In this article, we consider first-order rigidity for bar-joint frameworks with a finite abelian
symmetry group, developing both a general linear theory as well as sharp combinatorial results in
the case of half-turn rotational symmetry in the `1 and `∞-plane. This complements and extends
work of Schulze [16], Jordán, Kaszanitzky and Tanigawa [4], Malestein and Theran [11], and
Schulze and Tanigawa [17] on symmetric frameworks in Euclidean space, and work of Kitson and
Power [5] and Kitson and Schulze [6, 7] on infinitesimal rigidity in normed spaces.

In Sect. 2, we introduce the natural notion of a framework complex and develop several key
tools for analysing frameworks with a finite abelian symmetry group acting freely on the vertex set.
These include a decomposition theorem for the framework complex (which incorporates a block
decomposition for the rigidity operator) and counting criteria for the accompanying group-labelled
quotient graph (called a gain graph). For a large class of d-dimensional normed spaces, with
d ≥ 2, this leads to the identification of (d, d,m)-gain-tight gain graphs, with m ∈ {0, 1, 2, d − 2},
as the underlying structure graphs for phase-symmetrically isostatic frameworks with rotational
symmetry (see Corollary 2.20). In contrast to Euclidean contexts, these classes of graphs are
matroidal for all dimensions d, and are computationally accessible through associated pebble-
game algorithms [9].

In Sect. 3, a new inductive construction is obtained for the class of (2, 2, 0)-gain-tight gain
graphs (Theorem 3.20). Previous recursive characterisations of (2, 2,m)-gain-tight graphs, with
m ∈ {1, 2}, can be found in [15]. The construction presented here is necessarily more involved
due to a step change in the possible minimum degree when m = 0. Recursive constructions
of classes of graphs are of fundamental importance in rigidity theory, occurring for example in
Laman’s landmark characterisation of rigidity in the Euclidean plane [8]. Of particular relevance
are previous characterisations of classes of gain graphs [4, 15] and characterisations where graph
simplicity is required to be preserved [12, 13].

In Sect. 4, geometric and combinatorial characterisations are obtained for the rigidity of two-
dimensional frameworks with half-turn rotational symmetry in the `1 and `∞-plane. The geometric
results (Theorem 4.2) use an edge-colouring technique which expresses the gain graph of a phase-
symmetrically isostatic framework as an edge-disjoint union of either two unbalanced spanning
map graphs (defined in Sect. 4.1), or two spanning trees. Combinatorial characterisations are then
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obtained for graphs which admit a placement as a phase-symmetrically isostatic framework with
half-turn rotational symmetry (Theorems 4.3 and 4.9) by combining these geometric results with
the construction scheme from Sect. 3. The analogous problem for frameworks with reflectional
symmetry requires different methods and was settled in [7].

2. Symmetric frameworks and gain sparsity

The aim of this section is to derive necessary gain-graph counting conditions for symmetri-
cally isostatic bar-joint frameworks in normed spaces. Throughout this article, X denotes a finite
dimensional real vector space with a norm ‖ · ‖ and dimension d ≥ 2. The group of linear isome-
tries of X is denoted Isom(X, ‖ · ‖), or simply Isom(X). The complexification C ⊗R X is denoted
XC and, for convenience, elementary tensor products of the form λ ⊗ x are denoted by λx. Also,
Γ will denote a finite abelian group with identity element 1 and Γ̂ will denote the dual group of
characters χ : Γ→ {z ∈ C : |z| = 1}.

2.1. Bar-joint frameworks
Let G = (V, E) be a finite simple undirected graph and let p = (pv)v∈V ∈ XV . If the components

of p are distinct vectors in X then the pair (G, p) is called a bar-joint framework in X. If H is a
subgraph of G and pH = (pv)v∈V(H) then the pair (H, pH) is called a subframework of (G, p). Define,

fG : XV → RE, (xv)v∈V 7→ (‖xv − xw‖)vw∈E.

If fG is differentiable at p then the bar-joint framework (G, p) is said to be well-positioned in X.

Lemma 2.1. [6, Proposition 6] If (G, p) is well-positioned in X then the differential of fG at p
satisfies,

d fG(p) : XV → RE, (uv)v∈V 7→ (ϕv,w(uv − uw))vw∈E,

where, for each edge vw ∈ E, ϕv,w : X → R is the linear functional,

ϕv,w(x) = lim
t→0

1
t

(‖pv − pw + tx‖ − ‖pv − pw‖) , ∀ x ∈ X.

A rigid motion of X is a family of continuous paths {αx : [−1, 1] → X}x∈X such that αx(0) = x
and ‖αx(t) − αy(t)‖ = ‖x − y‖ for all pairs x, y ∈ X and all t ∈ [−1, 1]. An infinitesimal rigid motion
of X is a vector field η : X → X with the property that η(x) = α′x(0) for all x ∈ X, for some rigid
motion {αx}x∈X. The collection of all infinitesimal rigid motions of X is a vector subspace of XX,
denoted T (X).

Let (G, p) be a bar-joint framework in X and define ρ(G,p) : T (X) → XV , η 7→ (η(pv))v∈V . Note
that if (G, p) is well-positioned, then d fG(p) ◦ ρ(G,p) = 0 (see [5, Lemma 2.1]). The framework
complex for (G, p), denoted comp(G, p), is the chain complex,

0 −−−−−→ T (X)
ρ(G,p)
−−−−−→ XV d fG(p)

−−−−−→ RE −−−−−→ 0. (1)

The kernel of d fG(p), denoted F (G, p), is referred to as the space of infinitesimal flexes of (G, p),
while the image of ρ(G,p), denoted T (G, p), is referred to as the space of trivial infinitesimal flexes
of (G, p).
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Definition 2.2. A well-positioned bar-joint framework (G, p) in a normed space X is,

(a) full if the framework complex comp(G, p) is exact at T (X).

(b) infinitesimally rigid if the framework complex comp(G, p) is exact at XV .

(c) independent if the framework complex comp(G, p) is exact at RE.

A well-positioned bar-joint framework is isostatic if it is both infinitesimally rigid and inde-
pendent. Note that comp(G, p) is a short exact sequence if and only if (G, p) is both full and
isostatic.

2.2. Symmetric graphs
A Γ-symmetric graph is a pair (G, θ) where G is a finite simple undirected graph with automor-

phism group Aut(G) and θ : Γ→ Aut(G) is a group homomorphism. It is assumed throughout this
article that θ acts freely on the vertex set of G. Thus v , θ(γ)v for all v ∈ V and for all γ ∈ Γ with
γ , 1. For convenience, we suppress θ and denote θ(γ) by γ for each group element γ ∈ Γ. Also,
for each edge e = vw ∈ E we denote by γe, or γ(vw), the edge in E which joins the vertices γv and
γw.

Proposition 2.3. Let (G, θ) be a Γ-symmetric graph and let τ : Γ→ Isom(X) be a group represen-
tation.

(i) (XC)V =
⊕

χ∈Γ̂
Xχ where,

Xχ = {x = (xv)v∈V ∈ (XC)V : xγv = χ(γ)τ(γ)xv, ∀ γ ∈ Γ, ∀ v ∈ V}.

(ii) CE =
⊕

χ∈Γ̂
Yχ where,

Yχ = {y = (ye)e∈E ∈ CE : yγe = χ(γ)ye, ∀ γ ∈ Γ, ∀ e ∈ E}.

Proof. Each x = (xv)v∈V ∈ (XC)V may be expressed as a sum x =
∑
χ∈Γ̂ xχ where xχ = (xχ,v)v∈V ∈

(XC)V has components,

xχ,v =
1
|Γ|

∑
γ∈Γ

χ(γ)τ(γ−1)xγv

 .
Similarly, each y = (ye)e∈E ∈ CE may be expressed as a sum

∑
χ∈Γ̂ yχ where yχ = (yχ,e)e∈E ∈ CE has

components,

yχ,e =
1
|Γ|

∑
γ∈Γ

χ(γ)yγe

 .
We use here the standard identity,∑

χ∈Γ̂

χ(γ) =

{
|Γ| if γ = 1,
0 otherwise.
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Note that xχ ∈ Xχ and yχ ∈ Yχ for each χ ∈ Γ̂.
Let S ⊆ Γ̂ be a maximal subset which gives rise to a direct sum ⊕χ∈S Xχ and suppose there

exists χ̃ ∈ Γ̂\S . If x ∈ Xχ̃∩ (⊕χ∈S Xχ) then xv = χ̃(γ)τ(γ−1)xγv for all v ∈ V and all γ ∈ Γ. Moreover,
x =

∑
χ∈S zχ for some unique zχ ∈ Xχ. It follows that, for all v ∈ V and all γ ∈ Γ,

xv = χ̃(γ)τ(γ−1)

∑
χ∈S

zχ,γv


= χ̃(γ)τ(γ−1)

∑
χ∈S

χ(γ)τ(γ)zχ,v


= χ̃(γ)

∑
χ∈S

χ(γ)zχ,v

 .
Thus x = χ̃(γ)(

∑
χ∈S χ(γ)zχ) for all γ ∈ Γ. Since the sum x =

∑
χ∈S zχ is direct, if x , 0 then χ̃ = χ

for some χ ∈ S . This is a contradiction and so Xχ̃ ∩ (⊕χ∈S Xχ) = {0}. However, this contradicts the
maximality of S and so it follows that S = Γ̂. This establishes the direct sum ⊕χ∈Γ̂Xχ and a similar
argument can be applied for ⊕χ∈Γ̂Yχ.

2.3. Symmetric frameworks
A Γ-symmetric bar-joint framework is a tuple G = (G, p, θ, τ) where (G, p) is a bar-joint frame-

work, (G, θ) is a Γ-symmetric graph and τ : Γ→ Isom(X) is a group representation which satisfies
τ(γ)(pv) = pγv for all γ ∈ Γ and all v ∈ V .

Lemma 2.4. Let G = (G, p, θ, τ) be a well-positioned and Γ-symmetric bar-joint framework in X
and let vw ∈ E. Then ϕγv,γw = ϕv,w ◦ τ(γ−1) for all γ ∈ Γ.

Proof. Let p0 = pv − pw. Then τ(γ)(p0) = pγv − pγw and so for each x ∈ X,

ϕγv,γw(x) = lim
t→0

1
t

(
‖τ(γ)(p0 + t τ(γ−1)x)‖ − ‖τ(γ)p0‖

)
= lim

t→0

1
t

(
‖p0 + t τ(γ−1)x‖ − ‖p0‖

)
= ϕv,w(τ(γ−1)x).

In the following, the same symbol will be used to denote a real affine transformation T : Y → Z
between two real linear spaces Y and Z and its complex extension T : YC → ZC. In particular,
we consider the complex linear functionals ϕv,w : XC → C, the complex linear transformations
τ(γ) : XC → XC and the complex differential d fG(p) : (XC)V → CE associated to a bar-joint
framework (G, p) in X.

Proposition 2.5. Let G = (G, p, θ, τ) be a well-positioned and Γ-symmetric bar-joint framework
in X. With respect to the direct sum decompositions obtained in Proposition 2.3,

(XC)V =
⊕
χ∈Γ̂

Xχ and CE =
⊕
χ∈Γ̂

Yχ,
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the (complex) differential d fG(p) may be expressed as a direct sum of linear transformations,

d fG(p) =
⊕
χ∈Γ̂

Rχ(G),

where Rχ(G) : Xχ → Yχ for each character χ ∈ Γ̂.

Proof. Let vw ∈ E. If (xv)v∈V ∈ Xχ then, using Lemma 2.4,

ϕv,w(xv − xw) = ϕγv,γw(τ(γ)(xv − xw)) = ϕγv,γw(χ(γ)(xγv − xγw)) = χ(γ)ϕγv,γw(xγv − xγw),

for each χ ∈ Γ̂ and each γ ∈ Γ. Thus, by Lemma 2.1, d fG(p)(Xχ) ⊆ Yχ and the result follows.

2.4. Infinitesimal rigid motions
Denote by T (X;C) the complex vector space spanned by vector fields ηC : X → XC, x 7→

1 ⊗ η(x) where η ∈ T (X). For convenience, ηC will simply be denoted η.

Proposition 2.6. Let τ : Γ → Isom(X) be a group representation. Then, T (X;C) =
⊕

χ∈Γ̂
Tχ(X)

where,
Tχ(X) = {η ∈ T (X;C) : η(τ(γ)x) = χ(γ)τ(γ)η(x), ∀ γ ∈ Γ, ∀ x ∈ X}.

Proof. Applying an argument similar to Lemma 2.3, each η ∈ T (X;C) may be expressed as a sum
η =

∑
χ∈Γ̂ ηχ where ηχ : X → XC is the vector field,

ηχ(x) =
1
|Γ|

∑
γ∈Γ

χ(γ)τ(γ−1)η(τ(γ)x)

 .
Note that ηχ ∈ Tχ(X) for each χ ∈ Γ̂.

Let S ⊆ Γ̂ be a maximal subset which gives rise to a direct sum ⊕χ∈STχ(X) and suppose there
exists χ̃ ∈ Γ̂\S . If η ∈ Tχ̃(X) ∩ (⊕χ∈STχ(X)) then η(x) = χ̃(γ)τ(γ−1)η(τ(γ)x) for all x ∈ X and all
γ ∈ Γ. Moreover, η =

∑
χ∈S δχ for some unique δχ ∈ Tχ(X). Thus, for all x ∈ X and all γ ∈ Γ,

η(x) = χ̃(γ)τ(γ−1)

∑
χ∈S

δχ(τ(γ)x)


= χ̃(γ)τ(γ−1)

∑
χ∈S

χ(γ)τ(γ)δχ(x)


= χ̃(γ)

∑
χ∈S

χ(γ)δχ(x)

 .
Thus η = χ̃(γ)

(∑
χ∈S χ(γ)δχ

)
for all γ ∈ Γ. Since the sum η =

∑
χ∈S δχ is direct, if η , 0 then it

follows that χ̃ = χ for some χ ∈ S . This is a contradiction and so Tχ̃(X) ∩ (⊕χ∈STχ(X)) = {0}.
However, this contradicts the maximality of S and so S = Γ̂.
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We now consider the complex restriction map ρ(G,p) : T (X;C) → (XC)V , η 7→ (η(pv))v∈V for a
given bar-joint framework (G, p) in X.

Proposition 2.7. Let G = (G, p, θ, τ) be a well-positioned and Γ-symmetric bar-joint framework
in X. With respect to the direct sum decompositions obtained in Propositions 2.6 and 2.3,

T (X;C) =
⊕
χ∈Γ̂

Tχ(X), and, (XC)V =
⊕
χ∈Γ̂

Xχ,

the (complex) restriction map ρ(G,p) may be expressed as a direct sum of linear transformations,

ρ(G,p) =
⊕
χ∈Γ̂

ρχ(G),

where ρχ(G) : Tχ(X)→ Xχ for each character χ ∈ Γ̂.

Proof. Let χ ∈ Γ̂. If η ∈ Tχ(X) then, for each γ ∈ Γ and all v ∈ V ,

η(pγv) = η(τ(γ)pv) = χ(γ)τ(γ)η(pv).

Thus, ρ(G,p)(Tχ(X)) ⊆ Xχ and the result follows.

2.5. Decomposing the framework complex
Denote by compC(G, p) the complexified framework complex for a bar-joint framework (G, p),

0 −−−−−→ T (X;C)
ρ(G,p)
−−−−−→ (XC)V d fG(p)

−−−−−→ CE −−−−−→ 0. (2)

If G = (G, p, θ, τ) is a well-positioned and Γ-symmetric bar-joint framework in X then, recalling
the decompositions d fG(p) =

⊕
χ∈Γ̂

Rχ(G) and ρ(G,p) =
⊕

χ∈Γ̂
ρχ(G) from Propositions 2.5 and 2.7,

we have Rχ(G) ◦ ρχ(G) = 0 for all χ ∈ Γ̂. The χ-symmetric framework complex for G, denoted
compχ(G), is the chain complex,

0 −−−−−→ Tχ(X)
ρχ(G)
−−−−−→ Xχ

Rχ(G)
−−−−−→ Yχ −−−−−→ 0. (3)

The kernel of Rχ(G), denoted Fχ(G), is referred to as the space of χ-symmetric infinitesimal flexes
of G. The image of ρχ, denoted Tχ(G), is referred to as the space of trivial χ-symmetric infinitesi-
mal flexes of G.

Theorem 2.8. Let G = (G, p, θ, τ) be a well-positioned and Γ-symmetric bar-joint framework in
X. Then,

compC(G, p) =
⊕
χ∈Γ̂

compχ(G).

Proof. The result follows from Propositions 2.5, 2.6 and 2.7.

Definition 2.9. A well-positioned and Γ-symmetric bar-joint framework G = (G, p, θ, τ) in a
normed space X is said to be,
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(a) χ-symmetrically full if compχ(G) is exact at Tχ(X).

(b) χ-symmetrically infinitesimally rigid if compχ(G) is exact at Xχ.

(c) χ-symmetrically independent if compχ(G) is exact at Yχ.

A Γ-symmetric bar-joint framework is χ-symmetrically isostatic if it is both χ-symmetrically
infinitesimally rigid and χ-symmetrically independent.

Corollary 2.10. Let G = (G, p, θ, τ) be a well-positioned and Γ-symmetric bar-joint framework in
X. The following statements are equivalent.

(i) (G, p) is full (respectively, infinitesimally rigid, independent or isostatic).

(ii) G is χ-symmetrically full (respectively, χ-symmetrically infinitesimally rigid, χ-symmetrically
independent or χ-symmetrically isostatic) for each χ ∈ Γ̂.

Let G = (G, p, θ, τ) be a Γ-symmetric bar-joint framework in X. A Γ-symmetric subframework
of G is a Γ-symmetric frameworkH = (H, pH, θH, τH) where (H, pH) is a subframework of (G, p),
θH : Γ→ Aut(H) is the group homomorphism induced by θ and τH = τ.

Lemma 2.11. Let G = (G, p, θ, τ) be a well-positioned and Γ-symmetric bar-joint framework in X
and let χ ∈ Γ̂. If G is χ-symmetrically independent then every Γ-symmetric subframework of G is
χ-symmetrically independent.

Proof. LetH = (H, pH, θH, τH) be a Γ-symmetric subframework of G and consider the direct sum
decompositions,

XV(G)
C = XV(H)

C ⊕ XV(G)\V(H)
C , and, CE(G) = CE(H) ⊕ CE(G)\E(H)

Note that Xχ = XHχ ⊕ XG\Hχ where XHχ = XV(H)
C ∩ Xχ and XG\Hχ = XV(G)\V(H)

C ∩ Xχ. Similarly,
Yχ = YHχ ⊕ YG\Hχ where YHχ = CE(H) ∩ Yχ and YG\Hχ = CE(G)\E(H) ∩ Yχ. With respect to these
decompositions, Rχ(G) admits a block decomposition of the form,

Rχ(G) =

(
Rχ(H) 0

C D

)
.

Thus, if Rχ(G) is surjective then so too is Rχ(H).

2.6. Quotient graphs
Let (G, θ) be a Γ-symmetric graph and suppose θ acts freely on the vertices and edges of G.

The orbit of a vertex v ∈ V (respectively an edge e ∈ E) is denoted by [v] (respectively [e]). Thus
[v] = {γv : γ ∈ Γ} and [e] = {γe : γ ∈ Γ}. The collection of all vertex orbits (respectively, edge
orbits) is denoted V0 (respectively, E0). The quotient graph G0 = G/Γ is a multigraph with vertex
set V0, edge set E0 and incidence relation satisfying [e] = [v][w] if some (equivalently, every) edge
in [e] is incident with a vertex in [v] and a vertex in [w].
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Proposition 2.12. Let G = (G, p, θ, τ) be a well-positioned and Γ-symmetric bar-joint framework
in X. Let χ ∈ Γ̂ and suppose G is χ-symmetrically full.

