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Glossary 

 
2-AcG                 2-Acylglycerol 

2-AG                   2-Arachidonoylglycerols 

2-EG                   2-eicosenoylglycerol  

2-GLG                2-γ-linolenoylglycerol  

2-LG                   2-linoleoylglycerol  

2-OG                   2-oleoylglycerol  

2-PG                    2-palmitoylglycerol  

2-SG                    2-stearoylglycerol (2-SG) 

AA                       Arachidonic acid 

AEA                    N-arachidonoyl ethanolamine, Anandamide 

CB                        Cannabinoid receptor  

CBD                     Cannabidiol 

COX                     Cyclooxygenase  

DAGL                  Diacylglycerol Lipase 

DHA                     Docosahexaenoic acid 

EEA                      N-Eicosenoylethanolamine 

EPA                      Eicosapentaenoic acid  

FAAA                   Fatty acids amides of amino acids 

FAAH                   Fatty acid amide hydrolase 

FABP                    Fatty acids binding protein 

GLA                      γ-linolenic acid 

GLEA                   N-γ-Linolenoylethanolamine 

GPCR                   G protein-coupled receptor 

HPD                      Haloperidol 

IC50                       Half maximal inhibitory concentration 

LA                         Linoleic acid 

LEA                      N-Linoleoylethanolamine 

LOX                      Lipoxygenase  

MAGL                  Monoacylglycerol lipase 

MAGs                   Monoacylglycerols 

MIC                      Minimum inhibitory concentration 

NAAA                   N-Acylethanolamine-hydrolysing acid amidase 
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NAEs                    N-Acylethanolamines 

NAPE-PLD          N-Acyl-Phosphatidylethanolamine Phospholipase D 

OEA                      N-Oleoylethanolamine 

PEA                      N-Palmitoylethanolamine 

PPAR                   Peroxisome proliferator-activated receptor 

PPRE                   Peroxisome proliferator response elements 

PTX                      Pertussis toxin 

RXR                     Retinoid X-receptor 

SEA                      N-Stearoylethanolamine 

TRPV1                 Transient receptor potential vanilloid type 1 

Δ9-THC                Delta-9-Tetrahydrocannabinol 
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Abstract 
 

The human endocannabinoid system (ECS) modulates many vital physiological and 

neuromodulatory functions. It comprises lipid endocannabinoids, e.g. Anandamide (AEA), 

which are synthesized on demand and which bind to receptors (e.g. CB1, CB2) to elicit a 

response. Single-celled protists can respond to endocannabinoids despite not possessing any 

of the known cannabinoid receptors suggesting they possess a rudimentary ECS with an 

unknown target for the endocannabinoids.  

The ciliate Tetrahymena thermophila possesses a suite of endocannabinoids (including 

AEA), with N-palmitoylethanolamide (PEA) and N-oleoylethanolamide (OEA) being two of 

the dominant compounds. In humans, the natural receptor for the latter is the peroxisome 

proliferator-activated receptor alpha (PPARα) but this receptor has not been identified in the 

T. thermophila genome. It may be that Tetrahymena spp. possess a ‘PPAR-like’ receptor or 

they possess a different target, which mediate a reaction to these endocannabinoids. 

This study examined the potential role of ‘PPARs’ in the ECS of Tetrahymena pyriformis. 

Cell death was examined in the presence of agonists to each of the three known PPAR types, 

i.e. OEA/PEA/AEA/Cannabidiol (CBD) (to PPARα), GW0742 (to PPARβ/δ), and 

Rosiglitazone (PPARγ). All agonists induced ciliate cell death and all, except PEA and 

Rosiglitazone, gave IC50 values similar to those recorded for human cells (GW0742, 12 µM; 

OEA, 45 µM; AEA and CBD, 4 µM). The negative action of some of these agonists could be 

alleviated by blocking PPAR isoforms with their respective antagonists (GW6471 for 

PPARα, GSK3787 for PPARβ/δ, and T0070907 for PPARγ). The action of AEA and 

GW0742 were alleviated with all antagonists, CBD was only alleviated with GW6471 (for 

PPARα), and OEA was alleviated by none. Results suggest that T. pyriformis possesses a 

PPAR-like protein/target for AEA, CBD, and GW0742, but not for OEA. 

Since the target of OEA was not a PPAR, this study explored other potential targets by using 

antagonists against the Dopamine receptor (Haloperidol), Gαi/o (Pertussis toxin [PTX]), and 

Protein kinase A (H89).  Only PTX slightly alleviated the effect of OEA, suggesting a Gαi/o 

receptor mechanism.  

Although the results are preliminary, further study may lead to the mapping and deeper 

understanding of the nature of the ECS in Tetrahymena and these non-CB pathways may be a 

possible therapeutic target in key diseases such as cancer, obesity and diabetes.  
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1. Introduction 

The human endocannabinoid system (ECS) is essential in the modulation of many 

fundamental regulations from cellular activities to physiological functions such as 

neurodegeneration, psychosis and anxiety, cardiovascular, pain, and appetite (Bih et al., 

2015; Zou and Kumar, 2018). The ECS is a complex signaling pathway found throughout the 

body, being dominant in the brain, cardiovascular, nervous, reproductive, intestinal and the 

immune tissues (Zou and Kumar, 2018). This makes cannabinoids a novel therapeutic target 

for a range of diseases including cancer, diabetes, anxiety, addiction, epilepsy and many other 

neurological disorders including Parkinson’s and Alzheimer’s disease (Bih et al., 2015; Dariš 

et al., 2019).  

Many years of research has been dedicated to identifying and understanding the nature and 

individual components of the ECS, especially the effects of cannabinoid compounds such as 

cannabidiol (CBD), delta-9-tetrahydrocannabinol (Δ9-THC), 2-arahidonoyl glycerol (2-AG) 

and anadamide (AEA) upon it. However, studies have often been contradictory, suggesting a 

broad mechanism of action due to numerous possible receptors. As such, studying the 

endocannabinoid system in a simpler organism, which has no known receptors but can still 

respond to cannabinoids, may help to gain a better understanding of the nature of the ECS. 

The ciliate Tetrahymena is a single-celled eukaryote which is widely used as a model 

organism in biomedical studies due to its low maintenance, rapid growth and the availability 

of DNA and genomic data (Ruehle et al., 2016). The study of ECS in Tetrahymena may 

reveal interesting, yet, simpler signaling pathways of the eukaryotic ECS in general.  

This literature review explains the fundamental function of the ECS in humans and its main 

components; cannabinoid ligands, the four main receptors (both CB and non-CB), and their 

metabolizing enzymes. The review then provides evidence for a rudimentary ECS in single-

celled eukaryotes and in particular, in the ciliate Tetrahymena, which despite possessing none 

of the four main cannabinoid receptors, responds negatively to cannabinoids. This review 

then further explores the most likely potential cannabinoid receptors in this ciliate; the 

peroxisome proliferator-activated receptor (PPAR), Dopamine (D) and orphan G protein-

coupled receptors (GPCRs). 
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1.1. The human endocannabinoid system 

The human endocannabinoid system comprises cannabinoid receptors, together with their 

lipids ligand and the enzymes which synthesized and degrades them (Pertwee et al., 2010; Lu 

and Mackie, 2016). The system has a broad neuro-modulatory effect as well as non-neuronal 

effects such as the regulation of appetite through the gastrointestinal (GI) tract and fertility 

through the reproductive system (Izzo and Sharkey, 2010; Zou and Kumar, 2018).  

The extracts of the plant Cannabis sativa (marijuana) have long been used for medicinal 

purposes to treat ailments such as cramp and provide pain relief (Mechoulam, 1986; Pertwee, 

2009). However, only in the mid-1900s was the first cannabis constituent discovered, i.e., 

delta-9-tetrahydrocannabinol (Δ9-THC), which is the main psychoactive phytocannabinoid of 

the C. sativa (Gaoni and Mechoulam, 1964). Then followed the discovery of the first 

cannabinoid receptor, now referred as CB1 (Matsuda et al., 1990). Its identification and 

successful cloning then led to the discovery of the second cannabinoid receptor, CB2, and the 

first ‘endocannabinoid’ N-arachidonoylethanolamine (anandamide; AEA) (Devane et al., 

1992; Munro et al., 1993). This was followed shortly by the discovery of the second 

endocannabinoid 2-arachidonoyl glycerol (2-AG) (Sugiura et al., 1995; Mechoulam et al., 

1995).  

The ‘endocannabinoids’ are named as such because mammalian tissues are capable of 

producing their own cannabinoids on demand, which are released and bind to cannabinoid 

receptors to elicit a response. It is noteworthy that although these first two endocannabinoids 

(AEA and 2-AG) bind to CB1 and CB2, they possess distinctive properties such that 2-AG is 

a full agonist of both receptors with moderate to low binding affinity, whereas AEA is a 

partial agonist of CB1 with high binding affinity but has almost no binding affinity for CB2 

(Pertwee et al., 2010). In addition, these agonists also induce activation of numerous non-CB 

receptors. For example, AEA can bind to the transient receptor potential channel vanilloid 1 

(TRPV1), Dopamine, peroxisome proliferator-activated receptor (i.e. PPARα and PPARγ), 

and various other orphan G protein coupled receptors (e.g. GPR55) (Zygmunt et al., 1999; 

Ahluwalia et al., 2003a; Pertwee et al., 2010; Lee et al., 2016). Thus, in addition to the main 

CB receptors, cannabinoids are capable of binding to more than one receptor, depending on 

cell types and site of actions, which results in the broad activation of signaling pathways.  
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During endocannabinoid retrograde signaling, the endocannabinoids AEA and 2-AG are 

synthesized on demand in response to an increased intracellular Ca2+ concentration and 

which are then degraded after activation of the CB1 and other non-CB targets (Katona and 

Freund, 2008) (Figure 1.1). Generally, AEA is synthesized from N-acyl-

phosphotidylethanolamine (NAPE) by the enzyme NAPE-specific phospholipase D (NAPE-

PLD) (Okamoto et al., 2004). On the other hand, 2-AG is synthesized from diacylglycerol 

(DAG) by two of the DAG lipases - DAGLα and DAGLβ (Murataeva et al., 2014). Once 

transported to the site of action and taken up by the cells, fatty acid amide hydrolase (FAAH) 

catabolized AEA into free arachidonic acid (AA) and ethanolamine, whereas 2-AG is 

degraded to AA and glycerol by monoacylglycerol lipase (MAGL). Catalysis of AEA and 2-

AG sometimes involves the oxidative enzymes such as cyclooxygenase-2 (COX2) and other 

lipoxygenases (LOX) (Deutsch et al., 2002; Zou and Kumar, 2018).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.1: Simplified schematic representation of endocannabinoid retrograde signaling in 

synaptic transmission, as an example of an endocannabinoid system; comprised of the 

cannabinoid receptor (in this case CB1), cannabinoid ligands (AEA and 2-AG), and their 

metabolic enzymes (NAPE-PLD, FAAH, DAGL, MAGL) (Zou and Kumar, 2018).  
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In the past few decades the study of the endocannabinoid system has gained more attention 

due to the promising therapeutic effects of the agonists on various diseases including cancer, 

Parkinson’s, epilepsy and many more (Hill et al., 2012; Patil et al., 2015). The extensive 

study of the ECS has demonstrated that cannabinoid receptor agonists induce the activation 

of non-CB receptors, and at the same time, CB receptors can be activated by wide array of 

ligands. This indicates that the ECS is involved in broad modulatory functions and also plays 

a significant role in sustaining life, and therefore the understanding of this system may lead to 

uncovering many further therapeutic treatments.  

1.2. The main cannabinoid ligands 

 

There are many ligands involved in the activation and inhibition of the endocannabinoid 

system, including the endo-, synthetic- and exogenous cannabinoids. The endocannabinoid 

and endocannabinoid-like compounds are classified based on their acyl chain: 1) N-

acylethanolamines (NAEs); 2) monoacylglycerols (MAGs); 3) N-acyldopamines; 4) N-

acylserotonin, 5) Fatty acids amides of amino acids (FAAAs), and 6) COX2-derivatives 

(Piscitelli, 2015).  

 

AEA, is a long-chain fatty acid ethanolamine and a representative of the NAEs. Other 

members of the NAEs include N-palmitoylethanolamide (PEA), N-oleoylethanolamide 

(OEA), N-stearoylethanolamide (SEA), and N-linoleoylethanolamide (LEA) (Figure 1.2). 

Although AEA is the most studied NAE, due to its activity and well characterized interaction 

with the cannabinoid receptors, it should be noted that AEA is only a minor component of 

NAEs whereas other NAEs, particularly OEA and PEA, are more abundant in animal tissues 

(Piscitelli, 2015). And, unlike AEA, OEA and PEA are better characterized as agonists of the 

PPARα receptor where OEA is often associated with satiety and feeding behaviour, while 

both OEA and PEA serve as anti-inflammatory and neuroprotective compounds (Suardíaz et 

al., 2007; Fu et al., 2003; Di Cesare Mannelli et al., 2013). However, evidence exists that 

PEA interact with the CB2 receptor although at a much lower affinity compared to PPARα 

(Facci et al., 1995) and that NAEs, particularly OEA, are capable of activating several other 

receptors including TPRV1 and GPR119 (Kleberg et al., 2014; Piscitelli, 2015) (see section 

1.4.2). 
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The phytocannabinoid THC was the first cannabinoid compound identified from C. sativa 

and has long been used for medicinal and recreation purposes. Over 85 phytocannabinoids 

have been identified from the same plant, but the psychoactive THC and its non-psychoactive 

isomer, cannabidiol (CBD) still remain the most studied phytocannabinoids (El-Alfy et al., 

2010; Bih et al., 2015). CBD targets both the CB1 and CB2 receptors but with lower affinity 

compared to THC (Pertwee et al., 2010), it is more likely that CBD acts as antagonist at 

CB1/CB2 rather than an agonist (Pertwee, 2008; Bih et al., 2015). Moreover, many studies 

have demonstrated that CBD can also target non-CB receptors such as GPR55, PPARγ, 

TRPV1 and those for adenosine and serotonin (Bih et al., 2015). 

