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Summary 

 
Chloroplast development requires communication between the progenitor plastids and the nucleus, 

where most of the genes encoding chloroplast proteins reside. Retrograde signals from the 

chloroplast to the nucleus control the expression of many of these genes, but the signalling pathway 

is poorly understood. Tetrapyrroles have been strongly implicated as mediators of this signal with 

the current hypothesis being that heme produced by the activity of ferrochelatase 1 (FC1) is 

required to promote nuclear gene expression. We have tested this hypothesis by overexpressing 

FC1 and specifically targeting it to either chloroplasts or mitochondria, two possible locations for 

this enzyme. Our results show that targeting of FC1 to chloroplasts results in increased expression 

of the nuclear-encoded chloroplast genes GUN4, CA1, HEMA1, LHCB2.1, CHLH after treatment with 

Norflurazon (NF) and that this increase correlates to FC1 gene expression and heme production 

measured by feedback inhibition of protochlorophyllide synthesis. Targeting FC1 to mitochondria 

did not enhance the expression of nuclear-encoded chloroplast genes after NF treatment. 

Overexpression of FC1 also increased nuclear gene expression in the absence of NF treatment 

demonstrating that this pathway is operational in the absence of a stress treatment. Our results 

therefore support the hypothesis that heme synthesis is a promotive chloroplast-to-nucleus 
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retrograde signal. However, not all FC1 overexpression lines enhanced nuclear gene expression 

suggesting there is still a lot we do not understand about the role of FC1 in this signalling pathway. 

 
1. Introduction 

Chloroplasts evolved through the integration of a free-living photosynthetic prokaryote into a non-

photosynthetic eukaryote, followed by relocation of the majority of the chloroplast genome to the 

nucleus (Jarvis & Lopez-Juez, 2013). The chloroplast retains its own reduced genome, encoding less 

than 100 predicted proteins in Arabidopsis thaliana, with the remaining approximately 3,000 

proteins encoded in the nucleus and imported into the developing chloroplast (Abdallah et al., 

2000). Consequently, there is a requirement for bidirectional signalling pathways between these 

organelles to ensure correct provision of proteins to the chloroplast. Anterograde signalling 

pathways by which the nucleus controls chloroplast development are reasonably well characterized 

and include photoreceptor and hormone control of nuclear-encoded chloroplast proteins (Jarvis & 

Lopez-Juez, 2013; Pogson et al., 2015) some of which can control the expression of chloroplast-

encoded proteins (Belbin et al., 2017; Yoo et al., 2019). Signalling from the chloroplast to the 

nucleus during chloroplast development (termed biogenic retrograde signalling; Pogson et al., 2008) 

is more poorly understood. However, treatments leading to chloroplast damage at the 

developmental stage results in a strong downregulation of hundreds of nuclear-encoded genes, 

many encoding chloroplast proteins (Koussevitzky et al., 2007; Woodson et al., 2013). In addition, 

the impact of the environment on photosynthesis enables chloroplasts to fulfil a sentinel function 

for environmental stress and various operational retrograde signals from mature chloroplasts can 

regulate nuclear gene expression to acclimate to these stresses (Pogson et al., 2008; Chan et al., 

2016; de Souza et al., 2017). 

Our understanding of biogenic retrograde signalling is based on the identification of genomes 

uncoupled (gun) mutants in which expression of the nuclear-encoded LHCB1.2 gene is maintained 

after severe chloroplast damage that strongly inhibits expression of many nuclear-encoded 

photosynthetic genes (Susek et al., 1993). In this case, chloroplast development was prevented by 

treatment with the phytoene desaturase inhibitor Norflurazon (NF) that blocks the production of 

photoprotective carotenoids (Breitenbach et al., 2001; Oelmüller et al., 1986). Of the five originally 

described gun mutations, four were in genes encoding proteins required for the synthesis of 

tetrapyrroles. gun2 and gun3 are heme oxygenase and phytochromobilin synthase mutants, 

respectively, with reduced ability to convert heme to phytochromobilin (Mochizuki et al., 2001). The 

gun5 mutation is in the gene encoding the H subunit of Mg-chelatase (Mochizuki et al., 2001) and 
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gun4 lacks a positive regulator of Mg-chelatase (Larkin et al., 2003). Initial ideas around Mg-

protoporphyrin IX (Mg-proto) functioning as a mobile retrograde signal (Strand et al., 2003) have 

mostly been unsupported as no correlation was observed between Mg-proto levels and Lhcb gene 

expression when Mg-proto levels were manipulated chemically (Moulin et al., 2008) or genetically 

(Mochizuki et al., 2008). Instead, the identification of the dominant gun6 mutation that results in 

elevated ferrochelatase (FC) 1 activity seemed to resolve the gun mutant puzzle and led to the 

hypothesis that synthesis of the FC1 product, heme, was required to promote expression of nuclear-

encoded photosynthetic genes (Woodson et al., 2011). As well as making sense of the impact of the 

gun mutations on tetrapyrrole biosynthesis, this hypothesis was consistent with an established role 

for heme as a signalling molecule in many systems, its relative suitability in terms of its chemistry, 

and its known export from chloroplasts (Terry and Smith, 2013). 

The retrograde signalling field has struggled in recent years with proposed components of the 

signalling pathway that have not stood up to scrutiny. Recent examples of mutants for which a 

reported gun phenotype has not been reproducible in other laboratories include those lacking 

PTM1 (Page et al., 2017a) and ABI4 (Kacprzak et al., 2019). However, the phenotypes of the gun 

mutants themselves have been observed in many laboratories over a long period, including the 

more recently identified gun6 mutant (Page et al., 2017a). In the current study, we set out to test 

the hypothesis that FC1 overexpression results in an increase in a promotive retrograde signal, by 

constructing plants overexpressing FC1. In Arabidopsis (and other higher plants) there are two 

genes encoding ferrochelatase, FC1 and FC2. The expression profile (Chow et al., 1998; Singh et al., 

2002; Moulin et al., 2008; Nagai et al., 2007) and functional analysis (Scharfenberg et al., 2015; 

Woodson et al., 2015; Espinas et al., 2016; Fan et al., 2019) of these genes is consistent with FC1 

having a role in providing non-photosynthetic heme and FC2 being required for photosynthetic 

heme production. For example, mutants lacking FC1 show poor early development with strong 

alleles being embryo lethal (Espinas et al., 2016; Fan et al., 2019) and reduced accumulation of 

extra-plastidic cytochromes (Espinas et al., 2016). In contrast, the loss of FC2 results in poor 

chlorophyll accumulation and reduced development of the photosynthetic apparatus (Scharfenberg 

et al., 2015; Woodson et al., 2015; Espinas et al., 2016). The fc2 mutants also show reduced total 

heme levels. FC2 can partially compensate for the loss of FC1 if expressed from the FC1 promoter 

(Fan et al., 2019) and FC1 (with an FC2 transit peptide) can partially compensate the loss of FC2 

(Woodson et al., 2015).  

