
Late stage combination drug

development for improved

portfolio-level decision-making

Emily Zara Graham

MMath (Hons.), Durham University, 2015

MRes, Lancaster University, 2016

Submitted for the degree of

Doctor of Philosophy

at Lancaster University

October 2019





Abstract

Combination therapies are becoming increasingly used in drug development for

a range of therapeutic areas such as oncology and infectious diseases, providing

potential benefits such as minimising drug resistance and toxicity. Typically, a

pharmaceutical company will have multiple treatments in different stages of

development in their portfolio and the problem of portfolio decision-making

will include decisions such as which studies to initiate and how to prioritise

studies.

This problem is more complex for portfolios of combinations since sets of combi-

nation studies may be related, for example if they have at least one treatment in

common and are used in the same indication. However, in this setting, value can

be gained by sharing information between related combination studies in terms

of improving the treatment effect estimates and improving the portfolio-level

decisions. We discuss the challenges of portfolio decision-making for a portfolio

of combinations and present methodology to assist with this.

One of the key estimates that is used in decision-making regarding a clinical

study is the probability of study success. We present a framework that allows

the study success probabilities of a set of related combination therapies to be

updated based on the outcome of a single combination study. This allows us

to incorporate both direct and indirect data on a combination therapy in the

decision-making process for future studies.

Existing methods for portfolio decision-making do not account for the differences

between single agent and combination drug development. We extend the existing

methodology to consider the relationship between combinations and the effect

that observing certain outcomes may have on the portfolio decisions we make.



This is achieved by updating the study success probabilities throughout the

decision-making process whenever a relevant outcome is observed.



This thesis is dedicated to James.
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Chapter 1
Introduction

1.1 Introduction

There has been a recent rise in popularity of combination therapies, with reports

of over 10000 clinical trials being registered as ongoing in 2017 in the US alone

[1]. Combination therapies combine new molecular entities and existing drugs

with potential benefits including achieving synergy, minimising drug resistance

and reducing side effects.

While this is an exciting advancement in terms of the development of new

treatments, it also brings with it many other benefits, one of which being a new

potential for learning. Due to the nature of combination therapies, it may be

realistic to assume that the performance of similar combinations of drugs in

similar indications is related in some way. This can be seen as a potential for

learning across different combinations.

These benefits, however, do come at the cost of new challenges relating to combi-

nation drug development and the optimal way to conduct studies in a portfolio

of combinations. Typically, a pharmaceutical company will have multiple drugs

undergoing development in their pharmaceutical portfolio, which will be in dif-

ferent stages of development, and other potential studies that they may consider

including in the portfolio.
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In this thesis, we present a framework for sharing information across related

combination studies and build this into a procedure for portfolio-level decision-

making.

1.2 Drug development

A drug development programme is the sequence of tasks that a new drug

must undertake in order to be launched onto the market for use by the target

population. This process can be summarised as a sequence of five parts, as

depicted in Figure 1.1.

The first stage of drug development is drug discovery. This takes place in a

laboratory and involves identifying targets of interest within the body that are

believed to be associated with the indication of interest. Once these targets have

been identified, existing drugs and new molecular entities that are believed to

have beneficial interactions with the targets are tested in in vitro studies to see if

they show potential for benefit [2]. These studies are conducted outside of living

organisms, for example on tissue samples.

The next stage is preclinical development, which includes both in vivo and in

vitro studies. In vivo studies refer to tests that are carried out in living organ-

isms. The main aims of preclinical development are to assess the toxicity of

the treatment and to find an appropriate dosage level. At the end of preclinical

development, a decision is made based on the collected evidence as to whether

or not the treatment should continue to clinical trials, where it will be tested in

humans, and what dosage is safe to consider in these trials [2].

Clinical development is typically made up of three phases that each have a

different aim. In Phase I, the treatment is typically given to a small sample of

healthy volunteers, or patients if the intervention is expected to have adverse
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Drug 
discovery

Preclinical 
development

Clinical 

trials
Approval Launch

Figure 1.1: The different stages of a drug development programme.

effects, such as in oncology. The main aim of Phase I is to assess safety and to

find the safe doses to take forwards to the later phases. This phase often only

lasts several months. Providing that none of the Phase I studies in a development

programme fail, the treatment is taken to Phase II where it will tested in a larger

sample of patients with an aim to look at both safety and efficacy. If there are no

safety concerns and there is evidence of benefit, the drug may proceed to Phase

III. Phase III is much larger and much longer than the other phases, typically

recruiting hundreds, if not thousands, of patients and lasting between one and

four years [2]. The aim of this phase is to confirm efficacy and also to monitor

safety. Phase III trials are often referred to as confirmatory trials. It should be

noted that a particular development programme might not complete all of the

phases of clinical development sequentially, for example a company might skip

Phase II, run a Phase II/III trial or run two Phase III trials simultaneously.

If a drug is successful in all associated clinical trials, then it will be taken to regu-

latory bodies, such as the European Medicines Agency (EMA) or the US Food

and Drug Administration (FDA), for approval. If a drug is granted regulatory

approval, then it can be marketed and launched for use by the target population.

After a new treatment is launched, further studies may be run in order to, for

example, assess its performance in different populations or indications. There

will also be a long-term follow-up with the people who were enrolled in the
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clinical trials to monitor long-term effects that might not have been captured

during the trials and also to monitor any rare side effects of the treatment.

The drug development process takes approximately 10-15 years [2] and costs

hundreds of millions of pounds [3]. Not only is it long and expensive, but it also

involves a high level of uncertainty since a new treatment can fail at any stage,

exceed the allocated budget or take longer than expected. Furthermore, even if

the drug is successfully developed, it might not have the expected impact on the

market due to either a lower benefit than was expected or competition in the

marketplace.

Throughout a drug development programme, there are many decisions to be

made from whether development should continue to how each stage should

be conducted. Decisions that might be considered in a clinical trial include the

most appropriate choice of primary endpoint, for example tumour shrinkage

or progression free survival time, and whether interim analyses should be in-

cluded. Another decision that a company might make during drug development

is the decision to submit the drug for accelerated approval [4]. The accelerated

approval programme allows drugs to be approved earlier when they are for

use in indications with a high unmet medical need or when they will provide

a step change in the treatment of the disease, such as the introduction of im-

munotherapies in cancer treatments. Typically, for a treatment to be considered

for accelerated approval, a significant result will have been observed in the

surrogate endpoint, which is believed to be an indication of overall benefit in the

primary endpoint.

The decisions made throughout a drug development programme are by no

means trivial and the consequences of making suboptimal decisions can include

increasing the likelihood of failure. The success rates and the most common

reasons for clinical trial failure are summarised in Table 1.1. Grignolo and Pre-

torius [5] also discuss the reasons for failure at Phase III and the trends that
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Success rate Reason for failure
Safety Efficacy Strategic Other

Phase I 63.2% - - - -
Phase II 30.7% 22% 59% 16% 3%
Phase III 58.1% 35% 52% 0% 13%

Table 1.1: Success rates in the different phases of drug development [6] and the reasons for drugs
failing to continue to the next stage of development between 2011-2012 [7].

are seen in Phase III failures. Some of the reasons that they identify for failure

include flawed study design, such as insufficient sample size, and flawed data

collection and analysis, such as incorrect assumptions on treatment effect. They

also presented several approaches to help prevent these failures in the future.

In this thesis, we present methodology that can be used to assist decision-making

in a pharmaceutical portfolio since improving the decision-making process can

help to reduce the failure rates observed in clinical trials, especially in Phase

III.

1.3 Combination therapies

One of the motivations for our research is the recent rise in popularity of com-

bination therapies. Combination therapies refer to combinations of drugs that

can contain both existing drugs and new molecular entities (NMEs). Typically, a

combination therapy consists of a backbone treatment and one or more add-on

treatments. There will often be several potential add-on treatments for each

backbone (see Figure 1.2 for an illustration of this). The backbone treatment is

often a well-established drug for which there is already a reasonable amount

of information. The potential add-on treatments, however, will often include

NMEs and external drugs, for which there will be less information available than

for the backbone. In oncology, for example, an existing chemotherapy might be

used as a backbone treatment and NMEs and immunotherapies might be used

as potential add-on treatments to this chemotherapy.
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Chemotherapy 1 NME 1

External 1

Immunotherapy 1

NME 1

NME 2

External 2

+ +
Chemotherapy 1 

+ 

Immunotherapy 1

Figure 1.2: Diagram showing the backbone (blue boxes) and add-on (purple boxes) structure of
six potential combination therapies in an oncology setting.

Combination therapies are becoming increasingly used in a range of therapeutic

areas, but the areas that they are most commonly used in include oncology and

infectious diseases. Glickman and Sawyers [8] compare these two areas and

discuss the way that experiences of combination drug development in one can

help inform decisions in the other.

There can be many different reasons for using a combination therapy over a

single agent. Chou [9] describes the main aims of combination drug development

to be achieving a synergistic effect, minimising drug resistance and reducing

dose and toxicity. This means that combination therapies are often able to achieve

efficacy whilst reducing side effects. This is achieved by combining drugs that

are similar in terms of therapeutic effect but different in terms of toxicity. Doing

this allows the doses of the individual drugs to be lower than if they were to be

used separately [10]. Furthermore, Podolsky and Greene [11] discuss the fact

that combinations might increase effectiveness when they are not able to increase

efficacy due to their potential to make treatment adherence easier. They use

Combivir as an example to highlight this, which reduced the patient pill burden

by a half [11].

Synergy is defined by Chou [9] to be the realisation of an effect that is more than

additive between drugs. Antagonism is the opposite of synergy and is defined

to be a less than additive effect. However, even if the effect of the combination

therapy is greater than the effect of each drug alone, it does not necessarily mean

that it is a synergistic effect as this could just be an additive effect [9]. Therefore,

methods are needed to quantify the synergy.



Chapter 1 8

Two main approaches for exploring the effect of a combination of inhibitors are

discussed in [10]: Loewe additivity [12] and Bliss independence [13]. Inhibitors

aim to reduce the symptoms of an indication by reducing the rate at which the

reactions that cause the disease occur within the body. Loewe additivity assumes

that the inhibitors act similarly whereas Bliss independence assumes that they

act independently. These methods are most commonly used in a preclinical

setting where we are interested in understanding the mode of action, and can

run detailed experiments at many dose levels. In a clinical setting, we generally

ask the much simpler question of whether the combination is much better than

the individual components on their own, which could still technically be additive

but would give the patient a sizeable benefit.

The Loewe additivity method [12] works as follows. Let c′A and c′B denote the con-

centrations of inhibitors A and B respectively that achieve α% target inhibition

separately. Also, let cA and cB denote the concentrations of A and B necessary

when combined to achieve α% target inhibition. We can calculate the combina-

tion index to find the level of interaction between the inhibitors, which is given

in [10] by

I =
cA

c′A
+

cB

c′B
.

Using this equation, antagonism is represented by I > 1, synergy is represented

by I < 1 and if I = 1 then the effect is additive and there is no interaction between

the inhibitors [10].

Using the Bliss independence method [13], we calculate the effect, θC , of the

inhibitor combination given the effects for inhibitors A and B, θA and θB, by

θC = θA × θB.

This takes into account the fact that if inhibitor A has already acted upon a certain

amount of the target then B has less to inhibit [10].
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Foucquier and Guedj [14] provide an overview of the methodology that can

be used to analyse combination effects and split these approaches into effect-

based and dose-effect-based approaches. They define effect-based approaches

to be those that consider the effect of the combination against the effect of the

components and dose-effect-based approaches to be those that also consider

the dose. Under this definition, the Bliss independence method can be classed

as an effect-based approach whereas the combination index arising from the

Loewe additivity method is a dose-effect-based approach. Other effect-based

approaches that are discussed in [14] include combination subthresholding,

highest single agent and response additivity.

Although there is a rich literature regarding synergy, there is little available litera-

ture on decision-making regarding combination therapies. Existing methodology

for single agents can be applied in this setting, but the decisions that these lead to

might not be optimal. This is because of the relationships that are likely to exist

between similar combinations and the way that these relationships would affect

our decision-making. We believe that there is potential to be gained from sharing

information between trials with similar combinations of treatments and using

this to assist decision-making. For example, if a study is run for combination

A+ B in a particular indication, the outcome of this trial might inform our beliefs

about how combination A+C might perform in that same indication, or in an

indication that is linked to C in the same way that B was linked to the original

indication.

Furthermore, combination and single agent drug development have different lo-

gistical constraints and considerations that must be accounted for in any decision-

making process. Woodcock et al. [15] discuss novel combination drug develop-

ment and the complexities of co-development. They note that co-development

increases uncertainty regarding the separate components thus should only be

used in specific situations such as when there are no alternative therapies avail-
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able for the indication. This means that a company will typically need to develop

the individual agents separately to the combination.

In this thesis, we present methodology that allows us to use the relationship

between combination studies to increase learning and assist decision-making.

We use the presented methodology to update the treatment effect estimates

whenever a relevant outcome is observed, which can lead to an improvement in

the accuracy of the treatment effect estimates and improved decision-making in

the portfolio. This will include decisions such as which drugs in the large set of

possible combinations to add to the portfolio and how to organise the studies

within these programmes.

1.4 Clinical trials

In this thesis, our main focus will be on clinical development. Thus, in this

section, we provide background to the design and analysis of clinical trials with

a focus on the later phases.

1.4.1 Outline

In Section 1.2, it was noted that there are three clinical trial phases, each with a

different aim. Studies in each phase will be designed and analysed differently to

accommodate these different aims.

Phase I trials are often referred to as “first-in-human” trials as they are the first

time that the new intervention is given to humans. At this point, the aim is to

assess the safety and find the appropriate dosage of the drug; the design of a

Phase I study will be dependent upon its main aim [16]. Phase I studies usually

recruit a small number of healthy volunteers, unless the treatment is believed
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to be toxic. For example, for oncology drugs, these studies would always use

cancer patients. Dose escalation studies are used to identify the range of safe

doses at Phase I and find the maximum tolerated dose. These studies typically

add individuals to the study sequentially, often in small cohorts, and wait to

observe any side effects before adding the next cohort to the study and deciding

what dose this cohort should receive, or concluding the study. Dose escalation

studies can take on a variety of forms [17][18]. Efficacy might also be considered

at this point but it will not be the primary aim of the study. The sample size is

not usually related to the power of the study unlike in the later phases of clinical

development.

The aims of a Phase II study include assessing the safety and benefit of the drug

in patients and these studies are often referred to as “exploratory” or “proof-

of-concept” studies. Early Phase II studies focus more on dose exploration and

proof of concept whereas late Phase II studies focus more on efficacy [16]. The

design of Phase II studies can vary and ranges from single-arm studies [19] to

multi-arm multi-stage studies [20].

The largest and most expensive studies are in Phase III. These studies aim to

show efficacy and are often called “confirmatory” studies. It is at this stage that

the drug will typically be compared to the current standard of care and the aim

will be to show superiority, but some studies might aim to show non-inferiority

alongside different benefits such as a reduction in side effects [16]. As with the

previous phases, studies in Phase III can take on a range of different designs but

will typically have similar qualities.

1.4.2 Design and analysis

We will now summarise some of the key elements of clinical trial design that will

be relevant in the later chapters of this thesis. Typically, a study will contain two
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arms - an experimental arm and a control arm. Patients will be randomised to

the experimental treatment with allocation ratio R : 1, where R is often equal

to 1. This means that when a patient enters the trial, they have a probability

of R/(R + 1) of being allocated to the experimental group and a probability of

1/(R + 1) of being allocated to the control group. Studies are often double-blind,

which means that both the patient and their doctor do not know which treatment

group they are in. This is done to reduce the various types of bias that can

otherwise be introduced.

A clinical trial will monitor many different things, but the main effect relating

to efficacy that the team is interested in will be referred to as the primary end-

point. This must be selected at the design stage and the choice will feed into

decisions regarding the sample size and the planned duration of the study. The

endpoint can take on many different forms in terms of the type of measure. For

example, progression free survival time is often considered in oncology whereas

a binary outcome of survival is more appropriate in Ebola. Regardless of the

type of response, we need to be able to capture this information in a measure

of treatment effect, which captures the difference between the experimental

and control treatment, for which we will denote the true value by θ. This true

value of the treatment difference is unknown and can only ever be estimated

using relevant data. Examples of measures that can be used for binary data and

survival data are the log-odds ratio and the log-hazard ratio, which are given

respectively by

θ = log
(

pE (1 − pC)

pC (1 − pE )

)
and θ = − log

(
hE (t)
hC (t)

)
,

where px is the success probability in group x and hx (t) is the hazard function

in group x [21]. We use survival data as an illustration here, and in future

illustrations, as our work is motivated by the development of combination

therapies in oncology and survival data are commonly used in this setting. We
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will also consider a real world example in Chapter 3 that uses survival data.

The type of test that will be used in the analysis of a clinical trial must also be

specified during the design stage. Parameters that are needed at this point will

include the significance level, α, the power, 1− β, and the minimally important

difference, δ. The type of test will also need to be specified at this point i.e. one-

sided or two-sided. The null hypothesis for superiority testing is usually chosen

to be H0 : θ = 0.

Two values that can be used to analyse the study data are the efficient score of

the study, Z , and the Fisher information, V . The efficient score is a measure of

benefit of the experimental treatment over control and the Fisher information is

used to quantify the information contained in Z relating to θ [21]. It can also be

shown that Z ∼ N (θV , V) approximately, when θ is small and the sample size is

large [21]. Note that this is not the same measure as the Z-score, which follows

the standard normal distribution.

In a two-sided test, the null hypothesis will be rejected when |Z | ≥ d, where d

is the critical value of the test. If Z ≥ d, then this would signify evidence that

the experimental treatment is superior to the control treatment and the converse

would be true if Z ≤ −d. This means that we require

P (Z ≥ d |θ = 0) = α/2 and P (Z ≥ d |θ = δ) = 1 − β.

From this, we can deduce the critical value of the test and the required Fisher

information to be

d =
Zα/2

(
Zα/2 + Zβ

)
δ

and V =
(

Zα/2 + Zβ
δ

)2

(1.1)

respectively, where Zx = Φ
−1(1 − x) and Φ (·) is the standard normal cumulative

distribution function [21]. The value of V here can be used to find the appropriate



Chapter 1 14

sample size for the study based on approximations of V for different responses.

When θ is the log-hazard ratio, the approximation of these variables for survival

data is given by

V ≈
R

(R + 1)2
e,

where e is the number of survival events observed and the allocation ratio is

R : 1, as defined previously. [21].

The calculation of Z and V given the study data will depend on the type of

response. An overview of the different types of responses and the associated

calculations for Z and V are provided in [21]. For survival data, these are given

by

Z = eC −

k∑
i=1

oiriC

ri
and V =

k∑
i=1

oi (ri − oi) riEriC

(ri − 1) r2
i

where t1, ... tk represent the survival times, oi is the number of survival times

equal to ti, ri is the number of survival times greater than or equal to ti and eC is

the number of events observed in the control arm.

Upon the conclusion of the trial, we are able to calculate Z and V and draw

conclusions about the treatments based on the critical value d and the previously

outlined hypothesis test. Note that we use the actual calculation of V when study

data is available rather than the planned value that was given in Equation (1.1).

1.5 Probability of success

The probability of success (PoS) is one of the measures that is commonly used

to assist decision-making regarding a study or a set of studies. In this section, we

provide details of how the PoS can be calculated and discuss additional aspects

such as updating this estimate and its use in decision-making.
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1.5.1 Methods for calculation

One of the most common approaches for calculating the PoS of a study is linked

to the idea of the assurance or the expected power. This is also referred to in

the literature as the average success probability and the Bayesian predictive

power. Where the power is the probability that a trial will be successful given

a particular value of the measure of treatment difference, the assurance is the

unconditional probability that the trial will be successful. Chuang-Stein [22] and

O’Hagan et al. [23] both discussed this value and defined the PoS to be

∫ ∞

−∞

P
(
study success|θ

)
P (θ |data)dθ

where study success will typically be linked to rejecting the null hypothesis.

In this expression, P (θ |data) is the posterior distribution of the treatment ef-

fect, θ, given some historical data but it could also be set to an informative or

uninformative prior.

In the calculation of the assurance, we are combining frequentist and Bayesian

ideas. The specification of a prior for the treatment effect and the use of this in

calculating the PoS is Bayesian, but it is assumed that the analysis of the trial

will be frequentist and is linked to testing a hypothesis. This is a typical feature

of methods for calculating the probability of study success.

O’Hagan et al. [23] provide several closed form solutions for the assurance. As a

simple example of this, in the case of a two-sided superiority trial with normally

distributed outcomes with known variance,

1 −Φ

(
V−0.5Zα/2 − µ
√

V−1 + σ2

)
(1.2)

is the closed form solution of the probability of rejecting the null hypothesis

and concluding that the experimental treatment is superior to the control. It is
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also noted that, when a closed form solution for the assurance is not available,

Bayesian clinical trial simulation can be used. The outline of this process is given

as follows [23]:

1. Set counter, n, equal to 0.

2. Draw θ∗ from the prior distribution for θ.

3. Draw the test statistic from the distribution based on θ∗.

4. If the test statistic is significant, increase n by 1.

5. Repeat steps 2-4 N times.

6. Find PoS = n/N .

Su [24] presented a method for calculating the success probability of a Phase

III study based on Phase II data that considers both Bayesian and likelihood

approaches. The calculation of the success probability is similar to the assurance,

but the consideration of the component P (θ |data) is different. They include a

user-specified parameter that defines the trade-off between the Bayesian and like-

lihood approaches and are able to consider non-parametric and semi-parametric

settings. Liu [25] noted that previous methods for calculating the assurance con-

sider the uncertainty in θ, but not the uncertainty in the variance. They present

the extended Bayesian expected power to consider this uncertainty in the success

probability calculation, which considers the joint distribution of the treatment

effect and the variance parameter in the assurance calculation. A fully Bayesian

approach to calculating the probability of success was presented by Ibrahim et

al. [26]. This method is more general than the calculation of the assurance, which

can be found as a special case of the approach, and is able to consider covariates

and patient characteristics. Wang et al. [27] present a method for calculating the

probability of programme success and consider the fact that trials within the

same programme are correlated in this calculation.
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1.5.2 Updating

As data accumulates during a trial, or outside of a trial, we may want to update

our estimate of the probability of success. This is discussed by Rufibach et al. [28],

who present an approach that allows both internal and external information to be

used to update the probability of success for a time-to-event endpoint. External

information can include other supporting studies that complete during the trial

of interest and internal information includes the information gained from an

interim analysis. Wang et al. [27] provide a method for updating the probability

of success at an interim analysis for a trial with binary outcomes. They also

discuss how the times at which the interim analyses are planned can affect the

estimate of the probability of success and the uncertainty in this value.

In this thesis, we will build on the existing methodology to consider how we can

use information from related programmes to update the probability of success

of a study.

1.5.3 Combination therapies

Although there is a rich literature on calculating the probability of success of a

study, there is little discussion of doing this for combination studies. Wang et al.

[29], however, do consider a combination study example when describing the

ways that the assurance can be used in the real world.

They present an example where there was data available for the two separate

components of the combination, but not of the combination itself, prior to the

Phase III study. A Bayesian hierarchical model was used separately for the two

different components to collate the historical data and find a posterior distri-

bution for each of the parameters. Then, given the lack of information on the

combination, they defined two different scenarios for how the combination
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would perform - an optimistic one and a pessimistic one. Based on these defini-

tions, they were able to simulate study outcomes under the two scenarios and

find the associated success probabilities.

1.5.4 Decision-making

It was previously mentioned that the probability of success is one of the estimates

that is frequently used to assist decision-making regarding clinical studies. In the

real world, this might simply involve a study team calculating the probability of

success and deciding whether or not the study is worth running. However, there

are also several approaches that specifically consider decision-making and use

the probability of success in this process.

Stallard et al. [30] discuss the use of Phase II data in decision-making regarding a

Phase III study. It is assumed that, if the PoS of Phase III exceeds some predefined

threshold, the Phase III study will be run. They also discuss the way that it can

be implemented for a Phase II study with interim analyses where the study will

be stopped if the PoS falls higher or lower than two critical values. The use

of the probability of success in interim monitoring is also discussed in [31]. A

comparison of interim stopping rules is given for Bayesian predictive, predictive

power and conditional power approaches.

A more general approach for decision-making regarding the running of a study

is provided in [32]. Emphasis is placed upon the importance of using new data

when it emerges and a discussion of the probability of making a correct decision

is provided alongside the probability of making a go decision.

Sabin et al. [33] presented a two-stage method for enhancing end of Phase II

decisions. The first stage involves collating evidence linked to both the treatment

and the indication and using these to address a set of key questions. The second
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stage involves finding the probability of success of Phase III and consists of a

four-step process.

1.5.5 Prior elicitation

One of the perceived difficulties in calculating the assurance is finding an appro-

priate prior distribution since the value of the PoS will rely upon these values.

However, there are methods for prior elicitation that can be used to assist with

this process, such as the SHELF framework [34]. Prior elicitation involves taking

the opinions of experts in the indication or therapy and combining these into a

single probability distribution. Typically, this will be performed with more than

one expert, but it can also be used for a single opinion.

Rufibach et al. [35] provide a discussion of the choice of prior when calculating

the PoS and review some of the recommendations in the literature. They provide

an exploration of different types of prior and provide their own recommenda-

tions for using the PoS. These include considering the density of the power and

considering non-normal priors.

1.6 Portfolio decision-making

Typically, a pharmaceutical company will have several new products in different

stages of development. We call this collection a pharmaceutical portfolio and

within the industry, this is often referred to as the “pipeline.” In this thesis, our

main focus is on clinical development, therefore when we refer to the portfolio,

we are referring to the drugs that are currently undergoing clinical development.

In this section, we outline some of the methods that are used for portfolio

decision-making and provide background to the techniques that are used in

these procedures.
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1.6.1 Existing literature

Portfolio decision-making can cover a range of different decisions from the

programmes to include within the portfolio [36] to the design that these studies

should use [37] to out-licensing [38].

The decisions that are made within one drug development programme will often

have an impact on the other programmes in the portfolio because a company

will have finite resources for which the drugs in the portfolio will be compet-

ing. Therefore, when making decisions regarding the programmes within the

portfolio it is important to take this into account. This is one of the complexities

of portfolio decision-making as the comparison of different programmes and

their value is not always clear. The value of a programme will be linked to many

different things such as the expected revenue, the probability of programme

success and the competition in the marketplace. Consequently, when designing

a method for portfolio decision-making, we need to be able to consider these in

order to make useful comparisons and appropriate decisions.

Existing methods for portfolio decision-making often draw upon optimisation

techniques and simulation models. The two main methods that we will consider

in this thesis both use stochastic programming approaches for portfolio decision-

making. The first method was presented by Rogers et al. [36] and considers the

uncertainty in the value of the programmes in the portfolio. The value of a

programme is calculated using a real options approach and the value is tracked

through time. The decisions that should be made after each study, assuming it is

successful, are given based on the value at the time that the study is concluded.

The method also provides the optimal set of programmes to include subject to

budget constraints. The second method was presented by Colvin and Maravelias

[39][40] and the focus of this approach is on the trial outcomes, rather than the

programme value. The result of the approach is a set of schedules for each trial
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outcome scenario, which can also be presented as a decision tree. These methods

will be discussed in more detail in Chapter 2.

There have been a wide range of methods for pharmaceutical portfolio decision-

making presented in the literature, given the variety of decisions that can be

considered and the different definitions of optimality than can be specified for

each of these decisions. Patel et al. [37] presented an optimisation procedure

that aims to maximise the expected net present value (ENPV) of the portfolio

by finding the optimal designs of each of the Phase III trials in the portfolio. They

also extend the approach to consider the uncertainty in the availability of each of

the drugs at Phase III. This is done using integer programming and stochastic

integer programming. Unlike most of the other approaches in the literature, they

do not consider the probability of study success to be fixed, but dependent on

the design of the study. Blau et al. [41] take a different approach to the portfolio

management problem and use discrete event stochastic simulation alongside

genetic algorithms to find the optimal portfolio and sequence of projects. Unlike

other approaches, they consider the expected positive net present value rather

than the ENPV and use the negative part of the distribution to quantify risk.

Further literature in this area will be discussed in Chapter 2.

1.6.2 Linear programming

The portfolio decision-making methods that we consider in this thesis use math-

ematical programming to find the set of optimal decisions. In this section, we

provide details of linear programming before extending this to integer and non-

linear programming in the next section. For further details, we refer the reader

to [42].

Linear programming is an optimisation tool for finding the set of decisions

that optimise a particular outcome. There are three main components to any
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linear programme (LP): the objective function, the constraints and the decision

variables.

The decision variables are used to represent the different decisions that can

be made and, in a linear programme, these variables are continuous. We will

use x to denote the vector of decision variables. The standard form of a linear

programme includes non-negativity constraints on the decision variables, but

this does not mean that the original variables should be defined such that they

are non-negative as we can convert any linear programming problem into one

of standard form [42]. We do not specify the value of the decision variables, as

the optimal values of these variables will be found as part of the solution to the

linear programme.

The constraint set is used to represent the constraints on the decisions that we

can make and they are expressed in the standard form of a linear programme as

equalities. Note that, again, this does not mean that the original set of constraints

must be equalities as we can convert inequality constraints to equality constraints

using slack variables [42]. We summarise the set of constraints using a matrix,

A, and a vector, b. Then, the constraint set is given by Ax = b. Here, the matrix

A cannot include any of the decision variables, so that the resulting constraints

will be linear. The values of A and b are fixed input parameters.

The objective function links values to the decisions that we make and we can

summarise these values in a vector, c, such that the objective function is given

by cT x, which is also linear. The value of c is also a fixed input parameter. The

standard form of a linear programme maximises this objective function, but if

our original problem was one of minimisation, we could simply multiply the

objective function by minus one.
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The standard form of a linear programme is given by

maximise cT x

subject to Ax = b

x ≥ 0.

