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Abstract 

In this chapter we discuss the magnetic properties of endohedral fullerenes, both those with 

an atomic nitrogen and those with a metal or metal cluster (endohedral metallofullerenes 

(EMFs) incarcerated inside the cage. We highlight newly developed applications, such as their 

use as frequency standards for atomic clocks, alongside the previously explored and studied 

fields of quantum information processing, molecular magnets, photoswitchable rotors, 

ferromagnetic ordering on substrates, spin probes, magnetic resonance imaging and 

spintronics. In the chapter we also provide insights on the fundamental principles behind the 

magnetic properties of endohedral fullerenes and we discuss new prospects for their synthesis 

and applications. 

 

Introduction.  

Small children, when presented with hollow toys, will instinctively try to place different 

kinds of object inside them. Chemists behave in much the same way. Soon after fullerene 

molecules were discovered (Kroto1985) it was natural to ask whether the empty space inside 

them could host other atoms or molecules. Within a decade the answer was known to be “yes”. 

This class of molecules are the endohedral fullerenes. 
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Although fullerene molecules are not magnetic, the incarcerated species may be. 

Endohedral fullerenes thus combine magnetic properties from the incarcerated species with 

chemistry that is often similar to that of empty fullerene molecules.  This allows unique 

functionality that cannot be attained in any other material. The magnetic properties of 

endohedral fullerenes offer advantages in two ways. Firstly, the fullerene protects the 

incarcerated species from its environment. This is beneficial when long spin lifetimes are 

desired, and possible applications are for quantum information and for atomic clocks. 

Secondly, the fullerene protects the environment from the incarcerated species. This allows 

otherwise toxic spin markers to be used inside the human body. 

This critical review introduces the magnetic behaviour of this class of materials with a view 

to possible applications. The remainder of this introduction summarizes the structure and 

synthesis of endohedral fullerenes. Section 1 describes basic magnetic behaviour in 

nanometerials and on substrates. Section 2 introduces peapods: chemically assembled spin 

arrays. Section 3 focuses on biomedical applications of endohedral fullerenes. Section 4 

explains the uses of endohedral fullerenes as spin qubits. Section 5 introduces a new research 

topic, endohedral fullerenes for atomic clocks. We conclude by discussing challenges and 

future directions for the field. 

Spin-bearing endohedral fullerenes come in two classes. The incarcerated species can be a 

metal atom or a metallic cluster (usually a transition metal or a rare earth), in which case the 

molecule is known as an endohedral metallofullerene (EMF). Alternatively, the incarcerated 

species can be a single atom from Group V (either N or P).  The chemical formula is denoted 

X@Cn, where X is the incarcerated species and n is the number of atoms in the cage. Some of 

the most important endohedral fullerenes are listed in Table 1. These two classes behave in 

quite different ways. In the metallofullerenes, the incarcerated species generally interacts 

strongly with the cage, forming a charge transfer complex. The incarcerated species usually 
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sits off-centre in the cage, and may have more than one stable position, leading to multiple 

isomers. By contrast, Group V endohedral fullerenes have almost no charge transfer, and the 

incarcerated atom sits in the centre (Plakhutin, B.N. 2005, Lu, X. 2005).  

Different incarcerated species are compatible with different encapsulation structures. Both 

N and P are small enough to fit inside a C60 cage. This cage is nearly spherically symmetric (to 

be precise, it is icosahedral), and the spin therefore experiences a nearly isotropic environment. 

This symmetry contributes to the excellent spin coherence in these materials. While metals 

may be encapsulated in smaller cages, such as C60, C70 or C76 the solubility of these elusive 

fullerenes is very low and it is impossible to isolate them in respectable quantities. In contrast, 

EMFs with larger cages, for example C80, C82 or C84 have been isolated and thoroughly studied. 

Some of these larger fullerenes, for example C82, deviate substantially from spherical shape.    

The combination of charge transfer to the cage (allowing the electron spins to interact with the 

environment) and lower symmetry (meaning that the spins are perturbed by tumbling motion 

of the cage) make the spin lifetimes of metallofullerenes lower than the group V endohedral 

fullerenes. Figure 1 shows the structure and spin resonance spectrum of selected molecules. 

