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ABSTRACT  

One of the priority areas of the UK healthcare system is urgent and emergency care, especially 

accident and emergency departments (A&E departments).  Currently, there is much interest in 

studying the unintended consequences of the current UK healthcare performance system. 

Simulation modelling has been proved to be a useful tool for modelling different aspects of the 

healthcare systems, particularly those related to the performance of A&E departments.  Most of 

the available literature on modelling A&E departments focus on supporting operational decision-

making and planning in specific healthcare units to study particular problems such as staff 

scheduling, resource utilisation, and waiting time issues. That is, most simulation studies focus on 

analysing how different configurations of healthcare systems affect their performance.  

However, to our knowledge, few simulation studies focus on explaining how human behaviour 

affects the performance of the system, and very few have studied how, in turn, performance 

targets set for A&E departments affect human behaviour in healthcare systems. 

Some aspects of human behaviour have been incorporated within existing simulation models, 

though with limitations. In fact, most studies have aimed to study patients’ behaviour, and few 

have included some aspects of the behaviour of clinical staff.  Here we consider how to model 

clinician behaviour in relation to the performance of A&E departments. 

This thesis presents an exploratory study of the use of agent-based modelling and simulation 

(ABMS) and discrete event simulation (DES) to demonstrate how to model clinician behaviour 

within an A&E department and how that behaviour is related to waiting time performance. Clinical 

behaviour, incorporated in the simulation models developed here, employs a framework called 

PECS that assumes that behaviour is influenced by Physical (P), Emotional (E), Cognitive (C) and 

Social (S) factors. A discussion of the advantages and limitations of the use of ABMS and DES to 

model such behaviour is included. 

The findings of this research demonstrate that ABMS is well suited to simulate human behaviour 

in an A&E department. However, it is not explicitly designed to model processes of complex 

operational and queue-based systems such as accident and emergency departments. In addition, 

this research work also demonstrates that DES is an adequate tool for modelling A&E’s processes 

and patient flows, that can, in fact, incorporate different aspects of human behaviour. 

Furthermore, the process of modelling human behaviour in DES is complex because, though most 
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DES software allows the representation of reactive behaviour, they make it difficult to model other 

types of human behaviour 

The main contributions of this thesis are: 1) a comparison and evaluation of how suitable ABMS 

and DES are for modelling clinical behaviour, 2) an approach to model the relationship between 

human behaviour and waiting time performance, considering four aspects of human behaviour 

(physical, emotional, cognitive and social).
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CHAPTER 1: INTRODUCTION  

 Problem definition 

Waiting for health provision is a common situation in any healthcare system. Particularly within 

the NHS, in the absence of a price device to access hospital services, limited resources are rationed 

by waiting times.  Yet long waiting times are never desired and, therefore, governments have been 

continuously endeavouring to improve the delivery of services and have created mechanisms 

based on performance measurements that have developed gradually since the creation of the NHS 

in 1948.      

However, one of the most significant current discussions in regimes based on performance 

measurements concerns the unintended consequences that those mechanisms may have (Pidd, 

2005; Smith, 1995, 2005; Mannion & Braithwaite, 2012; Mannion, Goddard, & Smith, 2019).   For 

many years, there has been an increasing interest in analysing the effects of the performance 

framework implemented in hospitals on different parts of the system and on people’s behaviour 

(Appleby, 2019;  Nuti et al., 2018; Audit Commission, 2003; Bevan, 2009; Department of Health, 

2009; Dimakou, Parkin, Devlin, & Appleby, 2009; Günal, 2008; Günal & Pidd, 2006; Mannion & 

Braithwaite, 2012; Robinson, 2007; Santry, 2008; Silvester, Lendon, Bevan, Steyn, & Walley, 2004; 

Triggle, 2005, NHS, 2017).  

In particular, one of the priority areas of the healthcare system is urgent and emergency care, 

especially accident and emergency departments. Emergency departments provide emergency care 

24/7, principally for patients that are severely injured or seriously ill.  Because of the complexity 

that characterises accident and emergency departments, together with other elements of 

healthcare systems such as planned hospital care and other community healthcare services, 

simulation modelling methodologies such as discrete event simulation (DES) and system dynamics 

(SD) have been some of the most widely used tools to address these problems (Brailsford, 2007; 

Günal & Pidd, 2010; Koelling & Schwandt, 2005, Gul & Guneri, 2015; Salleh et al., 2017). They allow 

modelling diverse aspects of healthcare provision and have been extensively used for decades to 

model patient flows, eliminate bottlenecks, and to understand how different parts of the hospital 

operate together (Bayer, Köberle-Gaiser, & Barlow, 2007; Bowers, 2009; Brailsford, Lattimer, 

Tarnaras, & Turnbull, 2004; Fone et al., 2003; Günal, 2008; Jun, Jacobson, & Swisher, 1999; 

Rohleder, Bishcak, & Leland, 2007; Royston, Dost, Townshend, & Turner, 1999; Van Ackere & 

Smith, 1999; Worthington 1991)  
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DES has probably been the most preferred tool to analyse operational hospital issues since it allows 

representation of patient characteristics and their flows through the system (Günal, 2008; Gul & 

Guneri, 2015). On the other hand, SD has also been recognised as a suitable tool to deal with the 

complexity inherent in such social systems, since it allows modelling of the interaction among 

different parts of the system and provides a global picture of its structure (Sterman, 2000, Gul & 

Guneri, 2015). 

Agent-based modelling and simulation (ABMS) is also a well-recognized methodology to study 

complex systems (North & Macal, 2007) and has also been used in several applications in 

healthcare but it is not as popular as DES and SD for modelling the performance of emergency 

departments (Gul & Guneri, 2015; Salleh et al., 2017).  

In order to assess the effect of any performance measurement mechanism on an accident and 

emergency department’s performance, it might be necessary to consider factors such as people’s 

perceptions and interactions and communication between the different actors that make decisions 

within the department. Therefore, assessing performance through changes in capacity or 

improvements on the pathway might not be enough. It may be necessary to model human 

decision-making processes present in the system.   

Although decision-making processes have been usually modelled with either DES or SD, SD does 

not allow the inclusion of an individual’s behaviour in the model. Therefore, it might not be possible 

to develop an SD model of an emergency department with the appropriate level of detail required. 

On the other hand, although DES allows individual representation, in many cases, individuals are 

modelled as passive entities that do not react easily to changes in the environment.   

DES allows the inclusion of diverse types of human behaviour within the model. Depending on the 

level of detail, an entity in a DES model could act as an agent, which follows diverse sets of rules 

and modifies its behaviour based on the information available on the environment. An example of 

that can be seen in the research conducted by Günal and Pidd (2006), where doctors respond to 

long waiting times through task switching, modelled through “mini-doctors” that represent 

multiple simultaneous tasks. That is, each doctor is represented by several fractional doctors so 

that one doctor could see several patients at the same time.  

However, doctors may also need to make different decisions that can affect not only accident and 

emergency department performance but may also affect other hospital units’ performance. For 

example, during slack periods, doctors may have more time to perform extra tests on patients, so 
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they can investigate in more detail every patient’s condition and give more accurate diagnoses. On 

the other hand, during busy periods, doctors may order only the necessary tests and yet may have 

to wait longer for the results of investigations. That may mean that they do not order extra tests 

and, as a result, may have to admit patients with less critical conditions into the hospital.  

The ability to represent individual behaviour is key a feature of ABMS, which allows the modelling 

heterogeneous entities that can learn and modify their behaviours so that their interactions create 

the overall system behaviour (Bonabeau, 2002; C. Macal & North, 2010; North & Macal, 2007).  

 Research objectives and contribution  

This research aims to gain insight into the overall value of including human behaviour in an A&E 

simulation and to contrast how it can be done using Discrete Event Simulation (DES) and by Agent-

Based Simulation (ABMS).  The appropriate level of detail to include in the models is an important 

issue to consider in this thesis. I do not develop a fully realistic and detailed model since the aim is 

to gain some insight into the overall value of modelling human behaviour using DES and ABMS.  

That may warrant further research if my work shows the value of modelling human behaviour.  

Although waiting times performance modelling has been widely studied using simulation 

methodologies in many application areas, the literature reports few studies on the use of DES for 

modelling the effects of waiting time targets on the performance of A&E departments (Günal, 

2008; Eatock, 2011). For example, Günal (2008) developed an interconnected DES model of 

Emergency, Outpatient and Inpatient Departments of a hospital with the purpose of understanding 

the effects of waiting time targets on hospital performance. The Emergency component of the 

model can be used to simulate the performance of a department.  

Günal and Pidd (2009) show that the model was effective in assessing the actual performance of 

the department, though it failed to capture some effects that might be caused by interventions as 

a patient’s waiting time approaches 4 hours. Though close, the differences between the actual and 

simulated waiting times might be due to different reasons. One possible reason is that the level of 

detail included in the model was not sufficient to represent the components that affect the 

performance of the accident and emergency departments under performance measurement 

schemes that require meeting specific targets. Another reason might be that the way that humans 

are represented in the model ignores some of the critical factors of the staff’s and patient’s 

behaviour that have an important effect on the accident and emergency department’s 

performance.   
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The Existing body of literature show that ABMS has gained popularity in healthcare applications 

(Cabrera, Luque, Taboada, Epelde, & Iglesias, 2012a; Kanagarajah, Lindsay, Miller, & Parker, 2006; 

Laskowski et al., 2011; Nealon & Moreno, 2003; Sibbel & Urban, 2001; Stainsby, Taboada, & Luque, 

2009; M. Taboada, Cabrera, Epelde, Iglesias, & Luque, 2012; M Taboada, Cabrera, Epelde, Iglesias, 

& Luque, 2013; M. Taboada, Cabrera, & Luque, 2011, Pförringer 2018, Gul & Guneri, 2015; Salleh 

et al., 2017 ). However, there are few studies of ABMS for modelling human behaviour in A&E 

departments (Yousefi et al., 2018; Kanagarajah et al., 2006; Taboada, Cabrera, & Luque, 2011; 

Stainsby et al.,2010, Cabrera et al., 2012a; Al-Refaie, Fouad, Li, & Shurrab, 2014; Rahmat et al., 

2013, Laskowski, et al., 2009; Lim et al., 2013, Liu et al., 2017).  

This research began with an investigation of how useful ABMS can be in the healthcare area, which 

led me to consider two main questions in this research: 

1: How well suited is ABMS to modelling human behaviour in an accident and emergency 

department? 

2: What benefit does ABMS bring to the study of waiting time performance in an accident 

and emergency department over DES? 

This thesis presents an exploratory study of the use of agent-based modelling and simulation 

(ABMS) and discrete event simulation (DES) to demonstrate how to model clinician behaviour 

within an A&E department and to understand how that behaviour is related to waiting time 

performance. In particular, it shows how the relationship between system performance and 

clinician behaviour can be modelled in a dynamic simulation of the activity in an A&E department. 

Therefore, the contribution of this thesis can be seen in three main aspects. Firstly, I will compare 

and evaluate how suitable ABMS and DES are for modelling clinical behaviour, second, it offers an 

approach to model the relationship between human behaviour and waiting time performance, 

considering four aspects of human behaviour (physical, emotional, cognitive and social), and third, 

it proposes a different representation of the service times using random variables with distribution 

parameters that are dynamic and stochastic. 

 Document overview 

The overall structure of this document takes the form of nine chapters, including this introduction. 

Chapter two describes performance measurements in healthcare systems. It begins by pointing out 

some questions that need to be addressed when planning and implementing performance 

measurement systems: why to measure performance, how to measure it, what the perverse 
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effects of performance measurement are and how side effects can be avoided. It then describes 

the evolution of the NHS performance framework since its creation to date and discusses some 

views provided in the literature about the effects of the NHS performance measurement 

framework in the UK.  

Chapter three reviews how modelling and simulation has been used in healthcare to  understand 

the unintended consequences of the NHS performance framework and to support control in 

healthcare systems. First, it summarizes the main uses of simulation models, and then it reviews 

the use of the three main simulation methodologies in healthcare: system dynamics (SD), discrete 

event simulation (DES) and Agent-Based Modelling Simulation (ABMS).  Finally, it reviews the use 

of simulation for modelling accident and emergency departments.  The chapter concludes that 

most of the simulations on healthcare, specifically of accident and emergency departments, have 

ignored relevant aspects of human behaviour that may affect the performance of healthcare 

systems.  

Chapter four begins by reviewing how human behaviour has commonly been modelled in the three 

main simulation techniques.  It then explores some theories of human behaviour, such as rational 

behaviour, intuitive behaviour and the role of emotions, intuition and bounded rationality on 

human behaviour.  Next it presents an introduction to Agent-based modelling and simulation and 

its potential for modelling human behaviour. Finally, the chapter gives an overview of two popular 

agent frameworks that have been used to model human behaviour: BDI (Belief-Desire-Intention) 

and PECS (Physics, Emotion, Cognition, Social status) frameworks.  

Chapter five describes the ABMS Model design and development process. It starts by providing an 

overall description of the situation to be modelled, the identification of processes and entities that 

will be considered in the model and the environment where entities will be interacting. Then, it 

develops a conceptual model that includes the definition of the agents and their behaviour, the 

interactions between the agents and between the agents and the environment and also the data 

requirement. Finally, it shows the implementation of the PECS framework for modelling doctors’ 

behaviour on the ABMS model is described.  

Chapter six presents the ABMS model implementation process and simulation results. First, it 

shows the implementation process of the ABMS model in Repast Simphony Java.  After that, it 

describes the model inputs and the methods implemented for each type of agent.  Following that, 

the DES model developed by Günal (2008) was used as the start point to implement the ABMS 

model of an A&E department using the same data, and process flow described in Günal’s model. 
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The ABMS model, named here as ABMS_A&E, uses the same data and most of the information 

used in Günal’s model. The validation processes focus on comparing the ABMS model against the 

DES model rather than comparing the ABMS model against the real world.  Experimentation 

involves implementing PECS in the ABMS model; therefore, some rules were defined for the 

doctors in the model to evaluate the impact of the four-hour standard on a doctor’s behaviour and 

the performance of the whole accident and emergency department.  

Chapter seven presents the development of a DES model of an accident and emergency 

department that includes the modelling of human behaviour with the same PECS framework used 

in the ABMS model presented in chapters five and six. The DES model named here as DES_A&E was 

developed in SIMUL8® and demonstrates that though it does model the effect of waiting time 

performance on human behaviour, doing so requires considerable ingenuity. 

Chapter eight discusses the findings of this research and concludes it by considering the research 

questions stated in this chapter.  The chapter starts discussing why simulation is an important tool 

to model accident and emergency departments. Then it compares how human behaviour can be 

modelled in DES and ABMS and examines how accident and emergency departments can be 

modelled with both approaches. Then it discusses the strengths and limitations of the use of DES 

and ABMS for modelling healthcare systems.  Finally, it presents the findings, contributions and 

limitations of this research, and proposes some ideas for potential further research.  
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CHAPTER 2: PERFORMANCE MEASUREMENT IN HEALTHCARE 
SYSTEMS 

2  

 Introduction 

Waiting for healthcare is a common situation in all healthcare systems. Within the NHS, the 

absence of a price mechanism to access hospital services means, in effect, that limited resources 

are rationed by waiting times. That is, instead of paying money, people pay by the time they spend 

waiting for care, particularly for elective care. However, for most people, long waiting times are 

undesirable even though they have been a feature of the NHS since its creation in 1948.  

Over the intervening years, successive governments have sought improvements in the delivery of 

services and, to support this, have established mechanisms based on performance measurement. 

These have included performance management frameworks that have passed through different 

iterations over the years. Such performance management has aimed to encourage healthcare 

providers to organise themselves so that waiting times are reduced and kept low.  That has been 

attempted through incentive systems such as star ratings, and by setting targets and standards.   

It is, however, well-known that performance measurement in public services usually has at least 

some unintended consequences, and several authors discuss these and suggest how some of the 

worst side effects can be avoided (Pidd, 2005; Smith, 1995, 2005).  Recently, there has been an 

increasing interest in analysing the behavioural consequences of the NHS performance framework 

implemented in hospitals. One major topic to be considered later in this thesis is how modelling 

and simulation can be used to assess the behavioural consequences of the waiting times' standards 

indicators (previously called targets) in healthcare systems.  

This chapter aims to describe the practice of performance measurement in healthcare and to 

provide a general description of the changes in the NHS performance framework over the years, 

particularly concerning the actions taken by the government, and some of its effects on the health 

system. This chapter also shows how the NHS has incorporated policies that aim to empower 

patients to have better control over their health and to enable clinicians to make decisions about 

the patients, focusing on the health outcomes and quality of care.  That implies a belief that human 

behaviour plays an essential role in NHS performance since it depends not only on logistic and 
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administrative processes but also on clinical judgment and patients’ choices.  This chapter forms 

the foundation for the research design of this thesis since the NHS framework provides guidelines 

and policies on which the A&E simulation models of this research will be based.    

 Performance measurement in healthcare  

For the healthcare sector, as for any other public sector, information is important not only for 

providers but also for those who use their services.  On the one hand, providers are continually 

looking for mechanisms to improve their services; on the other hand, users are always looking for 

efficient and effective services. Therefore, the collection and the use of healthcare system 

performance data are crucial for improvements in the delivery of any public service (Pidd, 2005, 

2012; Smith, 1995, 2005; Pross et al., 2017).  

However, some issues need to be addressed when planning and using performance measurement 

(Boland & Fowler, 2000; Miller, 2005; Pidd, 2005, 2012; Smith, 1995). Important questions are 

(Pidd, 2005, 2012; Smith, 1995):   

1: Why measure performance?  

2: How can it be measured?   

3: What are the perverse effects of performance measurement?  

4: How can side effects be avoided?  

5: When is it necessary to measure performance?  

6: Who are the customers and users of the services to be measured? 

7: How should the information obtained from measuring performance be used?   

Here the focus will be on the first four questions.  

2.2.1 Why measure performance? 

In order to address the first question, Why measure performance, Pidd (2012) summarises and 

consolidates within six categories the views of Behn (2003) Poister (2003) and Bird et al. (2005), 

regarding the reasons for measuring performance: 

1:  Planning and improvement: to see what works, why it works or does not work, and how to 

improve performance.  

2:  Monitoring and control: to monitor performance and direct managers and subordinates 

towards desired performance.  
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3:  Evaluation and comparison: to identify high performance and understand what it entails, 

and to evaluate performance in terms of inputs, outcomes and desired performance.  

4:  Accountability: To support public accountability, to promote quality services, and to inform 

current performance.  

5:  Financial budgeting and planning: to support resource allocation and strategic planning. 

6:  Individual performance management: to celebrate success and therefore encourage 

people involved in the process of achieving high performance.  

Section 2.3 will describe how performance measurement has been done in the NHS and the 

purpose of the plans designed for the different stages of the evolution of the performance 

measurement framework within the NHS.   

2.2.2 How to measure performance 

To address the second question of how to measure performance, Neely et al. (2003) classify the 

approaches to measuring performance in three generations of measurement. The first generation 

is the most common measurement framework used to date. That is based on balanced 

measurement systems such as the balanced scorecard developed by Kaplan and Norton (1996), 

the perform prism developed by Neely et al. (2002) and Skandia’s Navigator, developed by 

Edvinsson and Malone (1997).  

The second generation considers mapping the flows and transformations and includes strategy 

maps (Kaplan & Norton, 2001), which are an extension of balanced scorecards, success and risk 

maps (Neely et al., 2002), and the IC-Navigator model (Roos & Dragonetti, 1997).  

The third generation proposes linking financial to non-financial dimensions of performance 

systems. The challenge of this generation, according to Neely (2003 p. 132) “is to maintain the 

usefulness of the second generation approaches in addressing the key business areas but to do so 

in a way which extends the measurement to flows of cash”.  

Some of the performance framework used in the NHS is based on the balanced scorecard approach, 

in which performance information and incentives are used to achieve desired objectives (Smith, 

2005). Pross et al. (2017) investigate how hospital performance has been measured, reported and 

rewarded in different countries and summarise the NHS approach to evaluate hospital 

performance, which includes clinical audit and registries, indicators, data hospital trust and 

physician levels and national patient experiences survey reports. It seems that for the UK 

healthcare system, the performance framework works mainly as a mechanism of management and 
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control. Smith (2002) defines performance management in the NHS as a “set of managerial 

instruments designed to secure optimal performance of the health care system over time, in line 

with policy objectives”.  Similarly, Pidd (2005) suggests that management for control includes a 

feedback control process in which the gap between performance targets and performance 

outcomes leads to the application of corrective actions that help to reduce that gap.      

The control feedback process is discussed by Pidd (2012 p. 83), who suggests a simple input:output 

transformation notion to represent a common view of process management (Figure 2-1).   

 

Figure 2-1. Input:output transformation theory (Pidd, 2012: Figure 1.2, p.16) 

 

This input:output transformation theory applied in public services (Pidd, 2012) states that: 

• Input (resources) may include people’s time and money 

• Activities are the means to achieve the transformation process. The transformation 

process then includes those activities that need to be done to meet the objectives of the 

organisation. 

• Products that are outputs (tangible products) and outcomes (value-added).  

2.2.3 What are the effects of performance measurement systems? 

The third question examines what the effects of performance measurement systems are. Smith 

(1995) identifies eight unintended consequences of performance measurement in the public 

sector: 

1. Tunnel vision:  emphasis on what can be quantified, ignoring other un-quantified aspects 

of performance.  
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2. Sub-Optimization:  emphasis on own, local objectives, ignoring the objectives of the whole 

system. 

3. Myopia: emphasis on short time objectives, ignoring long term outcomes.  

4. Measure fixation: emphasis on performance indicators, ignoring underlying objectives. 

5. Misrepresentation:  publishing false “good looking” reports distorting real performance. 

6. Misinterpretation: misunderstanding of the performance data.  

7. Gaming: under-achieving performance to avoid higher targets in future.  

8. Ossification: lack of innovation when the performance measurement system loses its 

purposes.  

Similarly, De Bruijn (2002) discusses not only the ‘perverse’ effects but also the positive effects of 

performance measurement in the public sector.  Some perverse effects coincide with the ones 

identified by Smith (1995) and are (De Bruijn, 2002, p.581): “performance measurement prompts 

game playing”, “performance measurement adds to internal bureaucracy”, “performance 

measurement blocks innovation”, “performance measurement blocks ambitions”, “performance 

measurement affects professionalism,” “performance measurement kills system responsibility”, 

and “performance measurement punishes good performance”.  In contrast, possible positive 

effects include (De Bruijn, 2002, p.580): “performance measurement brings transparency”, 

“performance measurement is an incentive for output” and “performance measurement is an 

elegant way of shaping accountability”. 

Literature has emerged, offering diverse points of view about the effects of the NHS performance 

measurement framework in the UK.  On the one hand, it has been argued that performance 

measurement has been beneficial for the NHS. For instance, Triggle (2005) reports that targets that 

focus on outcome may be beneficial, especially when they require the use of knowledge and the 

skill of clinicians. Additionally, Lewis and Appleby (2006) suggest that well-conceptualised targets 

seem to be effective in reducing waiting times.  Similarly, Bevan (2009) believes that the 

introduction of targets in England has led to sustained improvements in performance and real 

improvements in care.  

On the other hand, it has also been argued that targets have distorted the quality of care and 

clinical priorities in healthcare service delivery.  The following examples of some perverse 

consequences of performance measurement in the NHS identified in the literature, serve to 

illustrate the categories mentioned above of Smith’s unintended consequences (1995). 
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Some good examples of tunnel vision within the NHS can be found in the works of Kelman and 

Friedman (2009 p. 923), Bowers (2009), Triggle (2005) and Jones and Schimanski (2010).  Kelman 

and Friedman, for example, suggest that reductions in waiting times in an accident and emergency 

department may be obtained at the expense of service care quality. Similarly, Bowers believes that 

avoiding waits may lead to clinical distortion.  Triggle reports that patients may not always be 

treated based on clinical needs as a consequence of the pressure that the targets have over the 

hospital staff. Jones and Schimanski discuss whether mortality rates may be related to emergency 

admissions. 

Bevan (2009) and Kelman and Friedman (2009 p. 923) provide examples of the Sub-Optimization 

consequences of performance measurement in the NHS. Bevan suggests that the targets may 

affect the local leadership in hospitals units since the central NHS controls them and that their 

design has focused on specific problems rather than on the whole system. Kelman and Friedman 

suggest that Emergency waiting time targets may sometimes be met by redirecting resources from 

other areas.  Additionally, Bevan (2009) also provides a good example of myopia, suggesting that 

patient care could be neglected because of the focus on waiting time targets.  

Günal and Pidd (2009), Mason et al. (2012), Kelman and Friedman (2009) and Bowers (2009) 

discuss some unintended consequences of performance measurement in the NHS that can be 

grouped in the Measure fixation category.   Günal and Pidd argue that waiting time targets may 

have ignored possible interactions with other performance indicators and other targets. In the 

same way, talking about emergency departments, Mason et al. (2012) argue that some Emergency 

departments perform to achieve targets and may ignore improvement in overall care. Kelman and 

Friedman identify some examples in this category; they say that focusing on reducing waiting times 

for patients may lead to reducing quality of care, or that improvement in accident and emergency 

departments waiting times may lead to reductions in performance in other parts of the system. In 

turn, Bowers also suggests that the nature of waiting time distribution may be affected by the 

waiting time target.  

The suggestion of Mason et al. (2012) that hospitals may alter their discharge times to appear to 

meet the targets is an example of misrepresentation. An example of Gaming may be the observed 

increase in in-patient admissions of emergency patients reaching the 4-hour threshold (Bowers, 

2009; Kelman & Friedman, 2009).  
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2.2.4 What can be done to avoid the perverse effects of performance measurement for 

public services? 

The fourth and final question opens the debate about what can be done to avoid the perverse 

effects of performance measurement for public services. Pidd (2005) argues that those effects occur 

not only because of malpractice but can also appear even when people make their best effort to 

achieve the desired performance. Moreover, Pidd (2012 p.26) proposes that successful 

performance measurement may be based on three criteria. The first is “that the measurement 

needs to be done properly or not at all”.  The second is “that performance measurement is not a 

new fad that will pass away in time, especially if ignored”.  The third is “that performance 

measurement in public services is usually multidimensional, which can make it difficult to do 

properly”. 

In summary, when planning and using performance, it is important consider different aspects such 

as why and how to measure performance, what the perverse effects of performance measurement 

are, and how they can be avoided. The next section will look at how and why performance 

measurement in the UK is used. 

 The NHS performance framework: Evolution  

The NHS is funded by national taxation and provides, free of charge, most healthcare services in 

the UK through primary, secondary and tertiary care services. The NHS was created in 1948 under 

three core principles (NHS, 2009): 

1:  that it meets the needs of everyone; 

2:  that it be free at the point of delivery; 

3:  that it be based on clinical need, not ability to pay.  

In this period, the NHS was divided into primary, secondary and tertiary care. Primary care acted 

as a front door to the health system since it is the first point of contact for most of the patients. 

Services in this sector are delivered by GPs, dentists, opticians, and pharmacists, among others. 

Secondary care, also called acute care, is either elective, for those patients whose specialist medical 

care can be planned, or emergency (unplanned) care, for those patients who need immediate 

attention.  Tertiary care provides support for the elderly and those with long-term conditions; also, 

tertiary care services may support people after discharge from the hospital. 
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Despite many attempts to provide efficient services, waits have been part of the NHS since its 

establishment (Department of Health, 2009).  As mentioned earlier, since there is no price 

mechanism, waiting for service appears as a rationing device, creating a buffer that enables 

demand and supply to operate in some equilibrium.  However, long waits have been a matter of 

dissatisfaction for many years (Gubb, 2009; Triggle, 2005), and it was not unusual for patients to 

wait two years for elective orthopaedic surgery in the late 20th Century. Therefore, in order to 

improve the delivery of the service, waiting lists and waiting times have been the main focus of 

attempted performance improvement. The reduction in waiting lists and waiting times was a major 

purpose of the Labour government’s election manifesto in 1997 and, after the election, the 

government introduced policies aimed at their reduction. 

Performance measurement in the NHS developed through seven stages: 

1:  the creation of the NHS in 1948,  

2:  the establishment of performance indicators in 1983,  

3:  the creation of a “quasi” market in 1991,  

4:  the introduction of the performance framework with specific targets in 1997  

5:  the beginning of planning for NHS reforms in 2000 

6:  the presentation of the Outcomes Framework in 2010 

7:  the implementation of the reforms in 2013 

2.3.1 The creation of the NHS in 1948 

The first period started in 1948 when the NHS was established. Appleby and Thorlby (2008) discuss 

the history of waiting lists alongside the history of the NHS and report that in 1948, waiting lists 

totalled over 476,000 patients, and this figure increased to 504,000 patients by 1951. That 

worsening situation was attributed to a limited investment in facilities such as the number of beds.  

Total waiting lists started to drop after 1951, though the waiting lists for some particular conditions 

increased despite investments in bed capacity in 1952.  In the following year, the number of beds 

and treated patients increased, but waiting lists also increased.  Some thought that the solution 

was increasing the efficiency in bed usage (reducing the idle time of beds), and this appeared to be 

an effective tactic for some time. However, the improvement could not be sustained in subsequent 

years.   

During this first stage of the early NHS, the focus was on reducing waiting lists rather than on 

waiting times, though data on inpatient waiting times was published during the 1950s. The first 
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attempt to consider the waiting times as a source of information was during the fifties when the 

first set of data regarding waiting times was published for Inpatients. Forty years later, information 

was published about Outpatient waiting times (Appleby & Thorlby, 2008).  

2.3.2 The establishment of performance indicators in 1983 

In 1983, the government defined and published performance indicators to inform local managers 

about the efficiency of all hospitals to assist them in improving performance.  The indicators were 

initially focused on financial information at the national, regional and district level, and were 

modified later to include several process indicators such as length of stay and waiting times in 

hospitals (Smith, 2005).  

2.3.3 The creation of a “quasi” market in 1991 

The previous stages outlined above focused on monitoring performance, which resulted in the 

definition of some actions for improvement in cases of undesired performance (Smith, 2005). In 

this stage of development, the system of performance indicators continued, although they were 

given a shallow profile by the national ministry and local health authorities (Smith, 2005). Instead, 

a pseudo competition between NHS providers was introduced in 1991 by the “NHS internal 

market”.  The aim was to increase service efficiency (West, 1998). By, 1995, the providers were 

asked to adhere to their budgets and to work to meet patients’ expectations of waiting times 

specified in the NHS’s Patient’s Charter (Smith, 2005).  

2.3.4 The introduction of specific targets in 1997 

1997 saw the introduction of the ‘new NHS’ looking to improve performance across the NHS and 

to tackle the inequitable variations (mainly related to quality, safety, equity, outcomes, money and 

services) (NHS Executive, 1998).  The purpose was to introduce a plan focused on the needs of 

patients, based on partnership and driven by performance (NHS Executive, 1998). 

In 1997, the performance assessment framework included 60 indicators which sought 

improvements in six areas (NHS Executive, 1998): 

1: Health Improvement: involving the overall population´s health, considering social and 

environmental factors and individual behaviour as well as care provided by the NHS and 

other agencies.  
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2: Fair Access: this was aimed at equitable provision of services concerning geographical, 

socio-economic, demographic needs, among others.  

3: Effective delivery of appropriate healthcare: that is, services which are clinically effective, 

appropriate to need, timely, in line with agreed standards, provided according to best 

practice service organisation, and delivered by appropriately trained and educated staff.   

4: Efficiency: that is, the provision of services at a lower cost per unit of care/outcome, 

higher productivity of the capital estate and improved labour productivity.   

5:  Improved Patient/carer experience: which includes patient perceptions such as the 

responsiveness of care providers to individual needs and preferences, the skill, care and 

continuity of service provision, patient involvement, right information and choice, waiting 

times and accessibility, the physical environment and the organisation and courtesy of 

administrative arrangements.  

6: Improved Health outcomes of the NHS: success in using its resources to reduce levels of 

risk factors, reduce levels of disease, impairment and complications of treatment, 

improve quality of life for patients and carers, and reduce premature deaths. 

2.3.5 The beginning of the planning of the NHS reforms  

In 2000, based on the knowledge obtained from the application of the specific targets introduced 

in 1997, the government updated the NHS performance framework by focussing on maximum 

waiting times rather than on the size of the waiting list and by introducing other clinical targets 

(Appleby & Thorlby, 2008).  The same year, the government began a journey towards the reform 

of the NHS by producing   The NHS plan: a plan for investment- a plan for reform (Department of 

Health, 2000). The plan aimed to redesign the health service around the needs of the patients. It 

established a set of ten core principles that are the basis of the NHS transformation (Department 

of Health, 2000, pp. 3):  

1:  the NHS will provide a universal service for all based on clinical need, not on the ability to 

pay, 

2:  the NHS will provide a comprehensive range of services, 

3:  the NHS will shape its services around the needs and preferences of individual patients, 

their families and their careers, 

4:  the NHS will respond to the different needs of different populations, 

5:  the NHS will work continuously to improve quality services and to minimise errors, 

6:  the NHS will support and value its staff, 
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7:  public funds for healthcare will be devoted solely to NHS patients, 

8:  the NHS will work together with others to ensure a seamless service for patients, 

9:  the NHS will help keep people healthy and work to reduce health inequalities,  

10:  the NHS will respect the confidentiality of individual patients and provide open access to 

information about services, treatment and performance. 

Later, from 2004 to 2008, the Government took a more holistic view, aiming to tackle waits along 

a patient’s care pathway.  The previous target regime was strengthened, and there was a particular 

focus on two targets. The first was what became known as the RTT (Referral to Treatment) target, 

which specified that patients must wait no more than 18 weeks from the date of a GP referral to 

their admission as inpatients or the commencement of proper outpatient care. That requires 

hospitals to organise themselves so that patients were given early specialist appointments and 

that, if inpatient admission were needed, this would occur no later than 18 weeks after GP referral.   

The second target that generated much public interest was the requirements that treatment within 

an accident and emergency department be completed within 4 hours of a patient’s arrival at 

accident and emergency department (Department of Health, 2007). The original notion was that 

NHS Trusts would be penalised if any patients spent longer than 4 hours in accident and emergency 

department.  However, this was quickly relaxed to 98% when it was pointed out to policymakers 

that incidents such as serious road traffic accidents made this impossible. Most NHS Trusts were 

achieving this 98% standard of performance by the end of 2008 – though some authors (Bevan & 

Hood, 2006) questioned whether gaming might have been employed to achieve this. Later this 

target was relaxed to 95% in stage 5 (2010/2011), and this continued in the 2012/2013 operating 

framework (Department of Health, 2011a, 2011b). 

In 2009, the Government presented the plan of High-Quality Care for All, which highlights patient 

experience as an essential factor of high-quality care. The plan proposed that additional capacity 

and reform instruments were to be used to provide higher quality care for patients and value for 

money for the taxpayer (Department of Health, 2008). The NHS continued with the same priorities 

established initially, working on reductions in waiting times, continuing to prevent illness and 

maintaining financial stability as minimum standards rather than targets to hospitals. The 

implementation of the plan of High-Quality care for all assumes quality in three areas:  safety, 

effectiveness and patient experience (Department of Health, 2008). That is intended to cover four 

aspects: 
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1:  Helping people to stay healthy; which requires more effective cooperation between the 

NHS and its national and local partners in health promotion. 

