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Families of Covariance Functions
for Bivariate Random Fields on Spheres

Moreno Bevilacqua,1 Peter Diggle,2 and Emilio Porcu 3

Abstract

This paper proposes a new class of covariance functions for bivariate random fields on spheres,
having the same properties as the bivariate Matérn model proposed in Euclidean spaces. The
new class depends on the geodesic distance on a sphere; it allows for indexing differentiability
(in the mean square sense) and fractal dimensions of the components of any bivariate Gaussian
random field having such covariance structure. We find parameter conditions ensuring positive
definiteness. We discuss other possible models and illustrate our findings through a simulation
study, where we explore the performance of maximum likelihood estimation method for the
parameters of the new covariance function. A data illustration then follows, through a bivariate
data set of temperatures and precipitations, observed over a large portion of the Earth, provided
by the National Oceanic and Atmospheric Administration Earth System Research Laboratory.
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1 Introduction

1.1 Context

The paper deals with modeling, inference and prediction for bivariate Gaussian random fields defined

on the unit sphere S2 = {x ∈ R3, ‖x‖ = 1}. The reason for the interest in this geometry is given

by the increasing availability of multivariate data collected over the whole planet, or a big portion

of it. For instance, monitoring several georeferenced variables is a common practice in a wide range

of disciplines such as climatology and oceanography (Reinsel et al., 1981; Di Lorenzo et al., 2014;

Nychka et al., 2015; Combes et al., 2017; Edwards et al., 2019).

Our approach considers the observations as the partial realization of a bivariate Gaussian random

field, denoted as Z = {Z(x) = (Z1(x), Z2(x))> : x ∈ S2}, where > is the transpose operator. Gaus-

sianity assumption plays a central role in many scientific fields such as atmospheric, environmental

and geological sciences, and provides a building block for non-Gaussian random fields (Alegŕıa et al.,

2017). The components Zi, i = 1, 2, for the vector Z are called scalar random fields.

Let θ(·, ·) : S2 × S2 → [0, π] be the geodesic distance, defined as

θ(x,y) = arccos(x>y), x,y ∈ S2.

We focus on the analysis of geodesically isotropic (Porcu et al., 2016; Alegŕıa et al., 2019) co-

variance functions C : [0, π] → R2×2, being matrix valued mappings, whose elements are defined

as Cij(θ(x,y)) = cov{Zi(x), Zj(y)}, i, j = 1, 2. For the reminder of the paper, we always assume

pointwise continuity for the elements Cij of the matrix-valued mapping C. Also, we use θ instead of

θ(x,y) for simplicity.

The mapping C(θ) must be positive definite, which means that

n∑

`=1

n∑

r=1

a>` C(θ(x`,xr))ar ≥ 0, (1)

for all positive integer n, {x1, . . . ,xn} ⊂ S2 and {a1, . . . ,an} ⊂ R2. An alternative modeling strategy

on the function C might be based on the use of the chordal distance, being an approximation of the
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geodesic distance θ. The constructive criticism expressed in Banerjee (2005) , Gneiting (2013) and

Porcu et al. (2016) on the use of such a metric motivates us to build models that depend exclusively

on geodesic distance. Alternatively, one might consider models based on Euclidean distances coupled

with some map projection, but such models have been shown by Porcu et al. (2018), through sim-

ulation, to be outperformed by models based on geodesic distance in terms of maximum likelihood

(ML) estimation of the scale parameter.

1.2 Literature Review

Multivariate covariance functions in Euclidean spaces have become ubiquitous and we refer the reader

to Genton and Kleiber (2015) for a detailed account. Yet, the literature on multivariate covariance

models on spheres has been sparse, with the exceptions of Porcu et al. (2016), Alegŕıa and Porcu

(2017) and Alegŕıa et al. (2019).

Some construction principles might be adapted from Euclidean spaces. Alegŕıa et al. (2019)

give an account on how to adapt methods on Euclidean spaces to the sphere. For instance, the

linear model of coregionalization (Wackernagel, 2003) is based on representing any component of the

bivariate field Z, as a linear combination of latent, uncorrelated fields. The constructive criticisms in

Gneiting et al. (2010) and Daley et al. (2015) motivate us not to propose this model on the sphere. For

instance, the smoothness of any component of the multivariate field amounts to that of the roughest

underlying univariate process. Moreover, the number of parameters can quickly become massive

as the number of components increases. Instead, one might resort to the scale mixture techniques

proposed in Porcu and Zastavnyi (2011) to create bivariate covariance functions. Some examples

will be provided subsequently. Latent dimension approaches (Porcu et al., 2006; Apanasovich and

Genton, 2010; Porcu and Zastavnyi, 2011) might also be easily adapted to the sphere. Finally, Alegŕıa

et al. (2019) call the following construction principle multivariate parametric adaptation: let p be a

positive integer. Let {C(·;λ) : [0, π] → R, λ ∈ Rp} be a parametric family of geodesically isotropic

univariate correlation functions (C(0;λ) = 1) indexed by a parameter vector λ = (λ1, . . . , λp)
>. Call
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λij = (λij,1, . . . , λij,p)
>, i, j = 1, 2 four parameter vectors in Rp. Then, define C : [0, π] → R2×2

through

C(θ) = [Cij(θ)]
2
i,j=1 , θ ∈ [0, π], i, j = 1, 2,

with elements Cij defined as

Cij(θ) = σiiσjjρijC(θ;λij), θ ∈ [0, π], i, j = 1, 2, (2)

where σ2
ii is that variance of the ith component of the bivariate random field, where ρ12 is the colocated

correlation coefficient. Thus, we can write ρij in the equation above because ρii = 1 by construction.