There is considerable biochemical evidence that both chloroplasts and mitochondria contain 

ferrochelatase activity and activity of the preceding enzyme in the pathway, protoporphyrinogen IX 
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oxidase (Smith et al., 1993; Papenbrock et al., 2001; Cornah et al., 2002; Masuda et al., 2003; Hey et 

al., 2016).  Import experiments in purified organelles also demonstrated that while FC2 was 

restricted to chloroplasts, FC1 was imported into both chloroplasts and mitochondria, albeit with 

the majority of FC1 localised in the former (Chow et al., 1997; Suzuki et al., 2002), and recently HA 

tagged-FC1 was detected in mitochondrial fractions (Hey et al., 2016). These data continue to 

suggest the possibility of the dual localization of FC1, although some studies do not support this 

(e.g. Lister et al., 2001). There are links between mitochondria and chloroplasts in retrograde 

signalling responses (Leister, 2005; Woodson and Chory, 2008; Pfannschmidt, 2010) and it is 

possible the FC1 may mediate its effect through mitochondrial localization. We have therefore 

expressed FC1 with its predicted transit peptide replaced with transit peptides specific for plastid 

(RecA) or mitochondrial import (CoxIV). The RecA and CoxIV transit peptides were selected as they 

have been used previously to successfully target proteins to these respective organelles (Köhler et 

al., 1997a,b; Akashi et al., 1998). Our results show that targeting of FC1 to plastids alone is sufficient 

to promote expression of nuclear-encoded photosynthetic genes and thus our data support the 

hypothesis that chloroplast-localised FC1 activity is required for retrograde signalling. 

 

2. Materials & methods 

(a) Plant material and growth conditions 

The gun5 (Mochizuki et al., 2001) and gun6 (Woodson et al., 2011) mutants in the Col-0 background 

have been described previously. For growth on plates, seeds were surface-sterilised with 70% (v/v) 

ethanol and 10% (v/v) bleach solutions, and plated seeds then imbibed for 3 d at 4 °C in the dark.  

For selection of transgenics, seeds were plated onto half-strength Murashige and Skoog (MS) 

medium containing 1% (w/v) agar, pH 5.8, supplemented with 40 μg/mL hygromycin B.  For growth 

of transgenics to determine transgene expression levels, seeds were plated onto half-strength MS 

medium containing 1% (w/v) agar, pH 5.8.  After imbibition, seeds were transferred to WLc (100 

μmol m-2 s-1) at 23 °C for 5 d.  For NF screens, seeds were plated onto half-strength Linsmaier and 

Skoog (LS) medium containing 1% (w/v) sucrose and 1% (w/v) agar, pH 5.8 and supplemented with 

either 5 μM NF or 0.1% DMSO (control).  After imbibition, seeds were transferred to LWLc (25 μmol 

m-2 s-1) at 23 °C for 7 d. For growth in soil, seeds were sown directly onto compost (Levington’s 

F2:John Innes No. 2:vermiculite; 1:1:1) and grown in photoperiods of 16 h white light, 8 h dark at 

23 °C with a relative humidity of 65%. 
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(b) Generation of transgenic Arabidopsis thaliana lines 

The coding sequence of FC1 was fused at the 3´ end to a solubility-modified, red-shifted GFP (Akashi 

et al., 1998), hereafter referred to as GFP.  A 36 bp spacer was present between the FC1 sequence 

and the GFP sequence.  In addition, the native transit peptide of FC1 was excluded. This was 

identified from predictions made using TargetP 1.1 Server (Emanuelsson et al., 2000; Nielsen et al., 

1997), predictions of the target peptide cleavage sites based on known cleavage sequences, and 

alignment of protein sequences to identify amino acids required for function that are conserved 

across other plant and cyanobacterial species. Following this analysis, the first 77 amino acids of FC1 

(FC1Δ1-77) were excluded. A BglII restriction site was added 5´ of the FC1Δ1-77:GFP sequence. The 

FC1:GFP fragment was cloned into pDONR™221 (Invitrogen, Carlsbad, USA) using Gateway® 

technology. A transit peptide conferring localisation either to plastids (RecA) or mitochondria 

(CoxIV) was then ligated directly upstream of the gene sequence (at the BglII site) to generate the 

expression cassettes. The RecA transit peptide sequence corresponded to the first 201 bp of the 

coding sequence of the Arabidopsis RECA gene (At1g79050; Cerutti et al., 1992), while the CoxIV 

transit peptide corresponded to the first 87 bp of the coding sequence of cytochrome c oxidase 

subunit 4 from Saccharomyces cerevisiae (Maarse et al., 1984). Control expression cassettes lacking 

FC1 were also created, consisting of the GFP sequence fused downstream of the RecA or CoxIV 

transit peptide sequences. Finally, a cassette consisting of the full-length FC1 (FL-FC1) sequence 

fused to GFP was created. The cassettes were recombined into the pGWB502Ω (hygR) plant 

expression plasmid (Nakagawa et al., 2007) under the control of the 35S promoter from cauliflower 

mosaic virus, and the resulting plasmids were used to transform Agrobacterium tumefaciens 

GV3101. Flowering Arabidopsis Col-0 plants were transformed using the floral dip method (Clough 

and Bent, 1998), and positive transformants identified through antibiotic selection (Harrison et al., 

2006) were confirmed via PCR genotyping. Further details on the primers and plasmids used are 

given in electronic supplementary material Tables S1 and S2, respectively. Plants overexpressing 

FC1 targeted to both plastids and mitochondria were generated by manually crossing CoxIV:FC1:GFP 

lines (female) to RecA:FC1:GFP lines (male). 

