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Abstract

A processing-microstructure-performance approach is followed to study three

bearing steel samples manufactured from the most frequently used continuous

casting routes. The inclusion microstructures of the samples were altered by

varying the metallurgy and hot working conditions. Inclusion size distribution

information is obtained, showing the steel-making route that results in the high-

est cleanliness. 3D analysis of inclusion morphologies using electrolytic extrac-

tion indicates the irregularities on the surface to be favourable sites for crack

nucleation under RCF. Flat-washer and ball-on-rod tests were conducted to

study the rolling contact fatigue life of the steels, with the results from the flat-

washer testing method being more representative for bearing life. This research

suggests that early fatigue of bearings is governed by silicate fragmentation and

late fatigue by TiN inclusions.
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1. Introduction

Bearing steels subjected to extreme service environment such as high contact

pressure, high rotational speed and sometimes elevated temperature are exposed

to rolling contact fatigue (RCF), which is the key factor affecting bearing life [1].

RCF is categorised into two mechanisms: surface-induced RCF and subsurface-

induced RCF [2]. When surface-induced RCF operates, cracks initiated from the

contact surface cause pitting on the raceway [3]. Surface initiated cracks usu-

ally propagate with a shallow angle (15◦ – 30◦) to the surface if observed from

the circumferential section of a fatigued specimen [4]. During surface-induced

RCF, crack initiation is found to take place at very early stage of bearing life,

whilst the total life is mainly dependent upon crack propagation, the growth

rate of which is proved to follow a Paris-type power law [3]. The occurrence of

surface-induced failure is favoured by sliding [5], thus affected by conditions such

as surface roughness and oil film thickness [6, 7]. Nonetheless, surface-induced

RCF can be theoretically eliminated for properly lubricated bearings where

elastohydrodynamic lubrication (EHL) is achieved [5]; then subsurface-induced

RCF becomes predominant. According to Hertzian theory [8], under rolling

contact shear stress components peak at the subsurface, which is believed to be

responsible for subsurface-induced RCF [9]. In RCF tests accelerated by high

contact pressures, matrix martensite transitions such as dark etching regions

(DERs) [10] or white etching bands (WEBs) [11] are often observed, whereas

cracks initiated at non-metallic inclusions (NMIs) are more detrimental to bear-

ing life under normal bearing operation conditions [12]. NMIs acting as stress

concentrators promote crack initiation and subsequent propagation, which is

believed to be associated with early failure [13, 14]. These cracks are some-

times accompanied by white etching areas (WEAs) [15], a phase harder than
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the parent matrix and formed as a consequence of crack surface rubbing [1].

As indicated by the unique inclination of subsurface crack with respect to the

over-rolling direction (∼ 45◦), the maximum shear stress is considered to be the

responsible stress component [16, 17, 18]. Attempts [19, 20, 21] have been made

using various modelling techniques to predict subsurface crack formation, but

the complexity of this issue calls for better insight into NMIs effects. It is gen-

erally believed that bearing life is dependent upon the size and number density

of NMIs [22, 23, 24, 25], while it is further proved that inclusion-matrix bond-

ing also plays a role [26]. The type of NMIs thus becomes crucial [27]. NMIs

originate from the steel-making process and their microstructure is modified by

hot working, which causes elongation of soft inclusions (e.g. MnS), fragmenta-

tion of brittle inclusions (e.g. silicates) or the formation of voids around hard

inclusions (e.g. alumina) [28, 29, 30, 31, 27]. Conventional evaluation of NMIs

ranks the harmfulness of different types of inclusions [32], but this is just a crude

estimation.

