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I. CHOICE OF PARAMETERS WITH BACK-SAMPLING

Here we describe how to choose hyper-parameters to make
the algorithm robust. As in Section III-B, we want to give
different particles equal weights if they explain anomalies
equally well. In particular, we therefore want to balance out the
weights given to the back-sampled particles and the descen-
dants of particles with an anomaly sampled at time t− k + 1
using just Yt+1−k. In order to do so, consider observations
Yt+1, ...,Yt+1−k which are such that they perfectly fit an
innovative outlier in the ith innovative component at time
t− k + 1, i.e.
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up to the likelihood term and the
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factor. However, these terms are also present in the weights
of the descendants of the particles sampled at t + 1 − k if
no further anomaly was sampled at times t+ 2− k, ..., t+ 1.
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in Section III-B. Given σ̂j can only take a single value we set
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where Bj ⊂ N denotes the set of horizons used to back-sample
the jth component of the Wt.

II. THEOREMS AND DERIVATIONS

A. Theorem 1

Theorem 1: Let the prior for the hidden state Xt be N(µ,Σ)
and an observation Yt+1 := Y be available. Then the samples
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Proof: We wish to sample from the posterior distribution of
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where fi() denotes the PDF of a σ̃iΓ(ai, ai)-distribution. The
intractable part in the above consists of
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where I(i) = eieTi is a matrix which is 0 everywhere with the
exception of the ith entry of the ith row, which is 1. Note
that I(i) has rank 1 and therefore, by the Sherman Morrison
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Crucially, the first term is constant in Ṽ
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linear in Ṽ
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much faster than the other two terms as Ṽ
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Using conjugacy, we can therefore sample M particles for
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and give each particle an importance weight proportional to
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B. Theorem 2
Theorem 2: Let the prior for the hidden state Xt be N(µ,Σ)

and an observation Yt+1 := Y be available. Then the samples
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The proof is almost identical to that of Theorem 1 and has
been omitted.

C. Theorem 3
Theorem 3: Let the prior for the hidden state Xt be N(µ,Σ)

and an observation Yt+1 := Y be available. Then the proposal
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This is immediate from the Gaussian likelihood and the
Bernoulli priors for λ(i)

t and γ(j)
t .

D. Theorem 4

Theorem 4: Let the prior for the hidden state Xt be N(µ,Σ)
and an observation Yt+1 := Y be available. When
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Proof: Identical (up to variable names) to that of Theorem
2.
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III. TRANSFORMING MODEL TO HAVE DIAGONAL
COVARIANCE MATRIX

If we have a general state space model

Yt = CXt + Σ
1
2

AV
1
2
t εt,

Xt = AXt−1 + Σ
1
2

I W
1
2
t νt,

where Σ
1
2

A and/or Σ
1
2

I are not diagonal, we can apply a linear
transformation so as to obtain an equivalent model where these
covariance matrices are diagonal.

For the following assume that ΣA and ΣI are of full-rank.
If they are not then we can obtain an equivalent model after
removing one or more components of the noise εt or νt. As
ΣA and ΣI are covariance matrices, they are symmetric and
thus there exist matrices of orthogonal eigenvectors PA and
PI and diagonal matrices of the square-root of the eigenvalues,
DA and DI , such that

ΣI = PIDIDIP
T
I

ΣA = PADADAP
T
A .

Thus we can choose Σ
1
2

I = PIDI and Σ
1
2

A = PADA.
Using the fact that P T

I is the inverse of PI as it is an
orthogonal matrix, and similarly P T

A is the inverse of PA, we
can define a new state X̃t = P T

I Xt and a new observation
Ỹt = P T

AYt which satisfy the model
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I W
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This is a state space model in the required form, with
P T
AΣ

1
2

A = P T
APADA = DA diagonal. Similarly, P T

I Σ
1
2

I is
diagonal.

IV. BACKSAMPLING WEIGHTS

Here we give an informal explanation of the form of weights
for backsampling, and why they depend on the evidence,
p(Y1:s) for s = 1, . . . ,.

To explain how we derive the backsampling weights let θ1:t

denote a hidden state of our system up to time t, which we
define to be the values of Vi and Wi for i = 1, . . . , t. We
can view each particle at time t as corresponding to a specific
realisation of θ1:t – though in practice we do not store all the
historical values of Vi and Wi prior to time t, but instead
store the value µt and Σt which are the conditional mean and
covariance of the state xt given θ1:t and Y1:t.