Several ways to synthesize endohedral fullerenes are known, and three techniques have 

been particularly well developed. Metallofullerenes can be made by ablating graphite that has 

been doped with the desired species. This ablation is achieved either using powerful lasers, or 

by arc discharge. This technique does not so far work for Group V endohedral fullerenes; 

instead, the molecules are synthesized using ion implantation to inject the N or P atom into an 

effusing beam of C60 molecules (Murphy, T. 1996). In all these techniques, the ratio of 

endohedral fullerene to fullerene in the product is low (typically less than 1%).  

14N@C60 3/2 2.0021 1 {5.70 G}(Pietzak 1998) 

15N@C60 3/2 2.0020 1/2 {7.98 G}(Pietzak 1998) 

31P@C60 3/2 -  1/2 49.2 G (Knapp 1998)  



4 
 

Table 1. Selected endohedral fullerenes, listing electron and nuclear spin quantum numbers, 

electronic g factor and hyperfine coupling. The nuclear spin value given for 45Sc3C2@C80 is an 

effective value due to coupling between the identical Sc atoms, each with nuclear spin I=7/2. 

Molecular isomers are labelled by roman numerals, starting with the major isomer labelled (I).

 

Figure 1. Structures of N@C60, Sc@C82 and Sc3C2@C82. The EPR spectrum of Sc3C2@C80. The number 

of resonances for each molecule is 𝑁 = 2𝐼% + 1, where 𝐼% is the sum of the nuclear spins. For example 

in Sc3C2@C80, three 𝐼 = 7/2 atoms combine to give 𝐼% = 21/2. 

 

1. Magnetic properties of EMFs. 

1.1.Nanomagnetic materials. 

The paramagnetic properties of EMFs have attracted attention due to the presence of spin 

active transition metals and rare earth metals exhibiting different hyperfine couplings (HFC) 

and the observation of ferromagnetic coupling with various functional molecules and 

substrates. Since the metal cation or the metal cluster can occupy different positions inside the 

2.04 2.02 2.00 1.98 1.96

g-valueSc3C2@C80

45Sc@C82 (I) 1/2 1.9999 7/2 3.82 G (Inakuma 2000) 

45Sc@C82 (II) 1/2 2.0002 7/2 1.16 G (Inakuma 2000) 

45Sc@C84 1/2 1.9993 7/2 3.78 G (Inakuma 2000) 

89Y@C82 (I) 1/2 2.0006 1/2 0.49 G (Kikuchi 1994) 

89Y@C82 (II) 1/2 2.0001 1/2 0.32 G (Kikuchi 1994) 

139La@C82 (I) 1/2 - 7/2 1.15 G (Yamamoto 1994) 

139La@C82 (II) 1/2 - 7/2 0.83 G (Yamamoto 1994) 

45Sc3C2@C80 1/2 1.9985 [21/2] 6.51 G (Shinohara 1994) 
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cage, different g values and HFCs should be anticipated. Examples of transition metals with 

sharp electron paramagnetic resonance (EPR) signals and long spin lifetimes are scandium, 

yttrium and lanthanum. Rare earth elements such as gadolinium and erbium have applications 

in biomedicine as contrast agents and in telecommunications, respectively. While erbium 

EMFs are appealing for optical communications because characteristic 1520 nm emission from 

the erbium ion falls within the telecommunications window, their EPR spectra are broad due 

to the location of the f-orbital electrons (Bondino 2006). Previous works debate the location of 

the spin and the effect of the rotation of the metal cluster inside the cage, with both having a 

significant influence on the resulting EPR spectrum at lower temperatures. For example, the 

two isomers of Sc@C82 and of Y@C82 exhibit different hyperfine couplings and g values 

despite the fact that the cluster is inside the same, C82, cage [Inakuma 2000]. For a 

comprehensive analysis of the magnetic properties of endohedral metallofullerenes, see the 

review by Zhao 2015. More complicated EPR spectra can be observed in scandium carbide 

Sc3C2@C80, which exhibits a unique diamond shaped EPR signal consisting of 22 lines 

(Roukala 2017). This EMF has been used for the synthesis of molecular magnetic switchable 

dyads when connected with an organic molecule bearing a nitroxide radical. [Figure 2, Wu 

2015] A similar EMF-nitroxide radical system based on a dysprosium EMF was used as a 

molecular compass with position sensitive magnetoreception ability. EPR measurements show 

that the dipole–dipole interactions depend on the orientation of the Dy3N cluster inside the 

cage. [Li 2017] 
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Figure 2. A dyad consisting of DySc2N@C80 and Dy2ScN@C80 and a nitroxide radical. 

