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GLOBAL RIGIDITY OF 2-DIMENSIONAL LINEARLY CONSTRAINED

FRAMEWORKS

HAKAN GULER, BILL JACKSON, AND ANTHONY NIXON

Abstract. A linearly constrained framework in Rd is a point configuration together with
a system of constraints which fixes the distances between some pairs of points and addi-
tionally restricts some of the points to lie in given affine subspaces. It is globally rigid if
the configuration is uniquely defined by the constraint system, and is rigid if it is uniquely
defined within some small open neighbourhood. Streinu and Theran characterised generic
rigidity of linearly constrained frameworks in R2 in 2010. We obtain an analagous charac-
terisation for generic global rigidity in R2. More precisely we show that a generic linearly
constrained framework in R2 is globally rigid if and only if it is redundantly rigid and
‘balanced’. For generic frameworks which are not balanced, we determine the precise
number of solutions to the constraint system whenever the underlying rigidity matroid of
the given framework is connected. We also obtain a stress matrix sufficient condition and
a Hendrickson type necessary condition for a generic linearly constrained framework to be
globally rigid in Rd.

1. Introduction

A (bar-joint) framework (G, p) in Rd is the combination of a finite, simple graph G =
(V,E) and a realisation p : V → Rd. The framework (G, p) is rigid if every edge-length
preserving continuous motion of the vertices arises as a congruence of Rd. Moreover (G, p)
is globally rigid if every framework (G, q) with the same edge lengths as (G, p) arises from
a congruence of Rd.

In general it is an NP-hard problem to determine the global rigidity of a given framework
[21]. The problem becomes more tractable, however, if we consider generic frameworks
i.e. frameworks in which the set of coordinates of the points is algebraically independent
over Q. Hendrickson [10] obtained two necessary conditions for a generic framework (G, p)
in Rd to be globally rigid: the graph G should be (d + 1)-connected, and the framework
(G, p) should be redundantly rigid i.e. it remains rigid after deleting any edge. While
Hendrickson’s conditions are insufficient to imply generic global rigidity when d ≥ 3 [4, 18],
they are sufficient when d = 1, 2. In particular, we have the following theorem of Jackson
and Jordán [11] when d = 2.

Theorem 1.1. A generic framework (G, p) in R2 is globally rigid if and only if G is either
a complete graph on at most three vertices or G is 3-connected and redundantly rigid.

A linearly constrained framework is a bar-joint framework in which certain vertices are
constrained to lie in given affine subspaces, in addition to the usual distance constraints
between pairs of vertices. Linearly constrained frameworks are motivated by numerous
practical applications, notably in mechanical engineering and biophysics, see for example
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[9, 23]. Streinu and Theran [22] give a characterisation for generic rigidity of linearly
constrained frameworks in R2. Together with Cruickshank [8], we recently obtained an
analogous characterisation for generic rigidity of linearly constrained frameworks in Rd as
long as the dimensions of the affine subspaces at each vertex are sufficiently small (compared
to d). In this article we consider global rigidity for linearly constrained frameworks. Global
rigidity of bar-joint frameworks has its own suite of practical applications, for example in
sensor network localisation [13], and we expect our extension to have similar uses.

Throughout this paper we will consider graphs whose only possible multiple edges are
multiple loops. We call such a graph G = (V,E,L) a looped simple graph where E denotes
the set of (non-loop) edges and L the set of loops. A d-dimensional linearly constrained
framework is a triple (G, p, q) where G = (V,E,L) is a looped simple graph, p : V → Rd

and q : L → Rd. For vi ∈ V and ej ∈ L we put p(vi) = pi and q(ej) = qj. The framework
(G, p, q) is generic if the set of coordinates of {p, q} is algebraically independent over Q i.e.
the transcendence degree of Q(p, q) over Q is d(|V |+ |L|).

Two d-dimensional linearly constrained frameworks (G, p, q) and (G, p̃, q) are equivalent
if

‖pi − pj‖
2 = ‖p̃i − p̃j‖

2 for all vivj ∈ E, and

pi · qj = p̃i · qj for all incident pairs vi ∈ V and ej ∈ L.

We say that (G, p, q) is globally rigid if its only equivalent framework is itself.
We give an illustration of rigidity and global rigidity in R2 in Figure 1. First note that

a loop at a vertex constrains that vertex to lie on a specific line. Every realisation of the
graph H as a generic linearly constrained framework will be globally rigid as having two
different line constraints at each vertex fixes the position of the vertices in R2. Every generic
realisation (G, p) of the graph G is rigid by Theorem 2.1 below, but is not globally rigid,
since we can obtain an equivalent realisation by reflecting the vertex v2 in the line through
p(v1) which is perpendicular to the line constraint at v2.

v1 v2
H

v1 v2
G

v1

v2

v1

v2

Figure 1. Every realisation of the graphH as a generic linearly constrained
framework in R2 is globally rigid. Every generic realisation of the graph G
is rigid but not globally rigid. Two distinct equivalent realisations of G are
given on the right of the figure.

Our main results characterise global rigidity for generic linearly constrained frameworks
in R2 and determine the precise number of frameworks which are equivalent to a given
generic framework whenever the underlying rigidity matroid of the given framework is con-
nected. We also obtain a stress matrix sufficient condition and a Hendrickson type necessary
condition for generic global rigidity in Rd. A more detailed description of the content of the
paper is as follows.

In Section 2 we provide a brief background on infinitesimal rigidity for linearly constrained
frameworks. In Section 3 we give necessary conditions for generic global rigidity analogous
to Hendrickson’s conditions. We obtain an algebraic sufficient condition for the generic
global rigidity of a linearly constrained framework in Section 4. This sufficient condition in
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terms of the rank of an appropriate stress matrix extends a key result of Connelly [5] for bar-
joint frameworks. We focus on characterising generic global rigidity in R2 in the remainder
of the paper. We obtain structural results on rigid circuits in the generic 2-dimensional
linearly constrained rigidity matroid in Section 5. These are used in Sections 6 and 7 to
obtain a recursive construction for the family of looped simple graphs which are balanced
and generically redundantly rigid. The recursive construction is then used in Section 8 to
characterise generic global rigidity. We determine the precise number of frameworks which
are equivalent to a given generic framework whenever the underlying rigidity matroid of the
given framework is connected in Section 9.

2. Infinitesimal rigidity

An infinitesimal motion of a linearly constrained framework (G, p, q) is a map ṗ : V → Rd

satisfying the system of linear equations:

(pi − pj) · (ṗi − ṗj) = 0 for all vivj ∈ E

qj · ṗi = 0 for all incident pairs vi ∈ V and ej ∈ L.

The second constraint implies that, for each vertex vi, its infinitesimal velocity ṗ(vi) is
constrained to lie in the intersection of the hyperplanes with normals qj for every loop ej
incident to vi.

The rigidity matrix R(G, p, q) of the framework is the matrix of coefficients of this system
of equations for the unknowns ṗ. Thus R(G, p, q) is a (|E|+ |L|)×d|V | matrix, in which: the
row indexed by an edge vivj ∈ E has p(u)− p(v) and p(v)− p(u) in the d columns indexed
by vi and vj , respectively and zeros elsewhere; the row indexed by a loop ej = vivi ∈ L has
qj in the d columns indexed by vi and zeros elsewhere.

The framework (G, p, q) is infinitesimally rigid if its only infinitesimal motion is ṗ =
0, or equivalently if rankR(G, p, q) = d|V |. We say that the graph G is rigid in Rd if
rankR(G, p, q) = d|V | for some realisation (G, p, q) in Rd, or equivalently if rankR(G, p, q) =
d|V | for all generic realisations (G, p, q).

Streinu and Theran [22] characterised the looped simple graphs G which are rigid in R2.
Given a looped simple graph G = (V,E,L) and F ⊆ E∪L, let VF denote the set of vertices
incident to F .

Theorem 2.1. Let H be a looped simple graph. Then H is rigid in R2 if and only if H has
a spanning subgraph G = (V,E,L) such that |E|+ |L| = 2|V |, |F | ≤ 2|VF | for all F ⊆ E∪L
and |F | ≤ 2|VF | − 3 for all ∅ 6= F ⊆ E.

3. Necessary conditions for global rigidity

We say that a looped graph G = (V,E,L) is redundantly rigid if G − e is rigid for any
e ∈ E ∪ L, and that G is d-balanced if, for all X ⊂ V with |X| = d, each connected
component of G − X has at least one loop. We will show that the properties of being
redundantly rigid and d-balanced are necessary conditions for a connected generic linearly
constrained framework with at least two vertices to be globally rigid in Rd. (Note that a
framework with one vertex is globally rigid if and only if it is rigid, and that a disconnected
framework is globally rigid if and only if each of its connected components is globally rigid.)

Given a linearly constrained framework (G, p, q) in Rd we define its configuration space
C(G, p, q) to be the set

C(G, p, q) = {p̂ ∈ Rd|V | : (G, p̂, q) is equivalent to (G, p, q)}.
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In order to establish that globally rigid linearly constrained frameworks are also redun-
dantly rigid an important step is to prove that the configuration space is compact. Since
it is easy to see that the configuration space is closed this will follow from the following
lemma.

Lemma 3.1. Let (G, p, q) be a generic linearly constrained framework in Rd. Then C(G, p, q)
is bounded if and only if each connected component of G contains at least d loops.

Proof. Let H be a connected component of G.
Suppose H does not contain d loops. Let W be subspace of Rd spanned by the vectors

q(f) for f ∈ L(H). Choose 0 6= t ∈ W⊥ and define (G, p′, q) by putting p′(v) = p(v) + t
for all v ∈ V (H), and p′(v) = p(v) for all v ∈ V (G) \ V (H). Then (G, p′, q) is equivalent to
(G, p, q) and since we can choose t to be arbitrarily large, C(G, p, q) is not bounded.

Suppose H contains d loops f1, f2, . . . , fd. Let B :=
∑

xy∈E(H) |p(x)− p(y)| and choose

v ∈ V (H). Then the fact that H is connected implies that |p(v)·q(fi)| ≤ B for all 1 ≤ i ≤ d.

Since q is generic we have e1 = (1, 0, . . . , 0) =
∑d

i=1 αiq(fi) for some scalars α1, α2, . . . , αd.
Hence

|p(v) · e1| =

∣

∣

∣

∣

∣

d
∑

i=1

αip(v) · q(fi)

∣

∣

∣

∣

∣

≤ B
d

∑

i=1

|αi|.

A similar argument shows that |p(v) · ej| is bounded for all vectors ej in the standard basis

for Rd. Since v is arbitrary, C(H, p|H , q|H) is bounded.
We may apply the same argument to each connected component of G to deduce that

C(G, p, q) is bounded. �

Theorem 3.2. Suppose (G, p, q) is a generic globally rigid linearly constrained framework
in Rd. Then each connected component of G is either a single vertex with at least d loops
or is d-balanced and redundantly rigid in Rd.

Proof. Since (G, p, q) is globally rigid if and only if each of its connected components are
globally rigid, we may assume that G is connected and is rigid in Rd. It is easy to see that
the theorem holds when G has one vertex so we may assume that |V | ≥ 2.

We first prove that G is d-balanced. Let X ⊆ V with |X| = d. Suppose some connected
component G1 of G−X, is incident with no loops. Then we can obtain an equivalent but
noncongruent realisation from (G, p, q) by reflecting G1 in the hyperplane spanned by the
points p(v), v ∈ X. This contradicts the global rigidity of (G, p, q). Hence G is d-balanced.

We next show that G is redundantly rigid in Rd. Suppose not. Then there exists e ∈ E∪L
such that (G− e, p, q) is flexible.

We will use Lemma 3.1 to show that the configuration space C(G − e, p, q) is bounded.
The fact that G is rigid in Rd implies that each connected component H of G − e with
n ≥ 2 vertices contains at least d loops. (This follows since the dimension of the kernel of
R(G− e, p, q) is one, so the dimension of the kernel of R(H, p|H , q|H) is at most one. This
implies that the rank of R(H, p|H , q|H) is at least dn − 1. On the other hand, the rank of
the submatrix of R(H, p|H , q|H) consisting of the rows indexed by the (non-loop) edges of

H is at most dn−
(

d+1
2

)

when n ≥ d and
(

n
2

)

when n < d. This implies that the number of

loops in H is at least (dn − 1) − dn +
(

d+1
2

)

when n ≥ d, and at least (dn − 1)−
(

n
2

)

when
n < d.)

It remains to show that each connected component H of G − e with exactly one vertex
v, has at least d loops. Suppose not. The facts that G is rigid and connected imply that H
has exactly (d − 1) loops and that e = uv for some u 6= v. Let ℓ be the line through p(v)
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which is perpendicular to q(f) for all loops incident to v and let P be the point on ℓ which
is closest to p(u). Let p′(x) = p(x) for all x ∈ V − v and p′(v) = 2P − p(v). Then (G, p′, q)
is equivalent to (G, p, q) and p′ 6= p. This contradicts the fact that (G, p, q) is globally rigid.
Hence C(G− e, p, q) is bounded.

We can now use a similar argument to that given in [16] to deduce that the component C
of C(G−e, p, q) that contains p is diffeomorphic to a circle, and that there exists a p′ ∈ C−p
with (G, p′, q) equivalent to (G, p, q). �

We will show in Section 8 that the necessary conditions for generic global rigidity given
in Theorem 3.2 are also sufficient when d = 2.

4. Equilibrium stresses

We will obtain an algebraic sufficient condition for a generic linearly constrained frame-
work in Rd to be globally rigid, and show that the property that this condition holds is
preserved by the graph ‘1-extension operation’. These results are key to our characterisation
of global rigidity for 2-dimensional generic frameworks.