For the backsampling algorithm it is helpful to think of
proposing particles for θ1:t+1. If we propose them with some
proposal q(θ1:t+1) then an appropriate IS weight will be
proportional to

p(θ1:t+1,Y1:t+1)

q(θ1:t+1)
.

The weighted samples from such an importance sampler will
approximate a density proportional to p(θ1:t+1,Y1:t+1) ∝
p(θ1:t+1|Y1:t+1).

For appropriate probabilities p1, p2 and p3 with p1 + p2 +
p3 = 1 our proposal for backsampling is a mixture of the
form:

(i) With probability p1 we propose θ1:t from p(θ1:t|Y1:t)
and set θt+1 to correspond to no outlier.

(ii) With probability p2 we propose θ1:t from p(θ1:t|Y1:t)
and set θt+1 to correspond to an additive outlier. The
component is sampled uniformly, and then the value of
Vt+1 is sampled according to our proposal distribution.

(iii) With probability p3 we sample k uniformly from
1, . . . , kmax. We then sample θ1:t−k+1 from
p(θ1:t−k+1|Y1:t−k+1) and set θt−k+2 to be an innovative
outlier, and, if k > 1, θt−k+3:t+1 to correspond to no
outliers. The specific proposal for θt−k+2 is to choose
a component uniformly at random and then the value of
Wt−k+2 is drawn from our proposal distribution.

As is standard in particle filtering, rather than sampling from
the filtering densities, such as p(θ1:t|Y1:t) in steps (i) and (ii),
we sample from the particle approximation to these densities.
In practice for appropriately chosen p1, p2 and p3 we use a
stratified sampling approach across components (i)–(iii) and
across the type (component and, for innovative outliers, value
of k) of outlier in steps (ii) and (iii). So p1, p2 and p3 are
each proportional to the number of proposals from (i), (ii) and
(iii) respectively. (In the above kmax represents the maximum
horizon in Algorithm 2.)

For (i) the proposal distribution is p1p(θ1:t|Y1:t) times a
point mass on θt+1 not being an outlier. Thus the importance
sampling weight is

p(θ1:t|Y1:t)p(Y1:t)p(θt+1)p(Yt+1|θ1:t+1,Y1:t

p1p(θ1:t|Y1:t)

= p(Y1:t)
p(θt+1)p(Yt+1|θ1:t+1,Y1:t)

p1p(θ1:t|Y1:t)
.

It is equal to the evidence at time t, p(Y1:t) times the
importance sampling weight for a non-outlier we have in
the no-backsampling algorithm. For step(ii) we similarly get
that the importance sampling weight is p(Y1:t) times the
importance sampling weight for an additive outlier we have in
the no-backsampling algorithm.

For step (iii) we have introduced an additional variable k, so
we need to adapt the target to include this. This is a standard
augmentation trick in importance sampling and we can do this
by having a target where k is independent and is drawn from
a uniform distribution on {1, . . . , kmax}. If q(θt−k+2) is our
proposal for θt−k+2 then the importance sampling weight is

p(k,θ1:t+1,Y1:t+1)

q(θ1:t+1)

=
1

kmax
p(θ1:t−k+1,Y1:t−k+1)p(θt−k+2:t+1,Yt−k+2:t+1|θ1:t−k+1)

p3(1/kmax)p(θ1:t−k+1|Y1:t−k+1)q(θt−k+2)

= p(Y1:t−k+1)
p(θt−k+2:t+1,Yt−k+2:t+1|θ1:t−k+1)

p3q(θt−k+2)
.