(i) If G is χ-symmetrically infinitesimally rigid then,

|E0| ≥ (dimR X)|V0| − dimC Tχ(X).

(ii) If G is χ-symmetrically independent then,

|E0| ≤ (dimR X)|V0| − dimC Tχ(X).

(iii) If G is χ-symmetrically isostatic then,

|E0| = (dimR X)|V0| − dimC Tχ(X).

Proof. Applying Proposition 2.5,

|E0| = dimC Yχ ≥ rank Rχ = dimC Xχ − dimC ker Rχ = (dimC XC)|V0| − dimC Fχ(G).

If (i) holds then Fχ(G) = Tχ(G) and dimC Tχ(G) = dimC Tχ(X). If (ii) holds then dimC Yχ =

rank Rχ and dimC Fχ(G) ≥ dimC Tχ(G) = dimC Tχ(X). If (iii) holds then the result follows from
(i) and (ii).

2.7. Norms with a minimal space of infinitesimal rigid motions
The space T (X) of infinitesimal rigid motions of a normed space X is minimal if given any

η ∈ T (X) there exists x0 ∈ X such that η(x) = x0 for all x ∈ X. This class includes all `p-spaces,
with p , 2, and all normed spaces with a polyhedral unit ball (see [5, Lemma 2.5]). If dimR X = 2,
then this class includes all norms not derived from an inner product. In the following, the identity
map on X is denoted IX, or simply I.

Lemma 2.13. Let τ : Γ → Isom(X) be a group representation and let χ ∈ Γ̂. If T (X) is minimal
then,

dimC Tχ(X) = dimC

⋂
γ∈Γ

ker(τ(γ) − χ(γ)I)

 .
Proof. Let η ∈ T (X). Since T (X) is minimal, there exists x0 ∈ X such that η(x) = x0 for all
x ∈ X. Note in particular that x0 = η(τ(γ)(x0)) for each γ ∈ Γ. Thus ηC ∈ Tχ(X) if and only if
x0 = χ(γ)τ(γ)(x0) for each γ ∈ Γ. The result now follows.

Let ω = e2πi/n, where n ∈ N and n ≥ 2, and consider the multiplicative cyclic group Zn = {ωk :
k = 0, 1, . . . , n − 1}. Recall that the dual group for Zn consists of characters χ0, χ1, . . . , χn−1 where
χ j(ω) = ω j for each j = 0, 1, . . . , n − 1.

Lemma 2.14. Let τ : Zn → Isom(X) be a group representation where n ≥ 2. If T (X) is minimal
then, for each j = 0, 1, . . . , n − 1,

dimC Tχ j(X) = dimC ker(τ(ω) − ω jI).
9



Proof. Let j ∈ {0, 1, . . . , n−1}. Note that ker(τ(ω)−ω jI) ⊆ ker(τ(ωk)−ω jkI) for k = 0, 1, . . . , n−1.
Thus, by Lemma 2.13,

dimC Tχ j(X) = dimC

n−1⋂
k=0

ker(τ(ωk) − ω jkI)

 = dimC ker(τ(ω) − ω jI).

In the following, an n-fold rotation (n ≥ 2) of a two-dimensional real vector space X is a linear
operator S : X → X with matrix

(
cos(2π/n) − sin(2π/n)
sin(2π/n) cos(2π/n)

)
with respect to some basis for X. If dim X ≥ 3

then a linear operator T : X → X is an n-fold rotation if there exists a direct sum decomposition
X = Y ⊕ Z, where Y is a two-dimensional subspace of X, with respect to which T = S ⊕ IZ, S is
an n-fold rotation of Y and IZ is the identity operator on Z.

Lemma 2.15. Let τ : Zn → Isom(X) be a group representation where τ(ω) is an n-fold rotation of
X and n ≥ 2. Suppose, in addition, that T (X) is minimal.

(i) If n = 2 then,

dimC Tχ j(X) =

{
dimR X − 2 if j = 0,
2 if j = 1.

(ii) If n ≥ 3 then,

dimC Tχ j(X) =


dimR X − 2 if j = 0,
1 if j ∈ {1, n − 1},
0 otherwise.

Proof. Write X = Y ⊕Z and τ(ω) = S ⊕ IZ where dim Y = 2 and S is an n-fold rotation of Y . Then
XC = YC ⊕ZC. Note that τ(ω)−χ0(ω)I = (S − IY)⊕ 0. Also, S − IY is invertible and so, by Lemma
2.14,

dimC Tχ0(X) = dimC ker((S − IY) ⊕ 0) = dimR X − 2.

Now let j ∈ {1, . . . , n − 1}. If n = 2, then ω = −1 and S = −IY . Note that τ(ω) − ωI = 0 ⊕ 2IZ and
so, by Lemma 2.14,

dimC Tχ1(X) = dimC ker(0 ⊕ 2IZ) = dimR Y = 2.

If n ≥ 3, then S has eigenvalues of multiplicity 1 at ω and ω. Note that τ(ω) −ω jI = (S −ω jIY) ⊕
(1 − ω j)IZ and so, by Lemma 2.14,

dimC Tχ j(X) = dimC ker(τ(ω) − ω jI) = dimC ker(S − ω jIY) =

{
1 if j ∈ {1, n − 1},
0 otherwise.

10



2.8. Gain graphs
Let (G, θ) be a Γ-symmetric graph and fix an orientation on the edges of the quotient graph

G0 = (V0, E0). For each vertex orbit [v] ∈ V0, choose a representative vertex ṽ ∈ [v] and denote
the set of all such representatives by Ṽ0. For each directed edge [e] = ([v], [w]) in the directed
multigraph G0 there exists a unique γ ∈ Γ, referred to as the gain on [e], such that ṽ(γw̃) ∈ [e].
This gain assignment ψ : E0 → Γ, [e] 7→ ψ[e], is well-defined and the pair (G0, ψ) is referred to as
a (quotient) gain graph for (G, θ). The graph G is also called the covering graph of (G0, ψ).

Note that a gain assignment ψ is dependent on the choice of representative vertices Ṽ0 and
also on the choice of orientation for each edge of G0. We may switch the gain assignment on the
directed multigraph G0 by choosing a different set of vertex orbit representatives. We regard two
gain assignments on the directed multigraph G0 as equivalent if one can be obtained from the other
by such a switching operation. Note that if the orientation of an edge [e] in G0 is reversed then the
induced gain ψ[e] is replaced with ψ−1

[e].
In general, we refer to a group-labelled directed multigraph (G0, ψ) with ψ : E0 → Γ as a

Γ-gain graph if it is a quotient gain graph for a Γ-symmetric graph (G, θ). Note that, since G is
assumed to be simple, (G0, ψ) has no parallel edges with the same gain when oriented in the same
direction and no loops with a trivial gain. We regard two Γ-gain graphs as equivalent if they are
derived from the same Γ-symmetric graph (G, θ). For more on gain graphs we refer the reader to
[4, 21].

Example 2.16. Figure 1 illustrates several examples of Z2-symmetric graphs together with ac-
companying quotient gain graphs. These gain graphs will form base graphs for the inductive
construction presented in Section 3. Note that in the case of Z2-symmetric graphs, gain assign-
ments are independent of the chosen edge orientation. Thus edge orientations have been omitted
from Figure 1. In each gain graph, the indicated gains are determined by the set of representative
vertices, labelled by p, in its covering graph. Note that each covering graph is presented as a two-
dimensional bar-joint framework with half-turn rotational symmetry. Moreover, it can be shown
that these bar-joint frameworks are χ0-symmetrically isostatic with respect to the `∞ norm. The
reasons for this, and the significance of the edge colourings, are explained in Section 4.1.

The gain of a path of directed edges F = [v1], [e1], [v2], . . . , [ek], [vk] in a gain graph (G0, ψ)
(where [v1] may be equal to [vk]) is defined as the product ψ(F) = Πk

i=1 ψ([ei])sign([ei]), where
sign([ei]) = 1 if [ei] is directed from [vi] to [vi+1] and sign([ei]) = −1 if [ei] is directed from [vi+1]
to [vi]. A set of edges F is balanced if it does not contain a cycle of edges, or, has the property
that every cycle of edges in F has gain 1. A subgraph of G0 is balanced in (G0, ψ) if its edge set is
balanced; otherwise, the subgraph is unbalanced.

Lemma 2.17 ([4, 21]). Let G0 be a quotient graph and fix an orientation on the edges of G0. If a
subgraph H0 is balanced for some gain assignment on the directed quotient graph G0 then,

(i) H0 is balanced for every equivalent gain assignment on the directed quotient graph G0.

(ii) there exists an equivalent gain assignment ψ on the directed quotient graph G0 which satisfies
ψ([e]) = 1 for all [e] ∈ E(H0).
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pṽ pw̃

pz̃ px̃

(f)

1
11

1

11 −1

−1[v] [w]

[x][z]
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Figure 1: Examples of Z2-gain graphs and their covering graphs. These are precisely the base Z2-gain graphs for
the (2, 2, 0)-gain-tight inductive construction described in Section 3. The bottom rows illustrate χ0-symmetrically
isostatic realisations for the `∞-plane under half-turn rotational symmetry. The monochrome subgraphs induced by
these realisations (described in Section 4) are indicated in black and grey.
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2.9. A special case
Let G = (G, p, θ, τ) be a well-positioned and Γ-symmetric bar-joint framework in X and sup-

pose the Γ-symmetric graph (G, θ) has an associated gain graph which is balanced. By Lemma
2.17, there exists a choice of vertex orbit representatives Ṽ0 such that the induced gain assignment
satisfies ψ([e]) = 1 for all [e] ∈ E(G0). It follows that G0 is a simple graph. Consider the well-
positioned bar-joint framework (G0, p̃) in X where p̃[v] = pṽ for each vertex orbit [v] ∈ V0 and
vertex orbit representative ṽ ∈ Ṽ0 with ṽ ∈ [v]. The following lemma shows the relationship be-
tween the differential d fG0(p̃) and the components of the block decomposition of d fG(p) described
in Proposition 2.5.

Lemma 2.18. Let χ ∈ Γ̂ and define a pair of linear transformations,

S χ(G) : (XC)V0 → Xχ, (x[v])[v]∈V0 7→ (χ(γ)τ(γ)x[v])v∈V

where v = γṽ for some unique ṽ ∈ Ṽ0 and some unique γ ∈ Γ, and,

Tχ(G) : CE0 → Yχ, (x[e])[e]∈E0 7→ (χ(γ)x[e])e∈E

where e = γ(ṽw̃) for some unique ṽ, w̃ ∈ Ṽ0 and some unique γ ∈ Γ.
Then the following diagram commutes.

(XC)V0 CE0

Xχ Yχ

d fG0 ( p̃)

S χ(G) Tχ(G)

Rχ(G)

In particular, d fG0( p̃) and Rχ(G) are similar linear transformations.

Proof. Let u = (u[v])[v]∈V0 ∈ (XC)V0 and let e = vw ∈ E. Then v = γṽ and w = γw̃ for some
unique vertex orbit representatives ṽ, w̃ ∈ Ṽ0 and some unique γ ∈ Γ. Recall from Proposition
2.5 that Rχ(G) is the restriction of d fG(p) to the subspace Xχ ⊂ (XC)V . Thus, by Lemma 2.1,
the e-component of (Rχ(G) ◦ S χ(G))(u) is given by ϕv,w(χ(γ)τ(γ)(u[v] − u[w])). Also, by applying
Lemma 2.1 to the bar-joint framework (G0, p̃), and using Lemma 2.4, we see that the e-component
of (Tχ(G) ◦ d fG0( p̃))(u) is given by χ(γ)ϕṽ,w̃(u[v] − u[w]) = ϕv,w(χ(γ)τ(γ)(u[v] − u[w])).

2.10. Gain-sparsity
Let k ∈ N, let l ∈ {0, 1, . . . , 2k − 1} and let m ∈ {0, 1, . . . , l}.

Definition 2.19. A gain graph (G0, ψ) is (k, l,m)-gain-sparse if

(a) |F| ≤ k|V(F)| − l for any nonempty balanced F ⊆ E(G0), and,

(b) |F| ≤ k|V(F)| − m for all F ⊆ E(G0).

Moreover, (G0, ψ) is (k, l,m)-gain-tight if |E(G0)| = k|V(G0)|−m and (G0, ψ) is (k, l,m)-gain-sparse.
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Consider again the multiplicative cyclic group Zn = {ωk : k = 0, 1, . . . , n − 1} with characters
χ j(ω) = ω j for j = 0, 1, . . . , n − 1. A Zn-symmetric bar-joint framework G = (G, p, θ, τ) in X is
said to be Cn-symmetric if τ(ω) is an n-fold rotation of X.

Corollary 2.20. Let G = (G, p, θ, τ) be a well-positioned and Cn-symmetric bar-joint framework
in X, where n ≥ 2, and let d = dimR X. Suppose, in addition, that T (X) is minimal and G is
χ j-symmetrically isostatic.

(i) Suppose n = 2.

(a) If j = 0 then (G0, ψ) is (d, d, d − 2)-gain-tight.

(b) If j = 1 then, (G0, ψ) is (d, d, 2)-gain-tight.

(ii) Suppose n ≥ 3.

(a) If j = 0 then (G0, ψ) is (d, d, d − 2)-gain-tight.

(b) If j ∈ {1, n − 1} then, (G0, ψ) is (d, d, 1)-gain-tight.

(c) If j < {0, 1, n − 1} then, (G0, ψ) is (d, d, 0)-gain-tight.

Proof. Let χ = χ j. Note that since T (X) is minimal, every bar-joint framework in X is full.
By Lemma 2.10, G, and every Cn-symmetric subframework of G, is χ-symmetrically full. Also
note that dim Xχ = (dimR X)|V0| and dim Yχ = |E0|. Let F ⊆ E(G0), let H0 be the subgraph of
G0 spanned by the edges in F and let H be the covering graph for H0 in G. By Lemma 2.11,
the Cn-symmetric subframework H = (H, pH, θH, τH) is χ-symmetrically independent. Thus, by
Proposition 2.12(ii),

|E(H0)| ≤ (dimR X)|V(H0)| − dimC Tχ(X).

If H0 is a balanced subgraph of G0 then we may consider an associated bar-joint framework
(H0, p̃H), as described in Section 2.9. By Lemma 2.18, d fH0( p̃H) and Rχ(H) are similar linear
transformations. It follows that (H0, p̃H) is an independent subframework of (G, p) and so,

|E(H0)| = rank d fH0( p̃H) = (dimR X)|V(H0)| − dimR F (H0, p̃H)
≤ (dimR X)|V(H0)| − dimR T (X).

Since T (X) is minimal, dimR T (X) = dimR X. Thus the results now follow from Lemma 2.15 and
Proposition 2.12(iii).

Remark 2.21. Note that, by the above corollary, for two-dimensional χ j-symmetrically isostatic
bar-joint frameworks with rotational symmetry, the associated gain graph must be either (2, 2, 0)-
gain tight, (2, 2, 1)-gain-tight or (2, 2, 2)-gain-tight. Inductive constructions for (2, 2, 1)- and (2, 2, 2)-
gain-tight gain graphs are presented in [15] (see also [13, 12]). In the next section we present an
inductive construction for (2, 2, 0)-gain-tight gain graphs. Also note that, in any dimension, the
(k, l,m)-gain tight counts given by Corollary 2.20 are the bases of a matroid as was observed in
[15]. (Note however that this matroidal property does not hold for arbitrary triples k, l,m ∈ N.
Indeed it fails in some rigidity contexts [3].)
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3. An inductive construction of (2, 2, 0)-gain tight Z2-gain graphs

Let (G0, ψ) be a Z2-gain graph with covering graph G. For simplicity, we will omit the square
brackets in the notation of vertices and edges of (G0, ψ) in this section, and simply write v for the
vertex [v], and (uv, α) for the edge ([u], [v]) with gain α. Note that the orientation of the edges of
(G0, ψ) does not matter, since (G0, ψ) is a Z2-gain graph and Z2 is of order 2. For the remainder of
this article we will only consider Z2-gain graphs and so from now on the term gain graph will be
used to mean Z2-gain graph.

3.1. Base graphs
Let B denote the family of (2, 2, 0)-gain-tight base graphs presented in Figure 1. It will be

convenient to assign names to elements of B. Let iK`
j denote the complete graph on j vertices,

with i copies of each edge and ` loops on each vertex. Then 2K1
2 and K1

3 with a balanced K3 are the
gain graphs in Figures 1(a) and (b), respectively. The graph formed from 2K3 by adding a loop and
deleting an edge not incident with the vertex with the loop will be denoted by R. (See Figure 1(c).)
We denote by K+

4 any Z2-gain graph formed from a balanced copy of K4 by adding a single edge
(subject to (2, 2, 0)-gain-sparsity). We shall also use K++

4 to denote any one of the non-isomorphic
(2, 2, 0)-gain-tight gain graphs formed from K4 by adding two edges. (See Figures 1(d)-(h).)

3.2. Preliminaries
We first record two preliminary lemmas about gain graphs which go back to Zaslavsky [21].

Lemma 3.1. Let G0 be a (simple) cycle. A Z2-gain graph (G0, ψ) is unbalanced if and only if the
vertices in V0 can be switched so that any one edge has non-identity gain and every other edge in
the resulting Z2-gain graph (G0, ψ

′) has identity gain.

Lemma 3.2. Let (G0, ψ) be a Z2-gain graph and let A and B be subgraphs of (G0, ψ). Suppose
that A ∩ B is connected. If A and B are balanced then A ∪ B is also balanced.

We will also need some elementary results about sparse graphs which we record here for
convenience. Let f (G0) = 2|V0| − |E0|. So, for example, any (2, 2, 0)-gain-tight gain graph G0

satisfies f (G0) = 0 while any balanced subgraph G′0 satisfies f (G′0) ≥ 2.

Lemma 3.3. Let G0 be connected and 4-regular. Then f (G′0) ≥ 1 for any proper subgraph G′0 ⊂
G0.

Proof. Suppose G0 contains a subgraph G′0 with f (G′0) = 0. Then G′0 has average degree 4, so G′0
must be 4-regular (by the 4-regularity of G0). Since G0 is connected it follows that G′0 = G0.

For two disjoint vertex sets A, B ⊂ V(G0), we denote by d(A, B) the number of edges between
A and B.

Lemma 3.4. Let H0 = (V ′0, E
′
0) be a subgraph of G0. If the degree of v in G0 is at least 4 for all

v ∈ V ′0 then d(V ′0,V0 − V ′0) ≥ 2 f (H0).
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Proof. Since |E′0| = 2|V ′0| − f (H0) and every vertex in V ′0 has degree at least 4 in G0 we have,

4|V ′0| ≤
∑
v∈V′0

degG0
(v) = 2|E′0| + d(V ′0,V0 − V ′0) = 4|V ′0| − 2 f (H0) + d(V ′0,V0 − V ′0).

Lemma 3.5. Let (G0, ψ) be (2, 2, 0)-gain-sparse, and let G′0 be a balanced subgraph of (G0, ψ)
with f (G′0) ∈ {2, 3}. Then G′0 is connected.

Proof. Suppose G′0 is disconnected. Let A be a connected component of G′0 and let B = G′0 − A.
Since any subgraph of a balanced gain graph is also balanced, we have f (A) ≥ 2 and f (B) ≥ 2.
Hence f (G′0) = f (A) + f (B) ≥ 4, contradicting the hypothesis of the lemma.