An equilibrium stress for a linearly constrained framework (G, p, q) in Rd is a pair (ω, λ),
where ω : E → R, λ : L → R and (ω, λ) belongs to the cokernel of R(G, p, q). Thus (ω, λ)
is an equilibrium stress for (G, p) in Rd if and only if, for all vi ∈ V ,

(4.1)
∑

vj∈V

ωij(p(vi)− p(vj)) +
∑

ej∈L

λi,jq(ej) = 0.

where ωij is taken to be equal to ω(e) if e = vivj ∈ E and to be equal to 0 if vivj 6∈ E,
and λij is equal to λ(ej) if ej is a loop at vi and is equal to 0 otherwise. An example is
presented in Figure 2.

v1
l1

l2

v2

e1l3

v3

e2e3

l4

G

p(v1)=(1,0)
p(v2)=(−1,0)
p(v3)=(0,1)
q(l1)=(1,− 1)
q(l2)=(1,0)
q(l3)=(1,1)
q(l4)=(0,1)

l1

l2

l3

l4

v1
v2

e1

v3

e2e3

(G,p,q)

Figure 2. A looped simple graph G and the corresponding realisation as
a linearly constrained framework in R2. The vectors ω = (0, 1, 1) and λ =
(−1, 0, 1,−2) give an equilibrium stress for this framework.

We can write (4.1) in matrix form

(4.2) Π(p)Ω(ω) + Π(q)Λ(λ) = 0.

where:

• the stress matrix Ω(ω) is a |V | × |V |-matrix in which the off diagonal entry in row
vi and column vj is −ωij, and the diagonal entry in row vi is

∑

vj∈V
ωij;

• the linear constraint matrix Λ(λ) is a |V | × |L|-matrix in which the entry in row vi
and column ej is λij ;

• for any set S = {s1, s2, . . . , st} and map f : S → Rd, the coordinate matrix Π(f) is
the d× t matrix in which the i’th column is f(si).
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Lemma 4.1. Suppose (ω, λ) is an equilibrium stress for a d-dimensional linearly constrained
framework (G, p, q). Then rankΩ(ω) ≤ |V | − 1. In addition, if (G, p) is generic and G has
at least two vertices and at most d− 1 loops, then rankΩ(ω) ≤ |V | − 2.

Proof. The first assertion follows from the fact that the vector (1, 1, . . . , 1) belongs to the
cokernel of Ω(ω). To prove the second assertion, we choose a nonzero vector q0 ∈ Rd such
that q0 is orthogonal to q(f) for all loops f of G. Then (p(v1) · q0, p(v2) · q0, . . . , p(vn) ·
q0) belongs to the cokernel of Ω(ω) by Equation (4.1), and is linearly independent from
(1, 1, . . . , 1) since (G, p, q) is generic. �

We say that (ω, λ) is a full rank equilibrium stress for (G, p, q) if rankΩ(ω) = |V | − 1.
For example, the framework (G, p, q) drawn in Figure 2 has a stress matrix

Ω(ω) =





1 0 −1
0 1 −1

−1 −1 2





with respect to the given equilibrium stress (ω, λ) = (0, 1, 1,−1, 0, 1,−2) and we have
rankΩ(ω) = 2. Thus (ω, λ) is a full rank equilibrium stress for the framework (G, p, q)
drawn in Figure 2. We will show in Theorem 4.5 below that the property of having a full
rank equilibrium stress is a sufficient condition for a generic linearly constrained framework
to be globally rigid in Rd.

Lemma 4.2. Let (G, p, q) and (G, p′, q) be frameworks and (ω, λ) be a full rank equilibrium
stress for both (G, p, q) and (G, p′, q). Then, for some fixed t ∈ Rd, we have p(vi) = t+p′(vi)
for all vi ∈ V (G).

Proof. Since rankΩ(ω) = |V (G)|− 1, the cokernel of Ω(ω) is spanned by (1, 1, . . . , 1). Since
(ω, λ) is an equilibrium stress for both (G, p, q) and (G, p′, q), we may use (4.2) to deduce
that (Π(p)−Π(p′))Ω(ω) = 0. This implies that each row of Π(p− p′) belongs to coker Ω(ω)
and hence is a scalar multiple of (1, 1, . . . , 1). This gives p(vi) = t + p′(vi) for all vi ∈ V ,
where t = (t1, t2, . . . , td) and ti(1, 1, . . . , 1) is the i’th row of Π(p − p′). �

Lemma 4.3. Let (G, p, q) be a generic linearly constrained framework in Rd and (G, p′, q)
be an equivalent framework. Suppose that G has at least d loops and that p(v) = p′(v) + t
for some fixed t ∈ Rd, for all v ∈ V . Then p = p′.

Proof. Choose distinct loops ei ∈ L for 1 ≤ i ≤ d and let vi be the vertex incident to ei. Let
P , P ′ and Q be the d×d matrices whose i’th columns are p(vi), p

′(vi) and q(ei), respectively
and let A be the d × d diagonal matrix with the coordinates of t on the diagonal. Then
(P − P ′)QT = 0 since (G, p, q) and (G, p′, q) are equivalent. Since P − P ′ = AJ where J is
the d× d matrix all of whose entries are 1, we have AJQT = 0. Since (G, p, q) is generic, Q
is nonsingular and hence AJ = 0. This implies that A = 0 and hence t = 0. �

Proposition 4.4 (Connelly [5]). Suppose that f : Ra → Rb is a function, where each
coordinate is a polynomial with coefficients in some finite extension K of Q, p ∈ Ra is
generic over K and f(p) = f(p̂), for some p̂ ∈ Ra. Then there are (open) neighbourhoods
Np of p and Np̂ of p̂ in Ra and a diffeomorphism g : Np̂ → Np such that for all x ∈ Nq,
f(g(x)) = f(x), and g(p̂) = p.

Theorem 4.5. Suppose (G, p, q) is a generic linearly constrained framework in Rd with at
least two vertices, and (ω, λ) is a full rank equilibrium stress for (G, p, q). Then (G, p, q) is
globally rigid.
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Proof. Let (G, p̂, q) be equivalent to (G, p, q). Let F : Rd|V | → R|E|+|L| be the rigidity

map defined by F (p) = (FE(p), FL(p)) where FE : Rd|V | → R|E| is the usual rigidity map
defined by FE(p) = (. . . , ‖p(u) − p(v)‖, . . . )e=uv∈E , and FL : Rd|V | → R|L| is defined by
FL(p) = (. . . , p(v) · q(f), . . . )f=vv∈L.

Proposition 4.4 implies that there exist neighbourhoodsNp of (p, q) and Np̂ of (p̂, q) and a
diffeomorphism g : Np̂ → Np such that g(p̂) = p and for all p̄ ∈ Np̂ we have F (g(p̂)) = F (p̂).
By differentiating at p̂, observing that the differential of F is (up to scaling) the rigidity
matrix R(G, p, q) and using the fact that (ω, λ) is an equilibrium stress for (G, p, q), we have
(ω, λ)R(G, p̂, q) = (ω, λ)R(G, p, q)D = 0 ·D = 0 where D is the Jacobean of g at p̂. Hence
(ω, λ) is an equilibrium stress for (G, p̂, q). We can now use Lemmas Lemma 4.1, 4.2 and
4.3 to deduce that p = p̂. �

We will prove a partial converse to Theorem 4.5 in Section 8 by showing that every
connected, 2-dimensional, globally rigid generic framework with at least two vertices has a
full rank equilibrium stress. Note that the converse to Theorem 4.5 is false for disconnected
frameworks since a framework is globally rigid if and only if each of its connected components
is globally rigid, whereas no disconnected framework can have a full rank equilibrium stress
(since we may apply Lemma 4.1 to each connected component).

Our next result shows that we can apply Theorem 4.5 whenever we can find a full rank
equilibrium stress in an arbitrary infinitesimally rigid framework.

Lemma 4.6. Suppose G = (V,E,L) can be realised in Rd as an infinitesimally rigid linearly
constrained framework with a full rank equilibrium stress. Then every generic realisation of
G in Rd is infinitesimally rigid and has a full rank equilibrium stress which is nonzero on
all elements of E ∪ L.

Proof. Let |V | = n, |E ∪ L| = m, and let (G, p, q) be a realisation of G in Rd. Since the
entries in the rigidity matrix R(G, p, q) are polynomials in p and q, the rank of R(G, p, q)
will be maximised whenever (G, p′, q′) is generic. Hence (G, p, q) will be infinitesimally rigid
whenever (G, p, q) is generic.

We adapt the proof technique of Connelly and Whiteley [6, Theorem 5] to prove the
second part of the theorem. Since the entries in R(G, p, q) are polynomials in p and q, and
the space of equilibrium stresses of (G, p, q) is the cokernel of R(G, p, q), each equilibrium
stress of (G, p, q) can be expressed as a pair of rational functions (ω(p, q, t), λ(p, q, t)) of p,
q and t, where t is a vector of m− dn indeterminates. This implies that the entries in the
corresponding stress matrix Ω(ω(p, q, t)) will also be rational functions of p, q and t. Hence
the rank of Ω(ω(p, q, t)) will be maximised whenever p, q, t is algebraically independent
over Q. In particular, for any generic p, q ∈ Rdn, we can choose t ∈ Rm−dn such that
rankΩ(ω(p, q, t)) = dn − 1 and hence (ω(p, q, t), λ(p, q, t)) will be a full rank equilibrium
stress for (G, p, q).

Now suppose that (G, p, q) is generic and that (ω, λ) is a full rank stress for (G, p, q)
chosen such that the total number of edges e ∈ E ∪ L with ωe = 0 and loops ℓ ∈ L with
λℓ = 0 is as small as possible. We may assume that, for some f ∈ E ∪ L, we have ωf = 0
if f ∈ E and λf = 0 if f ∈ L. Then (ω|E−f , λ|L−f ) is a full rank equilibrium stress for
(G−f, p, q). By Theorem 4.5, (G−f, p, q|L−f ) is globally rigid. In particular (G−f, p, q|L−f )
is rigid, and hence, since (G− f, p, q|L−f ) is generic, it is infinitesimally rigid. This implies
that the row of R(G, p, q) indexed by f is contained in a minimal linearly dependent set of

rows, and gives us an equilibrium stress (ω̂, λ̂) for (G, p, q) with ω̂f 6= 0 when f ∈ E, and

λ̂f 6= 0 when f ∈ L. Then (ω′, λ′) = (ω, λ) + c(ω̂, λ̂) is an equilibrium stress for (G, p), for
any c ∈ R. We can now choose a sufficiently small c > 0 so that rankΩ(ω′) = n− 1, ω′

e 6= 0
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for all e ∈ E for which ωe 6= 0, and λ′
ℓ 6= 0 for all ℓ ∈ L for which λℓ 6= 0. This contradicts

the choice of (ω, λ). �

Theorem 4.5, Lemma 4.6 and the fact that the framework (G, p, q) drawn in Figure 2 is
infinitesimally rigid and has a full rank equilibrium stress imply that every generic realisation
of G as a linearly constrained framework in R2 is globally rigid. A similar argument will
allow us to show that the ‘1-extension operation’ preserves the property of having a full
rank equilibrium stress.

Let G = (V,E,L) be a looped simple graph. The d-dimensional 1-extension operation
forms a new looped simple graph from G by deleting an edge or loop e ∈ E ∪L and adding
a new vertex v and d+ 1 new edges or loops incident to v, with the provisos that each end
vertex of e is incident to exactly one new edge, and, if e ∈ L, then there is at least one new
loop incident to v. See Figure 3 for an illustration of the types of 1-extension we will use.

G

x

x

v

x

v

G

x u

ux

v

x u

v

Figure 3. Possible 2-dimensional 1-extensions on a loop (on the left) and
on an edge (on the right) of a graph G.

Theorem 4.7. Let H be a looped simple graph and G be obtained from H by either adding
an edge or a loop, or by applying the d-dimensional 1-extension operation. Suppose that H
can be realised in Rd as an infinitesimally rigid linearly constrained framework with a full
rank equilibrium stress. Then G can be realised in Rd as an infinitesimally rigid linearly
constrained framework with a full rank equilibrium stress.

Proof. Let (H, p, q) be a generic realisation of H as a d-dimensional linearly constrained
framework. By Lemma 4.6, (H, p, q) has a full rank equilibrium stress (ω, λ) which is
nonzero on all elements of E ∪ L.

SupposeG is obtained fromH by adding an edge or loop f . Let (G, p, q′) be the realisation
of G obtained from (H, p, q) by assigning an arbitrary value to q′(f) if f is a loop. Then
(G, p, q′) is infinitesimally rigid and the equilibrium stress (ω′, λ′) for (G, p, q′) obtained from
(ω, λ) by setting (ω′, λ′) to be zero on f has full rank. Hence we may suppose that G is a
1-extension of H.

There are two cases to consider depending on whether the 1-extension deletes an edge
or a loop. In the former case we can proceed by the standard collinear triangle technique
given in [5] (if a new edge is a loop then the loop is assigned stress 0). Hence we present
the latter case.

Let V = {v1, v2, . . . , vn}. Suppose that the 1-extension deletes f1 ∈ L, where f1 is a loop

at v1 and adds a new vertex v0 with neighbours v1, v2, . . . , vk1 and loops f1
0 , . . . , f

k2
0 at v0
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(where k1 + k2 = d + 1). Let (G, p′, q′) be defined by putting p′(v) = p(v) for all v ∈ V ,
q′(f) = q(f) for all f ∈ L − f1, p

′(v0) = p(v1) + q(f1) and q′(f1
0 ) = q(f1) and choosing

{q(f1
0 ), . . . , q(f

k2
0 )} to be algebraically independent.

We first show that the framework (G+f1−v0v1, p
′, q′) is infinitesimally rigid. Its rigidity

matrix R can be constructed from R(H, p, q) by adding d new columns indexed by v0, and d

new rows indexed by v0v2, . . . v0vk1 , f
1
0 , . . . , f

k2
0 , respectively. Since (p, q) is generic the d×d

submatrix M of R with rows indexed by v0v2, . . . v0vk1 , f
1
0 , . . . , f

k2
0 and columns indexed by

v0 is nonsingular. The fact that the new columns contain zeros everywhere except in the
new rows now gives rankR = rankR(H, p, q) + d. By the choice of p′, q′, the rows in R
corresponding to v0v1, f1, f

1
0 are a minimal linearly dependent set. Thus

rankR(G, p′, q′) = rankR = rankR(H, p, q) + d.