(c) RNA extraction, cDNA synthesis and qRT-PCR 

Cotyledon tissue was homogenised in 500 μL extraction buffer (100 mM NaCl, 10 mM Tris pH7.0, 1 

mM EDTA, 1% (w/v) SDS). After the addition of 150 μL phenol (pH 4.8), samples were vortexed 

vigorously. 250 μL chloroform was then added and the samples again vortexed vigorously. After 

centrifugation (16,100 x g, 5 min, 4°C), the upper aqueous phase was transferred to a new tube 
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containing 450 μL ice-cold 4 M LiCl. RNA was precipitated overnight at 4°C. After centrifugation 

(16,100 x g, 20 min, 4 °C), pellets were resuspended in 300 μL DNase buffer (10 mM Tris pH 7.5, 2.5 

mM MgCl2, 0.5 mM CaCl2). One μL DNase (Promega, Madison, USA) was then added and samples 

incubated at 37 °C for 25 min. Samples were mixed with 500 μL phenol:chloroform:isoamyl alcohol 

(25:24:1), pH 6.7 and vortexed vigorously. After centrifugation (16,100 x g, 5 min, 4 °C), the aqueous 

upper phase was mixed with 750 μL 95% ethanol:5% 3 M sodium acetate, pH 5.2 and RNA was 

precipitated at -20 °C for 1 h. After centrifugation (16,100 x g, 20 min, 4 °C), RNA pellets were air 

dried and resuspended in 50 μL TE buffer (10 mM Tris pH 8.0, 1mM EDTA). 

cDNA synthesis was performed according to manufacturer’s protocols on 2 μg total RNA per sample 

with the nanoScript2 kit (Primerdesign, Southampton, UK), using random nonamer and oligo dT 

primers.  

qRT-PCR was carried out on a StepOnePlus™ real-time PCR system (Applied Biosystems, Foster City, 

USA).  Each reaction contained 0.5 μL cDNA, 5 μL PrecisionPLUS SYBR green mastermix 

(Primerdesign) and 2.5 μL of primer mix (containing forward and reverse primers each at 2 μM), 

with the volume made up to 10 μL with nuclease-free water. qRT-PCR primer sequences are given in 

electronic supplementary material Table S3.  Two technical replicates were performed for each 

sample/primer pair combination, and two “no template controls” were performed for each primer 

pair.  qRT-PCR cycling conditions were: 95 °C for 2 min, followed by 40 cycles of 95 °C for 15 s and 

60 °C for 1 min, with fluorescence determined at the end of every cycle. Melt curves (60 °C to 92 °C, 

in 0.5 °C increments) were performed at the end of every run to verify amplification specificity for 

each primer pair.  Primer efficiencies were determined using a serial dilution of Col-0 (untreated) 

cDNA.  Relative expression values between samples were calculated using the ΔΔCt method, 

normalised to ACTIN DEPOLYMERISING FACTOR 2 (ADF2, At3g46000) or YELLOW-LEAF-SPECIFIC 

GENE 8 (YLS8, At5g08290). ADF2 and YLS8 were identified as excellent reference genes for NF 

screens through analysis of microarray data from Col-0 seedlings grown with/without NF (Page et 

al., 2017b).  Data shown was normalised to ADF2, with comparable results observed when 

normalised to YLS8.  Full details of the qRT-PCR method to fulfil MIQE guidelines (Bustin et al., 2009) 

are given in electronic supplementary material, datasheet S1. 

(d) Chlorophyll, carotenoid and Pchlide determination 

Chlorophyll and carotenoids were extracted from weighed cotyledon tissue by homogenising in 800 

μL ice-cold 80% (v/v) acetone. After centrifugation (16,100 x g, 5 min, 4 °C), the absorbance of the 

supernatant was determined at A470, A647 and A663 using a U-2001 spectrophotometer (Hitachi, 
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Tokyo, Japan). Total carotenoid and chlorophyll a and b contents were determined using previously 

published equations (Lichtenthaler et al., 2001), and normalised to tissue weight. 

Pchlide was extracted from cotyledon tissue harvested in a dark room under a dim green safe light 

using the method described in Terry and Kacprzak (2019). Cotyledon pairs were homogenised in ice-

cold acetone:0.1 M ammonium hydroxide (9:1, v:v), centrifuged (16,100 x g, 5 min, 4 °C), and 

fluorescence emission spectra of the supernatants determined (excitation wavelength = 440 nm) 

using a F-2000 fluorescence spectrophotometer (Hitachi, Tokyo, Japan). The height of the Pchlide 

peak (˜636 nm) was used to generate relative fluorescence values, which were normalised for 

cotyledon number. 

(e) Localization of GFP by confocal imaging 

Confocal imaging was used to confirm the subcellular localisation of plastid- and mitochondrion-

targeted FC1. Cotyledon tissue from 5 d WLc-grown seedlings was mounted onto slides and the 

samples flooded with the perfluorocarbon PP11. Localisation of GFP was determined on a Leica TCS 

SP8 confocal microscope (Leica Microsystems, Wetzlar, Germany), using Leica Application Suite X 

software. GFP was imaged with an excitation wavelength of 488 nm and detection of emission 

between 497-531 nm, both using the 63x glycerol oil immersion objective lens. Chlorophyll 

autofluorescence was detected using 488 nm excitation and 678-695 nm emission. The HyD 

detector was used to image both signals, and at least 6 averages were taken for each acquisition. 

 

3. Results 

(a) Characterisation of FC1 overexpressing lines 

We generated transgenic lines containing either a RecA:FC1:GFP (plastid-targeted, pFC1) or a 

CoxIV:FC1:GFP  (mitochondrion-targeted, mFC1) expression cassette driven by the constitutive 

CaMV 35S promoter. Selection protocols were used to identify single-insertion, homozygous 

transformants (T3 generation) and, subsequently, over-expressing lines were determined by 

measuring the FC1 expression level in cotyledon tissue from 5 day old WLc-grown seedlings using 

qRT-PCR.  For the pFC1 lines, expression ranged from 2-fold to 85-fold higher than wild type (WT, 

Col-0) under these conditions (figure 1a). FC1 expression levels correlated with GFP expression 

levels from the same plants, while FC2 expression remained essentially at a WT level (electronic 

supplementary material, figure S1a). Some of these lines displayed a pale cotyledon phenotype that 
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appeared to correlate with FC1 expression, with high over-expressors having very pale cotyledons 

and low over-expressors being indistinguishable from WT (electronic supplementary material, figure 