In Euclidean spaces this strategy has been adopted by Gneiting et al. (2010), Apanasovich et al.

(2012) and by Daley et al. (2015).

Let λ = (α, ν)>, with α and ν being strictly positive. Then, Gneiting et al. (2010) have coupled

the construction (2) with the Matérn family, so that

Cij(θ) = σiiσjjρijMαij ,νij(θ) = σiiσjjρij
21−νij

Γ(νij)

(
θ

αij

)νij
Kνij

(
θ

αij

)
, θ ∈ [0, π], (3)

where αij are scaling parameters and where the parameters νij index differentiability at the origin,

and consequently the differentiability, in the mean square sense, of the associated Gaussian random

field. Here, Kν is the McDonald function (Abramowitz and Stegun, 1970). Unfortunately, Theorem

7 in Gneiting (2013) implies that, in the univariate case (a scalar valued random field) the function

in Equation (3) is positive definite only under a very severe restriction on the smoothing parameter

ν (ν ∈ (0, 1/2]), implying that the Matérn class on the sphere is valid only for the case of very

rough processes. This results in a considerable drawback when modeling spatial data on the sphere.

Apparently, any bivariate structure of the type (2) coupled with a Matérn choice would inherit such

a restriction.

An alternative model can be obtained by coupling the construction (2) with the Generalized Wendland

class, Wα,ν,µ (see Bevilacqua et al., 2019, with the references therein, for a recent account) defined,

for ν = 0, as

Wα,0,µ(θ) =

(
1− θ

α

)µ

+

, θ ∈ [0, π], (4)
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and, for ν > 0, as

Wα,ν,µ(θ) =
1

B(2ν, µ+ 1)

∫ 1

θ/α

u

(
u2 −

(
θ

α

)2
)ν−1

Wα,0,µ(u) du, θ < α, θ ∈ [0, π] (5)

where 0 < α < π implies that the covariance is compactly supported and (x)+ denotes the positive

part of the real number x. For both cases, µ is strictly positive. The parameter ν ≥ 0 has the

same role as the smoothness parameter in the Matérn class and the compact support can lead to

considerable computational benefits when handling the associated sparse covariance matrix (Furrer

et al., 2006). Positive definiteness of the Generalized Wendland class on Sd is an open problem. For

the special cases ν = k, a nonnegative integer, positive definiteness is guaranteed when µ > k+ 2 on

a three dimensional sphere (and, consequently, on S2; see Gneiting, 2013). In this case Wα,k,µ can be

written as:

Wα,k,µ(θ) =

(
1− θ

α

)k+µ

+

Pk
(
θ

α

)
, θ ∈ [0, π], k = 0, 1, 2, . . . (6)

where Pk is polynomial of degree at most k. The Wendland class has been used as a radial function in

d-dimensional Euclidean spaces Rd: Wendland (1995) showed that the polynomial degree k is minimal

for given space dimension d and smoothness 2k. Daley et al. (2015) have coupled the construction

(2) with the family (6), that is Cij(θ) = σiiσjjρijC(θ;λij) = σiiσjjρijWαij ,νij ,µij(θ), θ ∈ [0, π].

1.3 Motivation and Our Contribution

The severe restriction of the smoothing parameter ν in the Matérn class results in a very limited

appeal for a bivariate construction (2) based on Matérn functions. For univariate random fields, this

has already been put as an open problem by Porcu et al. (2018), and then solved by Alegŕıa et al.

(2018), who proposed the so called F = Fτ,α,ν family of functions, defined through the identity

Fτ,α,ν(θ) =
B(α, ν + τ)

B(α, ν)
2F1(τ, α, α + ν + τ ; cos θ), θ ∈ [0, π], (7)

where τ, α and ν are strictly positive parameters and where 2F1 is the Gauss Hypergeometric function

2F1(a, b, c;x) =
∞∑

k=0

(a)k(b)k
(c)k

xk

k!
, |x| < 1,
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with (·)k being the Pochhammer symbol. Finally, B(·, ·) is the Beta function (Abramowitz and

Stegun, 1970). Alegŕıa et al. (2018) show that (7) is k times differentiable at the origin if and only if

bν/2c > k, for any τ, α, and where bxc denotes the largest integer being smaller than x ∈ R. Further,

they show that the F family allows to index fractal dimension through the parameter ν. Also, a

wealth of special cases that can be written in closed form is available. Thus, the F class shares all

the properties of the Matérn class on planar surfaces and becomes a reference for spatial analysis of

isotropic Gaussian fields on spheres. Further, Alegŕıa et al. (2018) show how to extend this isotropic

construction to an axially symmetric covariance, a natural property for the analysis of climate data,

where nonstationarities over latitude are typically encountered.

This paper proposes bivariate covariance models based on the multivariate parametric adaptation

(2) coupled with the choice Cij(·) = σiiσjjρijC(·;λij) = σiiσjjρijFτij ,αij ,νij , the F family in Equation

(7), for λ = (τ, α, ν)>. Practical parameterizations will be discussed as well. A simulation study

in Section 3 explores the performance of the ML estimation method when estimating the involved

parameters. Further, Section 4 illustrates a bivariate data set of temperature and precipitation,

observed on a large portion of the Earth, using the bivariate F model. The paper concludes with

discussion.