2:  Empowering patients; giving them more rights and control over their own health and 

personal care.   

3:  Providing the most effective treatment to patients through improvements in access to 

treatments as well as improvements in diagnosis to allow earlier disease detection. 

4:  Keeping patients as safe as possible; offering clean environments and reducing avoidable 

harm.  

2.3.6 Presentation of the Outcomes Framework 

  In July 2010, the new Conservative-Liberal Democrat Coalition Government published the white 

paper: Equity and Excellence: claiming to liberate the NHS (Department of Health, 2010a) It 

proposed two main changes for the future of the NHS: moving away from centrally driven process 

targets that interfere with patient care and focusing on clinical outcomes for people.  The white 

paper included plans for putting patients and the public at the heart of the NHS, improving 

healthcare outcomes and empowering clinicians to make decisions about the patients. 

The first plan, the idea of “Putting patients and the public at heart? of the NHS” is that the patients 

can have more choice and control. They are involved in the decision-making choices about their 

care and treatment helped by easy access to the information, data and support they need. The 

improvement of information access can encourage providers to improve the healthcare provision 

since the patients can choose the best providers by comparing information from different 

providers about safety (e.g. avoidable deaths), effectiveness (e.g. emergency readmission rates) 

and patient experience (e.g. average and maximum waiting times). 

The second plan, the aim of “improving healthcare outcomes” is that the service focuses on the 

outcomes and quality of care rather than on the process targets. The clinically justifiable targets 

continued or were adjusted, but the ones that had no clinical relevance were abolished.   

In 2010 the Department of Health introduced the NHS Outcomes Framework (Department of 

Health, 2010b), which has been updated yearly (Department of Health, 2012, 2013b, 2014). The 

NHS Outcomes framework replaced the previous performance framework. That new framework 

contains 68 indicators for measuring performance in the health and care system. Those indicators 

are grouped into five domains divided in three main areas: the effectiveness of the treatment and 



19 

 

care, the safety of the treatment and care provided to patients and the broader experience patients 

have of the treatment and care they receive. 

• The effectiveness of the treatment and care provided to patients contains: 

Domain 1: Preventing people from dying prematurely 

Domain 2: Enhancing the quality of life for people with long-term conditions 

Domain 3: Helping people to recover from episodes of ill health or following injury  

• The safety of the treatment and care provided to patients contains: 

Domain 4: Ensuring that people have a positive experience of care, and 

• The broader experience patients have of the treatment and care they receive contains:  

Domain 5: Treating and caring for people in a safe environment and protecting them 

from avoidable harm 

The third plan, “empowering clinicians”, claimed to liberate professionals and providers from 

government control to make decisions about the patients focussing on the quality of the care and 

to provide their services according to the needs and choices of patients.    

2.3.7 The implementation of the 2012 reforms  

The Health and Social Care Act 2012 introduced changes in the NHS structure, accountabilities, 

funding arrangements and working relationships (Department of Health, 2013a).  

From 1 April 2013, those changes became operational with a new healthcare system (Department 

of Health, 2013a). The structure of the new NHS is composed of clinical commissioning groups 

(CCGs) that replace the Primary care trusts existing in the old NHS structure and include doctors, 

nurses and other professionals. Health and Wellbeing Boards which work in partnership with local 

organisations to improve health and wellbeing and respond to patient’s needs; Healthwatch, which 

is an organization, that provides a voice for patients and local communities.  

The Health and Social Care Act 2012 also placed clinicians at the centre of healthcare 

commissioning, gave providers freedom to innovate and to deliver quality services, enabled 

patients to select services that best meet their needs and integrated health and social care with 

the Department of Health and social care (Nichols, 2018; Department of Health & Social Care, 

2012).    
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2.3.8 The publication of the five-year forward view in 2014 

The NHS published in 2014 the five-year forward view that discusses the possibilities to make 

changes in the NHS on aspects such as health, healthcare service provision and the management 

of their funding (NHS, 2014). The five-year forward view presents some options to create the 

integration of community health services, hospital specialists, physical and mental health care and 

health and social care and alternatives to improve different areas, such as prevention, empowering 

patients and engaging communities (NHS, 2014).  

First, prevention covers five aspects. The first aspect is incentivising and supporting healthier 

behaviour, particularly with actions on obesity, smoking, alcohol and other major health risks. The 

second relates to local democratic leadership on public health, which means that local governments 

and elected mayors have statutory responsibility for improving the health of the people and will 

be able to promote local democratic decisions on public health. The third is targeted prevention, 

where proactive primary care plays an important role by using systematic evidence-based 

intervention strategies and stablishing preventive services. The fourth refers to NHS support to help 

people get and stay in employment, which aims to provide targeted health support to help 

employees improving their wellbeing and preserving their livelihoods. The fifth is workplace health 

by developing and supporting ideas for improving health in the workplace. 

The second aspect mentioned above, empowering patients, means that the NHS will work on 

improving healthcare provision by bettering the information available to people and the access to 

it, supporting people to gain better control of their own health and increasing the direct control 

patients have over the care they are receiving by allowing them to choose where and how they 

receive care.   

The third aspect involves communities to participate directly in decisions about the future of health 

and health care services. The NHS will work to support caregivers, encourage the community to 

participate in volunteering and strengthen the partnership with charities, volunteers and local 

communities. 

2.3.9 The NHS Long Term Plan 2019  

On January of 2019, the NHS published the NHS Long Term Plan 2019 that established a direction 

for the future of the health service and set out priorities for healthcare and NHS funding 

management based on with the experience of patients, staff and national experts aiming to 

improve care for patients over the next ten years (NHS, 2019a). The plan seeks to build an NHS 
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suitable for the future by allowing everyone to have the best start in life, helping communities live 

well, helping people age well (NHS, 2019c). The NHS Long Term Plan includes different measures, 

explained in six chapters (NHS, 2019a).  

First, the plan indicates that patients will have the right to access to digital primary care. It means 

that that patients will have more options to choose and timely access to the care they need and 

the NHS will relieve pressure on Primary Medical and Community services as well as on A&Es.   

Second, the plan draws up new actions to improve the NHS contribution to prevention and health 

inequalities. Prevention relates to incentivising and supporting healthier behaviour, for example, 

by improving programs to reduce smoking, obesity, and respiratory illness related to air pollution 

and alcohol-related A&E admissions. Reducing inequalities aims to avoid patients’ inequalities 

related to their health and their needs and the provision of health care.   

Third, the Plan delineates priorities for care quality and outcomes improvement for the next 

decade. The plan states that the quality of care and the outcomes for patients are now better 

measured than the past decade. Although there has been improvement in different areas such as 

childbirth, cancer survival, deaths from cardiovascular disease, among others, the NHS considers 

that things can be done better. That is in part because there is a difference in service quality within 

the NHS, also because there are some needs that are still unmet and require attention, such as 

mental health services for young people.  

Fourth, the plan establishes that the NHS will work to help staff get the support they need. The 

NHS will take actions to ensure that there are enough people with right experience and skills, so 

there is enough staff to provide timely and effective care to patients; ensure that employees have 

rewarding jobs and are working in a right work environment and; improve and support good 

leadership that is compassionate and diverse at all levels. 

Fifth, The NHS establishes a plan to upgrade technology and to provide digital attention across the 

NHS. For instance, patients will have a better management of their conditions by digital accessing 

the NHS services and clinicians will access patients’ information with digital tools and will be able 

to use decision support systems and artificial intelligence in their practice. 

Sixth, the plan sets out how the NHS funding settlement will be used to maximum effect. It means 

that “the NHS will return to financial balance; the NHS will achieve cash-releasing productivity 

growth of at least 1.1% a year, with all savings reinvested in frontline care; the NHS will reduce the 

growth in demand for care through better integration and prevention; the NHS will reduce variation 
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across the health system, improving providers’ financial and operational performance; the NHS will 

make better use of capital investment and its existing assets to drive transformation” (NHS, 2019a, 

pp.100) 

After the NHS long term plan was launched, the NHS National Medical Director was asked to 

clinically review the targets related to the provision of care in the “Interim Report from the NHS 

National Medical Director” (NHS National Medical Director, 2019). The purpose was to update and 

supplement the old targets with new ones that are aligned with the NHS Long Term-Plan looking 

to improve clinical quality outcomes, short waits to a wide range of services, track patients 

experience in A&E and elective care, help hospitals to modernise their care, among others.  

The NHS medical director said that “we began by reviewing what is already known about how 

current targets operate and influence behaviour. This was then mapped against the NHS Long Term 

Plan to examine how performance measures can help transform the health service and deliver 

better care and treatment.” (NHS National Medical Director, 2019, p.p. 7). The interim report 

proposes standards for the most significant areas of health care, including mental health, cancer, 

urgent and emergency care and elective care.  

In particular, concerning the urgent and emergency care, the report shows that there are several 

issues about the current four-hour standard for A&E’s because it focusses only in one aspect of the 

urgent and emergency care system. The report describes five issues related to the four-hour 

standard (NHS National Medical Director, 2019, p.p. 23): 

• the standard does not measure total waiting times 

• the standard does not differentiate between severity of condition 

• the current standard measures a single point in often very complex patient pathways 

• there is strong evidence that hospital processes, rather than clinical judgement, are 

resulting in admissions or discharge in the immediate period before a patient breaches 

the standard 

• the standard is actually not well understood by the public 

The report proposed several standards to help measure what is most important clinically and to 

patients based on the mentioned issues. For example, they introduced standards to measure time 

to assessment, so that patients can be seen quicker than they currently are, and patients with more 

severe conditions can start treatment sooner. Another example is the measure of the mean waiting 
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time for all patients rather than total waiting times, which helps to reduce the risk of patients’ harm 

because of long waits.  

 

 

 Conclusion of the chapter  

This chapter presented a brief review of the evolution of the NHS performance measurement. 

Given all that has been mentioned in this chapter, it is evident the NHS has made considerable 

efforts to improve performance in hospitals including investments in improving capacity, the 

introduction of indicators and standards and promoting high-level quality services. However, as in 

any other public system based on performance measurement, some perverse consequences have 

been presented. 

This chapter is particularly useful in this research for understanding how human behaviour is 

becoming an essential aspect of the NHS performances system: now clinician and patients are 

empowered, and their decisions now have more impact than before. Although the NHS has been 

making substantial investments to provide quality services, human decision making has also 

become an essential factor for improving performance. Therefore, human behaviour is considered 

in this research as a critical factor to understand how waiting time targets effects A&E 

performance. 

Since this research set out to gain insight into the overall value of including human behaviour in an 

A&E simulation and to contrast how it can be done by Discrete Event Simulation (DES) and by 

Agent-Based Modelling and Simulation (ABMS), this chapter supports the research design of this 

project since it allows to identify elements that were considered in the choice of the simulation 

tools used in thesis and therefore in the conceptual modelling process carried out. The elements 

considered are related to operational processes, such as patient flows, workforce scheduling, and 

waiting times as well as some aspects of human behaviour such as doctors’ decision-making 

processes.  Literature review will show that DES has been widely used in healthcare to represent 

operational processes and some aspects of human behaviour and will discuss the suitability of 

ABMS for modelling human behaviour.  

The next chapter will discuss the role of modelling and simulation for understanding performance 

measurement in healthcare.   
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CHAPTER 3: MODELLING AND SIMULATION IN HEALTHCARE  

3  

 Introduction 

Chapter 2 discussed several themes that underpin the need for the research described in this 

thesis. It briefly described the development of the NHS performance framework and argued that 

performance measurement can be carried out in different ways, for different purposes and may 

have different consequences from those originally intended, as discussed by academics and also 

by the media. 

In order to help gain understanding about the unintended consequences of the NHS performance 

framework and to support control of healthcare systems, modelling and simulation methodologies 

have been commonly used.  This chapter introduces the role of different modelling and simulation 

methods for studying different aspects of healthcare systems. It discusses the use of modelling and 

simulation in healthcare, particularly for modelling A&E departments.  

 The use of simulation in healthcare 

Simulation methods have long been used to model elements of healthcare systems with a view to 

understanding and improvement. It has been suggested that healthcare simulation applications 

can be classified into those concerned with the strategy and policy level, the tactical and 

operational level, and with disease prevention and epidemiology (Brailsford, 2007; Koelling & 

Schwandt, 2005). Here the emphasis is on the first two levels. 

Becker et al. (2005) argue that there are two intended uses of simulation models; descriptive 

models that are used for description, explanation and prediction; and normative models that are 

used for decision support purposes. However, this binary view seems too restrictive. Discussing 

OR/MS modelling in general, Pidd (2009) suggests four modes of model use: 1: decision 

automation, 2: routine decision support, 3: system investigation and 4: improvement and providing 

insights for debate. Heath et al. (2009), focusing on agent-based simulation, suggest three different 

archetypal approaches to simulation modelling, based on the modeller’s level of understanding of 

the system to be simulated. As shown in Figure 3-1, Heath et al. argue that, when the level of 

understanding is high, a simulation can be used as a predictor; that is, as a machine that produces 

precise predictions about the system’s behaviour under defined conditions. When the level of 

understanding is low, Heath et al. suggest the use of a simulation model as a generator to support 
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the generation of hypotheses and theories about system behaviour, but not in a precise manner. 

When the level of understanding is neither high nor low, Heath et al. suggest that a simulation 

model be used as a mediator, which provides insight into the behaviour of the system without 

offering a complete representation of that behaviour. Clearly, these are three archetypal positions, 

and many models will display characteristics that make them a mixture of predictor and mediator, 

or mediator and generator. Heath et al. ’s three categories (2009) tally, more or less, with the last 

three of the four types suggested by Pidd. 

 

Figure 3-1. Roles of simulation models (from Heath et al., 2009) 

The most common simulation methodologies used in healthcare are discrete event simulation 

(DES), system dynamics (SD) and agent-based modelling and simulation (ABMS). DES has usually 

been preferred when analysing hospital operational issues since it allows the representation of an 

individual patient’s characteristics and their flows through the system (Brailsford, 2007; Brailsford 

& Harper, 2008; Günal & Pidd, 2006). SD is also regarded as a suitable tool to deal with the 

complexity inherent in such social systems and has been used in defining generic structures and 

identifying general behavioural insights (Sterman, 2000; Wolstenholme, 2003). Agent-Based 

Simulation (ABS) on the other hand, has not enjoyed the same popularity as DES and SD in 

healthcare system studies. However, ABS has been used to study other classes of complex systems, 

in which people and their social interactions are modelled (Macal & North, 2008).   

The remaining part of this chapter will discuss the use of DES and SD in the healthcare area, 

reviewing the use of each simulation method for modelling hospital performance and especially 

for modelling Emergency Departments.   

 The use of system dynamics in healthcare systems 

Even though System Dynamics for healthcare systems modelling is not as common as other OR 

methodologies such as discrete event simulation (Brailsford & Harper, 2008), there is a 
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considerable amount of literature in this area.  This section summarises some reviews of the 

literature on general aspects of SD healthcare modelling and specifically for hospital performance 

modelling. 

Whether it is appropriate to use SD in healthcare systems modelling depends on the intended 

purpose of the model (Pidd, 2002).  For instance, there are some situations with defined objectives 

in focused problems with easily quantifiable components (Royston et al., 1999), for which SD might 

be used as a tool to evaluate different policies seeking improvements (Dangerfield, 1999). 

Additionally, there are wider and more complex systems with higher levels of uncertainty, in which 

SD may be useful as a tool to structure an issue and to obtain better understanding of it 

(Dangerfield, 1999; Royston et al., 1999). 

SD modelling can be broadly divided into qualitative and quantitative streams. Qualitative SD 

models are useful as a preliminary step before developing fully quantified models (Sterman, 1992) 

or might be an end in themselves, offering a form of problem structuring. Wholly qualitative 

modelling, based on influence diagrams, appeared in the 1980s (Wolstenholme, 2004; 

Wolstenholme, Monk, McKelvie, & Smith, 2004; Wolstenholme, Monk, Smith & McKelvie, 2004) 

and is still in use. Dangerfield (1999) and Wolstenholme (2003) suggest that SD at the qualitative 

level is useful to support debate and communication as well as being a tool to structure problems 

due to the use of influence diagrams to expose system structures (Koelling & Schwandt, 2005) 

which generate system behaviour. Qualitative SD is also useful because it can embody generic 

structures that describe common patterns of behaviour (Wolstenholme, 2003, 2004). These 

generic structures (system archetypes) were defined initially by Senge (1990) and have been 

applied in different areas of healthcare (Wolstenholme, 1993; 1999b, 2004).  

However, fully quantified models of SD are often needed to extend the value of the modelling 

process and to test the dynamic hypothesis formulated from the qualitative analysis. Fully 

developed quantitative SD models have been used in different areas of healthcare such as capacity 

planning (Lane, Monefeldt, & Rosenhead, 2000), waiting list management (Van Ackere & Smith, 

1999) and disease control and management (Brailsford et al., 2004). Since the purpose of this work 

is understanding hospital performance, the next section will focus on how hospital performance 

has been modelled in system dynamics.  

The first serious discussion and analysis of the literature of SD in healthcare emerged during the 

late 1990s with Dangerfield (1999) and Royston et al. (1999).  Although these are excellent surveys 

of the literature, they cover only some of the investigations conducted by that time. In addition, 
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since powerful SD software was only emerging at that time, the difficulties faced by users of earlier 

software may have influenced the orientation and level of modelling. Dangerfield (1999) classifies 

the literature around whether the reports addressed qualitative or quantitative modelling and 

provides an evaluation of excellent examples of applications of these two perspectives in different 

applications. That review argues that quantitative modelling is appropriate in epidemiology and 

disease modelling and discusses three studies conducted between 1984 and 1994 (Wolstenholme, 

1993; Coyle, 1984; Van Ackere and Smith, 1997, with a detailed treatment of one fully developed 

example: AIDS transmission.  

Qualitative modelling is discussed by Dangerfield as a tool for structuring problems and as a vehicle 

for debate, using three examples. In the first example, Wolstenholme (1993) examines the 

consequences of government policies on the community and healthcare sectors. The second 

example includes the work of Coyle (1984), which discusses the management of a hospital for short 

term psychiatric patients.  That shows how improvements in system performance, such as waiting 

times and the relation between hospital capacity and duration of treatment are related to changes 

in the admission policies of a hospital. The final example is the management of waiting lists for 

elective patients by Van Ackere and Smith (1997).  

Each of the three cases analysed by Dangerfield (1999) considers the impact of different policies 

on waiting lists. Dangerfield found that Wolstenholme argues that increasing waiting lists were the 

result of the implementation of government policy on isolated parts of an interconnected system. 

Coyle investigated the waiting lists for a specific patient group and showed that a waiting list could 

be affected by different admission policies and treatment durations. Van Ackere and Smith’s 

application suggests that temporary injections of resources as a result of long waiting list tend to 

attract more patients which in turn increases the waiting lists.    

The second review considered here is Royston et al. (1999), which summarises the work done by 

operational research analysts in the Department of Health in England. The angle from which the 

literature was reviewed does not differ too much from that of Dangerfield (1999). For instance, as 

in Dangerfield’s review, the examples include problems related to diseases as well as more complex 

and organisational problems within healthcare. However, Royston et al., unlike Dangerfield, 

analyse the applications of SD in HC according to whether the modelling is solution-oriented or 

learning-oriented. That distinction seems to be driven by the complexity of the system. For 

relatively simple and focused systems, which may be comparable to engineering or production 

processes, Royston et al. (1999) suggest that SD can be used to find solutions, sometimes optimal, 

to practical problems.  For example, such solution-oriented modelling could be used for particular 
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acute or chronic disease such as screening for cervical cancer and Chlamydia. On the other hand, 

for systems that have a higher level of complexity, SD is best used as a tool to support learning.  

Both reviews, Dangerfield (1999) and Royston (1999), agree with Vennix (1999) that the more 

complex the problem is, the more group - based modelling is appropriate; a view also espoused in 

Wolstenholme (1999a). Dangerfield regards these more complex problems as suited to a 

qualitative approach, though Royston et al. do not ignore the power of quantitative analysis for 

those highly complex problems as a step which involves stakeholder participation on the way to 

more quantitative approaches. Other discussions of quantitative versus qualitative modelling can 

be found in Lane (1994), Coyle(2000), Wolstenholme  (2004) and Brailsford (2008).  

Other surveys such as that conducted by Koelling and Schwandt (2005) and Milstein and Homer 

(2005) stress the importance of qualitative modelling to expose the structure of the system as well 

as quantitative modelling to extend the value of the modelling process. However, their surveys do 

not show whether the applications were qualitative or quantitative.   

Koelling and Schwandt provide an overview of 220 SD healthcare applications between 1965 and 

2004 using the System Dynamics Society (SDS) bibliography.  That classifies applications into six 

main areas, as shown table in Table 3-1, showing that SD use has more often been at a strategic or 

policy level rather than for individual or population health. Its other primary use seems to have 

been for focused studies at a tactical level.  

Table 3-1. The Koelling and Schwandt (2005) classification 

 Area Number of 

papers 

1 Health systems 

strategy & policy 

National & international 33 

2 Regional & metropolitan 47 

3 Single organisation or facility 43 

4 Tactically focused delivery 32 

5 Disease prevention 5 

6 Epidemiology 60 
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Koelling and Schwandt complement the argument in Dangerfield (1999) that system dynamics can 

be used as a tool for persuasion at the national or regional level in situations characterised by lack 

of understanding, or as a tool for evaluation of tactical studies to provide a scenario in which 

tactical decisions can be better evaluated. 

Milstein and Homer (2005) analyse SD use in Public Health, examining 21 applications between 

1974 and 2006 and classifying them into six groups: healthcare reform, HMO planning, patient 

flows, performance assessment, public health emergencies and public health planning. By contrast 

with Koelling and Schwandt (2005), this review reports the majority of applications as being 

focused on individual and population health rather than managerial and planning issues.  

Brailsford (2007) is a more general review of simulation approaches in healthcare, including both 

DES and SD. Similarly, to Dangerfield (1999), Royston et al.  (1999) and Koelling and Schwandt 

(2005), the taxonomy proposed by Brailsford considers modelling at three levels:  the strategic, the 

tactical and the human body levels. Brailsford points out that SD has been most commonly used at 

the strategic and policy level, whereas Discrete-Event simulation has been more often used to 

analyse situations at the tactical level, such as bottlenecks.    

Other surveys include the work of Katsaliaki & Mustafee (2011) and Mustafee, Katsaliaki, & Taylor 

(2010). Katsaliaki & Mustafee (2011) surveyed the application of simulation in healthcare. They 

selected 139 papers from 1997 to 2007 and found that 17 of those papers used system dynamics 

as the simulation method and grouped them into four categories (see Figure 3-2):  

• Public health policy evaluation and economic models: Includes models for harm 

reduction policies, treating strategies, long-term health impact, disease population 

dynamics, reconfiguration of health services and health insurance strategies. 

• Modelling healthcare systems and infrastructure disruption: includes models for 

unscheduled care, A&E demand pattern, resource deployment, parallel hospital 

processes, health infrastructure disruptions and disasters.   

• Training tool: health policymakers–understanding the dynamics of diseases, students’ 

experimentation with pharmacological systems.   

• Review  
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Figure 3-2. Areas of application of SD in healthcare (from Katsaliaki & Mustafee, 2011) 

A More recent survey is the review of Kunc et al. (2018 ). They found that System Dynamics has 

been used in healthcare in different areas. First, there is a group of papers that focus on healthcare 

as a complex system modelling aspects of workforce management in healthcare.  Second, some 

papers explore the relation between System Dynamics and other OR approaches. Third, papers 

that focus on methodological issues of System Dynamics in healthcare. Fourth, some work is 

related to supporting health emergency and healthcare improvement programmes, also there is 

work related to the role of SD as a dynamic and behavioural theory of strategy. Finally, some papers 

explore the use of SD to support policymaking in healthcare, mainly because of its ability to 

represent populations, chronic disease progression, epidemics, service treatments, patient 

pathways and workforce.  

3.3.1 SD for modelling Emergency Departments 

In 1995, the OR Group of the UK Department of Health (Royston et al., 1999) began to use system 

dynamics to understand and improve the performance of Emergency Departments. The initial aim 

was to expose the structure of the UK healthcare system by considering the interactions among its 

different parts. The idea was to help different stakeholders develop their understanding of system 

behaviour resulting from the system structures often found in healthcare. That work demonstrated 

meaningful relationships among different sectors of the healthcare system, such as the observation 

that longer waiting times in GP consultations tend to elevate the number of arrivals at accident 

and emergency departments. Another important finding of this model is that behaviour changes 

(e.g. willingness to admit patients?) have a more significant effect than changes in capacity.  
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Lane et al. (2000) describe the use of SD to understand the different factors contributing to the 

long delays for unplanned, urgent admission to acute hospitals in the UK and to explore the 

dynamics of the system of which the accident and emergency department is one element. The 

model considers interactions between the demand pattern, A&E department resource 

deployment, other hospital processes and bed capacity. The main finding is that although some 

delays in the patient’s pathway are inevitable, a selected augmentation of A&E resources may lead 

to some reductions in those delays. Additionally, the study demonstrated that reductions in bed 

capacity have more impact on elective surgery cancellations than on waiting times for emergency 

admissions. Similarly, Brailsford et al. (2004) developed a system dynamics model of the health-

care system of a city related to emergency care. The purpose of the model was to simulate patient 

flows and to identify bottlenecks. 

 Salmon et al. (2018) analysed the literature of simulation modelling applied to emergency 

departments and found SD models that have been used to analyse some effects of external factors 

on waiting times within emergency departments. In general terms, simulation in healthcare has 

been widely used to study Emergency Departments processes and performance, resource and 

capacity issues, and workforce planning. They presented examples of the use of SD for modelling 

flows within emergency departments and with other hospital units. 

In summary, most SD applications have investigated the relationships between healthcare 

demand, healthcare capacity and within-hospital delays; others have investigated the interactions 

between different units of a hospital and other sectors of the healthcare system.  The SD models 

of emergency departments have mainly focused on understanding how the fundamental structure 

of the healthcare system affects the performance of emergency departments and to represent A&E 

patient flows. Besides, it was shown that some SD models of A&E departments have explored how 

not only changes in capacity affect performance but also how changes in people’s behaviour also 

play an essential role in performance improvement.  However, it is known that SD only allows for 

the modelling of human behaviour at an aggregated level, making it inappropriate for modelling 

heterogeneous populations at an individual level, which is a disadvantage for modelling human 

behaviour within A&E departments, since individual characteristics of clinicians and patients as 

well an individual interaction between them are relevant to represent most of the aspects related 

to A&E performance. Therefore, it is not surprising that there is no evidence in the literature of SD 

research that studies the relationship between individual behaviour and the performance of A&E 

departments.   
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The next section will analyse the use of discrete event simulation in healthcare, particularly for 

modelling emergency departments.  

 The use of DES in healthcare systems 

A considerable amount of literature has been published on Discrete-Event simulations in 

healthcare systems. Several systematic reviews of the use healthcare simulation include Fone 

(2003), Jun et al. (1999), Günal and Pidd (2010), Brailsford et al. (2009) and Mielczarek (2016).  The 

literature review of Günal and Pidd (2010) reports that most of the research carried out in 

healthcare systems using DES is done to support operational decision-making and planning in 

specific healthcare units to study particular problems such as staff scheduling, resource utilisation 

and waiting time issues. They also found that most of the reported simulations focus on specific 

facilities and seem not to be reused. Similarly, Brailsford et al. (2009) report that most of the papers 

reported in the literature show that simulation is mainly used for planning or system resource 

utilisation, whereas human behaviour and segmentation are rare areas of application of simulation 

models. Mielczarek (2016) reports that DES is frequently used to support decision-making in 

healthcare systems operation, usually applied to single units or mutually related clinics to tackle 

issues related to staff scheduling, resource allocation and planning.  

Brailsford (2007) discusses some of the challenges to be faced by those attempting using simulation 

in healthcare and proposed a taxonomy for simulation modelling in healthcare that includes three 

primary levels of applications:  

• Level 1 includes models of the human body  (also known as well disease models), where 

the main purpose is to model the physiological, biological and clinical processes of 

individuals.  

• Level 2 refers to operational and tactical models. In this level, the main purpose is to model 

the flow of patients around clinics, wards or hospital departments and is commonly used 

for capacity planning, resource allocation and process redesign. 

• Level 3 represents the strategic models. In this level, the majority of the models deal with 

the study of long-term system behaviour rather than modelling individual behaviour.   

According to Brailsford (2007), DES is more commonly used in levels 1 and 2 for disease models 

and operational and tactical models, whereas SD is commonly used in level 3.  

The next section will discuss the use of DES in levels 1 and 2, particularly for modelling Emergency 

Departments.  
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3.4.1 DES for modelling Emergency Departments  

Existing literature on healthcare simulation reveals that one of the most popular areas for DES in 

healthcare systems is A&E departments (Günal and Pidd, 2010; Gul and Guneri, 2015; Mielczarek, 

2016; Mohiuddin et al., 2017; Salmon et al., 2018), which are the central area of interest of the 

research discussed in this thesis.  The popularity of A&E departments for DES may be because an 

A&E department is a relatively self-contained system that allows relatively easy observation of its 

processes (Günal & Pidd, 2006) and because DES allows the representation of patient 

characteristics and their flows through the system (Günal, 2008). Numerous studies have 

attempted to use DES in A&E departments to improve performance; study patient flows, bed 

occupancy and length of stay; and for scheduling and capacity planning (Günal, 2008; Jun et al., 

1999).  

Up until now, several studies have surveyed the existing literature on the use of DES for modelling 

A&E Departments. For example, Gil and Gulneri (2015) reviewed existing literature simulation 

modelling applied to emergency departments facing typical and disaster situations. They reviewed 

approximately 106 papers and found that DES is the most popular methodology for modelling 

Emergency Departments. They identified that around 62% of the papers used only DES as the 

principal methodology, 33% used DES and other OR methodologies, 3% used only ABMS and the 

remaining 2% used ABMS with other methodologies.  

They argue that the popularity of DES is due to its flexible methodology, which allows the modelling 

of stochastic, complex and non-linear systems. That approach also allows the modeller to include 

individual patients’ characteristics and represent process-oriented systems using visual 

representation of patient flows. Similarly, they found that ABMS also offers similar opportunities 

for modelling Emergency Departments, but they believe that the strength of DES is the modelling 

of process-oriented systems, while the strength of ABMS the modelling of interacting decision-

making behaviours. Although their review did not focus on modelling human behaviour, they 

suggest that multi-method modelling, for instance, DES and ABMS, could be valuable to represent 

human behaviour in ED simulations.  

Similarly, Salmon et al. (2018) conducted a structured literature review of simulation modelling 

applied in Emergency Departments, focusing on simulations that actually represent the emergency 

department’s problems and that can support decision making. They found that most of the 

simulations of emergency departments are focused on processes and performance, resource and 

capacity issues, and workforce planning, whereas medical decision making and individual patient 
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behaviour, are uncommon. Salmon et al. also reported that the majority of Emergency 

Departments studies used DES as the primary simulation methodology, particularly to study 

operational issues. On the other hand, ABMS has been gaining popularity to study such systems, 

frequently used to model patient behaviour. They did not find many studies that focus on clinicians’ 

behaviour in emergency departments.  

Although simulation methodologies have been commonly used to model performance in 

healthcare (Brailsford et al., 2009; Günal & Pidd, 2005), there is little published research on the use 

of DES for modelling the effect of the 4-hour waiting time target on the people’s behaviour and 

performance of the A&E departments. For instance, Günal and Pidd (2009) developed an 

interconnected DES model (DGHPSim) of Emergency, Outpatient and Inpatient Departments of a 

hospital to understand the effects of waiting time targets on hospital performance. The A&E 

component of the DGHPSim model can be used to simulate the performance of an A&E department 

and allows comparison of actual and simulated performance in terms of patient waiting times. 

Günal and Pidd (2009) include performance graphs for two A&E departments, and in one of these, 

there are apparent differences between the actual and simulated waiting times as patients 

approach the 4-hour target. That, the authors say, is because the model was not designed to 

capture panic interventions that might occur as a patient’s waiting time approaches four hours but 

shows what would happen if processes were allowed to proceed normally without such 

interventions. The differences between the actual and simulated waiting times might be due to 

different reasons. One possible reason is that the level of detail included in the model is not 

sufficient to represent the components that affect the performance of the Emergency 

Departments under performance measurement schemes that require meeting some specific 

targets. Another reason might be that the way that humans are represented in the model ignores 

some of the essential factors of the staff’s and patient’s behaviour that have an important effect 

on the Emergency Department’s performance.   

Eatock et al. (2011) also built a DES model that represents the actual A&E department’s process to 

study strategies towards meeting the 4-hours target. Their focus was on patients’ throughput 

issues, examining how changing patients’ priorities when approaching 4-hour time affects the 

department’s performance. Human behaviour in their model is included either as reactive 

behaviour or countable variables (or resources) that are seized and released at activities. For 

instance, patients are active entities whose behaviour includes joining a queue and engaging in an 

activity.  A priority system defines Patients' behaviour in a queue, and priorities are updated every 
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specific time to check whether a patient is close to approaching the 4-hour time, when this 

happens, their priority is increased, and they are redirected to another fast-track path. 

On the other hand, it seems that staff are treated as resources that interact with patients in the 

activities and take breaks on their quiet periods; however, it seems that their decision making 

depends only on the simulation process (reactive behaviour that depends only on the sequence of 

scheduled events) rather than on their own needs.  Although they found that their model 

represents sufficiently accurate the performance of the A&E department, they did not reproduce 

closely enough the number of patients breaching the target. They believe that the difference 

between observed and simulated behaviour may be due to some informal process they did not 

consider in their simulation model. They argue that the complexity of modelling A&E departments 

concerning strategies to prevent breaches of the four-hour target may be due to the difficulty of 

tracking patients approaching the four-hour target and the modelling of staff behaviour.  

The literature on the use of DES for modelling Emergency Departments has demonstrated that one 

of the most significant challenges for simulation models is incorporating human behaviour. DES has 

widely used to represent operational issues and some human factors such as workload capacity, 

multi-tasking, workforce planning, patient flows and patients’ priorities; however, there has been 

little discussion on the value of including human behaviour and its relation to the A&E 4-hour 

target.   ABMS has been gaining popularity for modelling healthcare systems, and it has been mainly 

used to represent people’s interactions in complex systems. The next section will describe the main 

areas of application of ABMS and discuss the use of ABMS in healthcare systems.  

 Agent-based modelling and simulation: terminology 

Agent-based applications have roots in different disciplines and, were originally motivated by 

investigations of adaptation and emergence in biological systems (North & Macal, 2007). It is 

common then, to see the term “agent” used in different disciplines for different purposes (Gilbert 

& Terna, 2000) and it is possible to find agent-based applications in fields such as artificial 

intelligence, social science, complex science, economics. (Borshcev & Filippov, 2004). 