The term in the numerator can be obtained as

p(θt−k+2:t+1,Yt−k+2:t+1|θ1:t−k+1)

= p(θt−k+2:t+1)p(Yt−k+2:t+1|θ1:t+1),

as the states (as we have defined) are independent at each
time-point. The likelihood term p(Yt−k+2:t+1|θ1:t+1) can be
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(a) Case 1 (b) Case 1, IOs (c) Case 1, AOs (d) Case 1, Both

(e) Case 2 (f) Case 2, IOs (g) Case 2, AOs (h) Case 2, Both

(i) Case 3 (j) Case 3, IOs (k) Case 3, AOs (l) Case 3, Both

(m) Case 4 (n) Case 4, IOs (o) Case 4, AOs (p) Case 4, Both

Fig. 1: Violin plots for the average predictive mean squared
error of the five filters (IOAO: CE-BASS, KF: The classical
Kalman Filter, AO T: [1], AO H: [2], IO: [2]) over the four
different scenarios under a range of models. Lower values
correspond to better performance. Methods are omitted if they
can not be applied to the setting or if their performance is too
poor.

calculated from θt−k+2:t+1 and the mean and covariance for
the state (from the Kalman Filter) at time t− k + 1.

The key thing to note is that for backsampling at horizon k
we have a factor p(Y1:t+1−k). In the standard particle filter
algorithm k = 1, and thus this term is the same as that which
appears in the weights for (i) and (ii) – and thus can be
ignored. With backsampling we need to include this term as
we consider k 6= 1 as well – this explains the need to calculate
the estimate of the evidence in Algorithm 2.

V. ADDITIONAL SIMULATIONS

Violin plots for the predictive mean squared error are
displayed in Figure 1

In most cases these plots show similar performance to the
plots of predictive log-likelihood shown in the paper. One
exception is for Case 4 with additive outliers – where under
mean square error CE-BASS performs much worse that the
Kalman Filter and its versions which allow only for additive
outliers. This is due to the fact that an additive oulier can be fit
as either an additive outlier or an innovative outlier under the
model used be CE-BASS. The predictive distribution for the
observation at the next time-step is this bi-modal. Whilst the
observation lies within one of the modes, and thus the filter
is judged to perform well under the predictive log-likelihood

Fig. 2: Violin plots for the predictive log likelihood and the
average predictive mean squared error of the five filters (IOAO:
CE-BASS, KF: The classical Kalman Filter, AO T: [1], AO
H: [2], IO: [2])

criteria, the mean of the predictive distribution can be far from
the observation, and thus the mean square error is large.

We additionally analysed a scenario in which both additive
and innovative anomalies occur at the same time. For this, we
used the model of Example 1 with σA = 1 and σA = 0.1. We
consider a case with an innovative and additive anomaly occur
at times t = 300 and t = 600. To simulate additive anomalies,
we set V (1,1)

t σAεt = 10 and to simulate the innovative outliers
we set W (1,1)

t σIηt = 10. The resulting log-likelihood and
MSE plots can be found in Figure 2. It is apparent from the
log-likelihood plot that CE-BASS performs slightly worse than
additive outlier filters, and even the Kalman filter. This is due
to the fact it is unable to correctly capture the multi-modality
around the anomaly – it can allow for there being either an
additive or a innovative outlier, but not capture the mode that
corresponds to both outliers occurring simultaneously.

VI. COMPLETE PSEUDOCODE

Algorithm 3 KF Upd(Y,µ,Σ,C,A,ΣA,ΣI )
1: µp ← Aµ
2: Σp ← AΣAT + ΣI
3: z = Y− µp
4: Σ̂← CΣpCT + ΣA
5: K← ΣpCT Σ̂−1

6: µnew ← µp + Kz
7: Σnew ← (I− KC)Σp

Output: (µnew,Σnew)

Algorithm 4 Sample typical(µ,Σ,Y,A,C,ΣA,ΣI )
1: V← Ip
2: W← Iq
3: Σ̂← C

(
AΣAT + ΣI

)
CT + ΣA

4: z← Y− CAµ

5: prob←
(

1−
∑p
i=1 ri −

∑q
j=1 sj

)
exp

(
− 1

2
zT Σ̂−1z

)
/

√∣∣∣Σ̂∣∣∣
Output: (V,W, prob)

REFERENCES
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Algorithm 5 Sample add comp(i, z, Σ̂,ΣA,M )
1: V← Ip
2: V← Iq

3: V(i,i) ← σ̃iΓ

(
ai + 1

2
, ai + σ̃i

2Σ
(i,i)
A

(
(Σ̂−1)(i,:)z

(Σ̂−1)(i,i)

)2
)

4:

prob←
1

M
ri

Γ(ai + 1
2

)