Solving a linear programme, for example using the Simplex algorithm, returns

the value of the decision variables in the optimal solution along with the associ-

ated value of the objective function [42]. Optimisation software, such as JuMP

[43] in Julia [44], can also be used to model and solve linear programmes.

1.6.3 Non-linear and integer programming

A non-linear programme (NLP) is one that does not require the objective func-

tion or the constraints to be linear, an integer programme (IP) contains only

integer decision variables and a mixed integer linear programme (MILP) con-

tains both continuous and integer decision variables. The latter two types of

programme will be considered in the later chapters of this thesis.

We cannot solve these different types of programmes using the same techniques

as can be used for linear programmes. In a linear programme, the set of values

for the decision variables that obey the constraint set is called the feasible region

and this will be a convex set [42]. The optimal solution, if it exists, will then be

at one of the corner points of the feasible region [42]. However, for a NLP the

feasible region might not be convex and, even if it is, the above property of the

optimal solution will not necessarily hold [42]. In an IP or a MILP, if we found

the feasible region in the same way as for a LP, this would assume that all of

the variables are continuous, which is not the case. Thus, if we tried to find the

solution of an IP or MILP using the same approach as for a LP, this might result
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in non-integer values of the decision variables at the optimal solution. Hence,

different techniques will be needed to find the optimal solution for these types

of programmes. It should be noted that, as for linear programmes, these types of

programmes can be modelled and solved using optimisation software such as

JuMP [43] in Julia [44].

1.6.4 Knapsack problem

The knapsack problem is one of the most famous types of integer programme.

This problem contains only binary decision variables and a single constraint

[42]. This type of programme is referred to as the knapsack problem as it can

be thought of as the problem of packing a knapsack such that the value of the

items packed is maximised. In this problem, we have n different items that we

would like to pack in the knapsack and we must decide which ones to pack,

assuming that we cannot pack them all. Hence, the decision variables, x, will be

binary variables where xi = 1 will correspond to the decision to pack item i in

the knapsack.

Since our aim is to maximise the total value of the items packed, each item must

be assigned a value in advance. We will denote the vector of values by c. We

assume that the knapsack has a weight capacity, b, and that each item has an

associated weight. We will use a to denote the vector of weights.

The integer programme for the knapsack problem is then given below.

maximise cT x

subject to aT x ≤ b

xi ∈ {0, 1} ∀i ∈ 1, ..., n



Chapter 1 25

The knapsack problem has been extended in many different ways, for example it

has been extended to consider multiple dimensions [45] and quadratic objective

functions [46]. This makes it a very useful problem and it can be applied to many

different settings such as online advertising [47] and the cutting stock problem

[48], which aims to find the cutting pattern of a material that reduces waste. In

Chapter 4, we will provide an example of how the knapsack problem can be used

in the setting of scheduling clinical studies in a portfolio, which was originally

presented in [49].

1.6.5 Stochastic programming

Stochastic programming is the main focus of Chapter 2 and so we will limit this

section to a basic outline of the topic.

In the types of mathematical programme discussed previously, there was no

uncertainty considered. However, in the real world, and indeed in the problem

of portfolio decision-making, uncertainty plays an important role. In order to

account for the uncertainty that we may have regarding outcomes or parameters

in a mathematical programme, we can use stochastic programming.

A multi-stage stochastic programme (MSSP) considers the fact that uncertainty

might be revealed at different points, or stages, in the planning horizon and

takes this into account when finding the set of optimal decisions. At each stage,

decisions are made based on the current state of events, whilst also accounting

for the possible future outcomes. Then, dependent on the uncertainty that is

revealed at the next stage, we are able to take recourse action to account for the

effect of the uncertain event.

Scenario based stochastic programming breaks down the uncertainty into a

set of scenarios that summarise all of the different potential outcomes. These
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scenarios and their associated probabilities are taken into account when finding

the optimal decisions.

Further details on stochastic programming, specifically in the context of pharma-

ceutical portfolio decision-making, will be given in Chapter 2, where we provide

a detailed comparison of the two main methods of interest.

1.7 Thesis outline

This thesis will discuss methods for portfolio decision-making and extend ex-

isting methodology to consider combination therapies. In Chapter 2, we will

provide a critical discussion of two existing methods for portfolio management

that draw upon stochastic programming techniques. We conclude the chapter

by making a recommendation of the most appropriate method for a portfolio of

combination therapies and briefly discuss how this method will be extended.

The probability of study success and its use in decision-making is discussed in

Chapter 3. We discuss the potential to learn across related combination studies

and present a method that allows the probability of success of a study to be

updated based on related study data.

In Chapter 4, this method is incorporated into a heuristic for one of the portfolio

management approaches from Chapter 2. This allows the results of combination

studies to be accounted for in the decision-making process for related studies,

which previous methods were not able to achieve. This novel approach for

decision-making in portfolios of combinations is compared to existing portfolio

management techniques and further extensions are presented.

The thesis is concluded with a summary of the main contributions along with

the limitations of the work and potential areas for further research.
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Chapter 2
A comparison of stochastic

programming methods for

portfolio-level decision-making

2.1 Introduction

It was noted in Chapter 1 that the drug development process is long, expensive

and contains a high level of uncertainty. The biggest source of uncertainty comes

from the fact that the outcomes of the clinical studies are unknown. Supposing a

novel treatment does perform well in all of its associated studies and is approved

and then launched, it will also encounter uncertainty in the revenue that it

will generate and the impact that it will have due to the many external factors

that affect these outcomes, such as competitors in the marketplace and demand

[50].

Typically, a pharmaceutical company will have several products undergoing

clinical development within their portfolio including new products and exist-

ing products that are being tested in a different indication. One challenge that

arises when we consider portfolios rather than individual drug development

programmes comes from the fact that the decisions made within one drug de-

velopment programme are likely to have an effect on the other programmes in
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the portfolio. This is because a pharmaceutical company will have a finite level

of resources and budget for which the drugs in the portfolio compete. Conse-

quently, within a pharmaceutical portfolio the decisions will include selecting

the studies that should be prioritised, considering when to either abandon or

defer development for certain drugs given the current state of the portfolio and

other logistic decisions such as scheduling and budget/resource allocation.

One of the biggest challenges within drug development and portfolio manage-

ment is the previously mentioned stochasticity of the underlying process. While

a pharmaceutical company will make sure that care is taken in ensuring that the

drug they are developing will be beneficial to both the company and the target

patient population, the true performance of a drug is an unknown parameter

and can only ever be estimated given relevant data. Therefore, ensuring that

portfolio decisions are well informed and consider the associated uncertainties

in each stage of development is of high importance. This will allow resources to

be allocated to where they will have the highest potential for benefit, especially

when this is considered alongside the expected costs and potential revenue in

comparison with the other drugs in the portfolio.

Several methods have been presented in the literature for the management of a

pharmaceutical portfolio in terms of selecting which studies should be conducted.

These methods typically employ optimisation techniques but draw upon a range

of different areas and often have different focuses.

Schmidt and Grossman [51] presented a model for scheduling non-sequential

testing tasks with an aim to maximise the expected net present value and pro-

vided several reformulations that assist in solving the model and focus on differ-

ent aspects of the problem. Rotstein et al. [52] presented a two-stage stochastic

programme that also aims to maximise the expected net present value of the

portfolio. This model considers decisions such as capacity investments, product

selection and resource allocation in the first stage and capacity adjustments in
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the second stage. Blau et al. [41] model drug development programmes using

probabilistic network models. Bubble charts are used to find a prioritisation

scheme for the drugs that is then used as a starting point for the genetic algo-

rithm based search. The search takes into account interdependencies between

drugs and resource constraints. The aim of the method is to find the solution

that maximises the expected net present value for a given level of risk. Varma

et al. [53] presented a method that combines stochastic simulation and mixed-

integer linear programming in order to maximise the expected net present value

of the portfolio while also evaluating different strategies on the pipeline. Sun-

daramoorthy et al. [54] presented a multi-scenario multi-period mixed-integer

linear programme that aims to maximise the expected net present value of the

portfolio. The decisions considered in the formulation include things such as

building/expanding facilities, capacity decisions, production levels and storage

decisions but the approach considers no resource constraints during product

development.

In this chapter, we will focus on two approaches that are of particular interest

because they provide models that capture the core aspects of pharmaceutical port-

folio management. These approaches focus on the process of decision-making

when we are considering multiple drug development programmes and consider

how we might compare different programmes that are in different stages of

development rather than focusing on different aspects of production. They also

provide clear results and information on the decisions that should be made to

help the decision maker achieve their goal. These are the reasons why we will

limit our attention to these approaches.

Both of the methods that we will discuss draw upon stochastic programming

techniques and formulate the problem using mixed integer linear programmes.

Stochastic programming is beneficial in the setting of pharmaceutical portfolio

management due to the inherent stochastic nature of the process. Stochastic
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programming allows us to model the uncertainty of the process and let this

contribute to the decisions that are made. Furthermore, it allows us to consider

what the optimal decisions might be based on different outcomes of the uncertain

process. This will then allow decision makers to consider the impact of certain

decisions and to compare different sets of decisions in terms of the costs incurred

and potential benefits.

In Section 2.2, we will describe the two approaches that are the main interest

of this chapter. We will highlight that, while both use similar methodology, the

focus of the approaches is actually quite different. The first approach [36] draws

upon real option valuation from the financial setting and the focus of this ap-

proach is the stochasticity in the value of the drug development programmes.

The second approach [39][40] is similar to the formulation of the resource con-

strained project scheduling problem and the stochasticity considered here is in

the uncertainty of the trial outcomes.

2.2 Stochastic programming methods

In this section, we will review two portfolio management approaches that are

based on stochastic programming and formulate the decision-making process as

a mixed integer linear programme (MILP). We will then provide a comparison

and critical discussion of the implementation of these approaches in the next

section.

The methods that we will review in this section were presented by Rogers et al.

[36] and Colvin and Maravelias [39]. Both methods model the decision-making

process as scenario-based multi-stage stochastic programmes. In a scenario-

based multi-stage stochastic programme, the scenarios correspond to realisations

of the vector of random variables and the stages correspond to the times at
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which some uncertainty is resolved. The two approaches that we will discuss

consider different types of uncertainty; hence, the scenarios and the stages will be

different in each approach. Both methods consider the pharmaceutical planning

horizon and the potential decisions that can be made in the planning horizon

(e.g. continue or abandon development at each stage) and when the programme

is solved, the optimal set of decisions is returned along with the value of the

optimal solution.

Stochastic programming is beneficial when we are modelling a process that

involves randomness as it allows us to take into account the uncertainty in

the underlying process and considers the recourse action that should be taken

given different observations of the random variable. The recourse action is the

decision that should be made in order to compensate for the effect of what has

just been observed. The recourse action relating to each uncertain observation

will be contained in the solution to the stochastic programme. For example, if

the observation was that the value of the drug dropped significantly over the

most recent stage then the recourse action might be to abandon development.

Alternatively, if the observation was that a study failed in the sense that the drug

was shown to lack efficacy or be harmful then the recourse action might be to

allocate resources to the development of a different drug.

Stochastic programming is able to consider the different potential outcomes of the

uncertain component when finding the best set of decisions overall. For example,

let us consider the problem of scheduling studies with uncertain outcomes. A

stochastic programme would consider all of the potential combinations of study

outcomes and return the set of initial studies to run along with those that should

be run in the event of the different potential study outcomes. We could represent

this using a set of Gantt charts, one for each trial outcome scenario, or using a

decision tree.

If we do not want to use a stochastic programme, we could instead consider
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the problem in a deterministic setting using expectations. For example, in the

scheduling problem, we could calculate the expected resource requirements and

expected revenues using the probability of trial success. We could use these to

build a deterministic programme that does not consider the study outcomes. This

deterministic model will assume that we are able to run all studies, regardless

of the outcome of a preceding study. Solving the programme would return a

single schedule that maximises the expected revenue subject to constraints on

the expected resource requirements under the assumption that we are able to

run everything. If we do this, then we would need to build a new programme

after we observe a study outcome to reflect the new information gained and

solve this programme for the next set of decisions.

A deterministic model is not able to consider the different possible outcomes of

the stochastic element, or the effect that these will have on the optimal decisions.

Therefore, the recourse action that is considered in a stochastic programme is

neglected when we model a stochastic problem deterministically. It is likely that

the solution found using this approach would be suboptimal compared to the

solution that is found when it is modelled using stochastic programming [39].

When we consider the problem deterministically, it cannot take into account the

fact that it may be beneficial to wait to observe certain outcomes before making

some decisions. A stochastic programme, however, is able to account for future

outcomes and decisions when finding the optimal decisions.

Colvin and Maravelias [39] provide a comparison between using stochastic

and deterministic models for a small portfolio management problem. The same

information is used in both of the models, but the deterministic model uses

the study success probabilities, resource requirements and revenues to find the

expected resource requirements and revenues. When solved, the deterministic

approach selects to run two studies simultaneously for which the future studies

cannot be run together due to resource constraints. The stochastic method only
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Nomenclature
I the set of all drugs under consideration
i the index used to denote a specific drug in the set I
Ji the set of all studies remaining for drug i
j the index used to denote a specific study
(i, j) the notation denoting the jth ordered study for drug i
Ni j the number of value scenarios at the beginning of (i, j)
ki j the index used to denote a particular value scenario at the

beginning of study j
S the set of all possible trial outcome scenarios
s the index used to denote a particular trial outcome scenario in

the set S
T the set of all time points considered in the planning horizon
t the index to denote a specific time point in the planning horizon
V0i the present value of drug i at t = 0
ci j the cost of study (i, j)
φi j the probability of success of study (i, j)
τi j the duration of study (i, j)
ξi the market volatility of drug i
γD

i the loss per time period due to shorter active patent life of drug i
γL

i the loss per time period due to smaller market share of drug i
Bt the available budget at time t
r the risk free interest rate

Table 2.1: Notation used in the ROV and PS approaches.

chooses to run one of these studies and then waits until the study has been

completed in order to make the decision for whether to run the second study or

continue development of the first. This leads to a higher expected net present

value of the solution.

2.2.1 Real option valuation (ROV) approach

Rogers et al. [36] noted that the sequential nature of the investments made for

each study in a drug development programme are comparable to a series of call

options. A call option is the right but not the obligation to buy an asset by a

given future date for a specified price [55].

Real options are similar to financial options but, instead of the asset of interest
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being a financial asset, it is a real, non-financial asset. This means that, rather

than having the right to buy the underlying asset by a future date, we instead

have the right, but not the obligation, to take an action on the asset by a future

date where the action could be to continue development, for example [55].

When a pharmaceutical company invests in the current stage of a drug devel-

opment programme this in turn gives them the option to invest in later stages,

should the current stage be successful. The asset in this setting is the present

value of the future cash flows of the product should it be commercialised. The

cost of buying the real option is the cost of the current study and the prede-

termined price of the asset is the cost of future studies [36]. For example, after

investing in a Phase I study, we have the chance to invest in a Phase II study

and potentially a Phase III study if Phase I was successful enough to be carried

forwards.

Drawing these parallels between real options and drug development programmes

allows us to use methods for real option valuation to assign values to each of

the drug development programmes [36]. The real option value of each of the

drug development programmes, as presented in [36], takes into account many

different aspects that affect the value of a development programme including the

uncertainty in the trial outcomes, the potential market movements throughout

the development process and the potential to abandon development.

After each of the drugs within the portfolio have been assigned a real option

value (ROV), we will have an ordering of the most attractive programmes to

run where the programme with the highest ROV is the most attractive and the

programme with the lowest ROV is the least attractive. However, the pharmaceu-

tical portfolio management problem is a real world problem with finite resources.

Therefore resource constraints must also be included in the decision-making

process. Hence, the selected portfolio will not always contain the most attractive

programmes if they do not satisfy the constraints of the model.
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In order to find the real option value of the drug development programmes,

Rogers et al. [36] use a quadranomial pricing approach. This approach consid-

ers the market movements at discrete time intervals and assigns probabilities

to the movement being either upward or downward. These movements corre-

spond to the value of the drug increasing or decreasing, respectively. The market

movements are represented by a multiplier that is calculated using the standard

deviation of the value of drug i, ξi, which represents the beliefs that the team has

about the volatility of the value of the drug in the marketplace. This value can

be predicted by looking at historical data for similar products. The multipliers

for upward and downward market movements are then given in [36] to be

ui = exp
(
ξi
√
∆T

)
and di = 1/ui (2.1)

respectively, where ∆T is the discrete time interval that the market movements

are considered over. These potential movements over each time step, ui and di,

will be treated as constant through time. That is, the multiplier used to calculate

the value after the market movement will not depend on where we are in the

planning horizon.

At the end of each study, (i, j), there will be a set of possible values for the

drug based on the different combinations of upward and downward market

movements over the length of the study. For example, if we consider a study that

lasts for two time intervals then there will be three possible values of the drug

at the end of the study corresponding to: two downward market movements,

one downward and one upward market movement or two upward market

movements.

We will refer to these possible final values as the value scenarios and these are

the scenarios that make up the scenario-based multi-stage stochastic programme

presented in [36]. We will denote the value scenario at the end of study (i, j) by

ki j+1 where the set of all value scenarios at the end of study (i, j), or equivalently
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Figure 2.1: Diagram showing a potential path of market movements as considered in the discrete
pricing approach [36].

at the beginning of study (i, j + 1), is given by
{
1, 2, ..., Ni j+1

}
. Using this notation,

ki j = 1 will correspond to the worst value scenario (the scenario with the lowest

value) and ki j = Ni j will correspond to the best value scenario (the scenario with

the highest value) at the beginning of study (i, j). At the beginning of the first

study for drug i in the planning horizon, we will only have one value scenario,

Ni1 = 1, as we have a fixed estimate of the present value of the product at the

initial time point.

An example of potential market movements can be seen in Figure 2.1. In the

diagram in Figure 2.1, we have Ni2 = 3 where ki2 = 1 represents the scenario

with two downward market movements over the course of the study and final

value d2V0 and ki2 = 3 represents the scenario with two upward movements

over the study and final value u2V0. A possible path is highlighted, which leads

to scenario ki2 = 2 and consists of an upward market movement followed by a

downward market movement resulting in a final value of V0.

The ROV approach does not only consider the market movements but also the

probability of study success, φi j , and the potential to either continue or abandon

development dependent on what is observed. Note that, in this setting, when

we refer to study success we are referring to the situation where the drug may

continue to further stages of development after the study in question is con-
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cluded. Also, this success probability is conditional on the previous studies being

successful. There are many different approaches for calculating the probability

of study success, which were discussed in Chapter 1, and the ROV approach

does not require a particular definition or method of calculation for this input

parameter, but we do recommend that the same method of calculation is used

across the different drug development programmes for comparability. This suc-

cess probability is included in the calculation of the ROV of the drug, which is

given below.

Under the discrete pricing approach for real options, the value of drug i at the

beginning of study j in value scenario ki j is given by

Mi j ki j = max
−ci j +

φi j
∑Ni,j+1

ki j+1=1 piki j ki j+1 Mi, j+1,ki j+1

(1 + r∆T)τi j/∆T
, 0

 (2.2)

where, for drug i and study j, piki j ki j+1 is the probability of moving from scenario

ki j to ki j+1 during study j and ∆T is the length of the time interval that we

consider the market movements over [36]. Then, as given in Table 2.1, τi j is the

study duration, ci j is the study cost and φi j is the study success probability. We

could rescale this by setting ∆T = 1 and adjusting the study durations accordingly.

However, we will not rescale in order to provide commentary on the original

approach and compare it to the PS approach.

This is a recursive formula for which we begin at the expected reward received

during launch. The reward received during launch in each scenario is given by

Mi,|Ji |+1,ki |Ji |+1 = u
ki |Ji |+1−1
i d

Ni, |Ji |+1−ki |Ji |+1

i V0i. (2.3)

We can then iteratively work backwards from this reward to find the values

at the beginning of each study in each value scenario for drug development

programme i.
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Let us consider a simple example of a single drug with a single study with

V01 = 50, c11 = 10, φ11 = 0.8, ξ1 = 0.6, τ11 = 1 and r = 0.05. We will consider

two market movements per time step, ∆T = 1/2. The number of value scenarios

at the end of the study will be given by N2 = 3, and at the beginning we have

N1 = 1. This is the same setting as was considered in Figure 2.1. We use the values

associated with the final scenarios to find the values M12k12 , as in Equation (2.3).

This gives

k12 = 1 : M121 = u1−1d3−1V0 = 21.4

k12 = 2 : M122 = u2−1d3−2V0 = 50

k12 = 3 : M123 = u3−1d3−3V0 = 116.8

where u = 1.53 and d = 0.65, to two decimal places, using Equation (2.1). The

transition probabilities in this example are given by p111 = 0.33, p112 = 0.49 and

p113 = 0.18. We will not go through the details of the transition probabilities here,

however, and refer the reader to [36] for the full details. We can find the value of

M111 using Equation (2.2).

M111 = max
{
−10 +

0.8 [0.33 × 21.4 + 0.49 × 50 + 0.18 × 0.18]

(1 + 0.05 × 0.5)1/0.5
, 0

}
= 30.02

The form of Mi j ki j given in Equation (2.2) does not take into account the fact that

we may choose to abandon development due to limited resources, for example,

and then the value of the drug would be equal to zero, as it cannot add any value

to the portfolio if it is not a part of the portfolio. Therefore the calculation of

Mi j ki j must be reformulated to include the continue/abandon decision variable

Yi j ki j that is equal to one when study (i, j) is continued in scenario ki j and zero

otherwise.

The objective function of this programme, which will be defined later in the

section, is to maximise the overall value of the portfolio. Hence, if Mi j ki j dropped
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below zero then Yi j ki j would be set equal to zero, as it would not be profitable to

continue with the study. Therefore, we can write the reformulation as

Mi j ki j =

−ci j +
φi j

∑Ni,j+1

ki j+1=1 piki j ki j+1 Mi, j+1,ki j+1

(1 + r∆T)τi j/∆T

 ×Yi j ki j . (2.4)

This reformulation satisfies Equation (2.2) whilst also allowing for abandon

decisions, Yi j ki j = 0, which can be related to limited resources.

In our simple example, the value of the drug at the beginning of the study was

given by M111 = 30.02. Since this value is positive and we only considered one

drug in the example, we would expect to select to run this study, which would

correspond to Y111 = 1. However, if the available budget was less than the cost

of the study, c11 = 10, we would not be able to run the study. This would lead

to Y111 = 0 and, from the reformulation given in Equation (2.4), we would have

M111 = 0 as we have not been able to run the study and therefore it has not added

any value to the portfolio.

When Mi11 > 0, the value of Mi11 is equal to the ROV of drug i as there is only one

value scenario, ki1 = 1, at the starting point in the planning horizon, j = 1. When

Mi11 = 0 in the optimal solution this means that drug i has not been selected as

part of the optimal portfolio.

The calculation of the values of Mi j ki j is core to both the decision-making process

and the model formulation of the ROV approach. The uncertainty modelled in

this approach is in the value of the drug and the values calculated above will

be the values that we want to maximise in the decision-making process. For

example, if M111 > M211 > 0 this means that drug i = 1 is preferable to drug

i = 2 as drug i = 1 has a higher ROV, which is given by Mi11. Furthermore, the

objective value of the optimisation will be to maximise the sum of Mi11. This is

because the drugs with the highest values of Mi11 are deemed the most attractive
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under this approach and hence our aim will be to select the drugs that lead to

the maximal value of
∑

i Mi11 subject to practical constraints.

The formulation of the decision-making process is presented in [36] as a mixed

integer linear programme, which means that the objective function and the

constraints of the model are linear in terms of the variables. The variables for this

formulation are the values, Mi j ki j , and the continue/abandon binary decision

variables, Yi j ki j ; the values of these variables in the optimal solution are found by

solving the MILP.

This means that the above formula for Mi j ki j should be added as a constraint to

the MILP so that the values can be found by solving the MILP. However, the

form of this constraint as given above is not linear in terms of the variables,

Mi j ki j and Yi j ki j . Therefore, in order to include this in the MILP, a reformulation is

required to linearise this constraint. This reformulation requires upper bounds

on the values of Mi j ki j to be found by solving a separate LP and adding these

upper bounds as inputs to the final MILP in order to find the optimal solution.

For full details of the linearisation, see Appendix A.1.

The objective function for this formulation, as mentioned previously, is given by

maximising the real option value (ROV) of the portfolio and can be written as

maximise ROV =
∑

i
Mi1ki1 .

This is subject to constraints including: the calculation of the values Mi j ki j ; drug

precedence constraints to ensure that future studies are not selected when a

previous study was abandoned; value monotonicity constraints to represent the

fact that if an abandon decision is made in a particular value scenario then the

same decision must be made for all worse value scenarios; investment constraints

to ensure that the expected budget required at a particular time point, t, does
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not exceed the available budget, Bt . For a full model formulation, see Appendix

A.1.

The investment constraints consider the expected budget required at each time

point, t, and assume that each study begins as soon as possible and the cost of a

study is incurred at the commencement of the study. These constraints are given

by ∑
i, j

Ni j∑
ki j=1

piki j−1ki jci jYi j ki jwi jt ≤ Bt ∀t

where wi jt is an indicator for if study (i, j) starts at time t. Here, the expectation

is taken over the different value scenarios since the market value of the drug

is the uncertainty that is modelled in this approach. The probability of study

success, φi j , is not used directly in calculating the expected budget required,

but it is included in the calculation of the values Mi j ki j . These values affect the

continue/abandon decisions, Yi j ki j , which are included in the budget constraint.

If the value of Mi j ki j dropped below zero, for example due to low success prob-

abilities, then Yi j ki j would be set to zero and this would reduce the expected

budget required at the time that study (i, j) is initiated.

Solving the resulting mixed integer linear programme returns the set of values,

Mi j ki j , and the continue/abandon decisions, Yi j ki j , in the optimal solution. In the

ROV approach, each drug development programme can be thought of as a series

of continue/abandon decisions that are dependent on the value scenario of the

programme at a particular time point. This can be represented by a diagram such

as the one seen in Figure 2.2.

The diagram in Figure 2.2 shows the decisions that should be made after each

phase in a single drug development programme, assuming that the phase was

successful, based on the value of the programme at that point. For example, at

the end of Phase I, if the trial was successful, the decision should be to continue

no matter what the value of the programme is at this point. At the end of Phase II,
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𝑉0

Phase I – 1 year Phase II – 2 years Phase III – 2 years

- Continue decision
- Abandon decision
- Final value scenario 

Figure 2.2: Diagram showing the continue/abandon decisions dependent on the value scenario
at the end of Phases I and II for an example drug development programme.

if it is observed that the value of the programme is less than or equal to d8V0 then

the team should abandon development, whereas if the value of the programme

at this point is greater than d8V0 then the team should continue development if

Phase II is successful.

Note that no scheduling is considered in this approach; the decision points are

at the completion of each of the studies hence the next study is either started

as soon as possible or not at all. This is because the method does not model the

study outcomes; it models the uncertainty in the market value. In addition, if

scheduling was considered and studies were allowed to be delayed then this

would affect the ROV of the drugs in the portfolio. The focus of this approach

is on portfolio selection rather than portfolio scheduling. The fact that a study

may not be successful is considered by including the study success probabilities

in the calculation of the values of Mi j ki j , which also affects the expected budget

required. The full details of this formulation can be found in Appendix A.1.

An alternative formulation for this approach was presented by Lo Nigro et al.

[56], which uses a continuous pricing approach to find the ROV of each of the

drug development programmes rather than the binomial pricing approach. This

reduces the size of the formulation in terms of the number of variables and

number of constraints and decreases the computational time required to find an
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optimal solution.

Lo Nigro et al. [56] also presented two extensions to the model: reinvestment

of attained profits in the future and joint development with another partner

company. However, this approach does not use stochastic programming, which

means that it does not consider the recourse action that should be taken under

different value scenarios; it simply selects the programmes to include at the

initial time point.

2.2.2 Project scheduling (PS) approach

A second stochastic programming method was presented by Colvin and Mar-

avelias [39][40] that compares the problem to the stochastic version of the re-

source constrained project scheduling problem. Hence, this approach considers

the scheduling of the tasks, unlike the previous approach. In this approach, we

consider a set of projects that correspond to drug development programmes.

Each of these projects is made up of a series of tasks, which correspond to the

clinical studies within the programme. In order to complete a project, all asso-

ciated tasks must be completed successfully. In the setting of a pharmaceutical

portfolio, this corresponds to a set of drug development programmes containing

studies that must be successfully completed in order to complete the programme.

Unlike the ROV approach, which considers the value of the programmes to be

stochastic, the stochasticity that is considered here is in the trial outcomes. The

value of the programme, if successful, is not considered to be stochastic and is a

linearly decreasing function of time in this approach.

Colvin and Maravelias [40] note that previous stochastic programming methods

for resource allocation problems treated the timing of the tasks as fixed, as was

seen in Section 2.2.1 when each trial was considered to start as early as possible

and no later. The case that is considered in the PS approach treats both the
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outcomes of the developmental tasks and the timing at which these outcomes are

observed as uncertain. This is because the scheduling of the tasks is dependent

on what is observed and the timings of the observations are dependent on

the schedule. It is further noted in [40] that this type of stochastic programme

is difficult to solve and hence most approaches use the repeated solution of

deterministic models rather than solving the full stochastic programme. Since

this does not allow for the consideration of the “wait and see” approach this may

lead to optimal deterministic solutions that are in fact suboptimal compared to

the stochastic solution.

The problem is modelled in [39] as a scenario-based multi-stage stochastic pro-

gramme and formulated using a mixed integer linear programme, which requires

similar information to that in the ROV approach. In this setting, however, the

scenarios correspond to the different combinations of trial outcomes rather than

the value of the drug development programmes.