2 Results

We start with the main result of the paper, which shows the positive definiteness of the bivariate

construction proposed subsequently. Some notation is needed. For any positive integer p and vectors

a, b ∈ Rp, we write a = b to denote that ak = bk, k = 1, . . . , p.

Theorem 2.1 Let λij = (αij, νij, τij)
>, i, j = 1, 2 be vectors of strictly positive parameters. Consider

the model in Equation (2), with

Cij(θ) = σiiσjjρijC(·;λij) = σiiσjjρijFτij ,αij ,νij(θ), θ ∈ [0, π], (8)
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with λ12 = λ21. Let τ12 ≤ min{τ11, τ22}. If, either,

(A) Scale mixture based conditions:

1. α12 = 1
2

(α11 + α22);

2. ν11 + ν22 ≤ 2ν12;

3. |ρ12| ≤ B(α12,ν12)

(B(α11,ν11)B(α22,ν22))
1/2 ,

or

(B) Spectral conditions:

1. α12 ≤ min{α11, α22};

2. ν12 ≥ max{ν11 + (α11 − α12) + (τ11 − τ12), ν22 + (α22 − α12) + (τ22 − τ12)};

3. |ρ12| ≤ B(α12,ν12)

(B(α11,ν11)B(α22,ν22))
1/2

B(α11,ν11+τ11)1/2B(α22,ν22+τ22)1/2

B(α12,ν12+τ12)
.

Then, the mapping C : [0, π]→ R2×2 with elements Cij as in (8), is a geodesically isotropic matrix–

valued covariance mapping associated with a Gaussian random field Z defined over S2.

2.1 Other Models

In the following we detail on how to construct, within the framework of multivariate parametric

adaptation, alternative models to the bivariate F family. Lemma A.2 proves that, for λ̃ij = (δij, τij)
>

and for the model in Equation (2), with

Cij(θ) = C(·; λ̃ij) = σiiσjj ρ̃ijNδij ,τij(θ), θ ∈ [0, π],

with λ̃ij = λ̃ji and equality intended as pointwise, and with Nδ,τ defined as

Nδ,τ (θ) =

(
1− δ

1− δ cos θ

)τ
, θ ∈ [0, π], (9)

positive definiteness is attained provided
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1. τ12 ≤ min(τ11, τ22) and δ12 ≤ min(δ11, δ22);

2. |ρ̃12| ≤ (1−δ11)τ11/2(1−δ22)τ22/2
(1−δ12)τ12 .

Other models can be adapted from Euclidean spaces by mimicking the scale mixture in Lemma A.3:

Cij(θ) = σiiσjjρij

∫ ∞

0

C(θ; ξ)Gij(ξ)dξ, ∈ [0, π], (10)

where C(·; ξ) is positive definite on S2 for all ξ, and where the matrix G(ξ) having elements gij(ξ)

is positive definite for any fixed ξ. Some technical conditions might be needed for (10) to be well

defined. To make some examples,

(I) A Bivariate Wendland structure. Let Wα,k,µ as defined in Equation (6). Then,

C(θ) =
[
σiiσjjρijWαij ,k,µij(θ),

]2
i,j=1

, θ ∈ [0, π],

is obtained by considering the parametric restrictions in Theorem 1 of Daley et al. (2015).

Notice that when k = 0, then P0 in Equation (6) is identically equal to 1. For k = 1, P1(θ) =

(1 + (µ+ 1)θ/α).

(II) A Bivariate Exponential Model. Using (I) with the model Wα,0,µ we have that the model

C(θ) =
[
σiiσjjρijWn/αij ,0,n(θ),

]2
i,j=1

, θ ∈ [0, π],

for n a positive integer, is a valid model under the relevant conditions as in Theorem 1 of Daley

et al. (2015). Hence, the model

C(θ) =
[
σiiσjjρij lim

n→∞
Wn/αij ,0,n(θ),

]2
i,j=1

=
[
σiiσjjρij exp(−αijθ),

]2
i,j=1

, θ ∈ [0, π],

is a valid model under the constraints on the parameters αij coming from Theorem 1 of Daley

et al. (2015).
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Porcu et al. (2016) have proposed other bivariate models based on scale mixtures. None of the

examples proposed there (see their table 2) allow to index differentiability at the origin and/or

fractal dimension. Further, some parametric forms are valid only under some severe restriction on

the parameters.

Other models might be obtained on the basis of spectral conditions. For instance, let us consider the

sine power model (Soubeyrand et al., 2008), defined by

Sα(θ) = 1−
(

sin
θ

2

)α
, θ ∈ [0, π],

where α ∈ (0, 2] (for α = 2 the model is semi-positive definite only). Such a model is non differentiable

at the origin when α ∈ (0, 2) and infinitely differentiable when α = 2. Using the arguments in

Appendix A.2 in Soubeyrand et al. (2008) in concert with the proof of Assertion (B) of Theorem

2.1, it is easy to show that the bivariate model with elements

Cij(θ) = σiiσjjρijSαij(θ), θ ∈ [0, π],

is positive definite if α12 ≥ max{α11, α22} and ρ212 ≤ α11α22/α
2
12.