As for bearing life, industry adopts a probabilistic approach to quantify the

factors influencing bearing life. Such approach is embodied in the following

equation [33]:

Ln = a1a2a3 · · · ai
(
D

P

)p

, (1)

where Ln is the number of cycles with n% bearing failure probability, D is the

dynamic load capacity, P is the equivalent radial load on bearings, p is an ex-

ponent that varies with bearing geometry, a1 is the reliability constant, a2 is

a constant related to the material fatigue properties and a3 is a constant re-

lated to the lubricant. Coefficients related to other aspects of bearings are also

embedded into Equation (1) as ai. The steelmaking route is implicitly incorpo-

rated in these coefficients, which are fitted to experiments, offering no insight

into the microstructural factors influencing bearing life. With the development
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of steel metallurgy and purification, modern bearing steels are able to achieve

rather high cleanliness, and hence become sensitive to those NMIs convention-

ally considered non detrimental, such as silicates and TiN [26]. Moreover, owing

to the extended life of super-clean bearing steels, the type of NMIs responsible

for subsurface-initiated RCF may alter at different life stages. In this research,

investigation was conducted here to reveal the nature of the harmfulness of

different types of NMIs throughout processing/microstructure/performance as-

pects. Super-clean bearing steels manufactured with various steelmaking routes

are studied, in order to establish a relationship between steelmaking and inclu-

sion microstructure and life.

2. Experimental

2.1. Material and manufacturing routes

The material studied in this research is 100Cr6 (SAE 52100) bearing steel.

Three batches of steel samples were produced at full industrial scale following

three most frequently used industrial steel-making routes, summarised in Figure

1, denoted Route 1, Route 2 and Route 3. Routes 1 and 3 have the same

metallurgical process (from basic oxygen furnace (BOF) to Rurhstahl Heraeus

degasser (RHD)). Upon subsequent hot working, Route 1 was hot rolled to a

reduction ratio in area of 97%, whilst Route 3 was hot rolled to a reduction

ratio in area of 93%; as for Route 2, electric arc furnace (EAF) followed by

vacuum degasser (VD) was adopted for the metallurgy, with the final hot rolling

reduction ratio in area being 86%. The final products from the three routes

were with the same dimensions, steel bars of 60 mm diameter. The actual

compositions of the samples from the three routes were confirmed by optical

emission spectroscopy and are listed in Table 1.
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Route 1

BOF – RHD

Slab

Billet (55%)

Φ60 mm bar

(97%)

Continuous casting

Blooming

Rolling

Route 2

EAF – VD

Slab

Billet (81%)

Φ60 mm bar

(86%)

Continuous casting

Blooming

Rolling

Route 3

BOF – RHD

Slab

Billet (80%)

Φ60 mm bar

(93%)

Continuous casting

Blooming

Rolling

Figure 1: Three steel-making routes employed in this research. The numbers in brackets
represent reduction ratio in area.

Table 1: Chemical composition of the investigated steels.

Route
C Cr Ni Mn Si Mo Cu P S

(wt.%) (wt.%) (wt.%) (wt.%) (wt.%) (wt.%) (wt.%) (ppm) (ppm)
1 0.95 1.50 0.02 0.01 0.27 0.01 0.02 130 20
2 0.99 1.45 0.06 0.02 0.27 0.02 0.08 150 20
3 0.96 1.44 0.02 0.01 0.26 0.01 0.02 40 20

Al Ti Ca Pb Sn As Sb Bi N O
(ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)
247 6 2 16 10 20 10 30 20.3 6.1
150 8 5 10 79 52 31 10 45.7 4.6
212 6 3 20 10 17 10 20 23.9 6.4

2.2. Evaluation of inclusions

Metallographic sections were cut for inclusion analysis according to ISO 4967

standard, with the sections being parallel to the bars’ long axis. Prior to section-

ing, the specimens were quenched and tempered for easier specimen prepara-

tion and better preservation of the inclusion microstructures. The sections were

subsequently ground with abrasive papers and polished with diamond paste

to achieve a mirror finish, adequate for scanning electron microscopy (SEM)

analysis. No etching was performed during the analysis.