The fact that (H, p, q) is infinitesimally rigid now implies that (G, p′, q′) is infinitesimally
rigid.

Let (ω′, λ′) be the stress for (G, p′, q′) defined by putting ω′
e = ωe for all e ∈ E, ω′

v0vi
= 0

for all i > 1, ω′
v0v1

= −λ(f1), λ
′(f) = λ(f) for all f ∈ L, λ′(f1

0 ) = λ(f1) and λ′(f i
0) = 0 for

all i > 1. It is straightforward to verify that (ω′, λ′) is an equilibrium stress for (G, p′, q′).
We let ωij denote the stress ω′

e = ωe on e = vivj ∈ E and put λ1 = λ(f1). We have

Ω(ω′) =















−λ1 λ1 0 0 . . . 0
λ1

∑

j≥1 ω1j − λ1 −ω12 −ω13 . . . −ω1n

0 −ω12
∑

j≥1 ω2j −ω23 . . . −ω2n

0 −ω13 −ω23
∑

j≥1 ω3j . . . −ω3n

...
...

...
...















.

By adding row 1 to row 2 and then column 1 to column 2 this reduces to










−λ1 0 0 0 . . . 0
0

∑

j ω1j −ω12 −ω13 . . . −ω1n

0 −ω12
∑

j ω2j −ω23 . . . −ω2n

...
...

...
...

...











=











−λ1 0 . . . 0
0
... Ω(ω)
0











.

Since −λ1 6= 0, we have rankΩ(ω′) = rankΩ(ω)+1. Hence (ω′, λ′) is a full rank equilibrium
stress for (G, p′, q′). �

5. Circuits in the 2-dimensional linearly constrained rigidity matroid

We will focus on 2-dimensional linearly constrained frameworks in the following sections,
and will suppress specific reference to the dimension. In particular we will refer to the
2-dimensional 1-extension operation as a 1-extension, to the property of being 2-balanced
as balanced, and say that a graph is rigid to mean it is rigid in R2.

This section will contain a combinatorial analysis of the simplest redundantly rigid graphs
- these correspond to rigid circuits in the linearly constrained generic rigidity matroid. Our
results are analogous to those obtained in [1] for bar-joint frameworks and [14] for direction-
length frameworks.

Let G = (V,E,L) be a looped graph. For X ⊂ V , we define a matroid Mlc(G) on E ∪ L
by the conditions of Theorem 2.1: a set F ⊂ E ∪ L is independent if |F ′| ≤ 2|VF ′ | for all
F ′ ⊆ F , and |F ′| ≤ 2|VF ′ |−3 for all ∅ 6= F ′ ⊆ F ∩E. We will refer to subgraphs of G whose
edge-set is a circuit in Mlc(G) as Mlc-circuits, see Figure 4. The definition of independence
in Mlc(G) gives rise to the following characterisation of its circuits. For X ⊆ V , let iE(X)
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Figure 4. A graph G on the left and two Mlc-circuits of G in the middle
and on the right. It can be verified by Lemma 5.1 that the subgraph in the
middle is a flexible Mlc-circuit and the subgraph on the right is a rigid Mlc-
circuit.

and iL(X) denote the number of elements of E and L respectively in the subgraph induced
by X in G and put iE∪L(X) = iE(X) + iL(X).

Lemma 5.1. Let G = (V,E,L) be a looped simple graph. Then G is an Mlc-circuit if and
only if, either
(a) |E|+ |L| = 2|V |+1, iE(X) ≤ 2|X|−3 for all X ⊂ V with |X| ≥ 2 and iE∪L(X) ≤ 2|X|
for all X ( V , or
(b) L = ∅, |E| = 2|V | − 2 and iE(X) ≤ 2|X| − 3 for all X ( V with |X| ≥ 2.

We will refer to the circuits described in (a) as rigid Mlc-circuits and to those in (b) as

flexible Mlc-circuits. The smallest rigid Mlc-circuits are the looped graphs K
[3]
1 and K

[2]
2 .

The flexible Mlc-circuits are precisely the circuits of the 2-dimensional generic bar-joint
rigidity matroid. A recursive construction for these circuits is given in [1]. We will use the
results of this section to obtain a recursive construction for rigid Mlc-circuits in Section 6.

Let d†(v) denote the number of edges or loops that are incident with a vertex v in a
looped simple graph G, d(v) = d†(v) + iL(v) denote the degree of v in G, and V3 = {v ∈
V : d†(v) = 3} denote the set of nodes of G. For disjoint X,Y ⊆ V , let G[X] denote the
subgraph of G induced by X and d(X,Y ) denote the number of edges of G between X and
Y .

Lemma 5.2. Let G = (V,E,L) be a rigid Mlc-circuit. Then V3 6= ∅ and the subgraph
G†[V3] of G obtained by deleting all loops in G[V3] is a forest.

Proof. Since G is a rigid Mlc-circuit, d
†(v) ≥ 3 for all v ∈ V ,

4|V |+ 2 = 2|E| + 2|L| =
∑

v∈V

d(v) =
∑

v∈V

d†(v) + |L|,

and |L| ≥ 3. This gives
∑

v∈V d†(v) ≤ 4|V | − 1 so G has at least one node.

Suppose C = (S,F ) is an induced cycle in G†[V3]. Let T = V \ S. Then we have

iE∪L(T ) = 2|V |+ 1− iE∪L(S)− d(S, T )

= 2|V |+ 1− |S| − iL(S)− d(S, T )

= 2|T |+ 1,

where the second equality follows from the fact that C is a cycle, and the last equality
follows from the fact that a vertex in S contributes 1 to exactly one of iL(S) and d(S, T )
so iL(S) + d(S, T ) = |S|. This contradicts the fact that G is a rigid Mlc-circuit and T is a
proper subset of V . �

Let G = (V,E,L) be a rigid Mlc-circuit. We say that X ⊆ V is mixed critical if
iE∪L(X) = 2|X| and is pure critical if iE(X) = 2|X| − 3. We say that X is critical if
it is either mixed or pure critical.
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Lemma 5.3. Let X be a mixed critical set in a rigid Mlc-circuit G = (V,E,L) and Y =
V \X.
(a) Then |V3 ∩ Y | ≥ 1, with strict inequality when |Y | ≥ 2.
(b) If d(X,Y ) ≥ 3 then Y contains a vertex of degree three in G.

Proof. (a) If |Y | = 1 then the unique vertex in Y must be a node of G. Hence we may
assume that |Y | ≥ 2.

Suppose |Y ∩ V3| ≤ 1. Note that for a vertex v ∈ Y , we have d(v) = d†(v) + iL(v) so
∑

v∈Y

d(v) =
∑

v∈Y

d†(v) + iL(Y ) ≥ 4|Y | − 1 + iL(Y ).

We also have

2iE∪L(Y ) =
∑

v∈Y

dG[Y ](v) =
∑

v∈Y

d(v) − d(Y,X).

We can combine these two (in)equalities to obtain

(5.1) 2iE(Y ) + iL(Y ) + d(Y,X) ≥ 4|Y | − 1.

Since |Y | ≥ 2 we have iE(Y ) ≤ 2|Y | − 3 and Equation (5.1) now gives

iE∪L(Y ) + d(Y,X) = iE(Y ) + iL(Y ) + d(Y,X) ≥ 4|Y | − 1− iE(Y ) ≥ 2|Y |+ 2.

The fact that X is mixed critical now gives

|E|+ |L| = iE∪L(X) + iE∪L(Y ) + d(Y,X) ≥ 2|X|+ 2|Y |+ 2 = 2|V |+ 2,

a contradiction.

(b) We have
∑

v∈Y d(v) = 2iE∪L(Y ) + d(Y,X) and

iE∪L(Y ) = |E| − iE∪L(X)− d(Y,X) = 2|V \X| − d(Y,X) + 1.

This implies that
∑

v∈Y

d(v) = 4|V \X| − 2d(Y,X) + d(Y,X) + 2 = 4|Y | − d(Y,X) + 2.

If d(Y,X) ≥ 3 then
∑

v∈Y d(v) < 4|Y | and hence Y contains a vertex of degree less than
four. �

We next consider two versions of the 1-extension operation for a looped simple graph
G = (V,E,L). The 1-extension operation at an edge uw ∈ E deletes uw and adds a new
vertex v, new edges uv and wv and either a new edge vx for some x ∈ V \ {u,w} or a new
loop at v. The 1-extension operation at a loop uu ∈ L deletes uu, adds a new vertex v,
a new edge uv and a new loop at v, and either a new edge wv, for some w ∈ V − u or a
second new loop at v. It is straightforward to show that both versions of the 1-extension
operation transform a rigid Mlc-circuit into another rigid Mlc-circuit using Lemma 5.1(a).

We refer to the inverse operation to each of the above 1-extension operations as a 1-
reduction to an edge or loop, respectively. When G is a rigid Mlc-circuit and v ∈ V , we say
that these reduction operations are admissible if they result in a smaller rigid Mlc-circuit,
and that v is admissible if there is an admissible 1-reduction at v.

The remainder of this section will be devoted to obtaining a structural characterisation
of ‘non-admissibility’. This will be used in the next section to show that every balanced
rigid Mlc-circuit on at least two vertices contains an admissible vertex.
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Lemma 5.4. Let G = (V,E,L) be a rigid Mlc-circuit and v be a node in G.
(a) Suppose N(v) = {u,w, z}. Then the 1-reduction at v which adds uw is non-admissible
if and only if there exists a pure critical set X with u,w ∈ X and v, z /∈ X or a mixed
critical set Y with u,w ∈ Y and v, z /∈ Y .
(b) Suppose N(v) = {u,w}. Then:
(i) the 1-reduction at v which adds uw is non-admissible if and only if there exists a pure
critical set X with u,w ∈ X and v /∈ X;
(ii) the 1-reduction at v which adds uu is non-admissible if and only if there exists a mixed
critical set X with u ∈ X and w, v /∈ X.
(c) If N(v) = {u}, then the 1-reduction at v which adds uu is admissible.

Proof. It is straightforward to show that the existence of each of the critical sets described
in (a) and (b) implies non-admissibility.

For the converse, we first suppose that the 1-reduction described in case (a) is non-
admissible. Then the graph resulting from this 1-reduction is not a rigid Mlc-circuit. This
implies that there exists either an X ⊂ V − v with iE(X) ≥ 2|X| − 2 or a Y ( V − v with
iE∪L(Y ) ≥ 2|Y |+1. These subsets are pure critical and mixed critical, respectively, in G. If
the first alternative holds then z 6∈ X, since otherwise iE(X+v) = iE(X)+3 = 2|X|−3+3 =
2|X + v| − 2 and we would contradict the fact that G is a rigid Mlc-circuit. Similarly, if the
second alternative holds and z ∈ Y then iE∪L(Y +v) = iE∪L(Y )+3 = 2|Y |+3 = 2|Y +v|+1,
again contradicting the fact that G is a rigid Mlc-circuit.

The arguments in cases (b) and (c) are similar. �

Lemma 5.5. Let G be a rigid Mlc-circuit.
(a) If X,Y ⊂ V are pure critical with |X ∩Y | ≥ 2, then X ∪ Y and X ∩ Y are pure critical
and d(X \ Y, Y \X) = 0.
(b) If X,Y ⊂ V are mixed critical and |X ∪Y | ≤ |V | − 1, then X ∪Y and X ∩Y are mixed
critical and d(X \ Y, Y \X) = 0.
(c) If X ⊂ V is mixed critical, Y ⊂ V is pure critical, |X ∩ Y | ≥ 2 and |X ∪ Y | ≤ |V | − 1,
then X ∪ Y is mixed critical, X ∩ Y is pure critical and iL(Y \X) = 0 = d(X \ Y, Y \X).

Proof. We prove (c), parts (a) and (b) can be proved similarly. We have

2|X| + 2|Y | − 3 = iE∪L(X) + iE(Y )

= iE∪L(X ∪ Y ) + iE(X ∩ Y )− iL(Y \X)− d(X \ Y, Y \X)

≤ 2|X ∪ Y |+ 2|X ∩ Y | − 3− iL(Y \X)− d(X \ Y, Y \X)

= 2|X| + 2|Y | − 3− iL(Y \X)− d(X \ Y, Y \X)

Hence iL(Y \X) = d(X−Y, Y −X) = 0 and equality holds throughout the above displayed
calculation. In particular, iE∪L(X ∪ Y ) = 2|X ∪ Y |, iE(X ∩ Y ) = 2|X ∩ Y | − 3. �

Lemma 5.6. Let G be a rigid Mlc-circuit and v be a node of G with three distinct neighbours
u,w, t. Suppose that X,Y are mixed critical sets in G satisfying {u,w} ⊆ X ⊆ V \ {v, t}
and {w, t} ⊆ Y ⊆ V \ {v, u}. Suppose further that Z is a (mixed or pure) critical set with
{u, t} ⊆ Z ⊆ V \ {v,w} Let W † = (V − v) \W for each W ∈ {X,Y,Z}. Then:
(a) X ∪ Y = X ∪ Z = Y ∪ Z = V − v;
(b) d(X†, Y †) = d(Y †, Z†) = d(X†, Z†) = 0;
(c) either {X†, Y †, Z†,X∩Y ∩Z} is a partition of V −v, or X∩Y ∩Z = ∅ and {X†, Y †, Z†}
is a partition of V − v;
(d) if Z is pure critical then iL(X

†) = 0 = iL(Y
†).
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Proof. Since X,Y are mixed critical, X ∪ Y is mixed critical and d(X \ Y, Y \X) = 0 by
Lemma 5.5(b). The first assertion gives iE∪L(X ∪Y ∪{v}) = 2|X ∪Y ∪{v}|+1. Since G is
an Mlc-circuit, this imples that X ∪Y = V − v. We now have X† = Y \X and Y † = X \Y .
When Z is mixed critical, a similar argument for X,Z and Y,Z tells us that (a) and (b)
hold. Part (c) follows immediately from (a). Hence we may assume that Z is pure critical.

