
The University of Manchester Research

Analysis of Component-Based Approaches Toward
Componentized 5G
DOI:
10.1109/icin.2018.8401611

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
El Hayek, E., Grida Ben Yahia, I., Arellanes Molina, D., & Lau, K-K. (2018). Analysis of Component-Based
Approaches Toward Componentized 5G. In First International Workshop on Network Intelligence
https://doi.org/10.1109/icin.2018.8401611

Published in:
First International Workshop on Network Intelligence

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:21. Jul. 2020

https://doi.org/10.1109/icin.2018.8401611
https://www.research.manchester.ac.uk/portal/en/publications/analysis-of-componentbased-approaches-toward-componentized-5g(984195a0-1b0b-4113-8182-5359fd0569c0).html
/portal/damian.arellanesmolina-postgrad.html
/portal/kung-kiu.lau.html
https://www.research.manchester.ac.uk/portal/en/publications/analysis-of-componentbased-approaches-toward-componentized-5g(984195a0-1b0b-4113-8182-5359fd0569c0).html
https://www.research.manchester.ac.uk/portal/en/publications/analysis-of-componentbased-approaches-toward-componentized-5g(984195a0-1b0b-4113-8182-5359fd0569c0).html
https://doi.org/10.1109/icin.2018.8401611

Analysis of Component-Based Approaches Toward

Componentized 5G

Elie El Hayek and Imen Grida Ben Yahia

Orange Labs Networks

Orange Telecom

Paris, France

{elie.elhayek, Imen.gridabenyahia@orange.com}

Damian Arellanes and Kung-Kiu Lau

School of Computer Science

The University of Manchester

Manchester M13 9PL, United Kingdom

{damian.arellanesmolina, kung-kiu.lau@manchester.ac.uk}

Abstract— 5G is expected to be modular by design toward

autonomic and agile networks. In this regards, the 5G functional

architecture is designed as service-based seeking to support the

concept of Network Slicing. This leads us to the question: what

componentization approach to implement this modular

architecture? Is there a componentization approach that is

suitable for all the network functions? Which design approach

will help to have autonomic and cognitive networks?

In this paper we shed the light on the different component-

based approaches. In addition, we reviewed the state of the art

addressing the applicability of component-based approaches to

build autonomic networks. Therefore, we present discussion,

comparison and synthesis to recommend which approach to be

used to implement 5G modular architecture principle.

Keywords—5G; component-based; autonomic; microservice,

object

I. INTRODUCTION

A core set of 5G use cases categories has been defined by
several standardization and research projects: enhanced
Mobile Broadband (eMBB), Massive Internet of Things
(mIoT) and Critical Communications. In this context, the
concept of Network Slicing is emerging. It considers the
different needs of verticals through the creation of slices
which is tailored to different functional and performance
requirements. The integration of these new services and
business actors requires a flexible architecture and smart
(intelligent) management operations; the main driver to have a
modular 5G architecture.

Component-based software development [1] can bring
many benefits, including reduced time-to-market, reduced
production cost, increased reuse, highly factored design,
compositional construction, scalability, etc. Over the past
years, researchers and industries have invented a number of
component-based approaches. In every approach, there is an
underlying component model to define what a component is
and how components are composed.

This paper proposes an analysis of the different
component-based approaches in order to highlight what could
be suitable to implement a modular 5G architecture that is
autonomic by design. It is organized as follows. Section II
summarizes the different categories of components and

highlights the application of component models to autonomic
computing in the literature. In Section III we propose a
comparison between different componentization paradigms
based on selected criteria. A discussion around these
approaches in the context of 5G is made based on the
comparison results. Finally, Section IV summarizes the key
conclusions of the paper.

II. RELATED WORK

We present in the following a twofold state of the art

(sota). A sota on component types and a sota on autonomic

architecture associated to component based design.

A. Components

In Lau et al. 2007 [2], a survey of major component

models was conducted. From the survey, components are

identified and classified into three main categories:

 Object-based,

 Architectural unit,

 Encapsulated component

Generically, a component is a unit of design with interface(s)

specifying ports representing services it requires and crucially

services it provides.

Object-based component

In this category, we have EJB (Enterprise Java Beans), COM

(Component Object Model from Microsoft), OSGi [3] (Open

Services Gateway initiative) frameworks. Within these

frameworks, a component is an object. A provided service is a

public method. Required services however are not explicitly

specified in the sense that they are not in the interface of the

object.

Using objects as components entails using object composition.

