1	Efficient and selective removal of Se ^{VI} and As ^V mixed contaminants from aqueous media
2	by montmorillonite-nanoscale zero valent iron nanocomposite
3	
4	Jonathan Suazo-Hernández ^{a,b} , Karen Manquián-Cerda ^c , María de la Luz Mora ^{b,d} , Mauricio
5	Molina-Roco ^e , María Angélica Rubio ^{c, f} , Binoy Sarkar ^{g*} , Nanthi Bolan ^h , Nicolás Arancibia-
6	Miranda ^{c,f*}
7	
8	^a Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Av.
9	Francisco Salazar 01145, P.O. Box 54-D, Temuco, Chile
10	^b Center of Plant, Soil Interaction and Natural Resources Biotechnology, Universidad de La
11	Frontera. UFRO. Temuco, 4780000, Chile
12	^c Facultad de Química y Biología, Universidad de Santiago de Chile, Av. B. O'Higgins, 3363,
13	Santiago, Chile
14	^d Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av.
15	Francisco Salazar 01145, P.O. Box 54-D, Temuco, Chile
16	^e Escuela de Agronomía, Universidad Mayor, Camino La Pirámide #5750, Huechuraba, Santiago
17	8580745, Chile
18	^f Center for the Development of Nanoscience and Nanotechnology, CEDENNA, 9170124,
19	Santiago, Chile
20	^g Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
21	^h Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW
22	2308, Australia

- ^{*} Corresponding author: Dr Binoy Sarkar; Lancaster University; e-mail:
- 25 <u>b.sarkar@lancaster.ac.uk</u>

26 Co-corresponding author: Dr Nicolás Arancibia-Miranda; Universidad de Santiago de Chile; e-

- 27 mail: <u>nicolas.arancibia@usach.cl</u>
- 28

29 ABSTRACT

30 Nanoscale zero-valent iron (NZVI) and NZVI supported onto montmorillonite (NZVI-Mt) were

31 synthetized and used in this study to remove Se^{VI} and As^V from water in mono- and binary-

32 adsorbate systems. The adsorption kinetics and isotherm data for Se^{VI} and As^{V} were adequately

described by the pseudo-second-order (PSO) (r^2 >0.94) and Freundlich (r^2 >0.93) equations.

34 Results from scanning electron microscopy showed that the dimension of the NZVI immobilized

on the Mt was smaller than pure NZVI. Using 0.05 g of adsorbent and an initial 200 mg \cdot L⁻¹ As^V

and Se^{VI} concentration, the maximum adsorption capacity (q_{max}) and partition coefficient (PC)

for As^V on NZVI-Mt in monocomponent system were 54.75 mg·g⁻¹ and 0.065 mg·g⁻¹· μ M⁻¹,

38 which dropped respectively to 49.91 mg \cdot g⁻¹ and 0.055 mg \cdot g⁻¹· μ M⁻¹ under competitive system.

40 0.024 mg·g⁻¹· μ M⁻¹, respectively. Values of q_{max} and PC were higher for NZVI-Mt than NZVI

For Se^{VI} adsorption on NZVI-Mt in monocomponent system, q_{max} and PC were 28.63 mg·g⁻¹ and

and montmorillonite, indicating that the nanocomposite contained greater adsorption sites for

42 removing both oxyanions, but with a marked preference for As^V. Future research should evaluate

43 the effect of different operational variables on the removal efficiency of both oxyanions by

44 NZVI-Mt.

45

Keywords: NZVI; Water treatment; Arsenic and selenium removal; Competitive adsorption;
Partition coefficient

48

49 **1. Introduction**

In recent years, the presence of trace elements (TEs) in aquatic environments has been a major 50 51 concern due to their adverse effects on aquatic life, animals, plants, and humans (Tofighy and Mohammadi, 2011). In this context, arsenic (As) and selenium (Se) are present in water systems 52 53 and soils in trace concentrations but can be extremely hazardous when encountered in high concentrations (Jackson and Miller, 2000; Wilkin et al., 2018). The main sources of Se are 54 carbon shales, phosphatic rocks, coals and minerals like Se-bearing chalcopyrites (CuFe(Se,S)₂), 55 pyrites (Fe(Se,S)₂), klockmannite (CuSe), krutaite (CuSe₂) and mandarinoite (Fe₂(SeO₃)₃·6H₂O) 56 (Bajaj et al., 2011; Zhu et al., 2012). Similarly, As is found in minerals such as tennantite, 57 (Cu,Fe)₁₂As₄S₁₃ enargite (Cu₃AsS₄), arsenopyrite (FeAsS), among others (Nazari et al., 2017). In 58 59 recent years, incorporation of both the elements in their inorganic forms to aqueous matrices has been favored by anthropogenic activities such as agriculture, mining, thermoelectric, oil 60 refineries, etc., causing an increase of their concentrations in surface and groundwater, giving 61 62 rise to pollution scenarios in countries such as Chile, Argentina, New Zealand, Bangladesh, India, the United States and Japan (Hug et al., 2006; Barati et al., 2010; Neupane et al., 2014; 63 64 He et al., 2018). This environmental problem has increased the incidence of diseases in the population, where it has been reported that the ingestion of Se >1 mg kg^{-1} in the human body 65 66 through food can cause numbing of fingers and toes, damage to kidney and liver tissues, loss of hair and nails, as well as carcinogenesis (Rovira et al., 2008; Santos et al., 2015; Xie et al., 67 68 2015). Similarly, long-term exposition to As elevates the risk of cancer of the kidney and

69	bladder, in addition to producing skin pigmentation, diabetes, and lung ailments (Impellitteri,
70	2004; Luther et al., 2012). For this reason, the World Health Organization (WHO) suggested that
71	concentrations in drinking water should not exceed 40 ppb for Se (Santos et al., 2015), and 10
72	ppb for As (Wang et al., 2014).
73	Various studies have focused on the development and application of nanoparticles that allow
74	mitigating environmental problems, specially remediating aquatic contaminants (Kanel et al.,
75	2005; Martinson and Reddy, 2009; Sun et al., 2014; Jain et al., 2015). An example of such
76	materials is nanoscale zero-valent iron (NZVI) (Otyepka, 2014; Peng et al., 2017), which in
77	addition to having low production cost has high effectiveness in the elimination/removal of
78	organic and inorganic contaminants from aquatic systems. The NZVI has been shown to
79	successfully remove contaminants such as Orange II (Luo et al., 2013), 1,1,1-trichloro-2,2-bis(p-
80	chlorophenyl) ethane (El-Temsah et al., 2013), Cd ²⁺ (Zhang et al., 2014), Pb ²⁺ (Arancibia-
81	miranda et al., 2014), As ^{III} and As ^V (Kanel et al., 2005; Sun et al., 2011; Suazo-Hernández et al.,
82	2019), and Se ^{IV} and Se ^{VI} (Ling et al., 2015; Xie et al., 2017). The NZVI can form a core/shell
83	structure whose shell is constituted of iron oxides and/or (oxy)hydroxides, such as magnetite,
84	maghemite, goethite, which in turn together with the metallic iron core are responsible for
85	diverse mechanisms for pollutant elimination by NZVI nanoparticles. The mechanisms include
86	precipitation, co-precipitation, redox and adsorption processes (Yan et al., 2012; Ling et al.,
87	2015), which contribute to the high contaminant removal capacities by this nanomaterial.
88	Recently, the support/immobilization of NZVI on substrates like zeolite, biochar, kaolinite,
89	montmorillonite and palygorskite has arisen as an economic alternative for improving the
90	performance of NZVI via preventing the aggregation of nanoparticles while increasing the BET-
91	specific surface area (Zhang et al., 2011; Kim et al., 2013; Xi et al., 2014; Arancibia-Miranda et

al., 2016; Lin et al., 2017; Fan et al., 2019; Suazo-Hernández et al., 2019). This has expanded 92 NZVI's applications in extreme environmental conditions like acidic pH, high ionic strength, and 93 94 under the presence of coexisting ions. Among the support materials for the nanoparticles, montmorillonite (Mt) stands out as it is an expandable clay mineral (2:1) having excellent ability 95 to attract cations due to its permanent negative charge (Zhu et al., 2015). Arancibia-Miranda et 96 97 al. (2016) reported that immobilizing NZVI on Mt (NZVI-Mt) enabled a 2.3 times increase of Pb²⁺ removal compared to pristine NZVI, while Pang et al. (2014) showed that the NZVI-Mt 98 99 composite had twice the surface area of NZVI, increasing the degradation of decabromodiphenyl 100 ether. However, the adsorption efficiency of the NZVI-Mt composite is dependent on the chemical environment of the medium as well as on the adsorbing surface, media pH, and 101 particularly the presence of anions and cations in the aqueous system (Dabrowski et al., 2005; 102 Hiemstra et al., 2010), which may give rise to a competitive effect, decreasing and even 103 preventing the pollutant of interest from being removed by the adsorbent. Based on these 104 105 phenomena, recently Li et al. (2017) observed that the zeolite-NZVI composite (Z-NZVI) decreased its Cd²⁺ removing capacity from 62.0 to 32.9, and 5.9 mg·g⁻¹ in the presence of As^{III} 106 and Pb^{2+} , respectively. 107

There have been studies about the preparation, characterization and elimination of contaminants by clay-NZVI nanocomposites. However, the removal of contaminants in a competitive chemical environment, especially in the presence of other similar or heterogeneous compounds or ions, is a least reported area. The effects of the presence of two oxyanions such as selenate (Se^{VI}) and arsenate (As^V) in mono-component and competitive systems on the removal of these contaminants by clay-NZVI have not been realized yet. Thus, our goal was to support nZVI on montmorillonite clay mineral (Mt) (NZVI-Mt), characterize and evaluate its Se^{VI} and As^V

115	removal capacities and partition coefficients, and comparing the values to that of NZVI and Mt
116	(pristine material). Finally, through the characterization of the adsorbents conducted pre- and
117	post-adsorption experiments, a plausible mechanism for the removal process of As^{V} in the
118	absence and presence of Se ^{VI} was proposed.
119	
120	2. Experimental
121	2.1. Chemicals
122	The reagents used were FeCl ₃ ·6H ₂ O, NaCl, NaBH ₄ , NaOH, and HCl, all of analytical grades
123	(Merck). Montmorillonite (Mt) clay mineral was acquired from Sigma-Aldrich. As ₂ O ₅ (1000
124	mg·L ⁻¹) standard reference solution (Tritrisol, Merck, Germany) and Na ₂ SeO ₄ analytical grade
125	(Sigma-Aldrich) were used to validate the measurements.
126	
127	2.2. Synthesis of nanoadsorbents
128	The NZVI nanoparticles were synthesized using NaBH ₄ as the reducing agent. NaBH ₄ (1.6 M)
129	was added dropwise to a 1.0 M FeCl ₃ ·6H ₂ O solution at 25 ± 2 °C, in a N ₂ atmosphere with
130	mechanical stirring. The reduction reaction is represented by the following Eq. 1 (Kanel et al.,
131	2005).
132	$4Fe^{3+} + 3BH_4^- + 9H_2O \rightarrow 4Fe^0 + 3H_2BO_3^- + 6H_2\uparrow + 12H^+ $ (Eq. 1)

133 The NZVI-Mt nanocomposite had a theoretical 1:2 ratio of NZVI:Mt (% w/w), and it was

134 prepared following the methodology described by Wang and Zhang (1997) with some

modifications. The Mt (100 g) was first homoionized by treating the clay mineral with 200 mL

136 of NaNO₃ (0.5 M) for seven days, separated the solid phase, and freeze-dried for further use. For

137 the immobilization of nanoparticles, $1.0 \text{ g of FeCl}_3 \cdot 6H_2O$ was dissolved in 250 mL of Milli Q

water, and homoionized Mt was suspended in the same solution. The mixture (Mt-Fe³⁺) was ultrasonicated for half an hour, and stirred for 180 min at 25 ± 2 °C. For a complete reduction of Fe³⁺, 25 mL of NaBH₄ solution (1.6 M) was added gradually over five min. Later, an ultracentrifuge was used to separate the NZVI-Mt from the suspension at 9000 rpm for 10 min, and washed three times with a water-ethanol (1:1) mixture. This was done to remove the residual salts, and to avoid NZVI oxidation. Finally, the nanocomposite was freeze-dried, and stored at -4°C in a freezer until further use.