Since Z is pure critical, G[Z] is connected and hence there is a path P in G[Z] from u
to t. If X ∩ Z = {u} then P would contain no vertices of X − u. The existence of such
a path P would contradict the fact that u ∈ X \ Y , t ∈ Y \X and d(X \ Y, Y \X) = 0.
Hence |X ∩ Z| ≥ 2 and we can use Lemma 5.5(c) to deduce that X ∪ Z is mixed critical

and d†L(X
†) = 0 = d(X \ Z,Z \X). A similar argument as in the previous paragraph now

gives X ∪ Z = V − v. We can now use symmetry to deduce that Y ∪ Z = V − v and

d†L(Y
†) = 0 = d(Y \ Z,Z \ Y ). This gives (a), (b), (c) and (d) in the case when Z is pure

critical. �

We call a triple (X,Y,Z) of three sets satisfying the hypotheses of Lemma 5.6 a strong
flower on v when Z is mixed critical and a weak flower on v when Z is pure critical. Note
that it is possible for (X,Y,Z) to be both a strong and weak flower on v, see Figure 5.

v1

v2 v3

v4v5

v6

v

Figure 5. Let X = {v1, v2, v3, v5, v6}, Y = {v2, v3, v4, v5, v6}, and Z =
{v1, v2, v3, v4, v5}. Then Z is pure critical and mixed critical so (X,Y,Z) is
both a strong and a weak flower on v.

Lemma 5.7. Let G be a rigid Mlc-circuit and v be a node of G with three distinct neighbours
r, s, t. Suppose that Y,Z are pure critical sets satisfying {s, t} ⊆ Y ⊆ V \ {v, r} and
{r, s} ⊆ Z ⊆ V \ {v, t}, and X is a critical set with {r, t} ⊆ X ⊆ V \ {v, s}. Then X is
mixed critical, X ∩ Y = {t}, X ∩Z = {r}, Y ∩Z = {s}, G− v = G[X] ∪G[Y ]∪G[Z], and
the component of G− {r, t} which contains {v, s} has no loops.

Proof. If |Y ∩ Z| ≥ 2 then Y ∪ Z would be pure critical by Lemma 5.5(a) and we would
have iE(Y ∪Z ∪ {v}) = 2|Y ∪Z ∪{v}| − 2. This would contradict the fact that G is a rigid
Mlc-circuit. Hence Y ∩Z = {s}. Since Y is pure critical, G[Y ] is connected and hence there
exists a path P in G from s to t which avoids Z − s.

Suppose X is pure critical. Then a similar argument to the above gives X ∩Z = {r} and
Y ∩X = {t}, X ∪ Y ∪Z is pure critical and iE(X ∪ Y ∪Z ∪ {v}) = 2|X ∪ Y ∪Z ∪ {v}| − 2.
This would again contradict the fact that G is a rigid Mlc-circuit. Hence X is mixed critical.

Suppose |X ∩ Z| > 1. Then X ∪ Z is mixed critical and d(X \ Z,Z \X) = 0 by Lemma
5.5(c). This gives iE∪L(X ∪ Z ∪ {v}) = 2|X ∪ Z ∪ {v}|+ 1 so X ∪Z = V − v. The path P
now implies that d(X \ Z,Z \X) > 0, a contradiction.
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Hence we have X ∩ Z = {r} and, by symmetry, X ∩ Y = {t}. This gives

iE∪L(X ∪ Y ∪ Z ∪ {v}) ≥ iE∪L(X) + iE(Y ) + iE(Z) + 3

= 2|X|+ (2|Y | − 3) + (2|Z| − 3) + 3

= 2|X ∪ Y ∪ Z ∪ {v}| + 1.

Since G is a rigid Mlc-circuit, we must have X ∪ Y ∪ Z ∪ {v} = V and iE∪L(X) + iE(Y ) +
iE(Z) + 3 = |E|+ |L|. This implies that all loops in G are contained in G[X] and that the
component of G− {r, t} which contains {v, s} has no loops. Hence G is not balanced. �

We call a triple (X,Y,Z) of three sets satisfying the hypotheses of Lemma 5.7 for G an
unbalanced flower on v. Note that (X,Y,Z) cannot be both an unbalanced flower and a
strong or weak flower since, in the the former, X ∩Y ∩Z = ∅ and G[Y ], G[Z] are connected,
while, for every strong or weak flower with X ∩ Y ∩ Z = ∅, each of G[X], G[Y ], G[Z] are
disconnected.

Lemma 5.8. Let G be a rigid Mlc-circuit and v be a non-admissible node of G with three
distinct neighbours. Then at least one of the following holds:
(a) there exists a strong flower on v in G;
(b) there exsits a weak flower on v in G;
(c) there exists an unbalanced flower on v in G.

Proof. This follows immediately from Lemmas 5.4, 5.6 and 5.7. �

Our final result of this section is a decomposition lemma for unbalanced rigid Mlc-circuits
i.e. rigid Mlc-circuits which are not balanced. It uses the following graph operation.

Given three looped simple graphs G = (V,E,L), G1 = (V1, E1, L1) and G2 = (V2, E2, L2),
we say that G is the 2-sum of G1 and G2 along an edge uv if V1 ∪V2 = V , V1 ∩V2 = {u, v},
E = (E1∪E2)−uv, E1∩E2 = {uv}, L = L1∪L2 and L1∩L2 = ∅. Figure 6 gives an example
of an unbalanced rigid Mlc-circuit which is the 2-sum of a rigid and a flexible Mlc-circuit.
Lemma 5.9 below shows that every unbalanced rigid Mlc-circuit can be obtained in this

v

u

v

u

v

u

Figure 6. An unbalanced rigid Mlc-circuit on the right (removing u and
v results in a loopless component) obtained from a rigid Mlc-circuit and a
flexible Mlc-circuit by a 2-sum operation along the edge uv on the left.

way.

Lemma 5.9. Let G = (V,E,L) be a looped simple graph. Then G is an unbalanced rigid
Mlc-circuit if and only if G is a 2-sum of a rigid Mlc-circuit and a flexible Mlc-circuit.

Proof. First suppose that G is a 2-sum of a rigid Mlc-circuit G1 = (V1, E1, L1) and a flexible
Mlc-circuit G2 = (V2, E2) along an edge e = uv ∈ E1 ∩ E2. It is straightforward to check
that G satisfies the conditions given in Lemma 5.1(a). Hence G is a rigid Mlc-circuit. It
is unbalanced since G2 − {u, v} is a connected component of G− {u, v} which contains no
loops.



GLOBAL RIGIDITY OF 2-DIMENSIONAL LINEARLY CONSTRAINED FRAMEWORKS 15

Now suppose G is an unbalanced, rigid Mlc-circuit. Then there is a set {u, v} ⊂ V such
that G− {u, v} has a component H with no loops. Let H1 = (V1, E1, L1) be the subgraph
of G induced by V \ V (H), and H2 = (V2, E2) be the simple subgraph of G obtained from
G− (V1 \ {u, v}) by deleting any loops at u or v. We have

2|V |+ 1 = |E|+ |L| ≤ iE1∪L1
(V1) + iE2

(V2) ≤ 2|V1|+ 2|V2| − 3 = 2|V |+ 1

Thus equality must occur throughout. This implies that uv 6∈ E (by equality in the first
inequality), |E1|+ |L1| = 2|V1| and |E2| = 2|V2| − 3 (by equality in the second inequality).
Let G1 and G2 be the graphs obtained from H1 and H2, respectively, by adding the edge
uv. It is straightforward to check that G1 and G2 satisify the conditions of Lemma 5.1 (a)
and (b), respectively. Hence G1 is a rigid Mlc-circuit, G2 is a flexible Mlc-circuit, and G is
the 2-sum of G1 and G2. �

6. Mlc-connected graphs

Our long term aim is to obtain a recursive construction for balanced redundantly rigid
graphs. To accomplish this we first consider the closely related family of ‘Mlc-connected
graphs’. It is easy to see that a looped simple graph G = (V,E,L) is redundantly rigid if
and only if it is rigid and every element of E ∪ L belongs to an Mlc-circuit. The graph G
is Mlc-connected if every pair of elements of E ∪ L belong to a common Mlc-circuit in G.

We will show that any balanced Mlc-connected graph other than K
[3]
1 can be reduced to a

smaller Mlc-connected graph using the operation of edge/loop deletion or 1-reduction. Our
proof uses the concept of an ‘ear decomposition’ of a matroid and follows a similar strategy
to that used in [3, 11].

Recall that a matroid M = (E, r) is connected if every pair of elements of M is contained
in a common circuit. Given a non-empty sequence of circuits C1, C2, . . . , Cm in M , let
Di = C1∪C2∪. . . Ci for all 1 ≤ i ≤ m, and put C̃i = Ci−Di−1. The sequence C1, C2, . . . , Cm

is a partial ear decomposition of M if, for all 2 ≤ i ≤ m,

(E1) Ci ∩Di−1 6= ∅,
(E2) Ci −Di−1 6= ∅, and
(E3) no circuit C ′

i satisfying (E1) and (E2) has C ′
i −Di−1 ⊂ Ci −Di−1.

A partial ear decomposition C1, C2, . . . , Cm is an ear decomposition of M if Dm = E.

Lemma 6.1 ([7]). Let M = (E, r) be a matroid with |E| ≥ 2. Then:

(i) M is connected if and only if M has an ear decompostion.
(ii) If M is connected then every partial ear decomposition is extendable to an ear de-

composition of M .
(iii) If C1, C2, . . . , Cm is an ear decomposition of M then r(Di)− r(Di−1) = |C̃i| − 1 for

all 2 ≤ i ≤ m.

Given a looped simple graph G, it will be convenient to refer to an ear decomposition
C1, C2, . . . , Cm of Mlc(G) as an ear decomposition H1,H2, . . . ,Hm of G whereHi is the Mlc-
circuit of G induced by Ci for 1 ≤ i ≤ m. See Figure 7 for an example giving two distinct
ear decompositions of the graph G drawn on the far left. The ear decomposition drawn in
the middle has a flexible Mlc-circuit K4 whereas the circuits of the ear decomposition drawn
on the right are all rigid Mlc-circuits. The following lemma tells that a rigid Mlc-connected
graph always has an ear decompositon into rigid Mlc-circuits.

Lemma 6.2. Let G be an Mlc-connected looped simple graph with at least one loop. Then
G has an ear decomposition into rigid Mlc-circuits.
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Figure 7. A graph G on the left, and two ear decompositions of G in the
middle and on the right.

Proof. Let ℓ be a loop of G. Since G is Mlc-connected there exists an Mlc-circuit H1

containing ℓ. Then H1 is a rigid Mlc-circuit and, if G = H1, then we are done. So suppose
G 6= H1. Extend H1 to an ear decomposition H1,H2, . . . ,Hk of G such that each Hi is a
rigid Mlc-circuit for 1 ≤ i ≤ k and k is as large as possible.

Suppose k < m. Then we may choose an edge or loop f in Hk+1 which does not belong

to
⋃k

i=1 Hi. Since
⋃k+1

i=1 Hi is Mlc-connected, there exists an Mlc-circuit H ′
k+1 ⊆

⋃k+1
i=1 Hi

such that ℓ, f are in H ′
k+1. Then H ′

k+1 is a rigid Mlc-circuit and H1,H2, . . . ,Hk,H
′
k+1 is a

partial ear decomposition of G. Since every partial ear decomposition can be extended to
a ‘full’ ear decomposition, this contradicts the maximality of k. �

Lemma 6.2 and the fact that the union of two redundantly rigid graphs is redundantly
rigid immediately give

Corollary 6.3. Let G be an Mlc-connected looped simple graph. Then G is redundantly
rigid if and only if G has a loop.

Lemma 6.4. Let G be an Mlc-connected looped simple graph that contains a loop. Let
C1, C2, . . . , Cm be an ear decomposition of Mlc(G) where m ≥ 2 and Hi = G[Ci] is a rigid

Mlc-circuit for 1 ≤ i ≤ m. Let Y = V (Hm) \
⋃m−1

i=1 V (Hi) and X = V (Hm) \ Y . Then

(i) |C̃m| = 2|Y |+ 1;

(ii) if Y 6= ∅ then every edge/loop e ∈ C̃m is incident to Y , X is mixed critical in Hm

and G[Y ] is connected;

(iii) if G is balanced, Y 6= ∅ and C̃m contains no loops then Y has at least three neighbours
in X.

Proof. (i) Let Gj =
⋃j

i=1 Hi and Dj =
⋃j

i=1 Cj. Hence E(Gj) ∪ L(Gj) = Dj . Lemma
6.1(i) implies that Gm−1 is Mlc-connected. Corollary 6.3 implies that Gm−1 and G are
rigid so r(Dm−1) = 2|V \ Y | and r(E ∪ L) = 2|V |. Hence by Lemma 6.1(iii) we have

|C̃m| = r(E ∪ L)− r(Dm−1) + 1 = 2|V | − 2|V − Y |+ 1 = 2|Y |+ 1.
(ii) Suppose Y 6= ∅. Let k be the number of edges/loops in E ∪L−Dm−1 which have all

endvertices in V (Gm−1). Since Hm is a rigid Mlc-circuit, part (i) implies that

iHm(X) = |Cm| − |C̃m|+ k = 2|X ∪ Y |+ 1− (2|Y |+ 1) + k = 2|X| + k.

Since Hm[X] is a proper subgraph of Hm we must have k = 0 and X is mixed critical in
Hm.

Assume G[Y ] is disconnected. Let Y1, Y2, . . . , Yk be the vertex sets of the connected
components of G[Y ]. Since Hm is an Mlc-circuit, k ≥ 2 and X is mixed critical, we have
iHm(X ∪ Yi)− iHm(X) ≤ 2|X ∪ Yi| − 2|X| = 2|Yi|. This implies that

|C̃m| =
k

∑

i=1

(iHm(X ∪ Yi)− iHm(X)) ≤
k

∑

i=1

2|Yi| = 2|Y |,



GLOBAL RIGIDITY OF 2-DIMENSIONAL LINEARLY CONSTRAINED FRAMEWORKS 17

contradicting part (i).
(iii) Let X ′ be the set of vertices in X which are adjacent to Y . Then G − X ′ has a

component with no loops. The fact that G is balanced and Mlc-connected now implies that
|X ′| ≥ 3. �

Lemma 6.5. Let G = (V,E,L) be an Mlc-connected looped simple graph which contains
a loop. Suppose that G′ is obtained from G by an edge or loop addition, or a 1-extension.
Then G′ is Mlc-connected.