Γ(ai)

a
ai
i(

ai + σ̃i

2Σ
(i,i)
A

(
(Σ̂−1)(i,:)z

(Σ̂−1)(i,i)

)2
)ai+ 1

2

√
σ̃i exp

(
− 1

2
zT Σ̂−1z

)
√
|Σ̂|

√(
Ṽ(i,i)

+ Σ
(i,i)
A

(
Σ̂−1

)(i,i))

exp

(
1

2

1 +

 Ṽ(i,i)
t+1

Σ
(i,i)
A

(
Σ̂−1

)(i,i)


2

Σ
(i,i)
A

(
Σ̂−1

)(i,i)
Σ

(i,i)
A

(
Σ̂−1

)(i,i)
+ Ṽ(i,i)

t+1



(
Σ̂−1

)(i,:)
z√(

Σ̂−1
)(i,i)


2)

.

Output: (V,W, prob)

Algorithm 6 Sample add(µ,Σ,Y,A,C,ΣA,ΣI ,M )

1: Σ̂← C
(
AΣAT + ΣI

)
CT + ΣA

2: z← Y− CAµ
3: Add Pt← {} . Additive Anom. Particles
4: for i ∈ {1, ..., p} do
5: Add Pt← Add Pt ∪ {Sample add comp(i, z, Σ̂,ΣA,M)}
6: end for

Output: Add Pt

Algorithm 7 Sample inn comp(j, z, Σ̂,ΣI ,M )
1: V← Ip
2: V← Iq

3: W(i,i) ← σ̂iΓ

(
bi + 1

2
, bi + σ̂i

2Σ
(i,i)
I

(
(CT )(i,:)

Σ̂−1z

(CT Σ̂−1C)(i,i)

)2
)

4:

prob←
1

M
sj

Γ(bi + 1
2

)

Γ(bj)

b
bj
j(

bj + σ̂i

2Σ
(j,j)
I

(
(CT )(j,:)

Σ̂−1z

(CT Σ̂−1C)(j,j)

)2
)bi+ 1

2

√
σ̂j exp

(
− 1

2
zT Σ̂−1z

)
√
|Σ̂|

√(
W̃(j,j)

+ Σ
(j,j)
I

(
CT Σ̂−1C

)(j,j))

exp

(
1

2

(
1 +

 W̃(j,j)

Σ
(j,j)
I

(
CT Σ̂−1C

)(j,j)


2

Σ
(j,j)
I

(
CT Σ̂−1C

)(j,j)
Σ

(j,j)
I

(
CT Σ̂−1C

)(j,j)
+ W̃(j,j)

t+1

)
(
CT
)(j,:)

Σ̂−1z√(
CT Σ̂−1C

)(j,j)


2)

Output: (V,W, prob)

Algorithm 8 Sample inn(µ,Σ,Y,A,C,ΣA,ΣI ,M )

1: Σ̂← C
(
AΣAT + ΣI

)
CT + ΣA

2: z← Y− CAµ
3: Inn Pt← {} . Innovative Anom. Particles
4: for i ∈ {1, ..., q} do
5: Inn Pt← Inn Pt ∪ {Sample inn comp(i, z, Σ̂,ΣI ,M)}
6: end for

Output: Inn Pt

Algorithm 9 Sample Particles(M,µ,Σ,Y,A,C,ΣA,ΣI )
1: Desc← {} . To store Descendants
2: Desc← Desc ∪ Sample typical(µ,Σ,Y,A,C,ΣA,ΣI)
3: for i ∈ 1, ...,M do
4: Desc← Desc ∪ Sample add(µ,Σ,Y,A,C,ΣA,ΣI ,M)
5: end for
6: for i ∈ 1, ...,M do
7: Desc← Desc ∪ Sample inn(µ,Σ,Y,A,C,ΣA,ΣI ,M)
8: end for

Output: Desc

Conference on Robotics and Automation. IEEE, 2011,
pp. 1551–1558.

[2] P. Ruckdeschel, B. Spangl, and D. Pupashenko, “Ro-
bust Kalman tracking and smoothing with propagating
and non-propagating outliers,” Statistical Papers, vol. 55,
no. 1, pp. 93–123, 2014.