145

146 2.3. Characterization of adsorbents

The adsorbent materials were characterized before and after the adsorption reaction. The x-ray 147 diffraction (XRD) measurement was conducted using a powder diffractometer (Shimadzu XRD-148 6000) at 1.5418 Å with CuK α radiation in the 2 θ region of 5-80°. Scanning electron microscopy 149 (SEM) was carried out with a FEI Nova Nano SEM 200 equipment, and particle sizes were 150 151 analyzed using the commercial software ImageJ. The BET-specific surface area (SSA) of adsorbents was obtained using the BET method (Brunauer-Emmett-Teller) with a 152 Quantachrome 1200 Nova Station equipment. The zeta potential (ZP) was measured in the 153 154 presence of 200 mL NaCl (0.01 M) using Zeta Meter ZM4 apparatus, and the isoelectric point (IEP) was obtained from graphs of ZP versus pH. 155

156

157 **2.4. Batch adsorption studies**

158 The influence of initial pH values on the removal capacity of Se^{VI} , As^{V} or Se^{VI} - As^{V} on Mt,

159 NZVI and NZVI-Mt in the mono-component and the competitive system was determined with

160 20 mL of analyte solutions (200 mg \cdot L⁻¹) mixed with 50 mg of material in 50 mL polypropylene

tubes at a pH range of 3 to 10, and in 0.01 M NaCl solution as a background electrolyte. The 161 tubes were stirred for 1,440 min in an orbital shaker at 180 rpm and 25 ± 2 °C. Later, to 162 determine the variation of post-experimental pH, values were measured in the filtered solution 163 using a pH meter after the adsorption experiment. 164 The adsorption kinetics of Se^{VI} and As^V in the mono-component and competitive system was 165 studied with 20 mL of each oxyanion (200 mg \cdot L⁻¹) using 50 mg of adsorbents in 50 mL 166 polypropylene tubes at $pH = 7.0 \pm 0.2$, and in 0.01 M NaCl solution as a background electrolyte. 167 A set of suspensions were stirred at different time intervals (5 - 180 min) in an orbital shaker at 168 180 rpm and 25 ± 2 °C. 169 The experimental adsorption isotherms of oxyanions in the mono-component and competitive 170 system were conducted with 50 mg of material in 50 mL polypropylene tubes with 20 mL at 171 different initial concentrations of Se^{VI} and As^V (0.5, 1, 5, 10, 30, 60, 100, 150 and 200 mg \cdot L⁻¹) in 172 0.01 M NaCl solution as the background electrolyte, and at pH = 7.0 ± 0.2 . The suspensions were 173 stirred for 360 min in an orbital shaker at 180 rpm and 25 ± 2 °C. 174 All the samples were centrifuged on a Sorvall Model RC-5B Plus centrifuge for 10 min at 8000 175 rpm. The supernatants were filtered using syringe filters (0.22 µm), and after filtration, the 176 177 quantification of total selenium (Setotal) and arsenic (Astotal) was made using a Thermo SOLAAR-M6 atomic absorption spectrometer. The specific amounts of Se^{VI} and As^{V} (q_e, mg·g⁻¹) adsorbed 178 179 were determined using Eq. 2 $q_e = \frac{(C_0 - C_t)V}{w}$ 180 (Eq. 2)

181 where, C_0 is the initial concentration of Se^{VI} or As^V , C_t is the concentration of Se^{VI} or As^V at time 182 t or the equilibrium concentration (mg·L⁻¹), w is the weight (g) of the adsorbent, and V is the 183 volume (L). Adsorption experiments were checked by carrying out triplicate analyses.

184 **2.5 Data analysis**

185 The mathematical kinetic and isotherm equations used in this study are presented in

186 Supplementary Information (SI; Table S1 and S2). The fitness of kinetic and isotherm equations

187 was evaluated by considering standard deviation and the statistical parameters such as linear

188 coefficient of determination (r^2) and chi-squared value (χ^2) (Boparai et al., 2011; Arancibia-

189 Miranda et al., 2016) (SI).

190

191 **3. Results and discussion**

3.1. Characterization of nanoadsorbents

193 The XRD diffractograms of NZVI and NZVI-Mt pre- and post-adsorption are shown in Fig. 1.

194 For NZVI (Fig. 1a), two characteristic reflections of α Fe at $2\theta = 44.7^{\circ}$ and 65.0° were seen

- 195 (Kanel et al., 2005; Suazo-Hernández et al., 2019). For the Mt (Fig. S1a) and NZVI-Mt (Fig. 1b),
- the reflections at 12.63 Å (002), 4.44 Å (101) and 2.56 Å (107) represented the pattern of Na-
- 197 exchanged montmorillonite (Na_{0.3}(Al,Mg)₂Si₄O₁₀ 8H₂O) (Yuan et al., 2009; Arancibia-Miranda
- 198 et al., 2016). Additionally, the reflection at 3.34 Å (005) indicated the presence of illite
- 199 (KAl₄(Si,Al)₈O₁₀(OH)₄)₄H₂O) in the clay mineral sample (Arancibia-Miranda et al., 2016). A
- slight change of the main diffraction peak of the NZVI was seen in the nanocomposite, where the
- 201 αFe^0 diffraction angle (2 θ) was shifted from 44.7° to 45.5°, in agreement with previous reports
- 202 (Pang et al., 2014), suggesting that this shift corresponded to a decrease of the crystallite size of
- 203 NZVI (Yucelen et al., 2012; Arancibia-Miranda et al., 2017).
- 204 During the reaction with Se^{VI}, As^V, and Se^{VI} As^V, the NZVI showed new diffraction peaks
- 205 characteristic of iron oxides. For instance, with Se^{VI} (Fig. 1c), magnetite (Fe₃O₄) and/or
- maghemite(γ -Fe₂O₃) peak was seen at $2\theta = 35.8^{\circ}$, and lepidocrocite (γ -FeOOH) at $2\theta = 27.1^{\circ}$, in

addition to decrease of the αFe^0 signal associated with loss of the crystalline structure (Suazo-207 Hernández et al., 2019). For NZVI-Mt treated with Se^{VI} and As^V, the α Fe⁰ signal practically 208 disappeared, and no new signal was observed. During the treatment of Se^{VI} - As^V, only NZVI 209 showed a different behavior; the presence of both oxyanions decreased the degree of oxidation of 210 211 the outer shell, showing only magnetite-maghemite precipitated (Fig. 1g). Therefore, the XRD results suggested that the support of NZVI on Mt changed the crystallinity of these nanoparticles 212 213 because an amorphous oxide layer was formed on their surfaces after anion adsorption. To understand the dimensions and morphologies of the nanomaterials, pre- and post-adsorption 214 215 samples were investigated by SEM. Fig. 2a and 2b show that the pristine NZVI particles were 216 larger in size than those immobilized on Mt (SEM images of pristine Mt are shown in Fig. S2a), likely due to the three-dimensional growth limitation of these nanoparticles when interacting 217 218 with the clay mineral (Jia et al., 2018; Suazo-Hernández et al., 2019). The particle sizes found for NZVI and NZVI-Mt were between 50-190 nm and 30-170 nm, respectively (Fig. S3). The 219 nanoparticles had a clear collar type shape, associated with each other via magnetic forces and 220 van der Waals and electrostatic interactions that occurred due to the surface oxidation process 221 (Sun et al., 2011; Arancibia-Miranda et al., 2016), as also indicated by the XRD results. The SSA 222 of NZVI-Mt increased 7.9 and 25.5 times compared to that of NZVI and Mt, respectively, due to 223 224 the accumulation of nanoparticles on the clay mineral (Table S3). After the oxyanion adsorption reactions, the size of iron nanoparticles was increased in NZVI and NZVI-Mt (Fig. 2c-h), likely 225 226 due to the formation of different iron oxide coatings (Bhowmick et al., 2014; Trujillo-Reyes et al., 2014; Li et al., 2015). 227

228

229 **3.2.** Adsorption experiments

230 **3.2.1. pH dependence**

Solution pH is important on the adsorption process because the variation of pH influences the 231 speciation of Se^{VI} and As^V in the solution as well as the ionization of the surface groups of the 232 adsorbent materials. Fig. 3a shows that pH did not affect Se^{VI} removal by NZVI, with a 233 maximum amount removed close to 57.0 mg \cdot g⁻¹ (70.0 %) at pH = 3. On the other hand, NZVI-234 Mt removed an amount of Se^{VI} close to 20.0 mg \cdot g⁻¹ (24.8 %) at pH = 3. The negligible effect of 235 pH change on Se^{VI} removal using both the adsorbents might be related to the fact that under our 236 experimental conditions there were no changes in oxidation states of the Se^{VI} species (Fig. S4a). 237 The predominant interaction during the adsorption of Se^{VI} would have been a chemical 238 mechanism (ligand exchange) because the adsorption was independent of the solution's pH (Xia 239 et al., 2017a). The Mt reached a removal capacity of only 4.5 mg g^{-1} of Se^{VI}, quite lower than 240 NZVI and NZVI-Mt (Fig. 3a). The low adsorption of Se^{VI} by the pristine clay mineral was 241 associated to the electrostatic repulsion generated between the permanent negative charges on Mt 242 and Se^{VI} oxyanion (Charlet et al., 2007). Furthermore, this study showed that the coexistence of 243 As^V affected the removal capacity of Se^{VI}. At pH = 3, the Se^{VI} adsorption capacity decreased 244 from 55.46 to 43.89 mg g^{-1} for NZVI, and from 19.79 to 4.59 mg g^{-1} for NZVI-Mt (Fig. 3c), 245 corresponding to a decrease of 14% and 19%, respectively, in the presence of As^V. 246 The changes in the removal of As^V as a function of pH was greater by NZVI than by the NZVI-247 248 Mt composite (Fig. 3b), where an increasing pH to values greater than the IEP (Fig. S5) 249 decreased the adsorption capacity of the adsorbents. The pH response of NZVI-Mt would be 250 related to the increase of the amount of surface negative charges with increasing pH, causing an 251 increase in the electrostatic repulsion between the adsorbent and adsorbate (Suazo-Hernández et al., 2019). Due to pKa₂ for H₃AsO₄ is 6.7, at higher pH, the HAsO₄²⁻ species start becoming 252

predominant in the solution (Fig. S4b) and electrostatic interaction between the adsorbent and
As^V became less favored (Wang et al., 2014).

The data obtained for the As^V elimination with NZVI and NZVI-Mt in a competitive system 255 were similar to those obtained for the mono-component system (Fig. 3d), which could be 256 attributed to two factors. Firstly, the competing species Se^{VI} did not have a great affinity for the 257 surface groups of the NZVI and NZVI-Mt (\equiv SiOH \equiv AlOH, \equiv FeOH₂⁺, \equiv FeOH, and \equiv FeO⁻). This 258 explanation was corroborated by the values of specific rate (k) and affinity (n) constants obtained 259 in the kinetic and isotherm investigations, respectively, and also by the values of partition 260 coefficients (PC), which are described in later sections. Secondly, the As^V species (H₂AsO₄⁻, 261 HAsO₄²⁻ and AsO₄³⁻) when forming chemical interactions (of greater affinity) with the surface 262 groups could displace the previously adsorbed Se^{VI} species (Bhowmick et al., 2014). This is in 263 agreement that the As^V species have the ability to form inner spheres complexes with the surface 264 groups of NZVI in the presence of other anionic species such as NO_3^- , SO_4^{2-} , PO_4^{3-} , and HCO^- 265 (Kanel et al., 2005; Tanboonchuy et al., 2012; Bhowmick et al., 2014). 266 To understand the adsorption mechanisms of both the oxyanions on the adsorbent surfaces, the 267 pH variation ($\Delta pH = pH_{\text{final}}-pH_{\text{initial}}$) was plotted against the initial pH values (Fig. 4a-c). The 268 269 results indicated that at $\Delta pH > 0$, there was a release of OH⁻, giving an increase in the solution's pH_{final} . The opposite phenomenon was seen when $\Delta pH < 0$, implying a greater release of H⁺ from 270 271 the surface of the adsorbents, decreasing the pH_{final} . Fig. 4a shows that at $pH_{initial} \ge 4.0$, the pH_{final} of the post-adsorption Se^{VI} solution on NZVI-Mt 272 273 and NZVI tended to remain at pH 4.0, in contrast with the slightly higher pH_{final} (pH = 5) registered for the adsorption on Mt. This pH variation might be attributed to the *in situ* oxidation 274

process undergone by Fe^{0} (in NZVI and NZVI-Mt), which would have caused the release of H^{+}

into the bulk of the solution, and the formation of different surface Fe oxides on which Se^{VI} could be adsorbed (Fig. 2c and 2d). This process was independent of the solution's pH_{initial}, as confirmed by the effect of pH results (Fig. 3a). In relation to this process, Xia et al. (2017b) indicated that at pH < 7, the NZVI after being in contact with Se^{VI} released H⁺ into the solution according to Eq. 2, 3, and 4:

$$Fe^0 + 2H^+ \rightarrow Fe^{2+} + H_2^{\uparrow}$$
 (Eq. 2)

282
$$2H_2 + SeO_4^{2-} + 4H^+ \rightarrow Se_{\downarrow}^0 + 4H_2O$$
 (Eq. 3)

283
$$3Fe^{0} + 4Fe^{2+} + 4Se^{0} + 4H_{2}0 \rightarrow Fe_{3}O_{4} + 4FeSe + 8H^{+}$$
 (Eq. 4)