Let us consider the simple case where there is a series of studies that must be com-

pleted sequentially and failure in a study means that no further studies can be

run. Then we can represent the outcome of each drug development programme

by the number of successful studies and hence each scenario will correspond to

the number of successful studies in each drug development programme. Hence

the number of scenarios will be given by

|S | =
∏
i∈I

(|Ji | + 1) (2.5)

where Ji is the set of studies of drug i. For example, if we consider a portfolio

containing three drugs, |I | = 3, with the number of remaining studies being

given by |J1 | = 3 and |J2 | = |J3 | = 2 then the number of scenarios will be given

by |S | = 4 × 3 × 3 = 36 and the set of scenarios can be denoted by

S = {(0, 0, 0) , (0, 0, 1) , (0, 0, 2) , · · · , (3, 2, 1) , (3, 2, 2)}



Chapter 2 46

where the ith element of each scenario, s ∈ S, gives the number of successful

studies for drug i in scenario s.

We can find the probability of each scenario, p (s), using the study success proba-

bilities, φi j . If we consider the scenario s = (0, 0, 2) from the above example, then

the probability of this scenario would be given by

p (s) = (1 − φ11) × (1 − φ21) × φ31φ32.

The study success probabilities were also a required input parameter for the

ROV approach and, as in the ROV approach, there are no assumptions on the

modelling technique used to calculate these parameters but we would again

recommend using the same approach across different drug development pro-

grammes to avoid misleading results.

The decision variable in this approach is given by Xi jts, which is equal to one

when study (i, j) is chosen to start at time t, where t = 1, . . . , |T |, in scenario s,

where s ∈ S. Note that, in this approach, the decision variable is also dependent

on time due to the fact that this formulation considers scheduling. The model

also requires variables that track when a study is completed and when a study

is able to start. These variables will be equal to either zero or one, but they do

not need to be specified as binary variables since they are calculated using the

binary decision variable, Xi jts, thus are naturally constrained to be zero or one.

This is what makes the programme mixed integer rather than integer.

The constraints of this formulation are largely similar to those in the ROV ap-

proach: each trial can be performed at most once; resource requirements at each

time point must not exceed limits (note that budget can be considered as a

resource in this approach if required); studies must be completed in the cor-

rect order; a study must not be performed if a previous study has failed. The

resource/budget constraints in this approach are quite different, however, to
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Number of drugs in portfolio 3 4 5
Non-anticipativity constraints 41472 294912 1843200
Other constraints 15024 79104 392448
Variables 14080 74752 372736

Table 2.2: Number of constraints and variables in the PS approach for example portfolios
containing 3, 4 and 5 drugs each with |Ji | = 3 and |T | = 8.

their alternatives in the ROV approach. Firstly, multiple resources, r ∈ R, can be

considered in this approach, rather than just the budget and λmax
r represents the

total resource available for type r at each time point. The exact resources required

are used, as opposed to the expected resources required, since the constraints are

considered in each individual trial outcome scenario. In addition, this approach

typically considers resources to be required throughout the study, rather than be-

ing incurred at the beginning of the study. This, however, can easily be modified

to incur these costs at the beginning of the study, as in the ROV approach, which

we will do in the next section to make a fair comparison of the approaches.

The main difference in the constraint set from the ROV approach is the addition

of non-anticipativity constraints (NACs). In this approach, the scenarios corre-

spond to the study outcomes. Since the decision variables are dependent on the

scenarios, we must ensure that the stochastic programme does not exploit the

scenario information before the corresponding uncertainty has been resolved - it

must not anticipate future outcomes. Including non-anticipativity constraints

vastly increases the scale of the problem, as can be seen in Table 2.2. Therefore,

some possible model reductions were presented in [39] and [57] that consider,

for example, the structure of the problem and the fact that expressing certain

subsets of NACs ensures that all NACs are satisfied.

The objective function for the PS approach maximises the expected net present

value (ENPV) and is given by

maximise ENPV =
∑

s

p(s) {Rvs + FRvs −Csts}
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where: Rvs is the overall total revenue generated in scenario s; FRvs is the future

revenue in scenario s supposing ongoing drug development programmes are

completed; Csts is the total development cost in scenario s. These values are

functions that are dependent on the decisions, Xi jts, made in each of the scenarios

during the planning horizon. Both the revenue, Rvs, and future revenue, FRvs,

are linearly decreasing in time, which encourages trials to be run earlier rather

than being postponed until the end of the time frame. The components included

in these functions that make them linearly decreasing include a reduction for

reduced active patent life, γD
i , and a reduction for late completion hence reduced

market share, γL
i . This means that it is better to run a programme earlier in the

time frame and without delay.

The revenue, Rvs, is used to capture the total value of the drug development

programmes that have had all studies initiated during the planning horizon in

scenario s. The future revenue, FRvs, however, aims to capture the value that has

been gained by running additional studies for drug development programmes

that have not yet been completed in scenario s. This encourages the selection

of studies, even if the programme cannot be completed during the planning

horizon, which allows the model to consider further into the future and reflects

the way that decisions would be made in the real world. The calculation of FRvs

assumes that the first study that has not been initiated in each drug development

programme during the planning horizon is either initiated at the end of the plan-

ning horizon or upon the completion of the preceding study in the programme,

whichever is later. It then assumes that all subsequent studies are initiated upon

completion of their preceding study. For a full formulation, see Appendix A.2.

Solving the MILP returns not only the optimal portfolio but also the optimal

schedule under each scenario, which can be represented using Gantt charts, as

seen in Figure 2.3. This way, after each trial outcome is observed the decision

makers can discard the set of schedules that have scenarios that do not match the



Chapter 2 49
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I I II II II III

I I II II II

Drug 1

Drug 2

Drug 3

I I II II II II III III

I I II II II III III III III

Drug 1

Drug 2

Drug 3

Scenario 26 = (1,2,1) Scenario 64 = (3,3,3)

Time Time
1 2 3 4 5 6 7 8 9 10 11 121 2 3 4 5 6 7 8 9 10 11 12

Figure 2.3: Gantt charts representing the optimal schedule for two scenarios in a simple three
drug example. The shaded regions correspond to ongoing tasks and the numbers in the boxes
correspond to the values of j ∈ Ji that are ongoing at each time point.

observed outcome and use the schedules that do correspond to what has been

observed so far.

In Figure 2.3, the effect of the NACs can be seen as (D1, PII) is selected to be run

in both scenarios despite the fact that it will be unsuccessful in Scenario 26. Until

the point where we observe the difference in these scenarios at the end of (D1,

PII), the schedules are the same. We also see that the development of Drug 3 is

delayed such that (D1, PII) and (D3, PII) complete at the same time. This is due

to there not being enough available resources to run (D1, PII) and (D3, PIII) at the

same time in this formulation that considers resources to be required throughout

a study hence the method has chosen a schedule that means that (D3, PIII) would

not need to be delayed should (D3, PII) be successful. As mentioned previously,

delaying a study in the middle of the development programme results in a

smaller revenue due to a reduced active patent life in this method. Furthermore,

in this example the revenue reduction, or “penalty”, incurred due to a shorter

active patent life was larger than that which was incurred due to a reduced

market share. This means that it is preferable in some circumstances to run a

full drug development programme later in the planning horizon without delays

between studies than it is to start it early and delay certain studies within the

programme. This is because the method assumes that the patent is filed at the

beginning of the first study in the development programme.
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ROV approach PS approach
Stochasticity modelled Programme value Trial outcome
Method of valuation Real option valuation Expected net present

value
Scheduling No Yes
Recourse action Continue/abandon Selection of next study

decisions based on value to run (over all drugs)

Table 2.3: Summary of the main differences between the ROV approach [36] and the PS approach
[39].

2.3 Comparison

A summary of the key differences that will be discussed in this section can be

found in Table 2.3. The examples discussed in this section were generated and

solved using the JuMP package [43] in Julia [44] with the Cbc solver.

2.3.1 Comparison of approaches

The main difference between the two approaches is the choice of which element

is modelled as stochastic i.e. which uncertain element we observe and track over

the decision-making process. The ROV approach [36] considers the value of the

drug development programmes to be stochastic and tracks the potential market

movements over time. The standard deviation of the value of the drug is used in

calculating the possible value scenarios. The potential failure of a study is only

included via the probability of success, which is used in the calculation of both

the expected cost/resource requirement at each stage and the values associated

with the drug development programmes. The PS approach [39] considers the trial

outcomes to be stochastic and does not consider potential market movements or

the variance of the value of the drug. The trial outcomes are tracked and future

decisions depend on the trial outcomes. However, there is potential to include

the variance in the value of the drug due to external competition into the PS
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approach via the specification of the objective value and different penalties for

drugs that have higher competition in the market place.

The stochasticity in the two approaches is considered through the generation of

scenarios. In the ROV approach, these were value scenarios that captured the

value of each development programme after each study, or stage of development.

The number of value scenarios for each programme was dependent on the

duration of the different stages and the discrete time interval, ∆T , that these were

considered over. We considered a very simple example in Figure 2.1, where the

duration of the study was one unit and the market movements were applied

every 0.5 units. This resulted in three value scenarios at the end of the study, with

the associated values being dependent on the number of upward and downward

market movements. These scenarios can be determined in advance of solving

the programme.

In the PS approach, the scenarios represented the different potential combinations

of trial outcomes and so the total number of scenarios was equal to the total

number of combinations of study outcomes ranging from all programmes being

unsuccessful in their first study to all programmes being successful in all of

their studies. Equation (2.5) gave the calculation for the number of scenarios

in the PS approach, which can be specified in advance of solving the resulting

programme.

The difference in the stochastic component modelled leads to three main dif-

ferences in the approaches. These differences are the type of recourse action

considered, the values assigned to the drug development programmes and the

scheduling decisions made.

The recourse action is the action that should be taken to compensate for the

effect of an observed outcome and is one of the decisions that is returned upon

solving the mixed integer linear programmes. In the ROV approach, the recourse
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action relates to the value of the programme. If the value drops below zero

then the recourse action would be to abandon development whereas, for all

values above zero, development should continue and the next study should be

invested in, unless a study results in a failure. If a study does end in failure,

the ROV approach does not offer any alternative solutions in the sense that it

does not recommend investing in alternative drug development programmes to

replace the one that has just been abandoned. Therefore, if we wanted to find

which other studies should be run given the study failure, the model would

need to be updated given the new information and solved again. This can lead

to suboptimal decisions compared to the stochastic version of the problem as the

ROV approach cannot plan ahead and consider what might happen if a study is

unsuccessful. The PS approach, however, is able to do this. A limitation of the

ROV approach is that it assumes that the utility of the company is directly related

to the ROV of the product, which may not necessarily be true. For example, if

a company only had a single product undergoing development then, even if

the ROV was negative due to low success probabilities, they may still wish

to continue development should the clinical studies be successful. Hence, the

recourse action in the ROV approach might not always be realistic.

In the PS approach, the recourse action is more complex as it can involve other

drug development programmes. If a study is successful, the recourse action could

be to continue development immediately or to delay development if, for example,

the available resources are limited at that time point. If a study is unsuccessful,

the recourse action will consist of selecting which study should be run next

for another drug development programme. This allows the commencement of

studies for other drug development programmes to compensate for a given

study failure.

The values assigned to the drug development programmes are different in the

two approaches. In the ROV approach, the values are calculated using real
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option theory and they incorporate the market volatility of the drug, which

was denoted by ξi for drug i. Values are assigned to each drug development

programme at the beginning of each stage and in each value scenario and they

were denoted by Mi j ki j . Mi11 corresponds to the ROV of drug i, when it is non-

zero, and these values are found recursively by starting at the possible values

at the conclusion of the drug development programme, should all associated

studies be successful, and working backwards. This results in a clear ordering

in terms of the attractiveness of the drugs with the most attractive having the

highest value of Mi11 and the least attractive having the lowest value of Mi11.

The value of ξi is used in the ROV approach to capture the key beliefs about the

stochasticity in the value of a drug development programme and is described

by Rogers et al. [36] as the estimated annual standard deviation in the value of

the drug after commercialisation. This parameter has a significant impact on the

final value of the drug in the ROV approach; increasing the market volatility

increases the value of the drug making it more likely to be included in the optimal

portfolio. In the current model, it is assumed that the decision points are at study

completion but we could also consider the decisions at an interim analysis in

this framework. Considering the market information at additional points in the

drug development process could add value and improve the decision-making

process.

However, in the PS approach the market volatility is not considered at all. The

only parameters that affect the value of the drug over time in the PS approach are

the reductions in revenue for shorter active patent life and smaller market share

and a time discounting factor. This can lead to discrepancies in the attractiveness

of the drugs under the two methods. Therefore, a direct comparison for which

approach selects the best portfolio is not simple as the portfolio that is deemed

the best is dependent on how the values are assigned. In the PS approach, the

values that are calculated for the revenue, future revenue and costs are dependent

upon the scenario, which, in the PS approach, refers to the trial outcomes.
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Furthermore, the ROV approach considers discounting of the value through

time but the PS approach does not, it only considers the previously mentioned

reductions for shorter active patent life and market share. This could be included

in the objective function if required to ensure that promising programmes are

not delayed unnecessarily.

Solving the mixed integer linear programme in the PS approach will provide

the optimal order in which the studies should be run, but this order will not

necessarily correspond to the value order of the individual drug development

programmes. For example, the first study to be run will not necessarily belong

to the most valuable individual programme. This is because the PS approach

considers multiple drug development programmes that are competing for re-

sources and the optimal ordering of the studies will depend on more than the

individual programme values. Therefore, it may be preferable, for example, to

run two programmes simultaneously that have a higher combined value than a

third highly valuable programme with resource requirements equal to the total

requirements of the other two studies. If we want to learn about the value of the

individual programmes, we can consider each drug separately and assume that

all studies begin as soon as possible in order to find the revenue and associated

costs. Then the drug with the highest profit could be considered as the most

valuable and the drug with the lowest profit could be considered as the least

valuable, if we assume that utility is directly related to profit, providing an order-

ing in terms of the value of the individual drug development programmes. This

value order may be different to the optimal running order due to the reasons

discussed above.

The final main difference due to the uncertainty considered is scheduling. Since

the ROV approach focuses on the value uncertainty rather than the trial uncer-

tainty, scheduling is not considered. It is assumed that each study begins as soon

as possible or not at all; the choice to postpone a study is not available in the
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model formulation. One of the downfalls of this is that the ROV approach cannot

take into account the potential benefit of waiting to observe certain outcomes

in advance of making decisions. Instead, when a trial is concluded the model

may be adjusted to reflect the current state of the portfolio in order to select

which studies should be run. This is because the ROV approach focuses on the

uncertainty in the market value rather than the trial outcomes.

Colvin and Maravelias [39] provide a simple example that illustrates the differ-

ences between a model that considers the different potential study outcomes and

one that uses expectations as an attempt to capture the uncertainty in trial out-

comes. That is, they compare a stochastic programme that models trial outcomes

with its deterministic alternative. They show how this may lead to suboptimal

decisions compared to when we allow studies to be postponed until certain

outcomes are observed. The reason that the stochastic version finds a solution

with a higher expected revenue in this example is that the deterministic model

selects two drugs to run at the initial time point for which the second studies

cannot be run at the same time due to limited resources. The stochastic model,

however, considers this and selects a different pair of studies to be run at the

same time that can be completed simultaneously. Since a penalty is incurred

when studies are delayed this leads to the stochastic model achieving a higher

expected revenue.

Furthermore, the resource constraints in the ROV approach are all calculated in

the expected sense because the scenarios in the ROV approach do not contain

information on trial success. This means that if the expected resource usage for

a portfolio at a time point exceeds the resource limit then the development of

some of the drugs included in this portfolio will need to be abandoned since they

cannot be postponed. Using the expected resource utilisation in the constraints

may even allow the ROV approach to select studies that have costs exceeding

the available budget; we will see an example of this in the next section.
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Conversely, modelling the trial outcomes and scheduling is one of the key fea-

tures of the PS approach. The PS approach takes into account the fact that it may

be beneficial to wait and observe certain outcomes before making some decisions.

It also allows studies to be postponed if there are not enough resources/budget

available to run the study immediately. This means that the PS approach is

often able to find schedules that facilitate more development programmes being

run than in the ROV solution. In addition, the PS approach is able to calculate

resource requirements exactly, rather than the expected requirements, since the

information about trial outcomes is included in the scenarios of the PS approach.

This means that, under the decisions suggested by the PS approach, there will

never be a case where the resources required exceed the resources available,

which can happen when we only calculate the expected resources required.

It should also be noted that, in both of the approaches, the resources/budget are

treated as fixed at each time point and any resources that are not used in one time

point do not carry over to be used in the next time point. This, however, could

be added as an extension to the methods if it was required by a company to

make the budget allocation more realistic. Another potential modification could

involve neglecting to include budget constraints entirely and instead including

constraints on different resource types, e.g. staffing resources, and considering

the trial costs within the objective value alone. Note that this is actually how the

formulation of the PS approach is set up. The PS formulation includes resource

constraints, which we have taken to be the budget in order to compare it to

the ROV approach, and considers the trial costs within the objective function.

The ROV approach assumes that the cost of a study is incurred at the initiation

of the study, whereas the PS approach is able to incur these costs, or resource

requirements, either at the beginning of the study or throughout the study. In

the comparison that follows, we have modified the resource constraint in the PS

approach so that the study costs are incurred at the beginning of the study in

order to provide a fair comparison to the ROV approach.



Chapter 2 57

In the PS approach, some drug development programmes might not be com-

pleted in the time frame that is considered in the model. This is because studies

are allowed to begin at any time, subject to the previous study having been

completed and resulting in a success. In order to compensate for the fact that

some programmes may not complete in the planning horizon, the future revenue

is considered, which is calculated by assuming that the ongoing studies are

completed as quickly as possible. Considering the future revenue is beneficial

as it encourages studies to be run where possible, even if the revenue will not

be realised in the planning horizon, which is the type of forward planning that

we would expect to see in real life decisions. However, it should be noted that

the future revenue is not able to capture the information in the same way as

extending the planning horizon would. In fact, if we change the length of the

planning horizon in the PS approach, even by a single time step, the set of opti-

mal schedules may change. Hence, when using this method a sensitivity analysis

might be required to study the effect of different planning horizon lengths on

the set of optimal schedules for a particular portfolio.

In terms of the model formulation, there are three main things to discuss: flexi-

bility, complexity and size.

Flexibility will often be desirable so that the model can be adjusted to accurately

represent the portfolio in question. A company may also wish to add constraints

that reflect their decision-making process e.g. there might be two drugs that

they would only want to develop at most one of. Due to the fact that the ROV

approach is based on the way that the values of the drugs are calculated, there

is little flexibility in the choice of the objective function. In the PS approach,

however, there is a lot more flexibility in terms of the objective function. If we

chose, we could modify the PS approach to include an objective function that

maximises the ROV of the portfolio. Adding further constraints is relatively

straightforward in both approaches, provided that some consideration is given
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to what the scenarios refer to in each of the approaches and what this means in

terms of the constraints.

In terms of the complexity of the models, the difficulty arises in different areas.

For the ROV approach, the complexity arises in the calculation of the value of

drug i at the beginning of study j in value scenario ki j , which was denoted by

Mi j ki j . In this approach, a separate linear programme must be solved in order

to find upper bounds on the value of Mi j ki j , which are then used as some of

the input parameters of the mixed integer linear programme that returns the

optimal portfolio. Essentially, the upper bounds that we find by solving the first

programme correspond to the values of the drugs if we did not include any

resource constraints. As was mentioned in Section 2.2.1, including the decision to

continue/abandon development in the calculation of Mi j ki j results in a non-linear

constraint. The linearisation of this constraint also adds to the complexity of the

model. In the PS approach, the complexity arises from the fact that we require

non-anticipativity constraints for this formulation. While the interpretation of

these constraints is relatively straightforward, the formulation of them is less

so.

This leads us to the final consideration to make, which is the size of the model

formulation. The non-anticipativity constraints in the PS approach vastly increase

the number of constraints in the formulation of the PS approach compared to

the ROV approach. Also, the number of variables required for the PS approach

typically exceeds the number in the ROV approach. This is due to the number of

scenarios typically being larger for the PS approach. This will be illustrated in

the next section.
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(a)

i |Ji | φi1 φi2 φi3 τi1 τi2 τi3 ci1 ci2 ci3 V0i

1 3 0.75 0.7 0.85 1 2 2 20 55 80 180
2 3 0.6 0.8 0.95 1 2 2 30 55 120 380
3 2 0.8 0.9 - 2 2 - 30 60 - 100
4 2 0.8 0.9 - 2 2 - 75 180 - 400
5 1 0.75 - - 2 - - 180 - - 350

(b)
ξ1 ξ2 ξ3 ξ4 ξ5 ∆T r

0.55 0.35 0.8 0.3 0.6 1/6 0.05

(c)
γL γD nt
10 20 0.1

Table 2.4: Parameter values used for the comparison in (a) both approaches, (b) the ROV approach
and (c) the PS approach. A planning horizon of |T | = 6 was used in both approaches.

2.3.2 Results

We implemented both of the approaches using JuMP [43] in Julia [44] for an

illustrative example portfolio with parameters given in Table 2.4. This example

is used to highlight our main findings regarding the use of the two methods and

the differences between them. The optimal portfolios were considered for three

different budgets: 200, 250 and 300 per time point. That is, Bt = 200, Bt = 250

and Bt = 300 for all time points, t, in the planning horizon. A summary of the

comparison is provided in Table 2.5. Gantt charts showing some of the schedules

selected under the PS approach with a budget of 200 per time point, Bt = 200,

are shown in Figure 2.4. The aspects for which comparative results are provided

include: speed to obtain the solution, size of the problem in terms of the variables

and constraints, selected portfolio and ordering of the most attractive drug

development programmes.

Note that we are not assuming an underlying truth for the illustrative exam-

ple. In this section, our aim is to illustrate the way the methods work and to

highlight any differences between the methods and the results that they may

lead to through the use of our illustrative example. Therefore, we will not draw

conclusions on which method has performed better. It should be further noted
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ROV approach PS approach
Variables 208 (a) + 2438 (b) 58176
Constraints 208 (a) + 6760 (b) 288624
Value order 4,5,2,3,1 2,4,5,1,3

Bt = 200 ∀t ROV 158.61 -
ENPV - 125.15
Selection 1,2,3,4 1,2,3,4,5
Time (CPUs) 58.85 4128.45

Bt = 250 ∀t ROV 158.61 -
ENPV - 129.65
Selection 1,2,3,4 1,2,3,4,5
Time (CPUs) 18.62 3104.95

Bt = 300 ∀t ROV 229.36 -
ENPV - 129.65
Selection 2,4,5 1,2,3,4,5
Time (CPUs) 24.23 5247.81

Table 2.5: Comparison of the ROV approach with the PS approach. Note that for the ROV
approach (a) refers to the LP used to find the upper bounds of Mi jki j and (b) refers to the MILP
used to find the optimal portfolio.

that, even if an underlying truth was assumed, we would still not necessarily

be able to conclude which method performs better. This is because the methods

assign values to drug development programmes differently and so the most

valuable programme under the ROV approach may be different to the most

valuable programme under the PS approach.

One of the first things that is apparent in Table 2.5 is the difference in the size of

the formulations. Despite the fact that the ROV approach requires two mathe-

matical programmes to be solved (the first to find upper bounds on the values

in the second and the second to find the optimal portfolio), it still has far less

variables and constraints than the PS approach. This is because the scheduling

in the PS approach comes at a high computational burden due to the inclusion

of the non-anticipativity constraints, which ensure that the optimisation does

not use information regarding trial outcomes before they have been revealed.

The pattern observed here will be the same for most sets of input parameters.

The main thing that could increase the size of the ROV formulation past the

size of the PS formulation would be if we applied the market movements over
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much smaller periods as this would increase the number of value scenarios to

consider. However, it is unlikely that a user would require a level of granularity

that would be small enough to cause the ROV formulation size to exceed the PS

formulation size.

We see a similar ordering in the time taken as we saw in the numbers of vari-

ables and constraints and this is typical of what we would observe for most

example portfolios. For this example containing five drugs, all of the mixed

integer linear programmes were solved within reasonable time. This will not

necessarily scale as we increase the portfolio size, unfortunately, as it is noted in

[58] that without model reductions the PS approach cannot solve the problem for

portfolios containing more than six drugs in reasonable time. There have been

heuristics presented for the PS approach that aim to tackle this problem [49]. The

most promising heuristic was presented by Christian and Cremaschi [49] and

it decomposes the problem into a series of smaller knapsack problems. While

the solution of the knapsack decomposition algorithm will not always match the

optimal solution of the PS approach, the reported results were within 3% of the

optimal solution and the solution is found much more quickly than in the full

formulation of the PS approach and can be found for much larger portfolios.

In Table 2.5, we see that, although the two methods assign values to drugs

differently, the ordering of the drugs in terms of the value of the associated

drug development programmes is similar in both. The biggest difference is that

Drug 2 is deemed the most attractive in the PS approach but only the third

most attractive in the ROV approach. This highlights the fact that the different

methods of assigning values to the drug development programmes can lead to

different decisions being made. Although Drug 2 has the second highest present

value, it has the second lowest volatility causing it to be attractive under the PS

approach but not as attractive in the ROV approach. This is because increasing

the volatility of a drug also increases the ROV of the drug.
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Figure 2.4: Gantt charts representing the schedules found by the PS approach in the comparison
with Bt = 200.

It should be noted that even if the portfolios selected in each approach were

similar, or even the same, the objective value under each method would still

be quite different due to the different methods of valuation. Also, we are not

able to calculate the objective function of one model in a meaningful way for

the decisions made under the other model. The objective function in the ROV

approach is calculated under the assumption that trials start as soon as possible,

which will not necessarily be the case with the decisions made in the PS ap-

proach, as we can see in Figure 2.4. The ROV objective function does not consider

any reductions in revenue given the late completion of a drug development

programme, and the market movements are considered over the minimum time

taken to complete the programme. Therefore, the ROV objective function cannot

be calculated appropriately for the decisions made under the PS approach. Simi-

larly, looking at the decisions made in the ROV approach in the PS framework

will not lead to a meaningful objective value. This is because scheduling was not

an option in the ROV framework and there will be “better” scheduling decisions

available. Hence, the non-scheduled decisions will be suboptimal in terms of the

PS objective function.

Rather than comparing the objective values across the approaches, it is more

interesting to look at how the objective values change in each approach given

additional budget/resources. For example, when we increase the budget from

200 to 250, the objective value of the ROV approach remains the same, but the



Chapter 2 63

objective value of the PS approach increases due to the fact that it is able to find a

more profitable schedule. This leads us on to the next part of the comparison.

One of the most significant differences in terms of the portfolio that we see

in Table 2.5 is that the PS approach is able to select more drugs than the ROV

approach. This is because it is able to schedule when the studies should be run

and hence allows delays in the commencement of a study, which often facilitates

the selection of more drugs as it has done here for our example portfolio. In

Table 2.5, we see that when we have budgets of 200 and 250 for each time period,

the ROV approach is unable to select Drug 5 despite the fact that it has the

second highest ROV. The PS approach, however, is able to include this drug in

its portfolio under all three budgets. The PS approach is in fact able to include

all five drugs in its optimal portfolio under all three budgets. We see that for

a budget of 300 both methods are able to select their most attractive drugs to

include in their optimal portfolio.

If we consider a much smaller budget than those considered in the table, Bt =

100 ∀t, the ROV approach selects Drugs 1 and 4. However, Drug 4 has a cost of

180 for its second study. This highlights the way that taking the expected value

for resource constraints may not always be realistic. Here, the cost of a study is

almost double the available budget yet it is still selected. While this might not

always be an issue, it could certainly be a problem in the real world if a company

were to run into the situation where the extra budget could not be found and

hence the investment in previous studies would be wasted.

In Figure 2.4, we see that, under the assumption that the costs are incurred at

the commencement of a trial, (D5, PIII) is only selected to be run in the second

time period due to budget constraints not allowing it to start alongside any of

the other studies. This also applies to (D4, PIII). This leads to a sparse amount of

studies being run in the first two time steps and a much denser schedule later

on. This may not be realistic in terms of what would be preferred by a company.
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If this situation were to arise, a company may add constraints to the model that

reflect their preferences and explore the effect of these preferences on the overall

scheduling and optimal value. For example, these constraints might be to run

certain studies straight away or to ensure that the pipeline is not left idle when

there are available studies to be run.

We also see that the two most valuable drug development programmes under

the PS approach, Drugs 2 and 4, only have their first study initiated at the third

time point. This shows how, as we discussed in the previous section, the opti-

mal order to initiate the studies may not reflect the most valuable development

programmes due to the complexities added by the consideration of multiple pro-

grammes, resource constraints and the effect of early decisions on later decisions.

Since (D4, PIII) can only be initiated at the same time as (D1, PI) due to budget

constraints, its preceding study, (D4, PII) is only initiated later in the planning

horizon to allow for the initiation of other studies. If we assume that the optimal

time to initiate (D4, PIII) is at t = 5 then there is no reason to start (D4, PII) until

t = 3 as the PS approach discounts study costs throughout the planning horizon

to encourage studies to be selected. This means that leaving (D4, PII) to start

as late as possible without affecting the initiation of (D4, PIII) will increase the

ENPV.

Another component that will affect the optimal decisions are the penalties in-

curred due to shorter active patent life and smaller market share. It is assumed

that the patent life of a drug starts at the initiation of Phase I, therefore the

penalties associated to shorter active patent life are only incurred after Phase I

is initiated. It is therefore beneficial to reduce the delays between phases. We

see the effect of this in Figure 2.4 for Drugs 1 and 2 as both programmes are

completed without any delays, despite the fact that the earlier phases could be

initiated sooner but with delays between the later phases as this would lead to a

reduction in the ENPV.
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2.4 Discussion

In this chapter, we have provided a comparison and discussion of two stochastic

programming approaches for pharmaceutical portfolio management. We used

an illustrative example to highlight our findings and the differences between the

two approaches.