Indeed, an object uses method delegation i.e. method calls to

directly pass message to another object. Thus, objects

compose by direct message passing.

Architecture unit

Koala, Acme, SOFA, and Fractal [4] are typical component

models in this category. A component in this category is an

architecture unit. Each component has explicit required and

provided ports representing respective kinds of services.

Generally, all required services of a component have to be

satisfied so that the component can be executed.

Since components are dependent on others (which can further

depend on other components), using them tends to be more

challenging.

Components in this category use indirect message passing in

the form of port connection for connecting components.

Encapsulated component

In this category, we have Web services and X-MAN [5, 6, 7,

8, 9, 10]. An encapsulated component as the name suggests

has encapsulation of functionality and data. It does not require

external services for its provided services.

An encapsulated component only has provided services.

Encapsulated components have no external dependencies on

one another. They do not call one another. Services, e.g. web

services and Microservices [11, 12], may call one another

directly and so may have external dependencies on one

another. Therefore services may or may not be encapsulated

components.

Encapsulated components are composed by coordinators. This

kind of composition is called exogenous composition. A

coordinator coordinates the control flow between the

components, and manages the results returned by the

components.

In X-MAN, coordination is performed by (exogenous)

composition connectors which embody control structures.

 Besides these three categories of components,

Microservices units are widely spread and investigated in

telecom networks. It is an independently replaceable,

upgradeable and deployable unit. It is small and focuses on

completing a single task that represents a small business

capability. A Microservice is designed for failure i.e. if a

Microservice fails, other Microservices involved in the same

application continue to run and the failed one can be re-

instantiated if needed.

Microservices communicate directly by calling REST APIs

over HTTP. Microservices need a client library for every

service they communicate directly with. Maintaining libraries

is costly. Furthermore, an HTTP connection may become a

bottleneck (especially for long running Microservices) since it

must be open during the entire communication. Microservices

can also use a lightweight messaging bus, known as API

Gateway, to communicate indirectly. In particular,

Microservices are required to expose their endpoints to the

API Gateway.

B. Autonomic computing and component-based approaches

In this section, we review the state of the art where
autonomic computing is applied to component-based
approaches. This short survey shows that the field is not active
and that the topic is not a cornerstone in the context of
autonomic networking and computing.
Self-configuration is the system-level property that requires
the reconfiguration of an autonomic computing system by
installing, updating, integrating, uninstalling, replicating and

reconnecting components at runtime [13, 14]. These actions
are known as reconfiguration operations. Self-configuration
describes what reconfiguration operation to perform under
which conditions, and is driven by high-level policies.
Reconfiguration operations can be either architectural (i.e., the
addition, removal or the replacement of software components
and/or connectors) or parametric (i.e., modifications to the
parameters of components and connectors) [15].
Some of the techniques to reconfigure software components at
runtime include dynamic linking [16], dynamic object
technology (including class loaders), dynamic programming
languages, design patterns [16] and architectural reflection. An
autonomic engine must be responsible of minimizing the
disrupting of the operation by shutting down (part of) the
software system, then performing the needed reconfiguration
operations. This process is known as quiescence.

Self-adaptive component models have been proposed to
accommodate changes in the operating environment of a
component-based software system, by allowing dynamic
reconfiguration operations of software components. Authors in
[17] describe K-component, a self-adaptive component model
that defines self-adaptive components for distributed
computing systems, and provide an Adaptation Contract
Description Language (ACDL) for the specification of the
adaptation logic.

Likewise, authors in [18] use a procedure based on the
concept of Automated Planning (an artificial intelligence area)
to generate a reconfiguration plan (i.e. a sequence of
reconfiguration actions) at runtime, thus allowing a dynamic
reconfiguration where only the parts (components) that must
be adjusted are affected, rather than the whole application.

On the other hand, the authors in [19] present SATIN, a
model that supports reconfiguration by offering code
migration services (logical mobility). The SATIN component
model uses logical mobility primitives to provide distribution
of services. Instead of relying on the invocation of remote
services via the network, the component model supports the
cloning and migration of components between hosts,
providing autonomy to the system when network connectivity
is missing or unreliable.

In [20], a self-adaptive component model called DEECo is
presented. It defines components as independent and self-
sustained units of development, deployment, and computation.
DEECo components are made up of four major parts:
knowledge, beliefs, interfaces and component processes. The
knowledge part reflects the internal state and the available
functionality of the component. Beliefs are copies of
knowledge of other components; this part is treated with a
certain level of uncertainty as it might become obsolete or
invalid. A component interface is used to expose the
component’s knowledge so that it represents a partial view on
the component’s knowledge. Component processes are
essentially soft real-time tasks that manipulate the knowledge
of a component, whose operation is cyclic scheduled by a
runtime framework.