Reproduced with permission from Wu 2016.  

The rotation of 45Sc inside the C80 cage and the dynamics of the fullerene and the 

endohedral cluster dictate the temperature dependence of the EPR spectrum. This rotation is 

found to be hindered by functionalization of the external surface. The observed temperature 

dependence is well explained by density functional theory (DFT), which predicts three-axis 

rotation of the carbide at high temperatures but only two-axis rotation at low temperatures. 

Detailed analysis of the EPR signals of scandium endohedral metallofullerenes was performed 

and presented by the Shinohara group. [Inakuma 2000] Three monometallic scandium 

incarcerating fullerenes, namely the two isomers of Sc@C82 and Sc@C84 were studied in a 

temperature range of 150 K to 270 K. Unique spin dynamics are observed in EMF clusters. 

Furthermore, the creation of a radical on the surface of EPR silent EMFs can also give rise to 

an EPR spectrum with hyperfine features. [Elliott 2013]  

Ferromagnetic interactions of endohedral fullerenes with organic molecules, such as copper 

porphyrin [Hajjaj 2011], or a metallic substrate have been investigated—Svitova et al. (Svitova 

2014) reported the formation of an inclusion complex, where La@C82 is incorporated between 

two Cu(II) porphyrin units. These studies demonstrated two different types of interactions: 

from a ferromagnetic coupling in the case of cyclo-[PCu]2 acting as the inclusion host, to a 

ferromagnetic coupling for a cage-[PCu]2 cage host. Due to the long magnetic relaxation times, 

similar to those of single-molecule magnets, some dimetallic EMFs have been considered for 

spintronics applications.  
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1.2. Magnetic fullerenes on substrates.  

With respect to their magnetic properties when EMFs form a layer on metallic substate, 

interactions between the two components might take place. As an example, Hermanns 2013 

demonstrated the coupling of a Gd3N@C80 EMF to a nickel substrate. The Gd magnetization 

is antiparallel to the Ni at low temperatures and parallel at high temperatures—the Gd atoms 

of the fullerenes coupled with a ferromagnetic alignment to each other. By X-ray magnetic 

circular dichroism (XMCD) measurements they revealed the magnetic coupling while the close 

self-assembly of the fullerenes was proven through STM images on a Cu(001) substrate. Dy2S 

is a class of endohedral metallofullerenes, synthesized using Dy2S3 as the inorganic metal 

component added in the graphite rods (Chen 2017), These EMFs exhibit permanent 

magnetization as proven by hysteresis loops while DC and AC susceptibility measurements 

were employed for determining the magnetization relaxation times. In Figure 3 we present the 

magnetization curves of the following endohedral metallofullerenes, Dy2S@C82-C3v(8), (c) 

Dy2C2@C82-Cs(6), and (d) Dy2S@C72-Cs(10528). In very low temperatures a clear hysteresis is 

observed in the curves of Dy2S@C82-Cs(6), (b) Dy2S@C82-C3v(8).  
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Figure 3. Magnetization curves for (a) Dy2S@C82-Cs(6), (b) Dy2S@C82-C3v(8), (c) Dy2C2@C82-

Cs(6), and (d) Dy2S@C72-Cs(10528). The loops were recorded at T = 1.8–5 K. Reproduced with 

permission from (Chen 2017). 

 

2. Peapods: Spin–active EMFs inside Carbon Nanotubes 

Electron paramagnetic resonance (EPR) is a powerful tool for studying and understanding 

the properties and behaviour of electron spins. Through detailed EPR analysis we can probe 

the structure, paramagnetic states and highest occupied molecular orbital (HOMO) and lowest 

unoccupied molecular orbital (LUMO) density distributions. Endohedral fullerenes give rise to 

some of the narrowest EPR lines to be detected under normal atmospheric conditions. For that 

reason, endohedral metallofullerenes may be potential candidates for quantum information 

processing devices, with EPR as a tool for controlling qubits. The incarcerated electron spins 

offer both long coherence times and the potential for controlled spin-spin interactions. 

In a carbon nanotube (CNT) peapod, fullerenes are arranged in a chain inside a nanotube. 