 

1.3. The metabolizing enzymes 

 

The metabolism of the two major endocannabinoids, AEA and 2-AG, are welled known in 

humans with AEA and 2-AG being synthesized with the aid of enzymes NAPE-PLD and 

 
 

Figure 1.2: Structure of endocannabinoid-like compounds, N-acylethanolamides: N-arachidonoyl 

ethanolamide (AEA); N-linoleoylethanolamide (LEA); N-oleoylethanolamide (OEA); N-

stearoylethanolamide (SEA); N-palmitoylethanolamide (PEA) (Leishman and Bradshaw, 2015). 
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DAGL/, respectively and hydrolyzed by FAAH and MAGL, respectively (see Figure 1.1). 

However, multiple studies have shown that there is more than one distinct pathway involved 

in the synthesis and degradation of these endocannabinoids (Kano et al., 2009). 

 

1.3.1. Biosynthesising enzymes 

 

AEA, and its closely related long-chain NAEs, are synthesised from NAPE with the aid of 

the enzyme NAPE-PLD. NAPE plays a crucial role as a precursor in NAEs synthesis and can 

be synthesised from phosphatidylethanolamine (PE) or sn-1-arachidonate of phospholipids by 

the enzyme N-acyltransferase (NAT) (Iannotti et al., 2016). 

 

Studies of NAEs biosynthesising pathway suggested that they can be synthesised via 3 main 

routes: 1) direct hydrolysis of NAPE by NAPE-PLD; 2) a three-step catalysis, through NAPE 

deacylation to glycerophosphoethanolamine (GP-NAE) by /-hydrolase-4 (ABH4) and 

further to NAE by glycerophosphodiesterase-1 (GDE-1); and 3) a two-step pathway through 

hydrolysis of NAPE by phospholipase C, forming phospho-NAE as an intermediate and 

further dephosphorylate by a poorly characterised phosphatase (e.g. PTPN22) to NAE 

(Figure 1.3) (Kleberg et al., 2014; Iannotti et al., 2016). It was also suggested that preference 

for one pathway over another might also relate to cell/tissue specification and/or the 

availability of precursors (Muccioli, 2010).  

 

In the case of 2-acylglycerols (2-AcG) such as 2-AG, these are generally formed as an 

intermediate in the synthesis of triacylglycerol and phospholipids in the central nervous 

system (CNS) and peripheral cells (Kleberg et al., 2014). 2-AcG is known to be produced in a 

stimulus-dependent manner, activating Gq/11-coupled-receptor (e.g. glutamate receptor) as a 

result of a strong Ca2+ influx, thus upregulating 2-AG production (Muccioli, 2010).  

 

Biochemical studies have revealed two primary pathways for 2-AG production. The first one 

involves the combination of the enzymes phospholipase C (PLC) and diacylglycerol lipase 

(DAGL). Initially, PLC hydrolyses membrane phospholipids such as phosphatidylinositol, 

producing 1-acyl-2-arachidonylglycerol (diacylglycerol, or DAG) which is subsequently 

hydrolyses to 2-AG by either of the two specific enzymes DAG lipase  or  (Figure 1.3) 

(Kano et al., 2009).  
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Besides the formation of DAG as a precursor, 2-AG can also be generated in an alternative 

pathway featuring a 2-arachidonoyl-lysophophatidylinositol (Lyso-PI) intermediate. This 

involves the sequential reactions of phospholipids by phospholipase A1 (PLA1), producing 

lyso-Pl intermediate, and lyso-PLC specific enzyme, producing 2-AG (Muccioli, 2010). 

Biosynthetic pathways for 2-AG are also considered to vary depending on a cell/tissue type 

and conditions of stimuli (Kano et al., 2009).   

 

1.3.2. Catalysing enzymes 

 

Degradation of endocannabinoids are categorised into two different pathways, hydrolysis and 

oxidation. The enzymes involved in the hydrolysis pathway include fatty acid amide 

hydrolase (FAAH) for NAEs and monoacylglycerol lipase (MAGL) for 2-AcGs (Kano et al., 

2009). The oxidation pathway involves the well-known oxidative enzymes cyclooxygenase 

 
 
Figure 1.3: The biosynthesis and degradation pathways of NAEs and 2-AcG using AEA 

and 2-AG as examples (Iannotti et al., 2016).  
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(COX) and lipoxygenase (LOX), which regulate oxidation of many arachidonic moieties of 

endocannabinoids (Kano et al., 2009). 

 

Hydrolysis: FAAH is the primary enzyme responsible for NAEs catalysis, resulting in the 

free fatty acid and ethanolamide (Figure 1.3). Decreased levels of FAAH via enzyme 

inhibition or FAAH knock out mice result in the accumulation of NAEs (Cravatt et al., 2001; 

Kleberg et al., 2014). FAAH is found in both the CNS and the periphery (Cravatt et al., 1996) 

and is an integral membrane enzyme, with a molecular mass of ~63 kDa in human, rat, and 

mouse cells (Giang and Cravatt, 1997; Kano et al., 2009). This serine hydrolase has an 

optimum alkaline pH and is able to recognise a variety of fatty acid amides, however its 

preferred substrate is AEA, followed by LEA and OEA. It has also been reported that FAAH 

can catalyse the hydrolysis of the ester bond of 2-AG in vitro (Di Marzo et al., 1998; 

Goparaju et al., 1998; Kano et al., 2009). 

  

A second membrane-associated FAAH was identified in humans and primates, but not in 

rodent tissues (Wei et al., 2006). This was named ‘FAAH-2’. Although both FAAHs share a 

common Ser-Ser-Lys catalytic triad, they only share sequence homology of ~20% and 

FAAH-2 only contains 524 amino acids, weighs 57.4 kDa, and is localised in cytosolic lipid 

droplets rather than the endoplasmic reticulum (Wei et al., 2006; Kaczocha et al., 2010). 

Although FAAH-2 is highly expressed throughout the periphery it is less active at 

hydrolysing NAEs, compared to FAAH (Kaczocha et al., 2010). Thus, it was suggested that 

FAAH-2 might only act as a ‘rescue’ enzyme in NAE hydrolysis in a decreased/inhibited 

FAAH condition (Kaczocha et al., 2010).  

 

The third NAE-hydrolysing enzyme is the N-acyl ethanolamine-hydrolysing acid amidase 

(NAAA). In contrast to FAAH, NAAA is a member of cysteine hydrolase family, which 

preferentially hydrolyses PEA, with an optima at acidic pH (4.5-5) and being localised in the 

lysozymes (Iannotti et al., 2016). High levels of NAAA expression are seen in the immune 

cells, specifically macrophage, where its level can increase during inflammation in response 

to increased PEA levels (as anti-inflammation) (Iannotti et al., 2016). 

 

MAGL is recognised as the main enzyme in 2-AcG degradation, hydrolysing acylglycerols to 

free fatty acids and glycerol (Iannotti et al., 2016). Human, rat, and mouse MAGL all contain 

303 amino acids and weigh 33 kDa (Karlsson et al., 1997, 2001; Dinh et al., 2002a). A study 

of 2-AG hydrolysis in mouse brain homogenate clearly shows that MAGL is responsible for 
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~85% of 2-AG catalysis whereas the other 15% is catalysed by poorly characterised 

hydrolases, ABH6 and ABH12 (Blankman et al., 2007).  

 

Oxidation: In a less common degradation route, both NAEs and 2-AcGs can be oxygenated 

by both COX and LOX. In mammalian systems, there are 3 forms of COX: COX-1, COX-2, 

and COX-3 (Kano et al., 2009). Incubation of AEA with these enzymes showed that purified 

COX-2, catalysed both 2-AG and AEA, as efficacious and with lower affinity compared to 

AA (Wilson et al., 2001). For LOX, this lipoxygenase is expressed in both mammals and 

plants. Several types of LOXs display active oxidation on the arachidonate positions of 

endocannabinoids, both AEA and 2-AG, producing various types of hydroxyeicosatetraenoic 

acid (HETE) (Rouzer and Marnett, 2011).  

 

1.4. The Main Cannabinoid receptors – CB and Non-CB  
 

1.4.1. Cannabinoid receptors: CB1 and CB2 

 

The two cannabinoid receptors in mammalian systems, CB1 and CB2, are both primary 

mediators of most endocannabinoids as well as other exogenous cannabinoid ligands (e.g. 

THC and CBD). CB1 is found throughout the central nervous system (CNS), with high 

expression in the hippocampus, olfactory bulb, basal ganglia, and cerebellum, where it is 

involved in retrograde signaling of endocannabinoids (Castillo et al., 2012). Research has 

revealed that progressive loss of CB1 is an early sign for Huntington’s disease (HD) and the 

worsening of the disease in an already HD patient (Blázquez et al., 2010). Although CB1 is 

most abundant in the brain it can also be found in synaptic nerves, cardiac muscle, adrenal 

gland, ovary, testes, immune cells, as well as the GI tract where CB1 participates in the 

regulation of food intake and energy balance (Zou and Kumar, 2018).  

 

CB2 is often referred to as ‘the peripheral CB receptor’ because of its relatively low 

expression in the CNS. CB2 is predominantly found in immune cells particularly 

macrophages, and in other peripheral tissues and organs including bone, adipose tissue, liver, 

GI tract, reproductive and cardiovascular system (Zou and Kumar, 2018). CB2 is also 

expressed by some neurons both in the brain and peripheral sites (Onaivi et al., 2006). 

Despite the low expression of CB2, increased expression in the CNS was observed following 

tissue injury or inflammation, but the mode of action remains unclear (Maresz et al., 2005). 
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Both CB1 and CB2 are members of the superfamily of G protein-coupled receptor proteins 

(GCPR), and are coupled to G protein Gi and Go (Lu and Mackie, 2016). Their activation 

results in, (i) the inhibition of adenylyl cyclase (AC) and voltage gated calcium channels, (ii) 

down regulation of cyclic AMP (cAMP), (iii) activation of the mitogen-activated protein 

kinase (MAPK), (iv) activation of Phosphoinositide 3-kinase (PI3K) pathway and (v) various 

other signaling pathways depending on the specific cell type (Lu and Mackie, 2016; Zou and 

Kumar, 2018). These receptors exert a broad neuromodulatory function, both in the 

peripheral and CNS, as well as in non-neuronal cells, in a cell type and ligand specific 

manner with different ligands having different selectivities and affinities for the receptors and 

thus exerting distinct signaling cascades (Lu and Mackie, 2016; Zou and Kumar, 2018). 

Studies have shown that cannabinoid receptors can be activated by endo- and exogenous 

ligands, including synthetic ligands such as WIN 55, 212-2 (Pertwee et al., 2010).  

 

1.4.2. Non-CB receptors 

1.4.2.1. TRPV1 

 

The transient receptor potential vanilloid type 1 (TRPV1) belongs to the transient receptor 

potential (TRP) superfamily and its natural ligand is capsaicin, the natural compound found 

in chili pepper (Caterina et al., 1997). TRPV1 is involved in temperature sensing, pain and 

nociception (Caterina et al., 2000). This receptor is primarily expressed in sensory neurons 

where it can be activated by stimuli such as temperature change (>43°C), acidity (pH<6.9), or 

various other toxins (Pertwee et al., 2010).  

In sensory neurons, TRPV1 co-localizes with CB1 and CB2, making intracellular cross-talk 

between several types of receptor possible (Zou and Kumar, 2018). Although AEA is an 

agonist of CB1 and CB2, under certain condition (such as during synaptic transmission and 

pain regulation, when CB1 is expressed at low levels), AEA can act as a full agonist for 

TRPV1 (Zou and Kumar, 2018). In addition, several other endocannabinoids such as noladin 

ether, virodhamine, N-arachidonoyl dopamine (NADA), but not 2-AG, can all act as full 

agonists of TRPV1 (Starowiczet al., 2007). Evidence also exists for endocannabinoid-like 

compounds such as OEA and CBD exerting full agonist activity upon interaction with 

TRPV1, where CBD binds to TPRV1 almost with the same Ki as with capsaicin (Bisogno et 

al., 2001). On the other hand, OEA activates TPRV1 and initiates vagal neurosensory nerves 

excitation in the nervous control of food intake, and also inhibits intracellular Ca2+ uptake in 

cells expressing TRPV1 (Thabuis et al., 2008). The interaction of TRPV1 with wider 
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endocannabinoid and endocannabinoid-like compounds suggests its strong association with 

the ECS. 

1.4.2.2. GPR55 and deorphanized GPRs 

 

Both CB1 and CB2 belong to a family of Class A GPCRs and cannabinoid receptor agonists 

can therefore also act at other GPCRs, mainly deorphanized GPR55, GPR119, GPR3, GPR6, 

and GPR12 (Pertwee et al., 2010). Research is currently proposing that deorphanized GPCR 

is a third true cannabinoid receptor, with the most-likely candidate being GPR55 (Morales 

and Reggio, 2017) because it is targeted by wide variety of cannabinoids including 

endogenous, phytogenic, as well as synthetic cannabinoids (Pertwee et al., 2010). GPR55 is 

widely expressed in the brain and the peripheral site, with particularly high expression in the 

striatum; co-localising with CB1 and CB2 (Sawzdargo at al., 1999).  

 

Although AEA targets both CB1 and CB2, with slightly higher affinity for CB1 compared to 

CB2, it has an even higher affinity for GPR55 compared to CB1 (Ryberg et al., 2007). This 

study also demonstrated that 2-AG and THC are agonists for GPR55 while CBD is an 

antagonist (Ryberg et al., 2007). Despite being the target for many cannabinoid ligands, 

GPR55 displays low sequence identity to both CB1 (13.5%) and CB2 (14.4%) (Pertwee et al., 

2010).  