III. COMPARISON OF COMPONENTIZATION PARADIGMS

To the best of our knowledge, the sota lacks comparison of
the component based approaches and its suitability to
networking design in particular.

In order to help researchers and standardization deciding
the right approach we describe in this section a comparison
between five componentization approaches: X-MAN,
Bundles, Fractal, SOA [21] and Microservices. For the
effectiveness of the comparison, we defined a set of criteria
which we will be using in Table 1.

A. Comparison results

Hereafter, we will define a set of criteria for the
component-based approaches.
We will be comparing the nature of the approach by means of:
component model, object-oriented framework or distributed
services.

 Each component model defines: (i) software units, (ii)
composition types and (iii) composition mechanisms.
The software units could be encapsulated components,
objects, services, microservices etc. We also examine if the
software units have external dependencies or not i.e. whether
their computation requires services from other units or not.

Moreover, the composition type is also compared. Algebraic
composition means that it defines composite components such
that they have the same type as their sub-components or not;
an algebraic composition defines hierarchical composition.
Algebraic is related to the semantics of the composition (e.g. if
we have a set of architectural units components. If the
composition of these components is algebraic, the result of the
composition is also algebraic). Hierarchical composition is
enabled by algebraic semantics.
As far as a composition operator is used, this type of
composition can be defined (and implemented) as a
mathematical operator for example.

In addition, we compared the composition mechanism that is
used by the approach. These mechanisms could be control
coordination (composition connectors, orchestration) or
message passing (direct or indirect):

 Orchestration (e.g. in Service Oriented Architecture)
specifies the execution order of selected operations in
services, so the assembly of services is a workflow and
not a composite service. Indeed, the orchestration engine
itself defines a sequence of invocations. As such, the
orchestration is done by a separate server.
On the other hand, X-MAN uses composition connectors
as control coordination. These composition connectors
compose components into composite components.

 In indirect message passing the interactions between
components is mediated by a messaging bus while in
direct message passing the interactions between
components are made with no mediator between them.

Table 1 shows a comparison of the aforementioned
componentization approaches.

B. Discussion on components & autonomics for future

networks

An autonomic system [13, 22] is composed of an

autonomic manager (control loop e.g. MAPE – Monitor

Analyze Plan Execute) and a managed element. If we consider

the componentization facets, we can imagine the four

following views:

 The managed element is not implemented with the

componentization paradigms, and the autonomic manager

is implemented using a componentization paradigm

(view#1).

 The managed element is implemented using

componentization paradigms, then two options are

possible, the autonomic control loop could be

implemented also as a component (view#2) or not

(view#3).

 We could also have the manager, managed element

developed as one integrated component (view#4).

Fig. 1. Potential views of an autonomic component

The previous four views (Figure 1) are not exhaustive and are

purely theoretical. Componentization paradigms could be

indeed beneficial to building autonomic systems. However,

which paradigm from Table 1 can we recommend for

example? And on which basis can we make this choice?

For more than 20 years, autonomic based systems have

adopted several designs that sometimes were imposed by

constraints issued from the managed element itself as well as

the MAPE functions. Usually wrappers and envelopes were

developed, however, as these mechanisms were not of general

purpose, they were not extensible and as a consequence their

integration was time consuming and costly.

For future networks such as 5G, where the network will be

based on SDN, NFV and Cloud principles, do we need a

reference design approach for such heterogeneous network

elements (IoT – Internet of Things – paradigm) and for

management functions? Is it a feasible approach?

Reference models and design approaches including

componentization paradigms, as well as frameworks such as

RM-ODP (Reference Model of Open Distributed Processing)

and Zachman, were popular in the 80’s and 90’s and less

nowadays with open-source communities and de facto

standards.

Since 1968 and for more than 40 years, several

componentization paradigms have appeared, the latest ones

are more and more “lightweight” to ease their adoption. This

also proves that no reference component design approach was

sufficient and suitable to any software development.

In the telco case, we will surely need a component type for a

given network function e.g. a virtual HSS (vHSS), another

type of component for a fault management operation, and a

third type for an SDN controller. This heterogeneity of

componentization types will lead to costly integration of all

these types.