Considering Eq. 3, it was probable that Se^{VI} displaced the equilibrium toward the formation of 284 products in Eq. 4, in contrast with the effect produced after the adsorption of As^V on NZVI and 285 NZVI-Mt (Bhowmick et al., 2014). It was because when adsorption of As^V on NZVI-Mt at 286 pH_{initial} < 9 occurred, the pH_{final} remained close to 8 (Fig. 4b). This phenomenon might be 287 associated with the fact that As^V anions were coordinated through ligand exchange with the 288 surface ≡FeOH groups present in NZVI-Mt, releasing OH groups. An opposite behavior was 289 seen when As^V adsorption by NZVI took place. In this case, at $pH_{initial} \ge 5.0$, ΔpH was -2, 290 pointing to a greater generation of H⁺ in the medium, and this might be related to the 291 deprotonation of the predominant H₃AsO₄ species at that pH (H₂AsO₄⁻ \leftrightarrow H⁺+ HAsO₄²⁻). The 292 ΔpH values for the competing system (Fig. 4c) showed a trend similar to that of the As^V 293 adsorption system, suggesting that the reactions taking place in the solid-solution interface were 294 dependent only on the presence of As^V. 295

296

297 **3.2.2. Kinetics of adsorption**

298	The experimental kinetic adsorption data of both oxyanions in mono-component and competition
299	systems are presented in Table S4, and their trend is shown in Fig. 5. The equilibrium time for
300	Se ^{VI} adsorption on NZVI and NZVI-Mt reached during the first 5 and 20 min, respectively, with
301	the removed amount almost three times greater for NZVI-Mt than the pristine NZVI (Fig. 5a).
302	The equilibrium contact time for the adsorption of As ^V on NZVI in both systems occurred within
303	40 min of contact, while for the NZVI-Mt composite it occurred at 90 min (Fig. 5b and 5d), with
304	the removed amount 2.5 times greater for the nanocomposite compared to NZVI in a mono-
305	component system, and 2.0 times greater in the competition system (Table 1).
306	These results show that the support of NZVI on Mt, besides increasing the SSA (Table S3),
307	favored the removal of Se^{VI} in a mono-component system, and of As^{V} in both mono- and
308	competitive systems (Fig. 5a-d). This explanation could be associated to the higher amount of
309	surface functional groups (≡Fe-OH and ≡Fe-O-OH) which were generated by the
310	functionalization of the clay mineral with NZVI (Suazo-Hernández et al., 2019). Additionally,
311	the times taken for the saturation of the surface functional groups in NZVI-Mt with As ^V were the
312	same in both the mono-solute and competitive systems, and consequently the coexistence of Se^{VI}
313	did not interfere with As ^V adsorption by this adsorbent.
314	PC in a solid/liquid adsorption system correspond to the ratio of adsorbate concentration in and
315	on the solid adsorbent phase to its concentration in the liquid phase at equilibrium (Hu et al.,
316	2014; O'Connor and Connolly, 1980). PC was used to characterize the adsorption affinity of
317	adsorbents (Ahmed et al., 2016; Na et al., 2019), and could help to corroborate and understand
318	the effect of competing species on oxyanion adsorption, which is conventionally evaluated by
319	model fitting. The PC values obtained at different reaction times (5 - 180 min) for the adsorption
320	of As ^V on Mt and NZVI in competing system fluctuated between 0.0024 - 0.0030 mg \cdot g ⁻¹ \cdot μ M ⁻¹ ,

and 0.007 - 0.016 mg g^{-1} μ M⁻¹, respectively. These values were similar to those determined in 321 single-component system, indicating that Se^{VI} did not notably alter the adsorption of As^V on Mt 322 and NZVI (Table S5). Meanwhile, the decrease of PC values for As^V adsorption on NZVI-Mt in 323 the competing system (PC = $0.019 - 0.060 \text{ mg} \cdot \text{g}^{-1} \cdot \mu \text{M}^{-1}$) compared to single-component system 324 $(PC = 0.020 - 0.097 \text{ mg} \cdot \text{g}^{-1} \cdot \mu \text{M}^{-1})$ suggested that As^V adsorption was hampered on NZVI-Mt by 325 the presence of Se^{VI} (Table S5). It was not possible to report the PC for Se^{VI} in a competing 326 system because the adsorbents showed negligible adsorption, suggesting that As^V was an 327 328 interferer during the overall kinetic process. Higher PC values were obtained for Se^{VI} adsorption on Mt-NZVI than NZVI and Mt at different 329 reaction times in single-component system. PC values were greater for As^V adsorption on Mt-330 NZVI in both single and competing systems. These results could be attributed to a synergistic 331 effect where a uniform dispersion of NZVI particles were obtained on Mt during the 332 immobilization of nanoparticles on the clay mineral (Kim et al., 2019). In other words, there was 333 334 an increase in the number of adsorption sites after immobilization of NZVI on Mt. A decrease in PC value was expected in the competing As^V - Se^{VI} / NZVI-Mt system with respect to single-335 component system (because Se^{VI} would be occupying the adsorption sites), which did not occur. 336 337 This inconsistency would be a consequence of Mt exfoliation likely to occur during the NZVI immobilization process using harsh chemicals (Lee and Ko, 2014; Prasanth et al., 2013), which 338 339 might favor NZVI passivation and alter the adsorption sites. 340 Pseudo-second-order (PSO) and pseudo-first-order (PFO) equations (Table 1) were used to 341 describe the kinetic experimental results. According to these equations, we obtained adsorption capacity parameters and rate constants for Se^{VI} and As^V for the different adsorbents and systems. 342 343 The obtained kinetic parameters suggested that both the equations were capable of describing the

experimental data of Se^{VI} removal onto NZVI and NZVI-Mt in the mono-component system 344 with high r² values and low χ^2 differences (Table 1). The PSO model gave a greater closeness 345 between experimental (qe,exp) and theoretical (qe,cal) adsorption capacity values than PFO 346 model, indicating a chemisorption process (Barkat et al., 2009). Since Se^{VI} (SeO₄²⁻) anion has a 347 tetrahedral structure whose O-Se bond distance is 1.61-1.65 Å (Fernández-Martínez and Charlet, 348 2009), so it was probable that the adsorption predominantly occurred through the formation of 349 350 bidentate complexes (Peak, 2006; Chan et al., 2009). However, a few studies indicated that the 351 species with tetrahedral structure could also coordinate with the surface groups of an adsorbent 352 through the formation of monodentate complexes (Ling et al., 2015; Arancibia-Miranda et al., 2016; Xia et al., 2017a; Xie et al., 2017). 353 The adsorption kinetics of As^{V} onto NZVI and NZVI-Mt in the mono-component system (r^{2} = 354 0.988 and 0.996, respectively) as well as under Se^{VI} competition ($r^2 = 0.981$ and 0.996, 355 respectively) best fitted to the PSO equation (Table 1), indicating that the adsorption of As^V took 356 place mainly through formation of bidentate inner-sphere complexes (Zhang et al., 2005; 357 Limousin et al., 2007; Sun et al., 2011). The kinetics of As^V adsorption onto NZVI might be 358 359 explained considering that initially it was adsorbed on the NZVI surface. After the outer surface of NZVI became saturated with As^V, it would pass through the iron oxide layers, and would be 360 retained in the inner surface of the nZVI. This phenomenon might also be favored in NZVI-Mt 361 by the presence of Mt because of the laminar structure of the clay mineral. The interlayer 362 distance in Mt is approximately 12.45 Å (Cosultchi et al., 2004), which might instigate a 363 diffusion process for contaminants in the nanocomposite adsorbent (Dabrowski et al., 2005; 364 Tanboonchuy et al., 2012). 365

The rate constants k_1 and k_2 of As^V adsorption on Mt were much greater than for NZVI and 366 NZVI-Mt (Table 1), indicating that As^V could be removed by Mt through an ion exchange 367 reaction (in exchange with -OH) on its surface (Li et al., 2017). From the PSO equation, we 368 calculated the initial adsorption rate (h) (Wang et al., 2014; Arancibia-Miranda et al., 2016). The 369 h for As^V in the mono-component system followed: NZVI < Mt < NZVI-Mt, but the presence of 370 Se^{VI} changed the trend as: Mt < NZVI < NZVI-Mt (Table 1). Considering that h is associated to 371 the sites that are available for the adsorption to occur, when $t \rightarrow 0$, it could be suggested that 372 after the support of NZVI on Mt, there was a synergism in the adsorption as a result of the 373 formation of new adsorption sites in NZVI-Mt giving greater specificity for As^V in contrast with 374 NZVI (Zhang et al., 2005). 375

376

377 **3.2.3. Isotherms of adsorption**

The experimental adsorption isotherm data for of Se^{VI} and As^V onto Mt, NZVI and NZVI-Mt are 378 summarized in Table S6, and their trend is shown in Fig. 6. In the mono-component system, 379 adsorption isotherms of Se^{VI} were "L" type (Fig. 6a) (Dabrowski et al., 2005; Limousin et al., 380 2007), indicating that there was a high affinity between the reactive surface groups of the 381 adsorbent and adsorbate. The isotherms of As^V adsorption onto NZVI and NZVI-Mt (Fig. 6b and 382 6d) showed an "H" type isotherm, accounting for an extremely strong adsorption of the analyte 383 (Dabrowski et al., 2005; Boparai et al., 2011). Furthermore, the PC values for As^V on NZVI and 384 NZVI-Mt in both systems, and for Se^{VI} in single-component system decreased with an increase 385 386 of equilibrium adsorbate concentration (Table S7), following an exponential decrease until 387 reaching a minimum value (Fig. S6). This trend could be attributed to the high affinity of the

adsorbents for both oxyanions at specific reaction sites at low adsorbate concentration (Basta and
Tabatabai, 1992; Molina et al., 2010).

The Freundlich and Langmuir isotherm equations were used to describe the equilibrium 390 adsorption data of oxyanions on the adsorbents (Table 2). A good description to the experimental 391 data of Se^{VI} adsorption onto NZVI-Mt was obtained with the Freundlich equation ($r^2 = 0.944$ and 392 χ^2 = 5.026). These results suggested that the adsorption of Se^{VI} took place through forming 393 multilayers on the heterogeneous surface of the adsorbing material. The values of r^2 for the 394 adsorption of Se^{VI} on NZVI were quite similar between the equations used ($r^2 = 0.955$ and $\chi^2 =$ 395 0.562 for Langmuir; and $r^2 = 0.957$ and $\chi^2 = 0.540$ for Freundlich) (Table 2). However, we must 396 consider the theoretical foundation of the mathematical equations applied. So, knowing the 397 oxidation process that NZVI underwent, as seen in the post-adsorption XRD investigation (Fig. 398 1c), it was unexpected that the adsorption sites present on the surface of the material would be 399 similar or equal in energy and selectivity (Rangabhashiyam et al., 2014). Thus, the Freundlich 400 equation explained the adsorption of Se^{VI} on the nanoparticles with heterogeneous surface sites 401 better than the Langmuir equation. 402

The chemical reactivity of NZVI might induce Se^{VI} to be reduced to Se^{IV} (Qiu et al., 2000), a process that might occur on the adsorbent surface by adsorbing Se^{IV} on the outer shell Fe oxides of the NZVI (Yoon et al., 2011). The Se^{IV} (SeO₃²⁻) adsorbed on the surface might also penetrate into the (oxy)hydroxide layers, and subsequently elemental selenium (Se⁰) could be formed due to Se^{IV} reduction by NZVI (Hayashi et al., 2009). Another possibility might be that the adsorbed Se^{VI} would form multilayers on the adsorbent (Yoon et al., 2011; Xia et al., 2017a). However, future experiments are needed to prove the above hypotheses by investigating the solid phase

speciation of Se and/or Fe possibly using the method like x-ray photoelectron spectroscopy(XPS).

The experimental data of As^V also showed a high level of fitness with the Freundlich equation
for all the studied adsorbents and systems (Table 2), and they agreed with the results reported
previously (Kanel et al., 2005; Baltazar et al., 2014). The values of n (adsorption affinity) and PC

for all the systems are summarized in Table 2. In the mono-component system, the value of n

and PC for the elimination of Se^{VI} by NZVI-Mt was greater than that of NZVI (Table 2),

417 indicating that the nanocomposite had a greater affinity for Se^{VI} compared to NZVI (Xia et al.,

418 2017a).

In the case of As^{V} , the value of n varied between 3 and 6, and PC between 0.03 and 0.07 mg·g⁻

420 1 · μ M⁻¹, in both the mono-component and competitive systems, which indicated that the

421 adsorption of this analyte was, by both adsorbents, a highly favorable process, and also

422 suggesting that Se^{VI} did not interfere in the adsorption of As^V. This was confirmed from the fact

that there was no big variation in the n and PC values in a competing system compared to the

424 mono-component system (Table 2) (Guan et al., 2009; Liu et al., 2016).