The first approach [36] uses real option theory from the financial setting and

focuses on the uncertainty in the value of a drug. While this approach has a

reasonably sized formulation and is quick to solve, it lacks flexibility and there

is some discussion to be had in terms of the relevance of the market volatility,

which drives this approach in the pharmaceutical setting. Also, this approach

assumed that every study would start as soon as possible and it is not able to

schedule tasks, which in turn leads to drugs being omitted from the optimal

portfolio that could in fact be included if scheduling were considered.

The second approach [39][40] provides a modification of the stochastic version

of the resource constrained project scheduling problem in order to find the

optimal portfolio and the optimal schedule under each scenario. While this

approach was preferable in terms of scheduling and flexibility, this came at a

high computational burden.

Extensions have been presented for both of these methods. For the ROV ap-

proach, Rogers et al. [38] presented an extension that considers partnership

opportunities. This extension considers both the optimal timing of the partner-

ship and the best investment policy. Lo Nigro et al. [56] noted the perceived

complexity of the method presented by Rogers et al. [36] and presented a more

user-friendly simplification that uses a different option pricing approach and

considers partnership opportunities. However, this approach does not track the

continue/abandon decisions over time.
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Colvin and Maravelias [57] presented methods to tackle the problem of the size

of the model formulation for the original PS approach presented in [39]. This

was then extended further to consider solution methods and a branch and cut

algorithm was presented in [58]. Then, Colvin and Maravelias [50] presented

several extensions that include: resource planning decisions such as expansion

and outsourcing; task interdependencies in terms of uncertainty, resources and

revenues; risk management approaches.

Although the two approaches use different methods for valuation, neither of

them capture the effect that treatment efficacy and safety can have on the revenue

of a new drug. Treatment safety and efficacy estimates will often be driving

factors in our estimate of the revenue and these safety and efficacy estimates will

evolve throughout the drug development programme. The consideration of these

estimates in the valuation method could make it more appropriate and realistic

in the setting of drug development. Also, both methods are reliant upon point

estimates for the revenue generated upon successful programme completion

and they are not able to consider our prior uncertainty in this estimate. We think

that the ability to do so would add further benefit to the methods as the prior

estimates of the revenue are not always representative of what is actually seen.

Both of these methods have different benefits and focuses and therefore the

best approach will depend on what the decision maker deems more important -

modelling trial uncertainty or modelling value uncertainty. We believe that the

flexibility offered in the project scheduling approach offers an advantage over

the real option approach as, if one chose to, the valuation of the drugs in this ap-

proach could be modified to consider the market volatility. We also believe that,

in the setting of clinical trials, the impact of the trial outcomes is more significant

than the market volatility. The pharmaceutical industry has high development

failure rates compared to many other industries. Therefore, the stochastic mod-

elling of the trial outcome may be more important than market volatility in this
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setting. Furthermore, the ROV approach is centred on the estimates of the net

present value of the future cash flows of the drug and the estimates of the market

volatilities. If these estimates are not accurate or representative of the drug then

the focus of this approach is wasted.

In conclusion, we believe that the advantages of the PS approach for tackling

the true portfolio management problem are many and, with the flexibility in

this approach, further adjustments to make the approach match the individual

requirements of a company can be added easily making this approach very

useful and applicable for real world problems.

Furthermore, our main interest in this thesis lies in combination drug develop-

ment and we believe that the PS approach is best suited to this setting. This

is because the recourse action in the PS approach is able to consider different

development programmes. This would be beneficial in the context of combina-

tion therapies as the results of one combination study might affect our beliefs

about similar combination studies, thus the decisions that we would make. The

way that these beliefs regarding performance might change can be captured via

changes in the probability of success of a study. Therefore, in the next chapter

we present a method for updating the probability of success of a study based on

related combination study data. This will then be incorporated into a heuristic

[49] for the PS approach in Chapter 4.
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Chapter 3
Updating the probability of study

success for combination therapies

using related combination study

data

3.1 Introduction

The recent rise in popularity of combination therapies has brought with it several

new questions and challenges. The question that we will aim to answer in this

chapter is associated with the potential relationships between combinations. We

may expect a relationship between two combination studies when, for example,

they have a particular treatment in common. We look at how we can use the

information from related combination studies to inform the probability of suc-

cess of a particular combination study of interest. It was noted in Chapter 1 that

combination therapies often consist of a backbone therapy, such as a chemother-

apy in oncology, and one or more different add-on treatments. Hence, in this

scenario, there are clear groups of associated combinations, which correspond to

the combination therapies that share a backbone treatment.
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Therefore, there is much to be gained by considering related combinations. This

gain is even more significant when there is little available information on the

combination of interest, but a much larger amount of available information

on a related combination, such as the outcome of a Phase III study. This is

because of the potential for strong correlations between the outcomes of related

combination studies. Using the additional information from related combinations

appropriately may improve the accuracy of the treatment effect estimates, which

in turn may lead to improved decision-making in the planning of combination

studies through the calculation of the study success probabilities. Improved

decision-making may help to reduce the failure rates in the later clinical trial

phases or optimise the portfolio.

One of the key estimates used in order to assist decision-making regarding a

potential study is the probability of success (PoS), as discussed in Chapter 1.

Existing methods for calculating the PoS are often based upon the expected

power, (Bayesian) predictive power or assurance. These terms are often used

interchangeably in the literature. O’Hagan and Stevens [59] presented the concept

of the assurance and detailed how it can be used and interpreted. O’Hagan et

al. [23] then provided further discussion of the assurance and how this can be

used instead of the power in calculating the required sample size of a study.

Rufibach et al. [35] provided discussion of the choice of prior when calculating

the assurance and also provided some recommendations.

The literature on the PoS also covers how this can be used to assist decision-

making. Stallard et al. [30] present an approach that combines Bayesian and

frequentist ideas. The decision-making process uses Bayesian methodology in

the calculation of the PoS but it is assumed that the study design and analysis

in Phase III will be frequentist. This approach can be used both at the end of

Phase II and at any interim analyses. Thus, it may help with the decision to begin

planning Phase III rather than just whether to run a Phase III study. Sabin et al.
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[33] further discussed the use of the PoS in decision-making and presented a

two-stage method that starts before Phase II and takes the user through to the

end of Phase II decision.

Another area in the literature relevant to the problem that we are interested

in relates to the planning of sequences of trials. Whitehead [60] discusses the

problem of designing a series of Phase II studies when the aim is to identify

the treatment that should be taken to Phase III. Rather than considering the

treatments separately, they are considered together, which allows sample sizes

to be reduced. The methodology presented also provides the optimal number

of treatments to be tested in Phase II. Existing literature regarding the planning

of sequences of trials also includes platform trials [61] and multi-arm multi-

stage trials [20]. In our setting, however, the related combination studies might

not share the same target population or the same indication, as is typical in

the literature for planning sequences of studies, and the studies might not be

available to begin simultaneously.

In this chapter, we present a framework that allows us to update the probability

distributions of the effect sizes of a group of related combination therapies based

on the outcome of a single combination study. This will allow us to update the

PoS of related combination studies. This procedure allows emerging information

on related combination therapies to feed into the decision-making process for

other potential combinations and assist in the planning of these studies. In line

with existing literature, we assume that the design and analysis of the studies

are conducted using frequentist methods while the calculation of the PoS will

use a Bayesian framework.

In order to provide further motivation and context to this problem, we will

consider two historic Phase III trials that are related and use them to illustrate

the methodology throughout the chapter. We will consider the CLEOPATRA

(NCT00567190) [62] and MARIANNE (NCT01120184) [63] trials, which both
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considered similar combination therapies in the treatment of patients with HER2-

positive breast cancer and used progression-free survival (PFS) as the primary

endpoint. The purpose of our method is to capture the relationship between

study outcomes, rather than considering the differences between the studies

themselves, and to use this to help inform decision-making. Therefore, while

these two studies do have several differences, they serve as an example of the

type of situation in which the proposed method can be applied.

The CLEOPATRA study is a double-blind study that compared trastuzumab plus

docetaxel, a type of taxane, plus placebo with trastuzumab plus docetaxel plus

pertuzumab with a 1:1 allocation ratio [62]. The MARIANNE study is a multi-

arm study that compared trastuzumab plus taxane to trastuzumab emtansine

plus placebo and trastuzumab plus pertuzumab [63]. The control arm in the

MARIANNE study was open label, whereas the two experimental arms were

blinded with respect to pertuzumab or placebo and the allocation ratio was

1:1:1.

Both studies have a control arm that contains trastuzumab and a taxane (the

CLEOPATRA study also contains placebo) and an experimental arm that includes

pertuzumab. We will therefore aim to use the CLEOPATRA study to draw

inference upon the outcome of a modified two-arm version of the MARIANNE

study that compares trastuzumab plus taxane to trastuzumab emtansine plus

pertuzumab; we will not consider the trastuzumab emtansine plus placebo

arm. From now on, we will refer to this study as the modified MARIANNE

(mod-MARIANNE) study.

It is clear that there are several differences between the two studies, such as

the blinding and the number of arms. Irrespective of this, we believe that the

outcome of one study is informative for the other and hence these studies will

be used for illustration of the methodology.
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In Section 3.2, we present the framework and methodology for updating the PoS

of related combination studies. We also provide an extension that allows us to

account for the fact that the treatment effects, hence study success probabilities,

of the “related” combinations might not be correlated. In Section 3.3, we present

the results of a simulation study. We provide a discussion of the approach in

Section 3.4.

3.2 Methods

In this section, we build the framework that allows us to update the PoS of a

combination study based on the outcome of a related combination study in order

to assist decision-making.

First, we update the distributions of related combination therapies based on the

outcome of a single combination study using Gaussian Markov Random Field

theory. Then, using the updated marginal distributions, we can find the PoS for

all remaining studies. We also provide an extension that allows us to consider the

fact that the assumption of “related” combinations being positively correlated

might not always hold and account for this in our PoS calculations.

3.2.1 Framework

For illustrative purposes, let us first consider a pair of related combinations, for

example A + B and A + C, which we might be comparing to a similar control

treatment, before extending the problem to a set of n related combinations. We

will refer to combinations as “related” when they have at least one monotherapy

in common and there is reason to believe that the performance of the combi-

nations will be related. An example of this might be in oncology where A is a
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backbone treatment, such as a chemotherapy, and B and C are potential add-on

treatments with different modes of action.

We are interested in calculating the PoS for one combination study based on

the study results of a related combination. In order to calculate the PoS we will

follow the method presented by O’Hagan et al. [23] to calculate the assurance,

which is defined by

PoS =
∫

P
(
study success | θ

)
P (θ | data)dθ (3.1)

where θ represents the treatment effect. We can often find a closed form solution

for the assurance. For example, in the case of a two-sided superiority trial with

normally distributed outcomes and known variance, the assurance for rejecting

the null hypothesis of no treatment difference in favour of the experimental

treatment is given in [23] by

PoS = 1 −Φ

(
V−0.5Zα/2 − µ
√

V−1 + σ2

)
. (3.2)

Here, V−1 is the sampling variance of the planned study, α is the significance

level and µ and σ2 are the mean and variance of the distribution representing

our beliefs on θ, respectively. When a closed form solution for the assurance

is not available, we can use Bayesian clinical trial simulation to estimate it, as

presented in [23] and discussed in Chapter 1. Alternative distribution-based

definitions of the PoS could also be used in our presented framework, such as

the Bayesian probability of success presented in [26].

In order to calculate the PoS and update it using related combination study

data, we need to consider the treatment effects of the combinations of interest.

For our simple example of combinations A + B and A +C, we will use θ1 and

θ2 to represent the treatment effects of A + B and A + C, respectively. We will

assume that θ1 and θ2 are measured on the same scale and are therefore directly
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comparable.

Before a clinical trial is run, the study team will have some idea as to how the

therapy might perform based on historical data and expert opinion. In order

to capture these beliefs we can specify a prior distribution on the parameter

of interest. This prior distribution is able to capture the expected value of the

treatment effect and the level of uncertainty in this value. There is an extensive

literature on prior elicitation in the setting of a clinical trial, with one of the most

commonly discussed methods being the SHELF framework [34].

We will represent the prior beliefs for the treatment effects of our two combination

therapies, θ = (θ1, θ2)
T , by the multivariate normal (MVN) distribution. We can

write this as θ ∼MVN (µ,Σ) or, alternatively for the two combination example,

©­­«
θ1

θ2

ª®®¬ ∼MVN
©­­«
©­­«
µ1

µ2

ª®®¬ ,
©­­«

σ2
1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

ª®®¬
ª®®¬

where µi and σ2
i represent the prior expectation and prior variance for θi, re-

spectively, and ρii′ is the prior correlation between θi and θi′. In this model, the

parameter ρii′ will be used to define the level of borrowing across the two com-

binations. Therefore, the user does not need to be concerned with calculating

an accurate estimate of the true underlying correlation for this model to be ap-

propriate or useful. The reasons why we can use the interpretation of ρii′ as the

degree of borrowing will be discussed in Section 3.2.4.

When determining an appropriate value for ρ12, one could consider a thought

experiment using studies relating to θ1 and θ2. For example, if these relate to the

combinations of A+ B and A+C then one might consider either the outcome of

these combinations in different indications or alternatively the outcomes of B

and C when paired with different backbone treatments. If these outcomes are

typically positive or negative simultaneously then a higher value of ρ12 may be
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appropriate. If there was little or no pattern between the pairs then a lower value

of ρ12 would be more appropriate.

Further note that this model does not aim to capture synergism or antagonism

within the components of the combinations, instead it aims to capture similarities

across the combinations, which will allow us to learn across the combinations.

In the case where we have n related combinations, we would specify the prior

beliefs using

©­­­­­­­­«

θ1

θ2

...

θn

ª®®®®®®®®¬
∼MVN

©­­­­­­­­«

©­­­­­­­­«

µ1

µ2

...

µn

ª®®®®®®®®¬
,

©­­­­­­­­«

σ2
1 ρ12σ1σ2 · · · ρ1nσ1σn

ρ12σ1σ2 σ2
2 · · · ρ2nσ2σn

...
... . . . ...

ρ1nσ1σn ρ2nσ2σn · · · σ2
n

ª®®®®®®®®¬

ª®®®®®®®®¬
.

This is the distribution that we will update based on the outcome of a combi-

nation study relating to one of the θi variables. We will then use the updated

distribution to calculate the PoS for future combination studies.

In order to specify the prior distribution for our illustrative example, we will let

θM be the treatment effect for the mod-MARIANNE study comparing trastuzumab

plus taxane with trastuzumab emtansine plus pertuzumab. We will further let θC

be the treatment difference for the CLEOPATRA study comparing trastuzumab

plus docetaxel plus placebo with trastuzumab plus docetaxel plus pertuzumab.

We will specify the prior means of both θM and θC to be equivalent to a hazard

ratio of 0.75, µM = µC = − log(0.75), which is equal to the reference value that was

used to power both of the studies. We will specify a prior correlation of ρMC = 0.6

to reflect the belief that the study outcomes are related along with our interest

in using the outcome of one of the studies to inform our beliefs about the other.

If the two studies only differed in one aspect but were otherwise identical, we

could use a higher correlation. However, since the studies differ in several ways,
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we have decided to use a lower correlation to reflect the uncertainty caused by

the differences. Finally, we will specify a prior variance of 0.08 on both treatment

effects. This is equivalent to the posterior variance after observing approximately

50 PFS events, a common size of a Phase II study, given an uninformative prior

variance. This will give a bivariate prior of

©­­«
θM

θC

ª®®¬ ∼MVN
©­­«
©­­«
0.288

0.288

ª®®¬ ,
©­­«
0.08 0.05

0.05 0.08

ª®®¬
ª®®¬ .

3.2.2 Score statistics

As we observe further clinical studies on the combinations, we will want to

update this distribution to reflect the information gained from these new studies.

We assume that these studies will be designed and analysed using frequentist

methodology. Therefore, to summarise the outcome of study i, we will use the

efficient score statistic, Zi, and the Fisher information, Vi, of the test with null

hypothesis θi = 0 [21]. This is not the same as the Z-score, which follows the

standard normal distribution. Note that, in this chapter, we are only considering

one study per programme and so when we refer to study i, we are referring to

the study of interest in programme i. Thus, we will not use the study identifier,

j, in the notation in this chapter, but the programme identifier, i, alone.

The score statistic can be considered as a measure of benefit of the experimental

treatment over the control treatment, based on what was observed in the study.

The Fisher information, on the other hand, is a measure of how much information

on θi is contained in Zi. When the study sample size is large and θi is small, that is,

close to zero, the score statistic is approximately normally distributed with mean

given by Viθi and variance given by Vi where θi is the true value of the treatment

effect [21]. Note that this normal approximation holds for many endpoints, which
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is one of the main reasons that we consider the score statistic in our framework.

Zi Û∼N (Viθi, Vi)

If we only consider the marginal prior distribution of θi, then, since the normal

distribution is a conjugate prior for normally distributed data, we could find the

posterior distribution of θi |Zi via a typical Bayesian update, and this would also

be normally distributed.

In our setting, however, we consider these parameters in a vector represented

by θ and we do not observe all dimensions of θ simultaneously, but observe

the outcome of one combination study at a time. The distribution of the score

statistic, Zi, will remain one-dimensional, but we will still want to update the

distribution of θ each time we observe new data. To allow updating regardless

of the inconsistency in dimensions, we will utilize the properties of Gaussian

Markov Random Fields.

In our illustrative example, the CLEOPATRA study was the first of the two stud-

ies to be conducted therefore we will use the information from the CLEOPATRA

study to update our beliefs about the PoS of the mod-MARIANNE study. The

CLEOPATRA study observed 604 PFS events, 320 in the control arm and 284 in

the experimental arm, and the observed hazard ratio (HR) was 0.68 [64]. We are

able to find ZC and VC for the study using

V ≈ e × R/(R + 1)2 and Z = −V log(HR)

where e is the number of PFS events and R is the allocation ratio [21]. This gives

VC = 151 and ZC = 58.235.
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3.2.3 Gaussian Markov Random Fields

In order to update the distribution of θ based on a single combination study, we

will formulate the problem using Gaussian Markov Random Fields [65].

A Gaussian Markov Random Field (GMRF) is finite dimensional random vector

x = (x1, ..., xn+1)
T that follows the multivariate normal distribution and has some

additional Markovian properties to be defined. First, let us write

x ∼MVN(µ, Q−1)

where µ is the mean vector and Q is the precision matrix.

Recall that two variables, xa and xb, are conditionally independent given another

variable, xc, if and only if

π(xa, xb |xc) = π(xa |xc)π(xb |xc)

where π (·) represents a probability density function. We can represent the condi-

tional independence structure of x using a graph G = (N , E). In this graph, the

nodes, N , represent the random variables, x1, ..., xn, and the edges, E , provide us

with information regarding the conditional independence structure. We can say

that x is a GMRF with respect to G if and only if

π(x) = (2π)−(n+1)/2 |Q|1/2 exp
(
−

1
2
(x − µ)T Q(x − µ)

)
and

Qab , 0 ⇔ (a, b) ∈ E ∀ a , b.

The properties of GMRFs that are of particular use for our problem are the

conditional properties. First, let us partition the random vector into two sets,

x = (xA, xB)
T . We can similarly partition the mean vector, µ = (µA, µB)

T , and the
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precision matrix,

Q =
©­­«
QAA QAB

QBA QBB

ª®®¬ .

Then, it can be shown that the conditional distribution of xA | xB is also a GMRF

with respect to the subgraph GA = (N A, E A) [65]. N A is a subset of N containing

the nodes that represent the variables in xA. E A is a subset of E containing

the edges between the nodes in N A. The mean and precision matrix of this

conditional distribution are given, respectively, by

µA|B = µA −Q−1
AAQAB (xB − µB) and QA|B = QAA. (3.3)

Hence, we can write

xA | xB ∼MVN
(
µA|B, Q−1

A|B

)
, (3.4)

the conditional distribution of xA given xB [65].

3.2.4 Method

Let us now formulate our problem in the setting of GMRFs. We will illustrate

the method using our two drug example, but will also provide the results for n

combinations. In our setting, the random variables are the treatment effects of

the different combinations alongside the score statistic for the study that is going

to be run. We can write this as (θ, Zi)
T where we will be observing the outcome

of a study on combination i.

We will also need to consider the conditional independence structure of this

vector of random variables. For our simple example of combinations A+ B and

A+C, θ1 and Z2 will be conditionally independent given θ2. This represents the
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beliefs that θ1 and θ2 are “related” and the score statistic, Z2, from a study on

combination 2 is dependent only on the value of θ2.

Suppose that we are going to observe the outcome of a study on A+C, which we

will summarise using Z2 and V2. Under the assumption that Z2 is approximately

normally distributed, Z2 ∼ N (V2θ2, V2), we can write

Z2 = V2θ2 + ε2 where ε2 ∼ N(0, V2).

Using this formulation, we are able to find the expectation and variance of Z2

in this framework and the covariance between Z2 and θ. We can then write our

GMRF as

©­­­­­«
θ1

θ2

Z2

ª®®®®®¬
∼MVN

©­­­­­«
©­­­­­«
µ1

µ2

V2µ2

ª®®®®®¬
,

©­­­­­«
σ2

1 ρ12σ1σ2 V2ρ12σ1σ2

ρ12σ1σ2 σ2
2 V2σ

2
2

V2ρ12σ1σ2 V2σ
2
2 V2

2 σ
2
2 +V2

ª®®®®®¬
ª®®®®®¬

.

The precision matrix, Q, of this GMRF is given by

Q =
©­­«

Qθθ QθZ2

QZ2θ QZ2Z2

ª®®¬
=

©­­­­­­«
1

σ2
1 (1−ρ

2
12)

−ρ12
σ1σ2(1−ρ2

12)
0

−ρ12
σ1σ2(1−ρ2

12)

1
σ2

2 (1−ρ
2
12)
+V2 −1

0 −1 1
V2

ª®®®®®®¬
.

Note that if we have n combination programmes and we observe a study in

programme i then we can find the mean vector and covariance matrix in the
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same way and the GMRF for this problem would be given by

©­­­­­­­­«

θ1

...

θn

Zi

ª®®®®®®®®¬
∼MVN

©­­­­­­­­«

©­­­­­­­­«

µ1

...

µn

Viµi

ª®®®®®®®®¬
,

©­­­­­­­­«

σ2
1 · · · ρ1nσ1σn Viρ1iσ1σi

... . . . ...
...

ρ1nσ1σn · · · σ2
n Viρinσiσn

Viρ1iσ1σi · · · Viρinσiσn V2
i σ

2
i +Vi

ª®®®®®®®®¬

ª®®®®®®®®¬
.

Using the conditional properties of GMRFs, we are able to find the conditional

distribution of θ |Zi. Applying Equations (3.3) and (3.4) as given in [65], we find

that

θ |Zi = zi ∼MVN
(
µpost,Σpost

)
where

µpost = µ −Q−1
θθQθZi

(zi −Viµi) and Σpost = Q−1
θθ .

For our simple example containing combinations A+ B and A+C, this gives

©­­«
θ1

θ2

ª®®¬ | Z2 ∼MVN
©­­«
©­­«
µ1 −

ρ12σ1σ2V2
1+V2σ

2
2
µ2 +

ρ12σ1σ2
1+V2σ

2
2

z2

1
1+V2σ

2
2
µ2 +

σ2
2

1+V2σ
2
2

z2

ª®®¬ ,
©­­«
σ2

1 −
V2ρ

2
12σ

2
1σ

2
2

1+V2σ
2
2

ρ12σ1σ2
1+V2σ

2
2

ρ12σ1σ2
1+V2σ

2
2

σ2
2

1+V2σ
2
2

ª®®¬
ª®®¬ .

Here we see that the parameter ρ12 defines how far and in which direction the

mean of θ1 shifts from its prior mean. If ρ12 is positive and Z2/V2 > µ2 then the

posterior mean for θ1 will be greater than µ1. This represents the assumption

that if θ1 and θ2 are correlated, then our prior beliefs will also be correlated.

Therefore, if we observe an outcome on θ2 that suggests that our prior mean

was an underestimate of the truth, Z2/V2 > µ2, then we might believe that µ1 is

also an underestimate of the truth hence we should increase the mean of θ1. The

amount by which we shift the mean will naturally be dependent on our prior

variance and observed variance, but it will also depend on the value of ρ12 that

we specify in advance. Consequently, when specifying ρ12, we should consider

this as a measure of how far we would want our unobserved treatment effect
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mean to shift based on indirect data.

Note that interestingly we can also use the Kalman filter [66] or the methods

presented in [67] to tackle the problem presented here, which leads to the same

posterior distribution. Details of this can be found in Appendix B.1.

We can then find the updated PoS for a study on A + B using Equation (3.1),

where P (θ |data) will correspond to the marginal distribution for θ1, or using

Bayesian clinical trial simulation to estimate this expression. Note that, in order

to calculate this value, we will also require the definition of study success for the

study of A+ B.

Following the above approach, the posterior distribution for our illustrative

example is given by

©­­«
θM

θC

ª®®¬ | ZC = 58.235 ∼MVN
©­­«
©­­«
0.342

0.378

ª®®¬ ,
©­­«
0.053 0.004

0.004 0.006

ª®®¬
ª®®¬ .

We can find the PoS of the mod-MARIANNE study using Equation (3.1) along

with this posterior distribution and information on the study design. We will

use a significance level of α = 0.05 for the mod-MARIANNE study, which

was also used in the MARIANNE study although it was split between the two

comparisons. A power of 80% and a target HR of 0.75 will be used, as in the

MARIANNE study design. This results in

VM =

(
Z0.05/2 + Z1−0.8

− log (0.75)

)2

= 94.838

following the method presented by Whitehead [21]. Hence, the PoS of the mod-

MARIANNE study, based on the results of the CLEOPATRA study, is 0.711. If we

had not included the information from the CLEOPATRA study, the PoS based
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on the marginal prior distribution would have been 0.613.

If we use a prior correlation of 0.4, instead of 0.6 as above, then we would have a

posterior distribution of

©­­«
θM

θC

ª®®¬ | ZC = 58.235 ∼MVN
©­­«
©­­«
0.324

0.378

ª®®¬ ,
©­­«
0.068 0.002

0.002 0.006

ª®®¬
ª®®¬ ,

which would lead to a PoS of 0.669 for the mod-MARIANNE study. These results

are more conservative as we are choosing to borrow less information from the

CLEOPATRA study, but the posterior PoS is still increased compared to the prior

PoS. Alternatively, the posterior distribution based on a prior correlation of 0.8

results in a PoS of 0.777 for the mod-MARIANNE study. This illustrates the effect

that the prior correlation has on the inference we make based on the output of

this approach.

The three-arm MARIANNE study [63] was completed with study parameters

as described previously and α = 0.05 split between the two comparisons of

the experimental treatments with control. The results of the study showed both

experimental arms to be non-inferior, but not superior, to the control arm. The

stratified hazard ratio for PFS for trastuzumab emtansine plus pertuzumab vs

trastuzumab plus taxane was 0.87 [63]. It is noted by Perez et al. [63] that the

median PFS of the control arm that was assumed when designing the study

was shorter than what was observed. The median PFS of the control arm was

assumed to be 11 months, which was based on information that was available at

the time. The median PFS observed in the study control group was 13.7 months,

which is similar to the estimate from more recent studies [63].

Note that, in this illustrative example, there were several differences between the

two studies, yet our method is still able to add benefit in this case. This is because

our method allows the user to consider how the beliefs regarding a treatment
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effect change based on related study outcomes and the effect that this has on

the probability of study success. The method does not require a high level of

correlation between the treatment effects, nor does it require specific information

on the similarities between the studies, it simply requires a parameter for the

level of borrowing across the studies. This means that it is applicable in a wide

range of settings and can be used to help inform and assist decision-making.

If there is doubt regarding the relationship between the study outcomes, the

user might prefer the amount of borrowing to be dependent on the observed

data. This would allow for a small amount of borrowing when the observed

data suggests little correlation between study outcomes and a higher level of

borrowing when the data suggests a relationship between outcomes. We present

a robustification in the next section that aims to capture this requirement.

3.2.5 Robustification

In Section 3.2.4, we outlined a method that can be used to update the distribution

of the treatment effects for a set of related combination therapies based on the

outcome of a single combination study. Updating a distribution given relevant

observations will always improve the accuracy of our estimates. However, so far,

we have assumed that all of the therapies in our set of “related” combinations are

truly correlated hence there is something to be gained from sharing information

across the different combinations, but this might not always be the case.

In this section, we will consider an extension to the method that allows us to take

into account the fact that two combinations might not be correlated and robustify

our procedure against this. Since we are only observing one combination study

at a time, we do not have the opportunity to learn from pairs of outcomes.

Therefore, we cannot learn about the correlation and update our model using
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this. Instead, we will consider how emerging data aligns with our prior beliefs,

which is similar to recent work on extrapolation [68].

If we observe the outcome of a study in combination programme i, which we

summarise using Zi and Vi, we will naturally want to update our beliefs about

θi using the study data. However, we may not necessarily want to update our

beliefs about θi′, for i , i′. When the posterior expectation of θi′ given Zi is

similar to our prior expectation of θi′, we would likely wish to include this

additional information, as it does not seem too controversial given what we

believed initially. However, if the marginal posterior of θi′ is shifted “too far” in

location given Zi, this might cause some concern as to whether or not we should

be including this indirect information. Therefore, our extension will allow us to

include less of the indirect information when the jump size is large.

First, we will consider a mixture prior on θ made up of two distributions. In the

first distribution, the correlation between combinations will be set equal to zero,

which implies no borrowing across combinations, and in the second distribution,

the correlation will be set to the level that we would choose if we knew that they

were in fact correlated. This value, as before, can be thought of as the amount

that we would like to borrow across the combinations. We will write this mixture

prior as

©­­«
θ1

θ2

ª®®¬ ∼ ω0
0 ×MVN

©­­«
©­­«
µ1

µ2

ª®®¬ ,
©­­«
σ2

1 0

0 σ2
2

ª®®¬
ª®®¬ +ω0

1 ×MVN
©­­«
©­­«
µ1

µ2

ª®®¬ ,
©­­«

σ2
1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

ª®®¬
ª®®¬

where the weights ω0
0 and ω0

1 can be thought of as the prior probabilities that θ1

and θ2 are uncorrelated and correlated, respectively, and ω0
0+ω0

1 = 1.