The samples were analysed with an ASPEX automated SEM equipped with
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an energy-dispersive X-ray (EDX) detector. For each detected inclusion its

size, position and chemical composition were recorded and stored for further

analysis. Inclusion size was automatically converted to Feret diameter which has

a similar physical meaning to
√

area [32]. Unusually large 116.6 mm2 sections

were investigated. The inclusions’ compositions were obtained from the EDX

spectra and the following elements were considered in the analysis: Na, Mg, Al,

Si, S, Cl, K, Ca, Ti, V, Mn, Fe, Nb. All inclusions smaller than 2 µm were

excluded. Subsequently the inclusions were categosised into 6 groups according

to the following rules:

• Sulphides: Ca + Mn + S ≥ 50 at%

• Aluminates: Mg ≥ 16.7 at% and Al ≥ 33.3 at% and aspect ratio > 3

• Silicates: Si ≥ 50 at%

• Globular oxides: Al ≥ 50 at% and aspect ratio < 3

• Titanium nitrites: Ti ≥ 50 at%

• Unclassified: all remaining

By this simplified categorisation, only 13% of the inclusions remained unclassi-

fied.

In addition to the statistical analysis of inclusions, the morphologies of differ-

ent types of inclusions were also studied by electrolytic extraction. Rod samples

with a diameter of 6 mm and a height of 30 mm cut from the centre of the steel

bars. Prior to electrolytic extraction, the samples were held at 1100 ◦C for 4

h to dissolve the carbides, followed by oil quench. The electrolytic-extraction

device is schematically shown in Figure 2. The electrolyte was composed of 30

g of FeSO4, 10 g of NaCl and 20 g of C6H6Na2O7 dissolved in 1000 ml of dis-

tilled water. The electrolytic extraction was performed with a constant electric
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Power

A

Sample

(Anode)Semipermeable film 

Cathode 

Electrolyte 

Figure 2: Schematic of the electrolytic-extraction device.

current density of 0.05 A/cm2. During the electrolytic process, small inclusions

were precipitated on the surface of the steel sample while large inclusions fell

into the electrolyte and were captured by a semipermeable film. The test was

suspended after a period of time, and then the small inclusions were scraped

from the steel sample and collected along with the electrolyte containing the

large inclusions. Subsequently, the inclusions were filtered with an opening size

of 1 µm, followed by cleaning with ethanol. The dried inclusion particles were

then characterised by SEM. The composition of inclusions was determined by

EDX. The electrolytic extraction of inclusions allows for three-dimensional (3D)

characterisation of inclusions.

2.3. RCF tests

Two traditional RCF testing methods were employed to study RCF life, ball-

on-rod and flat-washer. The principles of the test rigs are schematically shown

in Figure 3. For both methods, the ring and rod specimens were cut from the

bar samples in such a way that the contact surface was perpendicular to the hot

rolling axis. Prior to the tests, The RCF specimens were first quenched from the
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Lubricant

9.52

38.5

Ring 
specimen

Rotation

Load

Grooved 
counterpiece

(a)

Rotation

Load Load

Load Load

Rod specimen
9.5

12.7

Cup

(b)

Figure 3: Schematic illustration of flat-washer (a) and ball-on-rod (b) RCF rigs. All dimen-
sions are in mm (dimensions not to scale).

austenitisation temperature of 840 ◦C to room temperature and tempered at 160

◦C for 90 min, which is a standard heat treatment for commercial martensitic

bearings. The heat treatment resulted in an average hardness of 62 HRC in

all the three cases. The surface roughness of the RCF specimens was carefully

controlled. Before RCF testing, the surface roughness (Ra) is 0.63 µm for all

ring specimens and 0.12 µm for all rod samples. The For each steel making

route, 20 flat-washer tests and 10 ball-on-rod tests were conducted. For flat-

washer, the tests were carried out under a maximum contact pressure (p0) of 4.5

GPa with a rotational speed of 1500 rpm, and for ball-on-rod under a maximum

contact pressure of 4.2 GPa with a rotational speed of 3600 rpm. All the tests

were conducted at room temperature with sufficient lubrication. BT Turbo

Oil was used as lubricant, with its density being 975 kg/m3 and its kinematic

viscosity being 24.3 mm2/s at the testing temperature. Each test was stopped

when failure (spalling) manifested as an abrupt increase in vibration (monitored

through a vibration sensor), or when 108 cycles were reached.
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2.4. Post RCF characterisation

The tracks of fatigued specimens were studied by optical microscopy (OM)

to determine the failure modes of the specimens. The tracks were cut to show

their central sections below the contact surfaces. The sections were ground with

abrasive papers and polished with diamond paste to achieve a mirror finish

before the OM investigation on the spalls. The polished sections were then

etched by 2% nital solution for further study of the microstructure.