Lemma 3.6. Let (G0, ψ) be (2, 2, 0)-gain-tight. Let H′0 and H′′0 be balanced subgraphs of (G0, ψ)
with V(H′0) ∩ V(H′′0 ) , ∅ and f (H′0) = 2 = f (H′′0 ). Then either

(i) f (H′0 ∩ H′′0 ) = 4 and f (H′0 ∪ H′′0 ) = 0, or,

(ii) f (H′0 ∪ H′′0 ) = f (H′0 ∩ H′′0 ) = 2.

Moreover, (ii) holds if and only if H′0 ∪ H′′0 is balanced.

Proof. As H′0 ∩ H′′0 ⊂ H′0 we have f (H′0 ∩ H′′0 ) ≥ 2. If f (H′0 ∩ H′′0 ) ≥ 4 then

0 ≤ f (H′0 ∪ H′′0 ) = f (H′0) + f (H′′0 ) − f (H′0 ∩ H′′0 ) = 4 − f (H′0 ∩ H′′0 ) ≤ 0

and so (i) holds. If f (H′0 ∩ H′′0 ) ∈ {2, 3} then H′0 ∩ H′′0 is connected by Lemma 3.5. It follows that
H′0 ∪ H′′0 is balanced by Lemma 3.2 and hence f (H′0 ∪ H′′0 ) ≥ 2. Thus,

2 ≤ f (H′0 ∪ H′′0 ) = 2 + 2 − f (H′0 ∩ H′′0 ) ≤ 2

and so (ii) holds.

3.3. Henneberg-type operations
Now we define operations on Z2-gain graphs. The H1 operation (or Henneberg 1 move, or

0-extension) adds a new vertex of 3 possible types. In type 1a the new vertex has degree 2 and two
distinct neighbours; in type 1b the new vertex has degree 2 and one neighbour with two parallel
edges; and in type 1c the new vertex has degree 3 with one neighbour and a loop. (See Figure 2.)
The gains on the new edges are arbitrary subject to the condition that the covering graph is simple,
i.e. parallel edges have different gains and a loop has gain −1.

The H2 operation (or Henneberg 2 move, or 1-extension) deletes one edge (xy, α) and adds
a new vertex v adjacent to x, y of five possible types. In type 2a, v has degree 3 and 3 distinct
neighbours with edges (xv, β) and (yv, γ) satisfying βγ = α; in type 2b, v has degree 3 and exactly
2 neighbours with edges (xv, 1), (xv,−1) and (yv, δ) with δ = ±1; in type 2c, the deleted edge xy is
a loop (xx,−1) and v has degree 3 and exactly 2 neighbours with edges (xv, 1), (xv,−1) and (yv, δ)
with δ = ±1; in type 2d, v has degree 4 and exactly 2 neighbours with edges (xv, β), (yv, γ) and
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Figure 2: H1 a, b, c operations on gain graphs. Gain labels are omitted.

Figure 3: H2 a, b, c, d, e operations on gain graphs. Gain labels are omitted.

(vv,−1) satisfying α = βγ; finally, in type 2e, the deleted edge xy is a loop (xx,−1), v has degree
4 and exactly 1 neighbour with edges (xv, 1), (xv,−1) and (vv,−1). (See Figure 3.)

The H3 operation (or X-replacement, or 2-extension) deletes two edges (xy, α), (zw, β) and
adds a new degree 4 vertex v adjacent to x, y, z,w of five possible types. In type 3a, v has 4
distinct neighbours and edges (xv, γ), (yv, δ), (zv, ε), (wv, ζ) where α = γδ and β = εζ; in type
3b, v has 3 distinct neighbours, y = z and there are two parallel edges between v and y, with
edges (xv, γ), (yv, 1), (yv,−1), (wv, ζ) where α = γ and β = −ζ; in type 3c, v has 3 distinct
neighbours, x = y so α = −1 and there are two parallel edges between v and x with edges
(xv,−1), (xv, 1), (zv, ε), (wv, ζ) and β = εζ; in type 3d, v has 2 distinct neighbours, x = y and
z = w so α = β = −1 and there are two parallel edges between v and x and between v and z with
edges (xv, 1), (xv,−1), (zv, 1), (zv,−1). (See Figure 4.)

Figure 4: H3 a, b, c, d operations on gain graphs. Gain labels are omitted.

A vertex-to-K4 operation removes a vertex v (of arbitrary degree) and all the edges incident
with v, and adds in a copy of K4 with only trivial gains. Each removed edge (xv, γ), where x , v,
is replaced by an edge (xy, γ) for some y in the new K4. If x = v then the removed edge (vv,−1)
is replaced by an edge (wz,−1) where w, z are vertices of the new K4. Note w and z need not be
distinct. (See Figure 5.)
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Figure 5: The vertex-to-K4 operation and the vertex splitting operation. Gain labels are omitted.

A vertex splitting operation first chooses a vertex v1, a neighbour v2 of v1, and a partition N1,N2

of the remaining neighbours of v1; it then deletes the edges from v1 to vertices in N1, adds a new
vertex v0 joined to vertices in N1 and finally adds two new edges v0v1, v0v2. If there is a loop at v1

then it is either left unchanged or replaced by a loop at v0. We specify that v0v1 is given gain 1 and
v0v2 is given the same gain as v1v2. (See Figure 5.)

By construction we have the following.

Lemma 3.7. Applying any of the above operations to a (2, 2, 0)-gain-tight gain graph results in a
(2, 2, 0)-gain-tight gain graph.

Proof. When the operation is a H1, H2 or H3 operation then we may employ similar arguments to
those in [4, Lemma 4.1 and 7.6].

Suppose (G, ψ) is obtained from (H, ψ′) by a vertex-to-K4 operation at v. If (G, ψ) is not
(2, 2, 0)-gain-tight then there exists a vertex-induced subgraph G1 of (G, ψ) such that f (G1) < 0,
or, (G1, ψ|G1) is balanced and f (G1) ∈ {0, 1}. Consider the subgraph H1 of H corresponding to G1

obtained on contracting G to H. Note that in our definition of H1, if there is a loop at v in H then
H1 will contain this loop if and only if G1 contains the extra edge (wz,−1) in the copy of K+

4 . Note
that (H1, ψ

′|H1) is balanced if and only if (G1, ψ|G1) is balanced. There are two possibilities: either
|V(K4 ∩G1)| ∈ {1, 4}, or, |V(K4 ∩G1)| ∈ {2, 3}. In the first case, f (H1) = f (G1) and in the second
case f (H1) = f (G1) − 1, contradicting (2, 2, 0)-gain-sparsity.

Lastly, suppose (G, ψ) is obtained from a (2, 2, 0)-gain-tight gain graph (H, ψ′) by a vertex
splitting operation at the vertex v1 which adjoins the new vertex v0. Suppose that (G, ψ) is not
(2, 2, 0)-gain-tight. Since f (G) = 0 it follows that there exists a vertex-induced subgraph G1 of
(G, ψ) such that f (G1) < 0, or, (G1, ψ|G1) is balanced and f (G1) ∈ {0, 1}. Consider the subgraph H1

of H corresponding to G1 obtained on contracting G to H. Note that if G1 contains v0 and v1, then
f (H1) ≤ f (G1). Otherwise, f (H1) = f (G1). Hence H1 violates (2, 2, 0)-gain-sparsity.

3.4. Reducing low-degree vertices via reverse Henneberg-type operations
Note that if a gain graph G′0 is obtained from a (2, 2, 0)-gain-tight gain graph by reversing any of

the above operations then f (G′0) = 0. Thus G′0 is (2, 2, 0)-gain-tight if and only if each subgraph of
G′0 satisfies the (2, 2, 0)-sparsity counts. A vertex v in a (2, 2, 0)-gain-tight gain graph is admissible
if there is a reverse H1 operation, a reverse H2 operation or a reverse H3 operation removing
v which results in a (2, 2, 0)-gain-tight gain graph. Similarly a balanced subgraph isomorphic to
K4 or K3 is admissible if there is a K4-contraction (i.e. a reverse vertex-to-K4 operation) or edge
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contraction (i.e. a reverse vertex splitting operation) which results in a (2,2,0)-gain-tight gain
graph.

Our first lemma is trivial and deals with all H1 moves.

Lemma 3.8. Let (G0, ψ) be a (2, 2, 0)-gain-tight gain graph. Suppose v ∈ V0 has degree 2 or is
incident to a loop and has degree 3. Then v is admissible.

We now work through the H2 moves in turn.

Lemma 3.9. Let (G0, ψ) be a (2, 2, 0)-gain-tight gain graph. Suppose v ∈ V0 has degree 3 with
exactly three neighbours a, b, c. Then v is admissible if and only if it is not contained in a balanced
subgraph isomorphic to K4.

Proof. Suppose v is admissible. Then there exists a (2, 2, 0)-gain-tight gain graph (G′0, ψ
′) which

is the result of a reverse H2a operation at v. If v is contained in a balanced K4 subgraph then
the deleted edge in (G′0, ψ

′) must be one of two parallel edges with equal gain, contradicting the
simplicity of the covering graph for (G′0, ψ

′).
For the converse, suppose v is not contained in a balanced subgraph isomorphic to K4. Then

there exists a gain graph (G′0, ψ
′) which is the result of a reverse H2a operation at v. Let (av, α),

(bv, β) and (cv, γ) be in E0.
We first show that if there exists a subgraph Hab of G0 − v which contains a, b with f (Hab) = 0,

then v is admissible. Suppose for a contradiction that such a subgraph Hab of G0 exists and that
v is not admissible. If c ∈ V(Hab) then f (Hab ∪ v) < 0, which contradicts (2, 0)-sparsity. So
c < V(Hab). If the edges (ac, αγ), (bc, βγ) are in G0 then the union of Hab with v, c and the edges
ac, bc, va, vb, vc violates (2, 0)-sparsity. So we may suppose (ac, αγ) < E(G0). Then, since v is not
admissible, there exists a subgraph Hac of G0 − v containing a, c such that either Hac is balanced
(with every path from a to c in Hac having gain αγ) and f (Hac) = 2, or f (Hac) = 0. In both cases,
we clearly have f (Hab ∪ Hac ∪ v) < 0, which is a contradiction.

A similar argument holds for the pairs a, c and b, c. Thus we may assume for each pair of
vertices s, t ∈ {a, b, c} that there is no subgraph Hst of G0 − v which contains s, t and satisfies
f (Hst) = 0.

Now assume, without loss of generality, that (ab, αβ) < E0. Suppose there does not exist a
balanced subgraph Hab of G0 − v which contains a, b with f (Hab) = 2 and all paths from a to b
having gain αβ. Then v is admissible since adding the edge (ab, αβ) will not violate (2, 2, 0)-gain-
sparsity.

Suppose G0− v does contain a balanced subgraph Hab which contains a, b with f (Hab) = 2 and
all paths from a to b having gain αβ. We may assume by gain switching (Lemma 2.17) that all
edges of Hab have gain 1. In this case, all paths from a to b have gain 1. If α , β then we claim
that v is admissible. To see this note that if there exists a balanced subgraph H′ab which contains
a, b with f (H′ab) = 2 and all paths from a to b having gain −1 then Hab ∩ H′ab is not connected.
Thus, by Lemma 3.6, f (Hab ∪H′ab) = 0, contradicting our assumption above. Thus v is admissible
since we may add the edge (ab,−1). We may now assume α = β. We may further assume, by gain
switching at v, that α = β = 1.

If Hab contained c then f (Hab ∪ v) = 1. If vc has gain 1 then we contradict (2, 2, 0)-gain-
sparsity and so γ = −1. If (ac,−1) and (bc,−1) are both in (G0, ψ) then the induced subgraph on
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V(Hab) ∪ {v} violates (2, 0)-sparsity. Without loss of generality, suppose (ac,−1) is not in (G0, ψ).
Then v is admissible unless there exists a balanced subgraph Hac of G0−v which contains a, c with
f (Hac) = 2 and all paths from a to c having gain −1.

Suppose G0 − v does contain a balanced subgraph Hac which contains a, c with f (Hac) = 2 and
all paths from a to c having gain −1. Note that f (Hab ∪ Hac) ≥ 1 (for otherwise adding v and its
three edges would contradict (2, 2, 0)-gain sparsity). Thus, by Lemma 3.6, Hab ∪ Hac is balanced.
By Lemma 3.5, Hab and Hac are connected and so it follows that Hab∪Hac contains an unbalanced
cycle. This is a contradiction and so v is admissible since adding the edge (ac,−1) will not violate
(2, 2, 0)-gain-sparsity.

Now suppose Hab does not contain c. In this case, by gain switching at the vertex c (Lemma
2.17) we can assume γ = 1. If (ac, 1) and (bc, 1) are both in G0 then the union of Hab with vertices
v, c and the five edges (ac, 1), (bc, 1), (va, 1), (vb, 1), (vc, 1) is balanced and violates (2, 2)-sparsity.
This is a contradiction and so, without loss of generality, we may assume (ac, 1) < G0. Then
v is admissible unless there exists a balanced subgraph Hac of G0 − v which contains a, c with
f (Hac) = 2 and all paths from a to c having gain 1.

Suppose there exists a balanced subgraph Hac of G0 − v containing a, c with f (Hac) = 2, with
all paths in Hac from a to c having gain 1. By the previous argument we may assume b is not in
Hac since otherwise v is admissible. Since f (Hab ∪ Hac) ≥ 1 (for otherwise adding v and its three
edges would contradict (2, 2, 0)-gain sparsity), Lemma 3.6 may be applied, that is Hab ∪ Hac is
balanced. By gain switching, we may assume the edges of Hab ∪ Hac all have gain 1. Let α′, β′, γ′

be the resulting gains on the edges va, vb, vc respectively. If α′ , β′ then, by the above argument,
v is admissible and we may add the edge (ab,−1). Similarly, v is admissible if α′ , γ′. So now
suppose α′ = β′ = γ′. Then Hab ∪ Hac ∪ v is balanced with f (Hab ∪ Hac ∪ v) = 1. This contradicts
(2, 2, 0)-sparsity.

Lemma 3.10. Let (G0, ψ) be a (2, 2, 0)-gain-tight gain graph. Suppose v ∈ V0 has degree 3 with
exactly two neighbours a, b. Then v is admissible if and only if it is not contained in a subgraph
isomorphic to R (recall Fig. 1(c)).

Proof. If v is contained in a subgraph isomorphic to R, then v is clearly not admissible. For the
converse, suppose that v is not in a subgraph isomorphic to R. Then there exists a gain graph
(G′0, ψ

′) which is the result of either a reverse H2b operation at v or a reverse H2c operation at v.
Let (av, 1), (av,−1) and (bv, α) be in E0.

We first consider a reduction move at v which adds an edge between a and b. Observe that any
subgraph H of G0 − v containing a and b has f (H) > 0 (otherwise f (H ∪ v) < 0 would hold) so
we need only consider balanced subgraphs.

Suppose there is no edge ab. If there is no admissible reverse H2b move then there exist
distinct balanced subgraphs H1,H2 of G0 − v such that a, b ∈ V(Hi), f (Hi) = 2 for i = 1, 2 and all
paths in Hi from a to b have gain (−1)i. Since f (H1 ∩ H2) ≥ 2 either H1 ∩ H2 is not connected
and Lemma 3.6 implies that f (H1 ∩ H2) = 0 and adding v violates (2, 0)-sparsity or H1 ∩ H2 is
connected. Then Lemma 3.6 implies that H1 ∪ H2 is balanced. Hence all paths from a to b in
H1 ∩ H2 have two distinct gains, a contradiction. Thus v is admissible.

Secondly, suppose there is exactly one edge (ab, β) in E0. If there is no admissible reverse
H2b move, then there exists a balanced subgraph Hab of (G0, ψ) containing a, b but not v with
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f (Hab) = 2 such that all paths in Hab from a to b have gain −β. Note that a does not have a loop
(otherwise (2, 0)-sparsity would be violated). Also, a is not contained in a subgraph H with f (H) =

0 (otherwise adjoining the edge (ab, β) to H ∪Hab will violate (2, 0)-sparsity). Thus a reverse H2c
move can be applied which preserves (2, 2, 0)-gain-sparsity. Thus v is again admissible.

Finally, if both (ab, 1) and (ab,−1) are in E0 then the reverse H2c move adding the loop (aa,−1)
is non-admissible if and only if there is a subgraph H of G − v containing a which has f (H) = 0.
Note that H does not contain b and so f (H ∪ {v, b}) = f (H) − 1, giving a contradiction.

Lemma 3.11. Let (G0, ψ) be a (2, 2, 0)-gain-tight gain graph. Suppose v ∈ V0 has degree 4 with
exactly one loop at v and one neighbour a. Then v is admissible if and only if v is not contained in
a subgraph isomorphic to 2K1

2 .

Proof. If v is not contained in a subgraph isomorphic to 2K1
2 then it is easy to check that v is

admissible for a reverse H2e move adding a loop on a. Conversely, if v is contained in a subgraph
isomorphic to 2K1

2 then G0 contains a loop at a and so v is clearly not admissible.

We now move on to H3 moves. First consider the reverse H3d move.

Lemma 3.12. Let (G0, ψ) be a (2, 2, 0)-gain-tight gain graph which is 4-regular. Suppose v ∈ V0

has no loop and exactly two neighbours a, b with a double edge to each. Then v is admissible if
and only if G0 does not contain a loop at a and does not contain a loop at b.

Proof. Clearly, if G0 contains a loop at a or b then a reverse H3d move cannot be applied and so v
is not admissible. For the converse, suppose G0 does not contain any loops at a and b. If adding
loops on a and b violates (2, 2, 0)-gain-sparsity then either there exists a subgraph H0 of G0 − v
containing a and b with f (H0) = 1, or there exists a subgraph H0 of G0− v containing a (or b) with
f (H0) = 0. In both cases we may use 4-regularity to get a contradiction. If f (H0) = 0 then a must
have degree 2 in H0. Note that H0 has average degree 4, giving a vertex c ∈ H0 with degree greater
than 4 in H0, and hence in G0. This is a contradiction. If H0 contains a and b and f (H0) = 1, then
a and b both have degree 2 in H0. All other vertices in H0 have degree at most 4. In this case, since
|E(H0)| = 2|V(H0)| − 1, we obtain the contradiction,∑

v∈V(H0)

degH0
(v) ≤ 4(|V(H0)| − 2) + 2 + 2 < 4|V(H0)| − 2 = 2|E(H0)|.

Lemma 3.13. Let (G0, ψ) be a (2, 2, 0)-gain-tight gain graph which is connected and 4-regular.
Suppose v ∈ V0 has exactly three neighbours a, b, c and no loop. Suppose no neighbour of v is
admissible, then v is admissible if and only if v is not contained in a subgraph isomorphic to K+

4 .

Proof. If v is contained in a subgraph isomorphic to K+
4 , then v is clearly not admissible. For the

converse, suppose v is not contained in a subgraph isomorphic to K+
4 . Let (av, 1), (av,−1), (bv, β),

(cv, γ) be the edges incident to v. By Lemma 3.3, (G0, ψ) does not contain any proper subgraph
H with f (H) = 0. Note also that no subgraph H of G0 − v containing N(v) = {a, b, c} can have
f (H) = 1. We may suppose there is no loop on a (otherwise we can use Lemma 3.11 to see that
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a is admissible, which is a contradiction). Moreover, we may assume that one of the edges (ac, 1)
and (ac,−1) is not in G0 (otherwise Lemma 3.12 would imply that a is admissible). Similarly, we
may assume that one of the edges (ab, 1) and (ab,−1) is not in G0.

First observe that there are three possible reduction moves: a reverse H3c move which adds
a loop at a and the edge (bc, βγ), a reverse H3b move which adds the edges (ab, β), (ac,−γ) and
a reverse H3b move which adds the edges (ab,−β), (ac, γ). The reverse H3c move is admissible
unless:
(a) the edge (bc, βγ) already exists in G0; or
(b) there is a balanced subgraph Hbc of G0 − v containing b, c with f (Hbc) = 2 in which all paths
from b to c have gain βγ.