If we were to update this mixture in the standard way then, as shown in Ap-

pendix B.2, the weights would remain unchanged despite the gain in information.

Therefore, we will develop some further methodology in order to update the
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weights and use the methodology from Section 3.2.4 to update the separate

components.

Let us first consider the properties that we will want this procedure to have.

Firstly, we want it to consider the amount that the distribution has shifted and

to assign a higher weight to the uncorrelated distribution if this shift is too

large, that is, it moves “too far” from what we initially thought was realistic.

Conversely, if the shift in the marginal posterior mean is small and the study size

is large, we would want to assign a higher weight to the correlated distribution.

Finally, if the observed study is small, then we only want the weights to shift by a

small amount compared to how much they would have shifted given equivalent

results from a large study.

We want to update the weights by combining the prior weights, ω0
0 and ω0

1, with

some new information that we will contain in a yet to be defined measure, p.

This value will be used to quantify how much of the new information we want

to borrow. The posterior weights will be given by

ω1
0 =

(1 − p)ω0
0

(1 − p)ω0
0 + pω0

1

and ω1
1 =

pω0
1

(1 − p)ω0
0 + pω0

1

. (3.5)

We will require the value of p to take on the properties outlined above.

We will consider two ways of specifying p: a hypothetical posterior approach

and a limiting posterior approach. Both of these approaches have desirable

properties that align with the requirements outlined above for our weighting

procedure.

For the hypothetical posterior approach, we construct a hypothetical normally

distributed posterior for θ1 given Z2 that has posterior mean equal to the prior

mean, µ1, and posterior variance equal to the posterior variance found doing the
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usual update given V2. Hence, the hypothetical posterior is given by

N

(
µ1,σ2

1 −
V2ρ

2
12σ

2
1σ

2
2

1 +V2σ
2
2

)
,

since µpost
1 = µ1 and µ̂2 = Z2/V2.

For the limiting posterior approach, we construct the limiting posterior distribu-

tion for θ1 given Z2 as V2 →∞ that has posterior mean equal to the prior mean.

Hence, here the posterior mean will be given, as before, by µ1, and the posterior

variance will be given by σ2
1

(
1 − ρ2

12

)
so that the limiting posterior is given by

N
(
µ1,σ2

1

(
1 − ρ2

12

))
.

Our interest, however, lies in the location of the mean. Therefore, we will consider

the lower and upper quartiles of these distributions, which we will denote by

[θH
1,l , θ

H
1,u] and [θL

1,l , θ
L
1,u] for the hypothetical and limiting posterior distributions,

respectively.

We then want to compare these quartiles with the posterior that we find using

the standard GMRF procedure given the observed value of Z2 and V2. In order to

do this we will truncate the posterior at its upper and lower quartiles, θ1,l and

θ1,u.

θ1 |Z2 = z2 ∼ TN

(
µ1 −

ρ12σ1σ2V2

1 +V2σ
2
2

µ2 +
ρ12σ1σ2

1 +V2σ
2
2

z2,σ2
1 −

V2ρ
2
12σ

2
1σ

2
2

1 +V2σ
2
2

; θ1,l , θ1,u

)

Then, we will take the value of p, the value that we use to update the weights, to

be

p = P
(
θ1 ∈

[
θ

q
1,l , θ

q
1,u

]
| Z2 = z2

)
using the truncated posterior distribution of θ1 where q = H, L represents the

hypothetical or limiting posterior distributions. This value is the probability of
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Figure 3.1: The hypothetical and limiting posterior distributions for an illustrative example.

the truncated posterior distribution lying within the lower and upper quartiles

of the hypothetical/limiting posterior distributions. Hence, when the jump size

is small, this probability will be large as there will be a large overlap between the

distributions. On the other hand, when the jump size is large, this probability

will be small, especially since we are taking the posterior truncated at the lower

and upper quartiles. Note that if the posterior is perfectly aligned with the

hypothetical or limiting posterior distribution then p will take a value of 1.

An example of what the hypothetical and limiting posterior distributions may

look like can be found in Figure 3.1. In this example, our posterior beliefs do not

align with our prior beliefs as we see a shift in mean. However, there still seems

to be quite a large amount of overlap between the posterior distribution and

the hypothetical posterior distribution, while there is less so with the limiting

posterior distribution. This figure also serves to illustrate why we consider the

truncated posterior rather than the original posterior. Recall that the posterior

distribution here is based only on “related” data, and not on direct data. There-

fore, considering the truncated distribution allows us to reduce the overlap in

cases such as this one where the means are far enough apart for us to consider it

to be a reason not to borrow from the “related” combination.
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Once we have found our chosen value of p, we are able to find the updated

weights using Equation (3.5) and then our mixture posterior will be given by

©­­«
θ1

θ2

ª®®¬ | Z2 = z2 ∼ ω
1
0 ×MVN

©­­«
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σ2
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2
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2
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ª®®¬
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Following the approach outlined in Section 3.2.4, this posterior can be used to

calculate the success probability of a combination study of interest by using the

assurance as presented in [23].

If we applied this approach to our illustrative example then we would have a

posterior distribution of

©­­«
θM

θC

ª®®¬ | ZC = 58.235 ∼ ω1
0 ×MVN

©­­«
©­­«
0.288

0.378

ª®®¬ ,
©­­«
0.08 0

0 0.006

ª®®¬
ª®®¬

+ω1
1 ×MVN

©­­«
©­­«
0.342

0.378

ª®®¬ ,
©­­«
0.053 0.004

0.004 0.006

ª®®¬
ª®®¬

where the values of ZC , VC , µ and Σ were given in Section 3.2.4.

If we set ω0
0 = 0.5 and ω0

1 = 0.5, then the hypothetical posterior approach

would lead to ω1
0 = 0.16 and ω1

1 = 0.84, which would give a PoS of the mod-

MARIANNE study of 0.689. The limiting posterior approach yields similar

results with ω1
0 = 0.17 and ω1

1 = 0.83 and a PoS of 0.688. As we would expect, the

PoS under the robustified approach is between the PoS from the marginal prior

of θM , 0.613, and the standard GMRF procedure, 0.711. They are also higher than

the PoS when the prior correlation was set to 0.4, but this would not necessarily

be the case if the observed data were further away from our prior beliefs. Figure
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Figure 3.2: The marginal posterior distributions of θM for the illustrative example.

3.2 shows the different marginal posterior distributions of θM for this illustrative

example.

If we wished to use this extension for more than two combinations, we would

simply need to split our vector of random variables, θ, into pairs of random

variables, (θi, θi′) ∀ i , i′. Each pair would need to contain θi, the treatment effect

that we will observe some data for, alongside one of the correlated treatment

effects. This would allow us to find the values of p in the same way presented

here and would account for the fact that some pairs of θi and θi′ might be strongly

correlated, which would lead to a high weight on the correlated component,

whereas other pairs might be uncorrelated, which would lead to a high weight on

the uncorrelated component of the mixture. Thus, splitting the full n-dimensional

problem into n − 1 two-dimensional problems could be the most appropriate

approach in this setting, even though it is a heuristic.



Chapter 3 92

3.3 Results

In this section, we will illustrate the performance of these methods by looking

at the posterior distributions and the success probabilities that these methods

lead to in a simulation study. We will compare the results of the proposed

multivariate methods to the results of only marginal updating i.e. the univariate

alternative. We will use the assurance to calculate the study success probabilities

in the simulation study, as in previous sections, but it should be noted that other

methods for calculating the PoS could be used instead.

In order to provide a complete picture of the way these multivariate methods

perform compared to the univariate alternative, we will consider different sets of

prior distributions that may have arisen from historical data such as the results

of a small study. We will take the true value of θ1 and θ2 to be equal to 0.5.

We will assume that the prior information on both of these parameters is equiv-

alent to having a prior variance of 0.2. This is approximately equal to having

an uninformative “pre-prior” and updating based on the outcome of a study

involving 20 patients with normally distributed responses.

We will assume that we observe the outcome of a study on A+C and want to

update the distributions for both A + B and A +C based on this. If we do not

consider borrowing information across the combinations, the prior distribution

will represent all of the information, or beliefs, that we have regarding A+ B and

we will make our decisions based on this distribution in the univariate setting.

3.3.1 Effect of the sample size on the PoS

In order to illustrate what might happen to the PoS for different sample sizes,

we can consider a fixed study outcome and find the PoS using this outcome
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Figure 3.3: Plot showing the PoS for a study on θ1 as the sample size of a study on θ2 increases,
which has an outcome of Z2/V2 = 0.

with different sample sizes. Figure 3.3 shows how the PoS for a study on A+ B

changes as the sample size changes in the observed study on A+C for a fixed

outcome of no effect, Z2/V2 = 0, and a prior mean of µ = (0.5, 0.5)T . We define the

PoS to be the assurance for a future two-sided superiority study on A+ B that

has a planned sample size of 500 and a significance level of 0.05.

We see that as the sample size increases, the PoS of the GMRF approach decreases

as there is more evidence to suggest that θ2 = 0, which would suggest that, if

θ1 and θ2 are correlated, then our prior mean for θ1 is also an overestimate.

However, the hypothetical and limiting posterior approaches originally have a

lower PoS than the univariate method, but as the sample size increases, so will

the jump from the prior to the posterior mean of θ1. Since these approaches will

assign a higher weight to the univariate approach when the jump size increases,

the success probabilities from the hypothetical and limiting posterior approaches

tend towards the PoS of the univariate approach as the sample size increases.

Note that no method here is performing better than the other, as we have not

defined what the truth is and our prior mean for θ1 might be an overestimate, or

θ1 and θ2 might be uncorrelated. This figure simply serves as an illustration as to

how the different methods assign the PoS.
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3.3.2 Simulation set-up

We will consider the sample size of the study on A + C to be equal to 500 as we

would be most interested in borrowing information and using this methodology

when we observe the outcome of a large (e.g. Phase III) study.

In order to account for the variability in the treatment effect estimate that we

might have based on such a small study, we will consider three different prior

means for θ2. (Results for different prior means of θ1 can be found in Appendix

B.3.) We will consider prior means of 0.2, 0.5 and 0.8 for θ2. These values corre-

spond to the posterior means we would find given an uninformative “pre-prior”

and an update based on the quartiles of the distribution of the score statistic

when the true value of θi is equal to 0.5 and the value of Vi is equivalent to a

study size of 20 patients with normally distributed responses.

We set up the different prior distributions and we simulate 10000 replications of

Z2 from Z2 |θ2 = 0.5 ∼ N (0.5 × 125, 125) where V2 = 125 corresponds to approxi-

mately 500 patients with normally distributed responses. We then update each

of the different prior distributions to find the set of 10000 posterior distributions

for each prior using a correlation of ρ12 = 0.8.

As before, we considered the definition of the PoS for a future study on A+ B

to be equal to the assurance for a two-sided superiority study with a planned

sample size of 500 and a significance level of 0.05. We further assumed that, in

order to run a study on combination A + B, we would need to observe a PoS

of at least 0.6. The selection of an appropriate decision criterion on the PoS is

discussed in [69]. We recorded the PoS of each replication along with whether or

not this would lead to a “go” decision.
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3.3.3 Results

The results of the simulation study are given in Table 3.1. For the univariate

approach, we do not need to consider multiple replications of a study on combi-

nation A+C, as we would only consider direct information on combination A+ B

in this approach. Therefore, the mean PoS and the proportion of “go” decisions

for the univariate approach actually correspond to the PoS and the “go” deci-

sion based on the prior distribution, since no direct information on combination

A+ B is observed in the simulation study. The mixture (no updates) approach in

the table is the standard Bayesian approach as mentioned in Section 3.2.5 and

presented in Appendix B. This approach has the same distributional components

as the hypothetical and limiting posterior approaches but the weights are not

updated.

µ1 = 0.2 µ2 = 0.2 µ2 = 0.5 µ2 = 0.8
Univariate Mean PoS 0.520 0.520 0.520

% “Go” (PoS > 0.6) 0 0 0
GMRF Mean PoS 0.802 0.530 0.242

% “Go" (PoS > 0.6) 99.6 22.7 0
Hypothetical Mean ω1

0 0.623 0.137 0.625
Mean PoS 0.615 0.529 0.429

% “Go" (PoS > 0.6) 74.9 18.6 0
Limiting Mean ω1

0 0.639 0.153 0.642
Mean PoS 0.610 0.529 0.434

% “Go" (PoS > 0.6) 70.9 17.9 0
Mixture Mean PoS 0.661 0.525 0.381
(no updates) % “Go" (PoS > 0.6) 95.9 4.9 0

Table 3.1: Table showing the results for combination A+ B of the simulation study where the
true values of θ1 and θ2 are given by 0.5 and µ1 = 0.2 and µ2 represent the prior means for each
combination. Note that the univariate approach does not update the distribution of combination
A+ B based on the results of combination A+C and the mixture (no updates) approach is the
mixture approach using standard Bayesian updating, which does not update the weights in this
setting.

In Figure 3.4, fifty posterior distributions under the GMRF approach are plotted

for fifty replications with the prior means given by µ1 = 0.2 and (a) µ2 = 0.2, (b)

µ2 = 0.5 and (c) µ2 = 0.8.
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(a) (b) (c)

Figure 3.4: Marginal posterior distributions of θ1 for 50 of the 10000 replications using the GMRF
approach. The prior mean for θ1 was set to µ1 = 0.2 and the prior mean for θ2 was set to (a)
µ2 = 0.2, (b) µ2 = 0.5 and (c) µ2 = 0.8.

We see that when we have a prior mean of µ1 = 0.2, this leads to a PoS of 0.520

in the univariate approach, which does not exceed the required threshold to

make a decision to run the next study. Therefore, under the “go” rule of the PoS

exceeding 0.6, if we do not use any indirect data, we will never run a study based

on this univariate prior, despite the true value of θ1 being equal to 0.5.

However, when we do include the indirect data, we make many more “go” deci-

sions. This, however, is also dependent on what the prior mean for combination

A+C was. When µ2 = 0.2, this is underestimating the true value of θ2, therefore

many of the observed studies will result in an estimate that exceeds the prior

mean. This means that the posterior mean of combination A+C will be increased

in the majority of cases and, since we have set ρ12 = 0.8, the posterior mean of

combination A + B will also increase from a prior mean of µ1 = 0.2. This will

cause an overall increase in the PoS compared to when we did not include indi-

rect data, hence we will choose to “go” in the majority of cases. This is what we

observe in Table 3.1, with the mean PoS being equal to 0.802 and the majority of

the PoS values exceeding 0.6 resulting in 99.6% of decisions being “go” decisions.

This is also reflected in Figure 3.5(a), which provides a histogram of the success

probabilities for this set of prior means.
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Figure 3.5: Histograms of the PoS for a study on θ1 in the simulation study using the GMRF
approach. The prior mean for θ1 was set to µ1 = 0.2 and the prior mean for θ2 was set to (a)
µ2 = 0.2, (b) µ2 = 0.5 and (c) µ2 = 0.8.

When µ1 = 0.2 and µ2 = 0.5, the majority of the replications will lead to little

change in the posterior mean from the prior mean of combination A+C as the

true treatment effect is given by θ2 = 0.5. Therefore, this will cause the posterior

mean of combination A+ B to also remain similar to its prior mean as there is

little difference between the data and our prior beliefs. However, since we will

still be borrowing information, our posterior variance for combination A+ B will

decrease. This will cause the PoS to increase slightly compared to the univariate

PoS. We observe a mean PoS of 0.530 and we would make the decision to run a

study on combination A+ B in 22.2% of cases, which is reasonably higher than

had we not included the indirect information, despite the fact that our posterior

mean for θ1 will still actually be an underestimate.

However, when our prior means for θ1 and θ2 underestimate and overestimate

the truth, respectively, the multivariate method performs worse than the uni-

variate method. This is because the data will cause the posterior mean for θ2 to

reduce from µ2 = 0.8 to be closer to 0.5. This, in turn, will also cause the posterior

mean of θ1 to decrease from its already low prior mean of µ1 = 0.2. This leads

to a mean PoS of 0.242 and zero “go” decisions in all 10000 replications. Conse-

quently, if there is a chance that the prior estimates of the effects modelled may

be incorrect in opposite directions, this methodology may not be appropriate.
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However, one might assume that there will be some correlation between the

prior estimates of related correlations and so we might expect that they will often

be wrong in the same direction, given the nature of the problem. This is, in fact,

what is assumed by the methodology presented here.

These results are also highlighted in the plots provided in Figure 3.4. In Figure

3.4(a), we see that when θ2 is underestimated by its prior mean, this leads to a

posterior mean for θ2 that is on average higher than the prior mean. When θ2 is

equal to its prior mean, on average the posterior mean is equal to the prior mean

for θ1, as seen in Figure 3.4(b), and when the prior mean for θ2 is an overestimate,

the posterior mean for θ1 is on average lower than the prior mean, as seen in

Figure 3.4(c).

These patterns will hold for other values of µ1, µ2 and θ2 when the prior correla-

tion is positive. When µ2 is an overestimate of the true value of θ2, the mean of

θ1 will decrease and cause a lower PoS than when µ2 is equal to the true value of

θ2. Similarly, when µ2 underestimates the true value of θ2, the mean of θ1 will

increase and cause a higher PoS than when µ2 is equal to the true value of θ2.

Results for our example with µ1 = 0.5 and µ1 = 0.8 can be found in Appendix

B.3.

In this simulation study, we considered both θ1 and θ2 to be equal. If this was

not the case, the patterns observed here would still be the same. That is, if we

observe a value of Z2/V2 that is greater than the prior mean, µ2, this will cause the

posterior mean of θ1 to be greater than µ1, assuming a positive prior correlation.

Similarly, if we observe Z2/V2 < µ2, this would result in a posterior mean of θ1

that is less that µ1. The size of the jump from the prior mean to the posterior

mean of θ1 is related to the size of the difference between Z2/V2 and µ2, the prior

correlation, the observed study size and the prior variances.

We also considered the performance of the two possible mixture approaches that
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(a) (b) (c)

Figure 3.6: Marginal posterior distributions of θ1 for 50 of the 10000 replications for the mixture
approach with no weight updates. The prior mean for θ1 was set to µ1 = 0.2 and the prior mean
for θ2 was set to (a) µ2 = 0.2, (b) µ2 = 0.5 and (c) µ2 = 0.8.

were presented in Section 3.2.5 along with the standard Bayesian approach in the

simulation study and the results are presented in Table 3.1. The posterior distri-

butions for fifty replications are given in Figures 3.6 and 3.7 and the histograms

of the success probabilities are given in Figures 3.8 and 3.9 for the mixture

approaches. We used prior weights of 0.5 for the correlated and uncorrelated

components in each of the mixture approaches.

Since the mixture prior approach was introduced to account for the fact that two

combinations may not be correlated and to borrow less when this is the case, the

results that we see for all three mixture approaches are not as extreme as in the

GMRF approach in most cases. That is, the mean PoS and the proportion of “go”

decisions are lower in the mixture approach than in the GMRF approach when

the indirect data causes an increase in mean, i.e. µ2 = 0.2, and the mean PoS and

the proportion of “go” decisions are higher than in the GMRF approach when the

indirect data causes a decrease in mean, i.e. µ2 = 0.8. This is what we would hope

to see given that when there is a large jump in means, a higher weight is assigned

to the uncorrelated component of the model. In addition, the values of the mean

PoS and the proportion of “go” decisions for all three mixture approaches in

Table 3.1 lie between the values of the univariate and GMRF approaches. This is

intuitive given that the mixture approaches are weighted mixtures of these two
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(a) (b) (c)

(d) (e) (f)

Figure 3.7: Marginal posterior distributions of θ1 for 50 of the 10000 replications using (a) - (c)
the hypothetical posterior approach and (d) - (f) the limiting posterior approach. The prior mean
for θ1 was set to µ1 = 0.2 and the prior mean for θ2 was set to (a,d) µ2 = 0.2, (b,e) µ2 = 0.5 and
(c,f) µ2 = 0.8.

models hence the PoS of each replication will be bound by the univariate PoS

and the GMRF PoS for that replication.

In Figure 3.7, we see very similar patterns in terms of the posterior distributions

under the two mixture approaches. One of the key things that we notice from

these posteriors is that the peak of the distributions are much closer to the

prior means than in Figure 3.4, which showed the posteriors under the GMRF

approach. This is due to the way in which we specified the weightings in Section

3.2.5.

One of the places where the effect of the mixture approach is the most apparent

is when µ1 = 0.2 and µ2 = 0.8. Here, the GMRF method observed, in most cases,

evidence of a lower value of θ2 than was predicted by µ2, causing the posterior
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Figure 3.8: Histograms of the PoS for a study on θ1 in the simulation study using the mixture
approach with no weight updates. The prior mean for θ1 was set to µ1 = 0.2 and the prior mean
for θ2 was set to (a) µ2 = 0.2, (b) µ2 = 0.5 and (c) µ2 = 0.8.

means of both θ1 and θ2 to decrease compared to their prior means resulting in

a low mean PoS and no “go” decisions in all 10000 replications. In both of the

mixture approaches, however, this jump from the prior to the posterior mean

of θ2 caused the method to assign a higher posterior weight to the uncorrelated

component of the mixture. This meant that the posterior mean did not drop as

low as in the GMRF case, hence the mean PoS is much higher in the mixture

approaches than in the GMRF approach. This is exactly the situation where the

mixture approach provides a benefit over the GMRF approach.

The difference in the performance of the hypothetical posterior approach as

compared to the limiting posterior approach is less obvious in Table 3.1. To learn

more about the differences, we look at the histograms presented in Figure 3.9.

In the histograms presented, we see that the limiting posterior approach is less

likely to assign more extreme values of the PoS than the hypothetical posterior

approach. In Figure 3.9(d), the final bar on the histogram is much smaller than

those that precede it, despite an overall upwards trend until that point. This

contrasts with what we see in Figure 3.9(a). Similarly, in Figure 3.9(c), we see

that the first bar in the histogram is quite an amount higher than the first bar

in the histogram in Figure 3.9(f). This is also reflected in Table 3.1 where we see

that, in the simulation study, the limiting posterior approach assigns a higher

posterior weight on average to the uncorrelated component of the model than
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Figure 3.9: Histograms of the PoS for a study on θ1 in the simulation study using (a) - (c) the
hypothetical posterior approach and (d) - (f) the limiting posterior approach. The prior mean for
θ1 was set to µ1 = 0.2 and the prior mean for θ2 was set to (a,d) µ2 = 0.2, (b,e) µ2 = 0.5 and (c,f)
µ2 = 0.8.

the hypothetical posterior approach in all three cases.

The reason that the limiting posterior approach is less likely to assign these

more extreme values is related to the way that the weights are assigned. In

both mixture approaches, a value of p = 1 means that the posterior under the

GMRF approach is perfectly aligned with either the hypothetical or limiting

posterior. In the simulation study, there is potential for values of p = 1 in the

hypothetical posterior approach. In fact, values of p = 1 will always be possible

no matter the size of the study. Even a study with only 20 patients could cause a

weight of 1 to be assigned to the correlated component. However, the limiting

posterior approach is more cautious in how it assigns the values of p. To have

a value of p = 1, one would need a study that is large enough to result in a

posterior variance equal to the limiting posterior variance. This means that the
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hypothetical posterior mixture approach has potential to assign more extreme

weights based on less information than the limiting posterior mixture approach

would need to assign an equally extreme weighting. This is why we see the

differences in the histograms for the success probabilities.

3.4 Discussion

In this chapter, we have presented a method that allows us to update the es-

timates of the treatment effects for a set of related combination studies based

on a single observation. This allows us to include both direct and indirect data

in the treatment effect estimates, which reduces the variance, hence improves

the accuracy of these estimates. The probability distributions representing our

beliefs about a particular therapy can often be used to gain insight into the

expected performance of a new therapy, but they are also often used to calculate

the probability of success of an upcoming study through the calculation of the

assurance [23] or other distribution based definitions of the probability of study

success. This success probability is then used to assist decision-making regard-

ing the study. Improving the accuracy of treatment effect estimates will allow

decision-making to improve by providing the decision makers with the ability

to recognise beneficial, or ineffective, treatments sooner.

The CLEOPATRA and MARIANNE studies were used to build an example that

illustrates how the proposed methodology can be used in the real world. Identical

marginal priors were used for both studies and the results of the CLEOPATRA

study were used to update the joint distribution.

The methods presented provide an overall advantage over traditional univariate

approaches due to the fact that they are able to use the available data appropri-

ately. The time when these methods might not perform as well as the traditional
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methods are when the prior means of the treatment effects are incorrect by quite

a significant distance in opposite directions. However, we presented an extension

to our method in Section 3.2.5 that allows this to be accounted for and limits

the jump size from the prior mean to the posterior mean when indirect data has

caused the jump.

In order to use the presented methods to calculate the PoS of an upcoming study

based on the results of a related study, three types of information are required.

The first is the significance level and the planned sample size of the upcoming

study, both of which should be readily available if we are considering whether or

not to run the study. The second is the score statistic and the Fisher information

of the completed study, which should also be available at the conclusion of the

study. The final type of information relates to the prior parameters for the distri-

bution of treatment effects. The prior mean and variance for a treatment effect is

a standard requirement when calculating the PoS, whereas the prior correlation

is an additional requirement of our approach over standard approaches. Rather

than trying to quantify the correlation between treatments, one may instead

consider this parameter as the amount of indirect information they would like to

use (i.e. the strength of borrowing) when calculating the updated PoS as shown

in Section 3.2.4. We also presented a robustification in Section 3.2.5 that allows

the alignment of our prior beliefs with the data to guide the degree of borrowing

across combinations. The value of the PoS will always be dependent upon the

prior parameters when we use methods such as the assurance [23] to calcu-

late it. Therefore, our method will naturally have some sensitivity towards the

choices of these prior parameters and users should explore this when specifying

prior parameters. However, since our method allows the user to incorporate

relevant study data in this calculation, the PoS calculated under this approach

will be less reliant upon the prior mean and variance than traditional univariate

approaches.
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Benefits Limitations
Univariate Well established/accepted Cannot capture

No bias from indirect data relationships
GMRF Captures relationships Relies on prior

Indirect data used assumptions
Robustification Captures relationships Relies on prior

Mixture of methods assumptions

Table 3.2: Summary of the conclusions and recommendations of when to use each approach.

We highlighted the performance of the multivariate method in Section 3.3 and

showed that, compared to the univariate approach for calculating for the PoS,

it leads to improved decision-making regarding whether or not a particular

combination study should be run.

A summary table of the approaches presented in this chapter can be found in

Table 3.2.

While most of the examples discussed, and the results in Section 3.3, were pre-

sented for a pair of combinations, it should be noted that the method can be used

for any number of combinations. The method could also be used to assist internal

decision-making based on external data. For example, multiple companies have

developed PD-1/PD-L1 inhibitors, which are often combined with chemother-

apies to treat different cancers. Companies could use the results of an external

study to update the PoS of a study of their PD-1/PD-L1 inhibitor combination

in the same indication. Furthermore, these methods could be applied not only

in the setting of related combination studies but also in different settings where

there is potential to share information across studies. Some potential settings

that could benefit from these methods include the same combination but also in

different indications and programmes in different regions.

Although the methodology presented in this chapter is clearly useful in itself, our

main interest lies in decision-making for portfolios of combinations. Therefore,

in Chapter 4 we will look at decision-making for portfolios of combinations. The
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methodology presented in this chapter will be added to an existing heuristic [49]

for the PS approach [39], which was discussed in Chapter 2. Incorporating this

methodology into portfolio management techniques allows the relationships

between studies to be considered at the planning stage and for study outcomes

to guide the decisions made for future related combination studies, which was

not accounted for previously.



CHAPTER 4



Chapter 4
Improving decision-making for

portfolios of combination therapies

4.1 Introduction

Current methods for pharmaceutical portfolio decision-making do not take into

account the differences between single agent and combination drug develop-

ment. That is, they consider each development programme as independent of

each other while in many instances some relationships can be expected. In this

chapter, we present a method that extends the work discussed in Chapter 2 to

consider relationships between different drug development programmes using

the approach detailed in Chapter 3.

Existing methods for pharmaceutical portfolio management address decisions

such as the scheduling of studies [39], out-licensing [38] and study design [37].

These methods generally use mathematical programming techniques, often

stochastic programming, and aim to find the set of decisions that maximise the

value of the portfolio. Portfolio management techniques help to ensure that the

most valuable programmes are selected and conducted optimally. This in turn

can lead to reductions in the failure rates of different phases, and programmes

overall, alongside helping to ensure that beneficial treatments reach the patient
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population as soon as possible and that investments are made in the most

promising areas.

However, none of the existing methods for portfolio management are able to cap-

ture certain aspects of combination drug development such as the relationships

between similar combinations or the additional logistical decisions that are re-

quired in combination drug development. Taking into account the relationships

between combination therapies allows us to make better informed decisions and

improve portfolio outcomes.

In this chapter, we present a method that extends the work of Colvin and Mar-

avelias [39], which was presented and discussed in detail in Chapter 2, to con-

sider combination drug development. Motivation and context for the approach

is provided in Appendix C through the use of an illustrative example that is

based on a real world pharmaceutical portfolio, the Roche neuroscience pipeline

[70] as of January 2019.

In Section 4.2, we provide the setting for the problem of scheduling studies in a

pharmaceutical portfolio. We also provide details of a heuristic for the project

scheduling approach [39] that was presented by Christian and Cremaschi [49]

and extended in [71]. This heuristic overcomes the issue of the full multi-stage

stochastic programme (MSSP) of the project scheduling approach [39] not being

solvable for portfolios containing more than six drugs in reasonable time. It

achieves this by decomposing the programme into a series of smaller knapsack

subproblems.