425

426 **4.** Advantage of the use of NZVI-Mt in complex aqueous matrices

Pollution of aquatic environments with oxyanions (e.g., AsO4³⁻, SeO4²⁻, PO4³⁻, NO3⁻, and MnO4⁻)
impacts the health of various communities around the world (Zhang et al., 2005; Wen et al.,
2014), and it is a serious issue that needs to be solved. At present, the abatement of pollutants in
aqueous matrices is achieved using high-cost techniques that are not easily accessible, and may
generate toxic by-products (Singh et al., 2015; He et al., 2018). The use of nanotechnology, for
example, NZVI-clay composite materials, has appeared as an excellent alternative for removing

433	oxyanions like Se ^{VI} and As ^V from water systems (Table 3). The NZVI-Mt nanocomposite
434	reported in this study showed higher or at least comparable As^{V} and Se^{VI} removal capacities
435	compared to nanocomposites on substrates such as activated carbon, carbon nanotubes (CNTs),
436	graphite oxide (GO), zeolite and synthetic resin (Table 3). Adsorption capacity can vary
437	depending on initial adsorbate concentrations and doses, and hence would not appropriately
438	evaluate the real performance of an adsorbent which PC could do (Al-Wabel et al., 2019;
439	Szulejko et al., 2019; Vikrant and Kim, 2019). The PC values for As ^V and Se ^{VI} removal using
440	NZVI-Mt were smaller than those given by other adsorbents, except for As ^V removal by zeolite
441	(Suazo-Hernández et al., 2019) and pristine Mt (Bhowmick et al., 2014) (Table 3). These results
442	could be attributed to high concentration of As^{V} and Se^{VI} that are not absorbed, making the
443	adsorbent appear to have reduced performance. It is also probable that PC values depend on the
444	NZVI immobilizing substrate which can interact differently with oxyanions (Liu and Hu, 2019;
445	Vikrant and Kim, 2019). For instance, when NZVI was mixed with Al-bentonite, and an initial
446	concentration of Se ^{VI} was 80 mg \cdot L ⁻¹ , the PC was 18 times higher than for NZVI-Mt using 200
447	$mg \cdot L^{-1}$ of Se^{VI} (Table 3). Similarly, when NZVI was supported on graphite oxide (GO), and the
448	initial concentration of As ^V was 15 mg·L ⁻¹ (Zhu et al., 2009), PC was 9.9 times higher than
449	NZVI-Mt at 200 mg \cdot L ⁻¹ As ^V concentration (Table 3). It is recommended that future research on
450	As and Se removal in solid-liquid system should consider PC to evaluate adsorbent performance.
451	Nevertheless, among the substrate materials, Mt would be less expensive and environmentally
452	friendlier than CNT, GO and synthetic resins (Mandal et al., 2018; Mukhopadhyay et al., 2020).
453	The present research made an exhaustive study of more complex matrices, finding that there was
454	a greater removal of As^{V} in the system competing with Se^{VI} when using NZVI-Mt. This
455	phenomenon showed the high affinity of NZVI-Mt for As ^V , which might be attributed to the fact

that, as compared to the Se^{VI} species, As^V species present in the solution (pH = 7) had a spatial 456 conformation (Fig. S4) that allowed forming more stable chemical bonds with less energy 457 spending (Sherman and Randall, 2003). The chemical bond formation was facilitated with the 458 \equiv FeOH, \equiv AlOH and \equiv SiOH functional groups of the adsorbent material (Tandon et al., 2013). 459 The consequence of using an expandable clay mineral such as montmorillonite to immobilize 460 461 NZVI was that the laminar intercalation process taking place between the clay mineral and NZVI might favor the formation of additional removal sites due to the presence of NZVI. This paper 462 463 also suggests that the contaminant adsorption studies must not only focus on the search for new nanomaterials that are efficient for the removal of pollutants in systems closer to reality but also 464 465 should shed importance on determining the adsorbent-adsorbate interactions involved.

466

467 **5.** Conclusions

The characterization of NZVI-Mt and NZVI before and after the As^V and Se^{VI} adsorption 468 reactions in both mono-component and competitive systems showed that the Fe⁰ nanoparticles 469 grew in their particle size because they underwent a surface transformation process forming new 470 471 mineralogical phases such as magnetite (Fe₃O₄) and/or maghemite (γ -Fe₂O₃), lepidocrocite (γ -FeOOH), and amorphous iron oxides. In the mono-component system, Se^{VI} was removed by the 472 NZVI and NZVI-Mt more rapidly than As^V. In a competitive system, Se^{VI} was removed only by 473 the NZVI, in contrast to As^V which was removed by all the adsorbents (Mt, NZVI, and NZVI-474 Mt). In addition, the kinetics of As^V adsorption onto NZVI and NZVI-Mt presented a better fit to 475 the PSO equation (r² > 0.98, χ^2 < 1.50), and giving q_e values 6.80 and 5.52 times greater, 476 respectively, than Se^{VI} in the mono-component system. 477

478	The predominant mechanism of Se^{VI} removal from the solution by the adsorbents was through
479	chemical adsorption. Meanwhile, in the mono-component and competing systems, As^{V} was
480	removed by NZVI and NZVI-Mt forming monodentate or bidentate complexes. Higher q_{max} and
481	PC values for As^{V} adsorption by NZVI-Mt in both systems and Se^{VI} adsorption in
482	monocomponent system showed a synergistic effect due to NZVI immobilization on Mt, which
483	also improved the affinity of NZVI-Mt toward As ^V over Se ^{VI} . This study showed promising
484	results for applying Mt-supported NZVI to remove As ^V coexisting with Se ^{VI} in aqueous
485	solutions. Future research is required to study the removal performance of oxyanions from real
486	domestic and industrial wastewaters, and to investigate the nanocomposite stability.
487	
488	Acknowledgements
489	This work was supported by FONDEF under Project no. ID17I10302, Fondecyt 1191018,
490	PAI77190014, and by CEDENNA (FB0807). J.S.H acknowledges ANID Ph.D. scholarships N°
491	21171685, and Convenio Marco Plurianual FRO1656.
492	
493	References
494	Ahmed, E., Deep, A., Kwon, E.E., Brown, R.J.C., Kim, K.H., 2016. Performance comparison of
495	MOF and other sorbent materials in removing key odorants emitted from pigpen slurry.
496	Sci. Rep. 6, 1–11.
497	Al-Wabel, M., Elfaki, J., Usman, A., Hussain, Q., Ok, Y.S., 2019. Performance of dry water- and
498	porous carbon-based sorbents for carbon dioxide capture. Environ. Res. 174, 69-79.
499	Arancibia-Miranda, N., Baltazar, S.E., García, A., Muñoz-Lira, D., Sepúlveda, P., Rubio, M.A.,
500	Altbir, D., 2016. Nanoscale zero valent supported by Zeolite and Montmorillonite:

- Template effect of the removal of lead ion from an aqueous solution. J. Hazard. Mater.
 301, 371–380.
- 503 Arancibia-miranda, N., Baltazar, S.E., García, A., Romero, A.H., Rubio, M.A., Altbir, D., 2014.
- Lead removal by nano-scale zero valent iron : Surface analysis and pH effect. Mater. Res.
 Bull. 59, 341–348.
- Arancibia-Miranda, N., Escudey, M., Ramírez, R., González, R.I., Van Duin, A.C.T., Kiwi, M.,
- 507 2017. Advancements in the Synthesis of Building Block Materials: Experimental
- 508 Evidence and Modeled Interpretations of the Effect of Na and K on Imogolite Synthesis.
- 509 J. Phys. Chem. C 121, 12658–12668.
- 510 Baikousi, M., Georgiou, Y., Daikopoulos, C., Bourlinos, A.B., Filip, J., Zbořil, R.,
- 511 Deligiannakis, Y., Karakassides, M.A., 2015. Synthesis and characterization of robust
 512 zero valent iron/mesoporous carbon composites and their applications in arsenic removal.
 513 Carbon N. Y. 93, 636–647.
- Bajaj, M., Eiche, E., Neumann, T., Winter, J., Gallert, C., 2011. Concentrations of selenium in
 soil and groundwater in North-West India. J. Hazard. Mater. 189, 640–646.
- 516 Baltazar, S.E., Garcia, A., Romero, A.H., Rubio, M.A., Arancibia-Miranda, N., Altbir, D., 2014.
- 517 Surface rearrangement of nanoscale zerovalent iron: the role of pH and its implications in
 518 the kinetics of arsenate sorption. Environ. Technol. (United Kingdom) 35, 2365–2372.
- 519 Barati, A.H., Maleki, A., Alasvand, M., 2010. Multi-trace elements level in drinking water and
- 520 the prevalence of multi-chronic arsenical poisoning in residents in the west area of Iran.
- 521 Sci. Total Environ. 408, 1523–1529.
- Barkat, M., Nibou, D., Chegrouche, S., Mellah, A., 2009. Kinetics and thermodynamics studies
 of chromium(VI) ions adsorption onto activated carbon from aqueous solutions. Chem.

- 524 Eng. Process. Process Intensif. 48, 38–47.
- Basta, N.T., Tabatabai, M.A., 1992. Effect of cropping systems on adsorption of metals by soils:
 III. Competitive adsorption. Soil Sci. 153, 195–204.
- 527 Bhowmick, S., Chakraborty, S., Mondal, P., Van Renterghem, W., Van den Berghe, S., Roman-
- 528 Ross, G., Chatterjee, D., Iglesias, M., Renterghem, W. Van, 2014. Montmorillonite-
- 529 supported nanoscale zero-valent iron for removal of arsenic from aqueous solution:
- 530 Kinetics and mechanism. Chem. Eng. J. 243, 14–23.
- Boparai, H.K., Joseph, M., Carroll, D.M.O., 2011. Kinetics and thermodynamics of cadmium ion
 removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater. 186, 458–
- **533** 465.
- Chan, Y.T., Kuan, W.H., Chen, T.Y., Wang, M.K., 2009. Adsorption mechanism of selenate and
 selenite on the binary oxide systems. Water Res. 43, 4412–4420.
- 536 Charlet, L., Scheinost, A.C., Tournassat, C., Greneche, J.M., Géhin, A., Fernández-Martínez, A.,
- 537 Coudert, S., Tisserand, D., Brendle, J., 2007. Electron transfer at the mineral/water
- interface: Selenium reduction by ferrous iron sorbed on clay. Geochim. Cosmochim. Acta
 71, 5731–5749.
- Cosultchi, A., Bosch, P., Lara, V.H., 2004. Adsorption of petroleum organic compounds on
 natural Wyoming montmorillonite. Colloids Surfaces A Physicochem. Eng. Asp. 243,
 53–61.
- 543 Dąbrowski, A., Podkościelny, P., Hubicki, Z., Barczak, M., 2005. Adsorption of phenolic
 544 compounds by activated carbon A critical review. Chemosphere 58, 1049–1070.
- 545 Deng, Y., Ok, Y.S., Mohan, D., Pittman, C.U., Dou, X., 2019. Carbamazepine removal from
 546 water by carbon dot- modified magnetic carbon nanotubes. Environ. Res. 434–444.

547	El-Temsah, Y.S., Oughton, D.H., Joner, E.J., 2013. Effects of nano-sized zero-valent iron on
548	DDT degradation and residual toxicity in soil: A column experiment. Plant Soil 368,
549	189–200.
550	Fan, Z., Zhang, Q., Gao, B., Li, M., Liu, C., Qiu, Y., 2019. Removal of hexavalent chromium by
551	biochar supported nZVI composite: Batch and fixed-bed column evaluations,
552	mechanisms, and secondary contamination prevention. Chemosphere 217, 85-94.
553	Fernández-Martínez, A., Charlet, L., 2009. Selenium environmental cycling and bioavailability:
554	A structural chemist point of view. Rev. Environ. Sci. Biotechnol. 8, 81-110.
555	Guan, X., Dong, H., Ma, J., Jiang, L., 2009. Removal of arsenic from water: Effects of
556	competing anions on As(III) removal in KMnO ₄ -Fe(II) process. Water Res. 43, 3891-
557	3899.
558	Hayashi, H., Kanie, K., Shinoda, K., Muramatsu, A., Suzuki, S., Sasaki, H., 2009. pH-
559	dependence of selenate removal from liquid phase by reductive Fe(II)-Fe(III)
560	hydroxysulfate compound, green rust. Chemosphere 76, 638–643.
561	He, Y., Xiang, Y., Zhou, Y., Yang, Y., Zhang, J., Huang, H., 2018. Selenium contamination,
562	consequences and remediation techniques in water and soils : A review. Environ. Res.
563	164, 288–301.
564	Hiemstra, T., Antelo, J., Rahnemaie, R., Riemsdijk, W.H. van, 2010. Nanoparticles in natural
565	systems I: The effective reactive surface area of the natural oxide fraction in field
566	samples. Geochim. Cosmochim. Acta 74, 41–58.
567	Hu, H.C., Chai, X.S., Barnes, D., 2014. Determination of solid-liquid partition coefficient of
568	volatile compounds by solid phase ratio variation based headspace analysis. Fluid Phase
569	Equilib. 380, 76–81.