The reverse H3b move which adds the edges (ab, β), (ac,−γ) is admissible unless:
(c) one of the edges (ab, β), (ac,−γ) already exists in G0; or
(d) there is a balanced subgraph Hab of G0 − v containing a, b with f (Hab) = 2 in which all
paths from a to b have gain β, or, there is a balanced subgraph Hac of G0 − v containing a, c with
f (Hac) = 2 in which all paths from a to c have gain −γ.

The reverse H3b move which adds the edges (ab,−β), (ac, γ) is admissible unless:
(e) one of the edges (ab,−β), (ac, γ) already exists in G0; or
(f) there is a balanced subgraph Hab of G0 − v containing a, b with f (Hab) = 2 in which all paths
from a to b have gain −β, or, there is a balanced subgraph Hac of G0 − v containing a, c with
f (Hac) = 2 in which all paths from a to c have gain γ.

Suppose (a) holds. Note that if (ab, β) and (ac, γ) both exist or (ab,−β) and (ac,−γ) both exist
then there is a K+

4 containing v, which is a contradiction. Thus we may suppose that either (ab, β)
and (ac,−γ) do not exist, or, (ab,−β) and (ac, γ) do not exist.

Without loss of generality, we suppose that (ab, β) and (ac,−γ) do not exist. If v is not admis-
sible then there exists either a balanced subgraph Hab of G0 − v containing a, b with f (Hab) = 2
and all paths from a to b have gain β or a balanced subgraph Hac of G0 − v containing a, c with
f (Hac) = 2 and all paths from a to c having gain −γ. If both exist then H = Hab ∪ Hac is a
proper subgraph of G0 and hence, by Lemma 3.3, f (H) ≥ 1. Thus, by Lemma 3.6, H is balanced
and f (H) = 2. Note that (bc, βγ) ∈ E(H) (otherwise adjoining this edge to H ∪ v violates (2, 0)-
sparsity). By switching, we may assume without loss of generality that all gains on H are 1. In this
case note that β = γ. Adjoining v and the edges (va, β), (vb, β), (vc, β) to H results in a balanced
subgraph which violates (2, 2)-sparsity. This is a contradiction and so either Hab or Hac does not
exist. Without loss of generality we assume Hab does not exist. If Hac does not exist then v is
admissible. So suppose Hac does exist.

Suppose (ab,−β) ∈ E(G0). Then Hac contains the vertex b. (If not, then the vertex a would
have degree at most 1 in Hac, a contradiction.) By switching, we may assume all gains in Hac are 1.
Moreover, (bc, βγ) ∈ E(Hac) for otherwise (2, 0)-sparsity is violated. Thus β = γ. Now adjoining v
together with the edges (va, β), (vb, β), (vc, β) to Hac results in a balanced subgraph which violates
(2, 2)-sparsity. We conclude that (ab,−β) < E(G0). If (ac, γ) ∈ E(G0) then (ac, γ) < E(Hac), and
hence a has degree at most 1 in Hac, a contradiction. Thus (ac, γ) < E(G0).

If v is not admissible then there exists either a balanced subgraph H′ab of G0 − v containing
a, b with f (H′ab) = 2 and all paths from a to b have gain −β or a balanced subgraph H′ac of
G0 − v containing a, c with f (H′ac) = 2 and all paths from a to c having gain γ. If H′ab exists
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then H = H′ab ∪ Hac is a proper subgraph of G0 and hence, by Lemma 3.3, f (H) ≥ 1. Thus, by
Lemma 3.6, H is balanced and f (H) = 2. Note that the edge (bc, βγ) is not in H, for otherwise we
may assume, by switching, that all gains in H are 1, and hence β = γ. As above, this contradicts
the (2, 2)-sparsity of balanced subgraphs of G0. Now, adjoining the edge (bc, βγ) to H results in a
subgraph of G0−v with f (H) = 1 which contains {a, b, c}. This is a contradiction. If H′ac exists then
H = Hac ∪ H′ac is balanced. However, H contains an unbalanced cycle obtained by concatenating
a path from a to c in Hac and a path from a to c in H′ac. This is again a contradiction. We conclude
that v is admissible since we may apply a reverse H3b move.

Now suppose (a) does not hold. Consider a reduction at v adding a loop at a and the edge
(bc, βγ). If this move is not admissible then there is a balanced subgraph Hbc of G0 − v containing
b, c with f (Hbc) = 2 in which all paths from b to c have gain βγ. By switching, we may assume
without loss of generality that all gains of Hbc equal 1. In this case β = γ since all paths in Hbc

from b to c have gain 1. We may assume that Hbc does not contain a (otherwise adjoining v to Hbc

results in a balanced subgraph of (G0, ψ) which violates (2, 2)-sparsity).
Suppose ab, ac ∈ E(G0) with arbitrary gains. The subgraph H obtained from Hbc by adjoining

the vertices a, v together with the edges (av, 1), (av,−1) and all edges between {a, v} and Hbc has
f (H) = 0. Hence H = G0 and the only edges between Hbc and a are the edges ab and ac. If ab and
ac have the same gain, say δ, then note that H′ = H− (va,−βδ) is balanced and satisfies f (H′) = 1.
This is a contradiction. If ab and ac have different gains then, without loss of generality, we can
say (ab, 1) and (ac,−1) are in G0. Since H = G0 and all gains on Hbc are 1, there is no path in
G0 − a between b and c with gain −1. It follows that there is an admissible reduction at a adding a
loop at v and the edge (bc,−1). This is a contradiction since no neighbour of v is admissible.

Without loss of generality, we may now assume there is no edge between a and b in G0.
Consider the reduction at v adding (ab, 1) and (ac,−1). Suppose there is a balanced subgraph Hab

of G0 − v containing a, b with f (Hab) = 2. Note that c < V(Hab) since otherwise adjoining v to Hab

results in a balanced subgraph which violates (2, 2)-sparsity. The subgraph H obtained from the
union of Hab with Hbc and the edges (va, β), (vb, β), (vc, β) is balanced and violates (2, 2)-sparsity.
This is a contradiction and so Hab does not exist. Similarly, there is no balanced subgraph Hac of
G0 − v containing a, c with f (Hac) = 2. Hence if the reduction at v adding (ab, 1) and (ac,−1) is
not admissible then (ac,−1) ∈ E(G0). By a similar argument, if the reduction at v adding (ab,−1)
and (ac, 1) is not admissible then (ac, 1) ∈ E(G0). This is a contradiction since G0 does not contain
both (ac, 1) and (ac,−1), for otherwise a would be admissible.

Lemma 3.14. Let (G0, ψ) be a (2, 2, 0)-gain-tight gain graph. Suppose v ∈ V0 has degree 4 with
exactly four neighbours a, b, c, d. Let (va, α), (vb, β), (vc, γ) and (vd, δ) be the edges incident to v.
Then a reduction at v adding (ab, αβ), (cd, γδ) is non-admissible if and only if one of the following
conditions holds:

(i) there is a subgraph Hab of G0 containing a, b but not v with f (Hab) = 0 or there is a subgraph
Hcd of G0 containing c, d but not v with f (Hcd) = 0;

(ii) there is a balanced subgraph Hab of (G0, ψ) containing a, b but not v with f (Hab) = 2 and
every path from a to b in Hab has gain αβ or there is a balanced subgraph Hcd of (G0, ψ)
containing c, d but not v with f (Hcd) = 2 and every path from c to d in Hcd has gain γδ;
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(iii) there is a balanced subgraph H of (G0, ψ) containing N(v) but not v with f (H) = 3 where
every path from a to b in H has gain αβ and every path from c to d in H has gain γδ;

(iv) one of the edges (ab, αβ), (cd, γδ) already exists in (G0, ψ).

Proof. If any one of these conditions holds then it is clear that v is not admissible. Conversely,
suppose that the result of a reduction at v adding (ab, αβ), (cd, γδ) is the gain graph (G′0, ψ

′). If
the reduction is non-admissible then (G′0, ψ

′) is not (2, 2, 0)-gain-tight. It follows that either the
covering graph of (G′0, ψ

′) is not simple, there is a subgraph which violates (2, 0)-sparsity or there
is a subgraph which violates balanced (2, 2)-sparsity. In the first case (iv) holds. In the second
case, suppose H′ is a subgraph of (G′0, ψ

′) which violates (2, 0)-sparsity. Either H′ received one
edge in the reduction move and (i) holds or H′ received two edges and there is a subgraph H of
(G0, ψ) containing N(v) but not v with f (H) ≤ 1. However f (H ∪ v) < 0, contradicting (2, 2, 0)-
gain-sparsity.

Hence it remains to consider the last case. There is a subgraph H′ of (G′0, ψ
′) which violates

balanced (2, 2)-sparsity. Therefore H′ contains (ab, αβ) or (cd, γδ) or both. By symmetry we may
suppose (ab, αβ) ∈ H′. If H′ does not contain (cd, γδ) then this implies that there is a balanced
subgraph H of (G0, ψ) containing a, b but not v with f (H) = 2 and every path from a to b in H has
gain αβ, giving (ii). Similarly if H′ contains (ab, αβ) and (cd, γδ) then there is a balanced subgraph
H of (G0, ψ) containing N(v) but not v with f (H) = 3 where every path from a to b in H has gain
αβ and every path from c to d in H has gain γδ, giving (iii).

Lemma 3.15. Let (G0, ψ) be a (2, 2, 0)-gain-tight gain graph which is connected and 4-regular.
Suppose v ∈ V0 has exactly four neighbours a, b, c, d. Then v is admissible if and only if the
following conditions hold,

(i) v is not contained in a balanced subgraph isomorphic to K4, and,

(ii) v is not contained in a balanced subgraph isomorphic to K1,1,3 with the property that v has
degree 4 in this subgraph.

Proof. If (i) or (ii) fail to hold then v is clearly not admissible. For the converse, let (va, α), (vb, β),
(vc, γ) and (vd, δ) be the edges incident to v.

We first show that if condition (ii) holds in Lemma 3.14, then c and d are not in Hab. Suppose
N(v) ⊂ V(Hab). Since Hab is balanced, we may assume, by switching, that all gains on Hab are
1. Since all paths from a to b in Hab have gain αβ, it follows that α = β. If at least 3 edges
incident to v all have gain 1 or all have gain −1, then we contradict (2, 2)-sparsity. Thus, without
loss of generality, we may assume that (va, 1), (vb, 1), (vc,−1), (vd,−1) ∈ E(G0). Since G0 is 4-
regular, Lemma 3.3 implies that Hab together with the edges incident to v is all of G0. In particular
Hab was an induced subgraph of G0. Thus it is easy to see that the reduction move at v adding
(ad,−1), (bc,−1) is admissible.

So without loss of generality, we may suppose that d < V(Hab). We claim that c < V(Hab).
Suppose to the contrary that c ∈ V(Hab). By the same argument as above, we may assume that
(va, 1), (vb, 1), (vc,−1) ∈ E(G0). Notice that if we add the edges (va, 1), (vb, 1), (vc,−1) to Hab,
then we obtain a subgraph H with f (H) = 1. Thus, Hab is an induced subgraph of G0, for otherwise
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the fact that d < V(Hab) would give a contradiction, by Lemma 3.3. Consider the reduction move
at v adding (bc,−1) and (ad, δ). If v is not admissible then one of the conditions in Lemma 3.14
must hold for the pair (bc,−1) and (ad, δ). Since G0 is 4-regular, Lemma 3.3 implies condition (i)
of Lemma 3.14 cannot hold. If there is a balanced subgraph Had of G0 − v containing a, d with
f (Had) = 2 in which all paths from a to d have gain δ, then, by Lemma 3.6, H = Hab ∪ Had

is balanced with f (H) = 2 and N(v) ⊂ V(H). So we can repeat the argument used to show
that d < V(Hab) to obtain a contradiction. Suppose there is a balanced subgraph Hbc of G0 − v
containing b, c with f (Hbc) = 2 in which all paths from b to c have gain −1. Then we must have
f (Hab ∪ Hbc) = f (Hab ∩ Hbc) = 2, by Lemma 3.6. Hence Hab ∩ Hbc is connected by Lemma 3.5
and every edge has gain 1, a contradiction. Similarly, condition (iii) of Lemma 3.14 cannot
hold. Finally, the edge (bc,−1) is clearly not in G0, so we suppose that (ad, δ) is in G0. By
switching at the vertex d, we may assume that δ = 1. We claim that the reduction move at v
adding (ac,−1), (bd, 1) is now admissible. If (bd, 1) is present in G0, then Hab together with the 5
edges (va, 1), (vb, 1), (vd, 1), (ad, 1), (bd, 1) violates (2, 2)-sparsity. So suppose there is a balanced
subgraph Hbd of G0 − v containing b, d with f (Hbd) = 2 in which all paths from b to d have gain 1.
But then, by Lemma 3.6, H = Hab ∪ Hbd is balanced with f (H) = 2 and N(v) ⊂ V(H), and hence
the same argument from above may be applied once again to obtain a contradiction. If there is a
balanced subgraph Hac of G0−v containing a, c with f (Hac) = 2 in which all paths from a to c have
gain −1, then f (Hab ∪Hac) = f (Hab ∩Hac) = 2, by Lemma 3.6. Hence Hab ∩Hac is connected and
every edge has gain 1, a contradiction. Similarly, condition (iii) of Lemma 3.14 cannot hold for
the pair (ac,−1), (bd, 1). So the reduction move at v adding (ac,−1), (bd, 1) is indeed admissible.
Thus, we conclude that c < V(Hab).

Now, suppose that conditions (i) and (ii) in the statement of this lemma hold. Then condition
(iv) in Lemma 3.14 cannot hold for all possible pairs of edges, so we may assume that the edges
(ab, αβ), (cd, γδ) do not exist in (G0, ψ). Since G0 is 4-regular, Lemma 3.3 implies that condition
(i) in Lemma 3.14 does not hold. Suppose H is a balanced subgraph of (G0, ψ) that satisfies
condition (iii) in Lemma 3.14. By switching, we may assume that all gains on H are 1. By the
assumptions in condition (iii) it follows that αβ = γδ = 1, contradicting (2, 2)-sparsity of G0 if
α = β = γ = δ. So suppose without loss of generality that α = β = 1 and γ = δ = −1. Note that
at most one of the edges (ac,−1), (ad,−1), (bc,−1), (bd,−1) can be present in G0, for otherwise
the graph obtained from H by adding two of those edges together with the four edges incident to
v violates (2, 0)-sparsity. Hence (ad,−1), (bc,−1) < E(G0) or (ac,−1), (bd,−1) < E(G0). Without
loss of generality we assume that (ad,−1), (bc,−1) < E(G0) and consider the reduction operation
on v that adds (ad,−1) and (bc,−1).

Suppose there exists a balanced subgraph H′ of (G0, ψ) that satisfies condition (iii) in Lemma
3.14 for the pair (ad,−1), (bc,−1), that is, all paths from a to d and all paths from b to c in H′ have
gain −1. Then H ∩ H′ is disconnected (since there cannot be any path from a to d or from b to c
in H ∩ H′). It follows that f (H ∩ H′) ≥ 2 + 2 = 4 and hence f (H ∪ H′) ≤ 3 + 3 − 4 = 2. Thus,
f (H ∪H′) = 2, for otherwise the graph obtained from H ∪H′ by adding the four edges incident to
v would violate (2, 0)-sparsity. This says that H ∩H′ has exactly two components C1 and C2, with
either a, b ∈ V(C1) and c, d ∈ V(C2) or a, c ∈ V(C1) and b, d ∈ V(C2).

Suppose first that a, b ∈ V(C1) and c, d ∈ V(C2). Then every path in H′ from a to b and from c
to d has gain 1. Since every path from a to d and from b to c has gain −1 in H′, and H′ is balanced,

25



it follows that every path from a to c and from b to d must have gain −1. Therefore, H′ together
with the four edges incident to v is balanced and violates (2, 2)-sparsity.

Suppose next that a, c ∈ V(C1) and b, d ∈ V(C2). Then every path in H′ from a to c and
from b to d has gain 1. This implies that (ac,−1) and (bd,−1) cannot exist in G0. (If one of
those edges did exist in G0, then it cannot be an edge of H ∪ H′, and hence H ∪ H′ together
with this edge and the four edges incident to v would violate (2, 0)-sparsity.) We now consider the
reduction operation on v that adds (ac,−1) and (bd,−1). Suppose there exists a balanced subgraph
H′′ of (G0, ψ) that satisfies condition (iii) in Lemma 3.14 for the pair (ac,−1), (bd,−1), that is,
all paths from a to c and all paths from b to d in H′′ have gain −1. Note that (H ∪ H′) ∩ H′′ is
disconnected since there cannot be any path from a to c or from b to d in (H∪H′)∩H′′. Therefore,
f ((H ∪ H′) ∩ H′′) ≥ 2 + 2 = 4 and hence f ((H ∪ H′) ∪ H′′) ≤ 2 + 3 − 4 = 1. So the subgraph
obtained from (H ∪ H′) ∪ H′′ by adding the four edges incident to v violates (2, 0)-sparsity. So if
the reduction operation on v that adds (ac,−1) and (bd,−1) is not admissible, then condition (ii)
in Lemma 3.14 holds for (ac,−1), (bd,−1). As we have shown in the beginning of this proof, we
may assume that there exists a balanced subgraph Hac of (G0, ψ) containing a, c but not b, d, v with
f (Hac) = 2 and every path from a to c in Hac has gain −1. Then H ∩ Hac is disconnected (since
there cannot be a path from a to c in H ∩ Hac) and hence f (H ∪ Hac) ≤ 3 + 2 − 4 = 1. It follows
that H ∪ Hac together with the four edges incident to v violates the (2, 0)-sparsity of G0.

Therefore, if v is not admissible, then condition (ii) in Lemma 3.14 holds for (ad,−1), (bc,−1).
As we have shown in the beginning of this proof, we may assume that there exists a balanced
subgraph Hbc of (G0, ψ) containing b, c but not a, d, v with f (Hbc) = 2 and every path from b
to c in Hbc has gain −1. But then, by the same argument as in the paragraph above, we have
f (H ∪ Hbc) ≤ 3 + 2 − 4 = 1, which contradicts the (2, 0)-sparsity of G0.

So if v is not admissible, then condition (ii) in Lemma 3.14 holds for (ab, αβ), (cd, γδ). By
using the argument in the beginning of this proof again, we may assume that there exists a balanced
subgraph Hab of (G0, ψ) containing a, b but not c, d, v with f (Hab) = 2 and every path from a to b
in Hab has gain αβ. Consider the reduction operation on v that adds (ad, αδ) and (bc, βγ).

If this move is not admissible then one of the conditions (ii), (iii) or (iv) in Lemma 3.14 holds
for (ad, αδ), (bc, βγ). Suppose first that (iv) fails, that is, (ad, αδ) and (bc, βγ) are not edges of
(G0, ψ). Suppose there exists a balanced subgraph H of (G0, ψ) that satisfies condition (iii) for the
pair (ad, αδ), (bc, βγ), that is, all paths from a to d in H have gain αδ and all paths from b to c in H
have gain βγ. If H ∩ Hab is connected, then every path from a to b in H has gain αβ. But since H
is balanced, this implies that the subgraph H′ of G0 consisting of H and the four edges incident to
v is balanced and satisfies f (H′) = 1, contradicting (2, 2)-sparsity. Thus H ∩ Hab is disconnected,
and hence f (H ∪ Hab) ≤ 3 + 2 − 4 = 1. But since H ∪ Hab contains all four neighbours of v,
this contradicts (2, 0)-sparsity. So we may assume that condition (ii) in Lemma 3.14 holds for
(ab, αβ), (cd, γδ). Without loss of generality we may assume that there exists a balanced subgraph
Had of (G0, ψ) containing a, d but not b, c, v with f (Had) = 2 and every path from a to d in Had has
gain αδ. If Had ∩ Hab is connected, then Had ∪ Hab is balanced with f (Had ∪ Hab) = 2, and the
subgraph H′ of (G0, ψ) consisting of Had ∪Hab and the three edges joining v with a, b and d is also
balanced with f (H′) = 1, contradicting (2, 2)-sparsity. Thus Had ∩ Hab is disconnected, and hence
f (Had ∪ Hab) ≤ 2 + 2 − 4 = 0. But since Had ∪ Hab contains three neighbours of v, this contradicts
(2, 0)-sparsity.