In Section 4.3, we highlight the relevance of updating the study success probabil-

ities in the portfolio management problem. We then detail how this procedure

can be added to the “after every realisation” (AER) version [71] of the knap-

sack decomposition algorithm (KDA) heuristic [49] and provide the full details

of our approach, the adaptive knapsack decomposition algorithm (aKDA), in
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Section 4.4. The implementation and performance of the aKDA is compared to

the KDA and the MSSP for the project scheduling approach in Section 4.5.

Several extensions to the aKDA are presented in Section 4.6, such as the inclusion

of more than two study outcomes in the decision tree along with additional

constraint sets that address different aspects of combination drug development.

This chapter is concluded with a discussion of the aKDA and how it can be

implemented in the real world in Section 4.7.

4.2 Portfolio-level decision-making

Portfolio management can cover many different types of decisions regarding the

portfolio, from which programmes to include in the portfolio [36] to how the

programmes should be designed [37]. We are interested in the problem of which

studies to select and how to schedule the selected studies. In this section, we will

formalise this problem, briefly discuss the approach of Colvin and Maravelias

[39] that was detailed in Chapter 2 and present a heuristic for this approach

[49][71].

4.2.1 Problem formulation

We assume that there is a finite number of programmes, |I |, in the portfolio, and

that each programme, i ∈ I, has a known, finite number of studies remaining, |Ji |.

We assume that studies within a programme must be completed sequentially and

a study, (i, j), can only be initiated if all previous studies have been completed

successfully.
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We further assume that there is information available that will allow us to

estimate the probability of success (PoS) of each of the studies, φi j ; study dura-

tions, τi j ; study costs, ci j ; study resource requirements, λi jr ; resource availability,

λmax
r ; the revenue that would be realised upon successful completion of the

programme, revmax
i .

We are interested in finding the set of programmes that should be initiated, along

with when each of the studies within the programmes should be initiated. Given

that the outcome of a study is uncertain, we require that the scheduling takes this

uncertainty into account and provides decisions based on the different potential

study outcomes. The optimal decisions will be dependent on the objective, which

we will assume is linked to the value of the portfolio. These decisions will also

be subject to resource constraints.

4.2.2 Project scheduling approach

Colvin and Maravelias [39] presented a multi-stage stochastic programme (MSSP)

for the problem of scheduling clinical studies within a portfolio. This approach

finds the set of decisions that should be made in order to maximise the expected

net present value (ENPV) of the portfolio, whilst accounting for the uncertainty

in the outcomes of the clinical studies. This approach was discussed in detail in

Chapter 2, so here we will not go into detail and will simply provide a summary

of the key points.

The input parameters required for this model include those listed in Section 4.2.1.

The method also requires penalties to be specified that should be incurred per

time period for late completion and reduced active patent life. These penalties

encourage studies to be completed as soon as possible and without delays

between sequential studies. A discounting factor is also required that is applied
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to the cost of a study and encourages a study to be run later in the planning

horizon, had it not been initiated earlier.

The scenario-based MSSP of the project scheduling approach considers all of

the different possible trial outcome scenarios and, upon solving, it returns the

optimal set of decisions, which can be represented using a decision tree. For

more details of this approach, see Chapter 2 and [39].

Although this approach is able to capture many of the different, crucial aspects of

the process of portfolio management, it generally cannot be solved in reasonable

time for portfolios containing more than six drugs. This is due to the size of the

MSSP, which increases quickly as we increase the number of programmes due to

the requirement of the non-anticipativity constraints. Given that our interest lies

in portfolios containing combination therapies, for which there may be a large

number of potential combinations of interest due to the nature of the problem,

this makes the MSSP formulation unsuitable.

4.2.3 Knapsack decomposition algorithm

Christian and Cremaschi [49] presented multiple heuristics to tackle the issue of

the MSSP formulation [39] being unsolvable for portfolios containing more than

six drugs. The most promising heuristic was a knapsack decomposition algo-

rithm (KDA) that breaks the full MSSP down into a series of smaller subproblems

that are solved iteratively at each node in the decision tree. The subproblems are

similar in construction to the traditional knapsack problem discussed in Chapter

1, where the items correspond to the studies and the capacity of the knapsack

corresponds to the resource constraints. In this section, we present the “after

every realisation” (AER) version of the KDA that was presented in [71] as it is

noted that this is an improvement on the original version of the KDA that was

presented in [49]. The differences between these versions will be discussed at
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the end of this section, along with some of the other modifications presented by

Christian and Cremaschi [71].

The algorithm starts at the beginning of the planning horizon, at which point

there is only one subproblem corresponding to the current state of the portfolio.

This is represented in the resulting decision tree by the first node. The knapsack

subproblem at this point, which will be defined below, must then be solved.

The solution to this subproblem will contain the studies that should be run at

this time point. Then, based on the studies selected, further subproblems are

generated that correspond to the time at which we will observe the next set

of study outcomes and the potential outcomes that will be observed i.e. study

success or failure. We denote a particular subproblem by [t, k], where t ∈ T is

the time of the subproblem and k ∈ Kt is the particular subproblem at this time

point. Here, Kt is the set of subproblems at time t and this set will be built during

the KDA. The different subproblems at each time point will be represented by

different nodes in the decision tree at that time point.

In each subproblem, the first step is to find the set of eligible studies. A study is

eligible if all prerequisite studies have been completed successfully, the study is

not ongoing and it has not already been completed. This is represented by an

eligibility indicator, Ei jtk , which is equal to 1 when study (i, j) is eligible to be

run in the kth subproblem at time t, [t, k].

Then, the values of the studies must be calculated. The value of study (i, j) at

time t is given in [49] to be

Ri jt =

[
Rp

i j − γ
L
i

(
t +

∑
j ′≥ j

τi j ′

)]
×

∏
j ′≥ j

φi j ′ (4.1)

This value is calculated by considering the potential revenue, Rp
i j , that is associ-

ated with study (i, j) and applying the deductions in revenue due to a shorter

active patent life, γL
i , that were applied in the original PS approach. Then, we
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multiply this by the probability of the remaining trials being successful to return

the expected revenue.

Rp
i j is the potential revenue generated by study (i, j) and is given by

Rp
i j = revmax

i −
∑
j ′≥ j

ci j ′

1 − 0.025
j ′∑

j ′′= j+1

τi j ′′−1

 ,

where revmax
i is the total maximum possible revenue generated by drug i, ci j is

the cost of study (i, j), τi j is the duration of study (i, j), φi j is the PoS of study

(i, j) and γL
i is the penalty due to a smaller market share.

The costs here are linearly depreciated by a factor of 0.025 to make it attractive to

run trials later in the planning horizon if they have not already been initiated.

This depreciation was also performed in the objective function of the PS approach,

as can be seen in Appendix A.2.

Note that, unlike the full MSSP, the penalty for reduced active patent life, γD
i , is

not considered in the value calculation given in Equation (4.1). This is because

the KDA assumes that each trial is initiated as soon as the previous one is

concluded when calculating Ri jt . Hence, a penalty for a programme being idle is

not incurred.

Each study, (i, j), will have a corresponding weight, which corresponds to the

resource requirement of the study and is given by λi jr ∀r ∈ R.

The objective function of the knapsack subproblem at [t, k] is given by

maximise
∑
i, j

Ri jt Xi j (4.2)

where Xi j is a binary decision variable that is equal to 1 when study (i, j) is se-

lected to be run in subproblem [t, k]. The constraints of this knapsack subproblem
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ensure that any studies, (i, j), that we select are eligible to be run,

Xi j ≤ Ei jtk ∀i, j (4.3)

and that the resource requirements do not exceed the resource availability,

∑
i, j

λi jr
(
Xi j + yi j

)
≤ λmax

r ∀r , (4.4)

where yi j is equal to 1 when study (i, j) was initiated prior to the current sub-

problem and is currently ongoing in [t, k].

Overscheduling constraints are included to ensure that there will be enough

resources available in the future to complete all of the selected programmes.

∑
i, j ′≥ j

Xi jλi j ′rτi j ′ ≤ λ
max
r max

{∑
j ′> j

τi j ′ + 1∀i, j : Ei jtk = 1

}
∀r (4.5)

This constraint aims to capture the ability of the MSSP to consider future out-

comes and find the decision that results in the best expected outcome based on

these future outcomes.

Finally, there are constraints on the form of the decision variables.

Xi j ∈ {0, 1} ∀i, j (4.6)
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The algorithm for the AER version of the KDA [71] is given below.

1 t := 1;

2 while t ≤ |T | do

3 k := 1 ;

4 while k ≤ |Kt | do

5 Calculate Ri jt , Ei jtk ∀ i, j;

6 Solve knapsack problem to find solution Xi j ∀i, j;

7 Find the time t′ until the next observation given Xi j and yi j ;

8 Generate set S of knapsack problems given observations at time t + t′;

9 Kt+t ′ = Kt+t ′ ∪ S;

10 k := k + 1;

11 t := t + 1;

The KDA significantly reduces the size of the formulation and the time taken

to find the optimal solution. Christian and Cremaschi [49] noted that, in their

analysis of the original KDA, most objective values were within 3% of the true

optimal value of the MSSP. This suboptimality can arise for different reasons,

which we will now briefly discuss.

The “do nothing” solutions of the MSSP were found to be the setting where

the KDA was found to perform the worst. However, it should be noted that,

in reality, running no studies when there are studies available to run is not an

option a company would consider. Therefore, this drawback of the KDA may

not be as much of a drawback in the real world as it appears to be in the analyses.

Christian and Cremaschi [49] also found that the optimal set of decisions found

by the KDA is not sensitive to changes in the parameters.

One drawback is that the KDA has a tendency to underutilise resources due to

the inclusion of the overscheduling constraint. The overscheduling constraint

considers the case where all selected studies are successful hence resources must
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be available for all future studies to be completed simultaneously, which is an un-

likely situation hence leads to underutilisation of resources. This underutilisation

limits future investments in additional products hence leading to suboptimal

decisions compared to the full MSSP discussed in detail in Chapter 2.

At the beginning of the section it was noted that the KDA presented here is the

“after every realisation” (AER) version of the algorithm [71]. The original KDA

[49] only generated subproblems upon the conclusion of all selected studies,

“after all realisations”. This means that it did not need to consider ongoing studies

when generating subproblems and it led to a sparser decision tree. The AER

version [71] was then presented as a modification and it was shown to provide

solutions that are closer to those of the full MSSP presented in [39]. Another

alternative generation rule that was presented in [71] generated subproblems at

“each time period” (ETP). In this version of the KDA, subproblems are generated

iteratively at every time period in the planning horizon regardless of whether

or not any studies complete at that point. This was shown to provide improved

results to the AER version in a small number of cases, but the authors concluded

that the added benefit was not worth the increase in computational burden [71].

For this reason, we only consider the AER version of the KDA in this chapter

and so wherever we refer to the KDA, we are referring to the AER version of the

KDA.

Another set of modifications to the KDA that was presented by Christian and

Cremaschi [71] is related to the overscheduling constraint, given in Equation

(4.5). It was noted in [49], and mentioned previously, that the overscheduling

constraint often leads to conservative solutions compared to the solutions of the

MSSP. Therefore, Christian and Cremaschi [71] presented an objective function

penalty approach and a probabilistic constraint approach as alternatives to the

original constraint. However, these two approaches were shown to be inferior to

the original constraint in most cases. Therefore we will only consider the original
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overscheduling constraint in the work that follows.

4.3 Updating study success probabilities

It was previously noted that the PoS of a study is one of the measures that is

most commonly used to assist decision-making regarding the running of a study.

It can also be used, amongst other measures, to compare different studies that

are competing for resources. The full MSSP formulation of the PS approach [39]

uses the PoS to calculate the probability of the different trial outcome scenarios,

which are then averaged over to calculate the expected net present value (ENPV)

of the portfolio. The KDA [49][71], however, does not consider the full set of trial

outcome scenarios and instead uses the PoS to calculate the value of a study in

each subproblem, leading to a direct comparison of the value of the different

studies and how the PoS affects this value.

Although the MSSP and KDA require the study success probabilities as input

parameters that are fixed throughout the optimisation procedure, they do not

require a specific definition of the PoS. One of the most common methods for

calculating the PoS uses the concept of the assurance [23] and was discussed in

Chapter 1. Using this approach, the PoS of a study is given by

PoS =
∫

P
(
study success | θ

)
P (θ | data)dθ (4.7)

where θ represents the treatment effect. There is often a closed form solution

available for this calculation and when there is not, it can be estimated using

Bayesian clinical trial simulation [23].

It is clear that, using this formulation of the PoS, the inclusion of new data re-

garding θ can be easily incorporated via Bayesian updating of P (θ | data). The

inclusion of indirect data, for example data from a related combination study,
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is less straightforward. One of the main differences between single agent and

combination drug development is the potential to learn across related combi-

nation studies, where we deem two studies to be related if they have at least

one treatment in common and are used in the same indication, for example. In

Chapter 3, we discussed the way in which we can use these relationships to

update the PoS for a combination study based on the outcome of related studies.

This was achieved by updating P (θ | data) given the outcome of a related study

and is recalled here.

Let θ1 and θ2 represent the treatment effects of two related combination studies

and further assume that we can represent our prior beliefs for these using a

bivariate normal distribution. Then, if the outcome of the study on θ2 has a score

statistic of Z2 and a Fisher information of V2, we can find

©­­«
θ1

θ2

ª®®¬ | Z2 ∼MVN
©­­«
©­­«
µ1 −

ρ12σ1σ2V2
1+V2σ

2
2
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2
2

z2

1
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2
2
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σ2
2

1+V2σ
2
2

z2

ª®®¬ ,
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σ2
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V2ρ

2
12σ

2
1σ

2
2

1+V2σ
2
2
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1+V2σ

2
2

ρ12σ1σ2
1+V2σ

2
2

σ2
2

1+V2σ
2
2

ª®®¬
ª®®¬ (4.8)

where µi and σ2
i give the prior mean and variance of θi, respectively, and ρii′

defines the prior correlation between θi and θi′, which may be considered as the

level of borrowing.

As discussed in Chapter 3, we can find the updated success probability for

the study of θ1 given the outcome of the study of θ2 by taking the marginal

distribution of θ1 in Equation (4.8) and using this to calculate the assurance via

Equation (4.7).

4.4 Method

In this section, we present a framework that extends the work of Christian and

Cremaschi [71] to consider relationships between the different programmes in
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the portfolio. We do this using the methods presented in Chapter 3 to update the

PoS throughout the decision-making procedure whenever a relevant outcome is

observed.

This method requires the same input parameters as the KDA in addition to a

set of parameters relating to updating the PoS. For each programme, i, we need

to consider the main treatment effect of interest, which we will denote by θi.

This is the treatment effect that we consider in the assurance calculation given

in Equation (4.7) and so it might be chosen to be the treatment effect relating to

the primary endpoint in Phase III, for example. Then, once the effect has been

chosen, we require a binary indicator for whether study (i, j) being “successful”

is related to the main treatment effect of interest in programme i, θi. We will

denote this indicator by θind
i j . This is because the method that we use to update

the study success probabilities was designed for use in the later phases of drug

development, where a study success is related to the main treatment effect of

interest. For example, a Phase I study being deemed successful is not typically

related to the main treatment effect of efficacy of the drug whereas the success

of a Phase III study typically is related to the efficacy endpoint. We require this

indicator so that we only update the study success probabilities after relevant

outcomes are observed.

For each study, (i, j), with θind
i j = 1, we require the significance level, αi j , the

power, 1 − βi j , and the minimally important difference, δi j . For studies with

θind
i j = 0, we require the PoS, φi j , to be specified as an input parameter. Then

for each programme, i, in the portfolio we require a prior mean, µ[1,1]
i , for θi,

which could be set equal to δi j , and a prior standard deviation, σ[1,1]
i . The final

requirement is the correlation between the different drugs in the portfolio, ρii′,

which can be considered as the level of borrowing of information across the

drugs, as noted in Chapter 3.

Using these parameters, we are able to find the critical value of the hypothesis
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test of each of the studies, di j , and the planned Fisher information of the study,

Vi j . We will require both of these during the decision-making procedure and they

are given by

d =
Zα/2

(
Zα/2 + Zβ

)
δ

V =
(

Zα/2 + Zβ
δ

)2

(4.9)

where Zx = Φ
−1(1 − x) and Φ (·) is the standard normal cumulative distribution

function.

The aKDA begins at the first time point, t = 1, in the first and only subproblem at

this time point, k = 1. This node in the decision tree is referred to as subproblem

[1, 1], as was used in the KDA in Section 4.2.3. The first step at this node, and at

any node that has eligible studies available, is to build the distribution of θ. This

is required as the aKDA calculates the PoS based on the current distribution of θ

for the eligible studies in each subproblem rather than using the same PoS across

all subproblems as in the KDA.

The distribution of θ is built in each subproblem, [t, k], using the most recent

parameter estimates of the mean and standard deviation of θi, which we denote

by µ
[t,k]
i and σ

[t,k]
i . We use the prior correlation, ρii′, rather than using an updated

version, as this is treated as fixed throughout the decision-making process due

to the fact that it controls the level of borrowing across studies.

The multivariate normal distribution is used to model the distribution of θ at

each node. In subproblem [t, k], this is given by
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.

After the distribution of θ has been built, the next step in the aKDA is to find the



Chapter 4 122

eligible studies along with their values and success probabilities. The eligible

studies are defined in the same way as in the KDA. A study is eligible if it has not

yet been initiated and if all prerequisite studies have been completed successfully.

We use the marginal distribution of θi along with αi j , βi j and δi j to find the PoS

of study (i, j) in subproblem [t, k], φ[t,k]i j , using the calculation of the assurance

as given in Equation (4.7) for all studies with θind
i j = 1. For studies with θind

i j = 0,

the PoS should be specified as one of the input parameters. The value of each of

the studies, Ri jt , can then be calculated using the same formula as in the KDA

approach, which is given in Equation (4.1).

At this point, everything necessary has been specified and so we can solve the

knapsack problem at [t, k], which is defined by Equations (4.2) - (4.6). Solving

this knapsack problem will return the values of the decision variables, Xi j , that

maximise the value of the objective function in this node. When Xi j = 1 this

means that study (i, j) has been selected to run in subproblem [t, k].

After the knapsack subproblem has been solved and the studies to run in [t, k]

have been identified, we must find which studies will be the next to complete

out of those that have just been selected and those that were already ongoing in

[t, k]. The time until this observation will be made is denoted by t′. Therefore, the

time that we must generate the next set of subproblems for is given by t + t′.

The generation of subproblems requires two sets of information. The first set

of information is the same as in the KDA and relates to the studies that have

been completed by this time point and whether they were successful. The second

set of information relates to the distribution of θ. The distribution of θ will be

updated if any of the studies due to complete at t + t′ have θind
i j = 1. If all of the

completing studies have θind
i j = 0, then the current distribution will be sent to the

generated subproblems.

In order to update the distribution of θ given relevant outcomes, we will follow
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the method presented in Chapter 3. This method requires the score statistic,

Zi j , and the Fisher information, Vi j , of the two-sided test with null hypothesis

given by H0 : θi = 0. Since we do not have this information at the planning

stage, we will need to select appropriate values to use in place of the true study

outcomes.

For each study that is next to complete with θind
i j = 1, we will consider two

outcomes, success and failure. This is the same as in the KDA and the subprob-

lems are generated based on this information. This means that we will require a

value of Zi j to represent a study success, which we will denote by Zs, and study

failure, which we will denote by Z f . We will use the same value for the Fisher

information in both of these cases, which we will set equal to the planned Fisher

information given in Equation (4.9).

Let us consider a study, (i, j), that is next to complete and has θind
i j = 1. For the

values of Zs and Z f , we will consider the normal distribution truncated at the

critical value for the study, di j , as given in Equation (4.9). We know that Zi j is

approximately normally distributed with mean θiVi j and variance Vi j , but we do

not know θi as this is the true treatment effect, which can only ever be estimated.

Therefore, we will use our most recent estimate of θi, which is given by µ
[t,k]
i .

This defines the parent distribution for our truncated normal distributions. The

distributions of Zs and Z f are given by

Zs ∼ TN
(
µ
[t,k]
i Vi j , Vi j ; di j ,∞

)
and Z f ∼ TN

(
µ
[t,k]
i Vi j , Vi j ;−∞, di j

)
, (4.10)

respectively. However, we still require a single value for Zs and Z f . Therefore,

we will use the expectations of these two distributions in our updating.

E (Zs) = µ
[t,k]
i Vi j +

√
Vi j
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E
(
Z f

)
= µ

[t,k]
i Vi j −

√
Vi j
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We are then able to use the method discussed in Section 4.3 and presented in

Chapter 3 to update the distribution of θ given study success, E (Zs), or study

failure, E
(
Z f

)
.

If more than one study is due to complete next after [t, k] with θind
i j = 1, then,

rather than considering the distribution of
(
θT , Zi j

)
as in Chapter 3, we will

consider all relevant Zi j in this distribution, along with the correlations between

them. For example, in a three drug example where we decide to run the first

studies for drugs 2 and 3 simultaneously and θind
21 = θ

ind
31 = 1, the distribution

that we consider would be given by

(θ, Z)T ∼MVN
(
E((θ, Z)T ), Var((θ, Z)T )

)
,

where (θ, Z)T = (θ1, θ2, θ3, Z21, Z31)
T , E((θ, Z)T ) =

(
µ
[t,k]
1 , µ[t,k]2 , µ[t,k]3 , V21µ

[t,k]
2 , V31µ

[t,k]
3

)T

and the covariance matrix, Var((θ, Z)T ), is given by
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.

The values in this covariance matrix are found using the same approach as in

Chapter 3. We can then find the distribution of θ | Z using the approach in

Chapter 3.

Once the updated distribution of θ has been found, the individual updated

means, µ[t+t ′,k ′]
i , and the individual updated standard deviations, σ[t+t ′,k ′]

i , should
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be used in the generated subproblem. The updated covariances should not be

used in the generated subproblem. This is because the correlation between drugs

shrinks after performing the update since no information is observed in the

update relating to this quantity. Furthermore, in this setting the correlation is

considered as the level of borrowing, which we require to be constant through

time. Thus, we calculate the covariances using the updated standard deviations

and the prior correlations.

The set of generated subproblems are then fully defined and we are able to

move onto the next subproblem in the algorithm. The algorithm concludes when

there are no eligible studies to be run in any subproblem or when it reaches the

predefined end of the planning horizon, |T |. The full details of the aKDA are

given below with additions to the original KDA shown in italics.

1 t := 1;
2 while t ≤ |T | do
3 k := 1 ;
4 while k ≤ |Kt | do
5 Build distribution for θ given µ

[t,k]
i , σ[t,k]i and ρii′;

6 Calculate φ[t,k]i j for all studies with θind
i j = 1;

7 Calculate Ri jt , Ei jtk ∀ i, j;
8 Solve knapsack problem to find solution Xi j ∀i, j;
9 Find the time t′ until the next observation given Xi j and yi j ;

10 Generate set S of knapsack problems given observations at time t + t′;
11 for s ∈ S do
12 Find the updated parameters for each θi;

13 Kt+t ′ = Kt+t ′ ∪ S;
14 k := k + 1;

15 t := t + 1;

This approach can be applied to and solved for much larger portfolios, unlike

the full MSSP, and is able to capture the relationships between the different

programmes, unlike the MSSP and the KDA. In the next section, we will provide

a detailed discussion of a simulation study for a smaller example portfolio.
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Drug, i revmax
i ci1 ci2 τi1 τi2 λi11 λi21 λi12 λi22 γL

i γD
i

1 3100 90 220 4 4 1 2 2 3 19.2 22
2 3250 80 200 3 5 2 2 1 3 19.6 28
3 3300 90 180 3 4 1 2 1 3 20 26

Drug, i θind
i1 θind

i2 αi1 αi2 βi1 βi2 δi1 δi2 µ
[1,1]
i σ

[1,1]2
i

1 1 1 0.1 0.05 0.2 0.1 0.25 0.25 0.25 0.1
2 1 1 0.1 0.05 0.2 0.1 0.25 0.25 0.25 0.1
3 1 1 0.1 0.05 0.2 0.1 0.25 0.25 0.25 0.1

Table 4.1: Parameters used in the MSSP, KDA and aKDA for the example portfolio.

4.5 Results

In this section, we compare the aKDA to the MSSP [39] and the KDA [71] in

a simulation study. In order to illustrate the implementation of the methods

and provide performance results, we consider an example portfolio containing

three programmes. Each programme in the portfolio has two consecutive studies

remaining and the parameters used for this example are given in Table 4.1.

The planning horizon used is 12 time periods and there are two resource types

with maximum availabilities given by λmax
1 = 2 and λmax

2 = 3. We specified a

prior correlation between θ2 and θ3 of 0.6 and specified no correlation, hence no

borrowing, between θ1 and any other θi.

Since the success probabilities in the aKDA are calculated in each subproblem,

we set the success probabilities in the MSSP and the KDA to be equal to those in

the first subproblem, [1, 1], in the aKDA. This gives φi1 = 0.6 and φi2 = 0.62 for

all i ∈ I.

4.5.1 Decision trees

The decision trees found using the MSSP, KDA and aKDA for the portfolio

with parameters given in Table 4.1 can be found in Figure 4.1. In these decision

trees, a green arrow indicates study success and a red arrow indicates study
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failure. The boxes in the decision tree indicate the studies that are initiated at the

corresponding time point and subproblem and a box containing “NA” indicates

that there were no eligible studies to run. The x-axis in each of the decision trees

represents time.
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(1,2) (2,1)

(2,1)

(3,1) (1,2)

(1,2)

(2,2)

NA

(2,2)

NA

(1,1)

(3,2) (2,1)

(2,1)

(2,2)

NA

(2,2)

NA

(2,1) (2,2)

NA
t=1 t=12

(a)
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NA
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(1,1)
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t=1 t=12

(b)

(3,2)

(1,1) (1,2)

(2,1)

(3,1) (2,1)

(1,1)

(2,1)

(2,1)

(2,2)

NA

(2,2)

(1,1)

(1,2)

(2,1)

t=1 t=12

(c)

Figure 4.1: Decision trees found using (a) the MSSP, (b) the KDA and (c) the aKDA.
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The most noticeable difference between the decision trees is that the MSSP

decision tree appears to be denser than the other two trees. This is due to the

restrictions that the overscheduling constraint puts on study selection, which

was discussed in Section 4.2.3 and is discussed in more detail in [71].

All three approaches select to run study (3, 1) in one of the first two time points

and (3, 2) is selected upon successful completion of (3, 1). The MSSP then priori-

tises the development of Drug 1 over Drug 2, unlike the KDA. This is because the

MSSP runs (3, 1) and (1, 1) simultaneously, making it more profitable to run (1, 2)

before moving onto (2, 1). Note that (3, 1) and (2, 1) cannot be run simultaneously

in any approach since the requirement of resource 1 for (2, 1) is equal to the

maximum availability of resource 1, λ211 = λ
max
1 = 2. Also, the KDA is unable to

select to run (3, 1) and (1, 1) simultaneously, as was seen in the MSSP tree, due to

the overscheduling constraint. However, the most interesting differences appear

later in the decision trees.

We specified a prior correlation of 0.6 between θ2 and θ3, both of which were

uncorrelated with θ1. The effect of this can be seen in Figures 4.1(b) and (c). In the

KDA decision tree, study (2, 1) is selected when (3, 1) is unsuccessful. However,

in the aKDA tree, study (1, 1) is selected when (3, 1) is unsuccessful. This is

because θind
31 = 1, therefore the distribution of θ is updated on completion of this

study at t = 4. When (3, 1) is successful, it is most profitable, and indeed most

realistic, to continue development for drug 3. Conversely, when it is unsuccessful,

this causes the mean of θ3 to decrease from the prior mean, µ[1,1]
3 = 0.25. This

causes the means of all positively correlated θi to decrease also. Hence, the mean

of θ2 is decreased, which causes the PoS to decrease, making (2, 1) less attractive

to run. Thus, the aKDA chooses to run (1, 1) over (2, 1), which is the choice in the

KDA. This is what we would hope to see given that if we believe the outcomes

of the studies for drugs 2 and 3 are related, then a failure in one programme

would cause us to believe that a failure in the other is more likely. We also see
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this upon the unsuccessful completion of (3, 2) in Figure 4.1(c) as compared to

Figure 4.1(b).

In terms of the computational time required to produce the decision trees, both

the KDA and aKDA took under 10 seconds to run with the KDA taking one

second and the aKDA taking seven seconds. The MSSP, however, took 36 seconds

to run. Although these times are small, the pattern will remain the same as

we increase the number of studies until the MSSP can no longer be solved in

reasonable time. This happens quickly due to the non-anticipativity constraints.

Here, there were only 27 trial outcome scenarios, therefore 272 non-anticipativity

constraints, before any reductions on the constraint set are performed. If we

increase the portfolio size to |I | = 4, each with two studies, then we would have

81 scenarios and 812 non-anticipativity constraints. The KDA and aKDA can

both be solved for much larger portfolios without becoming too computationally

intensive.

4.5.2 Simulation study design

We explored the performance of the three approaches in a simulation study

where we simulated study outcomes and found the decisions that would be

made under each decision tree given these outcomes. This allowed us to find the

NPV of each set of decisions using the calculation given in the objective function

of the MSSP [39], which is as follows.

NPV = Rv + FRv −Cst

Cst =
∑
i jt

cdtci j Xi jt

Rv =
∑
i∈SI

∑
t

{
revmax

i Xi |Ji |t − γ
D
i

(
Zi |Ji |−1t + Zi |Ji |t

)
− γL

i
(
t + τi |Ji |

)
Xi |Ji |t

}
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FRv =
∑
i∈SI

∑
j

revopen
i j fi j Zi j |T | +

∑
i∈SI

∑
j≥|Ji |−1

∑
t> |T |−τi j

revrun
i jt fi j+1Xi jt

Here, SI is the set of successful programmes. Note that, unlike in the full MSSP

of the PS approach discussed in Chapter 2, here the variables Xi jt and Zi jt are not

dependent on the trial outcome scenario, s. This is because, in the MSSP, these

equations were used to calculate the NPV in each of the different trial outcome

scenarios, s ∈ S. However, here we are using the equations to calculate the NPV

under each of the replications of study outcomes for each of the three methods.