Proof. Note that G is redundantly rigid by Corollary 6.3.
First suppose that G′ is obtained from G by adding a new edge or loop f . Since G is

rigid, there exists an Mlc-circuit C in G′ with f ∈ C. The Mlc-connectivity of G′ now
follows from the transitivity of the relation that defines Mlc-connectivity.

Next suppose G′ is obtained from G by a 1-extension operation that deletes an edge or
loop f and adds a new vertex v with three incident edges or loops f1, f2, f3. By transitivity,
it will suffice to show that every e ∈ (E ∪L)− f belongs to an Mlc-circuit of G

′ containing
f1, f2 and f3. Since G is Mlc-connected, there exists an Mlc-circuit C in G containing e
and f . Choose a base B of Mlc(G − f) with C − f contained in B. Then G[B] is rigid
simce G is rigid and e ∈ C ⊆ B + f . Hence B′ = B − e+ f is another base of Mlc(G) and
G[B′] is rigid. Then B′′ = B′ − f + f1 + f2 + f3 is a base of Mlc(G

′) and G′[B′′] is rigid,
since G′[B′′] is obtained by performing a 1-extension on G[B′]. Hence B′′ + e contains a
unique Mlc-circuit C

′. Since B′′ is independent we have e ∈ C ′. If f1 /∈ C ′ then, since v is
incident with exactly three edges, we would have C ⊆ B, contradicting the fact that B is
independent. Hence f1 is in C ′ and, since v is incident to exactly three edges, we also have
f2, f3 ∈ C ′. �

We next consider the inverse operations to edge/loop addition and 1-extension. To do
this we extend our definition of admissibility from an Mlc-circuit to an Mlc-connected graph
G = (V,E,L). We say that an edge or loop f ∈ E∪L is admissible if G−f is Mlc-connected,
and a node v ∈ V is admissible if there exists a 1-reduction at v which results in an Mlc-
connected graph.

We will show that every balanced Mlc-connected graph G other than K
[3]
1 has an admis-

sible edge or node. The main idea is to find an admissible edge/loop or node in the last
Mlc-circuit of an ear decomposition of G. We will need some additional terminology for
nodes in rigid Mlc-circuits to do this.

Suppose v is a node in a rigid Mlc-circuit G = (V,E,L) and X is a critical set in G.
We say that X is node critical for v if N(v) − z ⊆ X ⊆ V \ {v, z} for some z ∈ N(v)
with d†(z) ≥ 4. We will also refer to a critical set X as being node critical when it is node
critical for some (unspecified) node. We say that v is a leaf node if dG†[V3](v) ∈ {0, 1}, a
series node if dG†[V3](v) = 2 and a branching node if dG†[V3](v) = 3. Note that a 1-reduction
at a branching node cannot be admissible since the resulting graph will have a vertex v
with d†(v) = 2.

Theorem 6.6. Let G = (V,E,L) be a balanced, Mlc-connected, looped simple graph distinct

from K
[3]
1 . Then G has an admissible edge or loop, or an admissible node.

Proof. We proceed by contradiction. Suppose that G has no admissible edges or nodes.
Since G is balanced, G has at least one loop. Lemma 6.2 now implies that G has an ear
decomposition C1, C2, . . . , Cm such that Hi = G[Ci] is a rigid Mlc-circuit for all 1 ≤ i ≤ m.

Let Hi = (Vi, Ei, Li) for all 1 ≤ i ≤ m and H =
⋃m−1

i=1 Hi. Then H is Mlc-connected by

Lemma 6.1(i). Put Y = Vm \ ∪m−1
i=1 Vi and X = Vm \ Y . Note that if m = 1 then Y = V
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and X = ∅. If Y = ∅ then H = G− e for some e ∈ E ∪ L and e is admissible in G since H
is Mlc-connected. Hence we may assume that Y 6= ∅. Lemma 6.4(ii) now implies that X is
mixed critical in Hm. Hence Y contains at least one node of Hm by Lemma 5.3.

Claim 6.7. No node of Hm in Y is admissible in Hm, and hence every node of Hm in Y
has at least two distinct neighbours in G.

Proof. Suppose some node v ∈ Y is admissible in Hm. Let C ′
m be the edge set of the rigid

Mlc-circuit obtained from Hm by performing an admissible 1-reduction at v. Then v is a
node in G and the graph obtained from G by performing the same 1-reduction at v will be
Mlc-connected since it will have an ear decomposition C1, C2, . . . , Cm−1, C

′
m. Hence v will

be admissible in G, contradicting the fact that G has no admissible nodes. We can now use
lemma 5.4(c) to deduce that v has at least two distinct neighbours. �

Claim 6.8. Suppose v is a node of Hm in Y . Then v has at least two neighbours in Y .

Proof. We split the proof into three cases.
Case 1: N(v) ∩ Y = ∅.

Since Hm[Y ] is connected by Lemma 6.4(ii), we have Y = {v}. If G[N(v)] is not complete
then we may choose p, q ∈ N(v) with pq 6∈ E. Then the 1-reduction at v which adds the
edge pq creates the graph H + pq. Lemma 6.5 and the fact that H is Mlc-connected now
imply that this 1-reduction is admissible in G. This contradicts the assumption that G
has no admissible nodes. Hence G[N(v)] is complete. Then G− v = H by Lemma 6.4(ii),
so G − v is Mlc-connected. Since G − e is a 1-extension of H for any edge e in G[N(v)],
it is also Mlc-connected by Lemma 6.5. Hence e is admissible in G. This contradicts the
assumption that G has no admissible edges.
Case 2: N(v) = {r, s, t} with {r, t} ⊆ X, s ∈ Y .

Since v is not admissible in Hm, there exist critical sets R,T in Hm such that {s, r} ⊆
T ⊆ Vm \ {v, t} and {s, t} ⊆ R ⊆ Vm \ {v, r} by Lemma 5.4. We may suppose that R,T
have been chosen to be the minimal critical sets with these properties. If R,T are both
pure critical, then (R,S,X) would be an unbalanced flower on v in Hm, and we could use
Lemma 5.7 to contradict the hypothesis that G is balanced. Relabelling R,T if necessary
we may assume that R is mixed critical, but not pure critical, in Hm. Lemma 5.8 now
implies that (X,R, T ) is a strong or weak flower on v in Hm. Let H ′

m denote the graph
obtained from Hm by applying a 1-reduction at v adding the edge st. Then H ′

m contains
a unique Mlc-circuit D. The minimality of R and the fact that R is not pure critical now
imply that D = Hm[R] + st and D is a rigid Mlc-circuit. Let C

′
m = E(D) ∪ L(D).

We will show that v is admissible in G by verifying that G′ = G−v+st is Mlc-connected.
Since H is Mlc-connected, it will suffice to show that G′ = H ∪D and that D contains an
edge or loop of H. We first verifiy that D contains an edge of H. Since each edge of C̃m is
incident with Y by Lemma 6.4(ii), this is equivalent to showing that D contains an edge of
Hm[X]. This follows because R and X are mixed critical in Hm, so R∩X is mixed critical
and nonempty, and all edges of Hm[R∩X] belong to D. It remains to show that G′ = D∪H

i.e. (C̃m \ {vr, vs, vt}) + st ⊆ C ′
m. Lemma 5.6 implies that all edges of Hm which are not

incident with v are induced by either X or R, and no edge of C̃m is induced by X by Lemma
6.4(ii). Since C ′

m = E(D)∪L(D) and D = Hm[R]+st we have (C̃m\{vr, vs, vt})+st ⊆ C ′
m.

Thus G′ is Mlc-connected and v is admissible in G.
Case 3: N(v) = {r, s} with r ∈ X and s ∈ Y .

Since v is not admissible in Hm, Lemma 5.4 implies that there exists a pure critical set R
in Hm with {r, s} ⊆ R ⊆ V (Hm)−v and a mixed critical set S with s ∈ S ⊆ V (Hm)\{r, v}.
We may assume that R and S have been chosen to be the minimal such sets.
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Suppose that |R∩X| ≥ 2. Then X ∪R is mixed critical, X ∩R is pure critical, Hm[R] is
simple and Hm − v = Hm[X] ∪Hm[R] by Lemma 5.5(c). Note that Lemma 5.5(b) applied
to X and S tells us that rs /∈ E. Let H ′

m = Hm − v + rs. Then H ′
m contains a unique

Mlc-circuit D. The minimality of R now implies that D = Hm[R]+ rs and D is simple. Let
G′ = G− v + rs. We will show that G′ is Mlc-connected. Since Hm − v = Hm[X] ∪Hm[R]
and X ⊆ V (H), all edges of G′ belong to H or D. Since H and D are both Mlc-connected
and have at least one edge in common (as X ∩R is a critical set with at least two vertices in
Hm), G′ is Mlc-connected and hence v is admissible in G. This contradicts the assumption
that G has no admissible nodes so we must have R ∩X = {r}.

Since R is pure-critical, R ∩X = {r} and s ∈ R, we can find a path P in Hm[R] from r
to s which avoids X − r. Since X and S are mixed critical in Hm and v 6∈ X ∪ S, Lemma
5.5(b) implies there are no edges in Hm from X \S to S \X. Since r ∈ X \S and s ∈ S \X,
this contradicts the existence of the path P . �

Claim 6.9. Let v be a node of Hm in Y with three distinct neighbours. Then there is no
unbalanced flower on v in Hm.

Proof. Let N(v) = {w, u, z} and suppose there exists an unbalanced flower (W,U,Z) on v
in Hm with u, z ∈ W ⊆ Vm \ {v,w}, w, z ∈ U ⊆ Vm \ {v, u}, and w, u ∈ Z ⊆ Vm \ {v, z}.

First suppose that N(v) ⊆ Y . We may assume that U,Z are pure critical and that W
is mixed critical. Replacing W by W ∪X if necessary, we may assume that X ⊆ W . The
properties of an unbalanced flower (Lemma 5.7) now tell us that the component of G−{u, z}
which contains {v,w} is loopless. This contradicts the hypothesis that G is balanced.

Now suppose N(v) 6⊆ Y . Claim 6.8 implies that v has at least two neighbours in Y .
Hence we may assume that u, z ∈ Y and w ∈ X. Since X is mixed critical, each connected
component of Hm[X] contains a loop. Lemma 5.7 and the fact that X ∩Z = {w} ⊆ X ∩U ,
now implies that U is mixed critical, W is pure critical, and no vertex of (W ∪Z)\{w, z} is
incident with a loop in Hm. The facts that Hm[X] is rigid and no vertex of X ∩ (W − z) is
incident with a loop now imply that X ∩ (W − z) = ∅, and hence X ⊆ U . This contradicts
the hypothesis that G is balanced since the component of G−{w, z} which contains {v, u}
will be loopless. �

Claim 6.10. We can choose a node v of Hm in Y and a critical set Xv in Hm such that
Xv is mixed node critical for v and X ⊆ Xv.

Proof. Let F = H†
m[V3 ∩ Y ]. Then F is a forest by Lemma 5.2 and we may choose a vertex

v of F such that dF (v) ≤ 1. Since v has at least two neighbours in Y by Claim 6.8, v has
a neighbour z in Y with d†(z) ≥ 4.

We first consider the case when N(v) = {y, z}. Then y ∈ Y by Claim 6.8. Since v is not
admissible in Hm, Lemma 5.4 implies that there exists a mixed critical set S in Hm with
y ∈ S ⊆ Vm \ {v, z}. Then S ∪X is a mixed node critical set for v.

We next consider the case when N(v) = {w, u, z} ⊆ Y . Since dF (v) ≤ 1 we may assume
that d†(u) ≥ 4. Since v is not admissible in Hm, Lemma 5.8 and Claim 6.9 imply that
there exists a strong or weak flower (W,U,Z) on v in Hm with u, z ∈ W ⊆ Vm \ {v,w},
w, z ∈ U ⊆ Vm \ {v, u}, and w, u ∈ Z ⊆ Vm \ {v, z}. Then either Z, or U , is mixed critical
and hence either Z ∪X, or U ∪X, is a mixed node critical set for v.

It remains to consider the case when N(v) = {w, u, z} 6⊆ Y . Since v has at least two
neighbours in Y we may assume that u ∈ Y and w ∈ X. Since v is not admissible in Hm,
Lemma 5.8 and Claim 6.9 imply that there exists a strong or weak flower (W,U,Z) on v in
Hm with u, z ∈ W ⊆ Vm \ {v,w}, w, z ∈ U ⊆ Vm \ {v, u}, and w, u ∈ Z ⊆ Vm \ {v, z}. If
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Z is mixed critical or |X ∩ Z| ≥ 2 then Z ∪X is a mixed node critical set for v. Hence we
may assume that Z is not mixed critical and X ∩ Z = {w}.

Thus (W,U,Z) is a weak flower. Lemma 5.6 and the fact that Z is not mixed critical
now imply that W is mixed critical and iL(W

†) = 0 = d(W †, Z†). Furthermore, since
X ∩ Z = {w}, we have X − w ⊆ Z†. This implies that w is an isolated vertex of Hm[X]
and contradicts the fact that X is mixed critical in Hm. �

Choose a node v of Hm in Y and a mixed node critical set Xv for v in Hm which satisfy
the conditions of Claim 6.10 and are such that |Xv| is as large as possible over all such
choices of v and Xv. Let Yv = Vm \Xv. Since Xv is mixed node critical for v, |Yv| ≥ 2. Let

Fv = H†
m[V3 ∩ Yv]. By Lemma 5.3 we can choose a node z 6= v in Yv such that dFv(z) ≤ 1.