570	Huq, S.M.I., Joardar, J.C., Parvin, S., Correll, R., Naidu, R., 2006. Arsenic Contamination in
571	Food-chain : Transfer of Arsenic into Food Materials through Groundwater Irrigation 24,
572	305–316.
573	Impellitteri, C.A., 2004. Effects of pH and competing anions on the speciation of arsenic in fixed
574	ionic strength solutions by solid phase extraction cartridges. Water Res. 38, 1207–14.
575	Jackson, B.P., Miller, W.P., 2000. Effectiveness of Phosphate and Hydroxide for Desorption of
576	Arsenic and Selenium Species from Iron Oxides. Soil Sci. Soc. Am. J. 64, 1616–1622.
577	Jain, A., Agarwal, M., 2017. Kinetic equilibrium and thermodynamic study of arsenic removal
578	from water using alumina supported iron nano particles. J. Water Process Eng. 19, 51–59.
579	Jain, R., Dominic, D., Jordan, N., Weiss, S., Hubner, R., van Hullebusch, E.D., Farges, F., Lens,
580	P.N.L., 2015. Adsorption of copper and cadmium by biogenic elemental selenium
581	nanoparticles. Chem. Eng. J. J. 260, 855-863.
582	Jia, Z., Shu, Y., Huang, R., Liu, J., Liu, L., 2018. Enhanced reactivity of nZVI embedded into
583	supermacroporous cryogels for highly efficient Cr(VI) and total Cr removal from aqueous
584	solution. Chemosphere 199, 232–242.
585	Kanel, S.R., Manning, B., Charlet, L., Choi, H., 2005. Removal of Arsenic(III) from
586	Groundwater by Nanoscale Zero-Valent Iron. Environ. Sci. Technol. 39, 1291–1298.
587	Kim, K.H., Szulejko, J.E., Raza, N., Kumar, V., Vikrant, K., Tsang, D.C.W., Bolan, N.S., Ok,
588	Y.S., Khan, A., 2019. Identifying the best materials for the removal of airborne toluene
589	based on performance metrics - A critical review. J. Clean. Prod. 241, 118408.
590	Kim, S.A., Kamala-Kannan, S., Lee, K.J., Park, Y.J., Shea, P.J., Lee, W.H., Kim, H.M., Oh,
591	B.T., 2013. Removal of Pb(II) from aqueous solution by a zeolite-nanoscale zero-valent
592	iron composite. Chem. Eng. J. 217, 54-60.

594	produced by ethylene polymerization with metallocene catalyst adsorbed on multilayer
595	graphene. Catal. Today 232, 82–88.
596	Li, Y., Cheng, W., Sheng, G., Li, J., Dong, H., Chen, Y., Zhu, L., 2015. Synergetic effect of a
597	pillared bentonite support on SE(VI) removal by nanoscale zero valent iron. Appl. Catal.
598	B Environ. 174–175, 329–335.
599	Li, Z., Wang, L., Meng, J., Liu, X., Xu, J., Wang, F., Brookes, P., 2017. Zeolite-supported
600	nanoscale zero-valent iron: New findings on simultaneous adsorption of Cd(II), Pb(II),
601	and As(III) in aqueous solution and soil. J. Hazard. Mater. 344, 1-11.
602	Limousin, G., Gaudet, JP., Charlet, L., Szenknect, S., Barthès, V., Krimissa, M., 2007. Sorption
603	isotherms: A review on physical bases, modeling and measurement. Appl. Geochemistry
604	22, 249–275.
605	Lin, J., Sun, M., Liu, X., Chen, Z., 2017. Functional kaolin supported nanoscale zero-valent iron
606	as a Fenton-like catalyst for the degradation of Direct Black G. Chemosphere 184, 664-
607	672.
608	Ling, L., Pan, B., Zhang, W. xian, 2015. Removal of selenium from water with nanoscale zero-
609	valent iron: Mechanisms of intraparticle reduction of Se(IV). Water Res. 71, 274-281.
610	Liu, T., Yang, Y., Wang, ZL., Sun, Y., 2016. Remediation of arsenic(III) from aqueous
611	solutions using improved nanoscale zero-valent iron on pumice. Chem. Eng. J. 288, 739-
612	744.
613	Liu, Y., Hu, X., 2019. Kinetics and thermodynamics of efficient phosphorus removal by a
614	composite fiber. Appl. Sci. 9, 2220–2239.
615	Luo, S., Qin, P., Shao, J., Peng, L., Zeng, Q., Gu, J.D., 2013. Synthesis of reactive nanoscale

Lee, J.S., Ko, YS, 2014. Synthesis of petaloid graphene/polyethylene composite nanosheet

593

- 516 zero valent iron using rectorite supports and its application for Orange II removal. Chem.
- 617

Eng. J. 223, 1–7.

- Luther, S., Borgfeld, N., Kim, J., Parsons, J.G., 2012. Removal of arsenic from aqueous
- solution : A study of the effects of pH and interfering ions using iron oxide
- 620 nanomaterials. Microchem. J. 101, 30–36.
- Mandal, S., Sarkar, B., Mukhopadhyay, R., Biswas, J.K., Manjaiah, K.M., 2018. Microparticle Supported Nanocomposites for Safe Environmental Applications. Nanomater.
- Ecotoxicity, Safety, Public Percept. 305–317.
- Martinson, C.A., Reddy, K.J., 2009. Adsorption of arsenic(III) and arsenic(V) by cupric oxide
 nanoparticles. J. Colloid Interface Sci. 336, 406–411.
- 626 Molina, M., Manquian-Cerda, K., Escudey, M., 2010. Sorption and selectivity sequences of Cd,
- 627 Cu, Ni, Pb, and Zn in single- and multi-component systems in a cultivated chilean
 628 Mollisol. Soil Sediment Contam. 19, 405–418.
- 629 Mukhopadhyay, R., Bhaduri, D., Sarkar, B., Rusmin, R., Hou, D., Khanam, R., Sarkar, S.,
- 630 Kumar Biswas, J., Vithanage, M., Bhatnagar, A., Ok, Y.S., 2020. Clay–polymer
- 631 nanocomposites: Progress and challenges for use in sustainable water treatment. J.
- 632 Hazard. Mater. 383, 121125.
- Na, C.-J., Yoo, M.-J., Tsang, D.C.W., Kim, H.W., Kim, K.-H., 2019. High-performance
- materials for effective sorptive removal of formaldehyde in air. J. Hazard. Mater. 366,
 452–465.
- Nazari, A.M., Radzinski, R., Ghahreman, A., 2017. Review of arsenic metallurgy: Treatment of
 arsenical minerals and the immobilization of arsenic. Hydrometallurgy 174, 258–281.
- 638 Neupane, G., Donahoe, R.J., Arai, Y., 2014. Kinetics of competitive

- adsorption/desorption of arsenate and phosphate at the ferrihydrite-water interface. Chem.
 Geol. 368, 31–38.
- 641 O'Connor D.J. and Connolly J.P., 1980. The effect of concentration of adsorbing solids on the
 642 partition coefficient Water Research 14, 1517-1523.
- Otyepka, M., 2014. Challenges in the Theoretical Description of Nanoparticle Reactivity : Nano
 Zero-Valent Iron. Int J Quantum Chem. 114, 987–992.
- Pang, Z., Yan, M., Jia, X., Wang, Z., Chen, J., 2014. Debromination of decabromodiphenyl ether
 by organo-montmorillonite- supported nanoscale zero-valent iron : Preparation ,
- 647 characterization and influence factors. J. Environ. Sci. 26, 483–491.
- Peak, D., 2006. Adsorption mechanisms of selenium oxyanions at the aluminum oxide/water
 interface. J. Colloid Interface Sci. 303, 337–345.
- Peng, Z., Xiong, C., Wang, W., Tan, F., Xu, Y., Wang, X., Qiao, X., 2017. Facile modification
- of nanoscale zero-valent iron with high stability for Cr(VI) remediation. Sci. Total
 Environ. 596–597, 266–273.
- 653 Prasanth, R., Shubha, N., Hng, H.H., Srinivasan, M., 2013. Effect of nano-clay on ionic
- 654 conductivity and electrochemical properties of poly(vinylidene fluoride) based
- nanocomposite porous polymer membranes and their application as polymer electrolyte
 in lithium ion batteries. Eur. Polym. J. 49, 307–318.
- 657 Qiu, S.R., Lai, H.F., Roberson, M.J., Hunt, M.L., Amrhein, C., Giancarlo, L.C., Flynn, G.W.,
- Yarmoff, J.A., 2000. Removal of contaminants from aqueous solution by reaction with
 iron surfaces. Langmuir 16, 2230–2236.
- 660 Rangabhashiyam, S., Anu, N., Giri Nandagopal, M.S., Selvaraju, N., 2014. Relevance of
- isotherm models in biosorption of pollutants by agricultural byproducts. J. Environ.

662 Chem. Eng. 2, 398–414.

- 663 Rovira, M., Giménez, J., Martínez, M., Martínez-Lladó, X., de Pablo, J., Martí, V., Duro, L.,
- 664 2008. Sorption of selenium(IV) and selenium(VI) onto natural iron oxides: Goethite and
 665 hematite. J. Hazard. Mater. 150, 279–284.
- 666 Santos, S., Ungureanu, G., Boaventura, R., Botelho, C., 2015. Selenium contaminated waters:
- 667 An overview of analytical methods, treatment options and recent advances in sorption 668 methods. Sci. Total Environ. 521–522, 246–260.
- 669 Sheng, G., Alsaedi, A., Shammakh, W., Monaquel, S., Sheng, J., Wang, X., Li, H., Huang, Y.,
- 670 2016. Enhanced sequestration of selenite in water by nanoscale zero valent iron
- 671 immobilization on carbon nanotubes by a combined batch, XPS and XAFS investigation.
 672 Carbon N. Y. 99, 123–130.
- 673 Sherman, D.M., Randall, S.R., 2003. Surface complexation of arsenic(V) to iron(III)
- 674 (hydr)oxides: Structural mechanism from ab initio molecular geometries and EXAFS
 675 spectroscopy. Geochim. Cosmochim. Acta 67, 4223–4230.
- 676 Singh, R., Singh, S., Parihar, P., Singh, V.P., Prasad, S.M., 2015. Arsenic contamination,
- consequences and remediation techniques: A review. Ecotoxicol. Environ. Saf. 112, 247–
 270.

679 Suazo-Hernández, J., Sepúlveda, P., Manquián-Cerda, K., Ramírez-Tagle, R., Rubio, M.A.,

Bolan, N., Sarkar, B., Arancibia-Miranda, N., 2019. Synthesis and characterization of

- zeolite-based composites functionalized with nanoscale zero-valent iron for removing
 arsenic in the presence of selenium from water. J. Hazard. Mater. 373, 810–819.
- Sun, F., Osseo-asare, K.A., Chen, Y., Dempsey, B.A., 2011. Reduction of As (V) to As (III) by
- 684 commercial ZVI or As (0) with acid-treated ZVI. J. Hazard. Mater. 196, 311–317.

685	Sun, Y., Ding, C., Cheng, W., Wang, X., 2014. Simultaneous adsorption and reduction of U(VI)
686	on reduced graphene oxide-supported nanoscale zerovalent iron. J. Hazard. Mater. 280,
687	399–408.

- Szulejko, J.E., Kim, K., Parise, J., 2019. Seeking the most powerful and practical real-world
 sorbents for gaseous ben- zene as a representative volatile organic compound based on
 performance metric. Sep. Purif. Technol. 212, 980–985.
- Tanboonchuy, V., Grisdanurak, N., Liao, C.H., 2012. Background species effect on aqueous
 arsenic removal by nano zero-valent iron using fractional factorial design. J. Hazard.
- 693 Mater. 205–206, 40–46.
- Tandon, P.K., Shukla, R.C., Singh, S.B., 2013. Removal of arsenic (III) from water with clay
 supported zero valent iron nanoparticles synthesized with the help of tea liquor. Ind. Eng.
- 696 Chem. Res. 52, 10052–10058.
- Tofighy, M.A., Mohammadi, T., 2011. Adsorption of divalent heavy metal ions from water using
 carbon nanotube sheets. J. Hazard. Mater. 185, 140–147.
- Trujillo-Reyes, J., Peralta-Videa, J.R., Gardea-Torresdey, J.L., 2014. Supported and unsupported
 nanomaterials for water and soil remediation : Are they a useful solution for worldwide
 pollution ? J. Hazard. Mater. 280, 487–503.
- Violante, A., Pigna, M., 2010. Competitive Sorption of Arsenate and Phosphate on Different
 Clay Minerals and Soils. Soil Sci. Soc. Am. J. 66, 1788.
- Vikrant, K., Kim, K., 2019. Nanomaterials for the adsorptive treatment of Hg(II) ions from
 water. Chem. Eng. J. 358, 264–282.
- 706 Wang, C.-B., Zhang, W.-X., 1997. Synthesizing Nanoscale Iron Particles for Rapid and
- 707 Complete Dechlorination of TCE and PCBs. Environ. Sci. Technol. 31, 2155–2156.