Although there is no complete general agreement on what an “agent” is, there are some common 

characteristics in its definition. For instance, in the Multi-Agent Systems area of study, Ferber 

(1999, p.9) defines an agent as: “a physical or virtual entity that can act, perceive its environment 

(in a partial way) and communicate with others, is autonomous and has skills to achieve its goals 
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and tendencies”. By physical entities, Ferber refers to entities that exist in the real world, and by 

virtual entities to entities that do not exist in the real world but act in a virtual environment.  

Taking a different tack, Jennings and Wooldridge (1998, p.8) define an agent within the software 

engineering area as “a computer system, situated in some environment, that is capable of flexible, 

autonomous action in order to meet its design objectives.” Bonabeau (2002), considering 

simulation modelling, provides a more general description of an agent considering an agent as an 

autonomous decision-making entity which makes decisions based on a set of rules.  Similarly, North 

and Macal (2007) consider an agent as anything that makes choices in a system.   

There are different terms used to describe agent-based methods in simulation, including Agent-

Based modelling (ABM), Agent-Based simulation (ABS), Agent-Based modelling and simulation 

(ABMS) and Individual-Based modelling (IBM). Despite this, writers agree that a model consists of 

a set of agents that follow a group of rules that represent individuals’ behaviour in the system. The 

simulation emulates those types of behaviours through model execution (Borshcev & Filippov, 

2004; Van Dyke Parunak, Savit, & Riolo, 1998). Here, the term agent-based modelling and 

simulation (ABMS) is used for such applications.  

 The use of ABMS in OR/MS 

In the OR/MS area, AMBS is not as popular for healthcare modelling as DES or SD. Moreover, 

literature shows that agent-based methodologies are not as popular in OR/MS as in other fields 

such as Computer Science.   Browsing the string ‘((agent*) AND (model* or simulation))’ in the topic 

search of the Web of Science (WoS) produced 228,787 hits from 2000 to 2019 when executed in 

July 2019. Using WoS analysis tools allows the identification of the main subject areas of application 

of agent-based methodologies. Figure 3-3 shows that the main subject area is Computer Science, 

with 17.95% of the total papers. OR/MS enjoys much less popularity, with only 1.91% of the total 

records. 
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Figure 3-3. Agent-based modelling by subject area. 

 

It is not surprising that the majority of the studies of ABMS have been carried out in the Computer 

Science field since the roots of ABMS are in the concepts of cellular automata and artificial 

intelligence (Brailsford, 2014; North & Macal, 2007) which are areas commonly studied in 

Computer Science. Moreover, there are some other concepts in computer science related to agent-

based modelling and simulation. North, M & Macal, C (2007 p. 46) list “individual-based/ actor-

based/ particle simulation, autonomous agents, and multi-agent systems (MAS), swarm 

intelligence, artificial life and artificial societies, self-organisation, evolutionary programming” 

among others.    

Usually, the area of Computer Science includes research about the development of software, 

where the agents commonly represent and act on behalf of the users and as the users; they also 
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behave according to their different goals and motivations (Wooldridge, 2002). However, agent 

methodologies have been applied not only in Computing Science fields but also have been 

commonly developed and used in Economy, Biology and Social Science fields (Heath et al., 2009).  

The following sections will analyse the uses of ABMS in healthcare and particularly for modelling 

Emergency Departments.  

 The use of ABMS in healthcare systems 

As discussed previously, a considerable amount of literature has been published on simulation in 

healthcare (Brailsford & Harper, 2008; Brailsford et al., 2009; Dangerfield, 1999; Eldabi & Young, 

2007; Gill & Paranjape, 2009; Günal & Pidd, 2010; Homer & Hirsch, 2006; Katsaliaki & Mustafee, 

2011; Leischow & Milstein, 2006; Mustafee et al., 2010; Royston et al., 1999).  However, it seems 

that ABMS applications mainly appear in non-healthcare domains (Shi, 2008) and that few have 

been carried out in healthcare (Kanagarajah et al., 2006; Moreno, 2003; Sibbel & Urban, 2001; 

Stainsby, Taboada, Luque, 2009; Taboada et al., 2013). To illustrate this, a more detailed search of 

Web Science was conducted in July 2019. 

Browsing for papers from 2000 to 2019 that contains the string ‘((("Agent-based") AND (model* 

OR simulation)) AND (health* OR hospital))’ in the topic, produced 997 records.  The results of this 

query allow the main subject areas of application of ABMS in healthcare to be identified Figure 3-

4 shows that the most popular subject area of ABMS literature in healthcare remains Computer 

Science with 36.47% of the records, followed by Engineering with 19.22%, Public Environmental 

Occupational Health with 10.98% and OR/MS with 7.65% of the records. Areas such as 

Mathematics, Mathematical Computational Biology and Health Care Sciences Services appear with 

less than 5% of the total records.  
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Figure 3-4. ABMS in healthcare by subject areas. 

As expected, most of the papers located by the WoS search discuss mobile agents or software 
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Other reviews (Moreno, 2003; Nealon, 2005; Nealon & Moreno, 2003) also consider studies in 

disease and epidemics areas.  These studies often consider biological and medical knowledge of 

human behaviour in their models.  

The initial query filtered by subject areas, considering only the records related to OR/MS 

applications, obtained a total of 45 items. These are classified into the three main groups of 

healthcare simulation applications in OR/MS discussed previously: the strategy and policy level, 

the tactical and operational level, and disease prevention and epidemiology. It can be seen from 

Table 3-2 that most of these applications are in the disease prevention and epidemiology area. 

Here, however, we focus on the first two groups.   

At the strategy and policy level, it can be seen that most of the applications have focused on 

evaluating the effects and effectiveness of different strategies or policies on different areas of the 

healthcare system.  At the tactical and operational level, the majority of the papers show the use 

of ABMS for supporting decision making within different areas of the healthcare system or within 

different healthcare units.  However, most of the studies are limited to patients’ behaviour and 

ignore relevant aspects of the behaviour of the healthcare providers that may also affect the 

performance of healthcare systems. 
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Table 3-2. Publications of ABMS in Healthcare by level of application 

 

In addition, this survey shows that several of the applications used ABMS together with other 

methodologies. One example is the research conducted by Dougherty et al. (2012). They modelled 

Level of application Number of papers Reference 

Strategy and Policy 6 

(Heffernan & McDonnell, 2007; Kanagarajah, 
Parker, & Xu, 2010; Kim & Yoon, 2014; 
Metcalf et al., 2013; Perez et al., 2005; Xu, Li, 
& Wu, 2008) 

Tactical and 
operational 

5 

(Bhandari et al., 2011; Brailsford & Schmidt, 
2003; Escudero-Marin & Pidd, 2011; 
Hagtvedt, Ferguson, Griffin, Jones, & 
Keskinocak, 2009; Knight, Williams, & 
Reynolds, 2012) 

Disease prevention 
and epidemiology 

11 

(Aleman, Wibisono, & Schwartz, 2011; 
Barnes, Golden, & Wasil, 2010; Barnes, 
Golden, Wasil, Furuno, & Harris, 2011; 
Dougherty et al., 2012; Kelso & Milne, 2011; 
Liu & Hu, 2010; Lizon, Aleman, & Schwartz, 
2010; Ma, Sartipi, & Ieee, 2014; Meng, Davies, 
Hardy, & Hawkey, 2010; Von Neubeck et al., 
2013; F. Zhang, Li, & Xuan, 2009; J. Zhang et 
al., 2015) 

Other 23 

(Allen, 2011; Carneiro, et al., 2008; Cheon & 
Corbitt, 2009; Cole et al., 2008; Ferraz, 
Oliveira, Viera-Marques, & Cruz-Correia, 
2010; Gibbons, 2007; C. Macal & North, 2011; 
Manley & Kim, 2012; Narzisi, Mincer, Smith, & 
Mishra, 2007; Natarajan, Ghosh, & Srinivasan, 
2009; Pearce, Hosseini, Taaffe, Huynh, & 
Harris, 2010; Perez et al., 2009; Rahmandad & 
Sterman, 2008; Ramaekers, Bellemans, 
Janssens, & Wets, 2008; Roberts, 2011; Ryan 
& McAlpine, 2005; Sokolova & Fernandez-
Caballero, 2009; Van Dam, Lukszo, & 
Srinivasan, 2009; Vermeulen et al., 2010; 
Walczak, 2009; H. Yang, Liu, Wu, & Li, 2009; X. 
Yang & Miao, 2011; W. Zhang, Li, Xiong, & 
Zhang, 2010) 
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the U.S healthcare system by combining system dynamics, discrete event simulation and agent-

based modelling and simulation. The purpose of the research was to develop a framework to 

support decision making at different levels and scales. In this study, SD was used to represent the 

structure of the healthcare system by representing its central relationships, DES was used to model 

queues and sequential processes, and ABMS was used to represent particular movement of 

patients. 

Other papers showed the use of ABMS together with SD. For instance, Heffernan & McDonnell 

(2007) developed an SD model to analyse the interaction between the health and long-term care 

for elderly in Australia and extended the model using ABMS to represent geographical distribution 

of the agents that represent the demand and supply of the healthcare and long- term care for 

elderly. Similarly, Metcalf et al. (2013) focused on developing an SD model of the participation of 

adults in oral health promotion and implemented an agent-based approach to represent social 

interactions and geographic information systems.  

Some other papers combine or complement DES with ABMS. Knight, Williams, & Reynolds (2012) 

used DES and ABMS to model the decisions of patients in choosing an appropriate hospital for their 

treatment. Hagtvedt et al. (2009) used different methodologies, including DES and ABMS, to 

evaluate some strategies for ambulance diversion from emergency departments to hospital wards. 

The DES model considered the patient flow in a hospital ward and the ABMS model included spatial 

patterns of different groups of patients.  Although the work of Brailsford and Schmidt  (2003) 

considered a DES model of patients’ attendance for screening for diabetic retinopathy, it seems 

that the patient entities in their model play the role of simple agents. Each patient decides against 

attending the screening based on the values of internal variables that represent individual 

characteristics. Because of this, the work of Brailsford and Schmidt (2003) was included within the 

methodologies that use DES and ABMS together.  

3.7.1 ABMS for modelling Emergency Departments  

As mentioned before, ABMS has been gaining popularity to study Emergency Departments (Salmon 

et al., 2018; Gil and Gulneri, 2015). In order to limit the relevant literature within the scope of this 

research, which is Emergency Departments, the initial query was refined to those applications 

carried out within this subject. Therefore, considering the same time span, 2000 to 2019, and 

limiting the search for Emergency Departments applications, a new string was used in the topic: 

‘((((("Agent-based") AND (model* OR simulation)) AND (health* OR hospital)) AND ("A&E" OR" 

Emergency Department*" OR "ED")))’ obtaining 52 hits. The literature on simulation applied to 
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Emergency Departments has highlighted the benefit of using ABMS for modelling different aspects 

of human behaviour, such as clinicians and patients’ interactions as well as their decision-making 

processes.  

For instance, Yousefi et al. (2018) developed an ABMS model of patient’s behaviour within an 

Emergency Department. The focus was on analysing interactions among patients and the effect of 

those interactions on patients’ decision to leave the department before being attended. They used 

cellular automata techniques to define patients’ decision-making processes based on their waiting 

time, overcrowding and neighbours’ experience. Yousefi et al.  proposed policies for improving 

performance that include increasing the number of triage nurses, fast-track treatment, increasing 

waiting room capacity, and reducing treatment time. Although their model provides a good 

representation of number of patients leaving unattended, this study focusses only on one specific 

aspect of patients’ behaviour, which is related to their willing to stay up to the end of the 

attendance and ignores other factors of human behaviour such as clinicians’ decision-making 

processes and their relation with the global performance of the department. 

Similarly, Kanagarajah et al. (2006) reports a hypothetical ABMS of an Emergency Department with 

a focus on patients, mainly they assessed the effects of fluctuations in workload and economic 

forces on patient safety. The agents considered in the model were patients, doctors, nurses, 

technicians, treatment rooms and managers. All the agents were programmed to aim for 

minimising preventable adverse events while managing patient’s outcomes. Patients were 

attended based on their condition. The time spent by medical staff with patients depends on 

demand pressures and patients’ characteristics, and doctors may work faster or in busy periods to 

clear excessive queues. One important aspect of their model is that, as in this research, they also 

consider the 4-hour target as a trigger to modify the agent’s behaviour. In their case, patients that 

stay more than 4 hours before being attended are considered as an adverse event, and their 

objective was to reduce these events by implementing different strategies like changing availability 

of resources and staff and reducing treatment time. However, the behaviour of the agents within 

the model is defined by elementary rules that only consider external factors rather than their 

internal state. For instance, doctors only reduce their consultation time based on queue size and 

ignore other aspects such as the pressure they feel to meet the targets or tiredness after working 

without breaks.   

Taboada, Cabrera, & Luque (2011), Taboada et al. (2011), Stainsby et al. (2010), Cabrera et al.  

(2012a; 2012b; 2011), show examples of the use of ABMS as a decision support system for hospital 

emergency departments. For instance, Stainsby et al. (2009) described briefly the conceptual ABMS 
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model of an Emergency Department model based on the interactions of the agents. The 

preliminary conceptual model considered five agent classes: patients; companions of patients; 

administrative staff; nurses and doctors. The rules of interactions depend on which agent initiates 

the interaction. The patient flows and interactions among agents in each process are captured in a 

conceptual model described in their paper.  The purpose of their model was to help understand 

some important questions about people’s behaviour in an emergency department. For instance, 

they claim that with the ABMS it will be possible to understand why some patients leave an 

emergency department while waiting for triage, or how the implementation of a fast track system 

affects the level of service as perceived by the patient.  The general layout of the model shows at 

each stage the pathway of the interacting agents; however, it is not clear how these interactions 

occur.  Additionally, the authors claim that the model will include aspects of human behaviour but 

fail to explain how this behaviour is represented in the model.  However, there is no evidence that 

the model is being developed to help understand performance but rather to understand some 

specific behaviour of individuals within the system.  

Another example of the use of ABMS as decision tool system is Taboada et al. (2011; 2012). They 

described an ABMS of an emergency department that includes two types of agents: active agents 

that represent people and other entities with proactive behaviour and passive agents that 

represent systems with reactive behaviour. The interactions between the agents were defined by 

state machines which define the different state variables of each agent. State variables are 

identifier, physiological variables such as age, medical history, origin, location within the 

emergency department, actions, physiological condition and symptoms, communication skills and 

level of experience. The behaviour of each agent can be defined externally by the use of 

probabilities and the actions triggered by the behaviour depend on the agent’s characteristics and 

the agent’s location. However, a limitation of their behavioural representation is that it may ignore 

other aspects of agents that may affect their behaviour, for example, psychological factors such as 

motivation may be related to the behaviour of the agents. 

ABMS has also been used to study operational issues within Emergency Departments such as 

patient flows, resource allocation, and workforce scheduling and distribution. Examples of this 

include studying the effects of redistribution of nurses on the patients’ waiting time (Al-Refaie, 

Fouad, Li, & Shurrab, 2014), representing patients with deteriorating conditions by representing 

re-triage structure inside the emergency department (Rahmat et al. 2013) and experimenting with 

emergency department policies for reallocating patients with noncomplex conditions (M Taboada 

et al., 2013).  
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Other examples of the use of ABMS at the operational level include Liu et al. (2017) who built an 

ABMS simulation of an Emergency Department aiming to develop a tool that helps understand 

complex behaviour, evaluate policy and improve efficiency of emergency departments. They 

modelled the behaviour of patients and staff using simple if/then rules that were mainly related to 

movement, engaging in activities, waits and staff scheduling. In addition, Laskowski, McLeod, 

Friesen, Podaima, & Alfa (2009) and Laskowski & Mukhi (2009) modelled an Emergency 

Department using ABMS, considering patient flows and access through the emergency department 

to assess healthcare policies and practise guidelines.  

Similar work was performed by Lim et al. (2013) who developed a hybrid model of DES and ABMS, 

where DES is used to model patient flows and ABMS to represent physicians and their delegates 

and to evaluate the impact of their interactions on an Emergency Department. They argued that 

considering an agent-based approach in DES could be useful when the purpose of the model is to 

obtain optimal staff scheduling since the hybrid approach allows representing scheduled resource 

utilisation and patient throughput in a more accurate way.   

Literature shows that ABMS models offer good opportunities to represent typical Emergency 

Department processes, but none of the lastly mentioned studies has explicitly defined human 

behaviour beyond what a DES model traditionally can do. Usual passive entities interact with each 

other in an observable process that involves arrivals, queues and activities, and there is no evidence 

of analysing the impact of human behaviour in emergency departments’ performance. Moreover, 

ABMS in healthcare has been mainly used for studying disease prevention and epidemiology 

problems, and there are very few applications at the strategy and policy, and tactical and 

operational levels, especially for modelling emergency departments.  

The reason why ABMS has not been widely used in healthcare systems might be attributed to 

different factors. First, ABMS may be computationally demanding. The growth in computer power 

is bringing new opportunities for ABMS modelling; however, running a model with high levels of 

detail and a large number of agents may consume a considerable amount of time.  Second, 

mastering ABMS software is not straightforward because most of its use requires high 

programming skills as well as a global understanding of ABMS theory.  Third, the data collection 

process may be complicated.  Sometimes the existing data sources do not include the information 

required for a detailed ABMS model, and it might be necessary to collect data from direct 

observation. Moreover, the data cleaning process or error collection might be hard to perform and 

is time-consuming work.  
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 Summary 

This chapter has reviewed the use of different simulation modelling techniques in healthcare. The 

most common simulation techniques used in healthcare are discrete event simulation (DES), 

system dynamics (SD) and agent-based modelling and simulation (ABMS). Of these, discrete event 

simulation is the most popular, system dynamics the second most frequently used and agent-based 

modelling and simulation the least used simulation technique in healthcare. In particular, this 

chapter has reviewed the use of ABMS in healthcare. It can be seen that most of the previous ABMS 

models in the healthcare area have focused on representing patients’ behaviour rather than staff. 

It will be discussed later how staff behaviour can be modelled in ABMS models and how that 

behaviour can be linked to waiting time performance in an A&E department.  

The next chapter will discuss how human behaviour has been modelled in healthcare. It will review 

some important aspects of human behaviour that need to be considered in simulation models, and 

it will also present the advantages of the use of agent-based modelling and simulation as a tool for 

modelling human behaviour. Finally, it will introduce two main human behaviour frameworks 

commonly used in simulation modelling.   
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CHAPTER 4: MODELLING HUMAN BEHAVIOUR  

4  

 Introduction 

Chapter two discussed the effects of performance measurements in public systems. Specifically, it 

showed how the literature had offered different points of view of the effects of the NHS 

performance measurement framework in the UK.  It has been argued that despite improvements 

in waiting times after the introduction of targets in England (Bevan, 2009; Lewis & Appleby, 2006; 

Triggle, 2005), they may have distorted the quality of care and clinical priorities in healthcare 

service delivery (Bevan, 2009; Kelman & Friedman, 2009; Mason et al., 2012). Hence, it may be 

beneficial to develop simulation tools that incorporate human behaviour in healthcare settings in 

order to understand how these affect performance against system performance targets. In this 

way, simulation models may enable a better understanding of the balancing of clinical priorities 

with waiting times.  

 Therefore, it may be beneficial to use a tool that represents how people behave within the NHS 

under the current performance system and that allows the evaluation of different alternatives for 

improvement that balance clinical priorities with other performance measurements, such as 

waiting times.  

As discussed earlier, simulation models have been widely used in healthcare for different purposes. 

Chapter three reviewed the use of simulation in healthcare. It was found that discrete event 

simulation has been commonly used to support decision- making at the tactical and operational 

level and also for system planning or system resource utilisation. Applications in healthcare include 

staff scheduling, patient flows, resource utilisation, and waiting time issues.  

SD, on the other hand, has more often been used to support decision-making at a strategic or policy 

level and to help people understand how different aspects of the structure of the healthcare 

systems affect their overall behaviour. Most of applications in healthcare include models for 

evaluating public health policies and for studying different aspects of the infrastructure of the 

healthcare systems.  

ABMS has been mainly used as decision support systems and to model some aspects of human 

behaviour in healthcare. The majority of the work in this area emphasises aspects of the behaviour 

of patients rather than that of clinicians in different healthcare units such as Emergency 
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Departments. There is also no evidence in the literature of studies of models of the effects of 

targets on hospital performance using ABMS.  

Since the primary purpose of healthcare systems is to provide healthcare services to people, it is 

crucial to include the modelling of healthcare systems some aspects of the people’s behaviour. 

Representing human behaviour in healthcare models is not easy because of the complexity and the 

characteristics of both the healthcare and human systems.   

This chapter will start by reviewing how human behaviour has been included in simulation models. 

It will then present some relevant aspects and theories of human behaviour, and finally, it will 

introduce agent-based modelling and simulation and two popular agent frameworks that have 

been used to model human behaviour.  

 Simulation of human behaviour  

As the study of human behaviour is a complex topic, it, therefore, follows that the modelling of 

human behaviour is not an easy task.  It seems all commentators agree that the behaviour of 

human beings does not follow the same reliable laws followed by physical systems such as the 

climate or an electrical power distribution system. Moreover, the data about human behaviour is 

scarce since the behaviour of people can be difficult to measure and quantify; and in some cases, 

human behaviour is not suitable for experimental control or manipulation.  

However, sometimes there are some aspects of human behaviour that need to be captured in 

simulation models but do not require a detailed representation, for instance, the models that are 

built to help understand how the structure of a healthcare system affects its behaviour, such as 

models used to understand the impact of the increase in hospital bed capacity on patients waiting 

times. In this case, it might be necessary to model patients’ arrival and discharge rates, but without 

focusing on individual behaviour.  Another example can be the models that are used for system 

planning or system resource utilisation, for instance, the models that are used to study scheduling 

of staff to reduce bottlenecks. In that case, although staff scheduling requires representing 

individual nurses and doctors, these are models that may not need a detailed representation of 

human behaviour. 

 On the other hand, there are some models that need to include individual characteristics and 

individual decision-making processes of the people involved in the system that is being modelled, 

for example, models of healthcare systems where performance may affect people’s behaviour, 

such as accident and emergency departments where the four-hour waiting time target may 
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influence staffs’ decision- making processes within an accident and emergency department.  Other 

examples include disease models, in which individual health tendencies affect the spread of a virus, 

and models for the prevention of a disease that depends on individual patient habits.     

The next sections will briefly discuss how system dynamics, discrete event simulation and agent-

based modelling and simulation have incorporated human behaviour in healthcare models.  

4.2.1 System dynamics and human behaviour 

System dynamics assumes that behaviour emerges from the structure of the system rather than 

from the personality of the people in the system (Sterman, 2000). Structure is composed of 

interconnected feedback loops and nonlinearities created by stock and flow networks, information 

flows and the decision-making processes of the people acting in the system.   

Sterman (2000, pp. 28) argues: “when we attribute behaviour to personality, we lose sight of how 

the structure of the system shaped our choices” and that when behaviour is attributed to people 

rather than system structure, management intervention is usually focused on blaming people 

rather than on the design of organizations. Sterman (1989) reports on experiments in which 

participants were given complete and perfect knowledge of a system structure within which they 

were required to operate. He found that the performance of participants was poor and their 

learning was slow and rather limited because they seemed unable to make correct inferences 

about the dynamics of a system, even though they understood its static structure. Thus, he 

believed that it is often unreasonable to blame people, especially when an improved system 

structure would support improved performance.  

As discussed in the previous chapter, generally SD use has more often been at a strategic or policy 

level than at a tactical level. Applications of system dynamics in healthcare human behaviour 

modelling include models to examine the consequences of government policies on different 

healthcare sectors, to assess the management of  hospitals and management of waiting list for 

elective patients, and to study healthcare reforms, HMO planning, patient flows, performance 

assessment, public health emergencies and public health planning  (Coyle, 1984; Lane et al., 2000; 

Milstein & Homer, 2005; Royston et al., 1999; Van Ackere & Smith, 1997, 1999; Wolstenholme, 

1993). That is, SD has not been employed to understand the interaction of individual human 

behaviour with system structure. 
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4.2.2 Discrete event simulation and human behaviour 

Unlike system dynamics, discrete event simulation allows the representation of individuals in the 

model. A DES model typically includes two sets of dynamic objects: entities and resources. Entities 

are individuals whose behaviour is tracked in detail, and resources are countable items, and their 

behaviour is not tracked in the model (Pidd, 2004).  The focus of DES is on the detailed rules that 

drive the interactions of the entities in the model (Pidd, 2004).   

It was seen in chapter 3 that DES use had been mainly at operational or tactical levels, commonly 

used to model patient flows and to identify and eliminate bottlenecks in a healthcare unit such as 

a clinic, a ward or a hospital department. Some factors of human behaviour have been included in 

DES models; however, most of these models represent human behaviour as resources with 

multiple parameters as attributes. Garnett and Bedford (2004) report that there are four main 

factors of human behaviour incorporated on DES models, each with some limitations: 

1. Human factors such as human workload capacity, multi-tasking and attention span.  The 

limitation in modelling these factors is that most of the work done in this category focus 

on the structure of the job rather than on the person that performs the job. 

2. Physiological and environmental factors such as age, time of the day, light, temperature or 

noise. The main limitation of this factor is that representations are usually shown as 

variations in the time scale rather than based on how the human factors interact with 

performance. 

3. Decision-making processes are included in models in different ways. They range from 

simple ‘either/or’ rules to rules that allows evaluation of different strategies to linking the 

DES model with an expert system.  

4. Human psychology factors such as motivation, emotion, cognition and social status. In this 

aspect, they reviewed the work of Schmidt and Brailsford (2003) and concluded that the 

limitation of their approach is that modelling psychological factors in DES should not be as 

simple as linear, parametric models.  

Those four factors have been reported in previous DES studies in healthcare. For instance, 

Brailsford and Schmidt (2003) described a model that considers human psychological factors, since 

the model captures a patient’s motivation to attend for screening for diabetic retinopathy when 

invited on a given occasion. The model was based on a previous study of DES for screening for 

diabetic retinopathy in a group of patients with a specific condition, where the probability of 

attendance was constant for every patient (Davies, Brailsford, Roderick, Canning, & Crabbe, 2000). 
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The motivation of patients to attend was implemented in the model by adding more fields for the 

attributes to the patient’s record. Those attributes considered physical, emotional, cognitive and 

social aspects of the patients. That model shows the potential of including human behaviour on 

DES models and offers a more accurate way of modelling attendances for screening. However, the 

patients’ behaviour modelling ignores interactions with other members of the healthcare 

professional staff.  

Another example is the work done by Günal and Pidd (2006), where Human factors, Physiological 

and environmental factors, and Decision-making processes are considered in a DES model. Human 

factors include multitasking behaviour and workload capacity of medical staff. In this case, the 

workload triggers the multitasking behaviour of doctors who can multitask at all times. Although 

this is a good example of representing human behaviour and decision-making processes in one 

model, one of the limitations of this method is that it ignores any other possible factors that may 

affect multitasking behaviour. Those factors may depend, for example, on the doctors’ interactions 

with the patients, other medical staff and the environment of the work.  

In summary, most DES applications have been widely used for modelling hospital performance. 

One of the most common areas of applications of DES in healthcare is A&E departments; however, 

some essential features of human behaviour that may affect hospital performance have been 

ignored in most of the reported DES models. For example, simulation models of A&E departments 

may need to consider not only simple human, physiological and environmental factors but also a 

more sophisticated way to represent the individual’s decision-making process which in turn may 

depend on psychological aspects of the individuals who make decisions within the department. 

That will be discussed later in this chapter.   

4.2.3 Agent-based modelling and simulation and human behaviour 

As discrete event simulation, agent-based modelling and simulation also allow the modelling of 

individual behaviour, the main components in an ABMS are the agents, the agents’ behaviour and 

the environment (Gilbert & Terna, 2000; North & Macal, 2007).  

As discussed in chapter 3, ABMS is one of several agent technologies used in healthcare but is not 

as popular as others, such as Multi-Agent systems, agent software or artificial intelligence. The 

most common applications of agent technologies in healthcare are at operational and tactical 

levels with the purpose of use for aiming at decision automation and routine decision support. 

Applications at this level include (Isern et al., 2010): 
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• Medical and data management systems:  to record and process medical data.  

• Decision support systems: to assist with different healthcare processes like treatment and 

diagnosis.  

• Planning and resource allocation: to coordinate and schedule different human and material 

resources.   

• Remote care: to remotely monitor a patient’s status.  

• Composite systems: to combine different aspects to provide complete and integrated 

solutions for healthcare management. 

A few applications of ABMS have been made at strategy and policy level to support investigation 

of human behaviour within the systems. Applications at this level include a model to study effects 

of fluctuations in workload and economic forces on patient safety, a model to help understand 

some important questions about people’s behaviour in an emergency department and a model to 

study cooperative policies for ambulance diversion (Hagtvedt et al., 2009; Kanagarajah et al., 2006; 

Stainsby et al., 2010; M. Taboada, Cabrera, & Luque, 2011). 

Human behaviour can be represented in ABMS using decision rules that range from simple reactive 

behaviour to a more complex decision system (North and Macal, 2007).  It should be noted from 

the above literature review that studies on the use of ABMS for Emergency Departments 

demonstrated that the majority of human behaviour that was included in those models is mainly 

reactive, and there is little evidence of research about complex human decision making in ABMS 

applied to Emergency Departments. For instance, most of these studies use if/then rules to define 

simple behaviours such as: 

• Movement: usually agents decide to move when they are informed that an activity can 

begin or has finished.  

• Queuing: patients join the queues when there are no available resources to start an 

activity. Patients are organized in the queues based either on their attributes (for instance, 

the severity of their condition) or on their waiting times, for instance, priorities can be 

updated when patients spend more than specific time in a department.  

• Interacting: Usually, patients interact with other patients in the queues or with staff in the 

activities. These interactions commonly governed by events driven by time and rarely 

involve any decision making.  

• Patients’ abandonment:  Patients abandon the department before being seen usually 

motivated by long waits and interactions with other patients.  
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• Fast-track treatment: Doctors can speed up a service when they perceive long queues.  

• Staff scheduling:  generally, staff scheduling it is not modelled as human behaviour, but as 

global data (resource scheduling), that affects Emergency Department global 

performance.  

In summary, this section has discussed how SD, DES and ABMS have been used to model human 

behaviour in different ways. System dynamics looks beyond separate events and decisions to see 

the system structure underlying decisions and their combined effects on system performance. 

Discrete event simulation focuses on the events and the consequent decisions that are triggered 

by those events. Agent-based modelling and simulation represents people as agents and looks for 

the relationship between people, and between people and their environment, and how those 

relationships affect their behaviour.   

The next section explores two main theories of human behaviour: normative and descriptive. It will 

then discuss some aspects of human behaviour that need to be considered when representing 

people in simulation models.  

 Human behaviour perspectives 

In many complex systems, human beings are essential components and are fundamental to the 

operation of those systems; for example, a healthcare system includes different people such as 

regulators, providers and patients.  Each person involved in this system has a particular role, and 

specific objectives and the interactions among them and their changing environment define the 

operation and behaviour of the system.  

 A large and growing body of literature has investigated human behaviour from different disciplines 

such as biology, psychology, sociology, economics and management but this is too vast a literature 

to cover here in anything like its entirety.  There are many different ways of describing and 

theorising about human behaviour, but all are concerned with the factors that affect or influence 

the way people do things. 

In the context of this research, theories of human behaviour study can be divided into two main 

groups: normative and descriptive. Normative theories attempt to determine, under specific 

circumstances, how people should behave in order to achieve specific goals. By contrast, 

descriptive theories aim to describe how people actually behave in order to achieve those goals 

(Simon, 1972). Traditionally, the aim of the researchers of the normative perspective has been 

mainly to identify the rules or principles that define what it is to behave or reason correctly 
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(Samuels, Stich, & Faucher, 2004), whereas the aim of the descriptive view has been to characterize 

how people actually reason and to determine the psychological mechanisms and processes that 

drive the observed types of reasoning (Samuels et al., 2004).  

There are different views of which perspective is followed by research in different areas.  In the 

past, it was believed that the normative perspective was commonly used by economists and the 

descriptive perspective was mainly a subject for psychologists and anthropologists. Currently, both 

normative and descriptive theories are the subject of study of academics from different areas of 

knowledge such as psychology, economics, and biology, that are used for normative or descriptive 

purposes.  For instance, behavioural economics theory applies concepts from both psychology and 

economics.   That is, it combines the commonly used descriptive theories of cognitive processes 

studied in psychology with the traditional economic, normative models of rationality studied in 

economy. 

Management scientists use models to support decision-making and control in organisations (Pidd, 

2009). As discussed in Section 3.2, simulation models can have different modes of use, as proposed 

by Pidd (2009). Those modes could be associated with the two theories of human behaviour that 

are considered here.  The normative view may include the models that are intended to be used for 

decision automation and routine decision support. The descriptive view may include the models 

that are intended to be used for system investigation and improvement, for providing insight about 

a system’s behaviour and for providing insights for debate and for generating hypothesis and 

theories about the system’s behaviour.    Simulation models could be useful tools to study different 

perspectives on human behaviour.  

The next sections discuss the ideas of rationality and other factors that drive human behaviour 

differently from reason.   

 Rational behaviour 

Rationality refers to the way humans behave in order to achieve specific goals under given 

circumstances. Economists have used the concept of rationality to explain human behaviour; the 

classical view of rationality has been widely studied to explain different concepts of economic 

theories.  

According to (Simon, 1955, pp.99), this theory assumes that a person: 
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1. has knowledge of the relevant aspects of his environment which, if not absolutely complete, 

are at least impressively clear and voluminous 

2. has a well-organised and stable system of preferences 

3. has computational capabilities that enable him/her to calculate the value of each 

alternative course of action that is available and to compare these, so as to reach the 

highest attainable point of his preference scale. 

That classical view of rationality has been an object of considerable debate, particularly of its 

limitations and critiques. Simon (1972) proposed a variation to the classical theory, known as 

bounded rationality, in which one or more than one of the assumptions of the classical rationality 

are relaxed.  

Simon’s idea of bounded rationality assumes that human rationality has its limits: man has partial 

knowledge about reality, time and information constraints, and, among other limitations, limited 

computing capabilities. The classical model of rationality may be appropriate if behaviour is goal-

oriented under defined given constraints and conditions, and if the rational choice is the one that 

best leads to the goal. Bounded rationality assumes behaviour that results from some adequate 

deliberative process of thinking, in which the decision-maker has control over a person’s actions. 

The focus is on the decision-making process, and the aim is to develop mechanisms for making 

better decisions.  

Simon’s ideas of bounded rationality correspond more or less to modes of use 2 and 3 of the 

simulation models proposed by Pidd (2009). These cover models that are used for system 

investigation and improvement, and for providing insight into a system’s behaviour. The latter aim 

is to provide insights for debate and for generating hypothesis and theories about the system’s 

behaviour.  