In these regards, for 5G networks and their management, if we

adopt the componentization paradigms, we will end up with

several and heterogeneous types of components to cover the

different network and management requirements, which will

bring us to the initial problem of how to manage

heterogeneous devices, resources, infrastructure in 5G

networks?

TABLE I. COMPARISON BETWEEN COMPONENTIZATION

APPROACHES

So what are the key drivers if the heterogeneity of resources

remains?

Componentization paradigm will be a good practice for a

precise software development and not for general purpose

ones, like for example 5G management functions (involving

autonomic principles) that are different in nature and roles in

the context of 5G (verticals, IoT, diverse devices, etc.).

Unifying the network using only one component approach is

not possible. Each approach/paradigm may be optimized to be

suitable for one use case but not another.

From Table 1, we can observe the extreme differences

between the componentization paradigms: X-MAN approach

is covering all the theoretical properties of a component model

while Microservices are a lightweight approach design. Thus,

Microservices approach is becoming very common in current

implementations while we can find that in theory X-MAN is

the best approach, but for adoption there is a need for software

libraries, for strong community and for extensive tooling.

 Componentization

 model

X-MAN Bundles Fractal SOA Microservices

A
p

p
r
o
a
c
h

Approach nature Component model
Object oriented

framework
Component model

Component

model

Distributed

services

S
o

ft
w

a
r
e
 u

n
it

s

Units
Encapsulated

components
Objects Architectural units Services Micro services

External dependencies No Yes Yes Yes Yes

C
o

m
p

o
si

ti
o

n
 t

y
p

e
s

Algebraic Yes No Yes No No

Hierarchical Yes No Yes Yes Yes

Through operators Yes No No No No

C
o

m
p

o
si

ti
o

n
 m

e
c
h

a
n

is
m

s

Control coordination (composition

connectors)
Yes No No No No

Control coordination (type

workflow)
No No No Yes Yes

Direct message passing (method

calls)
No Yes No Yes Yes

Indirect message passing (port

connectors)
No No Yes No No

At the same time, the differences in Table 1 are being

ameliorated by combining the strengths of componentization

paradigms. For instance, there is a tendency of using control

coordination for Microservices [23, 24] whilst X-MAN has

evolved into a distributed service-oriented model [25, 26].

IV. CONCLUSION

This paper discusses component-based approaches as a key
design principle to implement a flexible and modular 5G
architecture capable of answering to the diversity of 5G use
cases. The application of autonomic to the componentization
paradigms is also presented.

The article shows that componentization approaches are
suitable if a certain degree of flexibility is allowed i.e. the
approach is not rigid or with too many formal constraints (e.g.
Microservices). This also applies to autonomics where the
most important aspects are the programmable interfaces so
that a given autonomic manager and its managed element can
communicate smoothly. Moreover, we argue that
componentization paradigms are not suitable for unification;
each approach may be suitable for one use case but not for
another.

 This analysis is theoretical but fundamental as the sota
lacks such study. We aim in a future work to push the barriers
of this study through prototyping.

REFERENCES

[1] K.-K. Lau and S. di Cola. “An Introduction to Component-based
Software Development”, World Scientific, 2017

[2] K.K. Lau and Z. Wang. “Software component models”, IEEE
Transactions on Software Engineering 33, 10, pp. 709-724, 2007

[3] OSGi Alliance Specification,“The Dynamic Module System for Java”.
https://www.osgi.org/

[4] T. Coupaye, J.B. Stefani, “Fractal Component-Based Software
Engineering Report on the WS Fractal at ECOOP’06”, 5th ECOOP
Workshop on Fractal, France, 2006

[5] K.-K. Lau, P. Velasco Elizondo, Z. Wang, “Exogenous Connectors for
Software Components”. Proc. 8th Int. Symp. on Component-based
Software Engineering, LNCS 3489:90—106, 2005

[6] K.-K. Lau, M. Ornaghi, Z. Wang, “A Software Component Model and
Its Preliminary Formalisation”. Proc. 4th Int. Symp. on Formal Methods
for Components and Objects, LNCS 4111:1—21, 2006

[7] P. Velasco Elizondo, K.-K. Lau, “A Catalogue of Component
Connectors to Support Development with Reuse”. The Journal of
Systems and Software, 83:1165—1178, 2010

[8] N. He, D. Kroening, T. Wahl, K.-K. Lau, F. Taweel, C. Tran, P.
Rümmer, S. Sharma, “Component-based Design and Verification in X-
MAN”. Proc. Embedded Real Time Software and Systems, 2012