708	Wang, C., Luo, H., Zhang, Z., Wu, Y., Zhang, J., Chen, S., 2014. Removal of As(III) and As(V)
709	from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified
710	composites. J. Hazard. Mater. 268, 124–131.
711	Wen, Z., Zhang, Y., Dai, C., 2014. Removal of phosphate from aqueous solution using nanoscale
712	zerovalent iron (nZVI). Colloids Surfaces A Physicochem. Eng. Asp. 457, 433-440.
713	Wilkin, R.T., Lee, T.R., Beak, D.G., Anderson, R., Burns, B., 2018. Groundwater co-
714	contaminant behavior of arsenic and selenium at a lead and zinc smelting facility. Appl.
715	Geochemistry 89, 255–264.
716	Xi, Y., Sun, Z., Hreid, T., Ayoko, G.A., Frost, R.L., 2014. Bisphenol A degradation enhanced
717	by air bubbles via advanced oxidation using in situ generated ferrous ions from nano
718	zero-valent iron/palygorskite composite materials. Chem. Eng. J. 247, 66-74.
719	Xia, X., Ling, L., Zhang, W., 2017a. Genesis of pure Se(0) nano- and micro-structures in
720	wastewater with nanoscale zero-valent iron (nZVI). Environ. Sci. Nano 4, 52–59.
721	Xia, X., Ling, L., Zhang, W. xian, 2017b. Solution and surface chemistry of the Se(IV)-Fe(0)
722	reactions: Effect of initial solution pH. Chemosphere 168, 1597–1603.
723	Xie, W., Liang, Q., Qian, T., Zhao, D., 2015. Immobilization of selenite in soil and groundwater
724	using stabilized Fe-Mn binary oxide nanoparticles. Water Res. 70, 485–494.
725	Xie, Y., Dong, H., Zeng, G., Zhang, L., Cheng, Y., 2017. The comparison of Se (IV) and Se (VI)
726	sequestration by nanoscale zero-valent iron in aqueous solutions : The roles of solution
727	chemistry. J. Hazard. Mater. 338, 306-312.
728	Yan, W., Ramos, M. a V, Koel, B.E., Zhang, W.X., 2012. As(III) sequestration by iron
729	nanoparticles: Study of solid-phase redox transformations with X-ray photoelectron
730	spectroscopy. J. Phys. Chem. C 116, 5303-5311.

731	Yoon, I.H., Kim, K.W., Bang, S., Kim, M.G., 2011. Reduction and adsorption mechanisms of
732	selenate by zero-valent iron and related iron corrosion. Appl. Catal. B Environ. 104, 185-
733	192.
734	Yuan, P., Fan, M., Yang, D., He, H., Liu, D., Yuan, A., Zhu, J., Chen, T., 2009.
735	Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent
736	chromium [Cr(VI)] from aqueous solutions. J. Hazard. Mater. 166, 821-829.
737	Yucelen, G.I., Kang, D.Y., Guerrero-Ferreira, R.C., Wright, E.R., Beckham, H.W., Nair, S.,
738	2012. Shaping single-walled metal oxide nanotubes from precursors of controlled
739	curvature. Nano Lett. 12, 827–832.
740	Zhang, Y., Amrhein, C., Frankenberger, W.T., 2005. Effect of arsenate and molybdate on
741	removal of selenate from an aqueous solution by zero-valent iron. Sci. Total Environ.
742	350, 1–11.
743	Zhang, Y., Li, Y., Dai, C., Zhou, X., Zhang, W., 2014. Sequestration of Cd(II) with nanoscale
744	zero-valent iron (nZVI): Characterization and test in a two-stage system. Chem. Eng. J.
745	244, 218–226.
746	Zhang, Y., Li, Y., Li, J., Hu, L., Zheng, X., 2011. Enhanced removal of nitrate by a novel
747	composite: Nanoscale zero valent iron supported on pillared clay. Chem. Eng. J. 171,
748	526–531.
749	Zhu, H., Jia, Y., Wu, X., Wang, H., 2009. Removal of arsenic from water by supported nano
750	zero-valent iron on activated carbon. J. Hazard. Mater. 172, 1591–1596.
751	Zhu, J., Johnson, T.M., Finkelman, R.B., Zheng, B. shan, Sýkorová, I., Pešek, J., 2012. The
752	occurrence and origin of selenium minerals in Se-rich stone coals, spoils and their
753	adjacent soils in Yutangba, China. Chem. Geol. 330-331, 27-38.

- Zhu, R., Chen, Q., Zhou, Q., Xi, Y., Zhu, J., He, H., 2015. Adsorbents based on montmorillonite
 for contaminant removal from water: A review. Appl. Clay Sci. 123, 239–258.
- 756

757 **Figure Captions**

- **Fig. 1.** XRD patterns of (a) NZVI, (b) NZVI-Mt,(c) Se^{VI} / NZVI, (d) Se^{VI} / NZVI-Mt, (e) As^V /
- NZVI, (f) $As^{V}/NZVI$ -Mt, (g) Se^{VI} $As^{V}/NZVI$, and (h) Se^{VI} $As^{V}/NZVI$ -Mt after shaking
- with aqueous solution containing 200 mg·L⁻¹ Se^{VI} and As^V.
- **Fig. 2**. SEM images of (a) NZVI, (b) NZVI-Mt,(c) Se^{VI}/ NZVI, (d) Se^{VI}/ NZVI-Mt, (e) As^V/
- NZVI, (f) $As^{V}/NZVI$ -Mt, (g) Se^{VI} $As^{V}/NZVI$, and (h) Se^{VI} $As^{V}/NZVI$ -Mt
- **Fig. 3.** Effect of pH on the adsorption of (a) only Se^{VI} , (b) only As^{V} , (c) Se^{VI} As^{V} , and (d) As^{V} -
- 764 Se^{VI} on Mt, NZVI and NZVI-Mt.
- **Fig. 4.** ΔpH value for the adsorption of (a) only Se^{VI}, (b) only As^V, and (c) Se^{VI} As^V on Mt,
- 766 NZVI and NZVI.
- **Fig. 5.** Pseudo-first-order and pseudo-second-order kinetics for the adsorption of (a) only Se^{VI},
- (b) only As^V , (c) Se^{VI} As^V , and (d) As^V Se^{VI} on Mt, NZVI and NZVI-Mt.
- **Fig. 6.** Langmuir and Freundlich isotherms for the adsorption of (a) only Se^{VI}, (b) only As^V, (c)
- 770 Se^{VI} As^V, and (d) As^V Se^{VI} on Mt, NZVI and NZVI-Mt.

772 **Table Captions**

- **Table 1** Theoretically determined parameters with standard deviation of pseudo-first-order and
- pseudo-second-order kinetic equations for Se^{VI} and As^V adsorption on Mt, NZVI and NZVI-Mt
- in mono-component and competitive systems.
- **Table 2** Parameters with standard deviation of Langmuir and Freundlich isotherm models for
- ⁷⁷⁷ Se^{VI} and As^V adsorption on NZVI and NZVI-Mt in mono-component and competitive systems.
- 778 **Table 3** Performance of NZVI supported on different substrates for adsorption of As and Se
- from aqueous solution.

Fig. 2.

Tables

Table 1 Theoretically determined parameters with standard deviation of pseudo-first-order and pseudo-second-order kinetic equations

Q10	for Se^{VI} and Ae^{V} .	adsorption on Mt	NZVI and NZVI-	Mt in mono-co	mnonent and con	motitivo svet	tome
019	tor se and As	ausorption on Mit,		Wit III III0II0-CO	inponent and con	ipetitive syst	tems.

Kinetics parameters	Se ^{VI} Mono-com	ponent system		Se ^{VI} Competitiv	ve system	
	Mt	NZVI	NZVI-Mt	Mt	NZVI	NZVI-Mt
q _e ,exp (mg·g ⁻¹)	0.00 ± 0.00	3.94 ± 0.64	10.88 ± 0.45	0.00 ± 0.00	1.33 ± 0.83	0.00 ± 0.00
q _e ,exp (%)	0.00	4.92	13.61	0.00	1.67	0.00
Pseudo-first-order						
q,cal (mg·g ⁻¹)	N.D.	3.80 ± 0.05	10.73 ± 0.11	N.D.	1.27 ± 0.03	N.D.
k ₁ (x 10 ⁻³ min ⁻¹)	N.D.	937.35 ± 177.04	221.43 ± 15.15	N.D.	205.60 ± 35.78	N.D.
r ²	N.D.	0.984	0.992	N.D.	0.945	N.D.
χ^2	N.D.	0.020	0.089	N.D.	0.009	N.D.
Pseudo-second-order						
qe,cal (mg·g ⁻¹)	N.D.	3.85 ± 0.05	11.17 ± 0.18	N.D.	1.32 ± 0.04	N.D.
$k_2 (x \ 10^{-3} \ g \cdot mg^{-1} \cdot min^{-1})$	N.D.	958.59 ± 99.71	38.89 ± 6.55	N.D.	310.82 ± 30.81	N.D.
h (mg·g ⁻¹ ·min ⁻¹)	N.D.	14.21 ± 0.00	4.85 ± 0.00	N.D.	0.54 ± 0.00	N.D.

r ²	N.D.	0.987	0.986	N.D.	0.946	N.D.
χ^2	N.D.	0.156	0.154	N.D.	0.008	N.D.
Kinetics parameters	As ^V Mono-comp	onent system		As ^v Competitive	e system	
	Mt	NZVI	NZVI-Mt	Mt	NZVI	NZVI-Mt
q _e ,exp (mg·g ⁻¹)	7.28 ± 0.11	26.36 ± 0.77	61.08 ± 0.45	7.13 ± 0.43	26.97 ± 0.23	53.51 ± 0.91
q _e ,exp (%)	9.14	32.93	76.31	8.95	33.69	66.64
Pseudo-first-order						
q _e ,cal (mg·g ⁻¹)	7.09 ± 0.13	24.50 ± 0.66	57.17 ± 1.40	6.97 ± 0.15	25.39 ± 0.72	51.71 ± 1.09
k ₁ (x 10 ⁻³ min ⁻¹)	461.36 ± 107.33	163.69 ± 26.40	121.80 ± 16.06	313.79- ± 59.57	151.34 ± 24.81	138.96 ± 12.46
r ²	0.967	0.946	0.960	0.958	0.943	0.968
χ^2	0.155	0.187	13.20	0.155	3.680	8.277
Pseudo-second-order						
q _e ,cal (mg·g ⁻¹)	7.26 ± 0.14	26.18 ± 0.41	61.74 ± 0.64	7.23 ± 0.12	27.26 ± 0.55	55.25 ± 0.55
$k_2 (x \ 10^{-3} \ g \cdot mg^{-1} \cdot min^{-1})$	170.98 ± 18.43	9.76 ± 1.23	2.98 ± 0.22	89.07 ± 10.57	8.40 ± 1.31	4.05 ± 0.31
h (mg·g ⁻¹ ·min ⁻¹)	9.01 ± 0.00	6.69 ± 0.00	11.36 ± 0.00	4.66 ± 0.00	6.24 ± 0.00	12.36 ± 0.00
\mathbf{r}^2	0.977	0.988	0.996	0.984	0.981	0.996

χ^2	0.104	0.684	1.494	0.074	1.201	1.181	

821 N.D.: Not determined.

Table 2 Parameters with standard deviation of Langmuir and Freundlich isotherm models for Se^{VI} and As^V adsorption on NZVI and

823 NZVI-Mt in mono-component and competitive systems.

Sample	Langmuir cons	tant			Freundlich constant				Partition coefficient
	K _L	$q_{max}(mg \cdot g^{-1})$	r ²	χ^2	K _F	n	r ²	χ^2	$(mg \cdot g^{-1} \cdot \mu M^{-1})$
	(x 10 ⁻³ L·mg ⁻¹)				$((mg \cdot g^1)(L \cdot mg^{-1})^{1/n})$				
Se ^{VI} Mono	-component syst	em							
NZVI	2.94 ± 1.11	28.63 ± 4.85	0.955	0.562	0.19 ± 0.10	1.32 ± 0.19	0.957	0.540	0.021
NZVI-Mt	18.21 ± 10.34	34.21 ± 7.94	0.917	7.539	2.26 ± 0.97	2.03 ± 0.40	0.944	5.026	0.024
As ^v Mono	-component syst	em							
NZVI	102. 41 ± 26.91	31.08 ± 4.97	0.857	21.143	12.51 ± 1.66	5.64 ± 1.04	0.970	4.368	0.034
NZVI-Mt	169.33 ± 10.17	54.75 ± 5.94	0.931	29.288	16.25 ± 3.97	3.51 ± 0.84	0.946	23.229	0.065
As ^v Comp	etitive system								
NZVI	210.70 ± 19.06	30.47 ± 2.45	0.937	10.504	9.85 ± 1.48	3.99 ± 0.58	0.976	4.058	0.033
NZVI-Mt	195.52 ± 15.90	49.91 ± 5.31	0.922	29.433	16.46 ± 4.19	3.87 ± 1.04	0.938	23.550	0.055

825

Element	Substrate	Adsorption	Initial	Initial	Removal	q _{max}	PC	BET-	Reference
		condition	concentration	concentration	efficiency	(mg·g ⁻	(mg·g ⁻	surface	
		(°T, pH)	$(\mathbf{mg} \cdot \mathbf{L}^{-1})$	(µM)	(%)	¹)	¹∙µM⁻	area	
							¹)*	$(\mathbf{m}^2 \cdot \mathbf{g}^{-1})$	
As ^V	Zeolite	25, 7	200	2669.5	47.8	38.26	0.027	198.7	(Suazo-
									Hernández et
									al., 2019)
As ^{III}	Zeolite	25, 6	10	133.5	62.2	12.84	0.269	_	(Li et al.,
									2018)
As ^{III}	Montmorillonite	22,7	345	4604.9	22.4	59.9	0.017	36.97	(Bhowmick et
As ^V	-		200	2669.5	28.6	45.5	0.024	_	al., 2014)
As ^{III}	Graphite oxide	25, 7	15	200.2	95.5	35.83	3.98	100.65	(Wang et al.,
As ^V	-		15	200.2	77.4	29.04	0.642	_	2014)

Table 3 Performance of NZVI supported on different substrates for adsorption of As and Se from aqueous solution.