26



So without loss of generality we may assume that (bc, βγ) is an edge of (G0, ψ). Then the edge
(bd, βδ) cannot exist in G0 (for otherwise b would have degree at most 1 in Hab by 4-regularity of
G0, a contradiction). The edge (ac, αγ) can also not exist in G0, for otherwise the graph consisting
of Hab and the edges (va, α), (vb, β), (vc, γ), (ac, αγ), (bc, βγ) would be balanced and would violate
(2, 2)-sparsity. So consider the reduction operation on v that adds (ac, αγ) and (bd, βδ). If there
exists a balanced subgraph H of (G0, ψ) that satisfies condition (iii) for the pair (ac, αγ), (bd, βδ),
then, by the same argument as in the paragraph above, H ∩ Hab is disconnected, and hence f (H ∪
Hab) ≤ 3 + 2 − 4 = 1. But since H ∪ Hab contains all four neighbours of v, this contradicts
(2, 0)-sparsity. So we may assume that condition (ii) in Lemma 3.14 holds for (ac, αγ), (bd, βδ).
Without loss of generality we may assume that there exists a balanced subgraph Hac of (G0, ψ)
containing a, c but not b, d, v with f (Hac) = 2 and every path from a to c in Hac has gain αγ. As in
the paragraph above, we see that Hac∩Hab is disconnected, and hence f (Hac∪Hab) ≤ 2+2−4 = 0.
But since Hac ∪ Hab contains three neighbours of v, this contradicts (2, 0)-sparsity.

3.5. Graph contractions
We now consider the existence of suitable triangles or K4’s in order to apply the reverse vertex

splitting move or the reverse vertex-to-K4 move. After giving conditions on when they can be
applied we will also prove a couple of technical lemmas needed in the next section.

Lemma 3.16. Let (G0, ψ) be a (2, 2, 0)-gain-tight gain graph. Suppose (G0, ψ) contains a balanced
subgraph K isomorphic to K4 which induces at most one additional edge. Then a reverse vertex-
to-K4 move at K is admissible unless there is a vertex x and edges (xa, α), (xb, α) for some a, b ∈
V(K).

Proof. Let K′ denote the contraction of the graph K∗ induced by K. (So K′ is either a single vertex
or a single vertex with a loop). Then f (K∗) = f (K′) and hence the lemma follows from a simple
counting argument.

Lemma 3.17. Let (G0, ψ) be a (2, 2, 0)-gain-tight gain graph. Suppose (G0, ψ) contains a subgraph
K isomorphic to K3 with V(K) = {a, b, c} and with all three edges of K having gain 1. Suppose
the edge (ab,−1) does not exist in G0. Then a reverse vertex-splitting at K contracting the edge
(ab, 1) is non-admissible if and only if one of the following conditions holds:

(i) there is a subgraph H0 of G0 containing a, b and the edge (ab, 1), but not c, with f (H0) = 0;

(ii) there is a balanced copy of K3 containing a, b and some vertex d , c;

(iii) there is a balanced subgraph H0 of G0 containing a, b and the edge (ab, 1) with f (H0) = 2,
and if H0 contains c then it does not contain the edges (ca, 1) and (cb, 1);

(iv) there are loops incident to both a and b, or both edges (ac,−1) and (bc,−1) exist.

Proof. If any one of these conditions holds then it is clear that v is not admissible. Conversely, sup-
pose the reverse vertex-splitting at K contracting the edge (ab, 1) is non-admissible. Let (G′0, ψ

′) be
the gain graph resulting from this reverse vertex-splitting move and let a be the vertex of (G′0, ψ

′)
corresponding to the vertex pair a and b in (G0, ψ). Then either the covering graph of (G′0, ψ

′)
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is not simple, or there is a subgraph H′0 of (G′0, ψ
′) with f (H′0) < 0, or there is a balanced sub-

graph of (G′0, ψ
′) with f (H′0) < 2. In the first case (ii) or (iv) holds. In the second case, H′0

clearly contains a, but it cannot contain c, for otherwise f (H0) = f (H′0) < 0 if (ca, 1) ∈ E(H′0)
or f (H0 ∪ {(ca, 1)}) = f (H′0) < 0 if (ca, 1) < E(H′0), where H0 is the subgraph of (G0, ψ) that is
obtained from H′0 by the vertex splitting move at a. Thus, H0 contains a, b and the edge (ab, 1),
but not c, and satisfies f (H0) = 0. In the third case, the balanced H′0 again clearly contains a. If
it contains c and (ca, 1) then f (H0) = f (H′0) < 2, a contradiction. So if H′0 contains c then it does
not contain (ca, 1). Thus, H0 contains a, b and the edge (ab, 1), and if H0 contains c then it does
not contain the edges ca and cb. Moreover, H0 is balanced with f (H0) = 2.

We now follow the approach in [12]. Define a triangle sequence T1,T2, . . . ,Tn where T1 is a
triangle on vertices a, b, c and Ti+1 is formed from Ti by adding a vertex of degree 2 adjacent to two
vertices x, y of Ti such that xy ∈ E(Ti) and x, y are in exactly one triangle in Ti. A triangle sequence
is balanced if each Ti (or equivalently just Tn) is balanced. A maximal balanced triangle sequence
is a balanced triangle sequence that cannot be extended to a larger balanced triangle sequence. A
chord of Tn is an edge in the subgraph G0[V(Tn)] of G0 induced by V(Tn) which is not in Tn.

The following lemma is easy to deduce from the definitions.

Lemma 3.18. Let (G0, ψ) be (2, 2, 0)-gain-tight gain graph and let Tn be a balanced triangle
sequence whose edges all have gain 1. Then f (Tn) = 3 and Tn has at most 3 chords. Moreover, if
three chords exist, at least two of them have gain −1.

In the next lemma we show that there exists an edge for which conditions (ii) and (iv) of Lemma
3.17 do not hold, provided that the maximal balanced triangle sequence has enough vertices.

Lemma 3.19. Let (G0, ψ) be (2, 2, 0)-gain-tight and let Tn be a maximal balanced triangle se-
quence. Suppose |V(Tn)| ≥ 6. Then there exists an edge of Tn with the properties that it does not
have a parallel edge, its end vertices are not both incident to a loop, and it is contained in exactly
one balanced triangle in (G0, ψ).

Proof. Since Tn is balanced we may assume that the gain on every edge of Tn is 1. Let s1, s2, . . . , sr

be the edges of Tn contained in exactly one triangle in Tn.
We first show that the si form a simple cycle spanning V(Tn). This can be verified by induction.

It clearly holds for n = 1. Suppose it holds for all m < n and consider Tn. Let Tn be formed from
Tn−1 by adding a triangle on a, b, c such that a, b ∈ V(Tn−1) and c < V(Tn−1). Then by induction
there is a simple spanning cycle C in Tn−1 with ab ∈ C. We construct the simple spanning cycle
for Tn by removing the edge ab from C and adding the edges ac, cb to C.

By Lemma 3.18, Tn has at most 3 chords, and at most one them has gain 1. Let C be the simple
cycle spanning V(Tn) consisting of the edges s1, s2, . . . , sr. Since V(C) has at least 6 vertices, C
has at least 6 edges. We say that an edge of C is blocked if it has a parallel edge, or its endvertices
are both incident to a loop, or it is contained in more than one balanced triangle in (G0, ψ). We
claim that C contains at least one edge that is not blocked.

Note that a chord with gain 1 can block at most three edges of C. A chord with gain −1 can
block at most one edge of C, since it cannot create a balanced triangle on its own, but it could be
parallel to an edge of C. Further, two non-loop chords with gain −1 only create a balanced triangle
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if they are of the form (cd,−1) and (ce,−1) for some c, d, e ∈ V(Tn). In this case at most one edge
of C is contained in a triangle with these two chords. Thus, two non-loop chords with gain −1 can
block at most two edges of C. Similarly, three non-loop chords with gain −1 can block at most
three edges of C. Finally, two chords that are loops can block at most one edge of C, and three
chords that are loops can block at most two edges of C.

So if at least two of the three chords are loops, then there are at most 4 blocked edges in C. So
suppose exactly one of the chords is a loop. Since at most one of the remaining two chords can
have gain 1, it follows that there are again at most 4 blocked edges in C. Finally, if none of the
chords is a loop, then there are at most 5 blocked edges in C. Thus there exists an edge of C that
is not blocked, as claimed.

3.6. The inductive construction
We can now put together our results to prove the desired characterisation of (2, 2, 0)-gain-tight

gain graphs.

Theorem 3.20. Let (G0, ψ) be a gain graph. Then (G0, ψ) is (2, 2, 0)-gain-tight if and only if (G0, ψ)
can be generated from vertex disjoint copies of graphs in B by applying H1, H2, H3, vertex-to-K4

and vertex splitting moves.

Proof. The easy direction is given by Lemma 3.7. For the converse, observe first that if (G0, ψ) is
disconnected then every connected component of (G0, ψ) is (2, 2, 0)-gain-tight. So we will prove
that an arbitrary connected (2, 2, 0)-gain-tight gain graph has an admissible reverse move which
results in another (possibly disconnected) (2, 2, 0)-gain-tight gain graph with fewer vertices, or is
one of the base graphs in B. The theorem then follows by induction on |V0|.

So from now on we will assume that (G0, ψ) is connected. Observe that (G0, ψ) is either 4-
regular or contains a vertex of degree 2 or 3. We consider the following cases.

Case 1. G0 contains a vertex with two incident edges or a degree 3 vertex with exactly two
neighbours, which is not contained in a subgraph isomorphic to R.

Lemmas 3.8 and 3.10 show that there exists an admissible reverse move.

We can now assume that Case 1 does not hold. In the following, we let K̂4 be the (2, 2, 0)-gain-
tight gain graph consisting of a balanced K4 as well as one additional vertex x and the four edges
(xa, 1), (xa,−1), (xb, 1), (xb,−1) where a and b are distinct vertices of the K4.

Case 2.a. G0 contains a degree 3 vertex v with exactly 3 neighbours and v is not contained
in a subgraph isomorphic to K+

4 or K̂4.

Lemma 3.9 implies v is admissible or v is contained in a balanced subgraph K isomorphic
to K4. By Lemma 2.17 we may assume every edge of K has gain 1. Note that K is an induced
subgraph of G0. If K is not admissible to contract then Lemma 3.16 implies there is a vertex x
and edges (xa, α), (xb, α) for a, b ∈ V(K) and α ∈ {1,−1}. We may apply Lemma 2.17 again at x
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to make α = 1. Now we have a balanced K3 on x, a, b. We will denote a balanced K3 on vertices
r, s, t by K3(r, s, t).

Consider a maximal balanced triangle sequence T1 = K3(v, a, c),T2 = T1 ∪ K3(a, b, c),T3 =

T2 ∪ K3(a, b, x), . . . ,Tn (where c is the final vertex of K). By Lemma 2.17 we may assume every
edge of Tn has gain 1. By Lemma 3.17 an edge (rs, 1) in a K3(r, s, t) in Tn, with (rs,−1) not an
edge of G0, is non-admissible in G0 for a reverse vertex-splitting move if and only if condition (i),
(ii), (iii) or (iv) holds.

We claim that there exists an edge in Tn for which (ii) and (iv) does not hold. This follows
from Lemma 3.19 if |V(Tn)| ≥ 6. If |V(Tn)| = 5, then Tn is uniquely determined, and since K is an
induced subgraph of G0, and v is not contained in a subgraph isomorphic to K̂4, the existence of
such an edge in Tn can easily be verified by inspection.

So let (rs, 1) be an edge of Tn for which (ii) and (iv) do not hold. Let t be the third vertex of
the unique balanced triangle containing (rs, 1). If there is a subgraph H0 satisfying (i) then we
contradict the (2, 0)-sparsity of G0 as follows. Since t has two neighbours (namely r and s) in H0,
clearly any other neighbour of t in Tn is not in H0. Note that Tn contains a balanced triangle of the
form K3(r, t,w) or of the form K3(s, t,w′) (or both). Suppose that K3(r, t,w) exists in Tn. Then we
may repeat the above argument for w and the subgraph H′0 which is obtained from H0 by adding
t and the edges (tr, 1) and (ts, 1) to see that any neighbour of w in Tn (other than r and t) is not in
H′0. By iterating this argument we conclude that none of the vertices of V(Tn) \ {r, s} are in H0. It
now follows that H0 ∪ Tn ∪ (vb, 1) violates (2, 0)-sparsity. Thus, (i) also does not hold for (rs, 1).

Finally, we show that there is no balanced subgraph H0 satisfying (iii) for the edge (rs, 1).
Suppose to the contrary that there does exist such a subgraph H0.

If t < V(H0) then we claim that none of the neighbours of t in Tn (except for r and s) are in
H0. To see this, we suppose for a contradiction (with the notation of the previous paragraph) that
w ∈ V(H0). Then either (wr, 1) ∈ E(H0) or (wr, 1) < E(H0). In the first case adding t and its 3
incident edges to H0 contradicts (2, 2, 0)-gain-sparsity, so the latter case must hold. In this case,
there exists a path from r to w in H0 which has gain −1, for otherwise adding the edge (wr, 1) to
H0 yields a graph that violates (2, 2, 0)-gain-sparsity. By the balancedness of H0, all paths from r
to w in H0 have gain −1. Since all edges of Tn have gain 1, it follows that Tn ∩H0 is disconnected,
with r and w being in different connected components. If Tn ∩ H0 has more than two connected
components, or if any edge incident to w is in Tn ∩ H0, then, since (rs, 1) ∈ Tn ∩ H0, we have
f (Tn ∩ H0) ≥ 3 + 3 = 6. In this case we have f (Tn ∪ H0) ≤ 3 + 2 − 6 < 0, a contradiction. So
suppose Tn ∩H0 has exactly two connected components and one of them consists only of w. Then
we only have f (Tn ∩ H0) ≥ 3 + 2 = 5 and f (Tn ∪ H0) ≤ 3 + 2 − 5 = 0. We claim that in this case
the edge (vb, 1) is not in H0. Suppose to the contrary that (vb, 1) ∈ E(H0). Then (rs, 1), v and b
must belong to the same connected component of Tn ∩ H0, and hence there either exists a vertex
y ∈ Tn∩H0, y , s,w, such that (ry, 1) ∈ Tn∩H0, or there exists a vertex z ∈ Tn∩H0, z , r,w, such
that (sz, 1) ∈ Tn ∩ H0. In the first case, we must have (wy, 1) ∈ Tn \ H0, and in the second case we
must have (tz, 1) ∈ Tn \H0. Thus, by adding the vertex t and the edges (tr, 1), (ts, 1), (wr, 1), (wt, 1)
together with the fifth edge (wy, 1) ((tz, 1), respectively) to H0 we obtain a graph that violates
(2, 2, 0)-gain-sparsity. Hence (vb, 1) is not in H0 and Tn ∪ H0 ∪ (vb, 1) violates (2, 2, 0)-gain-
sparsity. Thus, as claimed, any neighbour of t in Tn (other than r and s) is not in H0. We may now
continue this argument as in the paragraph above to show that none of the vertices of V(Tn) \ {r, s}
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are in H0. It follows that Tn ∪ H0 ∪ (vb, 1) violates (2, 2, 0)-gain-sparsity.
So we may assume that t ∈ V(H0). Then, by condition (iii), the edges (tr, 1), (ts, 1) are not in

H0. The maximal balanced triangle sequence Tn contains a balanced triangle of the form K3(r, t,w)
or of the form K3(s, t,w′) (or both). As above, we assume that K3(r, t,w) exists. Suppose first that
w ∈ V(H0). Then the edges (wt, 1) and (wr, 1) are also both in H0. (If not, say (wt, 1) < E(H0),
then the graph obtained from H0 by adding the edges (tr, 1), (ts, 1), (wt, 1) violates (2, 0)-sparsity.)
Since the edges (wt, 1) and (wr, 1) form a path of gain 1 from r to t in H0, and H0 is balanced,
every path from r to t in H0 has gain 1. Thus, if we add the edge (tr, 1) to H0, then we obtain a
balanced graph that violates the (2, 2)-sparsity of G0, a contradiction.

So we may assume that w < V(H0). Let H′0 be the graph obtained from H0 by adding the edges
(tr, 1) and (ts, 1). Then f (H′0) = 0. Since w has two neighbours (namely r and t) in H′0, clearly any
other neighbour of w in Tn is not in H′0. Using again the same iteration argument from above, we
conclude that none of the vertices of V(Tn) \ {r, s, t} are in H′0. It now follows that H′0 ∪Tn ∪ (vb, 1)
violates (2, 0)-sparsity.

Thus, in Case 2a there exists an admissible reverse move.

Case 2.b. G0 contains a degree 3 vertex, and every degree 3 vertex in G0 is contained in
an induced subgraph isomorphic to R, K+

4 , K++
4 or K̂4.

Every vertex of degree 3 is contained in an induced subgraph Wi isomorphic to K+
4 or in an

induced subgraph Z j isomorphic to either R, K̂4, or a graph K++
4 from Figures 1 (d)-(g). Since

f (K+
4 ) = 1 and f (R) = f (K̂4) = f (K++

4 ) = 0 we say the former are type 1 and the latter are type
0. Let W1, . . . ,Wr′ be all such type 1 induced subgraphs and Z1, . . . ,Zs′ be all such type 0 induced
subgraphs.

Note that for all 1 ≤ i ≤ s′, any proper non-empty subgraph H of Zi has f (H) ≥ 1. Now,
for any pair of subgraphs Zi,Z j we have that Zi and Z j are necessarily vertex disjoint. If not then
f (Zi ∩ Z j) > 0 and hence f (Zi ∪ Z j) < 0, which would contradict the (2, 2, 0)-sparsity of G0. Next,
for all 1 ≤ j ≤ r′, any proper non-empty subgraph Y of W j is either a loop or has f (Y) ≥ 2. Thus,
for any pair of subgraphs Zi,W j we have that either the intersection is a loop, or Zi and W j are
vertex disjoint. If not then f (Zi∩W j) ≥ 2 and hence f (Zi∪W j) = 1− f (Zi∩W j) < 0, contradicting
(2, 2, 0)-sparsity. Lastly, for any pair of subgraphs Wi,W j with non-empty intersection, we must
have f (Wi ∩W j) ∈ {1, 2}. This implies that Wi ∩W j is either empty, a loop, or has f (Wi ∩W j) = 2.
Moreover in the case when f (Wi∩W j) = 2, then Wi∩W j is either a double edge or a single vertex.
(The case when Wi ∩W j is a copy of K4 would mean either i = j or would contradict the fact that
Wi and W j are induced subgraphs of G0. Similarly, the cases when Wi ∩ W j is a triangle plus an
edge, or an edge plus a loop would contradict the (2, 2, 0)-gain sparsity of G0.)