By Claim 6.7, z has at least two distinct neighbours in G.
Suppose z has exactly two neighbours, say a, b, in G. If {a, b} ∩ Xv 6= ∅ then the set

X ′
v = Xv+z would contradict the maximality of Xv. Hence {a, b} ⊂ Yv and since dFv(z) ≤ 1

we may assume that d†(b) ≥ 4. Since z is not admissible in Hm we have a ∈ Xz ⊆ V \{z, b}
for some mixed critical set Xz. Then X ′

z = Xz ∪ Xv is mixed node critical for z and
contradicts the maximality of Xv . Hence z has three distinct neighbours in G.

The facts that Hm is an Mlc-circuit, Xv is mixed critical and v 6∈ Xv + z imply that z
has at most two neighbours in Xv. If z had exactly two neighbours in Xv, then Xv ∪ {z}
would be a mixed node critical set for v and would contradict the maximality of Xv . Hence
z has at most one neighbour in Xv. Consider the following two cases.

Case 1: z is a series node in Hm.
Let N(z) = {p, q, t}. Since z is a series node in Hm and dFv(z) ≤ 1, z has exactly one

neighbour, say t, in Xv and t is a node in Hm. Without loss of generality, we may assume
d†(p) = 3 and d†(q) ≥ 4. Since z is non-admissible, Lemma 5.4(a) implies there exists a

(pure or mixed) critical set Xz with {t, p} ⊆ Xz ⊆ V \ {z, q}. Since H†
m[V3] is a forest by

Lemma 5.2, we have pt /∈ E and hence Xz 6= {t, p}. Since Xv,Xz are critical, t is a node,
t ∈ Xv ∩Xz and z 6∈ Xv ∪Xz, all neighbours of t other than z belong to Xv ∩Xz. Lemma
5.5(b) or (c) now implies that Xv ∪Xz is mixed critical. Since {t, p} ⊆ Xv ∪Xz ⊆ V \{z, q}
and d†(q) ≥ 4, Xv ∪Xz is mixed node critical for z. This contradicts the maximality of Xv.

Case 2: z is a leaf node in Hm.
Let N(z) = {z1, z2, z3}. Since z is non-admissible, Lemma 5.8 and Claim 6.9 imply there

is either a strong or weak flower (Z1, Z2, Z3) on z in Hm with Zi ⊆ Vm\{z, zi} for 1 ≤ i ≤ 3.

We have zizj 6∈ E for all 1 ≤ i < j ≤ 3 by Lemma 5.6(b) (since zi ∈ Z†
i ). Since z is a leaf

node in Hm, we may suppose that d†(z1) ≥ 4 and d†(z2) ≥ 4. Since neither z1 nor z2 are
nodes in Hm, Z1 and Z2 are two node critical sets for z with Z1 ∪Z2 = Vm − z (by Lemma
5.6(a)) and at least one of them, say Z1, is mixed critical. Then Z1 ∪Xv is mixed critical.
If z1 6∈ Xv then Z1∪Xv would be a mixed node critical set for z which would be larger than
Xv since z2, z3 ∈ Z1 and |N(z) ∩ Xv|| ≤ 1. This would contradict the maximality of Xv

so we must have z1 ∈ Xv. The fact that |N(z) ∩Xv| ≤ 1 now implies that z2, z3 6∈ Xv. It
follows that, if either Z2 is mixed critical or |Z2 ∩Xv| ≥ 2, then Z2 ∪Xv would be a mixed
node critical set for z which is larger than Xv . Hence Z2 is pure critical and Z2∩Xv = {z1}.

We complete the proof by using a similar argument to the last paragraph of the proof of
Claim 6.10. Lemma 5.6 and the fact that Z2 is not mixed critical imply that (Z1, Z2, Z3)

is a weak flower, and iL(Z
†
2) = 0 = d(Z†

1 , Z
†
2). Furthermore, since Xv ∩ Z2 = {z1}, we have

Xv − z1 ⊆ Z†
2. This implies that z1 is an isolated vertex of Hm[Xv ] and contradicts the fact

that Xv is mixed critical in Hm. �
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Recursive constructions. We close this section by using Theorem 6.6 to obtain a re-
cursive construction for rigid Mlc-connected graphs. It uses the special case of the 2-sum
operation in which one side of the 2-sum is a copy of K4. We will refer to this operation
and its inverse as a K4-extension and a K4-reduction, respectively.

We will need the following result on admissible reductions of loopless Mlc-connected
graphs and an extension of Lemma 5.9 to Mlc-connected graphs.

Theorem 6.11. Let G = (V,E) be an Mlc-connected simple graph which is distinct from
K4 and uv, xy ∈ E.
(a) If G is an Mlc-circuit then some vertex of V \ {u, v, x} is an admissible node in G.
(b) If G is not an Mlc-circuit then either some edge of E \ {uv, xy} is admissible in G, or
some vertex of V \ {u, v, x, y} is an admissible node in G.

Proof. Part (a) follows immediately from [1, Theorem 3.8]. To see (b) we choose an Mlc-
circuitH1 inG containing uv, xy and then extendH1 to an ear decompositionH1,H2, . . . ,Hm

of G. Then [11, Theorem 5.4] implies that either some edge of Hm distinct from uv, xy is

admissible in G or some vertex of Hm −
⋃m−1

i=1 Hm−1 is an admissible node of G. �

An unbalanced 2-separator of a looped simple graph G is a pair of vertices {u, v} such that
G−{u, v} has a component with no loops. Note that we allow this loopless component to be
equal to G−{u, v}. An unbalanced 2-separation of G is an ordered pair of subgraphs (G1, G2)
such that G = G1 ∪G2, |V (G1) ∩ V (G2)| = 2 < |V (G2)| and E(G1) ∩E(G2) = ∅ = L(G2).

Lemma 6.12. Let G = (V,E,L) be a looped simple graph with L 6= ∅, and (G1, G2) be
an unbalanced 2-separator of G such that V (G1) ∩ V (G2) = {u, v} and uv 6∈ E. Then the
following statements are equivalent:
(a) G+ uv is Mlc-connected;
(b) G1 + uv and G2 + uv are both Mlc-connected;
(c) G is Mlc-connected.

Proof. Let Gi + uv = (Vi, Ei, Li) for i = 1, 2. By symmetry we may suppose L1 6= ∅ = L2.
Choose f1 ∈ L1 and g2 ∈ E2 − uv.

(a)⇒(b). Suppose that G + uv is Mlc-connected. Then there exists an Mlc-circuit C in
G + uv containing f1, g2. Lemma 5.9 now implies that C is the 2-sum of two Mlc-circuits
C1, C2 with f1, uv ∈ C1 ⊆ G1+uv and g2, uv ∈ C2 ⊆ G2+uv. Transitivity now implies that
G2 + uv is Mlc-connected and that all loops of G1 + uv belong the the same Mlc-connected
component H1 of G1 + uv as uv. To complete the proof we choose an edge g1 ∈ E1 and
show g1 is in H1. Since G + uv is Mlc-connected, there exists an Mlc-circuit C

′ in G + uv
containing f1, g1. If C ′ ⊆ G1 + uv then we are done. On the other hand, if C ′ 6⊆ G1 + uv
then Lemma 5.9 implies that (C ′∩G1)+uv is an Mlc-circuit in G1+uv containing f1, g1, uv.

(b)⇒(c). Suppose G1 + uv and G2 + uv are both Mlc-connected. Then there exists an
Mlc-circuit Ci in Gi + uv such that C1 contains f1, uv and C2 contains g2, uv. By Lemma
5.9, C = (C1 − uv) ∪ (C2 − uv) is an Mlc-circuit in G. Transitivity now implies that all
loops of G1 and all edges of G2 belong the the same Mlc-connected component H of G. To
complete the proof we choose an edge g1 ∈ E1 − uv and show g1 is in H1. Since G1 + uv is
Mlc-connected, there exists an Mlc-circuit C ′

1 in G + uv containing f1, g1. If C ′
1 ⊆ G then

we are done. On the other hand, if C ′
1 6⊆ G1 + uv then uv ∈ C ′

1 and Lemma 5.9 implies
that (C ′

1 − uv) ∪ (C2 − uv) is an Mlc-circuit in G containing f1, g1.

(c)⇒(a). This follows immediately from Lemma 6.5. �

We can now give our recursive construction.
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Theorem 6.13. A looped simple graph is rigid and Mlc-connected if and only if it can be

obtained from K
[3]
1 by recursively applying the operations of 1-extension, K4-extension and

adding a new edge or loop.

Proof. Sufficiency follows from Lemma 6.5 and the fact that K
[3]
1 is Mlc-connected. To

prove necessity it will suffice to show that every rigid Mlc-connected graph G with at least
two vertices can be reduced to a smaller rigid Mlc-connected graph by applying either a
1-reduction, a K4-reduction or an edge deletion. If G is balanced then Theorem 6.6 implies
there is an edge, loop or node such that the corresponding edge/loop deletion or 1-reduction
gives a rigid Mlc-connected graph.

Hence we may assume that G is unbalanced. By Lemma 6.12, G is the 2-sum of an
Mlc-connected graph G1 with at least one loop and a Mlc-connected graph G2 with no
loops along an edge uv. We may assume that G2 is 3-connected by choosing a 2-sum such
that G2 is as small as possible. If G2 = K4, then G can be reduced to G1 by applying the
K4-reduction operation.

Hence we may assume that G2 6= K4. Then Theorem 6.11 implies that G2 contains either
an admissible edge distinct from uv, or an admissible node x distinct from u, v. The graph
G′ obtained from G by performing the same reduction operation will then be Mlc-connected
since it is the 2-sum of G1 and G′

2 along uv. �

Figure 8 provides an illustration of Theorem 6.13. In this figure a thick edge or loop
means the next step in the construction will be a 1-extension which deletes that edge or
loop, and a dashed edge or loop means the next step in the construction will add that edge
or loop.

(a) (b) (c) (d)

Figure 8. A construction of the rigid Mlc-connected graph drawn on the

far right from a copy of K
[3]
1 , by (a) 1-extension on a loop, (b) K4-extension,

(c) loop addition and (d) edge addition.

Theorem 6.13 implies in particular that all rigid Mlc-circuits can be constructed from

K
[3]
1 by applying the operations of 1-extension, K4-extension and adding a new edge or

loop. Since every rigid Mlc-circuit G = (V,E,L) satisfies |E|+ |L| = 2|V | we can never use

the edge/loop addition operation when constructing a rigid circuit from K
[3]
1 . This gives

the following result.

Theorem 6.14. A looped simple graph is a rigid Mlc-circuit if and only if it can be obtained

from K
[3]
1 by recursively applying the 1-extension and K4-extension operations.

7. Balanced Mlc-connected graphs

We next consider reductions that preserve balance as well as Mlc-connectivity. We will
need two more structural results in unbalanced separations.

Lemma 7.1. Let G be Mlc-connected and let {u, v} be an unbalanced 2-separator in G.
Then u and v each have at least four incident edges or loops in G. Furthermore, if G′
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is obtained from G by performing an edge/loop deletion or 1-reduction, then {u, v} is an
unbalanced 2-separator in G′.

Proof. Let (G1, G2) be an unbalanced 2-separation in G with V (G1) ∩ V (G2) = {u, v}.
Then G1 + uv and G2 + uv are Mlc-connected by Lemma 6.12. Hence u and v are each
incident with at least three edges or loops in Gi +uv for i = 1, 2. This implies that u and v
each have at least four incident edges or loops in G. In particular, neither u nor v is a node
of G. It is now straightforward to check that {u, v} is an unbalanced 2-separator in G′. �

Our next lemma shows that a rigid looped simple graph cannot contain two ‘crossing’
unbalanced 2-separations.

Lemma 7.2. Supose that G = (V,E,L) is rigid looped simple graph and (G1, G2), (G
′
1, G

′
2)

are two unbalanced 2-separations in G with Gi = (Vi, Ei, Li) and G′
i = (V ′

i , E
′
i, L

′
i) for

i = 1, 2, L2 = ∅ = L′
2, V1 ∩ V2 = {u, v}, V ′

1 ∩ V ′
2 = {u′, v′} and {u, v} ∩ {u′, v′} = ∅. Then

{u′, v′} ⊆ Vi for some i ∈ {1, 2}.

Proof. Suppose for a contradiction that u′ ∈ V1 and v′ ∈ V2. If {u, v} ⊆ V ′
i for some

i ∈ {1, 2} then either G − u′ or G − v′ would have a loopless component. This would
contradict the hypothesis that G is rigid and hence we may assume that u ∈ V ′

1 and v ∈ V ′
2 .

Let H1 = G1[V1 ∩ V ′
1 ], H2 = G2[V

′
1 ∩ V2], H3 = G2[V2 ∩ V ′

2 ], H4 = G′
2[V1 ∩ V ′

2 ], and put
ni = |V (Hi)| for 1 ≤ i ≤ 4, see Figure 9. Then H1,H2,H3,H4 cover E ∪ L and H2,H3,H4

are loopless. This gives

r(G) ≤
4

∑

i=1

r(Hi) ≤ 2n1 +

4
∑

i=2

(2ni − 3) = 2|V | − 1

and again contradicts the hypothesis that G is rigid. �

H2

H3 H4

H1u

v

u′

v′
G1G2

G′

1

G′

2

Figure 9. The subgraphs H1,H2,H3,H4 in the proof of Lemma 7.2.

An edge or loop f in a balanced Mlc-connected graph G is feasible if G − f is balanced
and Mlc-connected, and a node v is feasible if there exists a 1-reduction at v which results in
a balanced Mlc-connected graph. Figure 10 illustrates the difference between admissibility
and feasibility. On the far left, the vertex x is not admissible in H. Each 1-reduction at x
that adds a loop creates a vertex of degree 2, and the 1-reduction at x which adds an edge
results in a graph with only 3 loops, none of which is contained in an Mlc-circuit. The only
admisible 1-reduction at the vertex y in the graph G is the one that adds the edge y1y2.
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However, the graph G− y+ y1y2 is not balanced since (G− y+ y1y2)−{u, v} has no loops.
Therefore y is admisible but not feasible in G. The 1-reduction at y1 which adds the edge
vy results in a balanced rigid Mlc-circuit, so the vertex y1 is feasible in G.

x

H

v

u

y1

y2

y

G

v

u

y1

y2

G− y + y1y2

v

u

y2

y

G− y1 + vy

Figure 10. The vertex x is non-admissible in H, the vertex y is admissible
but non-feasible in G, and the vertex y1 is feasible in G.