 Other aspects of human behaviour 

Psychological, philosophical and biological theories have different perspectives on the factors that 

guide people’s judgment and behaviour. The concepts of rationality and bounded rationality have 

been widely studied by researchers in different areas such as economics and psychology. The ideas 

of misperception of feedback and intuitive and emotional behaviour will be discussed in the next 

sections.  
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4.5.1 Misperception of feedback processes  

Sterman (2000), in his discussion about dynamic complex systems, suggests that there are two main 

consequences of bounded rationality that limit our ability to learn from experience: misperception 

of the feedback structure of the environment and faulty mental models.  

Sterman (2000, pp.21-22) argues that dynamic complex systems have the following characteristics:  

• Dynamic: Systems change over time 

• Tightly coupled: Actors on the system interact with each other and with their environment 

• Governed by feedback:  Decisions made by people have impacts on the state of the real 

world driving other people’s actions and in turn modifying the conditions to make new 

decisions.  

• Nonlinear: The effect of the decisions is not always proportional to their cause. Multiple 

factors are interacting in the decision-making processes. 

• History-dependent: Many actions are irreversible.  

• Self-organising: The internal structure of the system defines the dynamics of the system.  

• Adaptive: The capabilities and decision rules of the agents change over time. People can 

learn from experience.  

• Counterintuitive: Cause and effect are distant in time and space. 

• Policy resistant: The complexity of the systems in which we are embedded overwhelms our 

ability to understand them. 

• Characterised by trade-offs: Time delays in feedback channels mean the long-run response 

of a system to an intervention is often different from its short-run response.  

When people make decisions, those decisions have a direct or indirect effect on their environment. 

In dynamically complex systems, people often develop and use mental models to guide their 

decision-making processes. However, those models are usually dynamically deficient. Frequently 

there are misperceptions of the feedback processes that limit the potential for learning and 

therefore limit knowledge about the real world (Sterman, 2000). 

Figure 4-1 shows an example to illustrate an example of the feedback process in an A&E 

department. A high number of patients in an A&E department can lead doctors to employ 

strategies to avoid long waits, which may include multitasking or reducing the time spent with each 

patient. These may cause the doctor to pay less attention to each patient, which may reduce the 

quality of the doctor’s assessment of a patient. Reducing the quality of patient assessment can 
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cause diagnostic errors which can lead patients to re-visit the department, which in turn increases 

the level of occupancy of the department; the whole loop then starts again.  

Patients in 
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Figure 4-1.  Misperceptions of Feedback processes 

 

Therefore, the environment in which the individual is immersed and the conditions of choice may 

be affected directly or indirectly by individuals’ past actions (Sterman, 1989).  That means that 

there are key dynamic and feedback processes that should be considered when attempting an 

adequate representation of human decision processes.  

4.5.2 Intuitive behaviour  

In recent years, a large body of literature has been published about the idea that human beings 

employ two different kinds of reasoning and it has been proposed that there are two different 

cognitive systems that underpin reasoning; this is often called dual-process theory (Evans & 

Stanovich, 2013; D. Kahneman, 2003; D. Kahneman & Frederick, 2002; Stanovich, 1999).  

Kahneman (2003) reports on investigations into the relationship between intuition and decision 

making, based on dual-process theory. The main idea of his theory is that cognitive tasks occur in 

two different ways: a fast and intuitive process of thinking and a slow and reflective process (Evans 

& Stanovich, 2013).  
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Kahneman argues that classically rational models are psychologically non-realistic, and has 

demonstrated that many judgements and choices are made intuitively. He follows the notation 

proposed by Stanovich (1999) and Stanovich and West (2000) who proposed the name for the two 

different types of reasoning as System 1 and System 2. Kahneman (2003, pp. 1451) provides a 

concise description of his view of these two systems as follows:  

• In system 1, the operations are governed by habits and are fast, automatic, effortless, 

associative and often emotionally charged.  This type of system is difficult to control or 

modify.  

• In system 2, the operations are slower, serial, effortful and deliberatively controlled. They 

are also relatively flexible and potentially rule-governed.  

System 1 is a perceptual system in which intuitive operations reflect impressions obtained from 

the objects; this system corresponds to the part of “thinking fast” of the title of Kahneman’s (2011) 

work – Thinking Fast and Slow. System 2 is based on reasoning, following a deliberative process in 

which judgments are explicit and intentional; this system corresponds to the part of “thinking 

slow”.  

Kahneman’s view of the predominance of intuition in judgments and choice does not imply that 

people do not use system 2 or that they always act intuitively. He believes that system 2 is present 

in the situations that require it, but that a central characteristic of humans is that they often act 

intuitively and that their behaviour is often driven by what they see at a given moment, rather than 

by what they are able to compute. 

4.5.3 People’s emotions 

Although most of the interpretation of bounded rationality relies on the assumption that rationality 

is bounded by human cognitive limitations, some views consider that emotional factors also 

influence bounded rationality.  That is, they believe that a different perspective on behaviour 

includes the belief that humans are essentially emotional or emotional-social beings, without 

ignoring the importance of the cognitive-intellectual processes in determining human behaviour. 

In other words, the acquisition of knowledge through experiences may be as important or more 

important than learning through theories or facts (Izard, 1991).   

Some researchers have emphasised the role of emotions in cognition and behaviour and studied 

how emotions can fit into the theory of bounded rationality (Damasio, 2006).  Simon, in his book 

“Reason in human affairs” agrees that sometimes people use intuition when finding solutions to 
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problems (Simon, 1990). He believes that correct intuitive decisions occur only to people who have 

appropriate knowledge and that, in most problem situations, people use intuition and deliberation 

to search for solutions. Moreover, he recognises that one of the essential characteristics of intuitive 

processes is the role of the emotion in those processes. Thus, he argues that “in order to have 

anything like a complete theory of human rationality, we have to understand what role emotions 

play in it” (Simon, 1990, pp. 29) 

Despite the vast amount of literature published on emotions, there are still ambiguities in the 

language of emotion and some inconsistencies in definitions of the concept of emotion (Plutchik, 

2003).  The concept of emotion proposed by Izard (1991, pp.14) is simple and clear enough to 

describe how emotions guide behaviour. Izard states that an emotion can be experienced as a 

“feeling that motivates, organises and guides perception, thought, and action”. That feeling is 

produced by evaluating events and situations.  

 

Figure 4-2.  Chain of events defining an emotion Plutchik (2003, pp. 108) 

 

Similarly, Plutchik (2003) describes the chains of events that define an emotion (Figure 4-2), based 

on evolutionary theories of emotions. The assumption is that a stimulus event triggers the process 

of emotion.  For example, he explains that one stimulus event could be a threat by a predator; the 

interpretation of that stimulus is “danger”, which causes a feeling of “fear” and physiological or 

physical activations. The feeling state of fear tends to trigger an action, in this case, an impulse to 

escape from the predator, so the behaviour selected is running away, and the effect is safety. A 

feeling of safety causes the person to stop running because he perceives there is no danger, and 

the threat is reduced.   
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4.5.4 The role of intuition, emotion, cognition and feedback processes in human 

behaviour modelling  

According to Reiss (2004), the reasons people have for performing voluntary behaviour are 

regarded as motives, which usually affect peoples’ perception, emotion, cognition and behaviour. 

He identifies the basic motives, known as drives (Woodworth, 1918), that are necessary for 

ensuring people’s survival (e.g. eating and sleeping) and other intrinsic motivations such as 

curiosity and autonomy.     

Other factors that may affect human behaviour are related to an individual’s characteristics. 

Kennedy (2012) identifies four main factors related to an individual’s personality that affect human 

behaviour: 

• Human sensory capabilities: humans obtain information from their environment 

using their senses and process that information based on the characteristics of 

their personality. Personality may affect thoughts, behaviours and emotions.  

• Human Motivations: different motivational theories in psychology explain some 

aspects of human behaviour. 

• Human Emotions: Emotions may affect rational decision making because they 

affect the perception that a person has about the environment.   

• Human Sociability: The behaviour of a person may be influenced by others’ 

behaviour and the perception a person has about others’ future behaviour.  

When developing any model, it is essential to define the purpose of the model and to determine 

the level of detail to include in it. Specifically, models that include human behaviour require a 

specification of which aspect of human behaviour is necessary to include in the models.  

Suppose, for example, there is a manager of Textile Company who is interested in studying how to 

increase daily production without incurring high costs, subject to some capacity constraints, and 

simulation is a suitable tool to deal with the problem. Obviously, it is necessary to consider the 

workforce, represented by the workers employed in the textile production process, when 

developing the model.  

 



61 

 

The representation of the workforce, though, may require the inclusion of human factors such as 

workload capacity, multitasking and efficiency. However, a detailed representation of the 

personality of the agents may not be necessary, which may mean that human psychological factors 

such as emotions are not relevant to the model.   In this case, human behaviour can represent the 

behaviour of groups of people with similar characteristics. Most of the decisions that operatives 

make in the textile company may not require a slow and deliberative process of thinking. Hence, 

that means that the system 1 discussed by Kahneman, in which habits govern the operations, might 

be the main influence on the decisions considered in this type of model.  

However, assuming a different situation in which a manager of a healthcare unit (such as an A&E 

department) wished to study how to reduce the waiting times of patients in the system, the level 

of detail of the representation of human behaviour may be much higher than the one considered 

of the operatives in the Textile company model. That is because there are many interactions among 

the people involved (such as doctors, nurses and patients), which implies they engage in some 

social behaviour. The decisions that one person makes may influence directly or indirectly the 

behaviour of other people. For instance, a junior doctor with minimal experience may need to 

consult other doctors about different patients’ conditions or require more tests or investigation 

than a doctor with more experience. That could delay the length of stay of the patient, which in 

turn may affect the performance of the department.  Therefore, the ideas of misperception of 

feedback, intuition and emotion may be necessary when designing a model to study this particular 

situation. That situation suggests that the type of reasoning of the people involved may be grouped 

in the system 2 discussed by Kahneman (2003) since there is a deliberative process of thinking 

influenced by individual judgments.  

 Agent-based modelling and simulation of human behaviour  

Chapter 3 presented a general background and concepts of agent-based modelling and simulation. 

In particular, it placed the concept of “agent” in different areas of study such as computer science, 

social science and management science.  It was shown that although there is not a precise and 

general accepted definition of what an agent is, there are several common characteristics that an 

agent should have:  

• Social abilities: communication, cooperation, competition  

• Initiative: acting proactively  

• Goal-orientation: pursuing their own objectives and behaving to attain them 
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• Autonomy: to make decisions and perform actions 

• Reactiveness: ability to react to perceptions or information from outside 

In general terms, it can be said that anything capable of making decisions in a system can be 

represented as an agent. In particular, in the field of complex systems where human beings form 

an essential part of the systems, the use of an agent framework can help in representing essential 

characteristics of people. In agent-based modelling and simulation, an agent is an entity with 

attributes and behaviours.  

4.6.1 Agent attributes 

The attributes are characteristics that belong to an agent and are closely related to the agent’s 

personality. The agent’s personality affects the perception, reasoning and the cognition that an 

agent has of the real world either directly or indirectly. The agent’s personality also influences the 

drives, emotions and intuition of an agent.   Perception and cognition interact with each other and 

are influenced by motives (drives, emotions and intuition) and reason.   

There are some attributes (e.g. age and gender) that can be represented in a simple form, and 

there are some others (such as preferences and experience) that are affected by other factors 

(multifactorial) and require a different level of representation.   The multifactorial attributes can 

change over time as a result of an agent’s past actions or experiences (North & Macal, 2007) 

4.6.2 Agent behaviour 

The agent’s behaviour is represented in an agent-based model by decision rules. According to 

North & Macal (2007), there are two main levels of agent rules that allow agents to communicate 

and interact with each other and to interact with their environment:  

• Base-level rules:  activated by routine events 

• Rules that change the base-level rules: provide adaptation that allows the base-

level rules to change over time 

Gilbert and Terna (2000) consider two techniques for defining agents’ behaviour: production 

systems and learning. 

On the one hand, a modeller might define simple behaviour using production system techniques. 

In general, a production system is composed of three elements: 



63 

 

 

1: a set of rules, each of which has two components: a condition that indicates when to 

execute the rule and an action which is the consequence of executing the rule. 

2: working memory: some rules may include actions that insert facts in the working memory; 

others include conditions that assess the state of the working memory.   

3: a rule interpreter, which considers each rule and executes the ones that have a true 

condition and performs the actions related to those rules and repeats the cycle indefinitely.  

 The production system technique supports the straightforward creation of reactive agents (Figure 

4-3), that is, the agents who respond to the stimulus of the environment (as in system 1) through 

specific actions and whose responses are not modified as a result of the experience acquired from 

the environment (Gilbert & Terna, 2000).  

 

Figure 4-3. Agent’s reactive behaviour 

 

On the other hand, a modeller can include agents that can learn and consider adaptation on the 

internal structure and process of the agents. Two common techniques used for modelling 

adaptation are neural networks and evolutionary algorithms. However, these techniques are not 

being evaluated in this research, so they will not be considered further. 

 Human behaviour modelling frameworks 

Previous sections discussed some theories of human behaviour. The normative approach deals 

with determining under given circumstances how people should act, under certain assumptions, in 

order to meet their goals, while the descriptive approach focusses on describing how people 

actually behave in order to achieve those goals.   
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Some studies have implemented human behaviour frameworks in simulation models such as BDI 

(Belief-Desire-Intention), PECS (Physics, Emotion, Cognition, Social status) and SAMPLE (Situation 

Awareness Model for Person-in-the-Loop Evaluation), OCEAN, among others (Elkosantini, 

2015).This section discusses the two first frameworks for modelling human behaviour, BDI and 

PECS, because they appear to be suitable to model generic aspects of human behaviour within 

Emergency Departments. The BDI agent framework is compatible with the normative view, while 

PECS relates more to a descriptive view.  

4.7.1 BDI agent framework  

BDI is a framework that assumes that the mental attitudes of Belief, Desire and Intention (BDI) 

define the behaviour of a rational agent (Rao & Georgeff, 1995).  Salamon (2011) summarises the 

main components of this framework: 

• Beliefs constitute the agent’s knowledge of the world. The world includes the environment, 

other agents and itself.  They are called beliefs because the agent uses a perception system 

to generate an understanding of the world that can be different from the real world. It 

means the agent’s perception of the world is just a representation (set of beliefs) of that 

world.  

• Desires are the agent’s goals. Those goals can be short-term or long-term goals, realistic or 

unrealistic goals, and they can even be contradictory goals. These goals turn into intentions 

when the agent selects the most important ones or the ones that can be achieved.  

• Intentions could be seen as a subset of goals or as a set of plans to meet the desires (or 

goals). 

The BDI framework was developed by Bratman (1987), who views human intention as a key factor 

of behaviour (action) of a rational agent. The theory consists of three main components: 

reflectiveness, planfulness and a concept of temporally extended agency.  

Reflectiveness assumes that people are capable of assessing and reflecting on their desires and 

inclinations that are factors that guide their deliberation, motivations and conduct. Planfulness 

assumes that people do not merely act (instinctively), but that they act based on a pre-defined plan 

of action which serves as a support of the organisation and coordination of their activities over 

time.  Temporally extended agency assumes that people understand their behaviour in a temporal 

dimension, that is, they see their actions at a current time based on the actions they have had in 

the past, and the ones they will have in the future.    
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The BDI framework assumes rational agents that are continually deliberating about the best course 

of action to follow based on a particular situation. The behaviour of the agents and the selection 

of the best course of action is determined by primary mental attitudes of Beliefs, Desires and 

Intentions that represents the information, motivational and deliberative state of the agents 

(Kahneman & Frederick, 2002).  The general ideas of the BDI framework include the ideas 

presented by Kahneman (2003) in system 2, but ignore the presence of system 1 in an agent’s 

reasoning process.  

Rao and Georgeff (1995) discussed the applicability of the BDI agent framework and highlighted 

two main criticisms that the BDI framework has received. Rao and Georgeff (1995) found that the 

first group included people who question the need for either having three attitudes or the 

convenience of having only three. The second group included the people who questioned the 

relevance of BDI in practice because they considered it was too restrictive. 

However, the idea of defining these three factors for rational behaviour may be useful for those 

models in which the rationality of an agent may not be affected by emotions and intuition such as 

the models of systems in which human interactions are very few (such as automation systems or 

manufacturing systems) or for those models in which the intended mode of use does not require 

a detailed representation of human behaviour.  

For those systems in which there are many human interactions (as in social systems), or in which 

the model is intended to be used for system investigation, improvement and for providing insight 

about the system’s behaviour or for providing insights for debate and for generating hypothesis 

and theories about the system’s behaviour, the BDI framework may be too restrictive.     

4.7.2 BDI applications 

The BDI is one of the most widely accepted and used framework to model an agent’s decision 

making. It is prevalent to find BDI applications in the area of artificial intelligence, specifically in 

multi-agent systems, to represent agents’ behaviour (Rao & Georgeff, 1995).  

By using the Web of Science, a search in the topic of the strings (“BDI” AND “Agents”) retrieved 

778 hits on July 2019. Table 4-1 shows that more than 64% of the applications of BDI are in the 

area of artificial intelligence, and other areas such as information systems and software 

engineering have more than 30% of the applications.  
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Table 4-1. Areas of application of BDI framework. 

Web of Science Categories records 
% of 
records 
out of 778 

records including 
social/ 
human behaviour 

%  of 
records 
including 
social/ 
human 
behaviour 
per 
category 

COMPUTER SCIENCE ARTIFICIAL 
INTELLIGENCE 

500 64.267 62 
12.400 

COMPUTER SCIENCE THEORY METHODS 179 23.008 26 14.525 

COMPUTER SCIENCE INFORMATION 
SYSTEMS 

152 19.537 21 
13.816 

ENGINEERING ELECTRICAL ELECTRONIC 128 16.452 16 12.500 

COMPUTER SCIENCE SOFTWARE 
ENGINEERING 

101 12.982 13 
12.871 

AUTOMATION CONTROL SYSTEMS 82 10.54 7 8.537 

COMPUTER SCIENCE INTERDISCIPLINARY 
APPLICATIONS 

60 7.712 6 
10.000 

ROBOTICS 51 6.555 5 9.804 

TELECOMMUNICATIONS 43 5.527 5 11.628 

COMPUTER SCIENCE HARDWARE 
ARCHITECTURE 

32 4.113 3 
9.375 

In order to check for specific applications in the area of interest, another filter was included in the 

original search, adding the strings (“social” OR “human behavior” OR “human behaviour”). The 

resulting records were also included in Table 4-1. Note that the number of studies in the area of 

interest, compared with the global data, is relatively small and that the proportion of records 

including social and human behaviour in each category is similar.  

The lack of applications including social or human behaviour suggests that most of the applications 

of BDI focus on agent systems such as robotics or expert systems where the aim is to develop a 

system that behaves appropriately in order to obtain an optimal performance. The main weakness 

of the BDI framework is that it assumes that the agents are entirely rational, which limits the use 

of some other factors of human behaviour such as intuition and emotions.  

4.7.3 PECS framework 

Schmidt (2005b) proposed a structure of the PECS framework that is claimed to be applicable to 

any system in which human beings are essential components. The PECS framework was developed 

as a replacement for the BDI framework, based on an argument that BDI is not suitable for the 
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development of sophisticated models of real systems in which other human factors such as 

emotion or intuition are relevant (Schmidt, 2005b).  

The PECS framework assumes that human behaviour can be influenced by physical, emotional, 

cognitive and social factors; therefore, this architecture allows modelling human behaviour 

considering those factors and the interactions among them (Schmidt, 2005a, pp. 1). PECS stands 

for Physical conditions, Emotional state, Cognitive capabilities and Social Status.  

In the PECS framework, a person is perceived as “a psychosomatic unit with cognitive capacities 

embedded in a social environment” (Schmidt, 2000, pp. 1). The behaviour of people “is usually 

dependent on drives, needs or desires which can be regarded as motives. The strength or intensity 

of these motives is a function of the state variables. In this case, the state variables do not 

determine behaviour directly, but rather indirectly, via the motives belonging to them.” (Schmidt, 

2005a, pp. 5) 

The agent world of the PECS reference model has three main parts: the agents, the environment 

that contains all the agents and the connector that represents the communication mechanisms 

that allow the interaction among agents and agents and their environment (Figure 4-4).  

 

Figure 4-4. Structure of PECS adapted from (Schmidt, 2005b) 

 

4.7.4 Applications of PECS in different areas 

The PECS framework has not enjoyed the same popularity as the BDI framework, probably because 

PECS was developed later than BDI or perhaps because BDI has a broader scope of application since 

there is a significant number of studies of rational agents and rational behaviour.  

The Web of knowledge retrieves 37 results when searching in the topic for (“PECS “and “AGENTS”) 

on July 2019, but the majority of papers use PECS to refer to other terms such as “polyelectrolyte 

complexes” or “pulmonary endothelial cells”. Therefore, the search was limited to the terms 

Environment 

Connector 
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("PECS" AND (" framework" OR "model") AND " agents"). The search retrieved 12 records, from 

which only four results were actually related to the PECS framework.  Using Google Scholar, it was 

possible to find a few other papers that use PECS for agent-based modelling.  

Some examples of the use of PECS in ABMS include Malleson, Heppenstall, & See (2010) who 

developed a simulation model of residential crime that considers human factors. The aim was to 

modify the social environment of the residential area in order to observe the impact of that change 

on the spatial and temporal dynamics of the crime occurrences. In this model, the agents are 

people that can be citizens and possible thieves, and the environment represents the city that 

consists of houses with individual characteristics. Each agent has to create wealth and sleep. The 

intensity of those needs is calculated based on the PECS framework. Similarly, Lacko et al. (2013) 

built an agent-based model of a riot in urban areas and modelled the behaviour of the protesters 

with PECS.  Reger and Ohler (1999) used PECS for simulating role-play among children.   

Additionally, Kaufman (1999) built a model to represent the behaviour of humans in a panic 

situation (such as evacuations) based on psychological theories and findings. The agents’ primary 

state variable is fear which is modelled by differential equations that depend on the agent and its 

environment.  The fear depends on the agent propensity to get anxious, the crowding and social 

forces and the agent’s sensation of physical pressure in the environment.  

Martínez-Miranda et al. (2005; 2003) proposed a model that represents a project manager who 

needs to select people to create a group for an engineering project. The model contains four main 

agents and includes personal, social and emotional characteristics of those agents to simulate 

group work. The PECS variables considered in their model were Cognition that represents technical 

knowledge of an agent, Emotion that represents basic emotions and personality and Social 

characteristics that represent interactions among members.  

Ben Ammar et al. (2010) developed a platform to explore the possibility of integrating the 

communication of emotions into collaborative virtual environments. That platform responds to 

human emotions using a facial recognition system, and the decisions are taken based on the PECS 

framework.  

It is important to notice that in the studies mentioned above, PECS was used to model deliberative 

behaviour, where agents update their internal states based on their own perceptions and 

information about the environment. Moreover, literature shows that PECS is adequate for 

modelling behaviour that is not strictly rational (in a classical sense), which seems suitable to 
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represent the behaviour of doctors and clinicians within the A&E department considered in this 

thesis. Therefore, PECS seems to offer excellent opportunities to model deliberative complex 

behaviour within emergency departments.  

The problem that is addressed in this thesis refers to a healthcare system where people’s behaviour 

is a crucial component of the system’s behaviour.  The purpose is to identify the factors that lead 

to a particular kind of behaviour and to understand why some specific performance occurs within 

hospitals (descriptive behaviour), rather than to propose a model that offers an adequate course 

of action that leads to an optimal performance (rational behaviour). Therefore, the approach that 

will be followed here is descriptive rather than normative, which makes BDI inappropriate for this 

thesis; thus PECS is the framework chosen in this research, which is also found to be convenient to 

model the essential human behaviour within accident and emergency departments and to be 

simple to understand and to implement.  

 Simulation toolkits for modelling human behaviour  

This section will review some simulation tools used to build ABMS and DES models. The focus is 

only on those two simulation methodologies because the research is concerned with the use of 

DES and ABMS for modelling human behaviour in A&E departments.   

4.8.1 ABMS toolkits  

There are several toolkits for implementing ABMS applications and a variety of software available 

for that purpose. Macal and North (2008) classify several approaches to building ABMS 

applications, considering the scale of the software that can be used. As with DES and SD, ABMS, 

models may be developed either using general-purpose software such as spreadsheets, particular 

ABMS software such as Netlogo or general computational mathematics systems.  Large Scale Agent 

Development Environments suitable for ABMS include Repast, Swarm, Mason and Anylogic, which 

can be used to build sophisticated models including thousands of agents interacting in a complex 

environment. However, it is entirely possible to build even complex models using general 

programming languages such as Java or C++.  

Several published surveys describe the various features of toolkits available for ABMS modelling. 

These surveys consider, among other factors, aspects such as the domain where the toolkit is 

intended to be used, the programming language required to build the model, the possibility of 

visual programming and whether the software is open source or not (Castle & Crooks, 2006; Nikolai 

& Madey, 2009; North, Collier, & Vos, 2006; North, Tatara, Collier, & Ozik, 2007; Serenko & Detlor, 
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2002; Shi, 2008). As mentioned earlier, most such ABMS toolkits used to model social interactions 

use Object Oriented Programming languages such as Java or C++ to express model logic and to 

form their environment (Nikolai & Madey, 2009).  That fits in well with the notion (North and 

Macal, 2007) that in ABMS models, discrete entities are represented through Objects that are 

created from templates called classes. These classes specify the behaviour and properties of 

objects. Computer simulation environments used in large-scale agent-modelling require specific 

features to control the flow of time, to manage the communication among the agents, to specify 

how agents are connected within the model and to store and to display the state of the agents.  

Some toolkits such as AgentSheets, Netlogo, Repast, Multiagent and Mason were developed with 

social science applications in mind.  Repast System is the toolkit chosen to build the ABMS_A&E 

mode in this research. The Repast system is an open-source software framework for developing 

agent-based simulations using Java. The latest version of Repast is Repast Simphony (Repast S) 

which includes a new NetLogo model translation and Logo-like modelling capabilities called Relogo. 

It is based on a preconfigured Eclipse-based integrated development environment. Repast S 

includes a time scheduler that allows both time-step and next event scheduling.  Repast S also 

includes a wide range of mechanisms to allow agents to communicate using different agent 

interaction topologies such as networks and grids and a full set of tools for displaying agents (North 

et al., 2007). 

Repast S allows the development of an ABMS model either using the visual agent editor or using 

Java objects. That is, a user may choose to create the agent classes using the Java objects or the 

Repast visual agent editor (North et al., 2007). In Repast S, the model standard structure is based 

on Context and Projections. A Context is a simple container based on a set of semantics. Context 

creates an abstract environment that is the underlying infrastructure to create the population and 

to define interactions among the individuals of that population.  Projections are related to the 

topology of the model and define a structure that describes how things are connected 

(Sourceforge, 2008).  A topology describes how information is transferred from one agent to 

another. 

Typical topologies include soups, networks and spatial grids (North & Macal, 2007). According to 

North & Macal (2007, pp. 198), soups (Figure 4-5-a) are simple connections where the agents have 

no specific spatial representation and with which interactions may occur by selecting a pair of 

agents randomly from the soup. Networks (Figure 4-5-b) are “point-to-point connections between 

agents” and allow the agents’ neighbourhood to have a more general definition. There are 

different types of spatial grids. The simplest grids are rectangular and common representations are 
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Von Neumann’s neighbourhood consisting of four neighbours (Figure 4-5-c) and Moore 

neighbourhood consisting of  eight neighbours (Figure 4-5-d) (Macal & North, 2010).  

 

Figure 4-5. Common interaction topologies in ABMS. Adapted from North & Macal, (2007, 

pp. 198).  

ABMS can be developed in general-purpose languages or specific simulation platforms. Repast 

Simphony was chosen in this research for different reasons. First, it is a robust tool that allows the 

inclusion of different levels of complexity in the simulation models; second, it is a free and open-

source platform; third, it offers excellent support to users; four, its popularity among agent-based 

modellers; and five, because it is relatively easy to learn and use if you have knowledge in java 

programming. However, any other simulation platform would likely have served the same purpose 

for this research.   

4.8.2 DES toolkits  

There is a variety of DES specialist software that is flexible and easy to use. Some of the DES speciality 

packages commonly used are Promodel, Arena, Extend, Simul8, Witness, Simio, Microsaint Sharp.   

Many of DES software are similar in various aspects, for instance, they contain objects that represent 

entities, resources, activities, events and event lists, and simulation executive based on events 

management (Schriber, Brunner, & Smith, 2013).   

The majority of DES models are visual interactive modelling systems (VIMS), where the model has a 

visual display (usually entities moving through the model and networks of queues and servers) that 
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shows an animation while it runs (Robinson, 2004). With the VIMS it is possible to understand different 

aspects of the model, to perform verification and validation processes in a relatively simple way, to 

experiment with different alternatives very quickly, to obtain and understand the results of the model 

easily and to enable simple communication with the model user (Robinson, 2004).  

There exist DES libraries in non-specialist software such as Java, C++ and Python, which can be used 

to manage the events and other aspects of DES models. However, in order to implement a DES model 

in those programming languages, the user needs to have sufficient experience in programming and to 

clearly understand how DES works in order to program from scratch all the logic of the model. There 

are different advantages of using those programming languages over specialist simulation software, 

but that is not relevant to this discussion. To learn more about this subject, see Robinson (2004); 

Schriber, Brunner, & Smith (2013) and (Pidd, 2004).   

SIMUL8 is chosen in this thesis for implementing the DES_ABMS model for different reasons, first 

is that it is one of the most popular DES simulation tools, second it because it is easy to use, third I 

have more than 10 years in the use of it, and fourth because I obtained a sponsored SIMUL8 

professional license for my PhD project. 

 Summary 

In summary, modelling human behaviour in healthcare systems is essential because humans are at 

the heart of healthcare systems.  Literature review demonstrated that most of the human 

behaviour that has been incorporated in OR/MS models involves patients’ characteristics, such as 

virus transmission and demand factors; however, modelling the effects of performance 

frameworks on peoples´ behaviour, specifically of healthcare clinicians is a topic that has not been 

widely studied.    

This chapter has explained different perspectives of human behaviour as well as the different 

mathematical models that have been used to represent it. There are two main approaches for 

modelling human behaviour: the normative and the descriptive. The normative defines how people 

should act in order to achieve some pre-established goals under specific circumstances; the 

descriptive describes how people actually behave.  

The concepts of rationality, emotion and intuition were also presented.  There are theories of 

rationality that use two main concepts: minimising (maximising) and satisfying. The classical 

rational theory looks at selecting the best option or determining the best course of action given 

some specific circumstances. The bounded rationality theory was introduced after the classical 
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theory to relax some of the assumptions that were not always possible to meet in the classical 

theory. The bounded rationality theory assumes satisfying behaviour, rather than optimising.  

The views of the role of emotion and intuition on human behaviour sometimes differ from the 

classical views of rationality. The idea is that there are factors that may affect human behaviour 

which are related to an individual’s personality. For example, emotion is one of those factors and 

can be understood as a motive that guides people’s behaviour. Intuition also plays an essential role 

in human behaviour, since it has been demonstrated that most of the judgments are done 

intuitively. 

Two frameworks have been proved to be suitable to represent human behaviour. One (BDI) follows 

a normative view that considers rational agents, and the other one (PECS) considers emotions, 

intuition and deliberation of agents when choosing an action. PECS is the framework selected to 

model human behaviour in the ABMS_A&E and DES_A&E models, and its implementation is 

presented later in this thesis.   
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CHAPTER 5: ABMS MODEL DESIGN AND DEVELOPMENT 
PROCESS 

5  

 Introduction 

Chapter two argues that the imposition of targets may have influenced the measurement of 

waiting times used in assessing hospital performance. It might be the case that the reductions in 

waiting times occur when the risk of failing the targets is high, because more inpatients are 

admitted, or because more patients are discharged earlier in the case of A&E department 

departments. Chapters 3 and 4 focus on the importance of considering some aspects of human 

behaviour in healthcare modelling.  

This research is concerned with the use of ABMS to represent human behaviour in an A&E 

department.  Chapters 5 and 6 will demonstrate how different aspects of human behaviour within 

an A&E department can be represented in an ABMS model. Chapter 5 will focus on the conceptual 

modelling process, and chapter 6 will discuss the simulation modelling process. Later, Chapter 7 

will demonstrate that DES can also be used to model human behaviour.  

 Agent-based Simulation modelling process  

The model development process among the different simulation techniques (SD, DES and ABMS) 

is generally done following a similar iterative process approach (North & Macal, 2007; Pidd, 2009; 

Sterman, 2000). However, the pattern of iterations may differ from one technique to another (Pidd, 

2004; Robinson, 2004; Tako & Robinson, 2009).  A crucial common element of the simulation 

modelling process is a conceptualisation phase in which a conceptual model is created and 

continuously reviewed against the real world. That conceptual model is then translated into a 

computer model using whatever software is appropriate.  Both the conceptual model and the 

computer model need to be verified and validated against the real world. The process continues 

with an experimentation phase in which the computer model is used to provide some insights and 

understanding of the real world. Finally, these findings from the use of the model can be 

implemented in the real world.  
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Developing and using a simulation model is an iterative process that generally involves three main 

steps:  Problem structuring, Modelling and Implementation (Pidd, 2009). Specifically, speaking of 

agent-based modelling and simulation, Salamon (2011) proposes a methodology to develop an 

ABMS simulation model consisting of four phases as shown in Figure 5-1: Requirements definition, 

Conceptual model, Platform-specific model and Simulation model.   Each phase is defined by several 

steps that constitute an iterative modelling process. Relating this methodology to the modelling 

process proposed by Robinson (2004), the phases 1 and 2 will be considered as part of the 

conceptual modelling process, whereas phases 3 and 4 will define the simulation process. 

 

Figure 5-1. Modelling process (Adapted from Salamon (2011, pp. 107)) 

 

This chapter focuses on the conceptual modelling process by explaining the two first phases of the 

Salamon methodology. The simulation process will be discussed in chapter 6. 

  

Phase 1: requirements 
definition

1. Problem formulation 

2. Method Evaluation

Phase 2: conceptual 
model

1. Definition of the agents 
and agents’ behaviour 

2. Definition of the agents' 
interactions

3. Definition of time 
handling mechanisms

4. Definition of data 
requirements

Phase 3: platform specific 
model

1. Selection of development 
platform 

2. Transformation guide and 
platform -specific model

3. Model inputs

4. Model agents and 
behaviour

Phase 4: Simulation 
model

1. Verfication and validation

2. Experimentation

Simulation Conceptual Modelling
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 Phase 1: requirements definition   

5.3.1 Step 1: problem formulation   

The initial step in this phase is to describe the problem that is to be studied with ABMS independent 

from any software that will be used. In this step, it is important to consider six main topics 

(Salamon, 2011):  

1. The problem:  to provide an overall description of the problem. 

2. The processes: to identify the processes  

3. The entities: to describe the entities engaged in the processes, their characteristics, and 

to define what they want, what they do, and how they interact with each other.  