2.2 Practical Choices and Parameterizations

Alegŕıa et al. (2018) have shown some identifiability issue with the F class. Such a problem can be

circumvented through a different parameterization. We follow Alegŕıa et al. (2018) and consider the

parameterization

C(θ) = [σiσjρijF1/αij ,1/αij+0.5,νij(θ)]
2
i,j=1, (11)

which allows us to identify the parameters αij > 0 as correlation ranges. The conditions for

positive definiteness in Theorem 2.1 are then changed to, respectively:

(A) Scale mixture conditions:

1. α12 = 2 α11α22

α11+α22
;
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2. ν11 + ν22 ≤ 2ν12;

3. |ρ12| ≤ B(1/α12+1/2,ν12)(
B(1/α11+1/2,ν11)B(1/α22+1/2,ν22)

)1/2 .

(B) Spectral Conditions:

1. α12 ≥ max(α11, α22);

2. ν12 ≥ max{2(1/α11 − 1/α12) + ν11, 2(1/α22 − 1/α12) + ν22};

3. |ρ12| ≤
B( 1

α12
+ 1

2
,ν12)

B( 1
α12

+ 1
2
, 1
α12

+ν12)
×
(
B( 1

α11
+ 1

2
, 1
α11

+ν11)B( 1
α22

+ 1
2
, 1
α22

+ν22)

B( 1
α11

+ 1
2
,ν11)B( 1

α22
+ 1

2
,ν22)

) 1
2

.

Note that when α11 = α22 = α12 and ν11 = ν22 = ν12 then in both cases the condition on the

colocated parameter is |ρ12| ≤ 1, as expected.

3 Simulation Study

The main goal of this section is to analyze the performance of the ML method for the bivari-

ate F covariance model estimation. Let xi, i = 1, . . . , N be distinct points of S2, set Zk;N =

(Zk(x1), . . . Zk(xN))>, k = 1, 2 and let ZN = (Z>1;N ,Z
>
2;N)> be a partial realization from a zero mean

bivariate Gaussian random field with bivariate F covariance model, under the parameterization given

in Section 2.2.

The log-likelihood, up to an additive constant, can be written as

lN(φ) = −1

2
log |CN(φ)| − 1

2
Z>N [CN(φ)]−1ZN , (12)

whereCN(φ) := [Cij]
2
i,j=1 withCij =

[
σiiσjjρijF1/αij ,1/αij+0.5,νij(θ(xl,xm))

]N
l,m=1

and φ = (σ2
1, σ

2
2, ρ12, α, ν)>

or φ = (σ2
1, σ

2
2, ρ12, α11, α22, α12, ν11, ν22, ν12)

> depending on whether a separable (i.e., ν = ν11 = ν22 =

ν12 and α = α11 = α22 = α12) or a nonseparable bivariate F covariance model is considered.

Scenario I considers N = 200 points being uniformly distributed on the unit sphere, and sets

σ2
1 = σ2

2 = 1, α = 0.3, ρ12 = 0.1, 0.4, 0.7 and ν = 0.5, 2.5. This setting corresponds to a continuous,
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non-differentiable (ν = 0.5) and once differentiable (ν = 2.5) bivariate random field respectively,

with increasing positive correlation between the components of the bivariate Gaussian field. We

simulate, with Cholesky decomposition, 500 realizations and perform ML estimation by maximizing

the function (12) with respect to φ. Table 1 depicts bias and mean square error for each parameter,

and Figure 1 reports the centered boxplots of the ML estimates when ρ12 = 0.4.
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Figure 1: Centered boxplots of ML estimates, under Scenario I, when σ2
1 = 1, σ2

2 = 1, ρ12 = 0.4,

α = 0.3, and ν = 2.5 (from left to right).

Increasing the smoothness parameter leads to a larger variability for the variances parameters and

a smaller variability for the scale parameters. Moreover, the variability of the colocated correlation

parameter is not affected by the values of the smoothness parameters. This is consistent with the

results in Bevilacqua et al. (2015) which show that the asymptotic variance of the ML estimator

of ρ12, under increasing domain asymptotics, does not depend on spatial distance irrespectively of
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the type of bivariate model considered. Finally, increasing ρ12 does not affect the variability of both

variance and scale parameters.

Scenario II considers the same number and location of points on the sphere for Scenario I. We

consider a nonseparable F covariance model by fixing σ2
1 = σ2

2 = 1, α11 = 0.3, α22 = 0.28, α12 = 0.3,

ν1 = 0.5, ν2 = 2.5, ν12 = 3.1 and ρ12 = 0.2. Marginal and cross-covariances are shown in Figure 3

(a). Note that, under this setting, parameters match the spectral conditions (B) given in Section

2.2.

According to the mixing conditions (A) in Section 2.2, we consider another parameter setting by

fixing σ2
1 = σ2

2 = 1, α11 = 0.25, α22 = 0.28, α12 = 0.264, ν1 = 0.5, ν2 = 2.5, ν12 = 1.5 and ρ12 = 0.5.

For both cases, we obtain a bivariate random field with the first and second component being

non differentiable, and once mean square differentiable, respectively. This can be clearly appreciated

from Figure 3 (b) and (c) where a partial realization defined on a portion of the planet Earth of a

bivariate Gaussian random field, under the first setting of Scenario II, is depicted.