Theorem 7.3. Let G = (V,E,L) be a balanced, Mlc-connected looped simple graph distinct

from K
[3]
1 . Then some edge, loop, or node of G is feasible.

Proof. Suppose, for a contradiction, that all possible edge/loop deletions and node 1-
reductions of G fail to be either Mlc-connected or balanced. Theorem 6.6 implies that
G contains either an admissible node w or an admissible edge or loop f . By assumption
neither w nor f is feasible. Let G′ be the result of deleting f or performing an admissible
1-reduction at w. Then G′ is Mlc-connected and not balanced. Hence G′ contains an unbal-
anced 2-separation H1,H2 where H1 is loopless and V (H1)∩V (H2) = {u, v}. We may sup-
pose that the pair (r, {u, v}), where r ∈ {w, f}, has been chosen so that X = V (H1)\{u, v}
is as small as possible.

Let H+
1 = H1 + uv and H+

2 = H2 + uv.

Claim 7.4. H+
1 and H+

2 are Mlc-connected and H+
2 is redundantly rigid.

Proof of Claim. Corollary 6.3 implies that H+
1 and H+

2 are Mlc-connected. Corollary 6.3
now implies that H+

2 is redundantly rigid. �

Note that the minimality of X implies that H+
1 is 3-connected.

Claim 7.5. uv /∈ E.

Proof of Claim. Suppose uv ∈ E. Since G′ is Mlc-connected and {u, v} is an unbalanced
2-separator in G′, Lemma 6.12 implies that G′ − uv is Mlc-connected. Since G − uv is
obtained from G′ − uv by an edge addition or a 1-extension, G − uv is Mlc-connected by
Lemma 6.5. It remains to show that G− uv is balanced.

Suppose {u′, v′} is an unbalanced 2-separator in G − uv. Since G is balanced, u and
v belong to different components of (G − uv) − {u′, v′}, at least one of which is loopless.
Furthermore, {u′, v′} is an unbalanced 2-separator in G′ − uv by Lemma 7.1. This implies
that G′ − uv does not contain three internally disjoint uv-paths. Since H+

1 is 3-connected,
there are two internally disjoint uv-paths in H+

1 −uv. Hence u′, v′ ∈ X and u and v belong
to different components Ju and Jv of H+

2 − uv, see Figure 11 for an illustration. Note that
Ju and Jv both contain loops since G′ is rigid. This contradicts the fact that either u or v
belongs to a loopless component of (G−uv)−{u′, v′} since G−uv is obtained from G′−uv
by applying a 1-extension or edge/loop addition. �
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H2=H+

2 − uv H1=H+

1 − uv
uJu

vJv
u′v′

G′ − uv

Figure 11. An illustration of the structure of G′−uv in the proof of Claim
7.5. The 3-connectivity of H+

1 implies there are two disjoint uv-paths within
H1 = H+

1 − uv, and hence removing u′ and v′ must destroy these paths.

Our strategy in the remainder of the proof is to show that some edge or node of G in H1

is feasible in G. We have to be careful when considering the edges and nodes of H1 since
not all of them are edges or nodes in G. In addition a vertex which is a node in both H1

and G may be incident with different edges in each graph. We use the following notation to
handle this. We first put E†(H1) = E(H1) ∩ E(G). If r = w, we let V †(H1) = X −NG(w)
and, if r = f and f = yz, then we let V †(H1) = X − {y, z}. If the reduction operation
which converts G to G′ adds an edge e between two vertices of H1 we put θ = e. Otherwise
there is a unique vertex x of X which is incident/adjacent to r and we put θ = x.

Claim 7.6. Suppose that G− e is Mlc-connected for some e ∈ E†(H1). Then H1−{u, v, e}
is connected.

Proof of Claim. Suppose H1 − {u, v, e} has two components J1, J2. Choose i ∈ {1, 2} such
that θ /∈ V (Ji) ∪ E(Ji). Then {u, v} is an unbalanced 2-separation of G − e with Ji as a
component and V (Ji) is properly contained in X. This contradicts the minimality of X. �

Claim 7.7. G− e is not Mlc-connected for all e ∈ E†(H1).

Proof of Claim. Suppose that G−e is Mlc-connected for some edge e = ab ∈ E†(H1). Then
G − e is not balanced so there exists an unbalanced 2-separator T in G − e. Since G is
balanced, a and b are in different components of (G− e)− T .

We can apply Lemma 7.1 to G− e and G′ respectively to deduce that T and S = {u, v}
are unbalanced 2-separators in G′′ = G′− e. Since G′ is Mlc-connected and contains a loop,
it is redundantly rigid by Corollary 6.3. Hence G′′ = G′−e is rigid. Lemma 7.2 now implies
that T ⊆ V (Hi) for some i ∈ {1, 2}. Since H1−{u, v, e} is connected by Claim 7.6, G′′[X] is
a component of G′′−S. Since a, b ∈ X∪S and T separates a, b in G−e, we have T ∩X 6= ∅.
Hence T ⊆ V (H1).

Let XT be the vertex set of a loopless component of (G − e) − T . Since G is balanced,
each component of H2 − S contains a loop and hence XT ∩ (V (H2 − S) = ∅. This implies
that XT ∪ T ⊆ X ∪ S ∪ {r} so we may contradict the minimality of X by showing that r
and some vertex of X ∪S does not belong to XT ∪ T . We know that r is adjacent/incident
to some vertex x ∈ X. If r is also adjacent/incident to some vertex of V (H2) \ S then the
facts that r does not belong to G′ − e and T is an unbalanced 2-separator of G − e gives
r, x /∈ XT ∪ T . Similarly, if r is only adjacent/incident to vertices of H1, then either r is a
loop or r is a node incident with a loop and we again have r, x /∈ XT ∪ T . �

Claim 7.8. H+
1 − e is not Mlc-connected for all e ∈ E†(H1).
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Proof of Claim. Suppose H+
1 − e is Mlc-connected. Then G′ − e is the 2-sum of H+

1 − e
and H+

2 , and G′ − e is Mlc-connected by Lemma 6.12. Lemma 6.5 now implies that G− e
is Mlc-connected, contradicting Claim 7.7. �

Claim 7.9. Suppose p ∈ V †(H1) is a node of H+
1 , N(p) = {q, s, t} and G − p + st is

Mlc-connected. Then (H1 − p+ st)− {u, v} is connected.

Proof of Claim. Suppose (H1−p+st)−{u, v} has two components J1, J2. Choose i ∈ {1, 2}
such that θ /∈ V (Ji)∪E(Ji). Then {u, v} is an unbalanced 2-separation in G−p+ st and Ji
is a loopless component of (G− p+ st)−{u, v}. This contradicts the minimality of X. �

Claim 7.10. Every node p of H+
1 in V †(H1) is non-admissible in G.

Proof of Claim. Suppose p ∈ V †(H1) is a node of H+
1 with N(p) = {q, s, t} and G− p+ st

is Mlc-connected. Then G − p + st is not balanced, so has an unbalanced 2-separator T .
Since G is balanced, st and q are in different components of (G− p+ st)− T .

We can apply Lemma 7.1 to G−p+st and G′ respectively to deduce that T and S = {u, v}
are unbalanced 2-separators in G′′ = G′ − p + st. Since G′ is Mlc-connected and contains
loops it is redundantly rigid by Corollary 6.3. Hence G′−pq is rigid. Since G′−p is obtained
from G′ − pq by deleting a vertex with two incident edges, it is rigid. Since G′′ is obtained
from G′ − p by an edge addition, it is also rigid. Lemma 7.2 now implies that T ⊆ V (Hi)
for some i ∈ {1, 2}. Since H1 − p + st − {u, v} is connected by Claim 7.6, G′′[X − p] is
a component of G′′ − S. Since q, s, t ∈ X ∪ S and T separates st from q in G′′, we have
T ∩X 6= ∅. Hence T ⊆ V (H1).

Let XT be the vertex set of a loopless component of (G−p+st)−T . Since G is balanced,
each component of H2 − S contains a loop and hence XT ∩ (V (H2)− S) = ∅. This implies
that XT ∪ T ⊆ (X ∪ S) + r− p so we may contradict the minimality of X by showing that
r does not belong to XT ∪ T . This is trivially true if r = f , so we may assume r = w.
We know that w is adjacent to some vertex x ∈ X. If w is also adjacent to some vertex
of H2 − S then the facts that w does not belong to G′ − p + st and T is an unbalanced
2-separator of G − p + st give w /∈ XT ∪ T . Similarly, if w is only adjacent to vertices of
H1, then w is a node incident with a loop and we again have w /∈ XT ∪ T . �

Claim 7.11. Every node p of H+
1 in V †(H1) is non-admissible in H+

1 .

Proof of Claim. Suppose p is a node with N(p) = {q, s, t} and H+
1 −p+st is Mlc-connected.

Then G′ − p+ st is the 2-sum of H+
1 − p+ st and H+

2 and G′ − p+ st is Mlc-connected by
Lemma 6.12. It follows from Lemma 6.5 that G − p + st is Mlc-connected, contradicting
Claim 7.10. �

Claim 7.12. H+
1 is an Mlc-circuit.

Proof of Claim. This follows immediately from Theorem 6.11(b), Claims 7.4, 7.8 and 7.11,
and the definition of V †(H1). �

Claim 7.13. H+
1 is isomorphic to K4.

Proof of Claim. Suppose H+
1 is not isomorphic to K4. By Claim 7.11, no node of H+

1 in
V †(H1) is admissible in H+

1 . Theorem 6.11(a), Claim 7.12 and the definition of V †(H1) now
imply that G′ = G − w + xy, for some x, y ∈ V (H1) and u, v, x, y are the only admissible
nodes in H+

1 . We shall show that x is a feasible node in G.
Since x is an admissible node of H+

1 , H+
1 −x+st is Mlc-connected for some s, t ∈ N

H+

1

(x).

Let N
H+

1

(x) = {q, s, t}. Since xy is an edge of H+
1 and y is a node of H+

1 , we must have
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y ∈ {s, t}. Without loss of generality suppose y = t. Since G′ − x + sy is the 2-sum of
H+

1 − x + sy and H+
2 , and H+

2 is Mlc-connected by Claim 7.4, Lemma 6.12 implies that
G′ − x+ sy is Mlc-connected. Since G− x+ sw is a 1-extension of G′ − x+ sy, Lemma 6.5
now implies that G− x+ sw is Mlc-connected.

SupposeH+
1 −x+sy−{u, v} is disconnected. SinceH+

1 is 3-connected, H+
1 −x+sy−{u, v}

has two components J1, J2 with sy ∈ E(J1) and q ∈ V (J2). Then V (J2) is properly
contained in X. Since J2 is a loopless component of (G− x+ sw)−{u, v}, this contradicts
the minimality of X. Thus H+

1 − x+ sy − {u, v} is connected.
Since x is not feasible in G, G − x + sw is not balanced. Let T be an unbalanced 2-

separator in G−x+ sw. Since G is balanced, T separates sw and q. We can apply Lemma
7.1 to G − x + sw and G′ respectively to deduce that T and S = {u, v} are unbalanced
2-separators in G′′ = G′ − x+ sy. Since G′ is Mlc-connected and contains a loop, Corollary
6.3 implies that G′ is redundantly rigid, and hence G′−xq is rigid. Since G′−x is obtained
from G′−xq by deleting a vertex with two incident edges, it is rigid. Since G′′ = G′−x+sy
is obtained from G′ − x by an edge addition, it is also rigid. Lemma 7.2 now implies that
T ⊆ V (Hi) for some i ∈ {1, 2}. Since (H+

1 − x + sy) − {u, v} is connected, G′′[X − x] is
a component of G′′ − S. Since q, s, y ∈ X ∪ S, and T separates sy and q in G′′, we have
T ∩X 6= ∅. Hence T ⊆ V (H1).

Let XT be the vertex set of the component of (G− x+ sw)− T which is loopless. Since
G is balanced, each component of H+

2 −S contains a loop and hence XT ∩ (V (H2)−S) = ∅.
This implies that XT ∪ T ⊆ (X ∪ S) + w − x, so we may contradict the minimality of X
by showing that w does not belong to XT ∪ T . Note that w /∈ T by Lemma 7.1. If w is
adjacent to some vertex z ∈ V (H2) \ S then z /∈ XT ∪ T . Since zw ∈ E(G − x + sw) and
T is an unbalanced 2-separator, w /∈ XT . Similarly, if w is only adjacent to vertices of H+

1 ,
then w is a node incident with a loop and we again have w /∈ XT . �

H2

u

v
t

θ

H1=H+
1 − uv

Figure 12. The structure of G′ in the proof of Claim 7.14.

Claim 7.14. G′ = G− w + xy for some x, y ∈ V (H1) and hence θ = xy ∈ E(H1).

Proof of Claim. Suppose that the claim is false. Then θ is a vertex inX, V (H1) = {u, v, θ, t}
and t is a node of G, see Figure 12. We will show that G − t + uv is balanced and Mlc-
connected. Note that uv /∈ E by Claim 7.5. Note also that G − t + uv can be obtained
from H+

2 by either a sequence of one 1-extension and one edge addition (in the case that
G′ = G− f) or two 1-extensions (in the case when G′ = G−w+ z1z2 for some z1, z2 /∈ X).
Since H+

2 is Mlc-connected by Claim 7.4, it follows from Lemma 6.5 that G − t + uv is
Mlc-connected. Since θ is adjacent to u and v and G is balanced there is no unbalanced
2-separation separating θ from uv in G− t+ uv. Thus G− t+ uv is balanced. �

Claim 7.15. X 6= {x, y}.