S2a). Control lines over-expressing only GFP targeted to plastids, lacked a visible phenotype 

(electronic supplementary material, figures S1a and S2a). The correlation between the pale 

cotyledon phenotype and FC1 expression level was confirmed by analysis of the chlorophyll content 

of these lines when grown under the same conditions, with the highest over-expressor (pFC1-9) 

having significantly less total chlorophyll than WT (figure 1c,e). The pFC1-9 line also had significantly 

less total carotenoids than WT (electronic supplementary material, figure S2b). The next highest 

over-expressor (pFC1-42) also indicated reductions in chlorophyll and carotenoid content, although 

these were not statistically significant (figure 1c, electronic supplementary material, figure S2b). FC1 

overexpressing lines using the native transit peptide have previously been reported to have a 

reduction in chlorophyll synthesis (Woodson et al., 2011). The chlorophyll a/b ratio of all pFC1 lines 

remained similar to WT (electronic supplementary material, figure S2c) and there was no significant 

effect of day length or light intensity on the accumulation of chlorophyll or carotenoids in these 

lines (electronic supplementary material, figure S3). Surprisingly, the pale phenotype of pFC1-9 was 

partially attenuated in mature, soil-grown plants, while the pFC1-42 line showed a paler phenotype 

compared to seedlings (electronic supplementary material, figure S4).  

For the mFC1 lines, FC1 expression in 5 day old WLc-grown seedlings ranged from 1.2-fold to 20-fold 

higher than WT (figure 1b). GFP expression again correlated with FC1 expression, with FC2 

expression fundamentally unaffected (electronic supplementary material, figure S1b). No 

phenotypic differences from WT were observed in these lines at any stage of growth (figure 1d,f, 

electronic supplementary material, figures S4-6). 

Although the paler phenotype of the two transgenic lines pFC1-9 and pFC1-42 correlated quite well 

with FC1 expression levels, we wanted to be certain that the observed phenotypes were not due to 

the insertion site of the FC1 transgene. We therefore performed whole genome sequencing on both 

lines to identify the location of the transgenes. As shown in electronic supplementary material, 

figure S7, the RecA-FC1-GFP transgene in pFC1-9 has interrupted the 3’ end of At1g01540 at the end 

of exon 6. All sequence reads indicate that insertion has occurred solely at one location in the 

genome and confirm our original results from antibiotic selection of T2 seed. At1g01540 is a protein 

related to Thylakoid-associated kinase 1, but has been determined experimentally to be a cytosolic 

protein (Armbruster et al., 2009). A GABI-Kat mutant was reported as showing no obvious 

phenotype (Bölter et al., 2006) and we also obtained independent T-DNA insertion lines for 

At1g01540 (Salk_008396, Salk_076898 and Salk_036951), but could see no visible loss of greening 
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phenotype at the seedling stage. For pFC1-42 there was a single insertion site in an intergenic 

region in chromosome 5 that lies about 600 bp upstream of the start codon of At5g67120 and about 

1,250 bp upstream of the start codon of At5g67130. There appears to be up to four T-DNA copies at 

this single insertion site. At5g67120 and At5g67130 encode an uncharacterised RING/U-box 

superfamily protein predicted to be nuclear-localised and a plasma membrane localised (Elortza et 

al., 2006) phospholipase C-like phosphodiesterase superfamily protein with phospholipase activity 

(Aryal and Lu, 2018), respectively. It is possible that the T-DNA insertion could interfere with the 

expression of either or both genes, but there is no evidence to suggest this might cause the pFC1-42 

phenotype. 

 

(b) Localisation of FC1-GFP proteins 

To confirm the localisation of the plastid and mitochondrion-targeted GFP fusion proteins, we 

examined 5 day old WLc-grown seedlings using confocal imaging. GFP localisation was performed 

on root tips and cotyledons of the highest over-expressing pFC1 and mFC1 lines. When imaging root 

tips, GFP labelled structures in cells of pFC1 seedlings were significantly larger than those in mFC1 

seedlings (Student’s t-test p < 0.001, figure 2a,b). Moreover, the sizes of the structures in the pFC1 

and mFC1 lines closely matched the known sizes of root plastids and mitochondria, respectively 

(pFC1 = 5.70 µm ± 0.08, mFC1 = 1.63 µm ± 0.12) (Itoh et al., 2010). In addition, the GFP labelled 

structures in the mFC1 lines moved rapidly during imaging, supporting the identification of these 

structures as mitochondria. For lines pFC1-9 and pFC1-42, imaged cotyledons were pale with very 

few chlorophyll-containing cells (figure 2a). GFP was detected in plastids lacking chlorophyll, while 

no GFP signal was observed when chlorophyll was present. This suggests that the ability to 

synthesise chlorophyll is an inverse function of plastid FC1 expression such that high expression of 

FC1 protein necessarily limits chlorophyll accumulation. Imaging of mFC1-27 cotyledons further 

supported mitochondrial localisation of FC1 in these lines, given the absence of overlap and 

difference in size between the GFP labelled structures in this line and chloroplasts (figure 2b). As 

expected, a control line in which GFP was over-expressed in the absence of a transit peptide 

showed cytosolic localisation (figure 2c). 
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(c) Retrograde signalling in FC1 overexpressing lines 

It was previously demonstrated that over-expression of full-length FC1 with its native transit 

peptide rescued the expression of photosynthesis-associated nuclear genes when seedlings were 

grown on NF (gun phenotype) (Woodson et al., 2011). To establish whether organellar-specific over-

expression of FC1 was sufficient to replicate the gun phenotype, the transgenic lines described 

above were grown on NF and expression of nuclear genes determined. gun5 and gun6 were 

included in these screens as positive controls and lines over-expressing GFP alone in either plastids 

(pGFP) or mitochondria (mGFP) were included as negative controls. In the presence of NF, the two 

highest expressors of plastid-targeted FC1 (pFC1-9 and pFC1-42) were able to significantly rescue 

expression of all five nuclear genes tested (GUN4, CA1, HEMA1, LHCB2.1 and CHLH), when 

compared to Col-0 and pGFP seedlings (figure 3a; electronic supplementary material, figure S8a). In 

contrast, the highest over-expressing mFC1 lines were not able to rescue the expression of any of 

the genes tested (figure 3b; electronic supplementary material, figure S8b). Importantly, growth on 