As ^{III}	Alumina	50, 7	10	133.5	99.98	15.5	580.63	_	(Jain and
									Agarwal,
									2017)
As ^{III}	Activated carbon	25, 6.5	2	26.7	_	18.2	_	69.4	(Zhu et al.,
As ^V	_		2	26.7	_	12.0	_	_	2009)
As ^{III}	Starbon 300	- ,7	5.5	73.5	24.3	26.8	0.482	141	(Baikousi et
									al., 2015)
As ^{III}	Chitosan-pumice	15, 6.2	100	1334.8	99.5	242.80	36.38	38.2	(Liu et al.,
									2016)
As ^V	Montmorrillonite	25, 7	200	2669.5	68.43	54.75	0.065	209.0	This study
Se ^{VI}	Al-bentonite	25, 6	80	1013.2	95.7	19.14	0.439	_	(Li et al.,
									2015)
Se ^{IV}	Carbon	25, 6	_	_	95.7	12.2	_	61.1	(Sheng et al.,
	nanotubes								2016)
Se ^{VI}	Montmorillonite	25, 7	200	2532.9	42.76	34.21	0.024	209.0	This study

828 * Partition coefficient = $\frac{\text{Adsorption capacity}}{\text{Initial concentration x (1 - removal rate)}}$ (Deng et al., 2019)

830	Supporting Information
831	Efficient and selective removal of Se^{VI} and As^{V} mixed contaminants from aqueous media
832	by montmorillonite-nanoscale zero valent iron nanocomposite
833	
834	Jonathan Suazo-Hernández ^{a,b} , Karen Manquián-Cerda ^c , María de la Luz Mora ^{b,d} , Mauricio
835	Molina-Roco ^e , María Angélica Rubio ^{c,f} , Binoy Sarkar ^{g*} , Nanthi Bolan ^h , Nicolás Arancibia-
836	Miranda ^{c,f} *
837	
838	^a Programa de Doctorado en Ciencias de Recursos Naturales Universidad de La Frontera, Av.
839	Francisco Salazar 01145, P.O. Box 54-D, Temuco, Chile
840	^b Center of Plant, Soil Interaction and Natural Resources Biotechnology, Universidad de La
841	Frontera. UFRO. Temuco, 4780000, Chile
842	^c Facultad de Química y Biología, Universidad de Santiago de Chile, Av. B. O'Higgins, 3363,
843	Santiago, Chile
844	^d Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av.
845	Francisco Salazar 01145, P.O. Box 54-D, Temuco, Chile
846	^e Escuela de Agronomía, Universidad Mayor, Camino La Pirámide #5750, Huechuraba, Santiago
847	8580745, Chile
848	^f Center for the Development of Nanoscience and Nanotechnology, CEDENNA, 9170124,
849	Santiago, Chile
850	^g Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
851	^h Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308,
852	Australia

- 854 * Co-corresponding authors:
- 855 Dr Binoy Sarkar; Lancaster University; e-mail: <u>b.sarkar@lancaster.ac.uk</u>
- 856 Dr Nicolás Arancibia-Miranda; Universidad de Santiago de Chile; e-mail:
- 857 <u>nicolas.arancibia@usach.cl</u>

858

859 Analysis of data

The data were adjusted to kinetic mathematical equations and sorption isotherm equations, which were evaluated through the coefficient of determination (r^2) and Chi-square (χ^2) values. The χ^2 test measures the difference between the experimental and equations data, and is mathematically expressed by Eq. 1.

864
$$\chi^{2} = \sum_{i=1}^{N} \frac{(q_{e}, exp - q_{e}, cal)^{2}}{q_{e}, cal}$$
(Eq.1)

where, q_e , exp corresponds to the amount of solute adsorbed in the experimental data at equilibrium, and q_e , cal is the quantity adsorbed at equilibrium through the model. A smaller value of χ^2 indicates a better fit of the experimental data to the equations (Arancibia-Miranda et al., 2016; Boparai et al., 2011).

Figure S1. XRD patterns of (a) Mt, (b) Se^{VI}/Mt , (c) As^{V}/Mt , and (d) $Se^{VI} - As^{V}/Mt$ (Mt=

872 Montmorillonite).

Figure S2. SEM images of (a) Mt, (b) Se^{VI}/Mt , (c) As^{V}/Mt , and (d) $Se^{VI} - As^{V}/Mt$.

887

Figure S4. Speciation diagram of (a) Se^{VI} and (b) As^{V} in a monocomponent system, and (c) Se^{VI} - As^{V} in a competitive system, in solution considering the experimental conditions.

Figure S6. Partition coefficient (PC) for the adsorption of (a) only Se^{VI}, (b) only As^V, (c), Se^{VI} As^V, and (d) As^V - Se^{VI} on NZVI, MT and NZVI-Mt at different initial concentrations.

Kinetic	Equation	Linear expression	Parameters	References
equations				
Pseudo-first-	$\frac{dq_t}{dt}$	$\log(q_e - q_t)$	q_t = amount of anion adsorbed at any time.	(Arancibia-miranda
order (PFO)	-k(a - a)	$= \log(q_e) - \frac{k_1}{2 2 2 2 2} x t$	q_e = amount of anion adsorbed at	et al., 2014;
	$- \kappa_1(q_e - q_t)$	2.303	equilibrium (mg \cdot g ⁻¹).	Cáceres-Jensen et
	1	+ 1 +	$k_1 = PFO$ rate constant (min ⁻¹)	al., 2013; Hamdi et
* Pseudo-	$\frac{dq_t}{dt}$	$\frac{t}{q_t} = \frac{1}{q_e^2 k_2} + \frac{t}{q_e}$	$k_2 = PSO rate constant (g \cdot mg^{-1} \cdot min^{-1})$	al., 2014; Ho and
(PSO)	$= k_2 (q_e - q_t)^2$			McKay, 1999)

Table S1 Kinetic equations used for the description of As^{V} , Se^{VI} , As^{V} - Se^{VI} and Se^{VI} - As^{V} removal.

930 *From PSO initial adsorption rate (h), can be calculated **by multiplying** $k_2q_t^2$ (mg·g⁻¹ min⁻¹).

931

Isotherm equations	Equation	Parameters	References
Langmuir	$q_e = \frac{q_m K_L C_e}{1 + K_E C_e}$	q_e = Amount of adsorbed anion per unit mass of the adsorbent at	(Baldikova et al.,
	$1 + K_L U_e$	equilibrium (mg \cdot g ⁻¹)	2020; Camacho et
		$q_{max} = Maximum$ adsorption capacity (mg·g ⁻¹).	al., 2011; Kanel et
Freundlich	$q_e = K_F C_e^{1/n}$	C_e = concentration of anion at equilibrium in the solution (mg·L ⁻¹).	al., 2005)
		K_L = Constant related to the affinity (L·mg ⁻¹)	
		$K_F = \mbox{ Freundlich adsorption coefficient } ((mg \cdot g^{-1})(L \cdot mg^{-1})^{1/n});$	
		Adsorption intensity $(1 < n < 10)$	

Table S2 Isotherm equations used for the description of As^{V} , Se^{VI} , As^{V} - Se^{VI} and Se^{VI} - As^{V} removal.

934	Table S3 Specific	surface area for	r Mt, NZVI and NZVI-Mt
-----	-------------------	------------------	------------------------

BET-specific surface area	Mt	NZVI	NZVI-Mt
mg ² ·g ⁻¹	8.2	26.3	209.0

Table S4 Adsorption kinetics of As^{V} and Se^{VI} on NZVI, Mt and NZVI-Mt in mono-component and competitive systems using at initial concentration of 200 mg·L⁻¹.

		As ^v	-Monocom	ponent sy	ystem		As ^v -Competitive system								
Time	NZVI		Mt		NZVI-M	t	NZVI		Mt		NZVI-M	t			
(min)	Ce	qe	Ce	q _e	Ce	qe	Ce	qe	Ce	qe	Ce	qe			
5	160.07	15.94	183.80	6.49	120.67	31.65	161.12	15.51	185.29	5.90	123.46	30.62			
10	153.95	18.44	183.86	6.44	101.90	39.29	153.50	18.62	185.44	5.92	107.22	37.11			
20	147.60	20.90	183.43	6.79	82.01	47.08	143.01	22.73	183.77	6.16	90.44	43.83			
30	143.32	22.65	183.51	7.22	69.50	52.09	142.09	23.12	183.47	6.90	82.19	47.12			
45	141.82	23.09	180.58	7.48	63.91	54.00	142.79	22.70	181.88	7.35	70.81	51.68			
60	139.40	24.23	181.71	7.40	61.14	55.50	139.57	24.15	182.15	7.32	70.99	51.60			
90	137.96	24.92	182.04	7.43	55.61	58.00	133.32	26.78	181.89	7.23	65.35	53.86			
120	135.25	25.82	182.24	7.36	51.48	59.25	131.13	27.48	182.62	7.05	65.50	53.80			
150	133.55	26.64	181.62	7.37	47.28	61.21	131.54	27.44	181.73	7.32	67.63	52.95			
180	134.14	26.36	181.68	7.28	47.39	61.08	132.62	26.97	181.65	7.13	66.73	53.31			

		Se ^v	¹ -Monocom	ponent sy	ystem		Se ^{VI} -Competitive system								
	Ce	qe	Ce	qe	Ce	qe	Ce	q e	Ce	qe	Ce	q e			
5	190.57	3.77	200	0.00	182.38	7.05	197.83	0.87	200	0.00	200	0.00			
10	190.99	3.60	200	0.00	175.28	9.89	197.36	1.06	200	0.00	200	0.00			
20	190.66	3.74	200	0.00	175.07	9.97	197.21	1.12	200	0.00	200	0.00			
30	190.93	3.63	200	0.00	172.81	10.88	196.42	1.43	200	0.00	200	0.00			
45	190.94	3.62	200	0.00	174.11	10.36	197.05	1.18	200	0.00	200	0.00			
60	190.24	3.91	200	0.00	173.29	10.68	196.58	1.37	200	0.00	200	0.00			
90	190.18	3.93	200	0.00	172.88	10.85	196.99	1.21	200	0.00	200	0.00			
120	0 190.11	3.95	200	0.00	172.69	10.93	196.84	1.27	200	0.00	200	0.00			
150	0 190.22	3.91	200	0.00	172.74	10.90	196.92	1.23	200	0.00	200	0.00			
180	0 190.16	3.94	200	0.00	172.79	10.88	196.67	1.33	200	0.00	200	0.00			

939 Ce = equilibrium solution concentration (mg·L⁻¹); qe = experimental adsorption capacity (mg·g⁻¹).

Table S5 As^V and Se^{VI} adsorption capacities and partition coefficients (PC) of the tested adsorbents at initial concentration of 200 mg-941 L^{-1} at different times of reaction.