4. The environment:  to explain the characteristics of the environment and its interrelations 

with the entities. 

5. The aim: to define the purpose of the study, what is to be measured, how it is to be 

measured and what questions are to be answered   

6. Validation: how to evaluate and to test the developed model.  

5.3.1.1 The problem 

As was discussed in previous chapters, Emergency Departments are highly complex and dynamic 

systems. Emergency Departments in the UK are governed by a performance framework that has a 

set of performance standards that the departments must maintain. In particular, the four-hour 

standard originally stated that 98% of the patients being seen in an accident and emergency 

department should leave the department in less than four hours either because they are admitted 

as inpatients or because they are discharged from the department.  Therefore, doctors and nurses 

need to make decisions that require balancing the patients’ clinical priorities with the department’s 

time performance standards. As a result, the decisions that clinical staff face are continuously 

affected by the different situations that are present in the healthcare provision process.  

5.3.1.2 The process 

Figure 5-2 shows the outline of the patient flows in an A&E department as a chain of activities.   

Patients arrive into the department via an ambulance or by the walk-in entrance. Patients arriving 

by ambulance are usually triaged and registered in route to the hospital before entering the 

department.   Patients arriving by walk-in are first registered by a clerk and then are triaged by a 

nurse. The triage system considered here involves a colour and number coding scheme using red 
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(number 5) to represent a patient who needs immediate attention, Orange (number 4) means very 

urgent, Yellow (number 3) means urgent, Green (number 2) standard, and Blue (number 1) non-

urgent. Depending on the condition of the patient, the initial assessment that follows triage is done 

by a nurse or a doctor. Some patients may require tests at this stage, and some others may be 

discharged or immediately admitted as inpatients to the hospital. Those patients that require tests 

are usually treated by the same doctor who conducts the initial assessment.  

 

Figure 5-2. Patient flows in an A&E department 

5.3.1.3 The entities 

The different entities that participate in the process are: 

• The patients who come to the department wish to be seen by the appropriate staff and to be 

diagnosed or treated within a reasonable time. They move from one process to another, 

queue when necessary, and leave when treatment is complete, or they are admitted to the 

hospital as inpatients. 

• The clerk is in charge of registering the patients. The Clerks only task is to obtain necessary 

information from the patient to indicate them where to go next. 

• The nurses are in charge of triaging the patients and in some cases of doing the first 

assessment and may accompany the doctors when necessary. Nurses wish to ensure that the 

patients are treated in the minimum possible time. 

The doctors are in charge of doing the first assessment and the treatment of the patients. As with 

the nurses, the doctors wish to provide an excellent service within a reasonable time.    

5.3.1.4 The environment 

The environment in which they are acting is dynamic and uncertain. There are several sources of 

uncertainty in this environment, such as patient demand and the duration of the activities of the 

service process. This is a dynamic environment because the conditions of the environment change 
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over time while the entities are making decisions.  Three main characteristics make this 

environment dynamic. First is that the volume of patients that enter the department during the 

day changes with time; there are some busy periods and others that are quieter. Second, the 

number of tasks that a doctor or nurse can perform may vary depending on the conditions of the 

department at a particular time.  A doctor, for example, could see more than one patient at a time 

if necessary.  Third, the number of staff that work in the department changes over time: doctors, 

nurses and clerks have different working shifts.  

5.3.1.5 The aim 

The main purpose of the ABMS model is to gain insight into the overall value of including human 

behaviour into an A&E simulation. More specifically, this model aims to model how the four-hour 

target and other external factors may affect the behaviour of the clinical staff inside an A&E 

department. This model makes a simple representation of a typical A&E department, modelling 

some interactions among the patients coming to the department to be assessed and treated for 

their medical conditions, and the staff who are responsible for the provision of those services.  

5.3.1.6 Validation 

The ABMS model developed in this research does not intend to reproduce a real A&E department 

but to demonstrate how human behaviour can be incorporated in an ABMS model of an A&E 

department. The ABMS model is based on the DES model developed by Günal (2008). Therefore, 

the validation process will be done by comparing the ABMS model against the Günal model rather 

than comparing the ABMS model against the real world.  

5.3.2 Step 2: method evaluation 

The second step in this phase is to consider if Agent-Based methodologies are suitable to model 

the problem described in the previous phase. There is no single best way to determine which 

simulation method is more suitable than others to study a particular problem. However, some 

considerations may be taken into account when choosing a simulation method. Salamon (2011, p.p 

112) suggests the following questions, which, if answered positively, can help determine whether 

agent-based methods are suitable for the problem of interest. These questions will be analysed 

according to the problem stated in this thesis.  

1. Are there entities that can make decisions? In this simulation, there are patients, clerks, nurses 

and doctors that are continuously making decisions. For instance, after patients receive 
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information at each stage of the process, they may decide whether to continue the process in 

A&E or may quit and leave the department. Among other tasks, the doctors may decide the order 

in which the patients are seen, whether a patient needs any further investigation, and how to 

proceed with each patient.  

2. Are there many types of decision- making entities or many types of decisions? In this model, 

there are four types of decision- making entities: patients, clerks, nurses and doctors. Each of 

them makes diverse types of decisions that range from the simplest (to walk) to the more 

complicated (e.g. Doctors change priority rules, see more or less patients and do more or less 

investigations)   

3. Does it look as if the system will have dynamic characteristics? In this model, the agents have 

memory and information that affect their future behaviour. 

4. Do we feel a need to treat the overall behaviour of the whole system on a macro level?  The 

requirements of this model are oriented to the level of individuals. Each agent makes decisions 

based on its current and previous state and on the information and inputs it receives from the 

environment. For instance, the type of decisions that a doctor makes directly affect other specific 

agents (such as patients, other doctors and nurses)  

5. Is it difficult to describe the whole situation as a process (or activity) diagram or state transition 

diagram? It is possible to describe some aspects of the problem being modelled using activity 

diagrams or process diagrams. However, as the decisions are taken at a micro (individual) level, 

the interactions and behaviour of the agents may not be fully captured in such types of diagrams.  

6. “Is it difficult to ‘count-up’ the entities into lump sums and then work solely with such 

amounts? As there are different types of entities that make decisions, some of them could be 

grouped, for example, some patients could be called “red patients” and all such red patients may 

be treated in the same way. However, there are some individual characteristics (e.g. frustration) 

that affect the behaviour of the patients. Similarly, although there two main types of doctors: 

inexperienced doctors (junior) and experienced doctors (consultants), each doctor has particular 

characteristics, for example, energy, knowledge or stress level and makes decisions based on 

those characteristics.  

7. Are spatial factors of the environment important for the simulation? The spatial characteristics 

are used only to create a layout of an A&E department for visual display purposes. That is, this 

model does not aim to improve the layout of the department.  

Since the majority of the questions are answered positively, agent-based methodologies seem to 

be suitable to model the problem presented here.   
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 Phase two: Conceptual model  

Although there is no single accepted definition of conceptual modelling, it can be said that 

conceptual modelling deals with abstracting appropriate levels of simplification of a system (Pidd, 

1994; Robinson, 2004). Robinson (2007,  p.291) provides a conceptual modelling framework 

consisting of five iterative activities:  

1. “understanding the problem situation”, 

2. “determining the modelling and general project objectives”, 

3. “determining the modelling outputs”, 

4. “identifying the model inputs”,  

5. “determining the model content (scope and level of detail), identifying any assumptions 

and simplifications”. 

These five activities relate more or less to the first two phases proposed by Salamon, of which 

activities 1 and 2 were included in the previous stage. This stage will include some of the processes 

defined in activities 3, 4 and 5.  

Furthermore, Robinson (2007) suggests that it is crucial to represent the conceptual model so that 

it can be shared and understood by all the people involved in the simulation project. Onggo (2010) 

classifies conceptual model representations into three categories: textual representations, 

pictorial representations and multifaceted representations, suggesting that none of these is 

perfect, but all add some value. Within DES, common pictorial representations include Activity 

Cycle Diagrams, Process Flow Diagrams and Event Relationship Diagrams. Within SD, Causal Loop 

Diagrams or Stock and Flow diagrams (Sterman, 2000) are usually employed as pictorial 

representations. None of these pictorial schemes provides a complete representation for DES or 

SD, and there is no commonly used scheme for ABMS. Multifaceted representations contain both 

diagrams and a textual representation of different conceptual model components. One of the most 

common multifaceted representations used in software engineering is the Unified Modelling 

Language (UML).  

ABMS is usually implemented in an object-oriented platform, for which UML is a generally accepted 

form of conceptual representation (Bauer & Odell, 2005). An advantage of using UML in modelling 

is that its symbols facilitate the verification and validation process; moreover, the use of an 

internationally standardised language can elicit common understanding among different 

stakeholders (Martin, Champion, Kinsman, & Masman, 2011). 
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UML 2.0 includes thirteen types of diagrams to represent static application structure, behaviour 

and interactions (Onggo, 2010) of which Use Case Diagrams, State Diagrams, Activity Diagrams, 

Class Diagrams, and Object Diagrams appear useful in ABMS (North & Macal, 2007). Onggo (2010) 

suggests, also, that Sequence Diagrams and Collaboration Diagrams can also be used to represent 

interactions of the model. 

To explain the link between objects in object-oriented programming and agents in agent-based 

methodologies, Jennings and Wooldridge (1998) use an analogy between the concepts of 

autonomy in agents and encapsulations in objects.  According to Jennings and Wooldridge (1998, 

p.4), in object-oriented programing, “an object encapsulates some state, and has some control over 

this state in that it can only be accessed or modified via the methods that the object provides”. 

Similarly, in agent-based modelling, the agents encapsulate some state in the same way that 

objects do, but additionally also encapsulate behaviour.  That means that the agents have control 

over the execution of their methods and the selection of its actions (Jennings & Wooldridge, 1998).   

Figure  5-3 is an example of a UML class diagram that allows representation of the main structure 

of an agent using object-oriented programming concepts (North & Macal, 2007).  In Figure 5-3, 

classes are represented by boxes, and they define the properties and actions of the agents. The 

name of each class is at the top of the box; the attributes and methods are included below the 

name.  Classes are organised into a hierarchical structure and are connected by inheriting the 

attributes and methods from other classes. A subclass inherits attributes from a superclass which 

is higher in the structure. From example, in a hospital model, patients, doctors, nurses and other 

medical staff could be subclasses of the class “GenericAgent”. “GenericAgent” contains the 

properties and methods that are common for all the agents within the model. Additionally, each 

subclass can have properties and methods that only belong to each subclass.  
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Figure 5-3.  Example of a UML Class Diagram 

In general, when developing ABMS, it is crucial to represent the two main parts of an agent-based 

model: agents and agent behaviours (North & Macal, 2007). Gilbert and Terna (2000) suggest that 

the modeller should first define the capabilities of the agents, the actions they can perform and 

the characteristics of the environment that surrounds them. They explain two different techniques 

to define agents and agents’ behaviour and introduce a general framework to build an ABMS.  

Gilbert and Terna consider two techniques for constructing agents. On the one hand, a modeller 

might include simple agents in their models using a production system technique. Here, agents 

respond to the stimulus of the environment through some actions; however, these responses are 

not modified as a result of the experience acquired from the environment. It means that the agents 

do not modify their behaviour, but react to different signals sent from the environment. In general, 

a production system is composed of a set of rules, working memory and rule interpreter. Rules 

have two components: a condition that indicates when to execute the rule and an action which is 

the consequence of executing the rule. Some rules may include actions that insert facts on the 

working memory, and others include conditions that assess the state of the working memory.  The 

rule interpreter considers each rule and executes the ones that have a true condition, performs 

the actions related to those rules and repeats the cycle indefinitely.  

On the other hand, it is possible to include some learning in the production systems, and the 

modeller might need to consider adaptation of the internal structure and process of the agents. 
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Two common methods used for modelling adaptation are neural networks and evolutionary 

algorithms.  

The production system and learning techniques can be represented in a general scheme known as 

ERA (Environment-Rules_Agents). ERA contains three main parts: the environment, the agents and 

the agents’ behaviour. The environment represents the context through rules, general data and 

the agents. A context can be just like a bucket that holds the agents of the model (Sourceforge, 

2008).  Agent behaviour is defined by two types of rules: master rules that represent the cognition 

of an agent (defined in the production system technique), and maker rules that modify the master 

rules (that involve learning).  

For example, to model an A&E department using an agent-based model, the ERA scheme may be 

useful to represent the general structure of the model (Figure 5-4). Other concepts of an agent’s 

behaviour will be discussed later.   In this example, the environment contains the different agents 

which interact with each other using the environment: for example, Patients, Nurses, Doctors and 

the Department. Each agent has simple rules of behaviour. For instance, a particular doctor may 

choose a patient based on a set of specific master rules based on the condition of the patient and 

the time spent by that patient within the department. However, that doctor can adapt or learn 

from the system and modify those rules using a set of maker rules.  



84 

 

 

Figure 5-4. Example of an ABMS of an A&E department using ERA 

5.4.1 Definition of the agents and agents’ behaviour  

In this step, it is necessary to define the two main parts of the model: the agents and the agent’s 

behaviour (North & Macal, 2007).  One of the features of agent-based models is ontological 

correspondence (Gilbert, 2007), which means that there can be a direct correspondence between 

the agents in the model and the entities in the real world (described in phase one).  

Therefore, it is natural to consider four main agents in the model: the patients, the nurses, the 

doctors and the clerk. The behaviour of those agents may depend on the agent’s capabilities, the 

actions they can perform and the characteristics of the environment that surrounds them (Gilbert 

& Terna, 2000).  

The environment is the basic structure where agents act, and its function is to provide a mechanism 

for communication between agents (Gilbert, 2007). The environment of the A&E model contains 

the agents, the resources and the data required for the simulation.   
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Figure 5-5. Agents’ behaviour representation. Adapted from Schmidt (2000, pp. 2) and 

Salamon (2011, pp. 61) 

Figure 5-5 shows a general representation of an agent’s behaviour (adapted from Schmidt (2000, 

pp. 2) and Salamon (2011, pp. 61)). The agents can observe the environment using a sensor system 

and read information from the environment. Agents perceive the environment differently, 

depending on their current state and goals. The decision-making process can be reactive or 

deliberative. If the decision- making is deliberative, agents use perception and their internal state 

and goals to decide how to act, while if it is reactive, the agent behaviour is directly caused by the 

sensor.   That means that his state and goals do not affect any of the behaviour process.  

All the agents are capable of sensing and perceiving their environment, moving around the 

department, communicating with each other (by sending and receiving messages), interacting with 

the environment (by using the available resources), and selecting the behaviour to adopt. The 

ABMS_A&E model includes reactive and proactive behaviour. Reactive behaviour is defined as 

simple if/then rules and it is used to model the behaviour of the patients, nurses and clerks, who 

do not need to make complex decisions but have simple behaviour such as moving, engaging in 

activities, and changing their states. Therefore, the patient, nurse and clerk agents do not have a 

memory of the past and make decisions reactively based on the information they obtain (sense) 

from the environment, for instance, a patient will join a queue if there is not resources and staff 

available to start an activity.   

However, doctor agents have a more complex behaviour, since they need to make decisions that 

depend not only on the state of the system, for instance waiting times, but also on the perception 

they have of it, which in turn affected by their internal states. For instance, they may need to speed 

up the attention of a patient if they perceive there is a high risk of failing to meet the target, which 

Environment  

Sensor Perception 

Decision 
Making 

State and goals  

Behaviour 
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may be affected by their current level of stress or energy. Therefore, doctors in the ABMS_A&E 

model have proactive behaviour.   

The following section will describe in more detail specific agents’ behaviour. 

5.4.2 Agents’ interactions 

This section describes the interactions between the different agents of the model using UML 

activity diagrams. Figure 5-6 shows the notation used in an activity diagram.  

 

Figure 5-6. UML activity diagrams notation (North & Macal, 2007)  

The first activity of the patient flow is registration. This activity involves the interaction between a 

patient and a clerk (Figure 5-7). When a new patient walks-in, enters the department and then 

walks towards registration.  If any patients are queuing for registration or if there is no clerk 

available, this patient joins the queue for registration. Patients check if they are the only patient in 

the queue, and if that is the case, the patient moves to a specific place to be seen by the clerk.  The 

clerk notices when a patient is ready for registering and if available, calls the patient to the cubicle. 

The patient walks towards the registration cubicle, and the clerk registers the patient and asks the 

patient to go to the waiting room until a nurse calls the patient’s name. After registering the 

patient, the clerk becomes available and can start registering a new patient only if the working shift 

is not over.  
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Figure 5-7. Activity Diagram for registration: Patient/Clerk  

The nurse sees the patients waiting for triage and calls them if available. Then calls the patient to 

a cubicle and proceed with the patient's triage.  A proportion of patients leave after triage; the rest 

of them stay for further evaluation. If the patient decides to stay, the nurse searches for available 

beds and asks the patient to wait there for the doctor’s assessment, if there are any available. This 

process can be seen in Figure 5-8. 
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Figure 5-8. Activity Diagram for triage: Patient/Nurse 

The doctors in the model have the objective of giving an accurate diagnosis to the patients and 

seeing them within four hours. The interactions between a doctor and a patient can be seen in 

Figure 5-9.  

When a shift starts, doctors walk towards the doctors’ area and decide what to do: if patients are 

waiting, they can either start an initial assessment with a patient or start a re-assessment.  If they 

decide to start an initial assessment, they walk to the bed where the patient is. With a nurse’s 

help, assesses the patient and decides if it is necessary to order any test. 
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Figure 5-9: Activity Diagram for treatment: Patient/Doctor 



90 

 

If the patient requires an X-ray test, the doctor asks the patient to move to the X-Ray area, and the 

patient waits for the X-Ray to be taken. If the patient requires a blood test, the doctor orders the 

blood test. The patient can wait for the test results in the cubicle or somewhere else.  When the 

doctor is ready for reassessment, a diagnosis is given to the patient and can then be discharged or 

admitted as an inpatient in the hospital.  

 

5.4.3 Time handling  

An important factor that may be considered before the model is implemented in a specific platform 

is time handling. In agent-based models, it is usual for the time-flow in the simulation to be handled 

in discrete time steps. That is, during every time step, the agents perform some actions until they 

have nothing else to do or they are removed from the simulation. The simulation model then 

moves on to the next time point.  

However, several issues can arise when designing a simulation model that employs discrete time 

steps. (Gilbert, 2007) discusses three: 

1. Synchronicity: That is, at a specific time (or step), some agents may be required to perform one 

action, and different agents may perform different actions. The order in which each action is 

called may be necessary for the execution of the model. For instance, at the beginning of the 

simulation, all the agents have to update their status and decide what action to perform, but if 

one agent updates his or her status and engages in an action with another agent before that 

agent updates his or her status, this may lead to an error causing the simulation to stop, because 

not all the conditions are fulfilled.  There are different ways to deal with these problems: 

• Invoke the agents in a sequential order: that is call agents in order. For example, first call 

agent 1, then agent 2, and so on. That may work in the cases when the action of an agent 

does not directly affect the action of another agent at that time. For instance, let us suppose 

there are periods of low demand, which means that doctors are idle most of the time. If there 

is a method that is used to inform doctors when a new patient arrives, and there are six 

doctors, the method will invoke the doctors in a sequential order. In this case, it may happen 

that doctor 1 will work more than doctor 6.  

• Invoke the agents in a random order. In this case, the agents will execute the method in a 

random order 

• Invoke the agents in a convenient order, bearing in mind the order of the interactions among 

all the agents.  
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2. Periods of inactivity: There are periods where there is nothing to do in the simulation; that is, 

the agents have no actions to perform over several time steps. The simulation will then go from 

one step to another checking if there is anything to do but will do nothing. To avoid that, it might 

be better to consider the next event technique to handle those actions in the simulation.    

 

3. Calibrating time: It is important to determine how simulation time matches real-time. Different 

questions may be considered; for instance, the modeller needs to think what the step of the 

simulation means in real-time? Or when the beginning or the zero time points are in both the 

simulated and the real world?  

 

In this simulation, some events occur at regular intervals, such as at the beginning and the end of 

the working shifts. Those are events that occur once every day at a particular time, so they can be 

handled using the time-slicing technique. However, there may be periods of high activity and 

others of low activity, and the next event technique allows the time increment to adjust to each 

period.  

 

In the ABMS model developed here, some events are handled using the time-slicing technique, 

such as the beginning and ending of a doctor’s shift. Those are events that occur at regular 

intervals. Some other events related to the beginning and ending of other activities need to be 

scheduled using the next event technique.  

5.4.4 Data requirement 

 The data for the development of this model was obtained from the Appendix of Günal’s (2008) 

PhD thesis. This example describes a mid-size A&E department which deals with around 45000 

patients per year. In this department, 75% of the patients arrive by walk-in, and the other 25% 

arrive by ambulance. Detailed information on the demand patterns by mode of arrival and hour of 

the day can be found in Günal and Pidd (2006, pp.448) and Günal (2008, pp.103).  

5.4.4.1 Staff requirements 

Günal and Pidd assumed that each member of a class of staff is identical in order to simplify 

according to the level of detail specified in their model. That means, for example, that there is not 

a significant difference in the service times between different doctors of the same category. In their 

model, they represent junior doctors (or inexperienced doctors) in one category and senior doctors 
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(experienced doctors) in another category. The staff is treated in their model as countable 

resources; therefore, it was only necessary to determine how many doctors of each category were 

required by hour and day (see Table 5-1). 

Table 5-1. Junior doctor’s rotation 

 Time Mon Tue Wed Thu Fri Sat Sun 

00:00 - 00:59  3 2 3 3 3 3 3 

01:00 - 01:59  1 1 2 2 2 2 2 

02:00 - 02:59  1 1 1 1 1 2 2 

03:00 - 03:59  1 1 1 1 1 1 1 

04:00 - 04:59  1 1 1 1 1 1 1 

05:00 - 05:59  1 1 1 1 1 1 1 

06:00 - 06:59  1 1 1 1 1 1 1 

07:00 - 07:59  2 2 2 2 1 2 2 

08:00 - 08:59  2 2 2 2 2 2 2 

09:00 - 09:59  2 2 4 3 4 3 3 

10:00 - 10:59  2 3 4 3 4 3 3 

11:00 - 11:59  3 3 4 3 4 4 3 

12:00 - 12:59  4 3 4 4 5 4 4 

13:00 - 13:59  4 3 4 2 5 4 4 

14:00 - 14:59  4 4 7 3 5 5 5 

15:00 - 15:59  4 5 8 4 5 5 5 

16:00 - 16:59  4 5 7 3 3 6 6 

17:00 - 17:59  3 3 4 3 3 4 3 

18:00 - 18:59  3 4 3 3 3 4 3 

19:00 - 19:59  3 4 3 4 3 4 4 

20:00 - 20:59  4 4 4 4 3 4 4 

21:00 - 21:59  3 4 4 3 3 3 3 

22:00 - 22:59  2 3 3 3 3 3 3 

23:00 - 23:59  2 3 3 3 3 3 3 

In the DES_A&E model, the staff is not modelled as countable resources but as agents capable of 

making autonomous decisions. Thus, it might be necessary to define a shift pattern for each 

member of the staff that aligns to the department staff requirements.  
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Staff scheduling is a typical managerial problem. At this point, it is known from the data how many 

staff are required by every hour of each day. The question that may be asked is: how should that 

staff be scheduled? To answer that it might be necessary to use other operational research tools 

to obtain an optimal or satisfactory staff schedule.  However, as the interest here is only on staff 

decision making, an arbitrary schedule was chosen to try to meet the constraints defined for 

resource scheduling in Günal’s model.  This schedule may be not convenient for doctors; however, 

since in this research I do not develop a fully realistic and detailed model, it is assumed that this 

scheduling is outside the scope of the project. Though, since the PECS framework is used to 

propose how to model human behaviour within A&E more realistically, it includes breaks on 

clinician shifts depending as part of their proactive behaviour.   

For instance, it can be seen from Table 5-2 that on Monday at 00:00, it is necessary to have three 

doctors working, while at 12:00, it is necessary to have one more doctor.  One possible method of 

scheduling for Monday is shown in Table 5-3.  

By providing a similar arrangement for the rest of the week, it is possible to obtain a detailed 

schedule for the whole week and then, to assign each doctor a weekly shift schedule.  The number 

of doctors required every day depends on the duration of the shifts and the doctor’s requirements 

by hour. It is assumed that a doctor works less than 10 hours per day. If a doctor is required to 

work more than 10 hours per day, it may be possible to reduce the total number of doctors working 

in one day. Table 5-3 shows the detailed schedule for each doctor considered in this simulation. 

 Conclusions of the chapter 

This chapter has explained the design process of the Agent-based model of an A&E department. 

The chapter aimed to structure the problem and develop a conceptual model of the A&E 

department, based on the first two phases of the methodology proposed by Salamon (2011).  

The next chapter will describe the simulation process and will include phases 3 and 4 proposed by 

Salamon: selection of a development platform and the implementation and the validation 

processes.  
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Table 5-2. Monday’s schedule of doctors. 

 Time 
Doctors 

requirement D1 D2 D3 D4 D5 D6 D7 

00:00 - 00:59  3 x         x x 

01:00 - 01:59  1 x             

02:00 - 02:59  1 x             

03:00 - 03:59  1 x             

04:00 - 04:59  1 x             

05:00 - 05:59  1 x             

06:00 - 06:59  1 x             

07:00 - 07:59  2 x x           

08:00 - 08:59  2 x x           

09:00 - 09:59  2   x x         

10:00 - 10:59  2   x x         

11:00 - 11:59  3   x x x       

12:00 - 12:59  4   x x x X     

13:00 - 13:59  4   x x x X     

14:00 - 14:59  4   x x x X     

15:00 - 15:59  4   x x x X     

16:00 - 16:59  4     x x   x x 

17:00 - 17:59  3       x   x x 

18:00 - 18:59  3       x   x x 

19:00 - 19:59  3         X x x 

20:00 - 20:59  4       x X x x 

21:00 - 21:59  3         X x x 

22:00 - 22:59  2           x x 

23:00 - 23:59  2           x x 
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Table 5-3.  Shift schedule for each doctor 
 Doctor 1 Doctor 2 Doctor 3 Doctor 4 Doctor 5 Doctor 6 Doctor 7 Doctor 8 Doctor 9 

Monday 00:00- 9:00 7:00-16:00 9:00-15:00 
11:00-19:00 & 

20:00-21:00 
12:00-16:00 & 

19:00-22:00 
00:00-1:00 & 
16:00-24:00 

00:00-1:00 & 
16:00-24:00 

- - 

Tuesday 
4:00- 9:00 & 
10:00 -13:00 

7:00-16:00 9:00-15:00 13:00-22:00 
14:00-17:00 & 

18:00-24:00 
00:00-4:00 & 
16:00-21:00 

15:00-24:00 
00:00-4:00 & 
21:00-24:00 

- 

Wednesday 
5:00 -11:00 & 
14:00-17:00 

7:00-16:00 9:00-15:00 
14:00-22:00 & 

23:00-24:00 

15:00-17:00 & 
18:00-24:00 & 

00:00-1:00 
9:00-18:00 14:00-23:00 

00:00-5:00 & 
20:00-24:00 

00:00-2:00 & 
11:00-17:00 

Thursday 4:00-13:00 7:00-16:00 12:00-21:00 15:00-24:00 
14:00-21:00 & 

00:00-1:00 

00:00-2:00 & 
9:00-13:00 & 
21:00-24:00 

00:00-4:00 & 
19:00-24:00 

- - 

Friday 4:00-13:00 8:00-16:00 9:00-18:00 17:00-24:00 
12:00-17:00 & 

18:00-22:00 
00:00-4:00 & 
19:00-24:00 

9:00-12:00 & 
13:00-19:00 

00:00-2:00 & 
12:00-16:00 & 

22:00-24:00 
- 

Saturday 4:00-13:00 12:00-21:00 
7:00-12:00 & 
13:00-17:00 

16:00-24:00 14:00 -22:00 
00:00-4:00 & 
22:00-24:00 

9:00-17:00 11:00-19:00 
00:00-3:00 & 
19:00-24:00 

Sunday 4:00-12:00 12:00-20:00 9:00-17:00 16:00-24:00 14:00 -21:00 
00:00-4:00 & 
20:00-24:00 

7:00-10:00 & 
12:00-17:00 

10:00-17:00 
00:00-3:00 & 
19:00-24:00 
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CHAPTER 6: ABMS MODEL IMPLEMENTATION AND SIMULATION  

6  

 Introduction  

Chapter 5 introduced the methodology proposed by Salamon (2011) for designing and process 

developing of ABMS models.  It described the first two phases of the methodology (Requirements 

definition, Conceptual model) of the A&E department model proposed in this thesis. This chapter 

describes phases 3 and 4: Platform-specific model and Simulation model.   

 Phase 3: Platform Specific Model 

6.2.1 Selection of development platform  

Chapter 4 described some current toolkits available for implementing ABMS models; especially it 

explained the reasons for choosing the Repast Symphony as the simulation platform for 

implementing the ABMS_A&E model of this thesis.  The ABMS_A&E model considers the operation 

of the A&E department for one year, and the time unit is in minutes. 

6.2.2 Transformation guide 

Most agent-based models are built under object-oriented paradigms. Most object-oriented 

software uses the same basic principles of object-oriented programming; therefore, there are 

standardised techniques to transform a conceptual model into a computer program (Salamon, 

2011).  However, agent-based models use more than object-oriented programming concepts; they 

include the concepts of agency, environment and interactions, which make it more challenging to 

have a standard method to transform an agent conceptual model into a computer simulation 

model.  

The transformation guide described in this section aims to transform the conceptual model 

presented in chapter 5 into a computer simulation model. This process will be done first by 

describing the structure of the model using a UML class diagram. It will then describe each object 

of the simulation model and will finally explain the graphical user interface.  

First, the class diagram of the ABMS_A&E model is presented in Figure 6-1; it shows all the classes 

used to build the model. Appendix B, Tables B1 and B2, present a brief description of each object 

in the simulation. The AEContextBuilder implements the Repast interface ContextBuilder<Object>, 
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which builds the context by adding the agents and defining the projections (in this case a grid 

projection). The SimObject Class represents all the objects in the simulation: Agents, Resources, 

Queues, Entrance and Exit Doors, and an Administrator.   All these objects are inherited from the 

SimObject class. The Agent class contains the Clerks, Doctors, Patients and Nurses. Doctor Class 

includes Consultant and Junior doctors.   

 

 

Figure 6-1. ABMS Model class diagram. 

It is possible to run the model in a batch mode or a GUI (Graphical User Interface) mode.  The batch 

mode runs the simulation in the background using a parameter sweep file defined by the user.  The 

GUI mode allows user interaction in which it is possible to control the execution of the simulation, 

to manipulate the simulation parameters in a control panel, to access and view individual agents 

and to create data set and examine model outputs.  Figure 6-2 shows the GUI of the A&E model.   
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Figure 6-2.  A&E model Graphical User Interface
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6.2.3 Model inputs 

Initial values and distributions were based on the DES model of the first study of an A&E 

department developed by Günal and Pidd (2006, 2009).  Table 6-1 lists the number of resources 

and agents used to initialise the model.  

  Table 6-1. Number of objects within the simulation  

Resources 
No. of  instances 

(base case) 
 Agents 

No. of  instances 
(base case) 

Triage cubicles 5  Doctors 9 

Trolleys 10  Consultants 1 

Minor cubicles 5  Patients 2 

Major cubicles 5  Nurses 5 

Resus cubicles 3  Clerks 2 

X-ray rooms 3    

Test rooms 5    

 

All the agents within the model have individual characteristics. Individual characteristics are related 

to individual personality. Appendix B, Table B2 presents the individual characteristics of the agents 

in the model with their respective values. Patient’s attributes are related to the triage system 

explained in section 5.3.1.2, Doctor’s attributes are related to the PECS variables, which will be 

explained later in this chapter.  

6.2.4 Agents and agents’ behaviour 

The implementation of an agent’s behaviour in the ABMS_A&E model was done in two steps. The 

first step considered the development of the A&E simulation model with simple behaviours. The 

agent’s behaviour was assumed to be purely reactive in this step, which means the agents react to 

their current percepts and the information received from the environment. The second step 

included some deliberative behaviour of the agents implemented using PECS framework.  
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6.2.4.1 ABMS using simple reactive behaviour 

This section will describe the first step of reactive behaviour.  In the previous section, it was seen 

that all agents are subclasses of the “Agent” class. It can be seen from Appendix B, Table B1 that 

the class Agent has one method which is inherited by each agent: moveTo (GridPoint). This method 

receives a location in the grid and moves the agent to that point in the grid.  Other methods do not 

define the agent’s behaviour but are used to obtain information about the agents and the 

environment. For instance, the class agent has a method called getMyResource(), which returns to 

the resource where an agent is at a particular time. For instance, let us suppose that a Nurse is 

seeing a Patient in a triage cubicle, then the method nurse.getMyResource() and 

patient.getMyResource() will return the location of the triage cubicle of the nurse and the patient.      

There is some behaviour which is specific to each type of agent. Appendix B, Table B2, presents a 

description of the agents in the model and their respective variables. The Patient agent, besides 

moving, has two additional methods that define their behaviour: joinQueue(Queue) that defines 

the way a patient joins a particular queue and decideWhereToGo() that allows the patients to 

decide if they should continue in the department until the end of the treatment or leave at any 

point of the process.   

The staff represents the clerks, nurses and doctors, each of whom has a specific working shift, and 

that defines when to start or end work. The methods scheduleWorkShift(), startShift() and 

endShift() define when to start and finish a shift.  The methods engageWithPatient() and 

releaseFromPatient(), define what staff need to do when they interact with patients. The method 

findCubicle(), allows the staff to search specific cubicles, and the method decideWhatToDo() allows 

the staff to decide what to do at the end of any activity.  

Each member of staff has the responsibility for seeing patients in different processes. Clerks 

register patients, nurses can triage patients or stay with them during the treatment process, and 

doctors treat patients.  

6.2.4.2 ABMS using deliberative behaviour 

It was mention in chapter 5 that if agents have deliberative behaviour, they use a more complex 

decision-making process where they need to use a perception system that depends on agents’ 

internal states and goals. Deliberative behaviour here is done by implementing the PECS 

framework. The following section will explain this framework and how it is implemented to model 

doctors’ behaviour in the ABMS_A&E model.  
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 PECS framework 

As introduced in chapter 4, PECS is a Multi-purpose reference model that considers human beings 

as “psychosomatic units with cognitive facilities embedded in a social environment” (Urban and 

Schmidt,2001; Brailsford & Schmidt, 2003; Schmidt, 2005b), in which behaviour needs to be 

defined considering four state dimensions: Physical conditions (Physis), Emotional state, Cognitive 

capabilities and Social status.   

The PECS agent architecture consists in three different layers in an extension of an input:output 

framework (Urban and Schmidt, 2001) as shown in Figure 6-3. The input layer is defined by a sensor 

component that receives the information from the environment and sends it to the perception 

component. The information in the input layer is processed by the perception component and 

transferred by a set of functions represented by F to the internal layer, which contains the set of 

the PECS state variables represented by Z.  The actor and behaviour components define the output 

layer. The behaviour can be reactive or goal-directed, and the actors are responsible for executing 

the actions ordered by the behaviour component. 