NF did not have a strong effect on expression of FC1 in the lines tested (electronic supplementary 

material, figure S9) and results were independent of the reference gene used (electronic 

supplementary material, figure S10). Correlation plots of percentage recovery of nuclear gene 

expression (for all five genes pooled together) after NF treatment versus WT and FC1 expression in 

the presence of NF show a positive correlation for the plastid-targeted over-expressors (figure 4a), 

but no correlation for the mitochondrion-targeted over-expressors (electronic supplementary 

material, figure S11a). These results strongly support the idea that over-expression of FC1 targeted 

to plastids is sufficient to rescue expression of nuclear-encoded photosynthesis genes in the 

presence of NF. Interestingly, both pFC1 and mFC1 lines showed a positive correlation between 

percentage change in nuclear gene expression and FC1 expression in the absence of NF (figure 4b; 

electronic supplementary material, figure S11b), although the maximum increase in expression was 

just 10% for mFC1 lines compared to 50% for pFC1 lines. The increase in nuclear gene expression 

observed in pFC1 lines demonstrates the operation of this retrograde pathway under standard plant 

growth conditions. 

Next, we tested whether the effect of elevated plastid FC1 expression on nuclear gene expression 

required photoreceptor input in order to be observed. We therefore tested the same five nuclear 

genes (GUN4, CA1, HEMA1, LHCB2.1 and CHLH) in seedlings grown for 4 d in the dark. In this case, 

we saw little difference in expression between pFC1 or mFC1 lines and WT for any genes tested 

(electronic supplementary material, figure S12), except for HEMA1 expression, which was slightly, 

yet significantly, increased in pFC1-9 in the dark compared to Col-0 (electronic supplementary 
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material, figure S12a). An increase in HEMA1 expression in dark-grown seedlings has previously 

been noted for gun1 seedlings (McCormac and Terry, 2004).  

To determine if over-expression of FC1 in both organelles would modify the rescue of nuclear gene 

expression on NF seen in pFC1 lines, pFC1-9 (the highest expressor of plastid-targeted FC1) was 

independently crossed with both mFC1-27 and mFC1-47 (the two highest mitochondrion-targeted 

FC1 over-expressors), and the F1 generation screened on NF.  The three parent lines were included 

in the screens for reference. F1 plants of both the mFC1-47 x pFC1-9 and mFC1-27 x pFC1-9 lines 

showed significant enhancement of gene expression after NF treatment (see CA1 and the 

tetrapyrrole biosynthesis genes; electronic supplementary material, figure S13a), but expression 

levels were reduced compared with the pFC1-9 parent line. This was most likely due to the greatly 

reduced FC1 expression levels in the F1 plants compared to the parent lines (electronic 

supplementary material, figure S13b). The observation that F1 generation FC1 overexpressing plants 

can confer a gun phenotype demonstrates that this trait is semi-dominant and provides further 

evidence that the observed phenotype is solely the result of FC1 overexpression.    

(d) Modulation of tetrapyrrole synthesis in FC1 over-expressing seedlings correlates with 

induction of nuclear gene expression 

Lines over-expressing plastid-localised FC1 were able to enhance nuclear gene expression on NF, 

and this ability correlated with FC1 expression. To determine if this enhancement of gene 

expression was due to changes in heme synthesis as proposed by the current model (Woodson et 

al., 2011; Terry and Smith, 2013), we examined the impact of the overexpressing lines on 

tetrapyrrole synthesis and determined whether this was also correlated with nuclear gene 

expression. As it is difficult to measure a signalling heme pool in young seedlings, we determined 

the accumulation of protochlorophyllide (Pchlide) in the dark as a proxy for such a heme pool at the 

onset of the light treatment. It is well established that accumulation of heme results in feedback 

inhibition of aminolevulinic acid (ALA) synthesis resulting in reduced Pchlide (Terry & Kendrick, 

1999; Terry et al., 2001; Goslings et al., 2004; Richter et al., 2019). Previous studies have observed 

elevated Pchlide in fc2 mutants, but not fc1 mutants, suggesting that FC2-synthesized heme is 

responsible for feedback inhibition (Scharfenberg et al., 2015). However, it has been shown that 

overexpression of FC1 can rescue this phenotype (Woodson et al., 2015) indicating that FC1-

synthesized heme can contribute to this regulatory pool. In pFC1 seedlings, Pchlide accumulation in 

the dark (electronic supplementary material, figure S14) showed a strong negative correlation with 

expression of all five nuclear genes on NF (figure 5). This correlation was not apparent for mFC1 
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seedlings (electronic supplementary material, figure S15). Together, these data suggest that there is 

an elevated regulatory heme pool in pFC1 lines that correlates well with the observed increases in 

nuclear gene expression in these lines. These results therefore support the hypothesis that 

increased FC1 activity results in the production of a promotive retrograde signal (Woodson et al., 

2011) and, furthermore, that activity in the plastid alone is sufficient for this response. 

4. Discussion 

The interpretation of the gun mutant phenotype has been the focus of our attempts to understand 

chloroplast-to-nucleus retrograde signalling since these mutants were first described over 25 years 

ago (Susek et al., 1993). Five of the six gun mutants isolated by the Chory laboratory had altered 

activities of tetrapyrrole biosynthesis-related proteins (Mochizuki et al., 2001; Larkin et al., 2003; 

Woodson et al., 2011) and the link between tetrapyrrole synthesis and retrograde signalling has 

stood up to scrutiny over this period. The current hypothesis is that heme synthesized by FC1 is a 

promotive retrograde signal or precursor of the signal (Woodson et al., 2011; see Terry & Smith 

2013; Terry & Bampton 2019; Larkin 2016 for discussion). This hypothesis is based on the 

observation that both the dominant gun6 mutation that results in overexpression of FC1 and a 

transgenic FC1 overexpression line resulted in enhanced nuclear gene expression after NF 

treatment and was developed through the re-interpretation of the phenotypes of the gun2-gun5 

mutants (Woodson et al., 2011). Consistent with this hypothesis, heme has a well-established role 

as a mobile signalling molecule in numerous biological systems (Terry & Smith, 2013). Here we have 

shown that overexpression of FC1 in chloroplasts results in a strong gun phenotype in two 

independent transgenic lines and that expression of five nuclear-encoded photosynthetic genes 

correlated with FC1 gene expression and the ability to feedback inhibit Pchlide synthesis. Our data 

therefore broadly support the hypothesis that FC1-dependent heme synthesis results in a 

promotive chloroplast-to-nucleus retrograde signal. Moreover, this signal is directly related to FC1 

activity in the chloroplast as no evidence was observed for a gun phenotype when FC1 was targeted 

to mitochondria. This result is consistent with previous experiments in which overexpression of FC1 

using an FC2 transit peptide could increase nuclear gene expression after NF treatment (Woodson 

et al., 2011), although formally the localization of the FC2-targeted FC1 protein in vivo is unknown 

as GFP-tagged FC proteins have never been detected in mitochondria despite the strong evidence 

for the presence of FC in this organelle. Although we were unable to isolate a very highly expressing 

mFC1 line to match the level of FC1 over-expression seen in line pFC1-9, under the conditions of the 