We next modify our lists W1, . . . ,Wr and Z1, . . . ,Zs until any pair Wi,W j and any pair Zi,W j are
vertex disjoint. First, whenever a pair of Wi and W j intersect in a double edge or a single vertex,
then we discard them and add the union of Wi and W j as a new Zm. If this process is iterated, then
the new list of Wi’s and Zi’s has the property that any two elements in the list either do not intersect
or intersect in a loop. Whenever a pair of Wi and W j in the list intersect in a loop, then we discard
them and add the union of Wi and W j as a new W`, and whenever a pair of Wi and Z j intersect in
a loop then we discard them and add the union of Wi and Z j as a new Zk. This process is iterated
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Figure 6: The graph consisting of some k ≥ 2 copies of K4 which all intersect in a single vertex and that vertex is
incident with one loop. This family of graphs gives the only additional isomorphism classes that can occur in the
modified list of Wi’s. Gain labels omitted.

Figure 7: Additional isomorphism classes that can occur in the first step of the modified list of Z j’s. Gain labels
omitted.

until the final list of all Wi’s and Zi’s has the desired property that any two elements in the list are
vertex disjoint. (The additional Wi’s at any step of the process and the additional Zi’s from step 1
of this process are as depicted in Figures 6 and Figures 7 and 8.)

Let U and F be the sets of vertices and edges of G0 which are in none of the Wi and in none
of the Z j. Associate with G0 an auxiliary (multi)graph G∗0 which has a vertex for each Wi, a vertex
for each Zi and a vertex for U and has an edge corresponding to each edge of G0 of the form xix j,
where xi, x j are taken from distinct elements of V(G∗0) = {W1, . . . ,Wr,Z1, . . . ,Zs,U}. Also define
G−0 to be the simple graph which is obtained from G∗0 by removing any parallel edges.

The connectivity of G0 implies that G−0 is connected. Suppose |V(G−0 )| = 1. Then G0 is a copy
of some Z j. If G0 = K̂4 then we may apply a reverse H3d move. If G0 is a union of two K+

4 graphs
which intersect in a double edge then we may apply a reverse vertex-to-K4 move (see Figure 8).
If G0 is not a base graph then by the iteration process above, it follows in all remaining cases that
G0 contains a cut-vertex that separates an induced subgraph isomorphic to K+

4 from the rest of the
graph. It is now clear that we may use Lemma 3.16 to apply a reverse vertex-to-K4 move to a K+

4
subgraph of G0. Thus, we may suppose that |V(G−0 )| > 1.

Suppose r = 0. Let G0[U] denote the subgraph of G0 induced by U. Note that since f (Zi) = 0
for each i, no two Zi can be adjacent (by the (2, 2, 0)-gain-sparsity of G0). Similarly, there is at
most one edge between a Wi and a Z j and at most two edges between a Wi and a Wk. Since G−0 is
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Figure 8: An additional isomorphism class that can occur in the first step of the modified list of Z j’s and the result, R,
of a reverse vertex-to-K4 move applied to this graph. Omitted gain labels are equal to 1.

connected, it follows that G−0 is the graph K1,s where s ≥ 1. Moreover, we have

f (G0[U]) − d(U,V0 − U) =

s∑
i=1

f (Zi) + f (G0[U]) − d(U,V0 − U) = f (G0) = 0.

Since every vertex in U has degree at least 4 in G0, by Lemma 3.4 we have,

d(U,V0 − U) ≥ 2 f (G0[U]) = 2d(U,V0 − U).

Thus d(U,V0 − U) = 0, a contradiction.
Now suppose r > 0. Recall that each Wi is a K+

4 or is of the form illustrated in Figure 6. Hence,
if any Wi is not incident to two parallel edges in G∗0 then we may contract a copy of K+

4 to a loop
by Lemma 3.16. So we suppose that every Wi is incident to two parallel edges in G∗0.

We calculate

f (G0) =

r∑
i=1

f (Wi) +

s∑
j=1

f (Z j) + 2|U | − |F|, (4)

which implies that |F| = 2|U | + r.
Suppose first that every Wi and every Z j is incident to at least two edges in F. Since each

vertex in U has degree at least 4, there are at least 4|U |+ 2(r + s) edge/vertex incidences in F. This
implies |F| ≥ 2|U |+ r + s, and hence s = 0. By a similar counting argument, if some Wi is incident
to more than two edges in F then there are at least 4|U |+ 2(r − 1) + 3 edge/vertex incidences in F.
This implies |F| > 2|U |+ r, a contradiction. Thus each Wi has degree exactly 2 in G∗0. This implies
that either G0 is the disjoint union of W1 and W2 with two edges between them, or, G−0 is the graph
K1,r. In the former case, there is an admissible reverse vertex-to-K4 move which contracts a copy
of K+

4 to a loop. So suppose G−0 is K1,r. In this case, every v ∈ U has degree exactly 4. We may
assume that every Wi is a copy of K+

4 and that for every Wi there exists a vertex in U that is joined
to two vertices in Wi by edges with identical gains. (Otherwise, there is an admissible reverse
vertex-to-K4 move.)

Let v ∈ U be adjacent to two vertices in some Wi. Then there is balanced copy of K3 containing
v and two vertices a, b of Wi. We may assume the gains on this copy of K3 are all 1. We now apply
Lemma 3.17 to show that there is an admissible reverse vertex-splitting move that contracts either
(va, 1) or (vb, 1). Since Wi is a copy of K+

4 at most one of a, b can have a loop. We suppose there
is no loop on a and consider the contraction of (va, 1). It follows from Lemma 3.17 that if (va, 1)
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is non-admissible then there is either a subgraph H0 containing v, a and the edge (va, 1) but not b
with f (H0) = 0 or a balanced subgraph H0 containing v, a and the edge (va, 1) with f (H0) = 2 and
if H0 contains b then it does not contain the edges (ba, 1) and (vb, 1). In both cases it is easy to
deduce from the structure of G0 that such an H0 cannot exist.

So we suppose that there is a Z j which is incident to only one edge in F. If a Wi is joined to
another Wk by two edges, then we discard them and add the union of Wi and Wk together with
the two extra edges as a new Zm. Similarly, if a Wi is joined to a Zk by one edge, then we discard
them and add the union of Wi and Zk together with the extra edge as a new Z`. Note that these new
Zi cannot be adjacent for the same reasons as before. Then the graph G−0 corresponding to this
new underlying structure of G0 contains the graph K1,t as a spanning subgraph, where the vertices
in the partite set of size t = b + c correspond to the graphs W1, . . . ,Wb and Z1, . . . ,Zc, and the
vertex in the other partite set corresponds to U. If G−0 is not equal to K1,t, then the additional edges
must join vertices corresponding to the Wi, and these edges represent single edges among pairs of
Wi in G∗0. We call this set of edges A. Note that in G∗0, for each Wi there are two parallel edges
joining Wi to U, and for each Z j there is one edge joining Z j to U. There may be additional edges
joining a Wi with U or a Z j with U, and we denote this set of additional edges by B. Hence we have
f (G0[U]) = b+c+d, where d = |A|+ |B|. Thus, by Lemma 3.4, we have d(U,V0−U) ≥ 2(b+c+d).
But there are only exactly 2b + c + d − |A| edges incident to U, so we have |A| = c = d = 0, and
c = 0 contradicts our assumption that there exists a Z j.

Thus, in Case 2b there exists an admissible reverse move.
Henceforth we may assume that G0 is 4-regular. First let us deal with two special possible

subgraphs of G0.

Case 3.a. There exists a balanced subgraph isomorphic to either a balanced copy of K1,1,3,
or, to a balanced copy of K4 which neither induces additional edges nor is contained in a copy
of K5 − e.

Suppose that G0 contains an induced balanced copy of K4. By switching we may assume that
all edges of the K4 have gain 1. By Lemma 3.16 and the assumptions of this case, if a reverse
vertex-to-K4 move is not admissible then there is a vertex s adjacent to exactly two of the K4

vertices such that K4 ∪ s is balanced. Consider the vertex s in K4 ∪ s. Since G0 is 4-regular and K4

is not contained in K5−e, s has either a neighbour not in the K4 with two parallel edges to s, or two
neighbours not in the K4, or a loop on s. (These three possibilities are illustrated in Figure 9(a).)
In the first case we can use Lemma 3.13 to conclude that s is admissible and in the second case we
can use Lemma 3.15 to conclude that s is admissible. In the third case we may use Lemma 3.17.
Let r, t be the neighbours of s in G0. By switching, we may assume that (sr, 1) and (st, 1) are edges
in G0. Consider the contraction of the edge (sr, 1). Since G0 is 4-regular, conditions (ii) and (iv)
of Lemma 3.17 evidently fail. Condition (i) fails by Lemma 3.3. Finally, since G0 is 4-regular and
any balanced subgraph H0 with f (H0) = 2 cannot have a vertex of degree 1, condition (iii) also
fails.

Suppose then that G0 contains a balanced copy of K1,1,3 and does not contain an induced bal-
anced copy of K4. By switching, we may assume that all edges of K1,1,3 have gain 1. Then each
degree 2 vertex in the K1,1,3 is either incident to a double edge joining it to a third vertex, or to
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Figure 9: (a) The possibilities in Case 3.a when G0 contains an induced balanced copy of K4 and (b) the possibilities
when G0 contains an induced balanced copy of K1,1,3.

two single edges joining it to a third and fourth vertex, or to a loop. (These three possibilities are
illustrated in Figure 9(b).) If there is a vertex of the first or the second type, then we may apply
Lemma 3.13 or Lemma 3.15, respectively, to show that there exists an admissible reverse move.
So suppose each of the degree 2 vertices of K1,1,3 is incident to a loop. Since K1,1,3 with three loops
is 4-regular, it must be equal to G0. We show there is a contraction using Lemma 3.17. Let r and s
be the vertices corresponding to the two partite sets of K1,1,3 of size 1, and let t be a vertex incident
to a loop. We will contract the edge (rt, 1). Lemma 3.3 implies that (i) fails and again (ii) and
(iv) clearly fail. To see that (iii) fails note simply that every subgraph H with no loops satisfies
f (H) ≥ 3.

Case 3.b. There exists a vertex not contained in a balanced subgraph isomorphic to K4 or
to K1,1,3.

We consider each of the possibilities for the neighbourhood of a given vertex v in G0 satisfying
the hypotheses of this case.

Suppose first that v has exactly one neighbour. Since G0 , 2K1
2 and G0 is connected, Lemma

3.11 implies that v is admissible. Suppose next that v has either exactly three or exactly four
neighbours. Then Lemmas 3.13 and 3.15 imply that v is admissible.

So we suppose that v has exactly two neighbours. Suppose first that there is no loop on v. Let
N(v) = {x, y}. Lemma 3.12 implies that if v is not admissible then there is a loop at x or at y, say at
x. Since G0 is 4-regular we see that x satisfies the condition of Lemma 3.11 and hence there is an
admissible reverse move.

So suppose that v has exactly two neighbours x, y and a loop on v. By switching, we may
assume that (vx, 1) and (vy, 1) are the non-loop edges incident to v. We consider a possible H2d-
reduction at v. If every vertex of G0 is incident with a loop and has two neighbours then it is easy
to see that G0 is precisely a cycle with one loop on each vertex. If the cycle has length 3 then G0

is a base graph. If the cycle has length at least 4 then it is easy to see that there is no balanced
subgraph H0 of G0 − v containing x, y with f (H0) = 2 such that all walks from x to y have gain 1.
Hence v is admissible.
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So we may suppose there is some vertex in G0 which is not incident to a loop. By 4-regularity
of G0 and by relabelling if necessary, we may suppose that x is such a vertex. Since x is adjacent
to v with exactly one edge and x does not have a loop, x may have either 3 or 4 neighbours.

If x has 3 neighbours then 4-regularity implies that x is not contained in a K4. Hence Lemma
3.13 implies that x, or one of its neighbours, is admissible. So we suppose that x has 4 distinct
neighbours. If the edge (xy, 1) exists, then we may contract the edge vx using Lemma 3.17. (The
structure of G0 makes all four conditions in that lemma easy to rule out.) So suppose (xy, 1)
does not exist. If (xy,−1) exists then we claim that x is admissible. If not, then it follows from
Lemma 3.15 that x must be in a balanced K4. This K4 must consist of the vertices x, y, a, b. By
switching we may assume that the three edges joining x with a, b and y all have gain −1 and that
the remaining edges of the K4 have gain 1. Note that every path from x to y within the K4 has
gain −1. This implies that there is no balanced subgraph Hxy of G0 − v containing x and y with
f (Hxy) = 2 such that each path from x to y in Hxy has gain 1. Since there is clearly also no subgraph
H0 of G0 − v containing x and y with f (H0) = 0, this implies that there is a H2d-reduction at v,
contradicting our assumption that v is non-admissible.

So we may suppose that x is not adjacent to y. By Lemma 3.15 x is either in a balanced K1,1,3,
which gives an immediate contradiction, or x is in a balanced K4. In the latter case, since we
are not in Case 3.a, either the K4 induces exactly one additional edge and we can apply a reverse
vertex-to-K4 move by Lemma 3.16 (since the additional edge cannot be a loop, by 4-regularity of
G0), or the K4 is contained in a copy of K5 − e.

v

x y

a

b

c

(a)

v

x y

a

b

c

z

(b)

v

x y

a

b

c

z

(c)

Figure 10: Possible structures of G when v has two neighbours and a loop and one of its neighbours has 4 distinct
neighbours.

Let the vertices of the K4 be a, b, c, x and suppose all edges of the K4 have gain 1. If the final
vertex of the K5 − e is y then V(G0) = {v, x, y, a, b, c} (see Figure 10(a)) and we claim that y is
admissible. To see this, note that exactly one or exactly two of the edges joining y with a, b, c
have gain −1, for otherwise K4 together with the three edges incident with y would violate (2, 2)-
sparsity. Hence in both cases, y is admissible by Lemma 3.15.

So we may assume that the final vertex of the K5 − e is z , y. Suppose first that z is adjacent to
y (see Figure 10(b)). Then we claim that y is still admissible. Clearly y is adjacent to v and z. If y
is also incident to a loop, then V(G0) = {v, x, y, a, b, c, z} and it is easy to see that a H2d-reduction
is possible at y. If y is incident to two parallel edges joining it with a vertex u , v, z then y, or one
of its neighbours, is admissible by Lemma 3.13 and the 4-regularity of G0. If y is incident to two
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single edges joining it with vertices u and w that are distinct from v and z, then y is admissible by
Lemma 3.15 and the 4-regularity of G0. So we may suppose that z is not adjacent to y (see Figure
10(c)). Then z is admissible by Lemma 3.15 and the 4-regularity of G0.

Case 3.c. Every vertex is contained in a balanced subgraph isomorphic to K4 plus either
one or two additional edges or K5 − e.

If G0 contains a K++
4 as a subgraph then G0 = K++

4 , by 4-regularity of G0. In this case G0 is
the base graph depicted in Figure 1(h). So we may assume that every vertex of G0 is contained
in a subgraph isomorphic to K+

4 (which cannot have a loop) or K5 − e. Since G0 is 4-regular any
pair of copies of K+

4 or K5 − e are vertex disjoint, and each copy has exactly two edges incident
to it. If G0 contains a copy of K+

4 then we can apply a reverse vertex-to-K4 move by Lemma 3.16.
(Note that since every vertex is in a K+

4 or a K5 − e, and G0 is 4-regular, there cannot exist a vertex
outside of the K+

4 that is adjacent to two of the vertices of the K+
4 .) Hence we may suppose that G0

contains no copies of K+
4 . Thus we may assume that we have a copy of K5 − e. If G0 = K5 then it

is elementary to apply Lemma 3.15 to find an admissible reduction. Hence G0 does not contain a
copy of K5. Suppose e = xy and note that if x (resp. y) is not admissible, then by Lemma 3.15 x
(resp. y) must be contained in a balanced K4. However, if x and y are both contained in balanced
K4’s, then the K5 − e is the union of two balanced subgraphs and is hence balanced by Lemma 3.2,
contradicting (2, 2)-sparsity.

4. Application to C2-symmetric frameworks in the `1 and `∞-plane

Let ‖ · ‖P be a norm on R2 with the property that the closed unit ball P = {x ∈ R2 : ‖x‖P ≤ 1}
is a quadrilateral (eg. the `1 or `∞ norms). We refer to bar-joint frameworks in this context as
grid-like. In this section, the results of the previous sections are combined to obtain geometric
and combinatorial characterisations of χ-symmetric isostaticity and infinitesimal rigidity for C2-
symmetric grid-like frameworks.

4.1. Framework colourings
Let (G, p) be a well-positioned grid-like bar-joint framework and let F ∈ {±F1,±F2} be one

of the four facets of the quadrilateral P. An edge vw ∈ E is said to have framework colour F
(equivalently, −F) if either pv− pw or pw− pv lies in the cone {x ∈ R2 : x

‖x‖P
∈ F}. Recall that, since

(G, p) is well-positioned, each edge of G has exactly one framework colour (see [5]). Denote by
GF the monochrome subgraph of G spanned by edges with framework colour F.

For each facet F there exists a unique extreme point F̂ of the polar set P4 = {y ∈ R2 : x · y ≤
1, ∀ x ∈ P} such that F = {x ∈ P : x · F̂ = 1}. Define a linear functional ϕF : R2 → R by setting
ϕ(x) = x · F̂, for all x ∈ R2. If (G, p) is well-positioned and vw ∈ GF then it can be shown (see [5])
that the linear functional ϕv,w described in Lemma 2.1 satisfies ϕv,w = ϕF .

IfG = (G, p, θ, τ) is a C2-symmetric grid-like bar-joint framework, then each edge e ∈ E shares
the same framework colour as its image −e. By assigning this common framework colour to the
edge orbit [e] = {e,−e} we induce a framework colouring on the edges of the quotient graph G0.
Denote by GF,0 the monochrome subgraph of G0 spanned by edges [e] with framework colour F.
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Example 4.1. Consider the `∞ plane. The unit ball P = {x ∈ R2 : ‖x‖∞ ≤ 1} has four facets:
F1 = {(x1, x2) ∈ P : x1 = 1}, F2 = {(x1, x2) ∈ P : x2 = 1} and their negatives. The polar
set of P is the `1 unit ball P4 = {x ∈ R2 : ‖x‖1 ≤ 1}, and the extreme points of the polar
set are F̂1 = (1, 0), F̂2 = (0, 1) and their negatives. Figure 1 illustrates several examples of
framework colourings for C2-symmetric bar-joint frameworks in the `∞-plane together with the
induced framework colourings on their Z2-gain graphs.

A map graph is a graph in which every connected component contains exactly one cycle. An
unbalanced map graph is a Z2-gain graph (H, ψ) such that H is a map graph and every cycle is
unbalanced.

Theorem 4.2. Let G = (G, p, θ, τ) be a well-positioned and C2-symmetric bar-joint framework in
(R2, ‖ · ‖P).

(A) The following statements are equivalent.

(i) G is χ0-symmetrically isostatic.

(ii) GF1,0 and GF2,0 are edge-disjoint spanning unbalanced map graphs in G0.

(B) The following statements are equivalent.

(i) G is χ1-symmetrically isostatic.

(ii) GF1,0 and GF2,0 are edge-disjoint spanning trees in G0.

(C) The following statements are equivalent.

(i) G is infinitesimally rigid.

(ii) GF1,0 and GF2,0 both contain connected spanning unbalanced map graphs.

Proof. (A) (i)⇒ (ii) Suppose there exists a vertex [v0] ∈ V0 \V(GF1,0). Let ṽ0 be the representative
vertex for [v0] in G. Choose a non-zero vector x ∈ kerϕF2 and for all v ∈ V(G) define,

uv =


x if v = ṽ0,
−x if v = −ṽ0,
0 otherwise.