3. Results and discussion

3.1. Inclusion evaluation results

Figure 4 presents the results from the inclusion analysis. The Feret diameter

distribution for different inclusion classes can be found in Figures 4 (a) to (f),

along with the number density and the maximum size of all classes summarised

in Figures 4 (g) and (h), respectively. According to Figure 4 (h), Routes 1 and

3 exhibit similar maximum inclusion size for all inclusion classes, especially the

conventional detrimental inclusion types, aluminates and globular oxides. This

should be attributed to the same metallurgical process in the two routes. Nev-

ertheless, silicates exhibit significantly different distribution in the three routes.

For Route 2 and 3, in Figure 4 (c), only one major inclusion size can be observed,

whilst for Route 1 a considerable amount of silicates can be seen in a wide range

of sizes, especially small sizes. This indicates silicate fragmentation in Route 1.

As for Route 2, the maximum size of silicates, globular oxides, titanium nitrides

and unclassified inclusions is different from the other two routes, given the dif-

ferent metallurgical process. Especially, the maximum size of globular oxides

and titanium nitrides is significantly larger in Route 2. It should also be noted

that Route 1 experienced the highest reduction ratio in area during hot rolling

among the three and therefore silicate fragmentation occurs.

9



2 4 6 8 10 12 14 16 18 20 22 24
0

50
100
150

2 4 6 8 10 12 14 16 18 20 22 24
0
5

10

2 4 6 8 10 12 14 16 18 20 22 24
0
5

10

2 4 6 8 10 12 14 16 18 20 22 24
0

25
50

2 4 6 8 10 12 14 16 18 20 22 24
0

10
20

2 4 6 8 10 12 14 16 18 20 22 24
0

25
50

Sulf
ide

s

Alum
ina

tes

Silic
ate

s

Glob
ula

r o
xid

es TiN

Unc
las

sifi
ed

0
2
4

Sulf
ide

s

Alum
ina

tes

Silic
ate

s

Glob
ula

r o
xid

es TiN

Unc
las

sifi
ed

0
10
20
30

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4: Size histograms of inclusions (a-f), the number density of inclusions (g) and maxi-
mum inclusion size (h). The legend given in (a) applies to all sub-figures.

Figure 5 shows the typical morphologies obtained from electrolytic extrac-

tion. The four types of inclusions which are most frequently found are presented,

and their typical size is similar, 3 – 5 µm, agreeing with the statistical analysis in

Figure 4. Nevertheless, it can be seen that the inclusions of different types vary

significantly in morphology. The MnS particle shown in Figure 5 (a) exhibits

an elliptical shape, and its smooth boundary is illustrated by the yellow curve.

Such morphology stems from the high deformability of MnS [32]. However, for

hard or brittle inclusions, irregular boundaries are frequently observed. These

irregularities are pointed out by the yellow arrows:

• The Al2O3 particle in Figure 5 (b) has numerous cavities on its surface.

• The SiO2 particle in Figure 5 (c) contains a significant cleavage indicating

fragmentation.
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• The TiN particle in Figure 5 (d) shows sharp edges around it.

Such irregularities within the inclusions, or at their interfaces with the matrix

may constitute features detrimental to bearing life.

3 μm

(a)

(c)

(b)

(d)

MnS Al2O3

SiO2 TiN

Figure 5: Morphologies of different types of inclusions obtained from electolytic extraction.