NF screen, three of the mFC1 lines had clearly higher FC1 expression than pFC1-42, a line that shows 

significant rescue of nuclear gene expression on NF. Our data do not therefore support a model in 
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which a chloroplast retrograde signal could have made use of presumably pre-existing 

mitochondrial signals. Instead, there appears to be direct regulation of nuclear-encoded genes for 

chloroplast proteins during chloroplast biogenesis.  

During the course of this study we identified 6 lines that showed elevated expression of FC1 in 

cotyledon tissue under the conditions used for the retrograde signalling assays. Only two of these 

lines showed a gun phenotype, but we included data for all six lines as we wanted to be transparent 

about the issues we encountered. For example, three of the pFC1 lines (pFC1-22, pFC1-33 and pFC1-

48) had similar or higher levels of FC1 expression on NF than the gun6 mutant, but did not show a 

gun phenotype and the pFC1-42 and pFC1-48 lines had similarly high FC1 expression but showed 

different gene expression responses. This discussion is complicated by the observation that FC1 

expression in gun6 decreases on NF, something not observed in the overexpression lines. Only 

pFC1-9 and pFC1-42 showed higher FC1 expression than gun6 in the absence of NF and this may 

account for their ability to confer a gun phenotype while other lines were unable to. Importantly 

perhaps, only these two lines had expression levels that were sufficient to impact on chlorophyll 

accumulation. Woodson et al (2011) reported reduced chlorophyll levels in all lines that also 

showed a gun phenotype. We are confident that the phenotypes we observed are due to FC1 

overexpression. Genome sequencing to identify the position of each overexpression construct ruled 

out the likelihood of an insertional effect causing the observed phenotype and the pFC1-9 construct 

showed a semi-dominant phenotype following crosses with mFC1 lines. Interestingly, even the 

pFC1-9 and pFC1-42 lines showed slightly different phenotypes with the former showing a stronger 

reduction in chlorophyll levels in seedlings and the later having a more pronounced mature plant 

phenotype. This might be related to positional effects altering expression levels in different tissues. 

Overall, a far more detailed characterization of FC1 protein levels, localization and activity as well as 

heme levels for each line would be required to explain the observed phenotypic differences 

between the different FC1 overexpressing lines. Nevertheless, we believe our observation that 

overexpression of FC1 in chloroplasts can confer a gun phenotype, which confirms and builds on the 

results of Woodson et al (2011), is important in helping to establish an agreed set of reliable data on 

the retrograde signalling response.  

One interesting aspect of our data is the clear demonstration that overexpression of FC1 resulted in 

an increase in nuclear gene expression in the absence of NF treatment. Expression of key genes 

increased up to 50% in pFC1 lines. A small increase was also observed in mFC1 lines although this 

was not significant for any individual line (electronic supplementary material figure S8). One of the 

criticisms of the retrograde signalling field is the perceived requirement for severe treatments to 
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observe the effects of mutations that affect signalling. Our data therefore support the idea that 

retrograde signalling is functioning under standard growth conditions and that the amount of signal 

is not necessarily limited. This result therefore supports previous data such as elevated HEMA1 

expression in a gun1,gun5 double mutant during de-etiolation (McCormac and Terry, 2004). 

Finally, a central question in retrograde signalling research is whether single or multiple signals are 

operating during chloroplast biogenesis. The question derives from analysis of the gun1 mutation 

that confers elevated nuclear gene expression after treatments with either NF or the plastid 

translation inhibitor, lincomycin (Koussevitzky et al., 2007), which has led to the suggestion that 

GUN1 mediates a signal related to plastid protein synthesis. Indeed, GUN1 does seem to have a role 

in plastid protein homeostasis (Tadini et al., 2016; Llamas et al., 2017; Marino et al., 2019). 

However, recently other roles have also been suggested in chloroplast RNA editing (Zhao et al., 

2019) and import of nuclear-encoded chloroplast proteins (Wu et al., 2019). GUN1 has also been 

shown to interact with tetrapyrrole biosynthesis enzymes (Tadini et al., 2016), and to bind heme 

and a range of porphyrins and regulate FC1 enzyme activity in vitro (Shimizu et al., 2019). Given the 

strong evidence for a tetrapyrrole signal from the heme branch of the pathway, it could be 

proposed that GUN1 might have a role in co-ordinating various chloroplast processes with 

production of the FC1-dependent heme signal. Certainly, an understanding of the relationship 

between GUN1 and FC1-mediated retrograde signalling will be crucial in determining the 

mechanism of this signalling pathway during chloroplast development. 
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Figure 1. The relationship between FC1 expression and chlorophyll content in the 
pFC1 and mFC1 transgenic lines



Figure 2. Localisation of FC1 in roots and cotyledons of pFC1 and 
mFC1 seedlings 



Figure 3. Expression of photosynthesis-associated genes on NF is enhanced in 
plastid FC1, but not mitochondrial FC1 overexpressors



Figure 4. Plastid-targeted FC1 expression correlates with enhanced 
nuclear gene expression on NF



Figure 5. Enhancement of nuclear gene expression on NF inversely 
correlates with protochlorophyllide levels in dark-grown pFC1 seedlings
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Figure legends 

 

Figure 1. The relationship between FC1 expression and chlorophyll content in the pFC1 and mFC1 

transgenic lines. (a,b) FC1 expression relative to Col-0 in (a) plastid-targeted (pFC1) and (b) 

mitochondria-targeted (mFC1) FC1 overexpressing lines as determined by qRT-PCR. (c,d) Total 

chlorophyll content of the same pFC1 (c) and mFC1 (d) lines. Black bars represent chlorophyll a and 

white bars represent chlorophyll b. (e,f) Correlation plots between FC1 expression (log scale) and 

total chlorophyll content for the pFC1 (e) and mFC1 (f) lines. Seedlings were grown for 5 d in WLc 

for all analyses and lines overexpressing only GFP in plastids (pGFP) or mitochondria (mGFP) were 

included as controls. Data represents the mean + SEM of three independent biological replicates 

and asterisks indicate a significant difference vs. Col-0 (p < 0.05, Student’s t-test).  