For simplicity, we have not introduced additional notation to show this, but the

variables Xi jt and Zi jt are dependent on the method used (MSSP, KDA or aKDA)

and the replication. For further discussion of the calculation of the NPV and the

parameters involved in this, see Chapter 2.

The main difference that sets the aKDA approach apart from the other approaches

is the fact that it is able to capture the relationships between programmes in the

portfolio. Therefore, we considered four different correlation structures between

the different treatment effects, θi ∀i ∈ I, represented by matrices (a) - (d).

(a)

©­­­­­«
1 0 0

0 1 0.6

0 0.6 1

ª®®®®®¬
(b)

©­­­­­«
1 0 0

0 1 0

0 0 1

ª®®®®®¬
(c)

©­­­­­«
1 0 0.6

0 1 0

0.6 0 1

ª®®®®®¬
(d)

©­­­­­«
1 0.6 0.6

0.6 1 0.6

0.6 0.6 1

ª®®®®®¬
The correlation structure that was used to generate the decision trees was equal

to correlation matrix (a), hence this is the case where we expect the aKDA

to perform the best. The correlation matrix given in (b) shows no correlation

between any of the treatment effects. This is what is assumed by the MSSP and

the KDA. The third correlation matrix, (c), represents the case where there is a

relationship between two treatment effects, but not the ones that we originally

thought. The final correlation matrix, (d), is the case where we were correct about

the correlation between θ2 and θ3, but other correlations exist that we were not

aware of when building the decision trees.
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Then each replication in the simulation study goes as follows:

1. Draw a vector of true treatment effects, θ∗, from

θ ∼ N3

©­­­­­«
©­­­­­«
0.25

0.25

0.25

ª®®®®®¬
,

©­­­­­«
0.05 ρ

(x)
12 0.05 ρ

(x)
13 0.05

ρ
(x)
12 0.05 0.05 ρ

(x)
23 0.05

ρ
(x)
13 0.05 ρ

(x)
23 0.05 0.05

ª®®®®®¬
ª®®®®®¬

where (x) represents the correlation matrix that is being used.

2. Draw the study outcomes, Z∗i j , from

Zi j ∼ N
(
θ∗i Vi j , Vi j

)
.

3. Find the decisions made for this set of outcomes under the MSSP, KDA and

aKDA.

4. Find the corresponding NPV for this set of outcomes under the MSSP, KDA

and aKDA.

We specified the means of θi ∀i ∈ I used in the simulation study to be equal to the

reference value that is used in each of the studies, δi j = 0.25, and the variance to

be equal to 0.05 so that the distribution produces realistic values of the treatment

effects but is otherwise uninformative.

We can then find the number of times each method leads to the highest NPV and

explore the distribution of the NPVs under each approach.

4.5.3 Simulation study results

The results of the simulation study are summarised in Table 4.2 and Figures 4.2

and 4.3.
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(a)

Full comparison Heuristic comparison
MSSP 55.16 (29.96) -
KDA 8.55 (2.56) 17.42 (7.16)

aKDA 11.67 (0.21) 25.51 (15.77)
KDA + aKDA 24.61 (19.96) 57.07 (-)

(b)

Full comparison Heuristic comparison
MSSP 55.66 (35.14) -
KDA 11.81 (3.30) 25.84 (10.94)
aKDA 8.15 (0.16) 17.37 (10.74)

KDA + aKDA 24.39 (16.87) 56.79 (-)

(c)

Full comparison Heuristic comparison
MSSP 55.98 (30.78) -
KDA 17.21 (4.16) 26.06 (16.13)

aKDA 11.12 (0.19) 17.05 (6.95)
KDA + aKDA 15.69 (11.09) 56.89 (-)

(d)

Full comparison Heuristic comparison
MSSP 55.93 (21.32) -
KDA 9.61 (2.87) 18.05 (7.89)

aKDA 18.87 (0.27) 25.15 (7.58)
KDA + aKDA 15.60 (10.58) 56.80 (-)

Table 4.2: The percentage of times each method produced the highest NPV in the simulation
study with 500000 replications for the correlation matrices (a) - (d). The row “KDA + aKDA”
represents the situation where the KDA and the aKDA produced the highest NPV simultaneously.
The numbers in brackets give the percentage of times that each method produced the highest
NPV, which is also at least 3% higher than the second highest NPV.

Table 4.2 provides the percentage of times each approach led to the highest NPV

in the simulation study for 500000 replications. The results are given for the

full comparison of the MSSP, KDA and aKDA and also when the two heuristics

are compared directly to one another. The reason that we consider the heuristic

comparison alongside the full comparison is that the MSSP will not always be a

viable option, for example when we are interested in larger portfolios, and so in

these cases we are interested in which heuristic performs the best.

The table also shows the percentage of times that each method led to the highest

NPV and was simultaneously at least 3% higher than the second highest NPV.

One of the things that is apparent from this measure is that, even if we were to

specify the correlation incorrectly, there is little to be lost from using the aKDA

over the KDA. This is because in over 50% of cases, there is little difference
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(a)

(b)

between the highest and second highest NPVs.

In Table 4.2(a), we see the results of the simulation study with true correlation

matrix (a). This was the case where the true correlation matrix matches the

correlation matrix used to generate the aKDA decision tree. That is, our prior

assumptions on the correlation matrix were correct. The MSSP leads to the

highest NPV in the majority of cases, which is unsurprising given that the

decision tree under this approach, shown in Figure 4.1(a), is more dense than the

other decision trees and the fact that this is the original method, not a heuristic.

The heuristic comparison, however, shows the advantage of the aKDA as it leads
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(c)

(d)

Figure 4.2: Histograms of the NPV in the simulation study under each approach for the correla-
tion matrices (a) - (d).

to the highest NPV in around 50% more cases than the KDA. We also see the

aKDA and the KDA lead to the same NPV in around half of the replications in

the heuristic comparison.

It should be noted that the decision trees of the KDA and the aKDA share

identical decision paths when studies (3, 1) and (3, 2) are successful, which will

lead to any replications with these trial outcomes having the same NPV.

The distribution of the NPVs under the three approaches for this correlation

matrix can be seen in Figure 4.2(a). Although there is a lot of overlap between
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(a)

(b)

the KDA and the aKDA, we see that the main contribution to the success of the

aKDA is at the NPV of around 2500. This can also be seen in Figure 4.3(a).

In two of the four correlation matrices that were considered, the prior assumption

on the correlation between θ2 and θ3 was incorrect. In matrix (b), no correlation

existed between any θi ∀i ∈ I and in matrix (c) the correlation existed between

θ1 and θ3. In these two scenarios, the MSSP performs the best, as in scenario (a),

but the aKDA performs worse than the KDA. The number of times that the KDA

outperforms the aKDA is similar to what we saw for the reverse in scenario

(a).
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(c)

(d)

Figure 4.3: Plots of the empirical cumulative distribution function of the NPV in the simulation
study under each approach for the correlation matrices (a) - (d).

However, when we explore the histograms in Figure 4.2 we see that, although

the results in Tables 4.2(b) and (c) are similar, the distributions of the NPV are

quite different. More specifically, when we are only wrong about the correlation

between θ2 and θ3, we see less of a difference in the NPVs under the KDA and

aKDA in Figure 4.2(b) than we see in Figure 4.2(c), where we were also wrong

about the correlation between θ1 and θ3.

It is also clear from Figure 4.3 that the MSSP makes most of its gains on the other

approaches when the NPV is around 5000, which corresponds to the situation
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when almost all studies are successful. This is intuitive, given the decision trees

shown in Figure 4.1, as the MSSP is able to run more studies sooner in the

planning horizon than the other two approaches due to their overscheduling

constraints.

The final correlation matrix that was considered, matrix (d), includes correlation

between all of the treatment effects. In this case, our prior assumptions correctly

captured one of the relationships but not the other two. Here, we see the aKDA

perform the best out of the two heuristics in Table 4.2(d) by a similar margin

as was seen in correlation scenario (a). However, the histogram in Figure 4.2(d)

shows that the difference in the NPV gained under the aKDA is only marginal

compared to correlation scenario (a).

The results of this simulation study show that there is much to be gained from

using the aKDA when the prior assumptions on the correlation structure are

correct. On the contrary, when the prior assumptions are incorrect, the loss

from using the aKDA over the KDA depends on the amount by which we were

incorrect. When the relationship specified in the prior assumptions did not exist,

there was only a small loss in the NPV. However, when that relationship did

not exist and another relationship did, we lose more by using the aKDA. Finally,

when we were correct about one of the relationships but failed to capture another,

the aKDA performed the best but the differences in the NPV were smaller than

when we captured all relationships correctly.

4.5.4 Extended simulation study

In this section, we extend the simulation study described in Section 4.5.2 to

explore the results of the KDA and aKDA in more detail. The MSSP was not

considered in the extended simulation study due to the computational burden

of this approach.
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Christian and Cremaschi [71] discuss the sensitivity of the KDA to changes in the

input parameters. They note that changes in the revenue, study cost and penalty

parameters have little effect on the decision trees of the KDA. We performed a

similar analysis and considered the effect of individual changes of +/- 10% in

revmax
i , ci j , γL

i and γD
i for the example with parameters given in Table 4.1. The

only individual parameter that resulted in a different decision tree for the KDA

and aKDA from those in Figure 4.1 was revmax
i . The resulting decision trees that

were different to those presented in Figure 4.1 are presented in Figure 4.4.

We then performed the same analysis as presented in Section 4.5.2 for the result-

ing KDA and aKDA decision trees. The results can be found in Table 4.3 and the

histograms and empirical cumulative distribution functions of the results can be

found in Appendix C.2.

When we increase revmax
1 by 10%, the decision trees for the KDA and the aKDA

are identical, therefore a comparison is not required in this situation and the

results will not be provided. For the other decision trees, we see a similar pattern

between the KDA and aKDA trees as in the original example. The aKDA consid-

ers the relationship between drugs 2 and 3 and this is reflected in the trees when

successes or failures are observed.

Comparison 1 considers the case when we increase revmax
2 by 10%, Comparison 2

considers the case when we decrease revmax
2 by 10% and Comparison 3 considers

the case when we decrease revmax
3 by 10%.

In Table 4.3, we see results for Comparison 1 that are similar to those seen in

Section 4.5.3. The aKDA outperforms the KDA when the assumption on the

correlation between drugs 2 and 3 is correct, scenarios (a) and (d), and less well

when there is no correlation between drugs 2 and 3, scenarios (b) and (c).

In Comparisons 2 and 3, the aKDA outperforms the KDA in all four scenarios

with the largest margin being for scenarios (a) and (d), as we would expect.
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(a)

Comparison 1 Comparison 2 Comparison 3
KDA 17.33 (8.72) 14.69 (10.05) 15.76 (10.31)
aKDA 25.73 (17.10) 42.11 (18.48) 41.15 (41.15)

KDA + aKDA 56.93 43.20 43.10

(b)

Comparison 1 Comparison 2 Comparison 3
KDA 25.58 (12.82) 22.92 (15.33) 24.61 (15.62)

aKDA 17.61 (11.85) 34.02 (15.42) 32.46 (32.46)
KDA + aKDA 56.81 43.06 42.93

(c)

Comparison 1 Comparison 2 Comparison 3
KDA 25.86 (9.61) 23.15 (18.56) 24.50 (10.92)
aKDA 17.20 (8.46) 33.73 (10.04) 32.50 (32.50)

KDA + aKDA 56.94 43.12 42.99

(d)

Comparison 1 Comparison 2 Comparison 3
KDA 17.56 (9.31) 14.38 (9.39) 15.61 (9.61)

aKDA 25.42 (9.57) 42.50 (9.42) 41.20 (41.20)
KDA + aKDA 27.03 43.12 43.19

Table 4.3: The percentage of times each method produced the highest NPV in the extended
simulation study with 500000 replications for the correlation matrices (a) - (d). The row “KDA
+ aKDA” represents the situation where the KDA and the aKDA produced the highest NPV
simultaneously. The numbers in brackets give the percentage of times that each method produced
the highest NPV, which is also at least 3% higher than the second highest NPV.
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Figure 4.4: Decision trees found using (a)-(d) the KDA and (e)-(f) the aKDA with (a), (e) revmax
1

increased by 10%, (b), (f) revmax
2 increased by 10%, (c) revmax

2 decreased by 10% and (d), (f) revmax
3

decreased by 10%.
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4.6 Extensions

The presented method is flexible and is able to be modified in order to suit the

needs of the decision-maker with minimal effort. In this section, we discuss some

of the extensions and modifications that we have considered along with how

they can be implemented.

4.6.1 Multiple study outcomes

The original formulations of the KDA and aKDA only consider two study out-

comes: success and failure. This means that we are required to find a single

value of the study score statistic, Z , that represents the outcome and use this

to update our beliefs about the treatment effects, θ. This may be considered

as an oversimplification as it does not capture the way that different levels of

success, or failure, can influence decisions in the real world. These effects may

occur across related programmes and within programmes. For example, if a

study showed very promising results, a company might decide to prioritise this

programme over other programmes, regardless of original revenue and cost

estimates. Similarly, if a study was less successful, a company may choose to

abandon development and invest elsewhere, even if it was a “success”.

We considered the addition of a third study outcome, “super success”, to the

aKDA with an aim to capture the effects of different levels of success on the

portfolio decisions. This is related to the way that Frewer et al. [72] discuss a

“super go” option in the decision to accelerate development in a single drug

development programme.

There are several different ways that this could be implemented, based on the

requirements of the user, but the framework would remain the same. Previously,

we summarised the study outcomes by selecting two values, Zs and Z f , which
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were then used to update the study success probabilities. In order to find appro-

priate values for these we considered two truncated normal distributions and

the most recent mean, µ[t,k]i , for the treatment effect, θi. These distributions were

given in Equation (4.10).

We will instead consider three values, Zs∗ , Zs and Z f , to correspond to super

success, success and failure. Therefore, we must consider three truncated distri-

butions corresponding to these three outcomes, which are given as follows.

Zs∗ ∼ TN
(
µ
[t,k]
i Vi j , Vi j ; ui j ,∞

)
Zs ∼ TN

(
µ
[t,k]
i Vi j , Vi j ; di j , ui j

)
Z f ∼ TN

(
µ
[t,k]
i Vi j , Vi j ; di j ,∞

)
The value of ui j corresponds the value of Zi j that would be considered a super

success for study (i, j). This can be chosen differently for each study or it could

be set to a common multiplier of the critical value, di j , across all studies. For

example, ui j = 1.5 × di j for all (i, j). Thus, we have three zones that categorise the

study outcomes. Any study with a score statistic less than di j will be deemed a

failure, between di j and ui j a success, and greater than ui j a super success.

We could also include more study outcomes if it was deemed necessary by

the user, or consider different numbers of outcomes for different studies. For

example, study success and failure may be considered enough information for a

Phase I study, but we might want to consider more study outcomes for the later

phases.

We implemented this for our example portfolio detailed in Section 4.5 with super

success being defined as a score statistic exceeding 1.25 × di j and the resulting

decision tree is given in Figure 4.5. The generation of this decision tree took eight

seconds, compared to seven seconds for the decision tree with two outcomes

shown in Figure 4.1(c). This increase, although small, is because there are more



Chapter 4 144

knapsack subproblems to be solved in this approach than the original aKDA.

This approach will also be solvable in reasonable time, unlike the MSSP, for much

larger portfolios.

In the decision tree in Figure 4.5, the dashed green line represents the outcome of

super success. As we would expect, many of the decisions made in the decision

tree are the same as was seen in Figure 4.1(c). However, one of the surprising

things that we see is that when study (3, 2) is a success, not a super success,

the decision tree selects (1, 1) rather than (2, 1). This may seem surprising at

first because both the KDA and aKDA decision trees in Figure 4.1 selected (2, 1)

on the successful completion of (3, 2). However, due to our definition of super

success being the score statistic exceeding 1.25 × di j , the values corresponding

to a normal success are actually quite low, with their corresponding estimates

of θi being less than the minimally important difference, δi j . Thus, when (3, 2)

is only successful, this reduces the mean of θ2 and so the success probabilities

associated with the correlated programme are also reduced.

It should also be noted that the tree does still select to complete all programmes

that have been initiated where possible over those that have not, as we would

expect in most cases. However, depending on how close the upper bound, ui j , of

the success category is to the critical value, di j , we might not want to continue

development after a “successful” study. This would be reflected in the decision

tree, which collates all available information and makes a recommendation based

on this.

In this example, the definition of the success category corresponded to a marginal

success for the sake of illustrative purposes. In real world use, the definition of the

categories should be dependent on what the user would find most interesting.
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4.6.2 Constraints on sets of studies

Another modification that may be required by a user is related to the nature of

a portfolio of combinations. We have discussed the benefit that can be gained

from learning across related combination studies and have shown how this can

be included in the decision-making process. However, we have not considered

some of the potential complications that can arise in a portfolio of combinations

compared to a portfolio of single agents.

One of the aspects to consider is the risk that is incurred if many positively

correlated programmes are selected to run simultaneously over other uncor-

related programmes. For example, if a Phase II study results in a success that

is correlated with many other programmes, the aKDA may select to run the

correlated programmes over other uncorrelated programmes. This is beneficial

as it is using relevant information in the decision-making procedure and it does

still consider the uncertainty in the trial outcomes as the success probabilities

are used to calculate the study values in this procedure. However, if the Phase II

study showed more promise than is true for the programme, then selecting as

many correlated programmes as possible would lead to a potentially high level

of loss.

We propose that, to overcome this potential issue in portfolios with large sets

of correlated programmes, a constraint set should be imposed that controls the

number of correlated programmes that are selected. In order to achieve this, we

would introduce another input parameter that details the groups of correlated

programmes. We will use the notation gi to represent the group of programme

i. We will use G to denote the set of groups thus |G | gives the total number of

groups and gi ∈ G. We will also introduce a variable that tracks the number of

programmes initiated in each group throughout the decision tree. The variable

n[t,k]g gives the number of programmes in group g ∈ G that have been initiated
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prior to subproblem [t, k].

Then, in addition to the constraints given in Equations (4.3) - (4.6), we will

include the constraint

n[t,k]g +
∑

i:gi=g

∑
j

Xi j ≤ nmax
g ∀g

to the aKDA where nmax
g gives the maximum number of programmes of set g

that can be initiated within the planning horizon and must be specified by the

user in advance.

This could be used in the illustrative example given in Appendix C, which has

six different groups of correlated programmes, to ensure that we do not limit

development to a small number of groups.

This approach might be considered as too conservative in some settings, for

example if all other programmes were abandoned then it would not make sense

to limit development on the remaining programmes. However, in reality this

situation is unlikely and the addition of this constraint where appropriate would

allow a user to modify the aKDA such that it reflects the real world choices that

they would be willing to make whilst also considering risk. The aKDA could

also be modified further such that this constraint is only included when there

are “enough” alternative options.

Another aspect that this constraint set would capture is the benefit of learning

about unrelated combinations. If the two most attractive programmes are not

correlated and the second one is not able to be selected near the beginning of

the planning horizon, for example due to resource constraints, the selection of

other programmes correlated to the first might be prioritised over the selection

of the second programme and its group of correlated programmes. Therefore,

limiting the number of correlated programmes to run in the planning horizon
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will also encourage the development of and learning about other uncorrelated

programmes.

A final set of constraints on sets of studies that may be included relates to the

logistics of combination drug development. In this chapter, we have discussed

programmes of a sequential nature for simplicity and to parallel the work pre-

sented in [49]. However, this is not always a realistic assumption as programmes

may have studies that can be completed simultaneously and programmes may

also be reliant upon the successful completion of other programmes or studies.

For example, in order to develop a combination therapy, the single agents must

also be developed separately.

This can also be included in the aKDA by modifying the definition of what

it means to be eligible and ensuring that this information is sent across the

subproblems when they are generated.

4.6.3 Decision rules on the PoS

Another aspect of real world decision-making that is not currently captured

by the aKDA is that if the PoS of a study dropped below a certain threshold,

the company is unlikely to decide to run that study unless there were no other

available options. This, as with most of the other modifications discussed, can be

implemented using a simple constraint set of the form

φi j Xi j ≥ φ
∗
i j ∀i, j

where φ∗i j is the threshold that the PoS of study (i, j) must exceed in order to

make the decision to run the study. The aKDA could also be modified so that

this constraint is disregarded when there are no other options and it may also
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lead an empty solution set in some cases if φ∗i j is too high compared to the actual

success probabilities.
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Figure 4.5: Decision tree found using the aKDA with three outcomes considered per study and
parameters given in Table 4.1.
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4.7 Discussion

In this chapter, we presented a portfolio management method that updates

the study success probabilities throughout the procedure whenever a relevant

outcome is observed. This allows us to consider the relationships between differ-

ent combination drug development programmes and the benefit gained from

sharing information across related programmes.

In Section 4.5, we used a simple three drug example to show the differences in

the decision trees under the full MSSP [39], the KDA [71] and the aKDA. We also

presented the results of a simulation study that considered different correlation

structures, and highlighted the benefit of the aKDA over the KDA when our

assumptions on the correlation structure are correct. We also showed that there

is little to be lost by using the aKDA over the KDA when our prior assumptions

are incorrect and the aKDA may even perform better than the other approaches

in some of these cases, unless there are fundamental discrepancies between our

prior correlation structure and the true correlation structure.

We did also observe in the simulation study that the MSSP outperformed the

aKDA in the example presented and this was typically due to the denser deci-

sion tree of the MSSP compared to the heuristics. There is potential to improve

these heuristics, mainly through the modification of the overscheduling con-

straint. However, it should be noted that the MSSP becomes unusable for larger

portfolios and it is not able to capture the relationships between programmes.

We also presented several extensions that aim to tailor the portfolio management

technique to the needs of the user and what is deemed realistic within their

decision-making framework. These extensions included the consideration of

more than two study outcomes, which was the only option in the existing

methods presented by Colvin and Maravelias [39] and Christian and Cremaschi
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[49]. This extension allowed for the inclusion of a “super success” that links to

the idea of a “super go” in the work presented in [72].

One of the things that should be considered when generating decision trees is the

influence of the input parameters, especially if there is uncertainty surrounding

the most appropriate point estimates for these. This is true for all three methods,

but the aKDA has an additional set of parameters to consider that relate to the

distributions of the treatment effects, θ.

In order for the aKDA to perform as intended, the prior means, µi ∀i ∈ I, should

be specified using similar approaches due to the way that the success probability

updating works. For example, they could all be specified using estimates based

on historical data or they could all be set to be equal to their associated minimally

important difference. The method for updating the success probabilities that was

introduced in Chapter 3 considers the distance between the prior mean, µi, and

the estimate of this based on the observed data, Zi/Vi. The amount by which the

means, µi′, for correlated treatment effects, θi′, shift is related to this difference

alongside the correlation with the observed treatment effect, ρii′. Therefore, if

one prior mean was selected arbitrarily and this was quite different from the

mean of a correlated treatment effect that was selected to be informative, this

could cause the updates to be misleading. This is because the prior means being

correlated is an underlying assumption of the updating procedure.

For example, let us consider θ2 and θ3 from the example outlined in Section 4.5,

which have a prior correlation of 0.6. If we set µ3 = δ31 = 0.25, which represents

the belief that there is a benefit whilst also being conservative in the estimate

for this, and we arbitrarily selected µ2 = 0, then the update would go as follows.

At the first time point, we still select (3, 1), as in the decision tree shown in

Figure 4.1(c). Then we update the distribution of θ based on the outcome of

this study. We only consider two outcomes, failure and success, and generate

two subproblems based on these outcomes. Following the method presented
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in Section 4.4, we use E (Zs) = 28.21 and E
(
Z f

)
= 10.81 as the score statistics

representing study success and failure, respectively, in the updating procedure.

The updated means based on these values are given by

µ[4,1] =

©­­­­­«
0.25

−0.08

0.12

ª®®®®®¬
and µ[4,2] =

©­­­­­«
0.25

0.02

0.28

ª®®®®®¬
where [4, 1] is the subproblem in which (3, 1) was a failure and [4, 2] is the

subproblem in which (3, 1)was a success. Notice that the mean of θ2 decreases

from its already pessimistic prior mean when (3, 1) is unsuccessful and when

(3, 1) is successful, the shift is still only small. Furthermore, since all of the studies

in this example have θind
i j = 1, the PoS is calculated based on the distribution of

θi. In this example, the prior success probabilities for the second treatment are

given by φ21 = 0.31 and φ22 = 0.32. After the update, the success probabilities in

subproblem [4, 1] decrease to φ21 = 0.19 and φ22 = 0.2, as we would expect given

that a positively correlated study was unsuccessful. In scenario [4, 2], study (3, 1)

was successful but the success probabilities for the second programme decrease

to φ21 = 0.3 and φ22 = 0.31. This is because the shift in mean is small, which

results in an estimate that is still pessimistic, and there is a reduction in variance,

which is considered in the calculation of the PoS.

This example also highlights the fact that the user should consider the success

probabilities that the prior means and variances lead to. If these success prob-

abilities are not thought to be realistic then this will encourage a user to think

more about the way that they have selected these values and to find more re-

alistic values for them. This will then help to ensure coherence across different

programmes.

If the problem of incoherent prior means exists for multiple correlated treatment

effects, and multiple updates are performed, then this problem could be exacer-
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bated. However, this problem can be easily avoided by ensuring that appropriate

prior means are specified and correlations are only included where appropri-

ate, and with appropriate levels. If the user requires additional measures to be

put in place to avoid any of the potential pitfalls, however, there are different

modifications that can be included to do this.

One approach involves constraining the number of indirect updates that can be

performed on the distribution of a treatment effect. This could be tracked simply

using a counter for each θi that is sent through to each subproblem and in each

subproblem we would impose a constraint on the sum of this counter and the

decision variables Xi j∀ j ∈ Ji.

Alternatively, a more lenient modification would involve stopping the updating

of the distribution of θi after the final study in programme i, (i, |Ji |), is completed.

This could be achieved by including an indicator that is equal to one when a

programme is still ongoing and multiplying the correlation, ρii′, by this indicator

each time the distribution of θ is built in the aKDA. Then, when the programme

is completed and the indicator drops to zero, the treatment effect will no longer

be correlated with any other treatment effects hence will not be used in any

updates. This would make the output of the method more realistic than if we

performed unnecessary updates, but this will have no effect on the decision tree

of the aKDA as when the programme is completed, we are not going to make

any future decisions about it, it would simply affect the vector of means.

Although the motivation for this work lies in combination therapies, the method

presented in Section 4.4 could also be applied for portfolios that contain pro-

grammes that have treatment effects that are related in some way other than

similar combinations. This is because our method for updating the study success

probabilities presented in Chapter 3 and used in the aKDA captures the general

relationship between the treatment effects of different programmes and does not

require specific information relating to combinations.
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Conclusions

5.1 Overview

In this thesis, we have considered the relationships between similar combina-

tion studies and have presented methodology that allows us to capture these

relationships and use them to assist portfolio decision-making.

In Chapter 2, we provided a critical discussion of some of the existing methods for

decision-making in a pharmaceutical portfolio and compared two methods that

draw upon stochastic programming techniques. We concluded that, while both

methods capture important aspects of portfolio management and the uncertainty

that is inherent to this process, neither method was suitable in its original form

to the problem that we were interested in. The ROV approach [36] was able

to capture the uncertainty in the value of a programme, but was not able to

consider scheduling or the uncertainty in the study outcomes. The PS approach

[39], on the other hand, was able to capture the uncertainty in the study outcomes

and find the optimal schedules, but this came at a high computational burden.

Furthermore, neither of these methods are able to capture the relationships

between studies or the way that observing a particular outcome might influence

our beliefs regarding the success probability of another study.

We then presented a method that allows the probability of success of a study
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to be updated based on the results of a related combination study in Chapter 3.

This was achieved by considering both the distribution of the treatment effects

of the drugs of interest and the distribution of the score statistic of the observed

study. We can then find the conditional distribution of the treatment effects given

the observed score statistic and use this distribution to find the updated success

probabilities via the calculation of the assurance [23] or other distribution based

definitions of the probability of success. We also presented an extension to the

method that controls the level of borrowing based on the observed data. This

method cannot only be applied in the setting of combinations, but also in other

areas where we believe that the study outcomes are related and we would benefit

from borrowing across these studies.

The method for updating study success probabilities was combined with a

heuristic [71] for the PS approach to update the study success probabilities each

time a relevant outcome is observed. This was presented in Chapter 4. This

method allows the potential future observations along with the relationships

between programmes to guide the decision-making process in a quantifiable

way. This method can be used for large portfolios and is quick to solve, easy to

interpret and achieves what other, existing pharmaceutical portfolio manage-

ment techniques cannot in terms of the consideration of relationships between

studies.

5.2 Limitations

The main limitations of the methodology presented are related to the specifica-

tion of the prior distributions. In order to update a study success probability

based on the outcome of a related study, a prior correlation between the two

studies is required that controls the level of borrowing. This could be seen as a

limitation, as the choice for this parameter might not always be clear and there is
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no existing methodology for quantifying the true correlation between the studies.

Furthermore, if this is specified incorrectly, then the results of the method could

be misleading.

Another potential issue relating to the specification of the prior distributions

comes from the way that the distributions are updated and the underlying

assumptions of this update. The mean of the treatment effect of the unobserved

treatment shifts during the update by an amount that is relative to the both the

correlation and the difference between the prior mean of the observed study and

the estimate from the study. This is related to the assumption that the prior means

are also correlated. Thus, if one prior mean appears to be an underestimate of the

truth, based on the study data, then the other prior mean will also be assumed

to be an underestimate, thus will be shifted upwards during the update. This

will usually not be an issue, unless the two prior means are incorrect in opposite

directions i.e. one overestimates the truth and the other underestimates the truth.