3.2. RCF testing results

Figures 6 (a) and (b) present the the failure probability plots together with

fitted Weibull distributions of the three routes from the flat-washer and ball-on-

rod testing, respectively. The Weibull parameters are estimated using the best

linear invariant estimator (BLIE) method, with the 95% confidence intervals

presented in Figures 6 (c) and (d) for the two RCF testing methods. Overall,

the lives of the samples from the ball-on-rod tests are longer than those from the

flat-washer tests, due to lower p0. As shown in Figure 6 (a), it can be seen that

a relatively significant difference in life between the three steel-making routes
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can be obtained by the flat-washer method whilst there is almost no observable

difference in life during the ball-on-rod tests (Figure 6 (b)). This indicates

that the flat-washer test is more sensitive to minor differences in material than

the ball-on-rod test for such high cleanliness steels. According to Figure 6 (a),

Route 1 exhibits the worst performance at the low probability regime, whereas

at the high probability regime, Route 2 becomes the worst of the three. Also,

Route 3 outperforms Route 2 at all regimes. Table 2 lists the L10 and L50 values

obtained from the RCF tests along with the corresponding Weibull slopes.

Route 1

Route 2

Route 3

Route 1

Route 2

Route 3

(a) (b)
Ball-on-rod (4.2 GPa)Flat-washer (4.5 GPa)

F
a
ilu

re
 p

ro
b
a
b

ili
ty

 (
%

)

F
a
ilu

re
 p

ro
b
a
b

ili
ty

 (
%

)

(c) (d)

Route 1

Route 2

Route 3

Route 1

Route 2

Route 3

Figure 6: RCF failure probability data and Weibull fitting for flat-washer tests (a) and ball-
on-rod tests (b). (c) and (d) 95% confidence intervals for the Weibull fitting of the flat-washer
test data and the ball-on-rod test data, respectively. The colors of the bound lines accord
with those of the routes.
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Table 2: L10, L50 and Weibull slopes of the tested steels from different RCF testing methods

p0 (GPa) Route L10 (cycles) L50 (cycles) β

Flat-washer 4.5
1 5.35×106 3.26×107 1.04
2 6.98×106 2.41×107 1.52
3 1.07×107 3.34×107 1.66

Ball-on-rod 4.2
1 1.76×107 3.94×107 2.34
2 1.73×107 3.45×107 2.74
3 1.18×107 3.67×107 1.67

3.3. Post RCF characterisation results

Figure 7 illustrates the fatigued tested ring and rod specimens and the cor-

responding testing tracks. On each track, there is always a significant spall

which caused the stop of the test. Optical microscopic observation of the spalls

is shown in Figure 8. Figures 8 (a) and (b) shows a spall located at the centre

of the track after 4.5 × 107 cycles on a Route 3 ring specimen. No significant

plastic deformation was found at the contact surface. Figure 8 (c) shows the

track after 5.1 × 107 cycles on a Route 2 rod specimen. In this case, numerous

small pits can be observed at the contact surface. The major spall on this track

is shown in Figure 8 (d). The dashed lines in Figure 8 (b) and (d) illustrate the

centre of the tracks where they were sectioned for crack observation.

Figure 9 (a) shows the polished centre section of the track after 1.3 × 107

cycles with a spall on a Route 3 rod specimen. The over-rolling direction (ORD)

during the test is indicated by the arrow. At the edge of the spall, the crack

propagate at an angle of ∼30◦ with respect to over-rolling direction, indicating

a surface initiated RCF mechanism. Subsurface cracks can also be found from

the spall and the crack propagation direction is often parallel to the contact

surface. Figure 9 (b) shows a magnified subsurface cracked region at the edge of

the spall after etching, consisting of a major crack and several branches. Figures

9 (c) and (d) show another cracked region of the spall before and after etch-
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Track

Spall

Rod specimen

Ring specimen

Figure 7: RCF specimens.

ing. It seems that kinking upon crack propagation follows some microstructural

features. None of the investigated cracks was accompanied by a white etching

areas.

Figure 10 (a) shows the polished centre section of a track after 4.5 × 107 cy-

cles on a Route 3 ring specimen. The spall also has a shallow crack propagation

angle, indicating a surface-induced RCF mechanism. Whereas in Figure 10 (b),

cracks propagate from the subsurface towards the contact surface. Figures 10

(c) and (d) illustrate the cracked regions of the spall after etching.