This offers a way to make a spin register – an array of metallofullerene spins with controlled 

interactions. Electrons delocalised on the carbon nanotube can themselves encode quantum bits 

(qubits) (Laird 2013), and could ultimately act as both a spin bus and a readout line (Benjamin 

2006). The magnetic properties depend not only on the EMF species, (Kitaura, R.2007), but 

also on their concentration inside the peapods (Figure 4, Círić, L. 2008). The EPR lines were 

deconvoluated in two components, a narrow and a broad component. In order to control the 

distance between the spin active components, C60 have been used as a spacer between La@C82 

molecules inside a single-walled CNT. Below 70 K, the gB-factor of the broad EPR component 

rapidly decreases as the relative content of the EMFs increases and vice versa for measurements 

carried out at temperatures above 70 K. Spin loss can pose drawbacks while fabricating nano-

peapods, and this should be taken into account when considering these hybrid materials as 
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potential candidates for spintronics and quantum devices. An important point to note when 

considering electron spins of EMFs for quantum applications is that all the EPR measurements 

carried out so far on fullerene spins have been performed on ensembles of molecules.  

 

 

Figure 4. (A) Shows the line width of the narrow (blue) and the broad (red) components of the 

EPR spectrum at different La@C82 concentrations. (B) Relative content of the EMF in peapods, 

along with the evolution of the gb factor of the broad ESR spectrum. Reproduced with 

permission from (Círić, L. 2008).  

 

3. Biomedical applications. 

Derivatives of the gadolinium-containing endohedral metallofullerenes (Gd-EMFs) have 

been proposed as the next generation of T1 contrast agents for 1H magnetic resonance imaging 

(Ghiassi et al., 2014). This is due to high relaxitivity, which is 10-40 times higher than 

commercial Gd-chelate contrast agents (CAs) (Li and Dorn, 2017) and allows sufficient image 

contrast at a low dose. In addition, the fullerene cage encapsulates the Gd(III) ions that would 

otherwise be toxic (Sosnovik and Caravan, 2013).  

To achieve efficient water proton relaxation we must engineer a strong dipolar interaction 

between the proton’s nuclear spin and the encapsulated gadolinium’s unpaired electrons.  Since 

the water molecules cannot directly coordinate to the Gd(III) ion, as in Gd-chelate CAs, the 

interaction must occur via a second-sphere or outer-sphere mechanism. This requires the 
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fullerene surface to be functionalised with groups containing readily exchangeable protons. 

Hence, polyhydroxylated and polycarboxylated derivatives of Gd@C60, Gd@C82 and 

Gd3N@C80 have been investigated most widely (Zhang et al., 2014). The larger the number of 

functional groups attached to the surface, the higher the observed relaxivity (Zou et al., 2015). 

Furthermore these derivatives allow the formation of aggregates by hydrogen bonding between 

molecules. Such aggregates, which have typical diameters of 30–150 nm, have much longer 

rotational correlation time than isolated molecules, giving further enhanced relaxivity (Laus et 

al., 2007). 

A number of reports have shown how the aggregation, and hence relaxivities, of Gd-EMFs 

can be altered either through the cage functionalisation or through changes to the aqueous 

environment. Dorn and co-workers made a series of polyhydroxylated Gd3N@C80 derivatives 

which also incorporated poly(ethylene glycol) (PEG) chains of varying lengths into the 

structure. Dynamic light scattering (DLS) measurements coupled with relaxivity studies 

revealed that the derivatives containing the shorter PEG chains (350/750 Daltons) formed 

larger aggregates with extremely high relaxivities, whilst those containing longer PEG chains 

(5000 Daltons) formed smaller aggregates with lower relaxivities at clinical-range magnetic 

field strengths (Zhang et al., 2010). 

In a similar fashion, Wang et al prepared two polyhydroxylated Gd@C82 derivatives 

containing differing numbers of hemiketal groups and demonstrated that the system with the 

larger number has significantly higher relaxivity (Zou et al., 2015). This was ascribed to the 

greater capacity for this system to large aggregates by hydrogen bonding, which was confirmed 

by DLS measurements. Wilson and co-workers investigated the effect of pH on Gd@C60(OH)x 

and Gd@C60[C(COOH)]10 and found relaxivity to dramatically increase as pH decreased (Tóth 

et al., 2005). This was attributed to increased aggregate stability at low pH. The same group 

also demonstrated that aggregates of the same derivatives were destroyed under conditions of 
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high salt concentration, with phosphate buffer causing the most noticeable effect (Laus et al., 

2005).  