Proof of Claim. Suppose that X = {x, y}. Then x, y are nodes of G. We shall show that
G−x+wv is Mlc-connected and balanced. Note that wv /∈ E since, if w has a neighbour z
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distinct from x, y, then z ∈ V (H2) \S. Note further that G− x+wv can be obtained from
H+

2 by a sequence of two 1-extensions. Since H+
2 is Mlc-connected by Claim 7.4, Lemma

6.5 implies that G − x + wv is Mlc-connected. Suppose that G − x + wv is not balanced.
Since G is balanced, there is an unbalanced 2-separator T in G− x+ wv that separates u
and wv. Since u,w and v are all neighbours of y in G− x+wv, we must have y ∈ T . Since
y is a node in G− x+ wv, this contradicts Lemma 7.1. Thus G− x+ wv is balanced. �

We can now complete the proof of the theorem. Claims 7.14 and 7.15 allow us to assume,
after relabelling if necessary, that X = {x, t} and v = y. Thus x is a node of G. We will
show that G−x+wt is Mlc-connected and balanced. Note that wt /∈ E since the neighbour
of w distinct from x, y belongs to V −(X∪S). Note further that G−x+wt can be obtained
from H+

2 by a sequence of two 1-extensions. Since H+
2 is Mlc-connected by Claim 7.4, it

follows from Lemma 6.5 that G− x+wt is Mlc-connected. Suppose that G− x+wt is not
balanced. Since G is balanced there is an unbalanced 2-separator T in G−x+wt separating
u and wt. Since ut is an edge of G − x + wt we must have t ∈ T . Since t is a node in
G− x+ wt, this contradicts Lemma 7.1. Thus G− x+ wv is balanced. �

Lemma 6.5 and Lemma 7.1 imply that the operations of edge/loop addition and 1-
extension preserve the properties of being Mlc-connected and balanced. Combined with
Theorem 7.3, this immediately gives the following recursive construction.

Theorem 7.16. A looped simple graph is balanced and Mlc-connected if and only if it can

be obtained from K
[3]
1 by recursively applying the operations of performing a 1-extension and

adding a new edge or loop.

Consider the balanced, Mlc-connected graph G drawn on the far right in Figure 13. We

gave a construction ofG fromK
[3]
1 in Figure 8. However, the second step in this construction,

where we use K4-extension, resulted in an unbalanced graph. In Figure 13, we show that

we can obtain G from K
[3]
1 by using only 1-extensions and edge or loop additions.

Figure 13. An illustration of the recursive construction given in Theorem 7.16.

8. Global rigidity

We will use our recursive construction to characterise generic global rigidity. We first
need a lemma which shows that the properties of redundant rigidity and Mlc-connectedness
are equivalent for connected balanced graphs.

Lemma 8.1. Let G be a balanced looped simple graph. Then G is Mlc-connected if and
only if G is connected and redundantly rigid.

Proof. Necessity follows from Corollary 6.3 and the assumption that G is Mlc-connected.
To prove sufficiency, we suppose, for a contradiction that G is connected and redundantly

rigid but not Mlc-connected. Let H1,H2, . . . ,Hm be the Mlc-components of G. Let Vi =
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V (Hi), Xi = Vi \
⋃

j 6=i Vj and Yi = Vi \Xi. Since G is connected, |Yi| ≥ 1, and since G is

balanced, |Yi| ≥ 3 when Hi is loopless.
We may assume that H1,H2, . . . ,Hs are loopless and Hs+1,Hs+2, . . . ,Hm are not. Then

r(G) =

s
∑

i=1

(2|Vi| − 3) +

m
∑

i=s+1

2|Vi|

=

s
∑

i=1

(2|Xi|+ 2|Yi| − 3) +

m
∑

i=s+1

(2|Xi|+ 2|Yi|)

≥
m
∑

i=1

(2|Xi|+ |Yi|) +m− s,

where the final inequality follows from the fact that |Yi| ≥ 3 for 1 ≤ i ≤ s and |Yi| ≥ 1 for
s+1 ≤ i ≤ m. Since the Xi are disjoint we have

∑m
i=1 |Xi| = |

⋃m
i=1Xi|. Also each element

of Yi is contained in at least one other Yj with j 6= i. Hence we have
∑m

i=1 |Yi| ≥ 2|
⋃m

i=1 Yi|.
In addition the hypothesis that G is balanced implies that at least one Hi contains a loop
so m > s. Hence

r(G) ≥ 2(|
m
⋃

i=1

Xi|+ |
m
⋃

i=1

Yi|) +m− s > 2|V (G)|.

This contradicts the fact that r(G) ≤ 2|V (G)|. �

We may use Lemma 8.1 to restate Theorem 7.16 as

Theorem 8.2. A looped simple graph is balanced, connected and redundantly rigid if and

only if it can be obtained from K
[3]
1 by recursively applying the operations of performing a

1-extension and adding a new edge or loop.

We can now characterise global rigidity for 2-dimensional generic linearly constrained
frameworks.

Theorem 8.3. Suppose G is a connected looped simple graph with at least two vertices and
(G, p, q) is a generic realisation of G as a linearly constrained framework in R2. Then the
following statements are equivalent:
(a) (G, p, q) is globally rigid;
(b) G is balanced and redundantly rigid;
(c) (G, p, q) has a full rank equilibrium stress.

Proof. The implications (a) ⇒ (b) and (c) ⇒ (a) follow from Theorems 3.2 and 4.5, respec-
tively. It remains to prove that (b) ⇒ (c). We use induction on the number of vertices of G
to show that (G, p, q) has a full rank equilibrium stress whenever G is connected, balanced
and redundantly rigid. It is straighforward to check that every generic realisation of the

smallest redundantly rigid looped simple graph K
[3]
1 has a full rank equilibrum stress (given

by a 1× 1 stress matrix of rank zero). The induction step now follows by using Lemma 4.6,
and Theorems 4.7 and 8.2. �

We can use Theorem 8.3 and the fact that a linearly constrained framework is globally
rigid if and only if each of its connected components is globally rigid to deduce:

Theorem 8.4. Suppose (G, p, q) is a generic linearly constrained framework in R2. Then
(G, p, q) is globally rigid if and only if G is balanced and each connected component of G is
either a single vertex with two loops or is redundantly rigid.
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Theorem 2.1 implies that redundant rigidity can be checked efficiently by graph orienta-
tion or pebble game type algorithms [2, 19]. Since we can also check the property of being
balanced in polynomial time, Theorem 8.4 gives rise to an efficient algorithm to decide
whether a given looped simple graph is generically globally rigid in R2.

We conclude this section by mentioning a possible direction for future research. As
mentioned in the introduction, [8] gives a characterisation of generic rigidity for linearly
constrained frameworks in Rd when each vertex is constrained to lie in an affine subspace of
sufficiently small dimension compared to d. It would be interesting to obtain an analogous
characterisation for generic global rigidity.

9. The number of equivalent realisations

We will extend Theorem 8.4 by determining the number of distinct frameworks which are
equivalent to a given generic linearly constrained framework (G, p, q) when G = (V,E,L)
is a rigid Mlc-connected looped simple graph. For u, v ∈ V , let b(u, v) be the number of
loopless connected components of G− {u, v} and put b(G) =

∑

u,v∈V b(u, v).

Theorem 9.1. Suppose (G, p, q) is a generic linearly constrained framework in R2 and that

G is rigid and Mlc-connected. Then there are exactly 2b(G) distinct frameworks which are
equivalent to (G, p, q).

Our proof of Theorem 9.1 is similar to the proof of an analogous result for bar-joint
frameworks [15, Theorem 8.2]. We will indicate below how the latter can be adapted to
prove Theorem 9.1.

We first need a result on generic points in Rn. We will denote the algebraic closure of a
field K by K.

Lemma 9.2. Let f : Rn → Rn by f(x) = (f1(x), f2(x), . . . , fn(x)), where fi(x) is a
polynomial with coefficients in some extension field K of Q for all 1 ≤ i ≤ n. Suppose that
maxx∈Rn{rank df |x} = n. If either x or f(x) is generic over K, then x and f(x) are both

generic over K and K(x) = K(f(x)).

The proof of Lemma 9.2 is the same as that for [15, Lemmas 3.1, 3.2]. The only difference
being that we work with polynomials with coefficients in K rather than Z.

LetG = (V,E,L) be a looped simple graph with E = {e1, e2, . . . , em}, F = {ℓ1, ℓ2, . . . , ℓs}
and q : L → R2. The rigidity map fG,q : R

2|V | → R|E∪L| is defined by putting

fG,q(p) = (fe1(p), . . . , fem(p), fℓ1(p) . . . , fℓs(p))

where fei(p) = ‖p(u)− p(v)‖2 when ei = uv and fℓj(p) = q(ℓj) · p(v) when ℓj is incident to
v.

Lemma 9.3. Let (G, p, q) be a generic, rigid, linearly constrained framework in R2 and

suppose that (G, p′, q) is an equivalent framework. Then Q(p, q) = Q(fH,q(p)) = Q(p′, q).

Proof. This follows from Lemma 9.2 by choosing a minimally rigid spanning subgraph H
of G and then putting f = fH,q and K = Q(q). �

Given a linearly constrained framework (G, p, q) in R2, we say that two vertices u, v of
G are globally linked in (G, p, q) if ‖p(u) − p(v)‖ = ‖p′(u) − p′(v)‖ whenever (G, p′, q) is
equivalent to (G, p, q).

Lemma 9.4. Let (G, p, q) be a generic linearly constrained framework in R2 and v be a
node of G such that NG(v) = {u,w, x} and G− v is rigid. Then u,w are globally linked in
(G, p, q).
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The proof of Lemma 9.4 is the same as that of [15, Lemma 4.1]. The only difference
being that we use Lemma 9.3 instead of [15, Lemmas 3.3, 3.4].

Lemma 9.5. Suppose G is a rigid, Mlc-connected looped simple graph and {u, v} is an
unbalanced 2-separation in G. Then u, v are globally linked in every generic realisation of
G as a linearly constrained framework in R2.

Proof. We use induction on |E(G)|. Choose an unbalanced 2-separation (H1,H2) of G such
that H2 is simple, u, v ∈ V (H1) and |V (H2)| is as small as possible. Let V (H1) ∩ V (H2) =
{u′, v′}. Then H2 + u′v′ is 3-connected. In addition H1 + u′v′ is rigid, and H1 + u′v′ and
H2 + u′v′ are both Mlc-connected by Lemma 6.12.

Suppose H2 + u′v′ 6= K4. By Theorem 6.11, H2 + u′v′ has an admissible edge e distinct
from u′v′ or an admissible node w distinct from both u′ and v′. Let H ′

2 = H2 − e in the
former case and otherwise let H ′

2 = H2−w+xy be be obtained by performing an admissible
1-reduction at w. Then G′ = (H1 ∪H ′

2)− u′v′ is rigid and Mlc-connected by Lemma 6.12.
By induction, u, v are globally linked in every generic realisation of G′. This immediately
implies that u, v are globally linked in every generic realisation of G if G = G′ + f . Hence
we may suppose that G = G′ − w + xy. Since G is redundantly rigid and w is a node of
G, G−w is rigid. We can now use Lemma 9.4 to deduce that x, y are globally linked in G.
The fact that u, v are globally linked in every generic realisation of G′ now implies that u, v
are globally linked in every generic realisation of G.

It remains to consider the case when H2+u′v′ = K4. Choose w ∈ V (H2) \{u
′, v′}. Since

G is redundantly rigid and w is a node of G, G − w is rigid. Lemma 9.4 now implies that
u′, v′ are globally linked in every generic realisation of G. If {u, v} = {u′, v′} then we are
done so we may assume this is not the case. Then {u, v} is an unbalanced 2-seperation of
H1+u′v′. Since H1+u′v′ is rigid and Mlc-connected by Lemma 6.12, we may use induction
to deduce that u, v are globally linked in every generic realisation of H1 + u′v′. The fact
that u′, v′ are globally linked in every generic realisation of G, now implies that u, v are
globally linked in every generic realisation of G. �

Proof of Theorem 9.1. We use induction on b(G). If b(G) = 0 then the result follows from
Lemma 8.1 and Theorem 8.3. Hence we may suppose that b(G) ≥ 1. Let (H1,H2) be
an unbalanced 2-separation in G where H2 is loopless and |V (H2)| is as small as possible.
Let V (H1) ∩ V (H2) = {u, v}. Then H2 + uv is 3-connected and we have b(G) = b(H1 +
uv) + 1 by Lemma 7.2. In addition, H1 + uv is rigid, and H1 + u′v′ and H2 + u′v′ are
both Mlc-connected by Lemma 6.12. Since (H2 + uv, p|H2

) is globally rigid as a bar-joint
framework by Theorem 1.1 and u, v are globally linked in (G, p, q) by Lemma 9.5, the
number of linearly constrained frameworks which are equivalent to (G, p, q) is exactly twice
the number of linearly constrained frameworks which are equivalent to (H1+uv, p|H1

, q|H1
)

(each equivalent framework to (H1 + uv, p|H1
, q|H1

) gives rise to two equivalent frameworks
to (G, p, q) which are related by reflecting H2 in the line through u, v). We can now use
induction to deduce that the number of linearly constrained frameworks which are equivalent
to (G, p, q) is 2× 2b(H1+uv) = 2b(G). �

We close by noting that the problem of counting the number of non-congruent frameworks
which are equivalent to a given generic bar-joint framework in R2 can be converted to that
of counting the number of distinct frameworks which are equivalent to a related linearly
constrained framework in R2. Given a simple graph G we construct a looped simple graph
G∗ by choosing an edge uv of G and adding two loops at both u and v. It is not difficult
to see that the number of distinct linearly constrained frameworks which are equivalent to
a generic rigid (G∗, p, q) is exactly twice the number of non-congruent bar-joint framework
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frameworks which are equivalent to (G, p). In particular, we can use this construction to
deduce Theorem 1.1 from Theorem 9.1.
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