 

GPR3, GPR6, and GPR12 are three orphan Class A GPCRs that are mainly expressed in the 

CNS and involved in mediation of β-arrestin2 recruitment (Pertwee et al., 2010). They 

exhibit close phylogenetic relationship with cannabinoid receptors, melanocortin receptors 

(MCRs), lysophospholipid receptors, adenosine receptors (AR), and the GPR3/6/12 subset, 

forming the so-called MECA cluster (Uhlenbrock et al., 2002; Morales et al., 2018). Very 

little is known about their ligands. AEA and 2-AG display no significant activity at these 

orphan receptors, whereas CBD demonstrates activity at GPR3, GPR6 and GPR12 (Brown et 

al., 2017; Laun and Song, 2017). CBD acts as an inverse agonist to inhibit β-arrestin2 

recruitment on GPR3, GPR6, and GPR12. This suggests that CBD may act as potential 

neuroprotective agent for Alzheimer’s and Parkinson’s disease by acting on these GPCRs 

(Brown et al., 2017; Laun and Song, 2017).  

 

GPR119 is primarily expressed in the pancreatic and GI tract, and is involved in the 

regulation of insulin secretion (Soga et al., 2005). Although GPR119 is phylogenetically 
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related to cannabinoid receptors, it is only activated by fatty acid amides, including AEA, 

OEA and PEA, with OEA being the most efficacious (Overton et al., 2006). Despite GPR119 

being closely related to cannabinoid receptors, only N-oleoyl dopamine and OEA display 

high affinity for GPR119 (Overton et al., 2006), and both of these ligands do not interact with 

CB1 nor CB2, thus GPR119 cannot yet be classified as part of the cannabinoid receptor 

family.  

1.4.2.3. PPARs 

 

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription 

factors belonging to the nuclear hormone receptor superfamily, all sharing close structural 

homology (Tsai and O'Malley, 1994). In mammals, PPARs exist in three isoforms (, /, 

and ). PPARs were first identified in 1990 and are associated with the regulation of diverse 

physiological and pathophysiological processes, notably lipid and glucose metabolism, 

inflammation, cell differentiation, and energy homeostasis (Issemann and Green, 1990; 

Cooper, 2000; Grygiel-Górniak, 2014).  

In the nucleus, inactivated PPAR is associated to a co-repressor. The classic pathway through 

which PPAR activation occurs is through the formation of heterodimer complex with another 

nuclear hormone receptor, the retinoid X-receptor (RXR) (Grygiel-Górniak, 2014). The 

ligand then binds to this heterodimer, causing a conformational change in the PPAR structure 

and dissociation of the co-repressor and the recruitment of co-activator, simultaneously 

(Grygiel-Górniak, 2014). Activation and suppression of PPAR is modulated depending on the 

specific ligand binding to PPAR-RXR heterodimer as the exchange of co-repressor and co-

activator occurs (Figure 1.4) (Grygiel-Górniak, 2014). Activated PPAR complex binds to 

peroxisome proliferator-response elements (PPREs) located on the regulatory regions of the 

target genes and carries out mRNA transcription (Chinetti-Gbaguidi and Staels, 2009; 

Grygiel-Górniak, 2014).  

 

PPARs have large ligand binding domains which can be activated by various types of 

lipophilic ligands including synthetic compounds and plant extracts (O'Sullivan, 2016). 

Cannabinoids can activate PPAR through a few mechanisms: 1) direct binding of 

cannabinoids to PPAR, 2) indirect binding through the conversion of cannabinoid into PPAR-

active metabolites, or 3) activation of cannabinoid cell surface membrane receptor which 

results in PPAR activation through, yet, an unclear cell signaling cascade (O'Sullivan, 2007). 
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Another possible activation mechanism suggested the active translocation of cannabinoids to 

the nucleus by intracellular fatty acid binding proteins (FABPs) (O'Sullivan, 2007).  

 

 

 

 

 

 

 

Ligands binding to FABPs have been shown to promote nuclear localization and PPAR 

interaction (Kaczocha et al., 2012; Hughes et al., 2015). Specifically, binding to FABP1 and 

FABP2 promotes nuclear localization and the activation of PPARα (Hughes et al., 2015). 

Conversely, FABP5 acts as an intracellular carrier mediating the nuclear translocation of 

OEA and reduces PPARα activation (Kaczocha et al., 2012). In addition, localization of AEA 

from plasma membrane to FAAH (for hydrolysis) was shown to be transported by FABP5 

and FABP7 (Kaczocha et al., 2009). This catabolism was found to be inhibited by THC and 

CBD as the phytocannabinoids competed for FABP (Elmes et al., 2015). 

The endogenous PPAR activators are a wide class of bioactive lipids which include 

endocannabinoids, phytocannabinoid, and synthetic cannabinoid ligands (O'Sullivan, 2016). 

AEA can activate PPARα and this induces neuroprotective properties (Sun et al., 2007). 

Similarly, 2-AG can activate PPARα, independent of CB1 and CB2 (Kozak et al., 2002). 

There is also strong evidence that OEA and PEA act as PPAR agonists, specifically 

activating PPARα which affects various physiological and pathophysiological functions, 

notably feeding and anti-inflammatory pain (Suardíaz et al., 2007; O'Sullivan, 2016). Apart 

from PPARα activation, although with less evidence, studies have also shown that OEA, 

PEA, AEA and 2-AG are able to activate PPAR (O'Sullivan, 2016).   

The phytocannabinoids and their derivatives, including THC and CBD, do not bind to 

PPARα but rather activate PPAR (O'Sullivan, 2016). Synthetic cannabinoids, 

 
 

Figure 1.4: Schematic representation of the PPAR structure and its transcription mechanism 

(Grygiel-Górniak, 2014). PPAR activation occurs through initial binding of the ligand and 

heterodimerization with RXR, resulting in a conformational change, where the co-repressor is 

exchanged with the recruitment of a co-activator. This active PPAR transcription complex then 

binds to the DNA response element, the PPRE, located in the promoter region, and thus regulates 

transcription of the target gene. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3943808/figure/F2/
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Thiazolidinedione (glitazones) compounds, a family of drugs used for Type 2 diabetes 

treatment, are also common PPAR agonists, particularly Rosiglitazone, which has high 

affinity and specificity for this PPAR (Lehmann et al., 1995). 

Only the break down products of endocannabinoids, especially of the NAEs, have been found 

to act as natural agonists of PPARβ/δ. For example, arachidonic acid (AA) from AEA (Yu et 

al., 2014), and oleamide derived from OEA (Dionisi et al., 2012), bind and increase 

transcriptional activity of PPARβ/δ (O'Sullivan, 2016). However, a synthetic agonist has 

been chemically produced (GW0742) which selectively binds to PPARβ/δ (Sznaidman et al. 

2003) and which was used in the current study. 

PPAR activation can therefore be achieved with phytocannabinoids, endocannabinoids and 

their derivatives, and synthetic endocannabinoid-like compounds.  

1.5. Evidence for an endocannabinoid system in singled cell eukaryotes 

 

The first suggestions for the existence of an ECS in single celled organisms were made in the 

1970’s. Bram (1976) first showed that THC and cannabinol affected the cell morphology of 

the slime mould Dictyostelium discoideum, with cells becoming round and immobile. Cells 

recovered within a few hours (time not stated) after THC treatment but not with cannabinol. 

In the same year, McClean and Zimmerman (1976) showed that THC caused the cells of the 

ciliate Tetrahymena pyriformis to become round and move in a sluggish manner; once again 

recovering after some hours (time not stated). THC also caused a delay in cell division in this 

ciliate, which was dose dependent, and with cells being most sensitive in their G2 phase of 

cell division (Zimmerman et al., 1981). 

  

Pringle et al. (1979) found that THC reduced the population growth of the amoeba-flagellate 

Naegleria fowleri and prevented transformation of trophozoites into cysts or flagellates, but 

there was no effect on cell shape and movement. A reduction in population growth was also 

reported for three other amoebae, Acanthamoeba castellanii, Vermamoeba (Hartmannella) 

vermiformis, and Willaertia magna when treated with AEA and 2-O-acylglycerol (2-O-AG) 

(Dey et al., 2010). This study also showed that it was the cannabinoid itself, and not a 

breakdown product, that elicited this response with comparable population survival being 

achieved with 2-O-AG and 2-O-AG ether, a nonhydrolyzable analog of 2-O-AG. Whilst all 

four amoebae are in very different taxonomic groups (N. fowleri and W. magna are members 
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of the sub-phylum Percolozoa, while V. vermiformis and A. castellanii are members of the 

sub-phylum Lobosa), all were affected by cannabinoids in a similar manner.  

  

This ability to perceive and response to exogenous endocannabinoids led to the search for N-

acylethanolamines and their metabolic enzymes in these cells. NAEs were first identified in 

the yeast Saccharomyces cerevisiae along with its phospholipid precursors NAPEs and 

biosynthesizing NAPE-PLD-like enzyme (Merkel et al., 2005). Then, a suite of 

endocannabinoids (particularly NAEs) were reported in Tetrahymena thermophila 

(Anagnostopoulos et al. 2010) and D. discoideum (Hayes et al., 2013). The hydrolyzing 

enzymes FAAH and MAGL were reported in more organisms, mainly protists, these included 

D. discoideum, T. pyriformis, T. thermophila, Plasmodium falciparum, and the yeast S. 

cerevisiae (Karava et al., 2001, 2005; McPartland et al., 2006; Evagorou et al., 2010). 

 

Since most data available for the evidence of a presence of ECS in unicellular eukaryotes is 

in the ciliate Tetrahymena, it is worth investigating the system in this ciliate further.  

 

1.6. The endocannabinoid system in the ciliate Tetrahymena  
 

1.6.1. The endocannabinoid ligand 

 

The presence of a suite of endocannabinoids has been found in the cells of T. thermophila 

(Anagnostopoulos et al., 2010). This study reported the presence of: 1) N-acylethanolamines 

(NAEs); 2) 2-acylglycerols (2-AcGs); and 3) Free fatty acids (FFAs).  

The 6 main NAEs, in order of abundance, were N--linolenoylethanolamine (GLEA), N-

eicosenoylethanolamine (EEA), N-linoleoylethanolamine (LEA), N-palmitoylethanolamine 

(PEA), N-oleoylethanolamine (OEA) and N-stearoylethanolamine (SEA). A few other 

NAEs, including AEA, were also identified, but these were present at a very low 

concentration (Anagnostopoulos et al., 2010). Although GLEA is present at the highest 

concentration it is not common in nature (Anagnostopoulos et al., 2010). SEA is present at a 

very low concentrations compared to other NAEs in both the human and Tetrahymena 

systems (Anagnostopoulos et al., 2010; Kleberg at al., 2014). EEA can only be found in a 

traceable amount in the human milk and its specific function has not been characterised 

(Gaitán et al., 2018). LEA on the other hand, is more common and can be found primarily in 

the GI tract, alongside with PEA and OEA (Artmann et al., 2008) where all three NAEs 

exhibit similar anorexic and pharmacological functions, activating more or less at the same 
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receptors, mainly PPARs (⍺ and γ) and TRPV1, and serving a crucial role in the regulation of 

food intake and anti-inflammatory effects (Kleberg et al., 2014). 

2-AcGs corresponding to their respective NAE were 2-AcG: 2-γ-linolenoylglycerol (2-GLG), 

2-eicosenoylglycerol (2-EG), 2-linoleoylglycerol (2-LG), 2-palmitoylglycerol (2-PG), and 2-

oleoylglycerol (2-OG), but not 2-stearoylglycerol (2-SG). Again, 2-AG was also detected, but 

at much lower concentration compared to other 2-AcGs (Anagnostopoulos et al., 2010). 

The free fatty acids arachidonic (AA), linoleic (LA), and γ-linolenic (GLA), were detected at 

sufficient concentrations, with GLA being dominant followed by LA and AA, whereas other 

FFAs (e.g. eicosapentaenoicacid [EPA] and docosahexaenoic [DHA]) were below the 

detection limit (Anagnostopoulos et al., 2010). FFAs predominated over 2-AGs and NAEs, 

by one to three orders of magnitude.  

Anagnostopoulos et al. (2010) also tested for the substrate of FAAH enzymes using AEA, 

LEA, ALEA (N-α-linolenoylethanolamine, analog of LEA), and GHLEA (N-γ-

homolinolenoylethanolamine, analog of GLEA). All NAEs were hydrolyzed by FAAH with 

the highest enzyme activity being evident with AEA, followed by LEA, ALEA and GHLEA. 

This suggests that AEA, although present at low abundance, is the best endogenous substrate 

for FAAH in T. thermophila (Anagnostopoulos et al., 2010). 

Anagnostopoulos et al. (2010) also showed that there was a fluctuation of NAE, 2-AcG, and 

FFA concentrations at different cultivation temperatures; at higher temperature (33°C) NAEs 

significantly increased whereas FFAs and 2-AcGs decreased (Anagnostopoulos et al., 2010). 

Thus, it was suggested that NAEs may play a role in membrane fluidity and cellular 

protection in a changing environment as well as in food intake and development. The 

function of NAEs was not investigated further, however the authors stated that preliminary 

experiments showed that most NAEs affected the growth of T. thermophila (but no mention 

of positive/negative effects) (Anagnostopoulos et al., 2010). 

1.6.2. Enzymes 

The two main degrading enzymes, but not the synthesizing enzymes, of the endocannabinoid 

system have been reported to exist in Tetrahymena., FAAH (the NAE hydrolase) was 

reported in both T. pyriformis (Karava et al., 2001, 2005) and T. thermophila (McPartland et 
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al., 2006), whereas, MAGL (the 2-AcG hydrolase) was reported in T. thermophila 

(McPartland et al., 2006; Evagorou et al., 2010).  