Algorithm 10 BS inn (µ,Σ, Ỹ,A,C,ΣA,ΣI ,M, k)

1: for i ∈ {0, .., k} do
2: C̃i = C

(
0q×iq ,

(
A0
)T

, ...,
(
Ak−i

)T)T
3: end for
4: z̃← Ỹ− C̃Aµ

5: Σ̃← C̃0AΣt−kAT
(

C̃0

)T
+
∑k
i=0

[
C̃iΣA

(
C̃i
)T ]

+ Ik+1 ⊗ΣA

6: Cd← {} . To store Candidates.
7: for i ∈ {1, .., q} do
8: for j ∈ {1, ...,M} do
9: Cd← Cd ∪ {Sample inn comp(i, z̃, Σ̃,A, C̃,ΣI ,M)}

10: end for
11: end for

Output: Cd
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Algorithm 1 Basic Particle Filter (No Back-sampling)
Input: An initial state estimate (µ0,Σ0)

A number of descendants, M ′ = M(p+ q) + 1
A number of particles to be maintained, N .
A stream of observations Y1,Y2, ...

Initialise: Set Particles(0) = {(µ0,Σ0)}
1: for t ∈ N+ do
2: Candidates← {}
3: for (µ,Σ) ∈ Particles(t− 1) do
4: (V,W, prob)← Sample Particles(M,µ,Σ,Yt,A,C,ΣA,ΣI)
5: Candidates← Candidates ∪ {(µ,Σ,V,W, prob)}
6: end for
7: Descendants← Subsample(N,Candidates)
8: Particles(t)← {}
9: for (µ,Σ,V,W, prob) ∈ Descendants do

10: (µnew,Σnew)← KF Upd(Yt,µ,Σ,C,A,VΣA,WΣI)
11: Particles(t)← Particles(t) ∪ {(µnew,Σnew)}
12: end for
13: end for

Algorithm 2 Particle Filter (With Back Sampling) – CE-BASS
Input: An initial state estimate (µ0,Σ0).

A number of descendants, M ′ = M(p+ q) + 1.
A number of particles to be maintained, N .
A stream of observations Y1,Y2, ...

Initialise: Set Particles(0) = {(µ0,Σ0, 1)}
EV (t)=1
Set max horizon

1: for t ∈ N do
2: Cand← {}
3: for (µ,Σ) ∈ Particles(t) do
4: (V,W, prob)← Sample typical(µ,Σ,Yt+1,A,C,ΣA,ΣI)
5: Cand← Cand ∪ {(µ,Σ,V,W, prob · EV (t), 1)}
6: Add Des← Sample additive(µ,Σ,Yt+1,A,C,ΣA,ΣI ,M)
7: for (V,W, prob) ∈ Add Des do
8: Cand← Cand ∪ {(µ,Σ,V,W, prob · EV (t), 1)}
9: end for

10: end for
11: for k ∈ {1, ...,max horizon} do
12: for (µ,Σ) ∈ Particles(t− k + 1) do
13: Ỹ←

[
YTt−k+2, ...,Y

T
t+1

]T
14: Inn Des← BS inn(µ,Σ, Ỹ,A,C,ΣA,ΣI ,M, k)
15: for (V,W, prob) ∈ Inn Des do
16: Cand← Cand∪{(µ,Σ,V,W,

prod·EV (t+1−k)
max horizon

), k)}
17: end for
18: end for
19: end for
20: EV (t+ 1)← 0 . Calculate estimate of evidence at time t+ 1
21: for (µ,Σ,V,W, prob, k) ∈ Cand do
22: EV (t+ 1)← EV (t+ 1) + prob/|Cand|
23: end for
24: Desc← Resample(N,Cand) . Resample particles
25: Particles(t)← {} . Calculate µt+1 and Σt+1 for each particle
26: for (µ,Σ,V,W, prob, k) ∈ Descendants do
27: (µ,Σ)← KF Upd(Yt+2−k,µ,Σ,C,A,VΣA,WΣI)
28: if k > 1 then
29: for i ∈ {2, ..., k} do
30: (µ,Σ)← KF Upd(Yt+1+i−k,µ,Σ,C,A,ΣA,ΣI)
31: end for
32: end if
33: Particles(t+ 1)← Particles(t+ 1) ∪ {(µ,Σ)}
34: end for
35: end for