 
Figure 6-3. PECS architecture (Urban and Schmidt, 2001, pp.2) 

In order to implement PECS framework in simulation models developed in this thesis, it is necessary 

to define for each entity or agent that makes decisions the functions that allow the transformation 

from the information received by the input layer to the actions defined by the actor component. 

Figure 6-4 shows a Pictorial representation of the implementation of PECS in the simulation model 

and the variables are defined below. 
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Figure 6-4. Pictorial representation of the implementation of PECS in simulation models 

 

Firstly, at a time t, each agent or entity receives information from the sensor in the form of the 

input variables 𝑋1, 𝑋2, … , 𝑋𝑚 and from the internal layer receives the values of the state variables 

𝑍1, 𝑍2, … , 𝑍𝑛   at the same time. F represents the set of functions 𝐹1, 𝐹2, … , 𝐹𝑛 in the perception 

layer that transform the input and state variables in time t to the state variables 𝑍′1, 𝑍′2, … , 𝑍′𝑛   at 

time 𝑡′ = 𝑡 + Δ𝑡, as shown in Equation 6-1. That is, F is the state transition function that 

transforms the state variables at time t into subsequent state at time t’ as a result of inputs.  

𝐹: 𝑆𝑇𝐴𝑇𝐸𝑆 × 𝐼𝑁𝑃𝑈𝑇𝑆 → 𝑆𝑇𝐴𝑇𝐸. 

 
𝐹((𝑍1, 𝑍, … , 𝑍𝑛), (𝑋1, 𝑋2, … , 𝑋𝑚)) = (𝑍′

1, 𝑍′
2, … , 𝑍′

𝑛)  Equation 6-1 

Behaviour is not directly trigged by state variables Z. Schmidt defines other variables, known as 

dependent variables represented by W, that are responsible for an agent’s behaviour. The 

dependent variables in this research represent the intensity of each state variable, so it is possible 

to compare all dependent variables and define the possible behaviour for each agent or entity. The 

relationship between state variables Z and dependent variables W can be defined by a set of 

functions represented by H. The H functions transform the state variables 𝑍′1, 𝑍′2, … , 𝑍′𝑛 at time 

t’ into dependent intensity variables 𝑊′1, 𝑊′2, … , 𝑊′𝑛at t’, as shown in Equation 6-2.  

𝐻: 𝑆𝑇𝐴𝑇𝐸𝑆 → 𝐷𝐸𝑃𝐸𝑁𝐷𝐸𝑁𝑇. 

 𝐻(𝑍′1, 𝑍′2, … , 𝑍′𝑛) = (𝑊′1, 𝑊′2, … , 𝑊′𝑛) 
Equation 6-2 

Finally, the actor component is responsible for executing the actions ordered by the behaviour 

component through a G function as presented in Equation 6-3. G is the output function, that 

transforms the state variables and the dependent variables at time t’ into the outputs or 

observable behaviour 𝑌′1, 𝑌′2, … , 𝑌′
𝑛 at the same time. 

𝐺: 𝑆𝑇𝐴𝑇𝐸𝑆 × 𝐷𝐸𝑃𝐸𝑁𝐷𝐸𝑁𝑇 → 𝑂𝑈𝑇𝑃𝑈𝑇𝑆 
 

𝐺((𝑍′1, 𝑍′2, … 𝑍′
𝑛), (𝑊′

1, 𝑊′
2, … , 𝑊′

𝑛)) = (𝑌′1, 𝑌′2, … , 𝑌′𝑛) 
Equation 6-3 
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Schmidt suggests that the adaptation of this structure to specific cases can be made by defining 

the parameters, the specific state variables and the functions F, H and G. The assignation of the 

parameters of the functions defines the personality of the agents.  

 PECS framework for doctors   

Although the behaviour of all the people that take part of an A&E process affect its performance, 

in order to demonstrate how human behaviour can be included in simulation models of A&E 

departments PECS framework will be implemented to model doctors’ behaviour in the ABMS_A&E 

model. As it was stated in the research design, the A&E models built in this thesis do not attempt 

to realistic simulations instead to gain insight into how human behaviour can be incorporated into 

those models.  

The assumption considered in the PECS framework is that a human being can be represented as a 

system and therefore, the system-theoretical principles apply to define the structure of an agent. 

In this framework, each agent behaves accordingly to the intensity of motives which depend on 

the state of the PECS variables. Although for many years, researchers have tried to measure 

different factors of human behaviour such as fatigue, emotions, learning and social status, there is 

no universal approach to measure those factors (Ajzen & Fishbein, 1980; Beurskens et al., 2000; 

Chang, 1998; Conrad & Kellar-Guenther, 2006; Lee, Dziadkowiec, & Meek, 2014; Maytum, Heiman, 

& Garwick, 2004; Perlovsky, 2014; Sterman, 2000). 

Previously, it was mentioned that in the PECS framework, behaviour needs to be defined 

considering four state dimensions: Physical conditions (Physis), Emotional state, Cognitive 

capabilities and Social status. In this research, the physical condition (P) will be defined later by a 

state variable that represents doctor’s energy level, the emotional state (E) will be defined by state 

variable that represents doctor’s calmness level, the knowledge level (C) will be defined by a state 

variable that represents the level of knowledge that a doctor has about a patient and the social 

status (S) will be defined by two state variables one represent doctor’s level of experience and the 

other doctor’s reputation.  As mentioned earlier, the behaviour is not directly trigged by state 

variables but by the dependent variables. The dependent variables are calculated through the state 

variables, and they can drive to an output that defines the agents’ behaviour.  

6.4.1 Logistic curves to represent PECS behaviour 

The underlying assumption in PECS is that the state transfer functions (F) and the intensity function 

(H) define the agent’s personality. Different forms of the functions F and H can be implemented in 
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PECS; however, in this thesis, Logistic Functions (S-shaped functions) are chosen to model most of 

the F and all the H functions.  

The state and dependent variables considered in the PECS framework are variables that cannot 

grow or decline forever. Although there might be different curves that can represent well the 

behaviour of those variables, in this context, it makes sense that a S-shape (Figure 6-5)  can be 

considered as a possible form of their behaviour.  

S-shaped behaviour is a commonly observed mode of behaviour in dynamic systems, in which 

constraints limit the values of the variables, for instance, minimum and maximum possible values 

can constrain a variable. 

Moreover, in an S-shaped curve, growth is non-linear, it grows exponentially at first but then slows 

gradually until the value of variable approaches its maximum (Sterman, 2000). For instance, the 

cognition of a doctor represented by a Knowledge variable seems to exhibit such behaviour, it 

starts from zero when a doctor meets a patient, and the speed of learning is higher at the beginning 

when he or she starts discovering more about patient’s condition and slow down when he or she 

is approaching the maximum possible knowledge of the patient’s condition. Something similar 

seems to happen with other PECS variables such as Stress (Emotional dimension) and Reputation 

(Social Dimension).  

Additionally, literature shows that S-shaped functions have been used to model some aspects 

related to the dimensions considered in the PECS framework. S-shaped curves have proved to be 

suitable for modelling learning in different areas (Murre, 2014; Kucharavy and De Guio, 2011) 

which suggest that the Knowledge that represents the Cognition dimension in the PECS framework 

may exhibit such shape. Moreover, S-shapes have been commonly used to study the relationship 

between physical stimuli and sensations, cognitive development and human behaviour (Tong, 

Ellsworth, & Bishop, 2009). One example is Tong (2009) who investigated the nature of the 

relationships between emotions and appraisals, and he found that there are s-shaped relationships 

between emotions and behaviour.  These functions have a baseline that represents the minimum 

level of the emotion, an asymptote that represents the maximum level of the emotion and a slope 

that represents the intensity of the relationships between behaviour and emotions.  As for the 

Knowledge dimension, the Emotional dimension represented by the variable Stress could also 

display an S-shaped form.  
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S-shaped growth processes can be approximated by a Logistic Function, as shown in Figure 6-5 and 

defined by Equation 6-4. A Logistic Function is a smooth bounded function that monotonically 

increases (or decreases) at non-constant rate. In an increasing function as the one shown in Figure 

6-5, the growth is close to zero when the value of the function is close to zero then it starts growing 

exponentially up to it reaches the half of the maximum value of the function (which means that 

the growth rate is maximum when 𝑥 = 𝑐, where occurs the inflexion point of the function) and 

then starts slowing up to zero until the function approaches its maximum value (M).    

 

𝑓(𝑥) =
𝑀

1 + 𝑒−𝛼(𝑥−𝑐)
   Equation 6-4 

 

Where: 

𝑀: is the asymptotic maximum value of f(x).  

𝛼: is the logistic growth rate (affects the steepness or width of the curve: that is, as α increases, 

the curve approaches M faster) 

𝑐: is the value of 𝑥 when the curve has its maximum growth (c also means the value of X at which 

the curve reaches the 50% of 𝑀)    

 

Figure 6-5. Logistic function 

In conclusion, in this research, Logistic Functions are selected to model PECS state and dependent 

variables for different reasons.  First, they exhibit an S-shape form, which seems adequate for 

representing the behaviour of the PECS variables considered in this research.  Second, these curves 

c 
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allow the modelling of processes on which stimulus triggers behaviour.  Third, they are flexible 

functions which parameters are easy to understand and to modify.  

6.4.2 PECS state variables for doctors 

In this research, it is assumed that each of the PECS factors (Physical, Emotional, Cognitive and 

Social) is represented by the variables and parameters used for the PECS framework in Table 6-2.  
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Table 6-2. PECS variables and parameters 

𝑋1: is an input variable that represents the number of patients seen at time 𝑡 

𝑋2: is an input variable that represents a Doctor’s total working time (hours) at time 𝑡 

𝑋3: is an input variable that represents the maximum triage number among all the patients being 
seen by a doctor at time 𝑡. 

𝑋4: is an input variable that represents the average time in the system (hours) among all the 
patients being seen by a doctor at time 𝑡. 

𝑋5: is an input variable that expresses the ratio between the number of tests ordered for a patient 
at time 𝑡 and the maximum number of tests that a patient can have. 

𝑋6: is an input variable that represents the time a doctor has worked in the A&E department (in 
weeks) 

𝑋7: is an input variable that represents the maximum time in the system (hours) of the patients 
being seen by a doctor 

Z1: is a state variable that represents the energy level of a doctor at a specific time 𝑡 
(dimensionless). The physical condition (P) is defined by this state variable. 

Z2: is a state variable that represents the emotional state (E) is defined by this state variable that 
represents the calmness level of a doctor at a specific time t (dimensionless). 

Z3: is a state variable that represents the knowledge that a doctor has about a patient at a specific 
time t. The knowledge level (C) is defined by this state variable (dimensionless).  

Z4: is a state variable that represents the level of experience the doctor has gained at time 𝑡 
(dimensionless). This state variable defines the social status (S) 

Z5: is a state variable that represents the reputation of a doctor at a specific time 𝑡 
respectively(dimensionless). This variable, along with 𝑍4, defines the social status (S) 

W1: is a dependent intensity variable(dimensionless) that represents the fatigue as a function of 
the energy state (𝑍1). 

W2: is a dependent intensity variable that represents stress as a function of the calmness state (Z2) 

W3: is a dependent intensity variable(dimensionless) that represents the need of knowledge as a 
function of knowledge about a patient (Z3) 

W4: is a dependent intensity variable (dimensionless) that represents social desire as a function of 
reputation (Z4) 

c1: is a parameter for the Energy function that represents the maximum number of patients a 
doctor is capable of seeing in one hour 

c2: is a parameter for the Energy function that represents the duration of a doctor’s shift (hours) 

c3: is a parameter for the Calmness function that represents the maximum time in the system 
(hours) over all the patients being seen by a doctor at which the doctor loses 50% of their 
calm. 

c4: is a parameter for the Knowledge function that represents the time that doctors need to 
obtain 50% of the knowledge (hours) about each of their patients.  

c5: is a parameter for the Experience function that represents the time (in weeks) when a doctor 
reaches 50% of the maximum experience.  

𝛼3: Is a parameter for the Experience function that represents the growth rate of the function. 
This value gives a measure of the speed with which doctors gain experience. 
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To explore differences in the behaviour of the doctors, here we consider there three levels of 

expertise (based on their clinical training) of doctors. There are doctors with low levels of expertise, 

doctors with medium levels of expertise, and doctors with high levels of expertise.  

Since it is assumed that the level of expertise is based on doctor’s clinical training, it makes sense 

to think that doctors with low levels of expertise are younger and they tend to get tired slower 

than the ones with higher levels of expertise. However, doctors with lower levels of expertise could 

get stressed quicker than doctors with higher levels of expertise. That is because the less expert 

they are, the higher levels of uncertainty they perceive when facing challenging situations.  

In the ABMS_A&E and DES_A&E models, it is considered that 9 doctors are working along the day; 

they are categorised by their level of expertise as follows: 

• Low level of expertise: Doctor 1, Doctor 2, and Doctor 9  

• Medium level of expertise: Doctor 3, Doctor 4 and Doctor 5.  

• High level of expertise: Doctor 6, Doctor 7 and Doctor 

Table 6-3 shows the value of the parameters of the PECS state variables for each doctor. The 

following section explains in more detail the PECS variables.  

Table 6-3. Doctors’ parameters of the PECS state variables  
c1 c2 c3 c4 c5 c6 3 

D1 4 9 1 0,5 200 1,167 0,0075 

D2 4 9 1 0,5 200 1,167 0,0075 

D3 4 8 1 0,5 50 1,5 0,0125 

D4 4 9 1,33 0,5 50 1,5 0,0125 

D5 4 7 1,33 0,5 50 1,5 0,0125 

D6 4 9 2 0,5 0 2,167 0,0175 

D7 4 9 2 0,5 0 2,167 0,0175 

D8 4 9 2 0,5 0 2,167 0,0175 

D9 4 9 1 0,5 200 1,167 0,0075 
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6.4.3 Physical condition (P) 

The physical condition (P) is defined by the state variable 𝑍1 that represents the energy level of a 

doctor at a specific time 𝑡. For instance, assuming that the energy level of an agent depends on the 

number of hours worked in a day, the energy state (physical condition) is expected to decrease 

when the time work increases. One mathematical function that shows this type of behaviour is a 

rational function. For instance, let us consider the following rational function:  𝑌(𝑥) =
𝑐

𝑐+𝑥
 , where 

𝑐 is a constant and 𝑥 is the independent variable. When 𝑥 increases 𝑌(𝑥) decreases exponentially 

until zero.  

For this research, it seems reasonable to assume that the relative energy level of a doctor is 

affected by both the time worked (𝑋1) and the number of patients seen (𝑋2); hence, the function 

includes both 𝑋1 and 𝑋2. The function includes its product because the function has to emphasise 

their joint effect. So, the Energy state variable for each doctor in the time 𝑡 + Δ𝑡 (𝑍1’) is modelled 

using the rational function shown in Equation 6-5:  

𝑍′
1(𝑋1, 𝑋2) =  

𝑐1𝑐2

𝑐1𝑐2 + 𝑋1𝑋2
 Equation 6-5  

 

 

Using Wolfram Mathematica 10 ®, we obtain the graph in Figure 6-6. It can be seen from this 

graphic that the energy decreases as the number of patients and the working time increase.  

 

 

Figure 6-6. Example of a function of the variable P: Energy 
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6.4.4 Emotional state (E)  

The emotional state (E) is defined by the state variable 𝑍2 that represents the calmness (lack of 

stress) level of a doctor at a specific time 𝑡. For instance, if a doctor is seeing several patients and 

the average time in the system of all those patients is close to the target, the doctor will be less 

calm than if that average is much smaller. As mentioned earlier, the Logistic Function is used here 

to model the Calmness Variable. In this case, the 𝐹 function that transforms the input and 

dependent variables in time 𝑡 into state variable 𝑍’1 in time 𝑡 + Δ𝑡 will have an S-shaped form as 

shown in Equation 6-6: 

 

𝑍’2(𝑋3, 𝑋4,𝑍1) =  
1

1 + 𝑒𝑋3(1−𝑍1)(𝑋4−𝑐3)
 Equation 6-6  

Notice that in this function, the factor 𝑋3(1 − 𝑍1) multiplies the factor (𝑋4 − 𝑐3), which in the 

logistic function (Equation 6-6)  means that 𝑋3(1 − 𝑍1) represents steepness or width of the 

curve, while 𝑐3 means the value 𝑋4 at which the Calmness reaches the 50% of its maximum value 

(in this case the maximum value is 1).  

Table 6-2 shows that 𝑋3 represents the maximum triage number among all the patients being seen 

by a doctor,  𝑍1 represents a doctor’s energy level, 𝑋4 represents the average time in the system 

among all the patients being seen by a doctor, and 𝑐3 represents the maximum time in the system 

(hours) over all the patients being seen by a doctor at which the doctor loses 50% of their calm. In 

this context, that means several things. First, it means that the higher the values of the patient’s 

triage (more critical patients) and the less value of a doctor’s energy, the faster a doctor loses his 

or her calm. Second, it can be seen from Table 6-3 that the values of the parameter 𝑐3 are different 

for each type of doctor. Doctors with low level of expertise, lose their 50% of the calm when their 

patients have been waiting around 1 hour, doctors with medium level of expertise when their 

patients have been waiting around 1.33 hours (around 80 minutes), and doctors with high level of 

expertise when their patients have been waiting around 2 hours. That is because they perceive the 

risk of failing the 4-hour target differently depending on their experience; it is natural to assume 

that the inexperienced doctor gets stressed sooner than the more experienced ones. 

 Figure 6-7 shows an example of how the behaviour of the variable Calmness would be for the 

three types of doctors when they have different values of the triage. The graphic confirms that the 

doctors that have higher experience working in A&E departments may know better how to deal 

with critical patients (Figure 6-7-e) than less experienced doctors; therefore, they lose their calm 
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much slower than inexperienced doctors. It is also possible to see from the graphic, that when 

doctors are low experienced, they lose their calm sooner because of patients’ waiting times than 

doctors that are more experienced. 

Figure 6-7. Example of a function of the variable E: Calmness 

 

a) Triage = 1 

 

b) Triage =2 

 

c) Triage = 3 

 

d) Triage = 4 

 

e) Triage = 5 



112 

  

6.4.5 The knowledge level (C) 

The knowledge level (C) is defined by the state variable 𝑍3 that represents the knowledge that a 

doctor has about a patient at a specific time 𝑡. As discussed earlier, the F function that transforms 

the input and dependent variables in time t into state variable 𝑍’3 in time 𝑡 + Δ𝑡 also has a logistic 

shape, as shown in Equation 6-7:  

 

𝑍’3( 𝑋4, 𝑋5, 𝑍4 ) =  
1

1 + 𝑒−(𝑋5+𝑍4)(𝑋4−𝑐4)
 

 

Equation 6-7  

Table 6-2 shows that 𝑐4 represents the time that doctors need to obtain 50% of the knowledge 

about each of their patients, 𝑋4 is the average time in the system of all the patients being seen by 

a doctor, 𝑋5 is the ratio between the number of tests ordered for a patient and the maximum 

number of tests that a patient can have, 𝑍4 is the value of the level of experience of a doctor, which 

is the job experience that a doctor gains by working continually in the department. 

Similar to the calmness function, the steepness or width of the knowledge curve is affected by a 

factor that considers an input variable and a state variable: 𝑋5+𝑍4. That means that the more level 

of experience the doctors have or, the more tests they order to a patient, the faster doctors will 

get the maximum knowledge of a patient’s condition (they will be confident with their diagnoses).  

Figure 6-8 shows different curves of the variable Knowledge. The graphics demonstrates that the 

more experience doctors have, the faster they learn about a patient’s condition. Similarly, the more 

information doctors gain from their patients (defined by the number of tests ordered) the faster 

doctors increase their knowledge of their patient’s condition.  
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a) 𝑋5 = 1/3 

 

 

b) 𝑋5 = 2/3 

 

 

c) 𝑋5 =1 

 

Figure 6-8. Example of a function of the variable C: Knowledge 
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6.4.6 The social status (S) 

In this research, it is assumed that the Social Status can be represented by doctors’ Experience and 

doctor’s Reputation because we believe that both are related to how well doctor have been doing 

their jobs over time and that directly influence the good opinions their colleagues may have about 

them. Therefore, the social status (S) is defined here by the state variables 𝑍4 and 𝑍5 that represent 

how the experience and reputation of a doctor change over time, respectively.  

The Experience and Reputation state variables are also modelled with a Logistic Function that 

provides an S-shaped curve. The level of experience of doctors at time 𝑡+Δ𝑡 is represented by 

Equation 6-8. 

 

𝑍’4(𝑥6) =  
1

1 + 𝑒−𝛼3(𝑋6−𝑐5)
 

 

Equation 6-8 

From Table 6-2 it can be seen that 𝛼3 is the growth rate of the function, 𝑋6 is the time a doctor has 

worked in the A&E department, and 𝑐5 is the time when a doctor reaches 50% of the maximum 

possible experience.  

Figure 6-9 shows the level of experience by each type of doctor (see Table 6-3). It is important to 

notice that the level of experience is related to the skills a doctor gains while working in the A&E 

department while the level of expertise is an attribute that does not change over time and refers 

to a doctor’s seniority.   The figure shows that doctors with a higher level of expertise reach the 

maximum experience sooner and quicker than doctors with low levels. That is because the value 

of α3 is higher for doctors with higher expertise, meaning that the Experience curve for them is 

steeper than for the others. Also, as the value of 𝑐5 is smaller for doctors with higher expertise, the 

more expert doctors will reach 50% of the maximum Experience sooner than the others. Table 6-3 

shows that doctors with low level of expertise reach the 50% of the maximum experience at 200 

weeks (approximately 4 years after the simulation stats), doctors with medium level at 50 weeks 

(around 1 year) while doctors with high level reach the 50% of the maximum experience at the 

beginning of the simulation.   In the ABMS_A&E and DES_A&E, the Experience does not change 

significantly during a run because that variable is updated weekly, and therefore a significant 

increase in its level can only be seen over the years.  
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Figure 6-9. Example of a function of the variable S: Experience by type of doctor 

 

The level of Reputation of doctors at time 𝑡+Δ𝑡 is represented by Equation 6-9. 

𝑍’5( 𝑋7) =  
1

1 + 𝑒𝛼4(𝑋7−𝑐6)
 

Equation 6-9  

Here it is considered that reputation is understood as how well a doctor manages to meet the 4-

hour target, that is the doctor maintains a good reputation if he or she manages to attend his or 

her patients within 4 hours, the more time a doctor’s patients stay in the department, the less 

reputation the doctor will have. Therefore, as the Reputation depends on the maximum time in 

the system of a doctor’s patients, reputation is 1 when the patients’ times in the system are zero, 

and then begins to decrease until it approaches zero as waiting times approach the four-hour 

target.  

From Table 6-2 it can be seen that 𝑋7 is the maximum time in the system (hours) a doctor’s patients, 

𝑐6 is the time when a doctor loses 50% of the maximum reputation (hours). In the Logistic Function, 

𝛼4 is the growth rate of the Reputation, here 𝛼4 is defined as a function of the experience (𝛼4= 

1+𝑍4), that is because it is assumed that the higher the experience, the steeper the Reputation 

function should be.  

From Table 6-3 it is possible to see that low experienced doctors lose their 50% of the maximum 

reputation when patients’ times in system approach 1.167 hours (around 70 minutes), medium 
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experienced doctors at 1.5 hours (around 90 minutes) and, highly experienced doctors at 2.167 

hours (around 130 minutes). Those values were chosen arbitrarily to establish that the doctors with 

higher expertise are more likely to handle well patients with long waits than inexperienced doctors, 

then the more experienced doctors lose the 50% of their maximum reputation later than 

inexperienced doctors.  Figure 6-10 shows the level of Reputation by each type of doctor.  Assuming 

that a particular time, the value of experience of a low experienced doctor is 𝑍4= 0.2, for medium 

experienced doctors 𝑍4= 0.4, and for highly experienced doctors 𝑍4=0.6, the Figure 6-10 shows that 

as the patients’ time in the system increases, the low experienced doctors lose their reputation, 

slower than the more experienced ones. That can be explained because we assume that it is more 

likely that inexperienced doctors make mistakes than experienced ones.  

 

 Figure 6-10. Example of a function of the variable Reputation 

 

6.4.7 Dependent variables (intensity variables) 

As said before, according to Schmidt (2005a, pp. 5) the behaviour of the people in the PECS 

framework “is usually dependent on drives, needs or desires which can be regarded as motives. The 

strength or intensity of these motives is a function of the state variables. In this case, the state 

variables do not determine behaviour directly, but rather indirectly, via the motives belonging to 

them.”.  That is, in the PECS framework, the behaviour is not directly trigged by state variables but 

by the dependent variables, which represent the motives. It was also said before that the 

dependent variables are calculated using the state variables, and they can drive to an output that 

defines the agents’ behaviour. 
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The dependent variables give an idea of how important it is to satisfy a need depending on a state 

variable.  For instance, when the level of energy decreases, fatigue increases, and when fatigue 

approaches the maximum value, the doctor needs to take any action that allows the energy level 

to refill. It makes sense to think that as the energy decreases the fatigue increases, but that 

relationship is not necessarily a linear one.  Intuitively one can think that decreasing the level of 

energy from 1 to 0.9 might not cause the same fatigue than moving from 0.7 to 0.6 (as in Figure 

6-11-a). For example, when doing exercise, it seems that the fatigue a person feels after jogging 

for 10 minutes at the beginning of the activity is not the same fatigue that person feels when 

running for 10 minutes after exercising for two hours. In other words, it seems that the relationship 

between the energy and the fatigue is non-linear.  

Although there might be different functions that can model the relationship between dependent 

variables and state variables in the PECS framework, here it is assumed that a Logistic Function is 

suitable for modelling that relationship since it not only has excellent mathematical properties (see 

section 6.4.1) but also it provides a shape that intuitively corresponds to the relationship between 

dependent variables and state variables. 

The dependent variables of this model are 𝑊1 that represents fatigue as a function of the energy 

state variable; 𝑊2 represents stress as a function of the calmness state variable; 𝑊3 represents the 

need of knowledge as a function of knowledge state variable, and 𝑊4 represents social desire as a 

function of reputation state variable.  

As explained before, 𝐻 is an intensity function that transforms the state variables 𝑍’ at time 𝑡 + 

𝑡  into dependent variables 𝑊’ at time 𝑡 + 𝑡.  

𝐻: 𝑆𝑇𝐴𝑇𝐸𝑆 → 𝐷𝐸𝑃𝐸𝑁𝐷𝐸𝑁𝑇.  

𝐻(𝑍′1, 𝑍′2, … , 𝑍′𝑛) = (𝑊′1, 𝑊′2, … , 𝑊′𝑛)   

In this case, H will have the form of a logistic function, as shown in Equation 6-10:  

 

𝑊′𝑖 =
1

1 + 𝑒𝛼𝑖(𝑍′
𝑖−𝑐𝑖)

           𝑓𝑜𝑟 𝑖 = 1,2, … 𝑛 
Equation 6-10  

Where 𝛼i and 𝑐i are constants.  
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Table 6-4 shows the value of the parameters of the PECS dependent variables and Figure 6-11 

presents the dependent variables as a function of the state variables.  

Table 6-4. Doctors’ parameters of the PECS dependent variables 

Wi 𝛼i 𝑐i 

W1 10 0,5 

W2 10 0,5 

W3 10 0,7 

W4 5 0,5 

 

 

a) 𝑊1: Fatigue 

 

b) 𝑊2: Stress 

 

c) 𝑊3: Need of knowledge 

 

d) 𝑊4: Social desire 

Figure 6-11. PECS’s dependent variables 
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6.4.8 Outputs (behaviour)  

As discussed in previous sections, the output layer of the PECS architecture shown in Figure 6-3, 

includes the Actor, which contains the possible actions that an agent can perform. Those actions 

are guided by the motives represented by the dependent variables. The dependent variables are 

changing continuously over time, and when an agent, in this case, a doctor, needs to decide, he or 

she compares all the levels of the dependent variables and the higher one becomes the action-

guiding motive and defines the action the agent needs to perform (Schmidt, 2000). 

 There are different points of time at which a doctor needs to make decisions. In the simulation, 

these are the times when doctors need to compare the values of their dependent variables to 

choose the most appropriated action for each situation:   

1. At the beginning of the shift  

2. At the end of a service (first assessment or re-assessment) 

3. When finishing his or her shift  

Every moment the four state variables (W1, W2, W3, W4) are compared. Each variable drives a 

specific action:  

• If the Fatigue (W1) is the strongest motive, the doctor takes a break to refill the energy. 

• If the Stress (W2) is the strongest motive, the doctor checks what the most stressful 

situation is.  If the stress is caused by the severity of a patient’s condition, the doctor uses 

a priority system is based on the triage, while if stress is caused by long patients’ waiting 

times, the doctor changes the queues’ priority system by increasing priorities of the 

patients that are close to breaching the 4-hour target. Doing that, the doctor increases 

their calmness levels.     

• If the Need of Knowledge (W3) is the strongest motive, the doctor orders more tests to be 

more confident about his or her diagnoses and avoids multitasking (seen more than one 

patient at a time). 

• If the Social Desire (W4) is the strongest motive, the doctor reduces the service times and 

increases his or her multitasking in order to avoid failing to meet the target 
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 Phase 4: Simulation  

The purpose of the ABMS_A&E model is to demonstrate general principles of modelling human 

behaviour in an A&E department using ABMS.  The development of the ABMS_A&E model was 

based on the DES model of an A&E department built by Günal (2008); however, the ABMS_A&E is 

not an exact replication of Günal’s model but an equivalent simulation.  Therefore, the ABMS_A&E 

model is not intended to be an accurate replication of an A&E department.  

The ABMS_A&E model is implemented in Repast Simphony. Repast has a Scheduler to control the 

flow of time. This Scheduler acts as the heart of a simulation engine and allows synchronisation of 

the activities carried by the agents over time (North and Macal, 2007).  Three approaches are used 

in the ABMS_A&E to schedule the activities in an ABM simulation.  

The A&E patient flow is modelled in Repast using java programming. Some data structures, such as 

arrays and lists, are used to represent the patients’ queuing process, the schedulers previously 

mentioned are used to define the execution of actions related to activities. 

First, some actions are modelled using time-step scheduling using Java Annotations. Annotations, 

in java, “are bits of metadata which can be attached to classes, methods or fields that are available 

at runtime to give the system more information an integer counter to update and evaluate the 

model” (Repast, 2019). Second, some actions are scheduled using a discrete-event approach by 

implementing a Repast IAction interface. Third, some actions are triggered by a change in an 

agent’s state. Those actions use java annotation based on watchers. A watcher “allows an agent to 

be notified of a state change in another agent and schedule an event to occur as a result. The 

watcher is set up using an annotation (like above), but instead of using static times for the schedule 

parameters, the user specifies a query defining whom to watch and a query defining a trigger 

condition that must be met to execute the action” (Repast, 2019).  

This ABMS model of an A&E department considers human behaviour in a more detailed way than 

the DES model developed by Günal. Table 6-5 presents a comparison of different aspects of the 

representation of the behaviour of the A&E department staff in the Günal’s DES model and the 

ABMS_A&E model. The model representation of staff in Günal’s model is made under the 

assumption that each member of the staff is identical, which means that they behave the same 

under the same circumstances. Therefore, staff are modelled as countable resources, which means 

that it is not necessary to track individual staff behaviour in the simulation. In the ABMS_A&E 
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model, each member of staff is modelled individually as an agent whose behaviour is tracked in 

the simulation.   

Staff multitasking behaviour in the Günal’s model includes multiple representations of each type 

of staff by fragmenting them into several “mini-doctors” and “mini-nurses”. In ABMS, the 

multitasking behaviour is represented by task switching, for example, a clinician (e.g. a doctor) can 

switch from one task to another if the number of patients being seen simultaneously is less than 

the multitasking factor. The staff’s availability in Günal’s model takes into consideration the 

number of each type of staff available per hour, whereas, in ABMS_A&E, the availability depends 

on individual working shifts. It is assumed that the work shift duration is between 7 and 9 hours. 

The scheduling of the work was made heuristically considering requirement of doctors each hour 

and the maximum duration of work shifts for each member of the staff.  

Staff individual behaviour is not represented in Günal’s model. In the ABMS_A&E model, each 

member of the staff arrives in the department at the time specified by their shift. If they have 

completed all the necessary services at the end of their shift, they leave the department; otherwise, 

finish all the services they have before leaving. When doctors are seeing patients, who are waiting 

for test results when their shift ends, they search for an available doctor to take over their patients 

and then leave.  If the doctor who assessed the patient for the first time is available when the 

patient gets the results of the test, the doctor reassesses the patient. Otherwise, if there is another 

available doctor, that doctor sees the patient. 

Table 6-5. Representation of staff’s behaviour in the Günal’s model and ABMS_A&E 

Aspects of 
Staff 

behaviour 

Günal’s DES_A&E ABMS_A&E 

Staff type 
Nurses, Consultant and 

junior doctors. 
Nurses, Consultant and junior doctors. 

Assumptions 

Each member of a type 

of staff is identical. 

Each member of the staff is modelled 

individually in the model. 

“Mini-doctors”/ “mini-

nurses” represent 

multitasking behaviour 

Staff availability represents multitasking 

behaviour. 

The shifts length is between 7 and 9 

hours. 
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Aspects of 
Staff 

behaviour 

Günal’s DES_A&E ABMS_A&E 

Model 

representation 

Countable variables 

(resources/ resident 

entities) 

Agents 

Availability 

Number of each type 

of staff available per 

hour 

Individual work shifts 

Behaviour No. 

Each staff member meets their work 

schedule. 

Doctors are responsible for their own 

patients; they do not leave the 

department if there is any unfinished 

work. 

Each doctor decides how to reassess 

patients. 

 

The model can be run in a batch run and non-batch run mode. In the batch-run mode, the model’s 

parameters are read from a parameter file and, the simulation does not require user interaction to 

start running.  On the contrary, using non-batch run mode requires the user interaction through a 

graphical interface not only to provide the initial parameters of the model but also to control and 

manipulate the simulation (Sourceforge, 2008).  

6.5.1 Verification process 

Verification and validation processes are important processes in any simulation project since it 

builds confidence in the simulation results. According to Robinson (2004, pp.210), verification aims 

to “ensure that the model is sufficiently accurate”. Robinson considers that accuracy in verification 

refers to the transformation of the conceptual model into a computer model, while with validation 

the idea is to ensure that the model is sufficiently accurate to the purpose for which the model is 

intended to be used.   Therefore, the concept of accuracy in simulation is linked to the purpose of 
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the model, which may have been defined at the beginning of the simulation study.  Robinson 

summarizes the methods of verification and validation in six categories: conceptual model 

validation; data validation; verification and white-box validation; black-box validation; 

experimentation validation and solution validation. The first five methods will be considered here.  