For both settings of Scenario II, we simulate with Cholesky decomposition 500 realizations, and we

perform ML estimation maximizing the function (12) with respect to φ, while keeping fixed the cross

scale and cross smoothness parameters α12 and ν12. Table 2 depicts bias and mean square error for

each parameter under both settings and Figure 2 reports the centered boxplots of the ML estimates

under the second setting. The estimates are unbiased, and first setting shows larger variability than

the second setting, owing to a different magnitude of the spatial scale parameters.

The simulations and ML estimates of the bivariate F model have been performed using an up-

coming version of the R package GeoModels (Bevilacqua and Morales-Oñate, 2018).

4 Data Illustration

In this section, we apply the proposed bivariate F model to a data set of temperature and precipita-

tion. The original dataset contains measurements of monthly means (from January 1948) of surface

air temperatures and precipitable water content from the National Oceanic and Atmospheric Adminis-
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Figure 2: Centered boxplots of ML estimates, under Scenario II, when σ2
1 = 1, σ2

2 = 1, ρ12 = 0.5,

α11 = 0.25, α22 = 0.28, ν11 = 0.5 and ν22 = 2.5 (from left to right).

ρ12 = 0.1 ρ12 = 0.4 ρ12 = 0.7

ν = 0.5 ν = 2.5 ν = 0.5 ν = 2.5 ν = 0.5 ν = 2.5

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

σ̂2
1 −0.00537 0.01741 0.00021 0.05721 −0.00535 0.01740 0.00026 0.05725 −0.00533 0.01740 0.00002 0.05721

σ̂2
2 −0.00068 0.01765 0.00552 0.06145 −0.00015 0.01834 0.00678 0.06274 −0.00100 0.01893 0.00615 0.06283

ρ̂12 0.00107 0.00543 0.00144 0.00537 −0.00051 0.00396 −0.00014 0.00391 −0.00125 0.00147 −0.00103 0.00145

α̂ 0.01129 0.00724 0.00254 0.00318 0.01128 0.00723 0.00254 0.00318 0.01128 0.00723 0.00253 0.00318

ν̂ 0.01174 0.01082 0.04282 0.10681 0.01180 0.01082 0.04283 0.10687 0.01185 0.01087 0.04290 0.10688

Table 1: Bias and MSE when estimating with ML a separable bivariate F model (Scenario I). True

parameters values are σ2
1 = σ2

1 = 1, α = 0.3, ν = 0.5, 2.5, ρ12 = 0.1, 0.4, 0.7.
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1 2

Bias MSE Bias MSE

σ̂2
1 0.00426 0.02300 0.00042 0.01457

σ̂2
2 0.02408 0.08106 −0.00105 0.04101

ρ̂12 −0.01427 0.01556 0.00293 0.00352

α̂1 0.02205 0.01488 0.00763 0.00481

α̂2 0.00785 0.00467 −0.00044 0.00202

ν̂1 0.03044 0.03097 0.02763 0.02191

ν̂2 0.04697 0.17188 0.05296 0.09732

Table 2: Bias and MSE when estimating with ML a nonseparable bivariate F model under the first

and second setting of Scenario II. True parameters of first setting are σ2
1 = σ2

2 = 1, α11 = 0.3,

α22 = 0.28, α12 = 0.3, ν1 = 0.5, ν2 = 2.5, ν12 = 3.1 and ρ12 = 0.2. True parameters of second setting

are σ2
1 = σ2

2 = 1, α11 = 0.25, α22 = 0.28, α12 = 0.264, ν1 = 0.5, ν2 = 2.5, ν12 = 1.5 and ρ12 = 0.5.
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Figure 3: From left to right: the bivariate F model with σ2
1 = σ2

2 = 1, ρ12 = 0.2, α11 = 0.3,

α22 = 0.28, α12 = 0.3 and ν1 = 0.5, ν2 = 2.5 ν12 = 3.1. A realization of a bivariate Gaussian random

field on the planet Earth with the bivariate covariance models depicted in (a).
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tration (NOAA) Earth System Research Laboratory (data are downloaded from www.esrl.noaa.gov).

Temperatures are measured in Kelvin degrees and precipitable water content is in kg/m2. Both vari-

ables are observed with a spatial resolution of 2.5 × 2.5 degrees of longitude and latitude. To make

ML estimation feasible, we select a subset of the data, and in particular we focus on December 2006

and in the region with longitudes between 50 and 150 degrees of latitudes between −50 and 0 degrees.

The resulting dataset consists of 506 observations (253 for each variable).

Following Li and Zhang (2011), we first detrend the data using splines to remove the cyclic

pattern of both variables along the longitude and latitude directions, and then regard the residuals

as a realization from a zero mean bivariate Gaussian random field. In Figure 4, we show the boxplots

of both the original data set and the associated residuals for the temperature and precipitation data,

in terms of latitudes. It becomes apparent how the detrending technique alleviates considerably

the effect of latitude on data. Moreover, Figure 4 depicts the normal quantile-quantile plot of the

residuals for the temperature and precipitation data. The assumption of Gaussianity in both cases

seems quite reasonable.

We consider three bivariate separable models from the F , Wendland, and Matérn classes. Specif-

ically, we consider two separable models (F and Wendland) using the great circle distance, θ, and

a separable Matérn model using the chordal distance defined as dCH = 2 sin(θ/2), that is (note: B
stands for bivariate and S stands for separable):

BWS(θ) = [σiiσjjρijWα,6,µ(θ)]2i,j=1,

BFS(θ) = [σiiσjjρijF1/α,1/α+0.5,ν(θ)]
2
i,j=1,

with θ ∈ [0, π], and

BMS(dCH) = [σiiσjjρijMα,ν(dCH)]2i,j=1, dCH ∈ [0, 2].