Sun and co-workers have recently reported a graphene oxide – Gd@C82 nanohybrid in 

which the unfunctionalised Gd-EMF is deposited on graphene oxide nanosheets through non-

covalent π-π interactions (Cui et al., 2015). Interestingly, the structure was found to enhance 

proton relaxivity to an even greater extent than Gd@C82(OH)x despite the lack of exchangeable 

protons directly attached to the fullerene surface. This is apparently due to ‘secondary spin-

electron transfer’ from the Gd(III) ion through the GO nanosheet onto the hydrophilic alcohol 

and carboxyl substituents, which in turn undergo exchange with the water protons. Maximum 

relaxivity was achieved by optimising the equilibrium between the conductivity of the GO 

nanosheet and the number of proton exchange sites present (Li et al., 2016). 

Presently, efforts are being made to create multimodal imaging agents, which allow 

multiple, complementary imaging techniques to be used on a patient simultaneously, thereby 

improving diagnostic capability and accuracy.  The ease with which EMFs can be 

functionalised makes them an ideal platform to be used for the preparation of such agents. 

Shultz and co-workers reported a bimodal PET/MRI agent comprised of a 124I radiolabelled 

carboxylated and hydroxylated Gd3N@C80 derivative (Luo et al., 2012). Encouragingly the 

position and distribution of the agent within tumour-bearing rats was found to be comparable 

in both MRI and PET scans. 

  Gd-EMFs have also been conjugated to the exterior surface of nanoparticle systems to 

generate multimodal imaging agents. For example, Wang described a trimodal 

MRI/PET/photoacoustic imaging agent based on 64Cu-radiolabelled polydopamine-Gd-EMF 

core-satellite nanoparticles (Wang et al., 2017). Furthermore, the nanoparticles were loaded 

with doxorubicin (DOX), a widely used chemotherapy drug, which imparted them with 

theranostic capabilities. This was demonstrated by using a near-IR laser to induce DOX release 
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inside mice and completely eliminate tumors. Li et al. have developed a bimodal 

MR/luminescence imaging agent through the conjugation of polyhydroxylated-Gd@C82-

PCBM to silica-coated NaYF4 (Y = Yb, Er) NPs (Li et al., 2016). The agent displayed good 

relaxivity in a 7 T magnetic field, whilst a cell viability study revealed it to have minimal 

cytotoxicity and good biocompatibility.  

In addition to the preparation of multimodal imaging systems, functionalisation of Gd-

EMFs can be used to generate contrast agents with targeting capabilities. Dorn and co-workers 

recently reported a Gd3N@C80 derivative that targets gliobastoma multiforme (GBM) cells in 

mice (Li et al., 2015). This was achieved through conjugation of the amino-functionalised EMF 

with an interleukin-13 (IL-13) peptide chain, which binds to the IL-13Rα2 receptor on the 

surface of GBM cells. Furthermore, the positively charged amino groups of the fullerene were 

found to enhance the affinity of the agent for the cell surface relative to a negatively charged 

carboxylate analogue, which allowed endocytosis to occur more readily.  

 

4. Endohedral nitrogen fullerenes: towards quantum information applications. 

Quantum computers that exploit the fundamental physical laws of superposition and 

entanglement would enormously accelerate important calculations that are intractable to 

existing classical computers (Mermin2012). To make such a computer, we need physical 

objects whose quantum states can be preserved and manipulated with high precision. Electron 

spins in Group V endohedral fullerenes may be one such object (Harneit2002, Benjamin2008), 

and N@C60 has been particularly well-studied for this purpose because of its excellent quantum 

coherence and the possibility of incorporating into nanoscale electronic devices. 

A spin-based quantum computer encodes each quantum bit (qubit) in two spin energy 

levels with different 𝑀+ quantum numbers. By applying microwave bursts using the technique 

of EPR, we can create quantum superpositions of these two states; we can think of these bursts 
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as rotating the spin axis relative to the static magnetic field. The first step to creating a 

molecular qubit is to find a pair of well-defined energy levels, which requires a detailed 

understanding of the electron and nuclear spin states.  