 

 

Figure 2. Localisation of FC1 in roots and cotyledons of pFC1 and mFC1 seedlings. (a,b) Confocal 

microscopy was used to determine the subcellular localisation of FC1:GFP fusion proteins in pFC1 

(a)  and mFC1 (b) lines. (c) A control line of FC1:GFP without a transit peptide (ΔTP). Scale bars = 30 

µm. 

 

Figure 3. Expression of photosynthesis-associated genes on NF is enhanced in plastid FC1, but not 

mitochondrial FC1 overexpressors. (a,b) The expression of GUN4, CA1, HEMA1, LHCB2.1 and CHLH 

was determined by qRT-PCR in pFC1 (a) and mFC1 (b) seedlings grown for 7 d in LWLc on plates with 

NF. The control lines pGFP (a) and mGFP (b), as well as gun5 and gun6, were included. Data shown 

are the mean fold changes vs. Col-0 on NF + SEM of three independent biological replicates. The 

original qRT-PCR data for these graphs is given in electronic supplementary material figure S8. 

 

Figure 4. Plastid-targeted FC1 expression correlates with enhanced nuclear gene expression on 

NF.  (a,b) Correlation plots of the combined mean percentage change in expression of GUN4, CA1, 

HEMA1, LHCB2.1, and CHLH, vs. FC1 expression for pFC1 seedlings in the presence (a) or absence (b) 

of NF. Data is relative to Col-0 +NF (a) or -NF (b). For both graphs, data points include gun6, the six 

transgenic pFC1 overexpressing lines, and two F1 progenies of pFC1 x mFC1 crosses. The triangle 

indicates WT response. SigmaPlot 13.0 was used to fit logarithmic best-fit lines and derive 

coefficients of determination. Data shown are the mean ± SEM of three independent biological 

replicates.  
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Figure 5. Enhancement of nuclear gene expression on NF inversely correlates with 

protochlorophyllide levels in dark-grown pFC1 seedlings. Correlation plots of protochlorophyllide 

(Pchlide) in 4 d-old dark-grown pFC1 seedlings against fold change in expression of GUN4, CA1, 

HEMA1, LHCB2.1, and CHLH vs. Col-0 on NF. Data represent the mean ± SEM of three independent 

biological replicates. 

 

Electronic Supplementary Material 

 

Table S1.  Primers used for molecular cloning of FC1 and genotyping of transgenic plants. 

 

Table S2.  Information on the plasmids used and created during molecular cloning of FC1. 

 

Table S3.  Information on the primers used for qRT-PCR analysis of gene expression. 

 

Figure S1. Expression of FC2 and GFP in FC1 overexpressing lines.  (a,b) Expression of FC2 and GFP 

was determined in the same pFC1 (a) and mFC1 (b) seedlings used to generate Figure 1 and is 

shown relative to Col-0. Lines expressing only GFP in plastids (pGFP) or mitochondria (mGFP) were 

included as controls. Data represents the mean + SEM of three independent biological replicates 

and asterisks indicate a significant difference vs. Col-0 (p < 0.05, Student’s t-test). 

 

Figure S2. Characterisation of 5 day-old WLc-grown seedlings overexpressing plastid-targeted FC1.  

(a) Representative seedling phenotype of pFC1 and pGFP lines, bar = 10 mm.  (b) Total carotenoid 

and (c) chlorophyll a/b ratio of the same transgenic lines. For (b, c), data shown is the mean + SEM 

of three independent biological replicates and the asterisk denotes a significant difference vs. Col-0 

(p < 0.05, Student’s t-test). 

 

Figure S3.  Analysis of chlorophyll and carotenoid levels in pFC1 seedlings grown in different light 

conditions.  (a-d) Total chlorophyll, chlorophyll a/b ratio and total carotenoids were measured in 

pFC1, pGFP (control) and gun6 5 d-old seedlings under a range of conditions. (a) LWLc (25 μmol m-2 

s-1), (b) HWLc (250 μmol m-2 s-1), (c) SD (8 h light, 16 h dark, 100 μmol m-2 s-1), (d) LD (16 h light, 8 h 

dark, 100 μmol m-2 s-1). For graphs of chlorophyll content, black bars represent chlorophyll a and 
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white bars represent chlorophyll b. Data shown are the mean + SEM of three independent biological 

replicates and asterisks indicate a significant difference vs. Col-0 (p < 0.05, Student’s t-test).   

 

Figure S4. Phenotype of FC1 overexpressing lines at the rosette stage.  Representative 

photographs of pGFP, pFC1, mGFP and mFC1 lines. All photographs were taken 23 days after sowing 

(DAS), except pFC1-9 (34 DAS). Plants were grown on soil in LD conditions (16 h light, 8 h dark, 100 

μmol m-2 s-1), scale bar = 10 mm. 

 

Figure S5. Characterisation of 5 d-old WLc-grown seedlings overexpressing mitochondria-targeted 

FC1. (a) Representative seedling phenotype of mFC1 and mGFP lines, bar = 10 mm. (b) Total 

carotenoid and (c) chlorophyll a/b ratio of the same transgenic lines.  For (b) and (c), data shown is 

the mean + SEM of three independent biological replicates. 

 

Figure S6. Analysis of chlorophyll and carotenoid levels in mFC1 seedlings grown in different light 

conditions.  (a-d) Total chlorophyll, chlorophyll a/b ratio and total carotenoids were measured in 

mFC1, mGFP (control) and gun6 5 d-old seedlings under a range of conditions. (a) LWLc (25 μmol m-

2 s-1), (b) HWLc (250 μmol m-2 s-1), (c) SD (8 h light, 16 h dark, 100 μmol m-2 s-1), (d) LD (16 h light, 8 h 

dark, 100 μmol m-2 s-1). For graphs of chlorophyll content, black bars represent chlorophyll a and 

white bars represent chlorophyll b. Data shown are the mean + SEM of three independent biological 

replicates.  