[9] K.-K. Lau, C. Tran, “X-MAN: An MDE Tool for Component-Based
System Development”. Proc. 38th EUROMICRO Conference on
Software Engineering and Advanced Applications:158-165, 2012

[10] S. Di Cola, C. Tran, K.-K. Lau, “A Graphical Tool for Model-Driven
Development Using Components and Services”. Proceedings of 41st

Euromicro Conference on Software Engineering and Advanced
Applications (SEAA) 2015:181—182, 2015

[11] S. Newman, “Building Microservices”, 1st Ed., O’ Reilly Media, 2015

[12] M. Fowler, J. Lewis, “Microservices: A definition of this new
architectural term”, http://martinfowler.com/articles/microservices.html,
2014

[13] J. O. Kephart, D. M. Chess, “The vision of autonomic computing”.
Computer, 36(1):41–50, 2003

[14] M. Salehie, L. Tahvildari, “Self-adaptive Software: Landscape and
Research Challenges”. ACM Trans. Auton. Adapt. Syst., 4(2):14:1–
14:42, 2009

[15] P. Oreizy, M.M Gorlick, R.N. Taylor, D. Heimbigner, G. Johnson, M.
Medvidovic, A. Quilici, D.S. Rosenblum, A.L. Wolf, “An Architecture-
Based Approach to Self-Adaptive Software”, IEEE Intelligent Systems,
14(3):54-62, 1999

[16] J. Dowling, T. Schäfer, V. Cahill, P. Haraszti, B. Redmond, “Using
Reflection to Support Dynamic Adaptation of System Software: A Case
Study Driven Evaluation”, In Cazzola61, W., Stroud62, R. J., and
Tisato63, F., editors, Reflection and Software Engineering, number 1826
in Lecture Notes in Computer Science46, pages 169–188. Springer
Berlin Heidelberg, 1999

[17] J. Dowling, V. Cahill, “Self-managed Decentralised Systems Using K-
components and Collaborative Reinforcement Learning”, In Proceedings
of the 1st ACM SIGSOFT Workshop on Self-managed Systems, WOSS
’04, pages 39–43, New York, NY, USA. ACM, 2004

[18] M. Eugênio, M. Di Beneditto, C. Maria, L. Werner, “Using a model to
generate reconfiguration plans at runtime”, In Proceedings of the 14th
ACM conference on CBSE, Marcq-en-Baroeul, France, 2014. ACM

[19] S. Zachariadis, C. Mascolo, W. Emmerich, (2004). “satin: A Component
Model for Mobile Self Organisation”, In Meersman81, R. and Tari82,
Z., editors, On the Move to Meaningful Internet Systems 2004: CoopIS,
DOA, and ODBASE, number 3291 in Lecture Notes in Computer
Science62, pages 1303–1321. Springer Berlin Heidelberg

[20] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and F.
Plasil, “DEECO: An Ensemble-based Component System”, In
Proceedings of the 16th International ACM Sigsoft Symposium on
Component-based Software Engineering, CBSE ’13, pages 81–90, New
York, NY, USA. ACM, 2013

[21] M. P. Papazoglou, P. Traverso, S. Dustdar and F. Leymann, “Service-
Oriented Computing: State of the Art and Research Challenges”,
Computer, Vol. 40 No. 11, IEEE Computer Society, pp. 38-45,
November 2007

[22] S. Dobson, S. Denazis, A. Fernández, D. Gaïti, E. Gelenbe, F. Massacci,
P. Nixon, F. Saffre, N. Schmidt, F. Zambonelli, "A survey of autonomic
communications"- ACM Transactions on Autonomous and Adaptive
Systems 1(2), December 2006

[23] Netflix. Conductor, https://netflix.github.io/conductor/, 2016

[24] R. Oberhauser, “Microflows: Automated Planning and Enactment of
Dynamic Workflows Comprising Semantically-Annotated
Microservices”, In: Shishkov B. (eds) Business Modeling and Software
Design. BMSD 2016. Lecture Notes in Business Information Processing,
vol 275. Springer, Cham, 2017

[25] D. Arellanes and K.-K. Lau, “DX-MAN: A Platform for Total
Compositionality in Service-Oriented Architectures”, in Proceedings of
the 7th International Symposium on Cloud and Service Computing (SC2
2017), IEEE Computer Society, 2017

[26] D. Arellanes and K.-K. Lau, “Exogenous Connectors for Hierarchical
Service Composition”, in Proceedings of the 10th International
Conference on Service Oriented Computing and Applications (SOCA
2017), IEEE Computer Society, 2017