Then u is a non-trivial χ0-symmetric infinitesimal flex for (G, p). This is a contradiction since
(G, p) is χ0-symmetrically isostatic. Thus every vertex of G0 must be incident to an edge of GF1,0.
By a similar argument every vertex of G0 must be incident to an edge of GF2,0.

Suppose GF1,0 has a connected component H0 which is a balanced subgraph of G0. Then, by
Lemma 2.17, we may assume that each edge of H0 has gain 1. Thus if H is the covering graph for
H0, then there is no edge vw ∈ E(H) with v ∈ Ṽ0 and w < Ṽ0. (Recall Section 2.8 for the definition
of Ṽ0). Choose a non-zero vector x ∈ kerϕF2 and for all v ∈ V(G) define,

uv =


x if [v] ∈ V(H0) and v ∈ Ṽ0,
−x if [v] ∈ V(H0) and v < Ṽ0,
0 otherwise.
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Then u is a non-trivial χ0-symmetric infinitesimal flex for (G, p). This is a contradiction and
so every connected component of GF1,0 must be an unbalanced subgraph of G0. Similarly, each
connected component of GF2,0 is an unbalanced subgraph of G0.

By Corollary 2.20, we have |E0| = 2|V0|. Note that each connected component of GF1,0 must
contain a cycle (since it is unbalanced) and so if GF1,0 has n connected components, H1,H2, . . . ,Hn

say, then |E(H j)| ≥ |V(H j)| for each j and,

|E(GF1,0)| =
n∑

j=1

|E(H j)| ≥
n∑

j=1

|V(H j)| = |V0|.

Similarly, |E(GF2,0)| ≥ |V0|. Now |E(GF1,0)| + |E(GF2,0)| = |E0| = 2|V0| and so |E(GF1,0)| = |V0| =

|E(GF2,0)|. It follows that |E(H j)| = |V(H j)| for each j and so the connected components of GF1,0

each contain exactly one cycle. By the same argument, the connected components of GF2,0 each
contain exactly one cycle. Thus GF1,0 and GF2,0 are both unbalanced spanning mapping graphs in
G0.

(ii) ⇒ (i) Suppose (ii) holds and let u be a χ0-symmetric infinitesimal flex of (G, p). Then
u−v = −uv for all v ∈ V . Let v0 ∈ V and let H1

0 and H2
0 be the connected components of GF1,0

and GF2,0 respectively which contain [v0] ∈ V0. Since Hi
0 contains a unique unbalanced cycle,

there exists a path in GFi from v0 to −v0. It follows that uv0 − u−v0 ∈ ∩i=1,2 kerϕFi = {0} and so
uv0 = u−v0 = −uv0 . Thus uv0 = 0. Applying this argument to all v ∈ V , we have u = 0 and
so (G, p, θ, τ) is χ0-symmetrically infinitesimally rigid. Note that |E0| = 2|V0| and so G is also
χ0-symmetrically isostatic.

(B) (i) ⇒ (ii) Suppose there exists a vertex [v0] ∈ V0 \ V(GF1,0). Choose a non-zero vector
x ∈ kerϕF2 . For all v ∈ V define,

uv =

{
x if [v] = [v0],
0 otherwise.

Then u is a non-trivial χ1-symmetric infinitesimal flex for (G, p). This is a contradiction and so
GF1,0 is a spanning subgraph of G0. Similarly, GF2,0 is a spanning subgraph of G0.

Suppose GF1,0 is not connected, and let H0 be a connected component of GF1,0. Choose a
non-zero vector x ∈ kerϕF2 and for all v ∈ V define,

uv =

{
x if [v] ∈ V(H0),
0 otherwise.

Then u is a non-trivial χ1-symmetric infinitesimal flex for (G, p), which is a contradiction. Thus
GF1,0 is a connected spanning subgraph of G0. Similarly, GF2,0 is a connected spanning subgraph
of G0. By Corollary 2.20, we have |E0| = 2|V0| − 2. Note that |E(GF1,0)| ≥ |V0| − 1 and |E(GF2,0)| ≥
|V0| − 1 and so GF1,0 and GF2,0 are both spanning trees in G0.

(ii)⇒ (i) Suppose (ii) holds and let u be a χ1-symmetric infinitesimal flex for G. Then u−v = uv

for all v ∈ V . Fix v,w ∈ V . Since GF1,0 is a spanning tree in G0, there exists a path in GF1,0 from
[v] to [w]. Thus there either exists a path P in GF1 from v to w or there exists a path P in GF1

from v to −w. In the former case it follows directly that uv − uw ∈ kerϕF1 while in the latter case
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it follows that uv − uw = uv − u−w ∈ kerϕF1 . Similarly, uv − uw ∈ kerϕF2 and so uv = uw for all
v,w ∈ V . Thus u is a trivial infinitesimal flex and so G is χ1-symmetrically infinitesimally rigid.
Since |E0| = 2|V0| − 2, G is also χ1-symmetrically isostatic.

(C) (i)⇒ (ii) If (G, p) is infinitesimally rigid then it is both χ0 and χ1-symmetrically infinitesi-
mally rigid. By removing edge orbits from G we arrive at a spanning subgraph A such that (A, p) is
χ0-symmetrically isostatic. By (A), AF1,0 and AF2,0 are unbalanced spanning map graphs in G0 and
so each contains an unbalanced cycle. Similarly, (G, p) contains a spanning subgraph B such that
(B, p) is χ1-symmetrically isostatic. By (B), BF1,0 and BF2,0 are spanning trees in G0. Since BFi,0

is a spanning tree for i = 1, 2, there exists a set of edges in BFi,0 which, when added to AFi,0, form
a connected unbalanced spanning map graph HFi,0 after removing edges to reduce the number of
cycles to one. This gives the result.

(ii) ⇒ (i) Suppose (ii) holds. Then (G0, ψ) contains a spanning subgraph H0 such that the
induced monochrome subgraphs HF1,0 and HF2,0 are edge-disjoint connected unbalanced spanning
map graphs. Let H be the covering graph for H0. By (A), the C2-symmetric subframework (H, p) is
χ0-symmetrically infinitesimally rigid. Similarly, note that HF1,0 and HF2,0 both contain spanning
trees in H0 and so by (B), (H, p) is χ1-symmetrically infinitesimally rigid. It follows that (H, p),
and hence also (G, p), is infinitesimally rigid.

4.2. Existence of rigid grid-like placements with half-turn symmetry
Recall from Corollary 2.20 that if G = (G, p, θ, τ) is a well-positioned, C2-symmetric and χ0-

symmetrically isostatic bar-joint framework in (R2, ‖ · ‖P), where P is a quadrilateral, then the gain
graph (G0, ψ) for (G, θ) is (2, 2, 0)-gain-tight. By Theorem 3.20, (G0, ψ) is (2, 2, 0)-gain-tight if
it can be generated from vertex-disjoint copies of graphs in B by applying H1, H2, H3, vertex-
to-K4 and vertex splitting moves. We now show that if there exists such a recursive construction
sequence, then there exists a half-turn symmetric realisation of G that is well-positioned and χ0-
symmetrically isostatic in (R2, ‖ · ‖P). Overall, this yields the following main combinatorial result
for χ0-symmetrically isostatic frameworks with half-turn symmetry in (R2, ‖ · ‖P).

Theorem 4.3. Let ‖ · ‖P be a norm on R2 for which P is a quadrilateral, and let (G, θ) be a Z2-
symmetric graph. Further, let (G0, ψ) be the gain graph for (G, θ). The following are equivalent.

(i) There exists a C2-symmetric realisation G = (G, p, θ, τ) which is well-positioned and χ0-
symmetrically isostatic in (R2, ‖ · ‖P);

(ii) (G0, ψ) is (2, 2, 0)-gain tight;

(iii) (G0, ψ) can be constructed from disjoint copies of base graphs in Figure 1 by a sequence of
H1a,b,c moves, H2a,b,c,d,e moves, H3a,b,c,d moves, vertex-to-K4 moves, and vertex split-
ting moves.

To show that (iii) implies (i), we rely on Theorem 4.2(A). We split the proof into a number of
geometric lemmas. In these lemmas, we will use the notation of Section 2.8 and write [v] and [e]
for a vertex and an edge of the gain graph (G0, ψ) for a Z2-symmetric graph (G, θ), respectively.
Moreover, we let Ṽ0 = {ṽ1, . . . , ṽn} be a choice of representatives for the vertex orbits of (G, θ).
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Lemma 4.4. Let (G0, ψ) and (G′0, ψ
′) be the gain graphs of the Z2-symmetric graphs (G, θ) and

(G′, θ′), respectively and suppose that (G0, ψ) is obtained from (G′0, ψ
′) by a H1a, H1b or H1c

move. If for (G′, θ′) there exists a realisation G = (G′, p′, θ′, τ) which is well-positioned, C2-
symmetric and χ0-symmetrically isostatic in (R2, ‖ · ‖P), then the same is true for (G, θ).

Proof. By Theorem 4.2(A), there exists a well-positioned C2-symmetric realisation p′ of (G′, θ′) in
(R2, ‖·‖P) so that the induced monochrome subgraphs G′F1,0

and G′F2,0
of (G′0, ψ

′) are both spanning
unbalanced map graphs. By Theorem 4.2(A), it now suffices to show that the vertex of G0 \G′0 can
be placed in such a way that the corresponding framework (G, p, θ, τ) is C2-symmetric and well-
positioned, and the induced monochrome subgraphs GF1,0 and GF2,0 are both spanning unbalanced
map graphs in (G0, ψ).

We fix two points x1 and x2 in the relative interiors of F1 and F2 respectively.
Suppose first that (G0, ψ) is obtained from (G′0, ψ

′) by a H1a move, where [v] ∈ G0 \ G′0
is adjacent to the vertices [v1] and [v2] of G′0 with respective gains γ1 and γ2. Set pw = p′w
for all vertices w of G with [w] , [v]. Let a ∈ R2 be the point of intersection of the lines
L1 = {τ(γ1)pṽ1 + tx1 : t ∈ R} and L2 = {τ(γ2)pṽ2 + tx2 : t ∈ R} and let B(a, r) be an open
ball with centre a and radius r > 0. Choose pṽ to be any point in B(a, r) which is distinct from
{pw : w ∈ V(G′)} and which is not fixed by τ(−1). Set p−ṽ = τ(−1)pṽ. Then (G, p, θ, τ) is a C2-
symmetric bar-joint framework and, by applying a small perturbation to pṽ if necessary, we may
assume that (G, p, θ, τ) is well-positioned. If r is sufficiently small then the induced framework
colours for [v][v1] and [v][v2] are [F1] and [F2] respectively. Thus, the induced monochrome
subgraphs of (G0, ψ) are GF1,0 = G′F1,0

∪ {[v][v1]} and GF2,0 = G′F2,0
∪ {[v][v2]}. Clearly, GF1,0 and

GF2,0 are spanning unbalanced map graphs of (G0, ψ).
If (G0, ψ) is obtained from (G′0, ψ) by a H1b move, then the proof is completely analogous to

the proof above.
Suppose (G0, ψ) is obtained from (G′0, ψ

′) by a H1c move, where [v] ∈ G0 \G′0 is incident to the
unbalanced loop [e] and adjacent to the vertex [z] of (G′0, ψ

′) with gain γ. Let a ∈ R2 be the point
of intersection of the lines L1 = {τ(γ)pz̃ + tx2 : t ∈ R} and L2 = {tx1 : t ∈ R} and let B(a, r) be an
open ball with centre a and radius r > 0. Choose pṽ to be any point in B(a, r) which is distinct from
{pw : w ∈ V(G′)} and which is not fixed by τ(−1). Set p−ṽ = τ(−1)pṽ. Then, by applying a small
perturbation to pṽ if necessary, (G, p, θ, τ) is well-positioned and C2-symmetric. Moreover, if r
is sufficiently small, then the induced monochrome subgraphs of (G0, ψ) are GF1,0 = G′F1,0

∪ {[e]}
and GF2,0 = G′F2,0

∪ {[v][z]}. Clearly, GF1,0 and GF2,0 are unbalanced spanning map graphs of
(G0, ψ).

Lemma 4.5. Let (G0, ψ) and (G′0, ψ
′) be the gain graphs of the Z2-symmetric graphs (G, θ) and

(G′, θ′), respectively and suppose that (G0, ψ) is obtained from (G′0, ψ
′) by a H2a, H2b, H2c, H2d,

or H2e move. If for (G′, θ′) there exists a realisation G = (G′, p′, θ′, τ) which is well-positioned,
C2-symmetric and χ0-symmetrically isostatic in (R2, ‖ · ‖P), then the same is true for (G, θ).

Proof. By Theorem 4.2(A), there exists a well-positioned C2-symmetric realisation p′ of (G′, θ′) in
(R2, ‖·‖P) so that the induced monochrome subgraphs G′F1,0

and G′F2,0
of (G′0, ψ

′) are both spanning
unbalanced map graphs. By Theorem 4.2(A), it now suffices to show that the vertex of G0 \G′0 can
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be placed in such a way that the corresponding framework (G, p, θ, τ) is C2-symmetric and well-
positioned, and the induced monochrome subgraphs GF1,0 and GF2,0 are both spanning unbalanced
map graphs in (G0, ψ).

We fix two points x1 and x2 in the relative interiors of F1 and F2 respectively.
Suppose first that (G0, ψ) is obtained from (G′0, ψ

′) by a H2a move where [v] ∈ G0 \G′0 subdi-
vides the edge [e] = [v1][v2] into the edges [e1] = [v][v1] and [e2] = [v][v2] with respective gains
γ1 and γ2, and [v] is also incident to the edge [e3] with end-vertex [z] and gain γ3. Without loss of
generality we may assume that [e] ∈ G′F1,0

. Let a ∈ R2 be the point of intersection of the line L1

which passes through the points τ(γ1)pṽ1 and τ(γ2)pṽ2 , and the line L2 = {τ(γ3)pz̃ + tx2 : t ∈ R}.
Let B(a, r) be the open ball with centre a and radius r > 0 and choose pṽ to be a point in B(a, r)
which is distinct from {pw : w ∈ G′} and which is not fixed by τ(−1). Set p−ṽ = τ(−1)pṽ. Then
(G, p, θ, τ) is C2-symmetric and, by applying a small perturbation to pṽ if necessary, we may as-
sume it is well-positioned. If r is sufficiently small then [e1] and [e2] have induced framework
colour [F1] and [e3] has framework colour [F2]. The induced monochrome subgraphs of (G0, ψ)
are GF1,0 = (G′F1,0

\{[e]}) ∪ {[e1], [e2]} and GF2,0 = G′F2,0
∪ {[e3]}. Clearly, GF1,0 and GF2,0 are

spanning unbalanced map graphs of (G0, ψ).
The cases where (G0, ψ) is obtained from (G′0, ψ

′) by a H2b or a H2c move may be proved
completely analogously to the case above for the H2a move.

Next, we suppose that (G0, ψ) is obtained from (G′0, ψ
′) by a H2d move where [v] ∈ G0 \ G′0

subdivides the edge [e] = [v1][v2] into the edges [e1] = [v][v1] and [e2] = [v][v2] with respective
gains γ1 and γ2, and [v] is also incident to the unbalanced loop [e3]. Without loss of generality we
may assume that [e] ∈ G′F1,0

. Let a ∈ R2 be the point of intersection of the line L1 which passes
through the points τ(γ1)pṽ1 and τ(γ2)pṽ2 and the line L2 = {tx2 : t ∈ R}, and let B(a, r) be an
open ball with centre a and radius r > 0. (Note that a could possibly be the centre of the rotation
τ(−1), i.e. the origin.) Choose pṽ to be a point in B(a, r) which is distinct from {pw : w ∈ G′}
and which is not fixed by τ(−1). Set p−ṽ = τ(−1)pṽ. Then (G, p, θ, τ) is C2-symmetric and if r is
sufficiently small then [e1] and [e2] have induced framework colour [F1]. Moreover, by applying
a perturbation to pṽ within B(a, r) if necessary, we may assume that [e3] has framework colour
[F2] and that (G, p, θ, τ) is well-positioned. The induced monochrome subgraphs of (G0, ψ) are
GF1,0 = (G′F1,0

\{[e]}) ∪ {[e1], [e2]} and GF2,0 = G′F2,0
∪ {[e3]}. Clearly, GF1,0 and GF2,0 are spanning

unbalanced map graphs of (G0, ψ).
The case where (G0, ψ) is obtained from (G′0, ψ

′) by a H2e move may be proved completely
analogously to the case above for the H2d move. Here B(a, r) is in fact centred at the origin.

Lemma 4.6. Let (G0, ψ) and (G′0, ψ
′) be the gain graphs of the Z2-symmetric graphs (G, θ) and

(G′, θ′), respectively and suppose that (G0, ψ) is obtained from (G′0, ψ
′) by a H3a, H3b, H3c, or

H3d move. If for (G′, θ′) there exists a realisation G = (G′, p′, θ′, τ) which is well-positioned,
C2-symmetric and χ0-symmetrically isostatic in (R2, ‖ · ‖P), then the same is true for (G, θ).

Proof. By Theorem 4.2(A), there exists a well-positioned C2-symmetric realisation p′ of (G′, θ′) in
(R2, ‖·‖P) so that the induced monochrome subgraphs G′F1,0

and G′F2,0
of (G′0, ψ

′) are both spanning
unbalanced map graphs. By Theorem 4.2(A), it now suffices to show that the vertex of G0 \G′0 can
be placed in such a way that the corresponding framework (G, p, θ, τ) is C2-symmetric and well-
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positioned, and the induced monochrome subgraphs GF1,0 and GF2,0 are both spanning unbalanced
map graphs in (G0, ψ).

First we suppose that (G0, ψ) is obtained from (G′0, ψ
′) by a H3a move where [v] ∈ G0 \ G′0

subdivides the edge [e] = [v1][v2] into the edges [e1] = [v][v1] and [e2] = [v][v2], and the edge
[ f ] = [v3][v4] into the edges [ f1] = [v][v3] and [ f2] = [v][v4]. By switching [v1] and [v3] if
necessary, we may assume without loss of generality that [e] and [ f ] have both gain 1. The edges
[e1], [e2], [ f1], [ f2] will then also be assigned gain 1. (The proof for the case where they are all
assigned gain −1 is analogous.) We distinguish two cases.

Case A: [e] and [ f ] belong to different induced monochrome subgraphs of G′0, say [e] ∈ G′F1,0
and [ f ] ∈ G′F2,0

. Let a ∈ R2 be the point of intersection of the line L1 which passes through
the points pṽ1 and pṽ2 , and the line L2 which passes through the points pṽ3 and pṽ4 . Let B(a, r)
be an open ball with centre a and radius r > 0, and choose pṽ to be a point in B(a, r) which is
distinct from {pw : w ∈ G′} and which is not fixed by τ(−1). Set p−ṽ = τ(−1)pṽ. Then (G, p, θ, τ)
is C2-symmetric and, by applying a small perturbation to pṽ if necessary, we may assume it is
well-positioned. If r is sufficiently small then [e1] and [e2] have induced framework colour [F1],
and [ f1] and [ f2] have framework colour [F2]. The induced monochrome subgraphs of (G0, ψ) are
GF1,0 = (G′F1,0

\{[e]}) ∪ {[e1], [e2]} and GF2,0 = (G′F2,0
\{[ f ]}) ∪ {[ f1], [ f2]}. Clearly, GF1,0 and GF2,0

are spanning unbalanced map graphs of (G0, ψ).
Case B: [e] and [ f ] belong to the same induced monochrome subgraph of G′0, say [e], [ f ] ∈

G′F1,0
. We need the following claim.