This would be problematic, as the unobserved mean would be shifted further

away from the truth during this update.

A final limitation is that our work builds upon a heuristic for the PS approach,

which means that the solutions found will not be optimal compared to the

solution of the full MSSP. However, the MSSP cannot be solved in reasonable time

for portfolios of the size that we require for our problem and so using a heuristic

is the only realistic option. There are still potential areas for improvement with

regards to the heuristic, however. For example, the overscheduling constraint

was noted to be too conservative, thus some improvements could be made here.

In addition, the heuristic does not consider penalties in the same way as the full

MSSP, which is another aspect that could be modified.
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5.3 Further work

We previously discussed the potential issues that can arise when specifying a

correlation between studies. Further work in this area could consider developing

methodology for the quantification of the correlation between studies based on

existing data. This could be used either as a separate tool prior to specifying the

input parameters or it could be added to the updating procedure.

The methodology presented in this thesis considers the overall relationship be-

tween combination studies, rather than attempting to quantify this based on the

separate components. A potential area for further work could include consider-

ing the individual components of the combination and modelling the relation-

ships between them in order to estimate the treatment effect of the combination

and the correlations between treatment effects of different combinations.

An aspect that could be extended in order to make the portfolio decision-making

procedure more realistic is to consider new development programmes that

become available as options during the planning horizon, rather than at the

beginning of the planning horizon. Given the flexibility of the aKDA, this could

be added quite easily if it were required. For example, one could use a dummy

study that is forced to be packed into the knapsack at the first node. This dummy

study would have a duration that is equal to the time until the time until the new

programmes would be available and success probability equal to the probability

of it becoming available. It would have zero cost and zero value and would be

assigned as a prerequisite to the development programme such that the first

study becomes eligible to run on successful completion of the dummy study.

In the simulation study provided in Chapter 4, the full MSSP formulation of

the PS approach outperformed the aKDA for the presented example. However,

this gain is not meaningful when we consider real world portfolio decision-

making problems since the MSSP can only be solved for small portfolios. This
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could motivate two areas for further work. The first relates to improving the

performance of the KDA and reducing the optimality gap between the solution

of the aKDA and the MSSP. Improvements in this area could start with the

overscheduling constraint as this constraint leads to sparser decision trees hence

suboptimality. The second area of research this could lead to is reducing the

complexity and size of the MSSP such that it can be solved for larger portfolios.

This would allow us to include the success probability updates into the full

MSSP. Some simplifications could include, for example, running programmes

without gaps, given that this is often an aspect of the optimal solution. This

would lead to some suboptimality, but could reduce the model by quite a large

factor. Alternatively, we could include further decision rules that reduce the

size of the solution space such as using preference orderings as inputs or other

rules that reflect the most likely decisions to be made by the company. While

this would still be a heuristic, it would return a solution that is not only close to

optimal but also useful to the team given that it reflects their preferences.

Another extension that could be considered for the portfolio management prob-

lem is including the use of dynamic programming. Choi et al. [73] discussed the

use of dynamic programming for the resource constrained scheduling problem

and noted the computational load of this solution method due to the size of the

state space for complex problems. They presented an algorithmic framework,

dynamic programming in a heuristically confined state space, that aims to tackle

this issue. Thus, dynamic programming or frameworks involving dynamic pro-

gramming could be considered as an alternative solution method to the KDA for

the portfolio management problem.

The method for updating the probability of success that was presented in Chap-

ter 3 and used in the portfolio decision-making procedure in Chapter 4 did

not consider the updating of the correlation. Furthermore, the robustification

that was presented did not use information about the correlation to guide the
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updates. Conceptually, it would make sense to use emerging information about

the correlation to update these distributions, but this is harder to capture than

information on the individual treatments. An area of further work would include

the consideration of the correlation and how updating this might inform our

decision-making.

Finally, the methods for portfolio decision-making discussed in this thesis only

consider the decisions relating to if and when a study should be initiated. These

methods do not consider decisions relating to the design of the studies or the

effect that the design might have on our decision to run the study. Further work

could include developing new designs for combination studies that account

for the relationships between combinations and also new methods for decision-

making that consider the optimal study designs over the whole portfolio. Patel

et al. [37] previously considered the problem of the optimal study designs in

a portfolio of Phase III studies and further work could extend this to consider

different phases and the relationships between studies when finding the optimal

designs.
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Appendix - Chapter 2

A.1 ROV formulation [36]

Additional nomenclature

Mi j k j the value of drug i at the beginning of study (i, j) in value

scenario k j

Mupper
i j k j

the upper bound of the value of Mi j k j

zi j k j the variable introduced to linearise the value constraints

Yi j k j the binary continue/abandon decision variable for study (i, j)

in value scenario k j

wi jt the binary indicator for if study (i, j) begins at time t

pi j k j k j+1 the probability of drug i moving from value scenario k j to k j+1

during study (i, j)

∆T the discrete time interval that market movements are

considered over
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minimise
∑

i, j
∑Ni j

k j=1 Mupper
i, j,k j

subject to Mupper
i j k j

≥ −ci j +

∑Ni,j+1
kj+1=1 φi jpikj kj+1 Mupper

i j+1kj+1

(1+r∆T)τi j /∆T
∀i, j, k j

Mupper
i j k j

≥ 0 ∀i, j, k j

maximise
∑

i Mi,1,k1

subject to Mi j k j = −ci jYi j k j +

∑Ni,j+1
kj+1=1 φi jpikj kj+1 zikj kj+1

(1+r∆T)τi j /∆T
∀i, j, k j

zik j k j+1 ≤ Mupper
i, j+1,k j+1

Yi j k j ∀i, j, k j , k j+1

zik j k j+1 ≥ 0 ∀i, j, k j , k j+1

Mi, j+1,k j+1 −Mupper
i, j+1,k j+1

(
1 −Yi j k j

)
≤ zik j k j+1 ∀i, j, k j , k j+1

zik j k j+1 ≤ Mi, j+1,k j+1 +Mupper
i, j+1,k j+1

(
1 −Yi j k j

)
∀i, j, k j , k j+1

Yi j k j ≤ Yi1k1 ∀i, j > 1, k j

Yi, j+1,k j+1 ≤
∑

k j
Yi j k j ∀i, j, k j , k j ≤ k j+1 ≤ k j +

τi j
∆T

Yi, j,k j−1 ≤ Yi j k j ∀i, j, k j∑
i, j

∑Ni j

k j
pik j−1k jci jYi j k jwi jt ≤ Bt ∀t

Mi j k j ≥ 0 ∀i, j, k j

Yi j k j ∈ {0, 1} ∀i, j, k j
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A.2 PS formulation [39]

Additional nomenclature

Xi jts the binary go/no-go decision variable for study (i, j) at time t

in scenario s

Yi jts the indicator for if study (i, j) has been completed by time t

in scenario s

Zi jts the indicator for if study (i, j) is ready to run at time t in

scenario s

Rvs the revenue generated in scenario s

FRvs the future revenue generated in scenario s if all remaining trials

are completed as soon as possible

Csts the costs incurred in scenario s

p(s) the probability of scenario s

revmax
i the total maximum possible revenue generated by drug i

revrun
i jt the revenue generated on completion of programme i when study

(i, j) is ongoing at time |T | and started at time t

revopen
i j the revenue generated on completion of the programme for drug i

when study (i, j) is ready to run at time |T |

λi jr the resource requirement of study (i, j) of resource type r

λmax
r the level of available resource of type r

fi j the discounting factor for open revenue

cdt the time discounting factor for the time value of money

nt the interest rate for a time period

F I,J(s) the set of studies that cannot be conducted in scenario s

SI(s) the set of successful programmes in scenario s

Ψ the set containing pairs of scenarios that differ only in the

outcome of one study
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maximise
∑

s p(s) {Rvs + FRvs −Csts}

subject to (1)
∑

t Xi jts ≤ 1 ∀i, j, s

(2)
∑

i
∑

j
∑

t−τi j<t ′≤t λi jr Xi jt ′s ≤ λ
max
r ∀r , t, s

(3)
∑

t ′≤t Xi jt ′s ≤ Yi j−1ts ∀i, j > 1, t, s

(4) Xi jts = 0 ∀t, s, (i, j) ∈ F I,J (s)

(5) Xi jts = 0 ∀i, j, t <
∑

j ′< j τi j ′, s

(6) Xi jts − Xi jts′ ≥ −Yis,s′ , js,s′ ,t,s ∀i, j, (s, s′) ∈ Ψ, t > 1

(7) Xi jts − Xi jts′ ≤ Yis,s′ , js,s′ ,t,s ∀i, j, (s, s′) ∈ Ψ, t > 1

(8) Yi jts = Yi jt−1s + Xi jt−τi j s ∀i, j, t, s

(9) Zi11s = 1 − Xi11s ∀i, s

(10) Zi1ts = Zi1t−1s − Xi1ts ∀i, t > 1, s

(11) Zi jts = Zi jt−1s + Xi j−1t−τi j s − Xi jts ∀i, j > 1, t, s

(12) Xi11s = Xi111 ∀i, s

(13) Csts =
∑

i jt cdtci j Xi jts ∀s

(14) Rvs =
∑

i∈SI (s)
∑

t
{
revmax

i Xi,PIII,t,s − γ
D
i ×(

Zi,PII,t,s + Zi,PIII,t,s
)
− γL

i

(
t + τi,PIII

)
Xi,PIII,t,s

}∀s

(15) FRvs =
∑

i∈SI (s)
∑

j revopen
i j fi j Zi j |T |s+∑

i∈SI (s)
∑

j∈{PI,PII}
∑

t> |T |−τi j revrun
i jt fi j+1Xi jts ∀s

(16) Xi jts ∈ {0, 1} ∀i, j, t, s

(17) Yi jts, Zi jts ∈ [0, 1] ∀i, j, t, s

where

fi j = 0.9
(

revmax
i −γLi |T |−

∑
j
′
≥ j

c
i j
′

revmax
i −γLi |T |

)
revopen

i j = revmax
i − γL

i

(
|T | +

∑
j ′≥ j τi j ′

)
revrun

i jt = revmax
i − γL

i

(
t +

∑
j ′≥ j τi j ′

)
cdt = 1 − nt(t − 1)

We will now provide a brief explanation of the constraints included in the above.
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Constraint (1) ensures that each study (i, j) is only run once in each trial outcome

scenario, s ∈ S. Constraint (2) is the resource constraint for different resource

types, r ∈ R. This constraint ensures that at each time point, t ∈ T , the combined

required resources for any ongoing studies or newly initiated studies do not

exceed the maximum available resources per time point, λmax
r .

Constraint (3) ensures that (i, j) does not start before (i, j − 1) is complete. Con-

straint (4) ensures that studies that had a prerequisite study fail at an earlier time

point are not initiated. These studies are included in the set F I,J (s), which may

be defined in advance given that the scenarios, s ∈ S, contain information on

study outcomes. Constraint (5) ensures that a study is not started earlier in the

time frame than by the earliest time that all of its prerequisite studies can be

completed. Constraints (4) and (5) help to reduce the number of variables in the

model.

Constraints (6) and (7 )are the NACs, which were discussed in Chapter 2. The

NACs ensure that information regarding trial outcomes is not used in the model

until after it has been revealed. For example, if in scenario s, (i, j) is unsuccessful,

we cannot use this information until we have run (i, j) and observed this failure.

We cannot anticipate future outcomes.

Constraint (8) is used to determine the variable Yi jts, which is used to track when

studies are completed and constraints (9) - (11) are used to calculate the variables,

Zi jts, that track when a study is eligible to be run. Nonanticipativity at the initial

time point is enforced using constraint (12).

The components of the objective function are calculated for each scenario, s,

using constraints (13) - (15).

Finally, the bounds of the variables themselves are specified in constraints (16)

and (17). Note that Yi jts and Zi jts are able to be defined as continuous variables
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due to their calculation being solely dependent on the binary variables, Xi jts,

ensuring that they will also be binary. For further details, see [39].
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Appendix - Chapter 3

B.1 Kalman filter

The Kalman filter is used to consider a dynamic system that we are able to take

measurements from and we will consider this system at discrete time intervals.

There is often noise within measurements and inputs but we can use filtering

to gain information about the state of the system given previous measurements.

The method that we will describe here is described in further detail by Anderson

and Moore [66].

Let xk be the state of the system at time k and let yk be a measurement of the

system taken at time k that includes noise. We can write

xk+1 = Fkxk +Gkwk

where wk ∼ MVN(0, Qk) describes the input noise. We can write the measure-

ment at time point k as

yk = HT
k xk + vk

where vk ∼MVN(0, rk) describes the output noise.

We are interested in estimating xk given the observations y0, ..., yk . In order

to simplify the problem and the equations required to perform the filtering,
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Anderson [66] modifies the problem to first consider the prediction of xk given

y0, ..., yk−1 before considering the prediction of xk given y0, ..., yk .

We will use the subscript k | j to denote time point k based upon everything up

until time point j. Then the equations used to make estimates of the state of the

system at time k under the Kalman filter are given in [66] as follows.

µ̂0|−1 = µ0

Σ̂0|−1 = Σ0

µ̂k+1|k =
(
Fk −KkHT

k

)
µ̂k |k−1 +Kkyk

Kk = Fk Σ̂k |k−1Hk

(
HT

k Σ̂k |k−1Hk +Rk

)−1

Σ̂k+1|k = Fk

[
Σ̂k |k−1 − Σ̂k |k−1Hk

(
HT

k Σ̂k |k−1Hk +Rk

)−1
HT

k Σ̂k |k−1

]
FT

k +GkQkGT
k

µ̂k |k = µ̂k |k−1 + Σ̂k |k−1Hk

(
HT

k Σ̂k |k−1Hk +Rk

)−1 (
yk −HT

k µ̂k |k−1

)
Σ̂k |k = Σ̂k |k−1 − Σ̂k |k−1Hk

(
HT

k Σ̂k |k−1Hk +Rk

)−1
HT

k Σ̂k |k−1

Let us now apply this to our problem. In our problem, the “state” of the system

is the vector of true treatment effects, θ. This vector does not evolve in time and

it does not have any noise, therefore for our system Fk = I and Gk = 0.

Suppose that we observe an outcome on combination A+C, as before, which we

will summarise using the score statistic Z2 and the Fisher information V2. Then,

in the Kalman filter setting our observation will be Z2 and we can write this in

terms of θ as

Z2 = (0, V2) θ + ε

where ε is our output noise and has distribution ε ∼ N(0, V2). Hence, for our

system Hk = (0, V2)
T , vk = ε and Rk = V2.

Applying the above formulae for the Kalman Filter to our problem, we get the
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following.

µ̂0|−1 = µ0

Σ̂0|−1 = Σ0

µ̂0|0 = µ̂0|−1 + Σ̂0|−1 (0, V2)
T

(
(0, V2) Σ̂0|−1 (0, V2)

T +V2

)−1 (
Z2 − (0, V2) µ̂0|−1

)
= µ0 + Σ0 (0, V2)

T
(
(0, V2)Σ0 (0, V2)

T +V2

)−1 (
Z2 − (0, V2) µ0

)
=

©­­«
µ1 −

ρ12σ1σ2V2
1+V2σ

2
2
µ2 +

ρ12σ1σ2
1+V2σ

2
2

Z2

1
1+V2σ

2
2
µ2 +

σ2
2

1+V2σ
2
2

Z2

ª®®¬
Σ̂0|0 = Σ̂0|−1 − Σ̂0|−1 (0, V2)

T
(
(0, V2) Σ̂0|−1 (0, V2)

T +V2

)−1
(0, V2) Σ̂0|−1

= Σ0 − Σ0 (0, V2)
T

(
(0, V2)Σ0 (0, V2)

T +V2

)−1
(0, V2)Σ0

=
©­­«
σ2

1 −
V2ρ

2
12σ

2
1σ

2
2

1+V2σ
2
2

ρ12σ1σ2
1+V2σ

2
2

ρ12σ1σ2
1+V2σ

2
2

σ2
2

1+V2σ
2
2

ª®®¬ .

This is the same result that we saw when using the GMRF methodology.

B.2 Mixture model

Let R be the discrete random variable with probability mass function

pR (0) = w0
0 and pR (1) = w0

1

and let Σ0 be the variance matrix of the bivariate normal distribution when the

correlation is 0 and Σ1 be the variance matrix when the correlation is ρ12 > 0.

The prior distribution for θ may then be written as the following hierarchical

model.

R ∼ pR

θ | R ∼MVN (µ, ΣR)
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Suppose we observe Z2 where

Z2 | θ ∼MVN (µ, ΣR) .

This information can be represented in a graphical model

R −→ θ −→ Z2

Let fθ |R (θ | r) denote the probability density of θ given R = r and let fZ2 |θ (z2 | θ)

be the probability density of Z2 given the value of θ. Then the joint distribution

of (R, θ, Z2)
T can be written as

f (r , θ, z2) = pR (r) fθ |R (θ | r) fZ2 |θ (z2 | θ) .

In a standard Bayesian analysis, we would find the posterior distribution for θ1

given the observed value of Z2 from

fθ1 |Z2 (θ1 | z2) ∝
∑

r

∫
pR (r) fθ |R (θ1, θ2 | r) fZ2 |θ (z2 | θ) dθ2.

Alternatively, we may consider the following graphical representation

R −→ θ1 ←− θ2 −→ Z2

and thus write

f (r , θ, z2) = pR (r) fθ2 (θ) fθ1 |R,θ2 (θ1 | r , θ2) fZ2 |θ2 (z2 | θ2) .

The posterior distribution of R given Z2 = z2 will be the same as the prior

distribution. We will then have

fθ1 |Z2 (θ1 | z2) ∝
∑

r

pR (r)
∫

fθ2 (θ2) fθ1 |R,θ2 (θ1 | r , θ2) fZ2 |θ1,R,θ2 (z2 | θ1, r , θ2) dθ2
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and we can show that

fθ1 |Z2 (θ1 | z2) ∝ P (R = 0) fθ1,Z2 |R (θ1, z2 | R = 0) / fZ2 |R (z2 | R = 0)

+ P (R = 1) fθ1,Z2 |R (θ1, z2 | R = 1) / fZ2 |R (z2 | R = 1)

= w0
0 fθ1,Z2 |R (θ1, z2 | R = 0) / fZ2 |R (z2 | R = 0)

+ w0
1 fθ1,Z2 |R (θ1, z2 | R = 1) / fZ2 |R (z2 | R = 1)

Therefore, under the standard Bayesian updating procedure, the posterior dis-

tribution of θ1 given Z2 is a mixture of normal distributions that have the same

weights as the prior mixture model. Each of the components of the mixture is

updated based on the value of R and Z2.

B.3 Results
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µ1 = 0.5 µ2 = 0.2 µ2 = 0.5 µ2 = 0.8
Univariate Mean PoS 0.762 0.762 0.762

% “Go” (PoS > 0.6) 100 100 100
GMRF Mean PoS 0.968 0.861 0.621

% “Go" (PoS > 0.6) 100 100 60.2
Hypothetical Mean ω1

0 0.623 0.137 0.625
Mean PoS 0.837 0.848 0.725

% “Go" (PoS > 0.6) 100 100 100
Limiting Mean ω1

0 0.639 0.153 0.642
Mean PoS 0.833 0.846 0.727

% “Go" (PoS > 0.6) 100 100 100

Table B.1: Table showing the results for combination A+ B of the simulation study where the
true values of θ1 and θ2 are given by 0.5 and µ1 = 0.5 and µ2 represent the prior means for each
combination. Note that the univariate approach does not update the distribution of combination
A+ B based on the results of combination A+C.

µ1 = 0.8 µ2 = 0.2 µ2 = 0.5 µ2 = 0.8
Univariate Mean PoS 0.915 0.915 0.915

% “Go” (PoS > 0.6) 100 100 100
GMRF Mean PoS 0.998 0.982 0.906

% “Go" (PoS > 0.6) 100 100 100
Hypothetical Mean ω1

0 0.623 0.137 0.625
Mean PoS 0.946 0.973 0.919

% “Go" (PoS > 0.6) 100 100 100
Limiting Mean ω1

0 0.639 0.153 0.642
Mean PoS 0.945 0.972 0.919

% “Go" (PoS > 0.6) 100 100 100

Table B.2: Table showing the results for combination A+ B of the simulation study where the
true values of θ1 and θ2 are given by 0.5 and µ1 = 0.8 and µ2 represent the prior means for each
combination. Note that the univariate approach does not update the distribution of combination
A+ B based on the results of combination A+C.
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Appendix - Chapter 4

C.1 Motivation

We provide motivation and context for aKDA through the use of an illustrative

example that is based on a real world pharmaceutical portfolio, the Roche neuro-

science pipeline [70] as of January 2019. From this portfolio, we use the number

of programmes and the current stage of each of the programmes. We then specify

information, such as the associated clinical trial costs, using estimates from the

literature.

The Roche neuroscience pipeline [70] contained 13 programmes, |I | = 13, as of

January 2019 and, if we take |Ji | to be the number of remaining phases including

the current one, then |Ji | ranged from one to three. We used the estimates given

by DiMasi et al. [3] as our baseline for the PoS, duration and cost of each of the

studies/phases. We also used the sum of the mean clinical period capitalised

costs from DiMasi et al. [3] multiplied by 1.25 to give a baseline value for revmax
i .

These baseline values are given in Table C.1 and the full set of input parameters

used are given in Table C.2. We split the planning horizon into periods of 10

months, due to the length of the studies considered, and considered a planning

horizon of nine time periods, |T | = 9, as this is equal to the time taken to complete

a full programme in this example. We consider one resource type, |R| = 1, which

we set to be equal to the study cost divided by the study duration. We specify
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a resource availability of 100 units, λmax
1 = 100, as this will allow Phase I and

II studies to be run alongside a Phase III study, but will not allow two Phase

III studies to be run simultaneously. These resources could be related to cost,

employees or capacity, for example. We will consider the two penalties to be

equal to six units of cost per ten month period, as this represents a similar

proportion of the maximum revenue as was used by Colvin and Maravelias [39].

Phase I Phase II Phase III
Phase transition probability 0.595 0.355 0.62
Mean out-of-pocket clinical period cost ($m) 25.3 58.6 255.4
Mean clinical period capitalised cost ($m) 49.6 95.3 314.0
Mean time to next phase (months) 19.8 30.3 45.1

Table C.1: Estimates provided by DiMasi et al. [3] The mean out-of-pocket cost represents
the actual study cost whereas the capitalised cost takes into account the cost of unsuccessful
programmes.

The correlation matrix for the illustrative example is given below.

©­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­«

1 0.5 0.4 0 0 0 0 0 0 0 0 0 0

0.5 1 0.5 0 0 0 0 0 0 0 0 0 0

0.4 0.5 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0.6 0.5 0.4 0 0 0 0 0 0

0 0 0 0.6 1 0.6 0.4 0 0 0 0 0 0

0 0 0 0.5 0.6 1 0.5 0 0 0 0 0 0

0 0 0 0.4 0.4 0.5 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0.6 0 0 0 0

0 0 0 0 0 0 0 0.6 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0.4 0 0

0 0 0 0 0 0 0 0 0 0.4 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬
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i j revmax
i ci j τi j λi j1 γLi θind

i j PoS αi j βi j δi j µ
[1,1]
i σ

2[1,1]
i

1 1 570 25 2 12.5 6 0 0.5 0.5 0.5 0.1
2 50 3 16.7 1 0.1 0.2
3 250 4 62.5 1 0.05 0.1

2 1 550 20 2 10 6 0 0.5 0.5 0.5 0.1
2 40 3 15 1 0.1 0.2
3 270 4 67.5 1 0.05 0.1

3 1 610 300 4 75 6 1 0.05 0.1 0.5 0.5 0.05
4 1 560 25 2 12.5 6 0 0.7 0.5 0.5 0.1

2 60 3 20 1 0.1 0.2
3 240 4 60 1 0.05 0.1

5 1 590 30 2 15 6 0 0.7 0.5 0.5 0.1
2 50 3 16.7 1 0.1 0.2
3 270 4 67.5 1 0.05 0.1

6 1 600 280 4 70 6 1 0.05 0.1 0.5 0.5 0.05
7 1 610 70 3 23.3 6 1 0.1 0.2 0.5 0.5 0.1

2 260 4 65 1 0.05 0.1
8 1 560 50 3 16.7 6 1 0.1 0.2 0.5 0.5 0.1

2 250 4 62.5 1 0.05 0.1
9 1 550 240 4 60 6 1 0.05 0.1 0.5 0.5 0.05

10 1 610 300 4 75 6 1 0.05 0.1 0.5 0.5 0.05
11 1 580 50 3 16.7 6 1 0.1 0.2 0.5 0.5 0.1

2 270 4 67.5 1 0.05 0.1
12 1 610 300 4 75 6 1 0.05 0.1 0.5 0.5 0.05
13 1 570 70 3 23.3 6 1 0.1 0.2 0.5 0.5 0.1

2 250 4 62.5 1 0.05 0.1

Table C.2: Input parameters used for the illustrative example based on the Roche neuroscience
pipeline [70] and the baseline values given in Table C.1 based on the work of DiMasi et al. [3]

C.1.1 Discussion

It is clear that we would not be able to use the MSSP formulation of the project

scheduling approach to find the optimal schedule or set of programmes for this

example. In fact, this method would not be appropriate for many pharmaceutical

portfolios due to its inability to be solved for reasonably sized portfolios.

Unlike the full MSSP, the aKDA can be used for this illustrative example with 13

programmes, |I | = 13. This makes the heuristic promising in terms of implemen-

tation in the real world and also makes it applicable to portfolios of combinations,

which are often larger due to their combinatorial nature.
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We considered there to be six groups of correlated studies with sizes ranging

from one to four and we chose the particular values of µi, σ2
i and ρii′ arbitrarily. If

we observe the outcome of a study that is contained in a group with size greater

than one, then we can apply the methodology from Chapter 3 to update the PoS

for the studies in the rest of the group.

The aKDA can be applied to and solved for our illustrative example, unlike

the full MSSP, and is able to capture the relationships between the different

programmes in the example, unlike the MSSP and the KDA. We specified θind
i j

to be equal to zero for Phase I studies and one for Phase II and III studies. In

the next section, we will provide brief details of the results for our illustrative

example alongside a detailed discussion of a simulation study for a smaller

example portfolio.

C.1.2 Results

In this section, we consider a planning horizon of nine time periods, but only

provide the details of the first five in Table C.3 due to the size of the decision tree

after this point.

The first column in Table C.3 gives the time point in the planning horizon, which

would be represented by the x-axis in a decision tree, and the second column

gives the particular subproblem at this time point, which would be represented

by the different nodes in a vertical segment of a decision tree. The final two

columns are used to record the successes and failures that have been observed in

each subproblem, prior to or at the current time point. This study information

defines the subproblem and is helpful in understanding the studies that will be

eligible in a particular subproblem. The “Selection” column provides the studies

that are selected in each subproblem. For example, in the first subproblem at the



Appendix C 178

Time Subproblem Selection Successes Failures
1 1 (7,1)

(9,1)
(11,1)

4 1 (1,1) (7,1)
(2,1) (11,1)
(8,1)

2 (1,1) (11,1) (7,1)
(2,1)
(8,1)

3 (2,1) (7,1) (11,1)
(4,1)
(8,1)

4 (2,1) (7,1)
(4,1) (11,1)
(8,1)

5 1 (4,1) (7,1)
(5,1) (9,1)

(13,1) (11,1)
2 (4,1) (9,1) (7,1)

(5,1) (11,1)
(13,1)

3 (4,1) (11,1) (7,1)
(5,1) (9,1)

(13,1)
4 (4,1) (9,1) (7,1)

(5,1) (11,1)
(13,1)

5 (1,1) (7,1) (9,1)
(5,1) (11,1)

(13,1)
6 (1,1) (7,1) (11,1)

(5,1) (9,1)
(13,1)

7 (1,1) (7,1) (9,1)
(5,1) (11,1)

(13,1)
8 (1,1) (7,1)

(5,1) (9,1)
(13,1) (11,1)

Table C.3: Output of the aKDA for the first five time periods of the illustrative example.

fifth time point, we have observed failures in studies (7, 1), (9, 1) and (11, 1). At

this point we then choose to initiate studies (4, 1), (5, 1) and (13, 1).

We see that, when (7, 1) is successful, the aKDA chooses to prioritise (4, 1) over
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(1, 1) since (4, 1) and (7, 1) are correlated, thus (7, 1) being successful increases

the probability of success of the studies in programme 4. Similar patterns to

these are seen later in the decision tree, which we will not show here because the

size of the tree increases quickly after the fifth time period due to the number

of studies selected thus the large potential number of outcomes and associated

subproblems required. The aKDA generates and solves 1709 subproblems to

generate the decision tree for this illustrative example and is able to do this in

under five minutes.

C.2 Extended simulation study results
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(a)

(b)
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(c)

(d)

Figure C.1: Histograms of the NPV in the simulation study under each approach in Comparison
1 for the correlation matrices (a) - (d).
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(a)

(b)
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(c)

(d)

Figure C.2: Histograms of the NPV in the simulation study under each approach in Comparison
2 for the correlation matrices (a) - (d).
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(a)

(b)
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(c)

(d)

Figure C.3: Histograms of the NPV in the simulation study under each approach in Comparison
3 for the correlation matrices (a) - (d).
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(a)

(b)
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(c)

(d)

Figure C.4: Plots of the empirical cumulative distribution function of the NPV in the simulation
study under each approach in Comparison 1 for the correlation matrices (a) - (d).
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(a)

(b)
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(c)

(d)

Figure C.5: Plots of the empirical cumulative distribution function of the NPV in the simulation
study under each approach in Comparison 2 for the correlation matrices (a) - (d).
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(a)

(b)
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(c)

(d)

Figure C.6: Plots of the empirical cumulative distribution function of the NPV in the simulation
study under each approach in Comparison 3 for the correlation matrices (a) - (d).
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