In N@C60, the spin states are identical to those of atomic nitrogen. Three unpaired p 

electrons combine to give electron spin quantum number 𝑆 = 3/2. The resulting Hamiltonian 

is:  

𝓗 = 𝜇0𝑩𝒈𝑺 + 𝜇4𝑩𝒈5𝑰 + 𝑺𝑨𝑰 + 𝑺𝑫𝑺.                        Eq.2.1 

The first two terms describe the Zeeman coupling to the magnetic field 𝑩, with the first term arising 

from the electron spin (with spin operator 𝑺 and gyromagnetic tensor 𝒈) and the second term arising 

from the nuclear spin (with spin operator 𝑰 and gyromagnetic tensor 𝒈5). The third term describes 

hyperfine coupling between the electron and nuclear spins, parameterized by the hyperfine tensor 𝑨, 

and the fourth term describes electron spin quadrupole coupling parameterized by the zero-field 

splitting (ZFS) tensor 𝑫. Here 𝜇0	is the Bohr magneton and 𝜇0 is the nuclear magneton. 

For N@C60, it is an excellent approximation to assume spherically symmetric 

confinement, in which case the tensors in Eq. (2.1) become scalars and the zero-field splitting 

vanishes. Furthermore, the first term will always dominate over the second term, and in most 

experiments the magnetic field is set large enough that it also dominates over the third. For 

14N@C60, this leads to the energy levels shown in Figure 5(b). The resulting EPR spectrum 

(Figure 5(a)) shows three resonances, each corresponding to a different nuclear spin projection 

𝑚<. A fine scan over each resonance (Figure 5(c)) shows substructure arising partly from the 

hyperfine interaction in second order, and partly from coupling (not included in Eq. (2.1)) to 

13C nuclear spins in the cage.  

The scans in Figure 5(c) show how exceptionally sharp the EPR transitions can be in this 

material (Morton, J. J. L. 2006). This reflects the long electron spin lifetime, which is enabled 

by the structural symmetry of the molecule and the protection inside the cage (Knapp, C. 1997). 
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For quantum computing, the most important lifetime is the decoherence time 𝑇> (also called 

the transverse relaxation time (Schweiger; A. 2001)), which measures how long a quantum 

state can be preserved for. For carefully prepared solutions of 14N@C60, this time can reach as 

long as 𝑇> = 70	µs  at room temperature, or 𝑇> = 250	µs  when cooled to 170	K  

(Morton2006). This is among the longest coherence times for any molecular radical, surpassed 

only by (d20-Ph4P)2[V(C8S8)3], Remarkably, at 10 K, the value of T2 is 2 orders of magnitude 

greater than for the other solvent systems, with T2 = 675(7) µs (∼0.7 ms) in CS2.(Zadrozny, J. 

M. 2015) The electron coherence time of N@C60 appears to be ultimately limited by Orbach 

relaxation, i.e. the interaction of the electron spin with phonons in the cage. (Morton, J. J. L. 

2006, Weil, J. 2007). Even longer coherence times can be attained when the quantum state is 

transferred from the electron spins to the nuclear spins (Brown, R. M. 2011).  

Quantum information processing requires more than isolated qubits. If fullerene qubits are 

to be coupled to one another, chemical reactions are needed to rationally modify and covalently 

link ENFs. A set of chemical functionalization of ENFs has now been established (Zhou, S. 

2015). One price of functionalising the cage is that one breaks spherical symmetry, thereby 

introducing significant ZFS. This introduces drawbacks, such as extra spin relaxation paths 

(Morton, J. J. L. 2006), but also potential advantages, such as additional EPR transitions that 

allow the molecule to be used as a qubit, i.e. a system encoding more than one qubit of 

information (Gedik, Z. 2015).  

The strength of the ZFS is quantified by a traceless second-order tensor 𝑫, which could 

be expressed as a diagonal matrix in its eigenframe with elements being	𝐷FF = −𝐷/3 + 𝐸, 

𝐷II = −𝐷/3 − 𝐸 and	𝐷JJ = 2𝐷/3, where 𝐷 and 𝐸 are the ZFS parameters representing the 

axial and the non-axial component of the tensor. For typical cycloaddition products of ENFs, 

𝐷  is around 10 MHz and 𝐸  is normally smaller than 1	MHz . Compared with other 

paramagnetic molecules, the ZFS effect is typically small. In addition to ZFS, dipolar coupling 
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with a strength larger than 2.67	MHz between an N@C60 moiety and another covalently linked 

spin centre has been reported (Farrington, B. J. 2012, Zhou, S. 2016). The implementation of 

controllable dipolar coupling with ENFs paves the way towards interacting qubits, which is 

required by quantum information applications. 