Figure 11 presents the study on crack propagation behaviour under rolling

contact fatigue. Figure 11 (a) is from a Route 2 rod specimen track after 5.1 ×

107 cycles; Figures 11 (b) and (c) are from a Route 3 rod specimen track after
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(a) (b)

Track

Spall

(c) (d)

Small -pits

Spall
Track

Figure 8: Optical microscopic images of testing tracks and spalls from flat-washer test ((a)
and (b)) and from ball-on-rod test ((c) and (d)).

5.2 × 107 cycles; Figure 11 (d) is from a Route 3 ring specimen track after 4.5

× 107 cycles. In all these optical microscopic images, crack branches can be

clearly seen under high magnification and the branches proceed following prior-

austenite grain boundaries, indicating that the prior-austenite grain boundaries

are the weakest part of the matrix.

Figure 12 (a) presents a crack formed at the subsurface of a fatigued rod

specimen. No spalling was observed on the track above this crack. This is strong

evidence showing subsurface-induced rolling contact fatigue. The propagation

path of this crack is shown in Figure 12 (b). It can be seen that this subsurface

crack also proceeds following prior-austenite grain boundaries.

3.4. Discussion
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Major crack

Branches

(a) (b)

(c) (d)

ORD ORD

ORD ORD

Figure 9: Optical microscopic images from a Route 3 sectioned rod specimen after polishing.
(a) Geometry of the spall formed after 1.3 × 107 cycles. (b) A crack parallel to the contact
surface. (c) Cracked region before etching. (d) Cracked region in (c) after etching.

As studied in the post RCF characterisation, evidence of surface-induced

crack propagation is found on the rod specimens. However, the presence of

subsurface cracks as illustrated in Figure 12 suggests that subsurface induced

fatigue mechanism also operates during the ball-on-rod tests. For flat-washer,

the circumferential sections also indicate both surface- and subsurface-induced

fatigue mechanisms operating. The effect of surface-induced RCF should be

the same on all the tests for either ball-on-rod testing or flat-washer testing, as

the surface conditions are carefully controlled to be identical. Therefore, the

differences in life between different routes should stem from the differences in

inclusion microstructure. The inclusion microstructrues of the steel routes re-

sult from the variations in metallurgy and reduction ratio. According to the

inclusion analysis, Routes 1 and 3, which were produced by the same metallur-
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(a) (b)

(c) (d)

ORD ORD

ORD ORD

Figure 10: Optical microscopic images from a Route 3 sectioned ring specimen after polishing.
(a) Geometry of the spall formed after 4.5 × 107 cycles. (b) Cracks propagating towards the
contact surface. (c) and (d) Cracked regions after etching.

gical process, have similar number density and maximum size of inclusions of all

types, whilst Route 2 is significantly different, with generally larger inclusions.

The results also indicate the BOF-RHD metallurgy method produces cleaner

products than the EAF-VD method. It is believed that the maximum size of

inclusions is the determining factor in bearing life. Referring to the RCF results

in Figure 6 (a), Route 2 exhibits the worst performance at the high probability

regime, which may be due to its largest maximum size of globular oxides and

titanium nitrides. Considering that globular oxides, mainly composed of Al2O3,

are favourable crack nucleation sites at the early and medium stages of bearing

life, the bad performance of Route 2 at high probability regime may be at-

tributed to titanium nitrides. Nevertheless, previous understanding is that TiN

do not affect RCF life [32, 4]; this could be due to titanium nitrides, although
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(a) (b)

(c) (d)

50 μm

20 μm 50 μm

50 μm

ORD ORD

ORD ORD

Figure 11: Crack branches under high magnification showing their propagating traces. (a)
Route 2 rod after 5.1 × 107 cycles. (b) and (c) Route 3 rod after 5.2 × 107 cycles. (d) Route
3 ring after 5.2 × 107 cycles.