 

1.6.2.1. FAAH 

Karava et al. (2001) were the first to identify membrane-bound FAAH-like activity in T. 

pyriformis. The authors demonstrated that AEA was taken up by intact T. pyriformis cell and 

was rapidly metabolized to mixed free fatty acids comprising of phospholipids (PL) (70%), 

neutral lipids (NLs) (20%), and free AA (6%), in descending order of cytosolic concentration 

(Karava et al., 2001). The presence of AA at almost undetectable level in T. pyriformis 

correlated with the study of Anagnostopoulos et al. (2010). Amide hydrolysis activity was 

also detected in the culture medium where almost 80% of AEA was catalyzed to free AA. 

The amidohydrolase was found to be specific for AEA within the cell, but once secreted it 

could also hydrolyse NAEs other than AEA, e.g., OEA and PEA (Karava et al., 2001).   

The optimum pH for the amide hydrolase in T. pyriformis was pH 9-10, which is similar to 

FAAH activity reported in variety of tissues and cell types (Karava et al., 2001; Wei et al., 

2006). It is a serine hydrolase, which does not depend on Ca2+, Mg2+, or sulfhydryl group for 

its enzymatic activity on AEA (Karava et al., 2001& 2005); also similar to the FAAH in 

various mammalian tissues and cell lines (Desarnaud et al., 1995; Maccarrone et al., 1998; 

Karava et al., 2001). Moreover, Karava et al. (2005) revealed the presence of 2 isoforms of 

FAAH in T. pyriformis: a 66 kDa (non-microsomal fraction) and a 45 kDa (in the cytosol). 

Interestingly, the 66 kDa isoform is close in size to that reported for human and mammalian 

FAAH (63 or 67 kDa) (Giang and Cravatt, 1997; Maccarrone et al., 1998). The 45 kDa on the 

other hand, is close to the 46 kDa of amide hydrolase in invertebrates (Matias et al., 2001).  

1.6.2.2. MAGL  

 

Using Blast and phylogenetic tree comparisons of the human and ciliate genomes, MAGL, 

which catalyze the breakdown of 2-AG was believed to be present in T. thermophila 

(McPartland et al., 2006). Its presence was confirmed experimentally four years later when it 

was found to be involved in the catalysis of 2-AG and other 2-AcGs in T. thermophila 

(Evagorou et al., 2010). In mammalian systems, the catalysis of 2-AcG involves the action of 

both MAGL and FAAH (see section 1.3.2) and this was also recorded for T. thermophila 

(Evagorou et al., 2010). It was also shown that 2-AG hydrolysis was pH and temperature 

dependent, exhibiting optimum pH at 8-9 and 37-40 °C (Evagorou et al., 2010).  
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Two isoforms of MAGL were found in T. thermophila; cytosolic (40 kDa) and membrane-

bound (45 kDa) with the activity of the latter being twofold higher than the former (Evagorou 

et al., 2010). Two isoforms of MAGL have also been reported for several cell types (Bisogno 

et al., 1997; Dinh et al. 2002a).  

 
1.6.3. The potential endocannabinoid receptor in Tetrahymena 

 

A study of functional orthologs of endocannabinoid proteins, by phylogenetic tree analysis 

and functional mapping, showed that the main endocannabinoids receptors CB1, CB2, 

TRPV1, and GPR55 were absent from T. thermophila (McPartland et al. 2006). However, 

there are a few suggested (lesser-known) targets that are known to interact with NAEs, which 

might be the targets in T. thermophila (Table 1.1). Those that the current study deemed 

promising to investigate were PPARs, GPR6, and the Dopamine receptor.   

 

 

 

Receptor Binds NAEs Binds other 

cannabinoids 

Presence in Tetrahymena 

CB1 AEAa 2-AGa, CBDa, 

THCa, 

WIN55212a 

Nob 

CB2 

TRPV1 AEAa,c, OEAa,c, 

PEA a,c, LEA a,c, 

SEA a,c 

CBDa Nob 

GPR55 AEA a 2-AG a, THC a, 

CBD a 

Nob 

GPR119 AEAa,c, OEAa,c, 

PEA a,c, LEA a,c, 

No Possibly - GPR119 mainly interact 

with acid amides 

GPR3/6/12 AEA a 2-AG a, CBD a Possibly - GPR6 was reported as 

chemo sensory receptor in T. 

thermophila d 

Opoid No a CBD a, THC a Yes - µ subunit e 

Glycine AEA a 2-AG a, THC a, 

CBD a 

Possibly - essential in chemotaxis  

Serotonin (5-HT) AEA a CBD a Yes f 

Dopamine AEA a CBD a, THC a Yes - a present of at least D1 g 

PPARs AEAa,c, OEAa,c, 

PEA a,c, LEA a,c, 

SEA a,c 

2-AG a,c, CBD a,c, 

THC a,c, 

WIN55212 a 

Possibly – A presence of 

peroxisomes h 

Table 1.1: A list of receptors known to interact with cannabinoids and their presence/absence in 

Tetrahymena. a Pertwee et al., 2010; b McPartland et al., 2006; c Kleberg et al., 2014; d Lampert et al., 

2011; e Chisa et al., 1993; f Ciliate.org, 2019; g Ud-Daula et al., 2012; h De Duve and Baudhuin, 1966 
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1.6.3.1. The case of PPARs 

 

In mammalian systems, endocannabinoids and most NAEs are known to interact with 

PPARs, acting as both agonists and antagonists (O'Sullivan, 2016). From the list of NAEs, 

within T. thermophila (Section 1.6.1), with the exception of GLEA and EEA, all can target at 

least one PPAR isoform (Kleberg at al., 2014; O'Sullivan, 2016). T. pyriformis, although not 

yet reported to have PPAR receptors, do possess peroxisomes (De Duve and Baudhuin, 1966; 

Ciliate.org, 2019). The peroxisomes contain at least 50 different enzymes for various 

biochemical pathways; however, they are mainly involved in the oxidation of fatty acids, 

regulating the lipids biosynthesis and the major source of metabolic energy (Cooper. 2000). 

The peroxisomes in T. pyriformis are tightly associated with the mitochondria where they 

play a crucial role in the oxidation of fatty acids during gluconeogenesis, providing major 

source of metabolic energy for the ciliates (Müller et al., 1968; Hogg, 1969; Blum, 1982). 

This is similar to the role of PPAR in mammalian systems, e.g. PPAR⍺ activation by OEA 

results in lipid catabolism and homeostasis through the β-oxidation pathway. Thus, in the 

absence of the four main cannabinoid receptors, endogenous NAEs might target PPAR-like 

receptors in Tetrahymena.  

 

1.6.3.2. The case for GPCRs 

 

Another interesting receptor worth investigating is a G protein-coupled receptor (GPCR) 

because, 1) of their high percentage identical sequence homology to CB1 and CB2, sharing 

the same superfamily of 7-transmembrane receptor (7-TMR) (Morales et al., 2018); and 2) 

they are a common target of many cannabinoids including NAEs (Pertwee et al., 2010).  

 

GPR55, which interacts with many cannabinoids, has not been identified in any species of 

Tetrahymena (McPartland et al., 2006; Ciliate.org., 2019). However, homologues to GPR6 

and GPR37 have recently been identified in T. thermophila (Lampert et al., 2011; Zou and 

Hennessey, 2017). Both act as chemosensory receptors, but GPR6 responds to 

chemoattractants (Lampert et al., 2011) while GPR37 responds to chemorepellents (Zou and 

Hennessey, 2017). In mammals, both GPR6 and GPR37 are expressed in the CNS, notably in 

the brain, co-localizing with cannabinoid receptors (Alavi et al., 2018) and both are important 

regulators of the dopaminergic system, with neuroprotective effects in Parkinson’s disease 

(PD) (Alavi et al., 2018). Of the two, GPR6 is considered a potentially interesting 
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endocannabinoid target in Tetrahymena as it shares a high amino acids sequence identity 

(35%) with CB1 and CB2 (Lee et al., 2001).  

 

Sphingosine-1-phosphate (S1P) is the endogenous agonist of GPR6 in mammals (Uhlenbrock 

et al., 2002). However, further studies failed to observe specific S1P-induced responses in 

cells transfected with GPR6 (Yin et al., 2009). Thus, GPR6 is still considered an orphan 

receptor. Despite this, various endocannabinoids and phytocannabinoids have been tested for 

their capability to alter β-arrestin2 recruitment to GPR6 (Laun and Song, 2017). AEA and 2-

AG demonstrated no significant effect at altering β-arrestin2 recruitment, while amongst the 

five phytocannabinoids tested, CBD significantly reduced β-arrestin2 recruitment in a 

concentration dependent manner. This suggests that CBD is a novel inverse agonist for GPR6 

(Laun and Song, 2017). CBD has also been demonstrated to act on a variety of GCPRs. 

These include antagonising effects at CB1 and CB2 (with low affinity), GPR55, GPR18, 

inverse agonist at GPR3 (Laun and Song, 2017), and an agonist at Serotonin 5H1Ta (Bih et 

al., 2015). Nonetheless, as the presence of GPR6 (and possibly other GCPRs) has been 

confirmed in Tetrahymena, it may be possible that Tetrahymena elicits a response to 

cannabinoids through GCPRs in the absence of the four main receptors.  

 

1.6.3.3. The case for a dopamine receptor 

 

Dopamine is an essential neurotransmitter in the brain and is involved in many neuro-

modulatory roles, including the control of movement, memory and learning, cognitive, 

emotions, addiction and brain reward (Covey et al., 2017).  Dopamine is predominantly 

expressed in the brain; however, it is also found in the peripheral nervous system where it 

functions as a local paracrine messenger (e.g. hormone) and is involved in the control of wide 

physiological and pathological processes (García et al., 2015).  

 

Cannabinoids interact with the dopamine receptor both directly (Pandolfo et al., 2011) and 

also indirectly through the GABA pathway in which cannabinoid binding to the CB1 receptor 

causes an increase in dopamine release from dopaminergic neurons (Garbutt, 1983). Under 

typical conditions, dopaminergic neurons are inhibited by the activation of GABAB receptors 

(Figure 1.5A) (Oleson and Cheer, 2012). Consequently, during phasic dopamine events, such 

as when presented with a drug associated cue, intracellular Ca2+ abruptly rises, which results 

in the activation of endocannabinoid synthesizing enzymes (e.g. DAGL). This leads to the 

synthesis of endocannabinoids (e.g. 2-AG), which are released into the extra-synaptic cleft 
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where they couple to the Gi/o of CB1 receptors on GABA presynaptic terminals and thus, 

GABA release is suppressed (Figure 1.5B) (Oleson and Cheer, 2012). Suppression of GABA 

disinhibits dopamine neurons, and at the same time promotes phasic dopamine events 

(Oleson and Cheer, 2012).  The dopamine released then binds to dopamine receptor to elicit a 

response. Using these pathways, the endocannabinoids are able to tune with synaptic 

inhibition and stimulation of dopamine (Casadio, et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dopamine was previously reported to be the major catecholamine in T. pyriformis (Nomura 

et al., 1998) and the presence of the D1 receptor was confirmed in T. thermophila although 

they did not rule out the presence of a D2 receptor (Ud-Daula et al., 2012). Thus, it is a 

worthy candidate for an endocannabinoid receptor in Tetrahymena. 

 
 

Figure 1.5: Shows the indirect interactions of cannabinoids and dopamine through GABAergic and 

glutamatergic terminals on dopamine neuron (Oleson and Cheer, 2012). A) Under typical conditions, 

as GABA/glutamate is active, dopamine neurons are inhibited. B) Indirect interaction occurs during 

phasic dopamine events. Where phasic dopamine results in the synthesis of endocannabinoids. These 

cannabinoids then activate CB1 on GABAergic terminals, suppressing GABA release and stops the 

inhibition of dopamine. 
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1.7. Overall objectives and specific aims  

 

Many studies have shown that the endocannabinoid system is involved in the regulation of 

many fundamental modulatory systems in both multi- and uni-cellular organisms (see 

sections 1.1–1.6). The ciliate Tetrahymena is a common model organism used in many 

biomedical studies due to its simplicity and availability of genome information (Ruehle et al., 

2016). Moreover, there is evidence for its cells possessing a suite of cannabinoids and their 

metabolising enzymes (see sections 1.6.1 and 1.6.2); but its target receptor(s) is currently 

unknown. Therefore, this study investigated three potential cannabinoid target receptor(s) in 

Tetrahymena pyriformis. 

The overall objective was to quantify and compare the lethal effect of selected PPAR 

agonists, OEA, PEA, AEA, CBD and two synthetic cannabinoids (GW0742 and 

Rosiglitazone), on T. pyriformis and to determine whether the response was elicited through a 

pathway involving PPARs, GCPRs and/or a dopamine receptor.  

The specific aims were to: 

a. Compare the MIC, IC50 and lethal doses of each agonist.  

b. Determine the longevity of the negative effect on ciliate cells. 

c. Using specific antagonists, to determine whether the blocking of certain receptors 

alleviated the negative effect of the agonists. Specifically, the following 

receptors/pathways were blocked: 

i. PPARα, PPARβ/δ and PPARγ receptors 

ii. Dopamine D2 receptor  

iii. GCPR pathway inhibitors:  

i. Pertussis toxin (PTX) – targets catalysis of ADP-ribosylation of Gαi/o 

ii. H89 – a Protein Kinase A inhibitor    
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2. Materials and Methods 
 

2.1 Organisms and Maintenance 

 

2.1.1. Klebsiella aerogenes 

 

The bacterium Klebsiella aerogenes (National Collection of Type Cultures [NCTC] 9528) 

was used as prey for the ciliate Tetrahymena pyriformis (Culture Collection of Algae and 

Protozoa [CCAP] 1630/1W). Streak plates of K. aerogenes were prepared on Lysogeny Broth 

(LB) agar plates (see Appendix 1) and incubated at 25C for three days. Chalkley’s medium 

(see Appendix 1) was poured onto two plates and the cells were scraped off into suspension 

using a sterile spreader. The bacterial suspension was stored at 4C.  