	As ^V -Monocomponent system											As ^V -Competitive system								
	Mt			NZV	Ι		NZVI	-Mt		Mt			NZV	I		NZV	I-Mt			
TR	%	qe	PC	%	q _e	PC	%	qe	PC	%	qe	PC	%	qe	PC	%	q _e	PC		
5	8.1	6.49	0.0026	20.0	15.94	0.007	39.7	31.65	0.020	7.4	5.90	0.0024	19.4	15.51	0.007	38.3	30.62	0.019		
30	8.0	6.44	0.0026	23.0	18.44	0.009	49.1	39.29	0.029	7.4	5.92	0.0024	23.3	18.62	0.009	46.4	37.11	0.026		
20	8.5	6.79	0.0028	26.2	20.90	0.011	59.0	47.08	0.043	7.8	6.16	0.0025	28.5	22.73	0.012	54.8	43.83	0.036		
30	9.1	7.22	0.0030	28.3	22.63	0.012	65.3	52.09	0.056	8.6	6.90	0.0028	29.0	23.12	0.012	58.9	47.12	0.043		
45	9.4	7.48	0.0031	29.1	23.09	0.012	68.1	54.00	0.063	9.3	7.35	0.0030	28.6	22.70	0.012	64.6	51.68	0.055		
60	9.2	7.40	0.0031	30.3	24.23	0.013	69.4	55.50	0.068	9.1	7.32	0.0030	30.2	24.50	0.013	64.5	51.60	0.054		
90	9.3	7.43	0.0031	31.0	24.92	0.014	72.2	58.00	0.078	9.1	7.23	0.0030	33.3	26.78	0.015	67.3	53.86	0.062		
120	9.3	7.36	0.0030	32.4	25.82	0.014	74.3	59.25	0.086	8.9	7.05	0.0029	34.4	27.48	0.016	67.3	53.80	0.062		
150	9.2	7.37	0.0030	33.2	26.64	0.015	76.4	61.21	0.097	9.1	7.32	0.0030	34.2	27.44	0.016	66.2	52.95	0.059		
180	9.1	7.28	0.0030	32.9	26.36	0.015	76.3	61.08	0.097	9.0	7.13	0.0029	33.7	26.97	0.015	66.6	53.31	0.060		

			S	e ^{VI} -Mo	nocomp	ponent sy	stem			Se ^{VI} -Competitive system								
	Mt			NZV	Ί		NZVI-	Mt		Mt			NZV	/I		NZV	I-Mt	
TR	%	qe	PC	%	qe	PC	%	qe	PC	%	q_{e}	PC	%	qe	PC	%	qe	PC
5	ND	ND	ND	4.7	3.77	0.0016	8.81	7.05	0.003	ND	ND	ND	1.1	0.87	0.0003	ND	ND	ND
30	ND	ND	ND	4.5	3.60	0.0015	12.36	9.89	0.004	ND	ND	ND	1.3	1.06	0.0004	ND	ND	ND
20	ND	ND	ND	4.7	3.74	0.0015	12.47	9.97	0.004	ND	ND	ND	1.4	1.12	0.0004	ND	ND	ND
30	ND	ND	ND	4.5	3.63	0.0015	13.60	10.88	0.005	ND	ND	ND	1.8	1.43	0.0006	ND	ND	ND
45	ND	ND	ND	4.5	3.62	0.0015	12.95	10.36	0.005	ND	ND	ND	1.5	1.18	0.0005	ND	ND	ND
60	ND	ND	ND	4.9	3.91	0.0016	13.35	10.68	0.005	ND	ND	ND	1.7	1.37	0.0005	ND	ND	ND
90	ND	ND	ND	4.9	3.93	0.0016	13.56	10.85	0.005	ND	ND	ND	1.5	1.21	0.0005	ND	ND	ND
120	ND	ND	ND	4.9	3.95	0.0016	13.66	10.93	0.005	ND	ND	ND	1.6	1.27	0.0005	ND	ND	ND
150	ND	ND	ND	4.9	3.91	0.0016	13.63	10.90	0.005	ND	ND	ND	1.5	1.23	0.0005	ND	ND	ND
180	ND	ND	ND	4.9	3.94	0.0016	13.61	10.88	0.005	ND	ND	ND	1.7	1.33	0.0005	ND	ND	ND

943 TR = time of reaction; % = removal efficiency; q_e = experimental adsorption capacity (mg·g⁻¹); PC = partition coefficient (mg·g⁻¹· μ M⁻ 944 ¹); ND = not determined.

945	Table S6 Equilibrium solution concentration measured and adsorption capacity obtained for the adsorption isotherms of As^{V} and Se^{VI}
946	on Mt, NZVI and NZVI-Mt in mono-component and competitive systems.

			As ^v Mon	o-compon	ent syste	m	Se ^{VI} Mono-component system								
C ₀	Mt		NZVI		Mt-nZ	VI	Mt		NZVI		Mt-nZVI	[
	Ce	q _e	Ce	q _e	Ce	q _e	Ce	q _e	Ce	q _e	Ce	q _e			
0.5	0.00	0.20	0.00	0.20	0.00	0.20	0.00	0.20	0.25	0.10	0.00	0.20			
1	0.00	0.40	0.00	0.40	0.00	0.40	0.00	0.40	0.00	0.40	0.00	0.40			
5	3.59	0.56	0.00	1.99	0.00	1.99	4.37	0.25	2.30	1.08	0.00	2.00			
10	9.30	0.28	0.00	3.99	0.00	3.99	9.91	0.04	6.01	1.60	0.00	4.01			
30	30.00	0.00	0.28	11.79	0.00	11.91	30.00	0.00	25.58	1.78	9.73	8.10			
60	60.00	0.00	14.46	18.20	3.24	22.69	60.00	0.00	52.92	2.82	28.08	12.73			
100	100.00	0.00	42.77	22.99	13.72	34.65	100.00	0.00	84.25	6.29	64.29	14.27			
150	145.71	1.71	80.21	27.85	37.38	44.93	150.00	0.00	129.21	8.31	96.49	21.56			
200	187.28	5.10	123.66	30.60	65.50	53.91	200.00	0.00	176.23	9.46	134.13	26.49			

			As ^v Compe	etitive sys	tem		Se ^{VI} Competitive system								
	Ce	$\mathbf{q}_{\mathbf{e}}$	Ce	qe	Ce	q _e	Ce	q _e	Ce	q _e	Ce	q _e			
0.5	0.00	0.20	0.00	0.20	0.00	0.20	0.00	0.20	0.00	0.20	0.00	0.20			
1	0.00	0.40	0.00	0.40	0.00	0.40	0.00	0.40	0.00	0.40	0.00	0.40			
5	3.77	0.49	0.00	2.00	0.00	2.00	3.35	0.66	0.18	1.92	0.00	2.00			
10	10	0.00	0.00	4.01	0.00	3.98	10	0.00	5.23	1.91	3.18	2.73			
30	30	0.00	1.71	11.32	0.00	11.98	30	0.00	29.43	0.23	26.73	1.31			
60	57.92	0.83	11.33	19.45	3.36	22.64	60	0.00	58.40	0.63	59.41	0.23			
100	97.72	0.91	42.42	22.99	15.61	33.69	100	0.00	100.00	0.00	100	0.00			
150	145.41	1.83	77.08	29.07	43.13	42.61	150	0.00	150.00	0.00	150	0.00			
200	186.63	5.36	116.07	33.62	73.82	50.54	200	0.00	200.00	0.00	200	0.00			

 $C_0 = \text{initial solution concentration (mg·L⁻¹); Ce = equilibrium solution concentration (mg·L⁻¹); qe = experimental adsorption capacity$ 949 (mg·g⁻¹).

			As ^V -1	Mono-	compo	onent s	ystem	l		As ^V -Competitive system									
		NZVI			Mt		Ν	NZVI-N	At		NZV	I		Mt			NZVI-N	Mt	
C ₀	%	qe	PC	%	qe	PC	%	q _e	PC	%	qe	PC	%	q _e	PC	%	q _e	PC	
0.5	100	0.20		100	0.20		100	0.20		100	0.20		100.0	0.20		100	0.20		
1	100	0.40		100	0.40		100	0.40		100	0.40		100.0	0.40		100	0.40		
5	100	1.99		28.3	0.56	0.012	100	1.99		100	2.00		24.7	0.49		100	2.00		
10	100	3.99		7.0	0.28	0.002	100	3.99		100	4.01		0.0	0.00		100	3.98		
30	99.1	11.79	3.12	0.0	0.00	0.000	100	11.91		94.3	11.32	0.497	0.0	0.00		100	98		
60	75.9	18.20	0.09	0.0	0.00	0.000	94.6	22.69	0.525	81.1	19.45	0.129	3.5	0.83	0.001	94.4	22.64	0.505	
100	57.2	22.99	0.04	0.0	0.00	0.000	86.3	34.65	0.189	57.6	22.99	0.041	2.3	0.91	0.001	84.4	33.69	0.162	
150	46.5	27.85	0.03	2.9	1.71	0.001	75.1	44.93	0.090	48.6	29.07	0.028	3.1	1.83	0.001	71.2	42.61	0.074	
200	38.2	30.60	0.02	6.4	5.10	0.002	67.3	53.91	0.062	42.0	33.62	0.022	6.7	5.36	0.002	63.1	50.54	0.051	

Table S7 As^V and Se^{VI} adsorption capacities and partition coefficients (PC) for the adsorbents at different concentration levels.

	Se ^{VI} -Mono-component system										Se ^{VI} -Competitive system									
	NZV	T		Mt			NZV	'I-Mt		NZV	I		Mt			NZV	[-Mt			
C ₀	%	qe	PC	%	qe	PC	%	qe	PC	%	q e	PC	%	qe	PC	%	qe	PC		
0.5	50.0	0.10	0.032	100	0.20		100	0.20		100	0.20		100	0.20		100	0.20			
1	100	0.40		99.7	0.40	9.438	100	0.40		100	0.40		100	0.40		100	0.40			
5	54.0	1.08	0.037	12.7	0.25	0.005	100	2.00		96.5	1.92	0.859	33.0	0.66	0.02	100	2.00			
10	39.9	1.60	0.021	0.9	0.04	0.000	100	4.01		47.7	1.91	0.029	0.0	0.00		68.2	2.73	0.068		
30	14.7	1.78	0.005	0.0	0.00		67.6	8.10	0.07	1.9	0.23	0.001	0.0	0.00		10.9	1.31	0.004		
60	11.8	2.82	0.004	0.0	0.00		53.2	12.73	0.04	2.7	0.63	0.001	0.0	0.00		1.0	0.23	0.000		
100	15.8	6.29	0.006	0.0	0.00		35.7	14.27	0.02	0.0	0.00		0.0	0.00		0.0	0.00			
150	13.9	8.31	0.005	0.0	0.00		35.7	21.56	0.02	0.0	0.00		0.0	0.00		0.0	0.00			
200	11.9	9.46	0.004	0.0	0.00		32.9	26.49	0.02	0.0	0.00		0.0	0.00		0.0	0.00			

 C_0 = initial solution concentration (mg·L⁻¹); % = removal efficiency; q_e = experimental adsorption capacity (mg·g⁻¹); PC = partition 954 coefficient (mg·g⁻¹· μ M⁻¹).

956 **References**

957	Arancibia-Miranda, N., Baltazar, S.E., García, A., Muñoz-Lira, D., Sepúlveda, P., Rubio, M.A.,
958	Altbir, D., 2016. Nanoscale zero valent supported by zeolite and montmorillonite:
959	Template effect of the removal of lead ion from an aqueous solution. J. Hazard. Mater.
960	301, 371–380.
961	Arancibia-miranda, N., Baltazar, S.E., García, A., Romero, A.H., Rubio, M.A., Altbir, D., 2014.
962	Lead removal by nano-scale zero valent iron : Surface analysis and pH effect. Mater. Res.
963	Bull. 59, 341–348.
964	Baldikova, E., Pospiskova, K., Safarik, I., 2020. Removal of bisphenol A using magnetically
965	responsive spruce chip biochar. Chem. Eng. Technol. 43, 168–171.
966	Boparai, H.K., Joseph, M., Carroll, D.M.O., 2011. Kinetics and thermodynamics of cadmium ion
967	removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater. 186, 458-
968	465.
969	Cáceres-Jensen, L., Rodríguez-Becerra, J., Parra-Rivero, J., Escudey, M., Barrientos, L., Castro-
970	Castillo, V., 2013. Sorption kinetics of diuron on volcanic ash derived soils. J. Hazard.
971	Mater. 261, 602–613.
972	Camacho, L.M., Parra, R.R., Deng, S., 2011. Arsenic removal from groundwater by MnO2-
973	modified natural clinoptilolite zeolite: Effects of pH and initial feed concentration. J.
974	Hazard. Mater. 189, 286–293Hamdi, W., Pelster, D., Seffen, M., 2014. Phosphorus
975	sorption kinetics in different types of alkaline soils. Arch. Agron. Soil Sci. 60, 577–586.
976	Hamdi, W., Pelster, D., Seffen, M., 2014. Phosphorus sorption kinetics in different types of
977	alkaline soils. Arch. Agron. Soil Sci. 60, 577-586
978	Ho, Y.S., McKay, G., 1999. Pseudo-second order model for sorption processes. Process

- Biochem. 34, 451–465.
- 980 Kanel, S.R., Manning, B., Charlet, L., Choi, H., 2005. Removal of arsenic(III) from groundwater
- 981 by nanoscale zero-valent iron. Environ. Sci. Technol. 39, 1291–1298.