 

 

Figure 5. (a) EPR spectrum of N@C60 diluted in C60 powder. (b) Energy levels and allowed 

transitions of 14N@C60 in the high field limit. For each of three possible nuclear spin alignments 

𝑚< , there is a ladder of four electron spin levels. Hyperfine coupling gives each ladder a 

different energy spacing. (c) Zoom-in for each of the three resonances (blue:𝑚< = +1, green: 

𝑚< = 0, red: 𝑚< = −1), showing the sharp linewidth and the second order hyperfine pattern. 

(Asterisks denote resonances arising from coupling to cage 13C spins.) Panels a and b from 

(Harneit, W. 2006). Panel c from (Morton, 2006). 
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5. Atomic clocks: fullerenes as frequency standards.  

Many modern technologies, such as communications and navigation, rely on precise and 

stable frequency standards (Vig 1993). For example, high frequency stability is necessary in 

communication systems to ensure that the transmitter and receiver remain synchronised. This 

is particularly important for jamming-resistant communications that work by coordinated 

hopping over different frequencies. In navigation applications, such as global navigation 

satellite system (GNSS) receivers, high-stability frequency standards could improve positional 

accuracy in signal-degraded environments (Misra 1996). The most stable clocks work by 

locking an electronic oscillator to a reference frequency provided by an atomic transition 

(Riehle 2004) as shown in Figure 6 (a). Since atomic transition frequencies are fixed by nature, 

this reduces the influence of manufacturing variation and drift and results in a highly stable and 

reproducible output frequency. Such a system is commonly called an “atomic clock”. For 

portable atomic clocks, size, weight and power (SWaP) are important parameters in addition 

to stability (Vig 1993). 

The state-of-the-art miniaturised atomic frequency standard is the chip scale atomic clock 

(CSAC) (Knappe 2004). Such a clock operates by disciplining a local oscillator to the magnetic 

resonance signal of an optically-probed alkali metal vapour, which is confined in a vacuum 

chamber. Microelectromechanical (MEM) fabrication allows construction of miniature 

vacuum chambers with integrated diode lasers and optical sensors, leading to commercially 

available atomic clocks with a total volume less than 17cm3 (Microsemi Corporation 2017). 

However, CSACs suffer long-term drifts caused by changing buffer gas pressure as the vapour 

cell ages. Moreover, further reduction of SWaP is necessary for broader adoption of portable 

atomic clocks (Lutwak 2007). Another drawback is that some applications require robustness 

against acceleration and vibration (Vig 1993), which is limited by the vacuum packaging that 

thermally isolates the vapour cell (Lutwak 2007).  



17 
 

These problems may be solvable using frequency references based on condensed-matter 

systems, which obviate the need for the vapour cell.  Proposed examples include V++ in MgO 

(White 2005), and nitrogen vacancies in diamond (Hodges 2014). However, in neither system 

has the necessary stability been demonstrated experimentally. For both these proposed 

frequency standards, the minimum resonance linewidth, and hence maximum stability, is 

limited by inhomogeneous broadening due to lattice strains.   

Here we describe an alternative condensed-matter clock material: the Group V-containing 

endohedral fullerenes (Briggs 2012).  In contrast to vapour-based clocks, which use optical 

interrogation of the spin ensemble, the proposed fullerene-based clocks use radio-frequency 

(rf) measurement of the endohedral fullerene’s EPR spectrum. As mentioned previously, 

resonances as narrow as 0.3	μT have been observed at the 𝑋 band in a carefully prepared 

sample (Morton 2006). The importance of narrow resonances for a clock can be intuitively 

understood by considering them analogous to the markings on a ruler: the sharper the 

resonances, the more precisely the frequency can be measured. 