The choice of the chordal distance in a bivariate Matérn model allows to have no restrictions on the

smoothing parameter ν (see Porcu et al., 2018, for a recent account).
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Figure 4: Top part (from left to right): boxplots by latitudes for original Temperature data, boxplots

by latitudes for the associated residuals and Gaussian quantile-quantile plot for the residuals. Bottom

part (from left to right): the same graphical representations as in the top part for the Precipitation

variable.
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We also consider the three models in their nonseparable versions (NS stands for nonseparable

here):

BWNS(θ) = [σiiσjjρijWαij ,6,µij(θ)]
2
i,j=1,

BFNS(θ) = [σiiσjjρijF1/αij ,1/αij+0.5,νij(θ)]
2
i,j=1,

with θ ∈ [0, π], and

BMNS(dCH) = [σiiσjjρijMαij ,νij(dCH)]2i,j=1, dCH ∈ [0, 2].

Table 3 reports the comparison between the six considered bivariate models fits and the associated

ML estimates. For both separable and nonseparable cases, the F model achieves the largest value of

the likelihood and, as expected, the nonseparable models clearly outperform the associated separable

version. Although the bivariate F and the bivariate Matérn are not comparable in terms of likelihood

(the models are based on different metrics), we can appreciate that the parameters of the F and the

Matérn are rather comparable in terms of scale, smoothness and colocated correlation parameter.

Note that ν̂12 < ν̂ii, i = 1, 2 and this condition does not match with the spectral or the mixing

conditions given in Section 2.2. Nevertheless, the nonseparable F model is still valid under the

setting of the obtained ML estimates. This fact is not surprising, since the conditions given in

Section 2.2 are sufficient only.

We further evaluate the predictive performances of the different Gaussian bivariate random fields

using RMSE and MAE indicators (see Zhang and Wang, 2010, and the references therein). Specifi-

cally, we use the following re-sampling approach: we randomly choose 200 location sites and we use

the estimates in order to compute, for each bivariate covariance model, RMSE and MAE values at the

remaining 53 spatial locations using cokriging predictor for each variable. Specifically, we condider

RMSEX =

√√√√ 1

53

53∑

k=1

(ZX(sk)− ẐX(sk))2, MAEX =
1

53

53∑

k=1

|ZX(sk)− ẐX(sk)|,

where ẐX(sk) is the cokriging predictor of the variable X = T, P (temperature and precipitation

respectively) at the point on the sphere sk, k = 1, . . . , 53 based on 200×2 observations. We repeat 500
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times and record all RMSE’s and MAE’s for each variable. Table 3 reports the empirical mean of the

five hundred RMSE’s and MAE’s for the different bivariate covariance models, for each variable. We

denote it with RMSEX and MAEX , X = T, P . We can see that the F model outperforms the chordal

Matérn and the the Generalized Wendland models for both measures of prediction performance in

the separable and nonseparable cases.

Model lN ρ12 σ2
11 σ2

22 α ν RMSET RMSEP MAET MAEP

BWS −708.96 0.3165 2.5710 12.214 0.5476 - - 1.0527 - - 0.5325 1.1485 0.5321 1.1474

BMS −704.98 0.3231 2.5049 11.744 0.0507 - - 2.2058 - - 0.5289 1.1373 0.5285 1.1362

BFS −704.21 0.3231 2.5269 11.820 0.0673 - - 2.4426 - - 0.5281 1.1341 0.5276 1.1329

Model lN ρ12 σ2
11 σ2

22 α11 α22 α12 ν11 ν22 ν12 RMSET RMSEP MAET MAEP

BWNS −699.36 0.2836 2.3518 12.352 0.5567 0.5677 1.4603 0.9279 0.9728 0.1442 0.5211 1.1310 0.5207 1.1299

BMNS −697.24 0.2897 2.3822 12.416 0.0599 0.0628 0.2128 1.8029 1.7950 0.7096 0.5191 1.1198 0.5187 1.1187

BFNS −697.04 0.2788 2.3436 11.442 0.0733 0.0750 0.2488 2.1410 2.1378 0.7925 0.5181 1.1186 0.5177 1.1175

Table 3: Loglikelihood (lN , see Equation (12)) and ML estimates for separable and nonseparable

Wendland, Matérn and F bivariate models with associated RMSE and MAE for the the first and

second variable.

5 Discussion

This paper has limited its scope to bivariate random fields. Under the multivariate parametric

adaptation construction principle, the trivariate case would already imply severe restrictions on the

colocated correlation coefficients ρij, for i, j = 1, 2, 3 (i 6= j). This is a well known problem in

multivariate spatial modeling and we refer to (Gneiting et al., 2010) and to Daley et al. (2015)

for constructive criticism. A way to circumvent this problem might be to adapt convolution based

approaches that have proved to be successful (Gneiting et al., 2010). We are not aware of any

approach for multivariate covariances based on convolution on the sphere. For scalar valued fields,
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Figure 5: Dots indicate empirical marginal semi-variograms (diagonal) and cross-variograms (off

diagonal) estimations for the temperature and precipitation data compared to the estimated semi-

variograms under the nonseparable bivariate F model.

the work of Hansen et al. (2015) has a promising approach to convolution based covariance functions

on spheres. Adapting this approach might lead to a good solution. In the simulation study and in

the application we adopt the ML estimation method. This kind of estimation can be computationally

expensive, in particular when working with data on the whole Earth surface. In this case, other types

of estimation methods for multivariate random fields, having a good balance between statistical

efficiency and computational complexity, might be considered. For instance, composite likelihood

(Bevilacqua et al., 2016a), covariance tapering (Furrer et al., 2016; Bevilacqua et al., 2016b) or the
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methods outlined in Heaton et al. (2019) might be considered.
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A Appendix: Proof of Theorem 2.1

Proof. We start by proving (A), by direct construction. We start by reporting Lemma 1 in Daley

et al. (2015) and rephrased for our convenience.