It is important to note that validation in ABMS can be a challenge, especially when the behaviour 

of humans is an essential element of the system being modelled. Onggo, B. &  Karatas, M. (2016) 

summarise common challenges faces in ABMS model validation. One challenge is obtaining 

information about the behaviour of social, intelligent agents, mainly when their behaviour is not 

easy to observe. Also, they found that it is also a challenge to validate if the rules used in the model 

to define agents’ behaviour represent the rules of the agents that act on the real world and if the 

heterogeneity of the agents is accurately represented in the model.  A second challenge they 

identified is validating an ABMS model at a macro or system-level based only on the information 

of individuals’ behaviour, that is to validate that the interactions between agents cause emergent 

behaviour. The last challenge is obtaining qualitative data on the behaviour of heterogeneous 

agents.  

The conceptual model validation and the data validation were based on the MicroSaint sharp® DES 

model proposed and developed by Günal (2008).  The process consisted of ensuring that the logic 

of the DES model was included in the ABMS model in some form. Some parts of the Günal’s model 

remained unchanged in the ABMS model; for example, the patient’s arrival process in the 

ABMS_A&E is the same as in Günal’s model. The data used in the ABMS model is the same data 

used in Günal’s model for the A&E-1 example (Günal, 2008, pp. 73 - 109). 

The white-box validation was developed basically considering that the logic of the model 

represented the behaviour of the A&E department with two main purposes: first that the model 

represented the patient flow process as it was represented in the DES model; second that the 

behaviour of the agents corresponded to the decision rules that were written in the code. In order 

to do this, the model was debugged at each step of the development process, and the graphical 

interface of the model allowed for checking the behaviour of the model in each part of the 

development process.  

In black-box validation, the overall behaviour of the model is considered. The approach here is to 

compare the ABMS model against the DES model rather than to compare the ABMS model against 

the real world.  The DES model was run 50 times for 52 weeks. Initially, the AMBS model took 

approximately 24 hours to make a single run of 52 weeks, so it was necessary to run the model in 
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several computers to obtain a sufficient amount of data to analyse the results. Later for the 

experiments, the code was cleaned, and the length of the run was reduced to improve the speed 

of the run.   Figure 6-12 shows a comparison of the proportion of patients that waited more than 

four hours between the ABMS model, the DES model, and the actual performance of the real A&E. 

The ABMS displayed considerable variations in comparison to the DES model; however, the global 

shape of the histogram was captured in the ABMS model.   

  

  Figure 6-12. ABMS results- total time in the A&E department 

Table 6-6 shows that the mean of the proportion of patients who waited more than four hours 

obtained from the ABMS model is close to the actual proportion; however, the variability among 

the runs in the ABMS is higher than the DES model. 

  

0,00
0,01
0,02
0,03
0,04
0,05
0,06
0,07
0,08
0,09
0,10

0

6
0

1
2

0

1
8

0

2
4

0

3
0

0

3
6

0

4
2

0

4
8

0

p
ro

p
o

rt
io

n
 o

f 
p

at
ie

n
ts

Minutes



125 

  

Table 6-6. Proportion of patients that wait more than four hours 

 

ABMS Proportion of patients 
t>240      

Run 1 0.0540   

ABMS 
model 

DES 
model  Actual  

Run 2 0.0523  Mean  0.0350 0.0049 0.036 

Run 3 0.0154  Median 0.0282 0.047  

Run 4 0.0232  Min 0.0154 0.032  

Run 5 0.0520  Max 0.0540 0.071  

Run 6 0.0443      

Run 7 0.0279      

Run 8 0.0488      

Run 9 0.0284      

Run 10 0.0269      

Run 11 0.0280      

Run 12 0.0187      

6.5.2 Sensitivity analysis for the ABMS_A&E model 

A parametric sensitivity analysis is necessary here to test the effect of the uncertainty of the PECS 

parameters on the distribution of the patients’ total time in the system. As previously described, 

the ABMS_A&E model considers that doctors have different levels of expertise (low, medium and 

high). However, in order to reduce the number of possible combinations for the sensitivity analysis, 

and to obtain a better insight of the effect of each parameter, it is assumed here that all doctors 

have a low level of expertise, and a parametric sensitivity analysis is done by varying each PECS 

parameter simultaneously on all the doctors. 

Figure 6-13 shows the sensitivity analysis on the parameters C of the Logistic Functions of some 

PECS’ state variables.  Figure 6-13 a) shows the impact of changes in the parameter c1 that 

represents the maximum number of patients a doctor is capable of seeing in one hour on the 

distribution of the patients’ total time in the system. It means that for example if a doctor is capable 

of seeing maximum one patient per hour and the system is not too empty, he or she will be seeing 

more patients in one hour than he or she normally sees and he or she will get tired faster.    It is 

important to notice that c1 affects the state variable Energy, it means that the smaller the value of 

c1, the higher might be the doctor’s fatigue. Also, the state variable Energy also affects the doctor’s 
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calm and therefore, the doctor’s stress. It can be seen from the graphic that c1 does not significantly 

affect the distribution of times in the system. 

Similarly, Figure 6-13 b) and Figure 6-13 c) show that changes in the parameter c2, which represents 

the expected duration of a doctor’s shift (hours), parameter c3, maximum time in the system at 

which the doctor loses 50% of calm, do not significantly affect the distribution of times in the 

system. Appendix C shows the sensitivity analysis for the rest of the PECS parameters. None of the 

PECS parameters significantly influences the distribution of times in the system.  
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a) C1: a doctor’s maximum number of patients seen per hour  

 

 
b) C2: expected duration of a doctor’s shift (hours) 

 

 
c) C3:  maximum time in the system (hours) at which the doctor loses 50% of calm 

Figure 6-13. Sensitivity analysis for parameter C of Logistic Functions  
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6.5.3 Experimentation: PECS Framework  

The key output of the ABMS model developed here is the distribution of the time spent by patients 

in an A&E department. Before implementing PECS in the ABMS model, a doctor agent had very 

simple reactive rules of behaviour: 

• If time is due, then starts a shift  

• If another doctor is leaving who still has patients, takes over the patients or else walks to 

the doctor’s area 

• If the doctor has patients waiting for reassessment then does reassessment or else checks 

if there are patients for first assessment 

• If patients are waiting for the first assessment, then chooses the one with the highest triage 

and does the first assessment 

• If the patient requires tests, then orders tests 

• If the shift has ended and has patients in test then looks for another doctor, hands over 

the patients and then leaves 

6.5.3.1 Results of the Base case scenario 

The base case scenario after implementing PECS assumes that each doctor agent has some 

variables associated with four attributes: energy, stress, knowledge and social desire. At the end 

of any action, the doctor agent compares the state of the four variables and decides what to do 

next.  

• If the intensity of the energy is the highest, then schedules a rest as soon as an action is 

finished  

• If the intensity of the stress is the highest and the stress is caused by the risk of failing to 

meet the department target, then chooses the patients with the highest time for first 

assessment and modifies the multitasking factor associated 

• If the intensity of the need of knowledge is the highest, then decides to order more tests 

for the patients 

• If the intensity of the social desire is the highest, then does not modify the initial behaviour 

The base case scenario showed that 98% of the patients meet the 4-hour target. Therefore, the 

effect of the implementation of the PECS framework is not significant at this point; however, in 

more extreme conditions it might be possible to see how using PECS for modelling agents’ 

behaviour may produce a different overall behaviour and therefore have an impact on the 
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department’s performance. Figure 6-14 shows the results of this scenario. It can be seen that the 

proportion of patients that are close to the four-hour target increases.   

 

Figure 6-14. Total time in an A&E department (base case). 

6.5.3.2 Scenario 2: 20% increase in the demand  

In this scenario, the inter-arrival times of both Walk-in and Ambulance patients is reduced by 20%. 

This model was run ten times for 7 weeks each run, and the distribution of the patients’ time in the 

system is shown in Figure 6-15.  In this figure, the effect of the four-hour target is more evident 

than in the base case scenario. 

 

Figure 6-15. Total time in the A&E department in scenario 2 
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6.5.3.3 Scenario 3: 30% and 40% increase in the demand 

In this scenario, the mean inter-arrival times of the distributions from which both Walk-in and 

Ambulance patients are drawn are reduced by 30% and 40% and the distribution of the patients’ 

time in the system is shown in Figure 6-16.  In this figure, it is possible to see that substantial growth 

in demand has a substantial impact on patients’ waiting times, and it is much more evident the 

effect of the four-hour target on the A&E waiting time performance. The figure shows that when 

the demand is increased by 30%, the proportion of patients leaving the department before four 

hours is higher than when the demand is increased by 40%.  

The differences in the distribution of the patient's time in the system may be explained not only by 

the relation between demand and capacity but also by the effect of the PECS framework. The PECS 

framework defines that at busy periods, doctors get more stressed and need to maintain a high 

reputation, so they tend to speed up the service and increase multitasking which leads to release 

patients as sooner as possible, this can be seen in the figure because the two higher peaks in the 

graphs occur sooner when the increase in the demand is 40% than when it is 30%. That is when 

the demand is increased in 40% the higher proportion of patients leave the department around 60 

minutes, whereas when the demand is increased in 30%, the higher proportion of patients leave 

the department around 70 minutes.  

 

Figure 6-16. Total time in the A&E department in scenario 3 
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In order to understand how PECS affects each doctor’s decision, it is important to consider the 

periods of highest demand.  It can be seen from Figure 6-17 that the busiest periods are between 

10:00 a.m. and 1:00 a.m.  

Section 6.4.2 presented the distribution of doctors by level of expertise, where doctors 1, 2, 9 have 

a low level of expertise, doctors 3, 4 and 5 have a medium level of expertise, and doctors 6, 7 and 

8 have a high level of expertise. Additionally, in Chapter 6 it was shown that there are different 

shift patterns for each doctor, as shown in Table 5-3. From Table 5-3, it can be noticed that for 

example on Mondays, doctor 1 (D1) works in a period when there are not many patients, while 

doctors 2,3,4,5,6 and 7 work in the busiest periods.   

 

Figure 6-17. Number of arrivals in the A&E department 

Let us consider the case of Doctor 2 who works Monday from 7:00 a.m. to 4:00 p.m. as shown in 

Table 5-3.  It can be seen in Figure 6-18 a) that at the beginning of the shift, doctor 2 starts with 

around 50% of the level of stress. That is because of the patients received from doctor 1, who was 

leaving at the beginning of doctor 2’s shift and therefore gained the stress associated with the 

doctor 1’s patients.  

Figure 6-18 b) shows that when the doctor 2 starts his or her shift, the maximum value of the triage 

of his or her patients is 3 and all of them have waited less than half an hour. Besides, Figure 6-18 

a) shows that although fatigue increases very quickly, stress is higher most of the time, however, 

around 10:00 a.m. the fatigue is higher, and it seems that doctor 2 took a short break to recover 

his or her energy around that time, because as  Figure 6-18 b) shows, that from 11:00 a.m. to 12:00 

p.m. he or she does not increase the number of patients seen, also, it is possible to see that after 

the break the slope  of the time worked curve is smaller than before.    
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Furthermore, as doctor 2 has a low level of expertise, he or she tends to get stressed sooner and 

faster than the other doctors, that is probably why the stress is higher than the other dependent 

variables most of the time.    

Another example considers the case of Doctor 6, who works on Wednesdays from 9:00 a.m. to 6:00 

p.m. Although doctor 6 is working in a busy period, Figure 6-19 a) shows that his or her Stress is 

smaller than the Need of knowledge for the first three hours of his or her shift. That could be 

because first, Doctor 6 is a highly experienced doctor, and his or her stress increases at a slower 

rate than other doctors’; second, as shown Figure 6-19 c), the average time in system of his or her 

patients increases significantly after the first two hours of the doctor’s shift, and third the 

maximum triage of his or her patients also is higher after the first two hours of the doctor’s shift.  

Results of the model in this scenario show that when demand increases, there is an increase in the 

level of stress of doctors. The more experienced doctors, for example, doctor 6, handle lower levels 

of stress than inexperienced ones, as in the case of doctor 2. In any case, it is possible to observe 

that when demand is higher than expected, doctors perceive more stress than fatigue, need of 

knowledge and social desire.  That affects the decisions doctors make in the models resulting in an 

increase in the proportion of patients attended whose time in the system is close to the four-hour 

target. As it was explained earlier in this chapter, higher levels of stress affect the time a doctor 

spends with each patient, which affects patients’ waiting times.
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a) PECS dependent Variables 

 

b) Input variables for Z1 

 

c) Input variables for Z2 

Figure 6-18. PECS variables for Doctor 2 on Monday  
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a) PECS dependent Variables 

 

b) Input variables for Z1 

 

c) Input variables for Z2 

Figure 6-19. PECS variables for Doctor 6 on Wednesday 
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 Conclusions of the chapter   

The results in this chapter demonstrate how human behaviour can be included in an A&E 

simulation using ABMS.  This chapter showed how to implement the PECS framework for including 

proactive behaviour in an A&E department and how to model the patients flow using java 

programming to define queuing structures and actions as well to make use of the properties of 

object-oriented programming to represent inheritance within agents’ classes. Although ABMS 

offers good opportunities to include a more detailed and realistic behaviour in simulation models, 

the modelling of human behaviour is never simple, many factors influence the way we behave, and 

usually, those factors are difficult to measure and to validate.  
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7  

CHAPTER 7: HUMAN BEHAVIOUR IN A DES MODEL OF AN A&E 
DEPARTMENT  

 Introduction 

Previous chapters have discussed the use of simulation in healthcare. In particular, it was reported 

that DES has been mainly used to support decision-making processes at the operational or tactical 

level and for planning in specific units of a healthcare facility, commonly to study problems such as 

staff scheduling, resource utilisation and waiting time issues. However, human behaviour is rarely 

presented as an area of application in simulation models. 

This chapter aims to demonstrate how human behaviour in the context of A&E departments can 

be modelled using DES and how it may offer opportunities to improve the level of decisions that 

can be made within DES models. Chapter six showed how clinician behaviour could be incorporated 

in an ABMS model using PECS; this chapter investigates whether the same can be done in DES.  

 Discrete event simulation modelling process 

Much of the structure and the logic used in the DES model described in this chapter are based on 

the ABMS model presented in chapters 5 and 6, the modelling process described in this section will 

be less detailed than for the ABMS_A&E.  

7.2.1 Model Content  

• Patients: In the DES_A&E model, patients are the entities that flow through the activities.  

Each entity has attributes that define its behaviour.  The main attribute of a patient in the 

ABMS_A&E was the Triage, as defined in Section 5.3.1.2. Here, besides considering the 

triage, other attributes such as the number of tests, doctor assigned,  and the routes to be 

followed during the process are included.   

• Staff: The staff considered in the DES_A&E model include doctors, nurses and clerks. The 

types of doctors included in the DES_A&E model are:   

• Consultants:  represent consultants or senior doctors. The model considers some global 

variables that track some of the states of the doctors. They have different shifts during the 

week. 
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• Junior doctors:  The model considers some global variables that track some of the states 

of the doctors. They have different shifts during the week. 

In the ABMS_A&E model, both types of doctor are represented as agents who make decisions at 

different moments during the simulation.  In the DES_A&E, all doctors are represented as resources 

with some global variables through the use of a spreadsheet that keep information about their 

attributes.  

In both models, doctors’ behaviour is modelled through the PECS framework described in chapters 4 

and 5.  In the DES_A&E model. Each doctor has a table that keeps the information about the state 

variables that define their behaviour (by using the PECS framework).  In ABMS, doctors’ behaviour is 

defined by a set of rules that include the PECS framework.  

The attributes assigned to each doctor are: 

• the physical condition (P), defined by a state variable that represents the energy level of a 

doctor at a specific time t.  

• the emotional state (E), defined by a state variable that represents the calmness level of a 

doctor at a specific time t.  

• the knowledge level (C), defined by a state variable that represents the knowledge that a 

doctor has about a patient at a specific time t.  

• the social status (S), defined by a state variable that represents the experience the doctor has 

gained at time t and the reputation of a doctor at a specific time t respectively.  

• the Level of experience: All doctors have different levels of experience, which reveal 

diversities of individual characteristics  

• the Multitasking factor: Depending on the level of experience, doctors can see a different 

number of patients at the same time  

• the Maximum number of patients expected per hour: Depending on the level of 

experience, doctors expect to see a different number of patients per hour 

The rest of the staff of the A&E department studied here includes clerks and nurses.  Here, clerks 

and nurses are modelled as resources. Although in ABMS, they are agents, their behaviour is 

modelled as reactive behaviour, and they have attributes for identification and location. 

Queues represent the places where entities wait for service.  There are two main ways in which 

queues are modelled here. First, there are the queues for the processes of registration, triage, X-
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ray and test. In those cases, there is a single queue for each process, no matter how many resources 

are required to do the activities.  

• Queue for registration: is modelled as a single queue with infinite capacity and no 

maximum waiting time constraint. 

• Queue for triage: is modelled as a single queue with infinite capacity and no maximum 

waiting time constraint. 

• Queues for treatment: each queue is modelled as a single queue with infinite capacity and 

no maximum waiting time constraint.  

• Queues for resuscitation: each queue is modelled as a single queue with infinite capacity 

and no maximum waiting time constraint. 

• Queue for X-ray: is modelled as a single queue with infinite capacity and no maximum 

waiting time constraint. 

• Queue for test: is modelled as a single queue with infinite capacity and no maximum 

waiting time constraint. 

Activities represent the places where a service is provided. They represent the interaction between 

entities and resources.  

• Registration: is performed by a clerk. An input distribution defines its duration.  

• Triage: is performed by a nurse. An input distribution defines its duration.  

• First assessment (treatment room): is performed by a Consultant or junior doctor. Its 

duration is defined by an input distribution that depends on the patient's triage and on the 

type of doctor that performs the activity. It requires a minor or major room. 

• First assessment (resuscitation room): is performed by a Consultant or a junior doctor. Its 

duration is defined by an input distribution that depends on the patient's triage and on the 

type of doctor that performs the activity.  It requires a resuscitation cubicle.  

• Re-assessment (treatment room): is performed by a Consultant or a junior doctor. Its 

duration is defined by an input distribution that depends on the patient's triage and on the 

type of doctor that performs the activity. It requires a minor or major room. 

• Re- assessment (resuscitation room): is performed by a Consultant or a junior doctor. Its 

duration is defined by an input distribution that depends on the patient's triage and on the 

type of doctor that performs the activity.  It requires a resuscitation cubicle.  

• X-ray: requires an X-ray cubicle and its duration is defined by an input distribution. It is 

modelled as a work centre with three replicates. 
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• Tests: requires a cubicle and its duration is defined by an input distribution 

Resources are objects that are required at activities in order to provide a service.  

• Minor rooms: represent the rooms where minor patients are seen. 

• Major rooms: represent the rooms where major patients are seen. 

• Resuscitation cubicles: represent the rooms where patients that have a life-threatening 

condition are seen 

• X-Ray cubicles: represent the rooms where X-rays are done. 

In ABMS, each agent has information about the pathway that should follow within the model based 

on the decision rules and the communication interaction mechanism defined in the model.  

Decision rules define the behaviour of the agents of the model. In the DES_A&E model, doctors 

have two main goals: to give an accurate diagnosis to their patients and to release them within a 

4-hour time period. The patients’ objectives are to obtain proper treatment for their condition 

within a reasonable time.  The decision rules of each entity vary from one activity to another and 

depend on the current state of the system.  

7.2.2 Selection of development platform  

In order to implement a model of an accident and emergency department inside a DES language it is 

necessary: 

1: to define the entities and their attributes: usually, the patients are the main entities of the 

model, and their attributes often are triage, mode of entry, health status, and waiting time.  

2: to draw the entities’ pathways in the model using the simulation objects available (this can 

be done using statecharts, activity diagrams, process diagrams among others); a standard 

accident and emergency department include arrival, registration, triage, service and 

discharge.  

3: to define the input variables (using distributions, databases, spreadsheets): usually, the input 

variables are such factors as arrival times, service times for all the activities, the time between 

stops or breaks, duration of the break and efficiency.  

4: to define the resources, which are the objects that are seized by the entities immediately 

before the start of an activity: commonly the resources represent beds, cubicles, rooms, and 

staff (clerks, nurses and doctors).  The resources may be scheduled based on shifts and may 

have different states such as available, occupied, blocked or stopped. In DES, traditionally the 
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staff is modelled as resources. It does not mean that they cannot be modelled as entities, but 

it is not always possible (or at least simple) to do it in all commercial software.  

5: to define and calculate the output variables of the model. Sometimes the most common 

output variables are defined and calculated directly by the software. In other cases, it may be 

necessary to define and calculate those variables in the software. In both cases, obtaining this 

data is straightforward because, in any DES model of an accident and emergency department, 

the output variables are usually the same, and the performance of the departments is usually 

measured in terms of waiting times, resource usage and staff occupation.  

6: to set the initial conditions or warm-up period and to define the number of replications to be 

performed.   

7.2.3 Model development  

In chapter 4 it was said that although there is a variety of DES specialist software that is flexible 

and easy to use, SIMUL8 is chosen here for implementing the DES_ABMS model mainly because of 

its popularity, my good knowledge of it and the possibility to use a professional license and 

specialist support.  The development of the DES model starts by representing the flow of patients 

in the department and then the specific behaviour of doctors is added based on the PECS 

framework described in previous chapters.  

7.2.3.1 Simulation main Objects 

Generally, systems are modelled in a simulation by adding simulation objects to the model and 

defining the logic of the model either by using some menus or writing a piece of code. Simulation 

objects are used to collect information (data and behaviour) of the objects that are being 

simulated. The main objects of the DES_A&E model are entities, resources, queues, and activities.  

It is important to note that the use of the concepts of entities and resources described here is based 

on the software SIMUL8 used to model the accident and emergency department. Other software 

may use the concepts of resources and entities differently.  There are two main objects 

represented in the DES_A&E model: physical resources and humans. Physical resources include all 

the beds and cubicles required for the activities. Humans on the model are the patients and the 

staff.  

In Simul8, resources are objects required for activities before they can start, but their behaviour is 

not explicitly tracked in the model.  The resources are seized by the entities in order to start an 

activity. In the model developed in this chapter, physical resources are represented as resources. 
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Humans in the model play two primary roles. One is to provide a service, and the other is to being 

served.  The ones to provide a service are clerks, nurses and doctors. The ones that need attention 

are the patients.  

Clerks, nurses and doctors are modelled as resources in Simul8.  However, doctors are given some 

characteristics that allow them to decide how to engage with patients in the model. The 

characteristics given to doctors represent the PECS variables described in chapters five and six.  In 

the ABMS model developed earlier, doctors were modelled as agents, and the PECS variables 

represented doctors’ attributes in the model.  In the DES_A&E model, the PECS variables cannot 

be represented as attributes because doctors are not active entities, and in Simul8, there is no 

direct way to assign attributes to resources. However, global variables were used to represent the 

different PECS for each doctor and are stored in a table (in Simul8 tables are spreadsheets).  In 

total, there were 36 global variables, one for each of the PECS variables for the nine doctors 

considered in the model.   The Simul8 model layout is shown in Figure 7-2.  

 

   Figure 7-2. Simul8 model layout  
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7.2.3.2 PECS framework in a DES model 

As described in chapter five,  the PECS framework proposed by Urban and Schmidt (2001) assumes 

that human behaviour may be defined based on four main state variables: Physical conditions 

(Physis), Emotional state, Cognitive capabilities and Social status (see section 4.7.3). Each entity 

receives information from the environment through a sensor component.   The sensor component 

within the DES model is not specific for each doctor but is represented as all the global information 

available in the model at any time.  That is, a doctor can access, for instance, the information 

related to patients’ waiting time at any time.   

In this framework, the sensor component sends the information received from the environment to 

the perception component. The perception component processes that information based on a 

filtering process (that depends on the internal state of the entity) and updates that internal state 

by updating the four PECS variables. In the DES model, each doctor interprets the information from 

the environment based on the state of the PECS variables.  For example, a doctor that has more 

experience can perceive high waiting times differently than another more inexperienced doctor 

because the cognition state variable is for this doctor is higher than the junior doctors.  That is, for 

junior doctors, high waiting times can have a higher effect on the emotional state (stress) than for 

experienced doctors.   

The behaviour component chooses from the possible actions of the entity when an activity is 

triggered. In the DES model, a doctor may take diverse types of decisions (actions). For instance, if 

the level of stress of a doctor is low (because, for example, there is not an imminent risk of failing 

meeting the four-hour standard) but the level of the physis state variable is too high (for instance 

because the doctor is too tired), the doctor may decide to take a break instead of seeing another 

patient. In the DES model, this decision implies that the doctor (the resource) becomes unavailable 

for the duration of the break.  The action of “taking a break” is executed by the actor component 

of the PECS framework.   

As was mentioned in the previous section, in order to model the PECS state variables in the 

DES_A&E model, it was necessary to create four global variables that represent the physical, 

emotional, cognitive and social states for each doctor. Although it does not seem to be the best 

way to do it, there appeared to be no other way to model the four PECS states. 

In Simul8, it is necessary to use the Visual Logic tool to update all the state variables of the doctors. 

As the state variables are changing during the simulation, it is necessary to keep the values of them 

on a spreadsheet that records every value after an activity has finished. That is, when the doctor 
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resource is released from an activity, the doctor’s state variables are updated on the spreadsheet 

based on the information that has been filtered by the perception component. Appendix E presents 

the Visual Logic (VL) code for one doctor.  

As described in Chapter 5, the doctors’ state variables are the physical condition (P), which is 

defined by the state variable Z1 that represents the energy level of a doctor at a specific time t; the 

emotional state (E), which is defined by the state variable Z2 that represents the calmness level of 

a doctor at a specific time t; the knowledge level (C), which is defined by the state variable Z3 that 

represents the knowledge that a doctor has about a patient at a specific time t and the social status 

(S), which is defined by the state variables Z4 and Z5 that represent the experience the doctor has 

gained at time t and the reputation of a doctor at a specific time t respectively.  

The same VL code is written for the rest of the doctors using different spreadsheets for each doctor 

to keep the values of their attributes. In total, the DES_A&E model uses 3116 lines of coding to 

implement not only the PECS behaviour but also all the Logic needed to make the SIMUL8 model. 

Every time a doctor sees a patient in an activity, the doctor updates his or her PECS variables for 

each patient. It means that the doctor calculates the values of z1, z2, z3, z4, w1, w2, w3 y w4 every 

time he or she interacts with a patient and decides what to do. It means that if the doctor is seeing 

several patients simultaneously, the doctor calculates PECS for each of them.   The visual logic code 

of a doctor after being released from an activity can be summarized as follows:  

1: to read the parameters of each PECS state functions from the input data 

2: to obtain information about relevant variables of the environment and update the state 

variables: (z1,z2… zn) 

3: to calculate the dependent variables: w1,w2… wn 

4: to identify the variable with the highest intensity. 

• If the highest intensity corresponds to the physical condition (P), the doctor starts 

a break: the availability of the doctor is set to zero, and the end of the break is 

scheduled based on the resting time.  

• If the highest intensity corresponds to the emotional state (E), the doctor changes 

the priorities of the patients waiting for treatment based on the maximum waiting 

times.  

• If the highest intensity corresponds to the cognitive state (C), the doctor sends 

more tests to the patient he or she is currently seeing.  



144 

  

• If the highest intensity corresponds to the social status (S), the doctor does not 

take any action but updates the emotional state.  

7.2.3.3 Communication mechanisms and time handling 

In DES, each event is programmed and executed by a central simulation object (simulation executive) 

defined by the software SIMUL8. There are two types of events considered in this model: the events 

related to the activities and the events programmed by the user. The events related to an activity 

include the beginning and ending of an activity driven by the simulation itself; however, there are 

some regular events not dependent on the activities which I managed with a time-slicing mechanism. 

In this case, the doctor’s state variables are updated every 10 minutes; therefore, there is an event 

called every 10 minutes to update those variables.  

 

Figure 7-1. Simulation event list 
Every time that an event occurs, the executive updates the simulation time; therefore, the time in the 

simulation progresses at irregular intervals.  Once the event is being executed, all the different types 

of behaviour of the entities related to that event are executed.  

The interactions between entities mostly occur in a queue (for example when an entity has a higher 

priority, it goes to the top of the queue) or during an activity (an entity can seize another entity). The 

entities do not interact directly with each other or with the environment; it is the simulation that pulls 

them through the process. Entities are typically located on a grid only for visual purposes, but the 

communication between entities does not necessarily depend on their specific location on the grid. 

In an ABMS model, the time-flow in the simulation is usually handled in discrete time steps; that 

is, in every interval of time the agents perform actions until they have nothing else to do, or they 

are removed from the simulation. The simulation model then moves on to the next time point. In 
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the ABMS model developed here, some events occur at regular intervals, such as the beginning 

and the ending of the working shifts. These are events that occur once every day at a particular 

time, so they can be handled using the time-slicing technique. However, as in the DES model, there 

are some events related to the beginning and end of an activity that requires a next-event 

technique approach.   

7.2.4 Simulation results  

As it was mentioned earlier, this research does not attempt to simulate a real department but to 

demonstrate how human behaviour can be modelled within a simulation model. Particularly, the 

DES_A&E model built in this chapter is aimed to implement a PECS framework and to model 

proactive behaviour of doctors within an A&E department. The DES_A&E model is based on Günal’s 

model explained in chapter 6. 

Initially, the DES_A&E model was run before implementing the PECS framework and then after its 

implementation. Before implementing PECS, the model was run for one year (525.600 minutes) 

and 36 replications. Table 7-1 shows that the proportion of patients that spent more than four 

hours in Günal’s model is similar to the DES_A&E model. 

Table 7-1: proportion of patients whose total waiting time is more than 4 hours 

Performance indicator -95% Average 95% Observed 

Simul8 DES_A&E model 0.030 0.028 0.037 0.036 

Günal's model 0.032 0.049 0.071 0.036 

As described in chapter 6, The PECS variables used to represent doctors’ attributes are: 

• the physical condition (P) which represents the energy level of a doctor at a specific time   

• the emotional state (E) which represents the calmness level of a doctor at a specific time  

• the knowledge level (C) which represents the knowledge that a doctor has about a patient 

at a specific time 

• the social status (S) which represents the experience the doctor has gained at time t and 

the reputation of a doctor at a specific time t respectively.  

Doctors in the model were classified according to their experience: 

• Low experience: it is supposed that low experienced doctors may be younger than doctors 

with medium and high experience; therefore, they get tired slower than experienced 
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doctors. Moreover, the lack of experience of inexperienced doctors means they tend to 

get stressed faster than the others. 

• Medium experience: medium experienced doctors are likely to be older and less 

experienced doctors. It is assumed that get tired and stressed at the same rate.  

•  High experience: the highly experienced doctors are likely to be older than the less 

experienced doctors; therefore, they get tired faster than the others, but they do not 

become stressed as quickly as them. 

After implementing the PECS framework in the DES_A&E model, the simulation was also run for 

one year (525.600 minutes) and 36 replications. shows that doctors respond to long waiting times. 

It can be seen from Figure 7-2 that the distribution of the total time in the system for all the patients 

is steeper than the distribution of times before PECS implementation. However, the DES model 

does not capture the effect of the four-hour waiting time target on the proportion of patients that 

leave the system in the same detail as the ABMS model. From Figure 7-2, it can be seen that there 

is a slight increase in the proportion of patients that leave the department after around two hours, 

but this is less evident than in the ABMS results.  

This may be because each type of doctor has a different perception of the risk of failing to meet 

the four-hour waiting time target. The perception of the risk of failing to meet the targets is related 

in this model to the PECS variables Stress. The stress variable is modelled as an S-shaped function, 

and for each doctor, there is a parameter that represents the point (time) at which the doctor 

losses 50% of the time. As described in chapter 6, Table 6-3 showed that doctors with low level of 

expertise, lose their 50% of the calm when their patients have been waiting around 1 hour, doctors 

with medium level of expertise when their patients have been waiting around 1.33 hours (around 

80 minutes), and doctors with high level of expertise when their patients have been waiting around 

2 hours. That is because they perceive the risk of failing the 4-hour target differently depending on 

their experience; it is natural to assume that the inexperienced doctor gets stressed sooner than 

the more experienced ones. 
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Figure 7-2. Total time in system in the A&E DES model 

In order to analyse the behaviour of the doctors after implementing PECS, two types of doctors are 

selected: a low experienced doctor (doctor 1) and a highly experienced doctor (doctor 6).  The 

behaviour of each doctor is tracked over one day, for instance, Wednesday. Figure 7-3 shows the 

demand for the A&E department by hour on a Wednesday. It can be seen from this figure that the 

period with highest demand is around 10:00 a.m. and stays relatively high until 9:00 p.m.  On 

Wednesdays, Doctor 1 works from 5:00 a.m. to 11:00 a.m. and from 2:00 p.m. to 5:00 p.m., Doctor 

6 works from 9:00 a.m. to 6:00 p.m.  

 

Figure 7-3. Demand per hour on Wednesday 

Figures 7-5 and 7-6 show the behaviour of the PECS state variables of experienced and 

inexperienced doctors, respectively. At busiest periods an experienced doctor perceives a lower 

risk of failing to meet the target than an inexperienced doctor (as shown in the Emotion variable); 

therefore, the inexperienced doctor perceives more stress than an experienced one. At the same 

periods, experienced doctors are more willing to learn about the patient’s condition than 

inexperienced doctors (Cognitive variable).  
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Figure 7-4. PECS variables for an experienced doctor by hour  

 

 

 

Figure 7-5. PECS variables for a low-experienced doctor by hour  

 

7.2.5 Sensitivity Analysis 

The parametric sensitivity analysis of the DES_A&E was done under the same assumptions that in 

the ABMS_A&E model, it is assumed here that all doctors have a low level of expertise, and the 

sensitivity analysis is done by varying each PECS parameter simultaneously on all the doctors. 

Figure 7-6 shows the impact of changes in the parameter c1, c2 and c3 on the distribution of the 

patients’ total time in the system. Chapter 6 presented the PECS variables and parameters, where 

it was defined that both c1, which represent a doctor’s maximum number of patients seen per hour, 

as c2, which represents the expected duration of a doctor’s shift, affect the state variable Energy, 

and that the parameter c3 that represents the maximum time in the system among all patients at 

which the doctor loses 50% of calm is related to the state variable Calmness. It can be seen from 
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Figure 7-6 that there is not a significant impact of changes in c1 and c2 on the distribution of the 

patients’ total time in the system.  

However, changes in the parameter c3 have a notably impact on the output. The parameter C3, 

which represent the time at which the doctors lose 50% of their calm, was varied between one and 

four. Figure 7-6-c) shows more significant differences between each of the runs, as the lines do 

not overlap until high values of patients’ maximum time in system.  When C3 equals 1, there is a 

really tall peak when maximum times in system are around 30 minutes, meaning that when doctors 

stress sooner than usual, they try to release patients sooner. It can also be observed that the curves 

tend to get wider as C3 grows, which means that when doctors stress later, the total patient time 

in system tends to increase. Appendix D presents an additional sensitivity analysis. Figure D1 shows 

the impact of running the simulation with all doctors having the same level of expertise. It can be 

seen from the figure that when all doctors have medium-level or high-level expertise, a higher 

proportion of patients leave the system around 50 minutes, while when doctors have low 

expertise, the highest proportion occurs around 30 minutes. It might be because low experienced 

doctors tend to get stress sooner and perceive the risk of failing to meet the four-hour target when 

times are shorter than more expert doctors. 