(a) (b)
ORD

Subsurface 

crack

Figure 12: A subsurface crack formed in a Route 2 sectioned rod specimen after etching.
The test was stopped after 4.5 × 107 cycles (a) Crack location at subsurface. (b) Crack
propagation path.

with sharp edges to initiate cracks easily, do not sufficiently concentrate stress

so as to reach a critical length for their propagation. When the steel cleanli-

ness is low, other types of inclusions with incoherent interface with matrix, such
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as globular aluminates, can not only initiate cracks easily at the early stage

but also concentrate sufficient stress at their vicinity to promote propagation

[17, 27]. Hence the cracks initiated from titanium nitrides cannot even reach

the contact surface before the cracks initiated form globular aluminates already

result in failure. However, when steel cleanliness is high, the chance that the

stress affected volume meets large globular aluminates becomes much lower, and

once the test endures to a very high number of cycles (> 107 cycles) at such

high stress level (4.5 GPa), the cracks initiated from titanium nitrides may start

fast propagation, eventually leading to failure. Thus the effect of titanium ni-

trides on RCF life can be identified at such high-cycle conditions. Additionally,

surface-induced RCF occurs in all cases and becomes more probable at the high

cycle regime, which could mask the effect of TiN on life.

Another interesting result from the flat-washer tests is the bad performance

of Route 1 at the low probability regime. This can be attributed to its unique

size distribution of silicates. Owing to the largest reduction ratio in area

amongst the three routes, Route 1 is the only one exhibiting silicate fragmen-

tation. Silicate fragments cannot form coherent interfaces with the matrix and

should be regarded as voids during RCF [18]. Moreover, silicate fragmentation

results in a high number density of such voids which could be favourable crack

nucleation sites. The results indicate that silicate fragmentation controls early

failure of bearings.

As for the ball-on-rod tests, no significant difference between the Weibull

curves of the three routes can be detected by this method. This may be due

to the failure mode of the tests. The failure mode of RCF tests is indicated by

the value of the Weibull slope (β). It is generally thought that for β ∈ [1.5; 2.5]

the failure mode is likely to be fatigue, and for β ∈ [3; 4], the failure mode is

likely to be wear, tear or corrosion [34]. The typical β value for ball bearings is
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about 1.5 [35]. According to Table 2, the results from the flat-washer tests are

more representative for bearing fatigue, and the large β values from the ball-

on-rod tests indicate that surface-induced fatigue mechanism is predominant

in controlling life. Comparing the two RCF testing methods, it seems that

the ball-on-rod testing method is less sensitive to minor differences in inclusion

microstructure of different bearing steels. This could be due to the difference in

stress-affected volume in the two methods. As calculated from Hertzian theory

[8], The stress-affected volume in flat-washer testing is about 3.5 times larger

than of ball-on-rod testing, which means the expected number of inclusions

encountered per unit time is much higher in the former case. Moreover, the

elastohydrodynamic lubrication conditions for the two methods in this research

are assessed by λ, the ratio between the minimum lubricant film thickness and

the sample roughness [36], with the former determined by contact pressure,

contact geometry and lubricant properties. In this research, for the flat-washer

method, the minimum oil film thickness is 0.122 µm and λ = 1.2; for the ball-on-

rod method, the minimum oil film thickness is 0.087 µm and λ = 0.9. According

to the criterion [1], when λ < 1, specimen undergoes partial metal to metal

contact with ball; when 1 < λ < 3, the degree of metal to metal contact is

limited; when λ > 3, metal to metal contact is eliminated. Therefore, in this

research, the metal to metal contact between specimen and ball occurs under

both methods, but the ball-on-rod method is more prone to surface-induced

RCF, which could be another reason for its poor sensitivity to the difference in

inclusion microstructures. Although such minor difference from the ball-on-rod

tests is not evident using the Weibull method, an alternative statistical method

is adopted. In Fiugure 13, the percentage of failed tests grouped into three

stages is presented for both methods. For the flat-washer method, the early

stage is defined to be < 107 cycles, the medium stage 107 – 5 × 107 cycles and
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the late stage > 5 × 107 cycles. For the ball-on-rod tests, due to the lower

contact pressure level, the early stage is defined to be < 2 × 107 cycles, the

medium stage 2 × 107 – 6 × 107 cycles and the late stage > 6 × 107 cycles.

The results clearly show that in both cases, Route 2 displays a shorter life as

it led to the smallest number of samples failed during the RCF tests at the

late stage. The ball-on-rod tests indicate that Routes 1 and 3 give the exactly

same result in Figure 13, but the flat-washer tests reveals that Routes 1 and 3

have the same probability to fail at the late stage but Route 3 has the lower

probability to fail at the early stage.