Lemma A.1 Let G(·) : (0, 1)→ R2×2 be the matrix valued mapping having elements

gij(δ) =
ρij

B(αij, νij)
δαij−1(1− δ)νij−1, δ ∈ (0, 1), i, j = 1, 2, (13)

where ρii = 1 and ρ12 = ρ21. If α12 = 1
2
(α11 + α22), then G(δ) is positive definite for any fixed

δ ∈ (0, 1) if and only if

• ν11 + ν22 − 2ν12 ≤ 0;

• |ρ12| ≤ B(α12,ν12)

(B(α11,ν11)B(α22,ν22))
1/2 .

For comparison with Daley et al. (2015), our Equation (13) corresponds to Equation 4 and 5 in Daley

et al. (2015). Also, the constants bij in Lemma 1 of Daley et al. (2015) are identically equal to one

in our case; the constant cij in Lemma 1 of Daley et al. (2015) are equal to ρij/B(αij, νij). Finally,
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the constants γij in Lemma 1 of Daley et al. (2015) correspond to νij − 1 in our case.

Some notation is now needed to illustrate the proof. Let Ψ2
d be the class of mappings C : [0, π] →

R2×2 having elements Cij that are pointwise continuous, such that C(θ) is the geodesically isotropic

covariance function of a bivariate Gaussian random field Z defined on the d-dimensional unit sphere

Sd embedded in Rd+1. Call Ψ2
∞ :=

⋂
d≥1 Ψ2

d. Let Ψd be the class of pointwise continuous mappings

C : [0, π]→ R such that C(θ) is a geodesically isotropic covariance function of a scalar random field

in Sd. Accordingly, we define Ψ∞ :=
⋂
d≥1 Ψd.

The classes Ψd and Ψ2
d are nested, with the strict inclusion relations

Ψ1 ⊃ Ψ2 ⊃ . . . ⊃ Ψ∞ and Ψ2
1 ⊃ Ψ2

2 ⊃ . . . ⊃ Ψ2
∞.

Arguments in Gneiting (2013) show that C ∈ Ψ∞ if and only if

C(θ) =
∞∑

k=0

bk(cos θ)k, θ ∈ [0, π],

where the coefficients bk are nonnegative and summable. This implies, for instance, that the mapping

Nδ,τ defined at (9) belongs to the class Ψ∞ for any τ > 0 and δ ∈ (0, 1), because

Nδ,τ (θ) =
∞∑

k=0

bk(δ, τ)(cos θ)k, θ ∈ [0, π],

with

bk(δ, τ) =

(
k + τ − 1

k

)
δk(1− δ)τ , δ ∈ (0, 1), τ > 0,

and k = 0, 1, . . .. See, for instance, Equation 16 in Gneiting (2013) or Theorem 6.4 in DasGupta

(2010). The class Ψ2
∞ has instead been characterized in Hannan (2009) and Yaglom (1987) through

the expansion

C(θ) =
∞∑

k=0

Bk(cos θ)k, θ ∈ [0, π], (14)

where {Bk}∞k=0 is an absolutely convergent sequence of positive definite matrices (summability is

intended pointwise).

Another technical result is now needed.
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Lemma A.2 Let δ ∈ (0, 1), τ > 0. Let Nδ,τ : [0, π] → R be defined as in (9). Let λ̃ = (δ, τ)> and

consider vectors λ̃ij = (δij, τij)
>, i, j = 1, 2 with δij ∈ (0, 1), τij > 0 and such that λ̃12 = λ̃21. Let

C̃ : [0, π]→ R2×2 with elements C̃ij being defined through

C̃ij(θ) = ρ̃ijNδij ,τij(θ), θ ∈ [0, π],

where ρ̃ii = 1 and ρ̃12 = ρ̃21. Then, C̃ ∈ Ψ2
∞ provided δ12 ≤ min{δ11, δ22}, τ12 ≤ min{τ11, τ22}, and

|ρ̃12| ≤
(1− δ11)τ11/2(1− δ22)τ22/2

(1− δ12)τ12
.

The proof of Lemma A.2 comes straight from identity (9) together with characterization (14). In

fact, we need to show that the matricesBk with elements bi,j,k = ρ̃ijbk(δij, τij), i, j = 1, 2, k = 0, 1, . . .,

are positive definite for all k, and form an absolutely convergent sequence (Hannan, 2009). This is

in turn ensured by solving the determinantal inequality

ρ̃212 ≤
(1− δ11)τ11(1− δ22)τ22

(1− δ12)2τ12
inf

k=0,1,...