Additionally, Figure D2 shows the impact of modelling the relationship between dependent 

variables and state variables in the PECS framework as linear functions instead of Logistic 

Functions. It means that the H function that transforms the state variables Z’ at time t + t  into 

dependent variables W’ at time t + t is linear.  It can be seen from the figure that keeping the 

same distribution of doctors (low, medium and high) when the H function is modelled as a linear 

function instead of a Logistic, the proportion of patients that leave the department approximately 

within 60 minutes is smaller than when using the Logistic Function; however, after that point the 

distribution show similar behaviour but the proportion of patients is higher using the linear 

function.  

 Comparing the sensitivity analysis of PECS parameters for ABMS_A&E and DES_A&E models, it can 

be seen that the DES_A&E model tends to be more sensitive to variation in PECS parameters than 

the ABMS_A&E model. 
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a) C1: a doctor’s maximum number of patients seen per hour  

 

 
b) C2: expected duration of a doctor’s shift (hours) 

 

 
c) C3:  maximum time in the system (hours) at which the doctor loses 50% of calm 

Figure 7-6. Sensitivity analysis for parameter C of Logistic Functions  
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 Modelling Human Behaviour using PECS in ABMS and DES  

This chapter demonstrated how human behaviour in the context of A&E departments could be 

modelled using DES, and the previous chapter showed how the same could be done using ABMS. 

It is not possible to calibrate the ABMS model to match the DES model because the DES_A&E is not 

an exact replication of ABMS_A&E model but an equivalent simulation. Structurally both models 

are different, for instance, in the ABMS_A&E model was possible to give each agent a set of rules 

that allows them to respond to different stimuli by implementing PECS while in the DES_A&E 

doctors were modelled as resources with local variables that keep information about their states, 

and although it was possible to implement PECS to model proactive behaviour, DES is not as flexible 

as ABMS do to so.  

 Figure 7-7- a) shows that ABMS tends to represent better the effect of the four-hour target on 

the doctors’ behaviour since there are small peaks around 150 minutes and 200 minutes, meaning 

that the proportion of patients seen seem to increase when the patients’ time in the system gets 

close to the four-hour target, whereas the DES curve is smoother and there are no significant 

changes on the distribution of patients’ waiting times. Additionally, it can be seen from Figure 7-7 

that in the ABMS_A&E model after implementing PECS, there is a decrease in the proportion of 

patients leaving around 30 minutes. That might be caused for different reasons related to the PECS 

framework. For instance, before 30 minutes, the doctors have not lost much of either their calm 

(Figure 6-7) or of their reputation (Figure 6-10). Therefore, it is probable that the Fatigue and Need 

of Knowledge were higher at that time than Stress or Social Desire, which means that when 

patients’ time in system is around 30 minutes, doctors tend to reduce multitasking or take brakes 

to keep the state variables Energy and Knowledge at high levels, that means that they tend to see 

less patients simultaneously with is reflected on the decrease of the proportion of patients that 

leave around 30 minutes.  
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a) AMBS_ A&E and DES_A&E with PECS  

 
b) ABMS model with PECS VS AMBS model without PECS 

Figure 7-7. Modelling human behaviour in an A&E using PECS 

 

 Conclusions of the chapter  

The model developed in this chapter shows the value of DES to model human behaviour. I found 

several limitations in modelling behaviour in A&E Departments using DES.  First, modelling human 

behaviour requires a higher level of detail, and the more detail that is added, the more complicated 

the model becomes. It is much more difficult to manipulate a model that deals with many 

operations and interactions than simpler ones. DES allows for increasing the level of decisions that 

can be modelled, but it comes with a cost related to the ease of use of the model.  
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Second, it may be necessary to use parallel computing or a powerful machine to run this type of 

model. This is because this model uses a considerable amount of data (inputs and outputs) and 

complex rules of interactions. Because of the stochastic nature of DES models, it is necessary to 

perform several runs and to perform long runs to obtain steady states. 

Third, experimentation is not an easy process. On the one hand, there are multiple parameters 

involved in the model. Some are related to the distributions used in the model, others to the 

structure of the model and others still to the functions that define the behaviour of the entities. 

Therefore, sensitivity analysis and experimentation require multiple configurations. Besides, it also 

requires a great deal of computing capacity.  

One of the motivations of this research was to investigate whether or not it was possible to 

represent human behaviour within an Emergency department more realistically in simulation 

models.  It is natural to think of agent-based modelling and simulation to represent human 

behaviour because of its capability to represent micro-level behaviour based on decision rules that 

can range from elementary reactive behaviour to more complicated proactive behaviour.  

However, it is natural as well to think of discrete event simulation to model accident and 

emergency department aspects because of the operational nature of those departments. The 

process is easily observable; there are accumulations, delays, resources, events, and considerable 

experience in modelling accident and emergency departments.  

DES has been widely used to model accident and emergency department aspects. The problem is 

not that DES is not satisfactory for modelling A&E departments; the issue is that there is a part of 

the A&E performance that has not been entirely explained by DES models, particularly the part 

when patients are reaching the 4-hour standard of maximum waiting time. It may be possible that 

micro-level behaviour can be explaining that part of the performance that traditional DES models 

cannot explain. The question is how to capture that micro-level behaviour in simulation models so 

the operational aspects can not only be represented but also more easily handled, but also that 

more realistic behaviour of the staff and patients within the departments can be included in the 

models.  

This chapter has discussed the usual ways that DES work and has demonstrated that DES can be 

adapted to represent ABMS characteristics by adding more detail to the models. It is possible to 

give entities decision rules that depend not only on the state of the system but also on their internal 

state. It is possible to create functions to determine motives based on emotions (such as stress), 

or intentions based on beliefs and desires.   It is possible to create an ABMS model within DES 
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software or to create a DES model using ABMS characteristics. Of course, it is not very easy to add 

the necessary level of detail in DES models, but it is possible. 

To model Emergency departments, especially if the purpose is to study waiting time performance, 

DES remains a better approach to tackle these problems. It is easier to add behaviour after all the 

process is modelled than to model all the process using individual behaviour. The benefit of using 

ABMS is in the flexibility to deploy human behaviour frameworks in a more natural way, which in 

DES is very difficult, but not impossible to do. 
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CHAPTER 8: DISCUSSION AND CONCLUSIONS  

8  

 Introduction  

Previous chapters included background, methodology and results chapters. Chapter 1 introduced 

two research questions that are addressed in the thesis: 

1: How well suited is ABMS to modelling human behaviour in an accident and emergency 

department? 

2: What benefit does ABMS bring to the study of waiting time performance in an accident 

and emergency department over DES? 

Chapter two presented the context of the problem tackled in this research. It described the 

development process of the performance frameworks used in the UK since the creation of the NHS 

and showed that one of the most important areas in the UK Healthcare System is urgent and 

emergency care. The chapter presented some unintended consequences of the NHS performance 

framework, which have been the subject of intense debate in the UK. The literature in this context 

showed that one of the main unintended consequences within accident and emergency 

departments is that the performance measurements may have distorted the quality of care and 

clinical priorities in healthcare service delivery.   

Chapter three discussed the use of simulation in healthcare. It was shown that the main simulation 

methodologies used in healthcare are Discrete Event Simulation (DES), System Dynamics (SD) and 

agent-based modelling and simulation (ABMS).  DES appeared to be the most popular simulation 

methodology used in healthcare, which has been mainly used to support decision-making 

processes at the operational or tactical level and for planning in specific units of a healthcare 

facility.  SD has been used mostly to study how different units of the healthcare systems relate to 

each other and to evaluate the impact of different strategies and policies on performance. ABMS 

has been mainly used in healthcare to model disease prevention and epidemiology problems. It 

was found that human behaviour is a rare area of application in simulation studies. Simulation 

studies that include human behaviour have mainly focussed on how changes in behaviour affect 

performance.   

The literature review in chapter three demonstrated that simulation has been used for modelling 

several aspects of the complexity of accident and emergency departments. However, there is 
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relatively little research on simulation modelling to study the relationships between human 

behaviour and the performance of accident and emergency departments, particularly the effects 

of waiting time performance on clinician's behaviour. 

Chapter four discussed how human behaviour has been incorporated into simulation models and 

presented some frameworks and theories to model human behaviour. Human aspects have been 

usually included in DES models by using attributes to represent different factors such as gender, 

age, the severity of illness, workload capacity, multitasking and to model simple decision-making 

processes using "if-then" rules.  However, human psychological factors are rarely included in DES 

models.  Chapter four also introduced the PECS framework to model human behaviour.  It was 

shown that a few DES models use PECS to model human factors. In healthcare, PECS has been 

mostly used in simulation models to represent patients' behaviour. Still, there is no evidence of the 

use of PECS for modelling the behaviour of staff within a hospital unit, particularly in accident and 

emergency departments.  

Chapters five and six described the development of an ABMS model that represents some aspects 

of human behaviour within an accident and emergency department, with a focus on staff 

behaviour, rather than that of patients. Chapter seven demonstrated that DES could also be used 

to model the same aspects of human behaviour, though with some difficulty. Both models use the 

PECS framework to represent staff behaviour.   

This chapter will discuss the main findings regards to the research questions and will draw general 

conclusions of this study. Furthermore, it will present the limitations and will propose 

recommendations for further research, and finally, it will give the contributions of this study.  

 Main findings 

As stated previously, the purpose of this study was not to develop an entirely realistic and detailed 

model but to gain some insight into the overall value of including human behaviour in an A&E 

simulation and contrasting how it can be modelled with widely used DES and ABMS software. The 

PECS framework was used within both models to represent human behaviour to maintain some 

consistency. There are two main research questions in this thesis: 1. How well suited is ABMS to 

modelling human behaviour in an accident and emergency department? 2. What benefit does 

ABMS bring to the study of waiting time performance in an accident and emergency department 

over DES?  
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In order to answer the main research questions of this study, this thesis presented an exploratory 

study of the use of ABMS and DES to show how to model clinician's behaviour within an A&E 

department and how that behaviour is related to waiting time performance. In particular, it 

showed how the relationship between system performance and clinician behaviour could be 

modelled in a dynamic simulation of the activity in an A&E department.  

8.2.1 Including human behaviour in A&E simulations 

The first research question stated in Chapter 1 was "1: How well suited is ABMS to modelling 

human behaviour in an accident and emergency department?" Chapter two presented the 

evolution of the NHS, where it was possible to see that the performance of A&E departments has 

been highly affected by the waiting time targets or standards; and that people's behaviour plays 

an important role in healthcare performance. Therefore, including human behaviour in simulation 

models is essential to understand the relationship between performance measurement and 

people's behaviour.  

The literature review demonstrated that the use of ABMS and DES for modelling A&E departments 

had included some aspects of human behaviour such as workload capacity, multitasking, workforce 

planning, patient flows and patients' priorities, mainly by using reactive behaviour rather than 

proactive behaviour.  However, there has been little discussion on the value of including other 

aspects of human behaviour such as drives, motivations and emotions, and its relation to the A&E 

4-hour target.   

In the current study, human behaviour was implemented in the ABMS_A&E and DES_A&E models 

by including both reactive and proactive behaviour within the PECS framework.  This allows not 

only multitasking, workforce planning and patient flows, which are topics usually covered in 

simulation models, but also includes some physical, emotional, cognitive and social aspects of 

doctors that drive their behaviour.   

Reactive behaviour was represented in both models by using a series of simple if-then rules that 

apply to all agents and entities of those models. Proactive behaviour was also included in both 

models by using the PECS framework. The implementation of the PECS framework in the ABMS 

and DES models assumed that each doctor agent (in the ABMS_A&E model) or doctor entity (in the 

DES_A&E model) had four main attributes that defined their internal states: Energy (Physis); 

Calmness (Emotion); Knowledge (Cognition) and Reputation (Social status).  The proactive 

behaviour considered that each doctor received input from the environment, and that input was 
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interpreted by a perception system that was based on the doctors' internal PECS state variables 

and their own goals. The perception system determined the deliberative decision -making process 

that drove different actions and behaviours. This is not because of an assumption that only the 

behaviour of doctors affects A&E performance; here, we only considered doctors' proactive 

behaviour to show how human behaviour can be included in A&E simulations. Obviously, this 

ignores the behaviour of patients, nurses and clerks and is a limitation of this study than could be 

addressed in future research.  

Considering the development platforms of each model (Simul8 and Repast), it was necessary to 

take different approaches to the implementation of PECS within them. First, and most obvious, is 

that it was much easier to implement PECS in the ABMS_A&E model than in the DES_A&E model. 

In the ABMS_A&E model, the PECS framework was programmed as a series of methods in a Doctor 

class, and each instance of the Doctor class inherited its behaviour. In the DES_A&E model, Doctors 

were represented as resources in Simul8, and the PECS framework had to be implemented for each 

doctor as a series of external programming codes because in Simul8 there is no direct way to assign 

attributes to resources. Therefore, it was necessary to use global variables which were stored for 

each doctor in spreadsheets to model each PECS function. All that made the DES_A&E model 

inflexible to manipulate and to change and hindered the process of implementing PECS.   This 

limitation may not apply to all DES software, but it is a drawback of using the popular Simul8 

package. 

Another difference I found in the implementation process of PECS is that in the Repast 

implementation of ABMS, the PECS state variables of each doctor were updated every time that a 

doctor made a decision. By contrast, in the Simul8 implementation of DES, the decision-making 

process using PECS could only be triggered at an event time, because it is at event times that state 

variables are updated in a DES model. It was simpler and more convenient to update the PECS 

attributes within the ABMS model. 

Therefore, one interesting finding on this research, is that is possible to include in both the ABMS 

and DES models different aspects of human behaviour related to motivation, emotion, cognition 

and social status and to model their effect on waiting time performance of an A&E department. 

For example, the ABMS_A&E and DES_A&E models showed that when patients' total waiting times 

were low, doctors used to have lower levels of stress and social desire while having higher levels 

of need of knowledge about their patient's condition. Therefore, doctors were likely to spend more 

time with their patients in order to increase their understanding of their condition by reducing 

multitasking and ordering more tests. It is important to notice that although the idea of growing 
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doctors' knowledge is to improve the accuracy of their diagnosis, the diagnosis was not model here 

because that was not in the scope of this thesis. In addition, the ABMS_A&E and DES_A&E models 

also showed that when the department got more crowded and patients' total waiting times were 

higher, doctors tended to have higher levels of stress and social desire which led them to try to 

release patients with waiting times close to the four-hour target by increasing their multitasking, 

reducing service times and modifying patients' priorities based on time rather than on the severity 

of the condition. Though it was possible to implement these features in Repast and Simul8, to do 

so in Simul8, as an example of DES software, required much more work to program around its 

limitations. 

All this leads to the answer to the first research question about how well suited ABMS is to 

modelling human behaviour in an A&E department. This research demonstrated that ABMS offers 

excellent options for modelling human behaviour in an Accident and Emergency Department and 

that including human behaviour in A&E simulations is valuable because it is possible to explain how 

that behaviour can be linked to waiting time performance in an A&E department.  

8.2.2 Modelling waiting time performance of A&E departments  

It is well known that in OR/MS, DES has been the most popular technique to model Emergency 

Departments; however, the literature showed that ABMS has started to gain popularity in 

healthcare and offers opportunities to study different aspects of Emergency Departments.  

This study confirmed that DES is well suited for modelling patient flows in an Accident and 

Emergency Department. It also showed that it is possible to include different aspects of human 

behaviour in DES but that modelling those aspects in Simul8 can be challenging. In addition, this 

study found that ABMS is well suited to model human behaviour in an A&E Department but that it 

also supports modelling patient flows by using standard queuing structures and scheduling 

activities using different mechanisms. The results of this study demonstrated that ABMS is flexible 

enough to include various levels of detail and different types of behaviour in an A&E simulation 

model.  

An important finding is that, though both ABMS and DES can be used for modelling human 

behaviour and its relationship with waiting time performance, it is much easier to do this using 

ABMS.  That is, considering the development platforms used for the ABMS_A&E and DES_A&E 

models,  ABMS allows observing the impact of the use of the PECS framework on global waiting 

times more clearly than DES. In general, it can be said that the ABMS model supports much more 
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detailed modelling of individuals than the DES model. This is because generally, DES software such 

as Simul8 requires the aggregation of individual behaviours much more than in Repast, as an 

example of purpose-designed ABMS software. Therefore, representing individual decision making 

based on internal states in DES is not straightforward. In DES entities are pushed by a centralised 

event-driven mechanism, whereas in ABMS agents have no central control and each agent makes 

decisions autonomously. 

In addition, the sensitivity analysis carried in both models showed the impact of the PECS variables 

on the distribution of the patient's total waiting times. Interestingly, sensitivity analysis of the 

Simul8 DES model showed a greater effect of the Stress variable on the distribution of waiting times 

than in the Repast, ABMS model. This result needs to be interpreted with caution because the most 

significant source of uncertainty in this research is related to the representation of the PECS 

variables within the two models. Neither model should be used to draw general conclusions about 

the effect of each PECS variable on a real A&E Department since there has been no attempt at full 

data validation against a real department in this research. 

Thus, regarding the second research question about what benefit ABMS brings to the study of 

waiting time performance in an accident and emergency department over DES, this study found 

that the main the benefit of using ABMS over DES is in the flexibility to deploy human behaviour 

frameworks in a more natural way, which in DES is very difficult, but not impossible to do. This is 

perhaps unsurprising because Repast is aimed at easing the representation of proactive behaviour 

within a dynamic simulation model, whereas limitations in the Simul8 approach had to be 

programmed around. 

 Limitations of the study and recommendations for future work 

One limitation of this work is that it focused on modelling human behaviour and its relation to a 

single standard related to waiting time performance, but it ignored its relationship to other aspects 

related to the quality of care. This study focused on a single performance indicator that is the total 

waiting times, and it did not consider other key performance indicators (KPI) such as average 

waiting times, waiting times segregated by the severity of conditions, waiting times in different 

points of the patients' pathways, but more importantly, it did not consider other important 

outcomes such as accuracy of diagnoses, patient satisfaction and overall quality of care.  

Therefore, this research will serve as a base for future studies that can consider how human 

behaviour relates to other KPI's and outcomes beyond total waiting times.  For instance, it might 
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be useful to study how including human behaviour in A&E simulation can result in doctors ordering 

the right tests, giving a correct diagnosis, reducing readmissions or affecting other hospital's units. 

Also, it might be useful to consider how those outcomes could affect the doctors' behaviour by 

improving aspects such as reputation, or experience.   

Another limitation of this research is that the models developed here are based on a hypothetical 

A&E department and are not based on a real situation. The data used for modelling the behaviour 

of doctors was assumed using some information found in the literature and using common sense. 

Therefore, although this study offers a scheme for including human behaviour in A&E simulations, 

the research findings on the actual effect of human behaviour in an A&E department and the 

validation of human behaviour modelling with a real system may be dangerous to generalise. 

However, it should be possible, with the cooperation of a real such department to attempt such 

validation. Therefore, future research might investigate how to model human behaviour based on 

real data or real situations. Particularly, there is ample room for further progress in collaborative 

work between OR/MS researchers and psychologists on the measuring and modelling of emotions 

in the context of A&E.   

It should be noted that PECS is a relatively new framework for modelling human behaviour; 

therefore, there is not much information about how PECS variables should be modelled. Thus, 

considerably more work is necessary to make realistic estimates of the PECS variables. Real data 

should be obtained about the factors considered in PECS: physical, emotional, cognitive and social. 

That data could be obtained by direct observation or by gathering information from experts in the 

area.  It is also recommended to use real data or information to define the individual decision-

making rules of people in A&E departments. Future studies on the modelling of the PECS variables 

for doctors within an A&E are therefore recommended. Moreover, future research might consider 

modelling behaviour of other people involved in the A&E department process such as patients, 

nurses and managers. Moreover, it remains a question if other Human Behaviour frameworks 

could offer good opportunities for including human behaviour in healthcare units.  

This work is also limited by the selection of the software used to build the ABMS and DES models. 

Repast is an excellent tool to implement Agent-Based models, but it requires excellent skills in java 

programming. In addition, to model A&E departments; it requires detailed knowledge of modelling 

queuing structures based on event-oriented systems. Simul8 is an excellent software for modelling 

Discrete Event Simulations. However, its focus on entities as objects that pass from station to 

station through is not flexible enough to model different types of behaviours of other active objects 
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with the system, particularly of simulation objects such as doctors that process the objects flowing 

from station to station. 

The ABMS and DES models could not be properly calibrated against each other, because they had 

significant structural differences due to the different modelling paradigms underpinning the two 

models. From the results of this study, some research questions are identified. Considering that 

this thesis showed that both ABMS and DES are robust methodologies for modelling Emergency 

Departments, where DES offers more flexibility for representing queue structures, processes and 

patients' pathways and ABMS is more flexible for implementing human behaviour frameworks; it 

seems wise to think that the strengths of each methodology could be enhanced through the 

development of hybrid simulations. Therefore, one research question that stems from that would 

be: what is the benefit of using hybrid simulations for modelling human behaviour within 

healthcare units over single DES and ABMS models? Though not widely used when this research 

started, there are now popular simulation packages such as AnyLogic that are intended to allow 

both ABMS and DES approaches. Hence it would be sensible for a further study to use such flexible 

software to permit closer calibration and comparison and hybrid approaches.   

In addition, the literature review showed that human behaviour had been included in A&E 

simulation models with some limitations; therefore, more research on modelling human behaviour 

in healthcare units is needed. Further research could consider exploring topics such as human 

behaviour conceptual modelling, measuring and representing human behaviour and validating 

human behaviour models. Thus, an interesting research question resulting from that would be: 

how to develop realistic models of human aspects related to drives, motivations and emotions of 

people within healthcare units. 

Finally,  this research did not focus on the development of a detailed realistic model of an A&E 

department, and it would be interesting to explore the feasibility of developing generic A&E 

simulation models that include human aspects related to drives, motivations and emotions of 

people within healthcare units. A research question that could be asked include: to what extent is 

it possible to build a useful and generic A&E simulation model that includes human aspects related 

to drives, motivations and emotions of people?    

 Contributions  

This research provides two main contributions:  
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First, this research compares and evaluates how suitable ABMS and DES are for modelling clinical 

behaviour and presents the strengths and limitations of ABMS and DES for modelling accident and 

emergency departments. It shows that this is possible in both ABMS and DES, but requires much 

more programming effort in  DES packages such as Simul8. 

Second, this research offers an approach to model the relationship between human behaviour and 

waiting time performance, considering four aspects of human behaviour (physical, emotional, 

cognitive and social) employed in PECS.  The simulation models developed here allow modelling 

some human behaviour aspects within an A&E department to study how waiting time targets 

influence the doctor's behaviour within the department.   
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9 Appendixes 

APPENDIX A: WINTER SIMULATION CONFERENCE PAPER 
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APPENDIX B: ABMS SIMULATION OBJECTS 

Table B1. Description of the simulation objects 

Classes Superclass Function Variables 

AEContextBuilder Object 
Creates the environment by adding a grid projection, 
the agents and initial model configuration. 

SimObject Object 

It is the superclass 
of all the objects of 
the simulation.   

protected String id; 

protected int idNum; 

protected Grid<Object> 
grid; 

protected GridPoint loc; 

protected Context<Object> 
context; 

protected static double 
minute; 

protected static int hour; 

protected static int day; 

protected static int week; 

Administrator SimObject 

It controls the time flow in the simulation, searches 
available resources and obtains information of all the 
patients at any time. 

Resource SimObject 

It defines the 
resources of the 
simulation such as 
triage, tests and 
treatment cubicles. 

private static int count; 

private boolean available; 

private String resourceType; 

private static int 
countTypeCubicle; 

private int 
numAvailableXray; 

private int 
numAvailableTest; 

Queue SimObject 

It defines the 
queues of the 
model. 

private LinkedList<Patient> 
queue; 

private int maxInQueue; 

private double 
maxWaitTime; 

private double 
meanInQueue; 

private double 
meanWaitTime; 
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Classes Superclass Function Variables 

private int totalInQueue; 

private double 
totalWaitTime; 

AmbulanceIn SimObject 
Represents the entry point of the patients arriving by 
Ambulance. 

WalkInDoor SimObject 
Represents the entry point of the patients arriving by 
walking. 

Exit SimObject Represents the exit point of the patients. 

Agent SimObject 

It is the superclass of 
all the agents of the 
model.  It defines the 
method : 
moveTo(GridPoint); 
 

protected Resource 
myResource; 

 
 

  Table B2. Description of the agents.  

 

Classes 
Superclass Function  Variables 

Patient  Agent  

 The methods that 
represent  their 
behaviour are:  

joinQueue(Queue); 

decideWhereToGo(); 

 private boolean needsTests; 

private int totalNumTest;  

private boolean wasInTest; 

private boolean wasInXray; 

private int totalProcesses; 

private Doctor myDoctor; 

private Nurse myNurse; 

private Resource 
myBedReassessment;  

private QueueSim currentQueue; 

private boolean waitInCublicle; 

private boolean backInBed; 

private String typeArrival; 

private int triageNum; 

private double queuingTime; 

private double timeInSystem; 

private boolean isInSystem; 
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Classes 
Superclass Function  Variables 

private boolean 
hasReachedtarget;  

Staff  Agent  

It is the superclass of 
the Clerk, Nurse and 
Doctor agents. The 
methods that 
represent all the 
agents’ behaviour 
are: 

scheduleWorkShift(); 

startShift(); 

endShift(); 

engageWithPatient(); 

releaseFromPatient(); 

findCubicle(); 

decideWhatToDo();  

protected boolean available; 

protected int initPosX; 

protected int initPosY; 

protected int numAvailable; 

protected boolean inShift; 

protected double timeInitShift; 

protected float [][] 
myShiftMatrix; 

protected float [] 
durationOfShift; 

protected int requiredAtWork; 

protected double 
nextEndingTime; 

protected int 
multiTaskingFactor; 

protected int typeOfStaff; 

Clerk Staff 
The clerk is in charge of registering the patients.  Their 
behaviour is represented in the methods of its superclass 
and in the method: registerPatient();   

Nurse Staff 

 The nurse is in charge of triaging the patients.  Their 
behaviour is represented in the methods of its superclass 
and  in the methods: triagePatient();  

engageWithPatient();  

Doctor Staff 

Represents the 
doctors of the 
department. Their 
behaviour is 
represented  in the 
methods of its 
superclass and in the 
method:  

searchWhoToHandOv
er 

();  

protected static final 
LinkedList<Patient> 
patientsForReassessment; 

protected 
PriorityQueue<Patient> 
myPatientsInBed; 

protected LinkedList<Patient> 
myPatientsBackInBed; 

protected ArrayList<Patient> 
myPatientsInTests; 

protected ArrayList<Patient> 
allMyPatients; 



179 

  

 

Classes 
Superclass Function  Variables 

protected boolean 
isAtDoctorArea; 

protected double 
timeEnterSimulation; 

protected Patient 
myPatientCalling; 

protected Doctor 
doctorToHandOver; 

Sho Doctor 
 Represent the junior doctors. Their behaviour is 
represented in the methods of its superclass.  

Consultant Doctor 
 Represent the Consultant. Their behaviour is represented in 
the methods of its superclass.  
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APPENDIX C: SENSITIVITY ANALYSIS RESULTS FOR ABMS_A&E 

 

 

Figure C1. Results for sensitivity analysis on parameter 3. 

 

Figure C2. Results for sensitivity analysis on parameter c5. 



181 

  

 

Figure C3. Results for sensitivity analysis for parameter c6. 
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APPENDIX D: SENSITIVITY ANALYSIS RESULTS FOR DES_A&E 

 

Figure D1. Results for sensitivity analysis of doctors’ level of experience. 

 

 

Figure D2. Impact of using linear functions on Dependent Variables. 
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APPENDIX E: VL SECTION DOCTOR1 ON RELEASE LOGIC 

 ‘Setting PECS parameters 
  SET P_C1  =  SS_DataDoctors[2,2] 
  IF DAY[Simulation Time]  =  1 
    SET P_C2  =  SS_ShiftsDurations[2,2] 
  ELSE IF DAY[Simulation Time]  =  2 
    SET P_C2  =  SS_ShiftsDurations[2,3] 
  ELSE IF DAY[Simulation Time]  =  3 
    SET P_C2  =  SS_ShiftsDurations[2,4] 
  ELSE IF DAY[Simulation Time]  =  4 
    SET P_C2  =  SS_ShiftsDurations[2,5] 
  ELSE IF DAY[Simulation Time]  =  5 
    SET P_C2  =  SS_ShiftsDurations[2,6] 
  ELSE IF DAY[Simulation Time]  =  6 
    SET P_C2  =  SS_ShiftsDurations[2,7] 
  ELSE IF DAY[Simulation Time]  =  7 
    SET P_C2  =  SS_ShiftsDurations[2,8] 
  SET E_C3  =  SS_DataDoctors[2,4] 
  SET C_C4  =  SS_DataDoctors[2,5] 
  SET S_C5  =  SS_DataDoctors[2,6] 
  SET S_C6  =  SS_DataDoctors[2,7] 
  SET E_Alpha1  =  SS_DataDoctors[2,8] 
  SET C_Alpha2  =  SS_DataDoctors[2,9] 
  SET S_Alpha3  =  SS_DataDoctors[2,10] 
 
‘Calculate PECS variables 
  SET P_X1SHO1  =  P_X1SHO1+1 
  SET P_X2SHO1  =  [Simulation Time-VarStartShiftD1]/60 
  IF At_Triage  >  E_X3SHO1 
    SET E_X3SHO1  =  At_Triage 
  SET PhysicalD1  =  [P_C1*P_C2]/[[P_C1*P_C2]+[P_X1SHO1*P_X2SHO1]] 
  SET W1SHO1  =  1/[1+EXP[0+[AlphaZ1W1*[PhysicalD1-CZ1W1]]]] 
  Find Maximum Value in Sheet Area    SS_Time[2,2] ,  1 ,  TotalPatients 
,  Var_ColActivity ,  Var_RowActivity 
  SET TimeQueue  =  SS_Time[Var_ColActivity,Var_RowActivity] 
  SET EmotionalD1  =  1/[1+EXP[[E_X3SHO1*[1-PhysicalD1]]*[[TimeQueue/60]-
E_C3]]] 
  SET W2SHO1  =  1/[1+EXP[0+[AlphaZ2W2*[EmotionalD1-CZ2W2]]]] 
  SET C_X4SHO1  =  [Simulation Time-At_TimeEntry]/60 
  SET C_X5SHO1  =  At_numberTest/2 
  SET CognitiveD1  =  1/[1+EXP[0-[C_Alpha2*[C_X4SHO1-C_C4]]]] 
  SET S_X6SHO1  =  Simulation Time/[[60*24]*7] 
  SET SocialExpD1  =  1/[1+EXP[0-[S_Alpha3*[S_X6SHO1-S_C5]]]] 
  SET SocialRepD1  =  1/[1+EXP[0+[[1+SocialExpD1]*[TimeQueue/[60-
S_C6]]]]] 
  SET W3SHO1  =  1/[1+EXP[AplhaZ3W3*[CognitiveD1-CZ3W3]]] 
  SET W4SHO1  =  1/[1+EXP[0-[AplhaZ5W4*[SocialRepD1-CZ5W4]]]] 
 
‘Find maximum intensity -> Decision 
  SET maxPECSD1  =  1 
  IF W1SHO1  <  W2SHO1 
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    IF W3SHO1  <  W2SHO1 
      IF W4SHO1  <  W2SHO1 
        SET maxPECSD1  =  2 
      ELSE 
        SET maxPECSD1  =  4 
    ELSE 
      IF W4SHO1  <  W3SHO1 
        SET maxPECSD1  =  3 
      ELSE 
        SET maxPECSD1  =  4 
  ELSE IF W1SHO1  <  W3SHO1 
    IF W4SHO1  <  W3SHO1 
      SET maxPECSD1  =  3 
    ELSE 
      SET maxPECSD1  =  4 
  ELSE IF W1SHO1  <  W4SHO1 
    SET maxPECSD1  =  4 
 
‘Update behavior based on decision 
  IF maxPECSD1  =  1 
    Set Availability Percentage    SHO1 ,  0 
    SET SHO1.Max Available  =  0 
    Schedule Event    StopWorkD1 ,  5 
    SET V_AvgTreatR  =  27 
    SET V_ModTreatBG  =  20 
    SET V_ModTreatYO  =  38 
    SET V_SDTreatR  =  16 
    SET V_maxTreatBG  =  55 
    SET V_maxTreatYO  =  30 
    SET V_minTreatBG  =  5 
  ELSE IF maxPECSD1  =  2 
    SET V_AvgTreatR  =  Data_Simulation[15,7] 
    SET V_ModTreatBG  =  Data_Simulation[6,7] 
    SET V_ModTreatYO  =  Data_Simulation[9,7] 
    SET V_SDTreatR  =  Data_Simulation[16,7] 
    SET V_maxTreatBG  =  Data_Simulation[4,7] 
    SET V_maxTreatYO  =  Data_Simulation[10,7] 
    SET V_minTreatBG  =  Data_Simulation[2,7] 
 
Daemon actions 
  SET SS_PECS_D1[1,1]  =  "SimulationTime" 
  SET SS_PECS_D1[2,1]  =  " P" 
  SET SS_PECS_D1[3,1]  =  " E" 
  SET SS_PECS_D1[4,1]  =  " C" 
  SET SS_PECS_D1[5,1]  =  " S" 
  SET SS_PECS_D1[6,1]  =  " TimeInSys" 
  SET SS_PECS_D1[7,1]  =  " w1" 
  SET SS_PECS_D1[8,1]  =  " w2" 
  SET SS_PECS_D1[9,1]  =  " w3" 
  SET SS_PECS_D1[10,1]  =  " w4" 
  SET Var_RowD1  =  Var_RowD1+1 
  SET SS_PECS_D1[1,Var_RowD1+1]  =  Simulation Time 
  SET SS_PECS_D1[2,Var_RowD1+1]  =  PhysicalD1 
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  SET SS_PECS_D1[3,Var_RowD1+1]  =  EmotionalD1 
  SET SS_PECS_D1[4,Var_RowD1+1]  =  CognitiveD1 
  SET SS_PECS_D1[5,Var_RowD1+1]  =  SocialExpD1 
  SET SS_PECS_D1[6,Var_RowD1+1]  =  TimeQueue 
  SET SS_PECS_D1[7,Var_RowD1+1]  =  W1SHO1 
  SET SS_PECS_D1[8,Var_RowD1+1]  =  W2SHO1 
  SET SS_PECS_D1[9,Var_RowD1+1]  =  W3SHO1 
  SET SS_PECS_D1[10,Var_RowD1+1]  =  W4SHO1 
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