 

2.1.2. Tetrahymena pyriformis 

 

The ciliate was routinely cultured in 500 ml of Chalkley’s medium, supplemented with ca. 1-

2 ml of the K. aerogenes suspension, and incubated at room temperature (23C) for three 

days prior to experiments. On the day of an experiment, the T. pyriformis culture was 

concentrated by centrifuging sixteen 15 ml samples at 2000 rpm for 15 minutes. The 14 ml 

supernatants were carefully removed from each tube. The remaining 1 ml T. pyriformis 

concentrates were vortexed and combined into one tube.   

 

2.2 Cell counts 

 

2.2.1. T. pyriformis 

 

The ciliate suspension was fixed with glutaraldehyde (0.5% v/v final concentration) and 

loaded into haemocytometers. The number of cells in 36 large squares was determined using 

a light microscope (40x magnification). The average number of cells/square was multiplied 

by 1 × 104 to yield cell concentration (cells/ml). Experiments only used cultures that 

contained at least 9 × 104 cells/ml.  

 

2.2.2. K. aerogenes  

 

The bacterial suspension was diluted ten-fold down to the 10-3 dilution, using sterile distilled 

water. Each was stained with 2-3 drops of the DNA stain 4′, 6-diamidino-2-phenylindole 

(DAPI) for 15-20 minutes. The stained sample, of a known volume (and known dilution) was 

captured on a 0.2 m filter (Whatman, Micropore) using a vacuum pump. A slide was then 

prepared by (i) adding one drop of immersion oil to the slide and smearing it over the slide, 
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(ii) placing the filter on top (cells side up), (iii) adding a drop of oil to the center of the filter, 

(iv) applying a coverslip and (v) adding a final drop of oil.   

 

The slide was viewed with an epifluorescence microscope using UV excitation (cells appear 

blue). The number of cells in randomly selected Whipple grids was determined until at least 

400 cells had been counted. The average number of cells per Whipple grid was multiply by 

23,068 (as the Whipple grid is 1/23068th the area of the filter), giving the average number of 

cells captured per filter. Knowing the volume filtered, and dilution used, the number of 

cells/ml of the undiluted bacterial suspension was deduced.  

 

2.3 Experimental compounds  

 

2.3.1. Agonists 

 

Six agonists were employed in this study: N-oleoylethanolamine (OEA), N-

palmitoylethanolamine (PEA), N-arachidonoylethanolamine (anandamide or AEA), 

cannabidiol (CBD), GW0742, and Rosiglitazone (all obtained from TOCRIS, Biotechne, 

UK). All were maintained as 10 mM stocks, except AEA which was at 14.4 mM, in ethanol, 

at -20C. On the day of an experiment stock solutions were diluted to 10-1 and 10-2 (e.g. 5 µL 

of 10 mM stock into 45 L Chalkley’s medium for a 10-1 dilution). For experiments, a known 

volume of agonist was added to 200 µL of T. pyriformis to obtain the desired starting 

concentration (e.g. 3 µL of a 10-1 dilution of e.g. CBD was added to 200 µL of T. pyriformis 

suspension for a starting concentration of 15 µM). 

 

2.3.2. Antagonists/blockers 

 

Three types of antagonists/blockers were used in this study (Table 2.1). The first type 

targeted PPAR receptors, i.e., GW6471 (PPAR  blocker), GSK3787 (PPAR / blocker) 

and T0070907 (PPAR  blocker) (TOCRIS, Biotechne, UK). The second type, Haloperidol 

hydrochloride, (TOCRIS, Biotechne, UK) targeted the dopamine hormone receptor. The last 

type were G protein-coupled receptor pathway inhibitors, i.e., Pertussis toxin (PTX) (target 

catalysis of ADP-ribosylation of Gαi/o) and H89 (Protein kinase A inhibitor) (TOCRIS, 

Biotechne, UK). All antagonists/blockers were maintained at 10 mM, in ethanol, at -20 C, 

except for PTX stock which was at 100 µg/ml in distilled water and stored at 4 °C.  
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Table 2.1: A summary of the antagonists/blockers used in this study, together with their 

molecular target 

 

Blocker Receptor Target  

GW 6471 PPAR⍺ 

GSK 3787 PPARβ/δ 

T0070907 PPARγ 

Haloperidol Dopamine 

Pertussis toxin G⍺i/o 

H89 Protein kinase A 

 

 

2.4 Experiments 

 

2.4.1. General response of T. pyriformis to an agonist, using CBD as an example 

 

Triplicate samples of T. pyriformis (200 µL) were treated with CBD at 0 µM, 4 µM (IC50 

value) and 8 µM (2 × IC50 value) in the presence of 5 × 107 cells/ml of K. aerogenes. Tubes 

were incubated at room temperature (23 oC) for 72 hours. Samples were removed throughout 

the period, fixed with glutaraldehyde (0.5% v/v final conc.) and cells counted (see 2.2.1).  

Experiments were performed twice. The percentage cell survival in treated samples, 

compared to control, was determined for each time point, i.e. (number of treated cells at 

Tx/number of untreated cells at Tx) × 100, and plotted against time (h). 

 

2.4.2. Determining the susceptibility of T. pyriformis to PPAR agonists – MIC and IC50 

 

Triplicate samples of T. pyriformis (200 µL) were treated with a range of concentrations of 

OEA, PEA, GW0742 and Rosiglitazone. Numerous experiments were performed and each 

included triplicate untreated samples which acted as Controls. Tubes were incubated at room 

temperature (23 oC) for 90 minutes after which each tube was fixed and cells counted (see 

section 2.2.1). The percentage survival in treated samples, compared to control, was 

determined and from this, the IC50 and Minimum Inhibitory Concentration (MIC) values 

were determined as follows: 
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2.4.2.1. Determining the IC50 

 

Percentage inhibition (100% minus calculated % survival) was plotted against Log10 

agonist concentration in QtiPlot. The Logistic function tool was used to provide 

information on the significance of the data (p-value), the IC50 (concentration at which 

inhibition is half maximum) and the slope of the curve.  

 

2.4.2.2. Determining the MIC   

 

All data on the slope of the IC50 curve were plotted in EXCEL as % survival vs agonist 

concentration. Linear regression analysis was applied and high/low points removed until 

the highest R2 was achieved. The MIC (x) was then determined from the equation of the 

line (y = mx + c) when y = 100% survival.  

 

2.4.3. Determining the lethal dose of PPAR agonists to T. pyriformis 

 

Triplicate samples of T. pyriformis (200 µL) were treated with a range of concentrations of 

OEA, PEA, GW0742 and Rosiglitazone; above those concentrations which gave an apparent 

0% survival after 90 minutes (in 2.4.2). Numerous experiments were performed and each 

included triplicate untreated samples which acted as Controls. Tubes were incubated at room 

temperature (23 oC) for 72 hours after which the contents of each tube were examined with a 

light microscope (×40 magnification) for evidence of surviving cells. The lowest agonist 

concentration which resulted in 0% cell survival after 72 hours was considered to be the 

lethal dose.  

 

2.4.4.  Investigating potential molecular targets for agonists in T. pyriformis 

 

Experiments were set up in the same way as described in 2.4.2, i.e. 90 minutes survival tests. 

The ciliate (in triplicate) was treated with the agonist (at its IC50 value) with and without pre-

treatment with a blocker. Controls containing blocker alone were also included. The 

percentage survival, compared to the control, was determined at 90 minutes.  

 

All experiments employed three replicates and were normally repeated three times (n = 9). A 

one-way ANOVA compared all treatments and then a post-hoc Tukey test examined 

differences between % survival of the (i) agonist alone vs agonist and antagonist and, (ii) the 

antagonist alone vs agonist and antagonist.  
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2.4.4.1.  PPAR receptor blocking  

 

The action of three known PPAR agonists (OEA [PPARα], GW0742 [PPARβ/δ] and 

Rosiglitazone [PPARγ]) together with AEA and CBD (all at their IC50 value) were 

examined in the presence and absence of three PPAR receptor antagonists (at 2 × IC50 

value). Each blocker was added to the ciliate culture for 10 minutes prior to adding the 

agonists. Controls containing blocker alone were also included. All experiments were 

performed three times.  

 

2.4.4.2. Dopamine receptor blocking  

 

The action of OEA (IC50, 45 µM) was examined in the presence/absence of Haloperidol 

(added 10 minutes prior to adding the OEA). A concentration of 90 µM (2 × IC50), and 

even 60 µM, Haloperidol proved too toxic to the ciliates so this blocker was added at a 

concentration of 30 µM (see section 3.4).  Controls containing blocker alone were also 

included. This experiment was performed twice.  

 

2.4.4.3.  H89 and PTX 

 

The action of OEA, AEA and CBD (at their IC50 values) was examined in the 

presence/absence of (i) H89 (at 10 µM with a 30 minutes pre-incubation time) and (ii) 

PTX (at 100 ng/ml with a 5 hours pre-incubation time). Controls containing blocker alone 

were also included. This was a preliminary experiment and only performed once. 

 

2.4.4.4.  Dose-response  

 

Any agonist found to be blocked by an antagonist was tested further for evidence of a 

dose response, i.e. agonist at IC50 and blocker at 10 µM, 1 µM, 0.1 µM, 0.01 µM and 

0.001 µM. Controls of blocker alone and agonist alone were included. Experiments were 

repeated three times (with PPAR blockers) or once (with Haloperidol). 
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3. Results 
 

3.1. General response of T. pyriformis to PPAR agonist, using CBD as example 
 

The survival of T. pyriformis in the presence of 0 µM (Control), 4 µM (IC50 value) and 8 µM 

(2 × IC50 value) CBD was monitored over a 72 hours period (at 23 oC) (Figure 3.1). The 

Control population size grew somewhat, due to the presence of K. aerogenes prey, hence 

%survival >100%. An immediate decline in cell survival was evident in CBD-treated cultures 

up until 90 minutes, after which no further decline was apparent (Figure 3.1a).  

 

 

 
 

Figure 3.1: Percentage survival of T. pyriformis with 0, 4 and 8 µM of CBD over 72 hours 

showing a) the first 4 hours and b) the full 72 hours. Error bars = SEM, n=6  
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Cell survival was dose dependent being ca. 60% (4 µM CBD) and 0% (8 µM CBD) at 90 

minutes (Figure 3.1a). Therefore, a standard time of 90 minutes was used to test the survival 

of T. pyriformis in the presence of different concentrations of all agonists in this study.   

 

A survival of 0% at 90 minutes (with 8 µM) suggested that this concentration was lethal to 

the ciliate population. However, as seen in Figure 3.1b, the population recovered albeit not to 

the extent of the Control (even with 5 × 107 K. aerogenes/ml present). This ciliate 

concentration was therefore below the detection limit for ciliate counts (278 cells/ml) at 90 

minutes, leading to an apparent 0% survival. True lethality was therefore evaluated at 72 

hours for all agonists in this study.  

 

3.2. T. pyriformis susceptibility to PPAR agonists 
 

To test whether T. pyriformis might possess PPAR receptors, its susceptibility to known 

PPAR agonists was first tested: OEA and PEA bind to PPARα, GW0742 to PPARβ/δ and 

Rosiglitazone to PPARγ. The ciliate was subjected to a range of agonist concentrations and % 

survival determined at 90 minutes (for IC50, MIC and slope) and 72 hours (for lethal 

concentration). 

 

T. pyriformis was susceptible to all four PPAR agonists and IC50 curves (Figure 3.2) showed 

a classic dose response. From these graphs the IC50 and slope were determined in QtiPlot 

(Table 3.1). Linear regression analysis of the Hill slope value (Appendix 2) was used to 

determine the MIC (Table 3.1) whilst survival over 72 hours was used to determine the lethal 

dose (Table 3.1).   

 

All data are summarized in Table 3.1. This also includes previously determined data for the 

action of AEA and CBD at 90 minutes on the same T. pyriformis strain (under the same 

experimental conditions) (obtained from Shruthi Sivakumar and Ashley Jones, Lancaster 

University). 

 

 

 

 

 



 38 

a) 

 
b)  

 
c) 

 

The % inhibition activity of OEAOEA 
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d)  

 
 

Figure 3.2: Percentage inhibition of T. pyriformis after 90 minutes exposure to varying 

agonist concentrations: a) OEA, b) PEA, c) Rosiglitazone and d) GW0742. 

 

The MICs and IC50 values suggest that the most potent agonist is AEA, followed by CBD, 

GW0742 and then OEA. Both PEA and Rosiglitazone, although eliciting a response in the 

ciliate, have parameter values much higher than those previously published for other cell 

types (see Section 4.3). For example, not even a concentration of 400 µM PEA proved lethal 

to the ciliate. PEA and Rosiglitazone were removed from the study at this point. OEA was 

retained, even though 205 µM was required to prove lethal to the ciliate.  

 

 

Table 3.1: The MIC, IC50, slope of the IC50 curve and lethal dose values for OEA, PEA, GW0742, 

Rosiglitazone (PPAR agonists) with T. pyriformis. Data for AEA and CBD included (obtained from 

Shruthi Sivakumar and Ashley Jones, Lancaster University). 