(τ11 + k − 1)k(τ22 + k − 1)k
(τ12 + k − 1)2k

(
δ11δ22
δ212

)k
,

where (x)k = x(x + 1) · · · (x + k − 1), x ∈ R (Abramowitz and Stegun, 1970). The infimum, with

respect to k = 0, 1, . . ., on the right hand side is attained at k = 0 when τ12 ≤ min(τ11, τ22) and

δ12 ≤ min(δ11, δ22). To show it, we have

(τ11 + k − 1)k(τ22 + k − 1)k
(τ12 + k − 1)2k

=
τ11(τ11 + 1) · · · (τ11 + k − 1)

τ12(τ12 + 1) · · · (τ12 + k − 1)

τ22(τ22 + 1) · · · (τ22 + k − 1)

τ12(τ12 + 1) · · · (τ12 + k − 1)

=
k−1∏

n=0

(
τ11 − τ12
τ12 + n

+ 1

) k−1∏

n=0

(
τ22 − τ12
τ12 + n

+ 1

)
,

which is strictly increasing in k. Thus, the infimum on the right hand side is attained at k = 0, where

it is identically equal to one. This completes the proof of the lemma.

We now provide a criterion that is the crux of the proof. A proof is not provided, as it can be

obtained by applying the same arguments as in Porcu and Zastavnyi (2011).
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Lemma A.3 Let Nδ,τ : [0, π] → R be defined as in Equation (9). Let G be the matrix valued

function with elements gij defined through (13). If the constants τij, αij, νij, ρij, i, j = 1, 2, satisfy the

requirements of Lemmas A.1 and A.2, then the mapping

θ 7→ σiiσjjρij

∫ 1

0

Nδ,τij(θ)G(δ)dδ, (15)

belongs to the class Ψ2
∞.

Arguments in the proof of Theorem 3.1 in Alegŕıa et al. (2018) show that

Fτij ,αij ,νij(θ) =

∫

(0,1)

Nδ,τij(θ)gij(δ)dδ, θ ∈ [0, π], (16)

where gij(·) has been defined at Lemma A.1. We now note that Lemma A.2 under δij = δ ∈ (0, 1)

implies ρ̃12 ≤ 1, so that we can pick ρ̃12 = 1 and fix it throughout. The proof is thus completed by

coupling (16) with Lemmas A.1, A.2 and A.3.

To prove assertion (B), we invoke again the characterization in Equation (14), and resort to the scale

mixture (16) in concert with Equation 16 in Alegŕıa et al. (2018) to find that the mapping C in

Equation (8) can be uniquely written as in Equation (14), with

bij,k = bk(λij) = σiiσjjρij
B(αij, νij + τij)

B(αij, νij)

(αij)k(τij)k
(αij + νij + τij)kk!

, k = 0, 1, . . . .

Showing positive definiteness of Bk for all k amounts to solving the determinantal inequality

ρ212 ≤
B(α11, ν11 + τ11)B(α22, ν22 + τ22)

B(α12, ν12 + τ12)2
B(α12, ν12)

2

B(α11, ν11)B(α11, ν22)
Υ, (17)

with

Υ = inf
k=0,1,...

(α11)k(α22)k
(α12)2k

(τ11)k(τ22)k
(τ12)2k

(α12 + ν12 + τ12)
2
k

(α11 + ν11 + τ11)k(α22 + ν22 + τ22)k
. (18)

We now prove that under Conditions 1 and 2 in Assertion (B), such a infimum is uniquely attained

at k = 0. In fact, direct inspection shows that

(α11)k(α22)k
(α12)2k

=
α11(α11 + 1) · · · (α11 + k − 1)

α12(α12 + 1) · · · (α12 + k − 1)

α22(α22 + 1) · · · (α22 + k − 1)

α12(α12 + 1) · · · (α12 + k − 1)

=
k−1∏

n=0

(
α11 − α12

α12 + n
+ 1

) k−1∏

n=0

(
α22 − α12

α12 + n
+ 1

)
,

23Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



which is strictly increasing in k provided Condition 1 in Assertion (B) holds. Analogously, one can

show that the second and third factors in the right hand side of Equation (18) are strictly increasing

in k provided that Condition τ12 ≤ min{τ11, τ22} and Condition 2 in Assertion (B) hold, respectively.

�
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Alegŕıa, A., Porcu, E., Furrer, R., and Mateu, J. (2019). Covariance functions for multivariate

Gaussian fields. Stochastic Environmental Research Risk Assessment, 33:1593–1608.

Apanasovich, T. V. and Genton, M. G. (2010). Cross-covariance functions for multivariate random

fields based on latent dimensions. Biometrika, 97:15 –30.

Apanasovich, T. V., Genton, M. G., and Sun, Y. (2012). A valid Matérn class of cross-covariance

24Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



functions for multivariate random fields with any number of components. Journal of the American

Statistical Association, 107(497):180–193.

Banerjee, S. (2005). On geodetic distance computations in spatial modeling. Biometrics, 61(2):617–

625.

Bevilacqua, M., Alegria, A., Velandia, D., and Porcu, E. (2016a). Composite likelihood inference

for multivariate Gaussian random fields. Journal of Agricultural, Biological, and Environmental

Statistics, 21(3):448–469.

Bevilacqua, M., Faouzi, T., Furrer, R., and Porcu, E. (2019). Estimation and prediction using

Generalized Wendland covariance functions under fixed domain asymptotics. Annals of Statistics,

47(2):828–856.
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