Claim 4.7. Let p1, p2, p3, p4 be four distinct points in R2 such that the line segments p1 p2 and
p3 p4 both have framework colour [F1]. Let i ∈ {1, 2, 3, 4}. Then there exists an open set N in R2

such that for every point pv ∈ N, the line segment pv pi has framework colour [F2] and the three
line segments pv p j with j ∈ {1, 2, 3, 4}, j , i, have framework colour [F1].

Proof. Without loss of generality we may assume that p1 lies to the left of p2, and p3 lies to the
left of p4 (see Figure 11 for an illustration). Moreover we may assume that i = 4.

p3

p4 p1

p2

Figure 11: Illustration of the proof of Claim 4.7.

We need to find an open set N which lies within the two shaded areas in Figure 11. Note that
the shaded area on the left hand side of Figure 11 is connected, and unbounded from below and
above. The shaded area on the right hand side of Figure 11 is also connected, and unbounded
from the left and right. Since p1, p2, p3, p4 are distinct points, the shaded areas will always have a
nontrivial intersection, and we may choose N within that intersection.
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Suppose first that [e] and [ f ] lie on a common (unbalanced) cycle in G′F1,0
. Without loss of

generality, we may assume that this cycle consists of a path P1 from [v2] to [v3] with an odd
number of edges with gain −1, and a path P2 from [v1] to [v4] with an even number of edges with
gain −1. Then we choose pṽ to be a point which is distinct from {pw : w ∈ G′}, not fixed by τ(−1),
and such that (G, p, θ, τ) is well-positioned and in (G0, ψ) the edges [e1], [e2], [ f1] have framework
colour [F1], and [ f2] has framework colour [F2]. Such a position for pṽ exists by Claim 4.7.
The induced monochrome subgraphs of (G0, ψ) are GF1,0 = (G′F1,0

\{[e], [ f ]}) ∪ {[e1], [e2], [ f1]} and
GF2,0 = (G′F2,0

)∪{[ f2]}. Clearly, GF2,0 is a spanning unbalanced map graph of (G0, ψ). As for GF1,0,
note that the removal of [e] and [ f ] from G′F1,0

breaks the connected component of G′F1,0
containing

[e] and [ f ] into the two disjoint trees. By adding the vertex [v] and the edges [e1], [e2], [ f1], these
two trees are reconnected and a single unbalanced cycle (consisting of P1, [e2] and [ f1]) is created
in this connected component of GF1,0.

If [e] and [ f ] do not lie on a common cycle in G′F1,0
, but they are still in the same connected

component K′ of G′F1,0
, then we may proceed as above. However, if either [e] or [ f ], say [e], lies

on the unique cycle C′ in K′, and without loss of generality there exists a path in K′ from a vertex
in C′ to [v4] that does not include [v3], then we need to choose pṽ so that [e1] and [e2] both have
framework colour [F1], and [ f1] and [ f2] have respective framework colours [F1] and [F2]. This
guarantees that the unbalanced cycle C = C′\{[e]} ∪ {[e1], [e2]} in the corresponding component of
GF1,0 is unique.

If [e] and [ f ] lie in different connected components K′ and K′′ of G′F1,0
, then we may again

proceed as above. However, care needs to be taken in the case where either [e] or [ f ], say [e], lies
on the unique cycle C′ in K′, and [ f ] does not lie on the cycle of K′′. In this case we choose pṽ

so that [e1] and [e2] have framework colours [F1] and [F2], and [ f1] and [ f2] both have framework
colour [F1], so that GF1,0 will not have a connected component with two cycles. Similarly, if
neither [e] nor [ f ] lie on the cycle in their respective connected components, then we need to
choose pṽ so that the three new edges with framework colour [F1] do not give rise to a connected
component of GF1,0 that has two cycles.

Next, we suppose that (G0, ψ) is obtained from (G′0, ψ
′) by a H3b move where [v] ∈ G0\G′0, and

the H3b move deletes the edges [e] = [v1][v2] and [ f ] = [v1][v3] and adds the edges [e1] = [v][v1]
and [e′1] = [v][v1], and the edges [e2] = [v][v2] and [e3] = [v][v3]. By switching [v2] and [v3] if
necessary, we may assume that [e] and [ f ] have gain 1. The edges [e1] and [e′1] are assigned the
gains 1 and −1, respectively, and the edges [e2], [e3] are assigned the gains 1 and −1, respectively.
We distinguish two cases.

Case A: [e] and [ f ] belong to different induced monochrome subgraphs of G′0, say [e] ∈ G′F1,0
and [ f ] ∈ G′F2,0

. Let a ∈ R2 be the point of intersection of the line L1 which passes through the
points pṽ1 and pṽ2 , and the line L2 which passes through the points τ(−1)pṽ1 and τ(−1)pṽ3 . Let
B(a, r) be the open ball with centre a and radius r > 0 and choose pṽ to be a point in B(a, r) which
is distinct from {pw : w ∈ G′} and which is not fixed by τ(−1). Set p−ṽ = τ(−1)pṽ. Then (G, p, θ, τ)
is C2-symmetric and, by applying a small perturbation to pṽ if necessary, we may assume it is
well-positioned. If r is sufficiently small then [e1] and [e2] have induced framework colour [F1],
and [e′1] and [e3] have framework colour [F2]. The induced monochrome subgraphs of (G0, ψ) are
GF1,0 = (G′F1,0

\{[e]}) ∪ {[e1], [e2]} and GF2,0 = (G′F2,0
\{[ f ]}) ∪ {[e′1], [e3]}. Clearly, GF1,0 and GF2,0
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are spanning unbalanced map graphs of (G0, ψ).
Case B: [e] and [ f ] belong to the same induced monochrome subgraph of G′0, say [e], [ f ] ∈

G′F1,0
.

Suppose first that [e] and [ f ] lie on a common cycle in G′F1,0
. Then we may apply Claim 4.7

to the points pṽ1 , τ(−1)pṽ1 , pṽ2 , τ(−1)pṽ3 to find a position for pṽ so that it is distinct from {pw :
w ∈ G′}, not fixed by τ(−1), and such that (G, p, θ, τ) is well-positioned and in (G0, ψ) the edges
[e1], [e′1] and [e2] have framework colour [F1], and [e3] has framework colour [F2]. The induced
monochrome subgraphs of (G0, ψ) are GF1,0 = (G′F1,0

\{[e], [ f ]}) ∪ {[e1], [e′1], [e2]} and GF2,0 =

G′F2,0
∪ {[e3]}. Clearly, GF1,0 and GF2,0 are spanning unbalanced map graphs of (G0, ψ).

Suppose next that [e] and [ f ] do not lie on a common cycle in G′F1,0
. If either [e] or [ f ], say

[e], lies on a cycle in G′F1,0
, then we proceed as above, but we need to choose pṽ so that the edges

[e1], [e′1] and [e3] have framework colour [F1], and [e2] has framework colour [F2] to guarantee
that GF1,0 is a spanning unbalanced map graph of (G0, ψ). If neither [e] nor [ f ] lie on a cycle in
G′F1,0

, then we need to distinguish two cases. Let C be the cycle in the connected component of
G′F1,0

containing the edges [e], [ f ]. If there exists a path in G′F1,0
from a vertex in C to [v2] or [v3]

that does not include [v1], then we may again proceed as above. Otherwise we choose a position
for pṽ so that it is distinct from {pw : w ∈ G′}, not fixed by τ(−1), and such that (G, p, θ, τ) is
well-positioned and in (G0, ψ) the edges [e1] and [e′1] have respective framework colours [F1] and
[F2], and [e2] and [e3] both have framework colour [F1].

Suppose next that (G0, ψ) is obtained from (G′0, ψ
′) by a H3c move where [v] ∈ G0 \ G′0, and

the H3c move deletes the unbalanced loop [e] = [v1][v1] and the edge [ f ] = [v2][v3] and adds the
edges [e1] = [v][v1] and [e′1] = [v][v1] with respective gains γ1 = 1 , −1 = γ′1, and the edges
[e2] = [v][v2] and [e3] = [v][v3] with respective gains γ2 and γ3. This case is completely analogous
to the H3a case. If [e] and [ f ] belong to different induced monochrome subgraphs of G′0, say
[e] ∈ G′F1,0

and [ f ] ∈ G′F2,0
, then we may choose pṽ so that [e1] and [e′1] have induced framework

colour [F1], and [e2] and [e3] have induced framework colour [F2]. If [e] and [ f ] belong to the
same induced monochrome subgraph of G′0, say [e], [ f ] ∈ G′F1,0

, then Claim 4.7 applies, and we
may choose pṽ so that [e1] and [e′1] have induced framework colour [F1], and [e2] and [e3] have
respective framework colours [F1] and [F2], so that GF1,0 and GF2,0 are spanning unbalanced map
graphs of (G0, ψ).

If (G0, ψ) is obtained from (G′0, ψ
′) by a H3d move, then we may again proceed analogously

to the H3a (or H3c) case. Note that if the loops [e] and [ f ] that are deleted in the H3d move are
both in the same induced monochrome subgraph of G′0, say [e], [ f ] ∈ G′F1,0

, then they must lie in
separate connected components of G′F1,0

(since they are both unbalanced cycles). So their removal
results in two disjoint trees. With the addition of the vertex [v] and the edges [e1], [e′1], [e2], these
two trees are connected and a single (unbalanced) cycle is created in this connected component of
GF1,0.

Lemma 4.8. Let (G0, ψ) and (G′0, ψ
′) be the gain graphs of the Z2-symmetric graphs (G, θ) and

(G′, θ′), respectively and suppose that (G0, ψ) is obtained from (G′0, ψ
′) by a vertex-to-K4 or vertex

splitting move. If for (G′, θ′) there exists a realisation G = (G′, p′, θ′, τ) which is well-positioned,
C2-symmetric and χ0-symmetrically isostatic in (R2, ‖ · ‖P), then the same is true for (G, θ).

Proof. By Theorem 4.2(A), there exists a well-positioned C2-symmetric realisation p′ of (G′, θ′) in
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(R2, ‖·‖P) so that the induced monochrome subgraphs G′F1,0
and G′F2,0

of (G′0, ψ
′) are both spanning

unbalanced map graphs. By Theorem 4.2(A), it now suffices to show that the vertex (or vertices) of
G0 \G′0 can be placed in such a way that the corresponding framework (G, p, θ, τ) is C2-symmetric
and well-positioned, and the induced monochrome subgraphs GF1,0 and GF2,0 are both spanning
unbalanced map graphs in (G0, ψ).

We fix two points x1 and x2 in the relative interiors of F1 and F2 respectively.
First we suppose that (G0, ψ) is obtained from (G′0, ψ

′) by a vertex-to-K4-move, where the
vertex [v] of (G′0, ψ

′) (which may be incident to an unbalanced loop [e]) is replaced by a copy of
K4 with a trivial gain labelling (and [e] is replaced by the edge [ f ] with gain −1). Suppose without
loss of generality that the loop [e] (if present) has framework colour [F2]. As shown in Figure 1,
K4 has a well-positioned placement in (R2, ‖ · ‖P) where the two monochrome subgraphs are both
trees. Moreover, we may scale this realisation so that all of the vertices of the K4 lie in a ball of
arbitrarily small radius. Let B(pṽ, r) be the open ball with centre pṽ and radius r > 0. Choose a
placement of the representative vertices of the new K4 to lie within B(pṽ, r) such that the vertices
are distinct from {pw : w ∈ V(G′)\{ṽ}}, none of the vertex placements are fixed by τ(−1) and the
resulting placement of the new K4 is such that the monochrome subgraphs are both trees. If r
is sufficiently small then the edge [ f ] (if present) has the induced framework colour [F2] and all
original edges retain their original colour. It can be assumed that the corresponding C2-symmetric
placement of G is well-positioned. Moreover, the induced monochrome subgraphs GF1,0 and GF2,0

of G0 are clearly spanning unbalanced map graphs of (G0, ψ).
Finally, we suppose that (G0, ψ) is obtained from (G′0, ψ

′) by a vertex split, where the vertex
[v] of (G′0, ψ

′) (which is replaced by the vertices [v0] and [v1]) is incident to the edge [v][u] with
trivial gain and the edges [v][ui], i = 1, . . . , t, in G′0. Without loss of generality we may assume
that [v][u] ∈ G′F1,0

. If we choose pṽ0 = pṽ and pṽ1 to be a point on the line L = {pṽ + tx2 : t ∈ R}
which is sufficiently close to pṽ, then the induced framework colour for [v0][v1] is [F2] and the
induced framework colour for [v0][u] and [v1][u] is [F1]. (Again we may assume the framework
is well-positioned). Moreover, all other edges of (G′0, ψ

′) which have been replaced by new edges
in (G0, ψ) clearly retain their induced framework colouring if pṽ1 is chosen sufficiently close to
pṽ. It is now easy to see that for such a placement of ṽ0 and ṽ1, both GF1,0 and GF2,0 are spanning
unbalanced map graphs of (G0, ψ).

We are now ready to prove Theorem 4.3.

Proof. As mentioned earlier, (i)⇒ (ii) follows from Corollary 2.20, and (ii)⇒ (iii) follows from
Theorem 3.20.

(iii)⇒ (i): We employ induction on the number of vertices of G0. By Theorem 4.2(A), for each
of the base gain graphs there exists a representation τ : Z2 → Isom(R2, ‖ · ‖∞) and a realisation
p such that G = (G, p, θ, τ) is well-positioned, C2-symmetric and χ0-symmetrically isostatic in
(R2, ‖ · ‖∞), as indicated in Figure 1. (The two induced spanning map graphs GF1,0 and GF2,0

are shown in gray and black colour, respectively.) Since (R2, ‖ · ‖P) is isometrically isomorphic
to (R2, ‖ · ‖∞), there also exists a well-positioned, C2-symmetric and χ0-symmetrically isostatic
realisation for each of the base graphs in (R2, ‖ · ‖P).

Let n ≥ 5 and suppose (i) holds for all gain graphs satisfying (iii) with at most n − 1 vertices.
Let (G0, ψ) have n vertices, and let (G′0, ψ

′) be the penultimate graph in the construction sequence
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of (G0, ψ). By the induction hypothesis, there exists a realisation p′ of the covering graph G′ of
(G′0, ψ

′) in (R2, ‖ · ‖P) so that (G′, p′, θ′, τ) is well-positioned, C2-symmetric and χ0-symmetrically
isostatic in (R2, ‖ · ‖P).

If (G0, ψ) is obtained from (G′0, ψ
′) by a H1a, H1b, or H1c move, then the result follows from

Lemma 4.4. If (G0, ψ) is obtained from (G′0, ψ
′) by a H2a, H2b, H2c, H2d or H2e move, then the

result follows from Lemma 4.5. If (G0, ψ) is obtained from (G′0, ψ
′) by a H3a, H3b, H3c, or H3d

move, then the result follows from Lemma 4.6. Finally, if (G0, ψ) is obtained from (G′0, ψ
′) by a

vertex-to-K4 or vertex splitting move, then the result follows from Lemma 4.8.

Next we establish the χ1-symmetric counterpart to Theorem 4.3. The proof of this result is
much simpler than the proof of Theorem 4.3 since the characterisation of (2, 2, 2)-gain-tight gain
graphs in terms of a recursive construction sequence is significantly less complex than the one for
(2, 2, 0)-gain-tight gain graphs.

Theorem 4.9. Let ‖ · ‖P be a norm on R2 for which P is a quadrilateral, and let (G, θ) be a Z2-
symmetric graph. Further, let (G0, ψ) be the gain graph for (G, θ). The following are equivalent.

(i) There exists a C2-symmetric realisation G = (G, p, θ, τ) which is well-positioned and χ1-
symmetrically isostatic in (R2, ‖ · ‖P);

(ii) (G0, ψ) is (2, 2, 2)-gain tight;

(iii) (G0, ψ) can be constructed from K1 by a sequence of H1a,b moves, H2a,b moves, vertex-to-
K4 moves, and vertex splitting moves.

Proof. (i)⇒ (ii): This follows again from Corollary 2.20.
(ii) ⇒ (iii): The proof proceeds by induction. Since (G0, ψ) is (2, 2, 2)-gain-tight, it has no

loops. If G0 has a vertex [v] of degree 2, then it is clearly admissible (via an inverse H1a or H1b
move). So suppose G0 has no degree 2 vertices. By (2, 2, 2)-gain-tightness, G0 has a vertex [v]
of degree 3 with at least two neighbours. If [v] has exactly two neighbours, then it is admissible
(via an inverse H2b move, see also Lemma 3.10). Thus we may assume that every degree 3 vertex
[v] of G0 has exactly three neighbours. It is easy to see that [v] is admissible (via an inverse H2a
move) unless it is contained in a balanced copy of K4. (See also Lemma 3.9). The vertices of this
K4 cannot induce any additional edges since (G0, ψ) is (2, 2, 2)-gain-tight. Denote this copy of K4

as K. We may apply an inverse vertex-to-K4 move unless there is a vertex [x] < K and edges [x][a]
and [x][b] with equal gains, where [a], [b] ∈ K. By switching, we may assume that both gains
are 1. We may now apply an inverse vertex splitting move, contracting either [x][a] and [x][b],
unless there exist vertices [y] and [z] that are distinct from the vertices of K and [x] so that [y][x]
and [y][a] are edges in (G0, ψ) with the same gain, and [z][x] and [z][b] are edges in (G0, ψ) with
the same gain. By switching, we may again assume that the gains of these edges are all 1. We
continue in this fashion, thereby constructing an increasing chain of subgraphs of (G0, ψ) which
are all (2, 2, 2)-gain tight and whose edges have all gain 1. (Note that at each step a new vertex is
introduced for otherwise (2, 2, 2)-gain-sparsity is violated.) This sequence terminates after finitely
many steps at which point there will be an admissible inverse vertex splitting move.
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(iii)⇒ (i): Using Theorem 4.2(B), this result may be proved completely analogously to Theo-
rem 4.3 (iii)⇒ (i).

5. Concluding remarks

One may be tempted to try to combine Theorems 4.3 and 4.9 to combinatorially characterise
infinitesimal rigidity for half-turn symmetric frameworks. However this seems to be non-trivial.
In particular, given a gain graph which contains a spanning (2, 2, 2)-gain-tight subgraph and a
spanning (2, 2, 0)-gain-tight subgraph it is not clear that a placement exists that preserves both the
colourings needed to apply Theorem 4.2(C).

It is also natural to try to extend Theorems 4.3 and 4.9 to higher-order groups, such as the
cyclic group C4 generated by a 4-fold rotation in the `1- or `∞-plane. In this case, Corollary 2.20
provides necessary gain-sparsity conditions for χ-symmetric infinitesimal rigidity. However, we
are currently lacking analogues of Theorems 4.2(A) and 4.2(B) to prove the sufficiency of these
counts.

There is a second form of vertex splitting, known as the vertex-to-4-cycle move [10, 14],
which one may use instead of vertex splitting to give analogous inductive constructions to The-
orem 3.20 and Theorem 4.9 (ii) ⇔ (iii). In fact, in the case of (2, 2, 0)-gain-tight gain graphs,
this alternative gives a non-trivial simplification to the proof, replacing the maximal balanced tri-
angle sequence considerations with a direct counting argument. However in both the symmetric
and anti-symmetric contexts this construction operation does not seem to be amenable to finding
appropriate rigid placements.

In [15] symmetric rigidity is considered for frameworks in Euclidean space that are restricted to
move on a fixed surface. In particular the matroidal classes of (2, 2, 2), (2, 2, 1) and (2, 2, 0)-gain-
tight gain graphs are the relevant sparsity types for frameworks restricted to an infinite circular
cylinder. Hence our recursive construction of (2, 2, 0)-gain-tight gain graphs may be useful in
establishing an analogue of Theorem 4.3 for the appropriate symmetry group, that is for half-turn
symmetric frameworks on the cylinder with rotation axis perpendicular to the axis of the cylinder.
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