  
Agonists 

  AEA OEA PEA GW0742 Rosiglitazone CBD 

MIC (µM) 1.17 18.49 55.11 8.95 103.69 3.16 

IC50 (µM) 3.78 46.78 180.39 11.88 181.08 4.38 

Hill Slope  3.21 7.86 5.28 9.27 5.69 8.11 

Lethal 

concentration 

(µM) 

 

35 
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>400 

 

30 

 

210 

 

40 

 

 

 

 

 

GW0742 
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3.3.   PPAR receptors as potential targets for agonists in T. pyriformis  
 

To further evaluate whether T. pyriformis might possess PPAR-like receptors, 90 minute 

survival experiments were performed in the presence of OEA, GW0742, AEA and CBD 

with/without a 10 minute pre-incubation of the ciliate with each of three specific PPAR-

receptor antagonists: GW 6471 (PPAR blocker), GSK 3787 (PPAR/ blocker), and 

T0070907 (PPAR blocker [T007]). Initial experiments used each blocker at a concentration 

twice that of the agonist’s IC50. Then, if a blocking of the negative effect of the agonist was 

recorded, the antagonist was tested at concentrations of 10, 1, 0.1, 0.01 and 0.001 µM.  

 

3.3.1. OEA  

 

OEA was tested at its IC50 of 45 µM and antagonists at 90 µM. In the presence of OEA 

(Figure 3.3, hatched bars), the survival of T. pyriformis in the absence of blockers was 37.82 

± 12.44%, which was significantly different to the untreated control (Figure 3.3, 0 µM, solid 

bar) (P = 0.001). Pre-incubation with each blocker alone had no significant negative effect, 

compared to the control (P = 0.22 - 0.90), and did not alleviate the negative effect of OEA. 

The % survival value with GSK3787 [β/δ] was not significantly different to OEA alone (P = 

0.90) but values were significantly lower than OEA alone with GW6471 [α] and T007 [γ] (P 

= 0.023 and 0.007, respectively). No dose-response experiment was carried out.  

 

Figure 3.3: Percentage cell survival of T. pyriformis in the presence of 45 µM OEA (hatched 

bars) with and without pre-incubation with 90 µM of each PPAR receptor blocker, GW6471 

(PPARα), GSK3787 (PPARβ/δ) and T007 (PPARγ). Solid bars denote % survival in the 

absence of OEA with/without each blocker. Error bars = SEM, n = 9. ^ Significantly different 

(P < 0.05) to blocker alone. *significantly different to OEA alone (P < 0.05).                       
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3.3.2. GW0742 

 

GW0742 was tested at 15 µM and antagonists at 30 µM. In the presence of GW0742 (Figure 

3.4, hatched bars), the survival of T. pyriformis in the absence of blockers was 52 ± 11%, 

which was significantly different to the untreated control (Figure 3.4, 0 µM solid bar) (P = 

0.001). Pre-incubation with each blocker alone had no significant negative effect, compared 

to the control (P = 0.20 - 0.90), but totally alleviated the negative effect of GW0742 with % 

survival in their presence being equivalent to the control (P = 0.36 - 0.9) and significantly 

higher than GW0742 alone (P = 0.001 in all cases).   

 

Figure 3.4: Percentage cell survival of T. pyriformis in the presence of 15 µM GW0742 

(hatched bars) with and without pre-incubation with 30 µM of each PPAR receptor blocker, 

GW6471 (PPARα), GSK3787 (PPARβ/δ) and T007 (PPARγ). Solid bars denote % survival in 

the absence of GW0742 with/without each blocker. Error bars = SEM, n = 9. * Significantly 

different (P < 0.01) to GW0742 alone (no tests were significantly different to blocker alone).                                    

 

Each blocker was further tested at concentrations ranging from 10 to 0.001 µM (Figure 3.5).  

 

The PPARα blocker GW6471 completely alleviated the negative effect of GW0742 at 10 

µM, i.e. 100% survival, where GW0742 with blocker was not significantly different to 

blocker alone, only GW0742 alone (Figure 3.5a*).  No blocking effect was seen at 1 µM and 

lower, suggesting an MIC of >1<10 µM and that any dose-response might have been 

expected within these concentrations.   
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Figure 3.5: Percentage survival of T. pyriformis in the presence of GW0742 (hatched bars), 

with and without pre-incubation with each PPAR receptor blocker (10 to 0.001 µM): a) 

GW6471 (PPARα), b) GSK3787 (PPARβ/δ) and c) T007 (PPARγ). Solid bars denote % 

survival in the absence of GW0742 with/without each blocker. Error bars = SEM, n = 9. 

*significantly different (P < 0.05) to GW0742 alone. ^significantly different (P < 0.05) to 

blocker alone. 
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The PPARβ blocker GSK3787 and the PPARγ blocker T007 data completely alleviated the 

negative effect of GW0742 at 10 and 1 µM (Figure 3.5b-c*).  No blocking effect was seen at 

0.1 µM and lower, suggesting an MIC of >0.1<1 µM in both cases and that any dose-

response might have been expected within these concentrations.   

 

3.3.3. AEA 

 

AEA was tested at 4 µM and antagonists at 8 µM. In the presence of AEA (Figure 3.6, 

hatched bars), the survival of T. pyriformis in the absence of blockers was 61.06 ± 0.71%, 

which was significantly different to the untreated control (Figure 3.6, 0 µM solid bar) (P = 

7.4 × 10-8). Pre-incubation with each blocker significantly alleviated the negative effect of 

AEA; % survival values (with blocker) were significantly different to AEA alone (P = 0.001 

in all cases) and % survival (with AEA) were not significantly different to those in the 

presence of blocker alone (P = 0.09 - 0.31).  

 

Figure 3.6: Percentage cell survival of T. pyriformis in the presence of 4 µM AEA (hatched 

bars) with and without pre-incubation with 8 µM of each PPAR receptor blocker, GW6471 

(PPARα), GSK3787 (PPARβ/δ) and T007 (PPARγ). Solid bars denote % survival in the 

absence of AEA with/without each blocker. Error bars = SEM, n = 9. *Significantly different 

(P < 0.05) to AEA alone (no tests were significantly different to blocker alone). 
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Figure 3.7: Percentage survival of T. pyriformis in the presence of AEA (hatched bars), with 

and without pre-incubation with each PPAR receptor blocker (10 to 0.001 µM): a) GW6471 

(PPARα), b) GSK3787 (PPARβ/δ) and c) T007 (PPARγ). Solid bars denote % survival in the 

absence of AEA with/without each blocker. Error bars = SEM, n = 9. *Significantly different 

(P < 0.05) to AEA alone. ^Significantly different (P < 0.05) to blocker alone. 
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The PPARβ blocker GSK3787 and the PPARγ blocker T007 data completely alleviated the 

negative effect of AEA at 10 and 1 µM (Figure 3.7b-c*).  No blocking effect was seen at 0.1 

µM and lower, suggesting an MIC of >0.1<1 µM in both cases and that any dose-response 

might have been expected within these concentrations.   

 

The PPARα blocker GW6471 completely alleviated the negative effect of AEA at 10, 1 and 

0.1 µM, i.e. 100% survival, where AEA with blocker was not significantly different to 

blocker alone (Figure 3.7a); suggesting an MIC >0.01<0.1 µM. However, only at 1 and 10 

µM was % survival with AEA and blocker significantly different to AEA alone (Figure 

3.7a*); suggesting an MIC of >0.1<1 µM. It is therefore difficult to conclude what the real 

MIC would be in this case and it lies somewhere between 0.01 and 1 µM.  

 

3.3.4. CBD 

 

CBD was tested at 4 µM and antagonists at 8 µM. In the presence of CBD (Figure 3.8a, 

hatched bars), the survival of T. pyriformis in the absence of blockers was 43.14 ± 8.39%, 

which was significantly different to the untreated control (Figure 3.8a, 0 µM solid bar) (P = 

0.0003). Only pre-incubation with GW6471 (PPARα receptor blocker) alleviated the negative 

effect of CBD and the % survival value (with GW6471) was significantly different to CBD 

alone (P = 0.001). A concentration of 8 µM GW6471 (with CBD) yielded a % survival value 

that was not significantly different to that in the presence of GW6471 alone (P = 0.90). 

 

In the dose response experiments (Figure 3.8b) the blocker completely alleviated the negative 

effect of CBD at 1 and 10 µM, i.e. 100% survival, where CBD with blocker was not 

significantly different to blocker alone, only CBD alone (Figure 3.8b*).  No blocking effect 

was seen at 0.1 µM and lower, suggesting an MIC of >0.1<1 µM and that any dose-response 

might have been expected within these concentrations.   
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Figure 3.8: Percentage survival of T. pyriformis in the presence of CBD (hatched bars), with 

and without pre-incubation with a) GW6471 (α), GSK3787 (β/δ) and T007 (γ) at 8 µM and b) 

GW6471 (α) at 10 to 0.001 µM. Solid bars denote % survival in the absence of CBD 

with/without each blocker. Error bars = SEM, n = 9. * Significantly different (P < 0.01) to 

CBD alone. ^ Significantly different (P < 0.01) to blocker alone. 

 

3.3.5. Summary 

  

Table 3.2 summarizes the concentrations of antagonists required to elicit a positive 

alleviation of an agonist’s effect on T. pyriformis (MIC) and that required to completely 

alleviate its action (100% block). Evidence for the existence of all three PPAR receptor types 

in T. pyriformis was obtained with GW0742 and AEA responding to the blocking of all three. 

The action of GSK3787 (β/δ) against these agonists was remarkably similar to that of T007 

(γ) (Table 3.2) but variations existed with regards to their response to blocking with GW6471 
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(α); AEA was more sensitive to the blocking (Table 3.2). The action of CBD was only 

blocked with GW6471 (α) at a comparable MIC to that of AEA. 

 

Table 3.2: A summary of the range of Minimum Inhibitory Concentrations (MIC, µM) of each PPAR 

antagonist with each agonist and the concentration (100% block, µM) of antagonist required to completely 

alleviate the negative action of the agonist on T. pyriformis.  

Agonist PPAR Antagonists (μM)     

  GW6471(α) GSK3787(β/δ) T0070907(γ) 

 MIC 100% block MIC 100% block MIC 100% block 

OEA - - - - - - 

CBD >0.1<1  >0.1<1 - - - - 

GW0742 >1<10  >1<10 >0.1<1 >0.1<1 >0.1<1 >0.1<1 

AEA >0.01<1  >0.1<1 >0.1<1 >0.1<1 >0.1<1 >0.1<1 

  

 

3.4. Dopamine receptor  

 

The action of OEA (45 µM) on T. pyriformis was examined in the presence/absence of 

Haloperidol (HPD) using standard 90 minutes survival experiments, as described in Section 

3.3, with the caveat that because this was a preliminary experiment it was performed twice 

(in triplicate, n = 6). A concentration of 90 µM HPD (2 × IC50) proved too toxic to the ciliate 

(Figure 3.9), but at 60 µM and below it was not. A concentration of 30 µM was chosen to 

accompany the standard dose response concentrations of 10 to 0.001 µM.  

 

Figure 3.9: Preliminary experiment of the effect of HPD on T. pyriformis. Percentage 

survival of T. pyriformis in the presence of HPD alone and at concentrations 0-90 µM. Error 

bars = SEM, n = 3. *Significantly different (P < 0.05) to 0 µM HPD.  
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The presence of HPD enhanced the negative effect of OEA (Figure 3.10). This was 

significant for concentrations of 30, 10, 1 and 0.1 µM HPD whilst concentrations of 0.01 and 

0.001 µM HPD had no effect. This relationship was not investigated further. 

 

   

Figure 3.10: Percentage survival of T. pyriformis in the presence of OEA (hatched bars), with and 

without pre-incubation with Haloperidol at 30 to 0.001 µM. Solid bars denote % survival in the 

absence of OEA with/without Haloperidol. Error bars = SEM, n = 3. * Significantly different (P < 

0.05) to OEA alone (all tests were significantly different to Haloperidol alone).  

 

 

3.5. G protein-coupled receptor  

 

The action of OEA (45 µM), AEA (4 µM) and CBD (4 µM) on T. pyriformis was examined 

in the presence/absence of H89 at 10 µM (with a 30 minutes pre-incubation time) and PTX at 

100 ng/ml (with a 5 hours pre-incubation time), using standard 90 minutes survival 

experiments (Section 3.3).  This was a preliminary experiment and was only performed once 

(in triplicate, n = 3).  

 

The presence of H89 did not significantly alleviate the negative effect of any agonist (Figure 

3.11) and % survival with agonist plus H89 was always significantly lower than with H89 

alone. PTX alleviated the negative effect of OEA only, yielding a significantly higher 

survival compared to OEA only (P = 0.005) but still being significantly less than with PTX 
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alone (P = 0.014); so not completely alleviated. PTX had no significant effect on the action of 

CBD and AEA.  

Figure 3.11: Percentage survival of T. pyriformis in the presence of OEA (45 µM), CBD (4 

µM) and AEA (4 µM) with/without pre-incubation with PTX (100 ng/ml) and H89 (10 µM). 

‘Controls’ are no agonist or antagonist (blue), PTX alone (orange) and H89 alone (grey).  Error 

bars = SEM, n = 3. * Significantly different (P < 0.05) to agonist alone.  

 

 

 

3.6. Summary of results 

 

Table 3.3: Summary of the effect of blockers on the survival of T. pyriformis in the presence of 

cannabinoids and PPAR agonists. 

Agonists PPAR Haloperidol PTX H89 

α β/δ γ 

OEA Negative No effect Negative Negative Positive No effect 

CBD Positive No effect No effect N/A No effect No effect 

AEA Positive Positive Positive N/A No effect No effect 

GW0742 Positive Positive Positive N/A N/A N/A 
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4. Discussion 
 

4.1.  Summary of major findings 
 

The aim of this study was to investigate the effect of six cannabinoids/ligands on T. 

pyriformis and whether this involved peroxisome proliferator-activated receptors (PPARs), G 

protein-coupled receptor (GPCRs), and/or a dopamine receptor. Firstly, the lethal effect of 

the ligands was determined through four parameters 1) MIC, 2) IC50, 3) Hill slope value, and 

4) lethal concentration (Table 3.1). Results suggest that T. pyriformis was most susceptible to 

AEA, followed by CBD, then GW0742, then OEA. PEA and Rosiglitazone proved to be less 

lethal to T. pyriformis and were thus, eliminated from the study. As for the other 

cannabinoids, the slope values suggested that OEA and CBD behave similarly and might 

bind to the same target, whereas AEA and GW0742 might each bind a distinct target.  