Sharp resonances are a necessary but not sufficient condition for the frequency reference 

in an atomic clock. It is also necessary to select a transition whose frequency is insensitive to 

environmental noise (Audoin 1976). For example, all atomic clocks use “clock transitions”, 

which are resonances with the property that their frequency 𝑓 is first-order independent of 

magnetic field 𝐵: i.e. 𝑑𝑓/𝑑𝐵	 = 	0. If 𝐵 is set to the clock field 𝐵clock at which such a clock 

transition exists, then small external magnetic fields barely perturb the clock frequency. At this 

clock field, the transition frequency is fixed by the isotropic hyperfine coupling constant 𝐴.  

Such a clock transition has long been predicted for 15N@C60 (Briggs 2012). As seen from 

Figure 6 (b), at a magnetic field of approximately 8 G, two of the spin energy levels run parallel, 

implying that the frequency of the transition between them satisfies the clock condition 

𝑑𝑓/𝑑𝐵	 = 	0. Experimental verification has been challenging due to its low frequency, which 
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leads to a small spin polarisation and weak signal. Recently, the clock transition has been 

measured using a custom built low-field EPR spectrometer (Harding 2017), as shown in 

Figure 6 (d). Given advances in spectrometer miniaturisation developed for “1-chip” NMR 

(Sun 2011) a fullerene-based clock on an integrated circuit seems feasible. 

One can predict the stability of an atomic clock by considering the frequency of the clock 

transition, the observed resonance linewidth, and the signal-to-noise ratio (SNR) of the 

resonance (Riehle 2004). Current measurements on fullerene-based systems imply a stability 

that is approximately seven orders of magnitude worse than existing chip-scale atomic clocks 

(Knappe 2004). However, there is scope for improvement by spectrometer and sample 

optimisation, which could improve SNR and linewidth. The most significant improvements 

would likely come from sample purification to increase the spin density, and hence signal 

strength, or from reduction of the resonance linewidth. It is reasonable to expect an 

improvement to the linewidth, since the current value is approximately one order of magnitude 

worse than has been achieved in the literature. Furthermore, improved coherence times at the 

clock field have been observed in other systems, due to improved immunity to dipolar 

decoherence (Shiddiq 2016), which indicates a potential for reduced linewidth at the clock 

field. Therefore, a fullerene-based clock could potentially be competitive with CSACs while 

achieving reduced SWaP. Furthermore, use of 31P@C60 may permit further improvements due 

to its larger hyperfine coupling, which increases the clock transition frequency. 

For long-term clock stability, it is also necessary to suppress frequency drifts caused by 

temperature fluctuations. These arise because the hyperfine constant of N@C60 depends on 

temperature, with a relative shift of (1/𝐴)[𝑑𝐴/𝑑𝑇] ≈ 100	ppm/K (Pietzak 2002). It will be 

necessary either to stabilise the temperature of the sample cell or to compensate for this effect. 

One possibility is to offset the temperature dependence with a second control parameter such 
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as pressure (Hodges 2014). Another possibility is again to use 31P@C60, which has a weaker 

temperature dependence (Pietzak 2002). 

 

 

Figure 6. (a) Schematic of atomic clock using 15N@C60 as the frequency reference. A radio 

signal generated by a local oscillator is used to probe a 15N@C60 sample. The response of the 

sample is used for feedback to lock the frequency of the oscillator to the EPR resonance. (b) 

Low field energy levels as a function of magnetic field. The clock transition (vertical red line) 

occurs in the region where the Zeeman energy is comparable to the hyperfine coupling. (c) X-

band spectrum of 15N@C60, showing clearly narrow resonance signals. (d) Field-frequency 

map of the clock transition frequency as a function of magnetic field, demonstrating df/dB =

0 at the clock field Bclock ≈ 0.8	mT. Based on the work by Harding 2017. 
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6. Perspectives 

While the well-known drawbacks of endohedral metallofullerenes and nitrogen containing 

endohedral fullerenes such as their low production yield and tedious purification processes 

remain unanswered, recent developments in the field, including the chemically activated 

reaction atmosphere, chemical doping of the graphite rods and the Lewis acid selective 

precipitation methods, provide hope for the scaled-up production of this class of exotic 

materials. The synthesis and surface functionalization of novel dimetallic EMFs that will 

exhibit stronger magnetization can present an important milestone regarding the applications 

of these materials as also the development of phosphorus containing endohedral fullerenes for 

atomic clocks applications.  

The conclusion is that the future of research in endohedral fullerenes and their derivatives is 

looking bright! 
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