Route 1

Route 2

Route 3

(a) (b)

Ball-on-rod (4.2 GPa)Flat-washer (4.5 GPa)

Figure 13: Percentage of failed RCF tests grouping into three stages. (a) Flat-washer tests,
the early stage < 107 cycles, the medium stage 107 – 5 × 107 cycles and the late stage > 5
× 107 cycles. (b) Ball-on-rod tests, the early stage < 2 × 107 cycles, the medium stage 2 ×
107 – 6 × 107 cycles and the late stage > 6 × 107 cycles.

Furthermore, the stress state under RCF was calculated based on Hertzian

theory [8]. Surface friction is not taken into consideration for the calculation

due to the difficulty in measuring the friction coefficient. Figures 14 (b) and

(d) show the distribution of von Mises stress (σVM ) at the subsurface for the

flat-washer method and the ball-on-rod method, respectively. In comparison to

the spalls from the two methods, the depth of the spalls agrees with where the

maximum σVM is achieved, confirming the subsurface-induced fatigue mecha-

nism operating in both cases. It should be noted as well that regardless of p0,
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the maximum σVM under ball-on-rod is closer to the contact surface than that

under flat-washer testing. Although the presence of surface friction may alter

the symmetry of the stress field, the depth of maximum σVM is almost not

affected.

(a)

(c)

(b)

(d)

200 μm

200 μm

130 μm

64 μm

σVM (GPa)

σVM (GPa)

Figure 14: Stress state calculated for RCF tests. (a) and (c) Optical microscopic images of
the geometries of the spalls from ring and rod specimens, respectively. (b) and (d) Calculated
von Mises stress distribution for ring and rod specimens, respectively. Note surface friction is
not taken into consideration for the calculation.

Finally, it is worth noticing that no microstructrual alterations (white etch-

ing areas, dark etching regions or white etching bands) [16, 10] were found in

any fatigued specimens from this research. This could be due to the low RCF

testing temperature which is insufficient to activate effective carbon-dislocation

interaction for strain-induced carbon redistribution [37, 38, 39].

4. Summary

Super-clean 100Cr6 bearing steel bar samples manufactured at full industrial

scale following three most frequently used routes (Routes 1, 2 and 3) have been

systematically studied. A processing-microstructure-performance procedure is

employed. The key points are summarised as follows:
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• The maximum size of inclusions of different types is mainly determined by

the metallurgic process while the subsequent hot working affects their size

distribution. The largest size of globular oxides and titanium nitrides is

found in Route 2 (EAF-VD wit 86% reduction ratio in area) and silicate

fragmentation is found in Route 1 (BOF-RHD wit 97% reduction ratio in

area).

• Electrolytic extraction was conducted to study the morphologies of differ-

ent types of inclusions in 3D. MnS particles are found with a smooth pro-

file and are therefore not detrimental to bearing component life, whereas

Al2O3 particles, TiN particles and silicates have obvious irregularities on

the surface, acting as favourable sites for crack nucleation.

• RCF tests were carried out using flat-washer and ball-on-rod methods.

The results were analysed by Weibull distribution and post RCF charac-

terisation was conducted as well. Although both surface- and subsurface-

induced RCF mechanisms operate in both RCF testing methods, it is

found that the flat-washer method is more sensitive to minor differences

in inclusion microstructure. Route 1 (BOF-RHD wit 97% reduction ra-

tio in area) exhibits the worst performance at the low failure probability

regime and Route 2 (EAF-VD wit 86% reduction ratio in area) exhibits

the worst performance at the high probability regime.

• Crack propagation under RCF in bearing steels follows the prior-austenite

grain boundaries, which are the weakest part of the matrix with the great-

est misorientation .

• Different from previous understanding on the effects of TiN inclusions and

silicates, this research suggests that early fatigue of bearings is governed

by silicate fragmentation and late fatigue by TiN inclusions. The presence
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of surface-induced RCF may mask the effect of TiN at the high probability

regime.
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