 

The study then went on to determine the ligands’ target, whether PPAR, GPCR, and/or a 

dopamine receptor, using specific blockers to inhibit these receptors (Table 3.3). Haloperidol 

(Dopamine blocker) and H89 (PKA blocker) demonstrated no blocking of the effect of any 

agonist. In contrast, PPAR blockers alleviated the negative effects of AEA, CBD, and 

GW0742, but not OEA. Results suggested that AEA and GW0742 could interact with all 

three PPAR types (⍺, β/δ, and γ) whereas CBD only interacted with PPAR⍺. In the presence 

of Pertussis toxin (G⍺i/o blocker) only the effect of OEA was alleviated. This suggests that 

the ciliate might have at least two pathways for responding to these ligands; CBD, AEA and 

GW0742 might use a PPAR-like pathway, while OEA targets GPCRs.  

 

4.2. Lethal effect of cannabinoids on protists  
 

Taking CBD as an example, the ciliate population reduced to 60% (compared to the control) 

with 4 µM CBD, and to ‘0%’ with 8 µM CBD, in the first 90 minutes. After this the 4 µM-

treated population density remained stable while that of the 8 µM-treated population 

gradually increased, indicating that not all the cells in that population had been killed and that 

the population had been below the limit of detection at 90 minutes. The concentration of 

CBD found to be lethal to the whole population was 40 µM. 

 

Previous studies have also shown that cannabinoids are toxic to protists and that the negative 

effect can be short-term. The treatment of T. pyriformis with THC elicited a dose dependent 

response (between 3.2 – 24 µM) with the cells showing a change in shape, having sluggish 
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movement and a decreased level of cellular growth and division (McClean & Zimmerman, 

1976). However, even at the highest concentration (24 µM THC) this only caused an 11% 

reduction in cell concentration after 16 hours growth, suggesting that the IC50 is higher than 

24 µM (McClean & Zimmerman, 1976). Comparing this to the current study suggests that T. 

pyriformis is more susceptible to CBD (IC50, 4.38 µM) than THC. The toxic effect on T. 

pyriformis was also transient in both studies. In the current study, cells appeared to be in 

recovery by 10 hours, whereas in the study of McClean & Zimmerman (1976) cells recovered 

after ‘several hours’, although the actual time period was not stated.  

 

THC has also been reported to inhibit the growth in several amoebae. At 60 µM THC cells of 

the slime mould Dictyostelium discoideum, which has an amoeboid form in its growth cycle, 

became round and immobile but after a ‘few hours’ (time not stated) they fully recovered 

(Bram and Brachet, 1976). However, at 50 µM of Cannabinol, cells rounded up but they did 

not recover, suggesting different effects depending on the cannabinoid used (Bram and 

Brachet, 1976). Even so, D. discoideum appears less sensitive to cannabinoids than T. 

pyriformis.  

 

With the amoeba-flagellate Naegleria fowleri, the presence of phytocannabinoids prevented 

enflagellation and encystment but movement remained the same (Pringle et al., 1979). Three 

days exposure in the presence of 5 µg/mL (16 µM) THC and CBD resulted in populations 

which were 54% and 27% that of the control, respectively, suggesting that the IC50 of THC 

was ca. 16 µM while that of CBD was <16 µM (Pringle et al., 1979). This once again 

suggests that CBD is more toxic than THC and that T. pyriformis is more sensitive to CBD 

than these amoebae.  

 

The endocannabinoid AEA has also been shown to inhibit growth of three other species of 

amoebae: Vermamoeba (Hartmannella) vermiformis, Acanthamoeba castellanii, and 

Willaertia magna with IC50 values (determined after 3 days exposure) of 14 µM, 17 µM, and 

20 µM, respectively (Dey et al., 2010). In the current study, the IC50 of AEA was only 4 µM, 

once again showing a higher level of susceptibility in T. pyriformis, compared to amoebae.  
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4.3.    Lethal effect of cannabinoids on cancer cells 

 

Cannabinoids are considered to act more specifically to cancer cells than normal cells and 

much work has examined their effect on human cancerous cells (Ryberg et al. 2007; 

Chakravarti et al., 2014; Almada et al., 2017; Scott et al., 2017). The lung carcinoma cell line 

(A549) can be killed by THC at concentrations of 32 µM (IC50 of 24 µM) (Sarafian et al., 

2002). Human leukemia cancer cell lines CEM and HL60 are more sensitive. When these 

cells were treated with THC, CBD and cannabigerol (CBG) the IC50 values for CEM cells 

were 13 µM, 8 µM, 11 µM for THC, CBD, and CBG, respectively while values for HL60 

were slightly higher at 15 µM, 12 µM, 16 µM, respectively (Scott et al., 2017). In both cell 

types, CBD shown to be more toxic than THC; a similar response to that observed in 

amoebae (Pringle et al., 1979).  

 

In human glioma cells, 10 µM CBD was the non-inhibitory value for growth while 25 µM 

CBD was ‘inhibitory’ suggesting an MIC >10<25 µM (Massi et al., 2006). Induction of 

apoptosis was via upregulation of caspase-3 activity which ultimately causes apoptotic 

mediated cell death (Massi et al., 2006). Human prostate carcinoma cells (PC-3, DU-145, 

22RVI and LNCAP) appear to be more sensitive, being induced into apoptosis at CBD 

concentrations of 1 - 10 µM (De Petrocellis et al., 2000). The same study found that lower 

concentrations (0.5 - 6 µM) of AEA resulted in cell death; a similar response was observed 

with T. pyriformis exposed to AEA and CBD (MICs of 1.17 and 3.16 µM, respectively). 

Interestingly, cell death with AEA was not due to apoptosis but was instead due to AEA 

inhibiting the G1/S phase of cell division (De Petrocellis et al., 2000). Although comparable 

studies with AEA have not been performed with protists, it is interesting to note that the cells 

of T. pyriformis were most susceptible to THC during their G2 phase of cell division 

(Zimmerman et al., 1981). 

 

The observed inhibitory effects of cannabinoids on cancer cells mirror those observed with 

protists. For example, the following trends are shared by both: (i) CBD is more toxic than 

THC, (ii) AEA is more toxic than CBD, (iii) different cell types show differences in 

susceptibility and, (iv) cell death occurs with cannabinoid concentrations in the lower end of 

the µM range. Since phylogenetic studies suggest that protists do not possess the main 

endocannabinoid receptors (McPartland et al., 2006), and cannabinoids can act upon 

mammalian cells without the need for receptors (Sanchez et al. 1998; De Pretrocellis et al., 
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2000), it is intriguing to discover what their target is in protists and how this results in cell 

death. 

 

4.4     Mechanisms of cell death in Tetrahymena 

 

In the ciliate T. thermophila, programmed nuclear death (PND) mainly occurs during 

conjugation (sexual reproduction) and involves an apoptosis inducing factor (AIF), and 

endonuclease G (EndoG) in the mitochondria, resulting in macronucleus degeneration 

(Akematsu et al., 2012). Although T. pyriformis is not capable of sexual conjugation 

(Nanney, 1974) it might still possess the same PND mechanism as that exhibited by T. 

thermophila, which is similar to programmed cell death (PCD) in multicellular organisms. In 

mammalian cells, the macronucleus is degraded via chromatin condensation and DNA 

fragmentation with the help of AIF, EndoG and caspases (Akematsu et al., 2012). However, 

T. thermophila does not possess caspases (Eisen et al., 2006) and PND is considered to occur 

via a caspase-independent route involving either AIF or EndoG (Akematsu et al., 2012).  

 

In a caspase independent pathway, many mitochondria move towards the parental 

macronucleus and AIF is released from their inter membrane space which is then translocated 

into the nucleus and results in nuclear condensation and large-scale DNA fragmentation 

(Akematsu et al., 2012). Electron microscopic studies have also revealed the presence of 

autophagosomes surrounding this degenerating macronucleus during Tetrahymena 

conjugation (Weiske-Benner and Eckert, 1987) suggesting that autophagy might play a direct 

role in PND in Tetrahymena.  

 

Autophagy is a major degradative pathway which recycles cytoplasmic compartments by 

using the double membrane structure (the autophagosome) to fuse with the vacuole/lysosome 

(Yorimitsu and Klionsky 2005). Caco-2 cells have been shown to activate autophagosome 

arrangement between 4-6 hours after treatment with 10 µM CBD while 25 µM CBD led to 

over-expression of LC3-II protein which resulted in cell death (Koay et al., 2014). In protists, 

the degradative pathway can be upregulated by stress, with the main one being nutrient 

limitation. Under such conditions increased levels of autophagosomes have been recorded in 

both Tetrahymena (Nilsson, 1984; Zhang et al., 2015) and D. discoideum (King et al. 2011, 

Mesquita et al., 2013). This pro-survival characteristic of autophagy maintains tissue 

homeostasis and sustains cell viability under stressful conditions but when failing to restore 
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homeostasis, autophagy leads to cell death through the autophagic cell death (ACD) pathway 

(Levine & Kroemer, 2008). In T. thermophila, such autophagic cell death has been recorded 

in the presence of H2O2, Oligomycin and vitamin K3 but the molecular basis that regulates 

this, especially the genes responsible, have not been identified (Zhang et al., 2015).  

However, this study did correlate enhanced autophagic cell death to an accumulation of 

reactive oxygen species (ROS) resulting from possibly a blockage of mitochondrial electron 

transport (Zhang et al., 2015).   

 

Components of the mitochondrial respiratory chain have been identified as molecular targets 

of cannabinoids (Bih et al., 2015). THC is a known inhibitor of NADH oxidase activity in 

mitochondria and above a threshold concentration (0.4 µM THC), can deplete energy (ATP) 

levels in cells which can lead to cellular death (Bartova & Birmingham, 1979).  Human lung 

cancer cells (H460) treated with THC, and indeed AEA, show a concentration dependent 

decrease in the mitochondrial oxygen consumption with maximum effect at 20 µM 

(Athanasiou et al., 2007). Studies have also shown that CBD modulates several cytochrome 

P450 enzymes (Usami et al., 2008).  

 

Finally, THC, AEA and 2-AG can exert their effects on human cells through inhibition of 

adenyl cyclase activity (Koh et al., 1997; Pisanti et al., 2013). Tetrahymena have been shown 

to contain a novel adenyl cyclase ion channel fusion protein, localized to ciliary membranes 

through which cAMP formation is stimulated by an ion conductance (Weber et al., 2009). 

Therefore, inhibition of this adenylase cyclase activity at this site might explain the lowered 

cAMP levels in THC treated T. pyriformis (Zimmerman et al., 1981), the sluggish movement 

of T. pyriformis cells in the presence of THC (McClean & Zimmerman, 1976) and CBD 

(Parry, personal communication), and the loss of T. thermophila’s avoidance response to 

chemorepellents (Keedy et al. 2003).  

 

There are therefore many mechanisms by which Tetrahymena cells can die and also many 

ways in which cannabinoids can induce such death. The current study primarily examined the 

possible involvement of PPARs on ciliate cell death, as their interaction with cannabinoids 

has been well characterized in human cells (Kleberg at al., 2014; Bih et al., 2015; O'Sullivan, 

2016). 
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4.5.  Involvement of receptors in cell death 

  
The Hill slope (IC50 slope factor) indicates the cooperativity/cooperative binding of the 

ligand. Cooperative binding occurs when binding of the first molecule (either identical or 

nearly identical) to a receptor changes the binding affinity for the second molecule, either 

positive or negative (Stefan and Le Nove`re, 2013). For example, the binding of one oxygen 

to the first hemoglobin’s binding site increases the binding affinity (or also known as increase 

cooperativity) of oxygen to the three remaining binding sites (Stefan and Le Nove`re, 2013). 

In general, a Hill slope value of greater than 1 indicates positive cooperativity, whereas a 

value lesser than 1 indicates a negative cooperativity.  

 

In this study, all agonists yielded positive slope values and so, all agonists induced a 

cooperative binding effect. OEA and CBD had similar slope values (7.86 and 8.11, 

respectively), suggesting they bind at a similar pace to the receptor, and might possess the 

same target(s) (Table 3.1). Although this might suggest that T. pyriformis possesses a 

PPARα-like receptor, PEA (which also binds to PPARα) did not behave similarly to OEA 

and its slope (5.28) was closer to that of Rosiglitazone (5.69) suggesting PEA and 

Rosiglitazone might share the same target(s) (Table 3.1). Thus, this suggests that there could 

be multiple targets for the endocannabinoid pathways in T. pyriformis.  

 
4.5.1 PPARs  

 

PPARs are mainly involved in the metabolism of fatty acids and carbohydrates, however, 

there is evidence that activation of PPARs is also involved in cell line proliferation and 

apoptosis (Stephen et al., 2004; Brunetti et al., 2019). Studies have shown that activation of 

PPARs can result in cytotoxic effects on various cancerous cell lines (Kim et al., 2007), and 

anticancer agents are being developed from this concept.  

 

In the current study, all three PPARs were suggested to be involved in the mechanism by 

which AEA, CBD and GW0742, but not OEA caused cell death in the ciliate population. In 

the presence of GW6471 (PPARα blocker), the negative effects of CBD, AEA and GW0742 

were alleviated. However, GSK3787 (PPARβ/δ blocker) and T0070907 (PPARγ blocker) 

were only able to block the effect of AEA and GW0742. These results bore no resemblance 

to the predictions made based on the IC50 slope values. 
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These results also contradict those obtained from similar studies in mammalian cells (Pertwee 

et al., 2010; O’Sullivan, 2016). In these systems, OEA is reported to induce activation of all 

PPAR isoforms (O’Sullivan, 2016) but this was not recorded in the current study. AEA is 

also considered an agonist of PPARα and PPARγ, but not PPARβ/δ, with the potency (IC50) 

of 10 – 30 µM and 8 – 10 µM, respectively (Pertwee et al., 2010). In T. pyriformis, the action 

of AEA was 100% blocked at a much lower concentration (≤1 µM) and with all three 

blockers. The highly selective PPARβ/δ agonist (GW0742) is reported to interact with human 

PPARβ/δ, - α, and -γ, with EC50 values of 0.001, 1.1, and 2 µM, respectively (Sznaidman et 

al., 2003). The current study also found an interaction with the three PPAR types, with the 

effect of GW0742 being 100% blocked by all three antagonists, but the concentrations 

required were variable. GW0742 did not appear to be ‘highly selective’ for PPARβ/δ as the 

concentration required for 100% blocking was equivalent to that for PPARγ (≤1 µM), 

whereas ≤10 µM was required to block PPARα. Finally, CBD is reported to only activate 

PPARγ in the mammalian system (O’Sullivan et al., 2009a), with an IC50 of 5 µM 

(O’Sullivan et al., 2009b), yet in the current study its activity was 100% blocked by only the 

PPARα antagonist and at a lower concentration (≤1 µM).  

 

Nonetheless, the results of the PPAR blocking study indicated that there was an alleviation of 

cell death in T. pyriformis by the PPAR antagonists and thus suggests that T. pyriformis either 

possesses, 1) all three PPAR isoforms, or 2) possibly one isoform which can bind all three 

agonist/antagonist types. To date, the three PPAR isoforms have only been reported in bony 

fish, mammals, birds, and amphibians (Zhou et al. 2015); not in invertebrates. This suggests 

that T. pyriformis might not possess all three, but a PPAR isoform that can bind all three 

agonists/antagonist types. PPARs are known to have a ligand-binding domain which is 

relatively spacious and promiscuous, binding a number of ligands at different sites (Itoh et 

al., 2008). It might be that even though all three agonists/antagonists can bind to this PPAR 

they bind at different sites. For example, CBD might bind at the site that is the same as 

GW6471 (the PPARα blocker) but the other two blockers do not bind to this particular site 

and therefore do not interfere with the binding of CBD. 

 

However the ligand binds, it can exert an effect through both PPAR‐dependent (genomic) 

and PPAR‐independent (non‐genomic) mechanisms. The classical genomic mechanism 

involves PPAR interacting with the retinoid X-receptor (RXR) to form a heterodimer 
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followed by the activation of target gene transcription (Grygiel-Górniak, 2014). The non-

genomic, and more rapid, mechanism involves ligand activation of PPARs that leads to the 

suppression of other gene expression by antagonizing transcription factors (Campand and 

Tafuri, 1997).  

 

With regards to the latter, activation of PPARα and γ has been shown to directly antagonize 

the NF‐κβ pathway in many types of cancer cells (Camp et al., 1999; Lau et al., 2002; 

Chandran et al. 2016; Morinishi et al. 2019). NF-κB belongs to a highly conserved family of 

transcription factors which, when activated, rapidly translocate into the nucleus and induces 

the transcription of various cellular genes (Pahl, 1999). Ligand binding to PPARα and γ has 

also been shown to inhibit of the activation, and nuclear translocation, of mitogen-activated 

protein (MAP) kinases, leading to apoptosis in cancer cells (Chinetti et al., 1998; Su et al., 

1999), with the main MAPKs being p42/p44 (ERK1/2) (Takedaet al., 2001; Chandran et al. 

2016). ERK1 and ERK2 have been shown to be key mediators of signal transduction, 

transmitting signals from the cell surface to the nucleus in human cells (Lenormand et al. 

1998; Volmat et al. 2001).  

 

Considering protists are not known to possess RXR nor NF-κB, but T. thermophila possesses 

numerous MAPKs including putative ERK1/2 subfamily MAPKs (www.ciliate.org), it makes 

the latter a possible pathway by which cell death occurs in this protist.  

 

In addition to affecting the NF-κB and MAPK pathways, and inducing apoptosis, ligand 

binding to both PPARα and γ has been shown to induce G0/G1 cell cycle arrest leading to the 

death of cancer cells by reducing the levels of various cell-cycle regulating cyclins, 

specifically cyclinD1, A and E (Aboud et al. 2013; Chandran et al. 2016). Although arrest at 

the G0/G1 phase is the most commonly reported, cell cycle arrest can occur at the G1/S phase 

(De Petrocellis et al., 2000; Wakino et al. 2000).  

 

The role of PPARβ/δ in cell death is controversial. Some studies have suggested that 

PPARβ/δ agonists and antagonists demonstrate anticancer effects (Zaveri et al., 2009), while 

others report that PPARβ/δ stimulate proliferation and suppress pro-apoptotic events in the 

development of colon, breast and prostate cancer (Stephen et al., 2004; Sertznig et al., 2007). 

Ligand activation of PPARβ/δ with GW0742 has also been shown to prevent cell cycle 

progression from G1 to S phase in keratinocyte cells (Burdick et al., 2007).   

http://www.ciliate.org/
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PPARs are also involved in fatty acid oxidation and adipogenesis, which makes them 

important molecular targets in the treatment of obesity and diabetes (Grygiel-Górniak, 2014).  

 

OEA is reported to induce activation of all PPAR isoforms in mammalian cells, with the 

highest affinity for PPARα (O’Sullivan, 2016) but this was not recorded in the current study. 

Further research examined whether GCPRs and the Dopamine receptor might be involved in 

the action of OEA on Tetrahymena cells.  

 

4.5.2 G protein-coupled receptor 

 

GPCRs are members of the superfamily of 7-transmembrane receptors (7-TMR) (Morales et 

al., 2018) and can be blocked with the Pertussis toxin (PTX). PTX is derived from bacterium 

Bordetella pertussis and it acts by modifying the natural function of GCPRs, specifically 

catalyzing the ADP-ribosylation of a cysteine residue on the α-subunit of Gi/o (Reisine and 

Law, 1992). The subunit Gαi is not affected by PTX (Reisine and Law, 1992).  

 

GPCRs are involved in many regulatory functions in humans such as growth, source of smell, 

taste, visual, behavioural, immune system and mood (Rosenbaum et al., 2009). Over 800 

GPCRs have been identified as being specific to a particular function (Fredriksson et al., 

2003). The ligands they bind range from light sensitive compounds, odours, pheromones, 

hormones, cannabinoids and even neurotransmitters (Rosenbaum et al., 2009), but even now 

some GPCR have unknown functions or unknown primary ligands, and are termed ‘orphan’ 

GPCRs. Since (i) GPCRs are involved in a wide array of regulatory functions, (ii) they can be 

activated by numerous ligands including cannabinoids, (iii) the main cannabinoid receptors 

CB1 and CB2 are both GCPRs (but are absent in Tetrahymena) and, (iv) homologues to GPR6 

and GPR37 have recently been identified T. thermophila (Lampert et al., 2011; Zou and 

Hennessey, 2017), it seemed sensible to carry out a preliminary investigation to evaluate 

whether GCPRs might be the target for OEA in Tetrahymena.   

 

Of the two GCPRs in Tetrahymena, GPR6 is considered a potential endocannabinoid as it 

shares a high amino acids sequence identity (35%) with CB1 and CB2 (Lee et al., 2001). CBD 

is considered to be an inverse agonist for GPR6 (Laun and Song, 2017) however, PTX had no 

effect on the interaction between CBD and T. pyriformis in the current study. Blocking with 

PTX also had no effect on the action of AEA, but this agrees with results for human cells 
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whereby AEA has not been shown to interact with GPR3, GPR6 and GPR12 (Brown et al., 

2017). Conversely, PTX alleviated the negative action of OEA on T. pyriformis suggesting it 

employs a pathway involving GCPRs whereas CBD and AEA employ a pathway involving 

PPARs.  

 

OEA can elicit a response in human cells via GPR119 which is phylogenetically related to 

cannabinoid receptors, and is only activated by fatty acid amides, including AEA, OEA and 

PEA, with OEA being the most efficacious (Overton et al., 2006). OEA binding to GPR119 

leads to activation of adenylyl cyclase, increased production of cAMP, and enhanced Protein 

Kinase A (PKA) activity (Usdin et al., 1993). However, in the current study the blocking of 

PKA with H89 had no effect on OEA-induced death of the ciliate. This has also been 

observed in breast cancer cells, i.e., activation of GPR119 has been shown to reduce the 

growth of these cells and induced apoptosis by suppressing autophagosome formation but, 

this is not blocked with cAMP/PKA inhibitors (Im et al., 2018). The authors suggested that 

apoptosis induction and autophagy inhibition by a GPR119 agonist might be related to 

changes in cancer cell metabolism instead of canonical signaling pathway(s) of GRP119 

because there was increased levels of lactate in the cells, due to glycolysis stimulation, which 

suppressed mitochondrial functioning (Im et al., 2018). Indeed, the fact that modulation of 

GPR119 is involved in glucose homeostasis in many cell types has led to the idea that 

GPR119 modulation might provide the basis for an anti-obesity and type 2 diabetes therapy 

(Overton et al., 2006).  

 

Being a preliminary study, it is difficult to speculate further regarding the OEA pathway in 

Tetrahymena and further study is warranted. 

 

4.5.3 Dopamine receptor 

 

This study investigated this possibility of OEA using a pathway involving the dopamine 

receptor, using the well-established Dopamine blocker, Haloperidol (HPD). The result was 

unlike that seen with PPAR/GPCR blockers in that the presence of HDP alone proved toxic 

to the ciliate at concentrations above 60 µM. A toxic effect has also been reported in 

RAW264.7 macrophage cells, but at a lower concentration (40 µM HPD), whereby a cellular 

increase in nitric oxide and caspases 8 and 3 resulted in the modulation of apoptosis (da Cruz 

Jung et al., 2015). HPD has also been shown to promote ferroptosis in hepatocellular 
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carcinoma cells at concentrations as low as 10 µM (Bai et al., 2017). Ferroptosis is a form of 

cell death, characterised by the accumulation of reactive oxygen species (ROS), cell volume 

shrinking and increased mitochondrial membranes during oxidative stress metabolism. 

During ferroptosis, the iron-dependent accumulation of ROS induces the activation of 

ferroptosis through glutathione peroxidase 4 (GPX4) or glutathione (GSH) deficiency (Bai et 

al., 2017). Haloperidol promotes ferroptosis through binding to the Sigma 1 receptor (S1R), a 

protein modulator associated with a wide array of neurological diseases and increases iron 

accumulation and lipid peroxidation (Collina et al., 2013). S1R has not been reported in 

Tetrahymena to date and this ciliate appears to be less sensitive to HPD than mammalian 

cells. 

 

When HPD was combined with OEA (45 µM) there was a significant reduction in the ciliate 

population, compared to OEA alone; reducing it to ~21% (with 0.001 and 0.01 µM HPD), 

~17% (with 0.1 and 1 µM HPD), and to ~15% and 1% in the presence of 10 µM and 30 µM 

HPD. This shows that HPD somehow enhanced the effect of OEA. This might suggest that 

there are multiple pathways involved, with possibly the activation of multiple binding targets 

by HPD. 

  

Although Haloperidol has a high affinity for the D2 receptor in mammalian cells (Ki = 1.2 

nM), it can target other Dopamine subtypes including D3, D4, D1 and D5 with Ki of ~7, 2.3, 

~80, and ~100 nM, respectively (Seeman and Van Tol, 1994; Ilyin et al., 1996). At the same 

time, HPD can also act on the Serotonin receptor and subtype-selective N-methyl-D-aspartate 

(NMDA) antagonist (Lynch and Gallagher, 1996). Only D1 and NMDA (involved in 

chemotaxis and Ca2+ signaling) has been shown to be present in Tetrahymena to date (Nam et 

al., 2009; Ud-Daula et al., 2012). Since HPD was not specific to a particular dopamine 

receptor (or D2 alone), and HPD-induced death might result in multiple death pathways 

future work is required needed to be conducted, with the use of more specific and separate 

blockers for dopamine and serotonin. 

 

4.6    Conclusions 

 
This study aimed to quantify and compare the lethal effect of selected PPAR agonists; OEA, 

PEA, AEA, CBD and two synthetic cannabinoids (GW0742 and Rosiglitazone) on 

Tetrahymena pyriformis. Results showed that the ciliate was most sensitive to AEA, followed 
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by CBD, GW0742 and OEA, with PEA and Rosiglitazone having little lethal effect. The 

MICs and IC50 values with T. pyriformis were of the same order as those concentrations 

required to elicit an effect in cancer cells. The effect on T. pyriformis was cell death, 

however, this was only observed for a 90 minutes period after which no net negative effect 

was recorded. 

 

The study then aimed to determine whether the negative response was elicited through a 

pathway involving PPARs, GCPRs and/or a dopamine receptor. Results showed that the 

action of AEA, CBD and GW0742 utilized a PPAR pathway whilst OEA possibly utilizes a 

GCPR pathway.   
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Appendix I: Media Recipes 
 
Chalkley’s medium 

 

   Stock solution  

       NaCl                                2.0 g 

       KCl                                 0.08 g 

       CaCl2                              0.12 g 

 

   Add 5ml of stock solution to 1L of distilled water. Autoclave at 121°C for 15 minutes. 

 

LB agar 

 

   Distilled water                      1 L 

       NaCl                                 10 g 

       Agar No.2                         10 g 

       Tryptone                             5 g 

       Yeast                                 15 g 

 

    Autoclave at 121°C for 15 minutes. Cool to 50ºC before aseptically pouring onto plates. 
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Appendix II: Raw data 
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