 

Figure S7. Insertion site of transgenic pFC1 cassettes. Diagram to show the insertion site of the 

transgenic cassette for (a) pFC1-9 and (b) pFC1-42. Exons (yellow boxes) are marked on the full-

length genomic DNA sequence (blue boxes). The green line in (a) represents genomic sequence that 

has been replaced by the insertion. The base pair sizes in (b) give the distance from the insertion 

site to the start codon of each gene. 

 

Figure S8. Expression of photosynthesis-associated genes on NF is rescued in plastid-targeted, but 

not mitochondria-targeted, FC1 overexpressors. (a,b) The expression of GUN4, CA1, HEMA1, 

LHCB2.1 and CHLH was determined by qRT-PCR in pFC1 (a) and mFC1(b)  seedlings grown for 7 d in 

LWLc on plates in the absence (grey bars) or presence (black bars) of NF. The control lines pGFP (a) 

and mGFP (b), as well as gun5 and gun6, were included.  Data shown are the mean fold changes vs. 

Col-0 on NF + SEM of three independent biological replicates and asterisks indicate a significant 
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difference vs. Col-0 (p < 0.05, Student’s t-test). The data in this figure was used to produce the 

graphs in Figure 3. 

 

Figure S9. FC1 expression in pFC1 and mFC1 lines in the NF screen. (a,b) FC1 expression was 

determined by qRT-PCR in pFC1 (a) and mFC1 (b) seedlings in the absence (grey bars) or presence 

(black bars) of NF. Data represents the mean + SEM of three independent biological replicates and 

asterisks indicate a significant difference vs. Col-0 (p < 0.05, Student’s t-test).  

 

Figure S10. Gene expression changes on NF in pFC1 seedlings are not dependent on the qRT-PCR 

reference gene. (a,b) qRT-PCR data shown in electronic supplementary material figures S8 and S9 

were normalised to a different reference gene, YELLOW LEAF SPECIFIC GENE 8 (YLS8, At5g08290). 

The expression of GUN4, CA1, HEMA1, LHCB2.1, CHLH and FC1 was determined by qRT-PCR in pFC1 

(a) and mFC1(b)  seedlings grown for 7 d in LWLc on plates in the absence (grey bars) or presence 

(black bars) of NF. The control lines pGFP (a) and mGFP (b), as well as gun5 and gun6, were 

included.  Data shown are the mean fold changes vs. Col-0 on NF + SEM of three independent 

biological replicates and asterisks indicate a significant difference vs. Col-0 (p < 0.05, Student’s t-

test). 

 

Figure S11.  Mitochondria-targeted FC1 expression does not correlate with enhanced nuclear gene 

expression on NF.  Correlation plots of the combined mean percentage change in expression of 

GUN4, CA1, HEMA1, LHCB2.1, and CHLH, vs. FC1 expression for mFC1 seedlings in the presence (a) 

or absence (b) of NF.  Data is relative to Col-0 +NF (a) or -NF (b). For both graphs, data points 

include gun6 and the six transgenic mFC1 overexpressing lines. The triangle indicates WT response. 

SigmaPlot 13.0 was used to fit logarithmic best-fit lines and derive coefficients of determination. 

Data shown is the mean ± SEM of three independent biological replicates.   

 

Figure S12. Increased FC1 expression does not confer elevated nuclear gene expression in dark-

grown seedlings. (a,b) The expression of GUN4, CA1, HEMA1, LHCB2.1, CHLH and FC1 was 

determined by qRT-PCR in pFC1 (a) and mFC1(b) seedlings grown for 4 d in the dark.  Data shown is 

the mean + SEM of three independent biological replicates and asterisks denote a significant 

difference vs. Col-0 (p < 0.05, Student’s t-test). 
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Figure S13.  FC1 overexpression in crosses of pFC1 and mFC1 transgenic lines.  (a,b) Analysis of 

gene expression by qRT-PCR in F1 seedlings derived from a cross between pFC1-9 and mFC1-27, or 

pFC1-9 and mFC1-47 was assessed in the absence (grey bars) or presence (white bars) of NF by qRT-

PCR. The parent lines pFC1-9, mFC1-27 and mFC1-47, as-well-as gun5 and gun6, were included as 

controls. Expression of GUN4, CA1, HEMA1, LHCB2.1 and CHLH (a) and total, plastid-targeted 

(RecA:FC1) and mitochondria-targeted (CoxIV:FC1) FC1 (b) is shown relative to Col-0. Data shown is 

the mean ± range of two independent biological replicates and asterisks denote a significant 

enhancement of nuclear gene expression vs. Col-0 +NF (determined as no overlap of the 95% 

confidence limits).  

 

Figure S14. Protochlorophyllide is reduced in pFC1 lines. (a,b) Protochlorophyllide (Pchlide) 

content of pFC1 (a) and mFC1 (b) seedlings grown for 4 d in the dark.  Data shown is the mean + 

SEM of three independent biological replicates and asterisks indicate a significant difference in 

percentage change vs. Col-0 for the same treatment (ANOVA, followed by Tukey’s test). 

 

Figure S15. Enhancement of nuclear gene expression on NF does not correlate with 

protochlorophyllide levels in dark-grown mFC1 seedlings. Correlation plots of protochlorophyllide 

(Pchlide) in 4 d-old dark-grown mFC1 seedlings and against fold change in expression of GUN4, CA1, 

HEMA1, LHCB2.1, and CHLH vs. Col-0 on NF. Data represent the mean ± SEM of three independent 

biological replicates. 
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Table S1.  Primers used for molecular cloning of FC1 and genotyping of transgenic plants. 
 

Reaction Purpose Primer Primer sequences (5’ > 3’) 

1 Amplification of FC1:spGFP, to remove the native FC1 transit peptide and 
add a BglII restriction site at the 5’ end of the amplicon. 

A AGATCTGCTAAAGCACGTTCTCATG 

B GCTCTTATTTGTATAGTTCATCCATGC 

2 Re-amplification of the amplicon obtained in reaction 1, to add attB 
Gateway® recombination sites at each end (step 1 of a two-step reaction). 

C AAAAGCAGGCTCAAGATCTGCTAAAGCAC 

D GAAAGCTGGGTCTTATTTGTATAGTTCATCC 

3 Re-amplification of the amplicon obtained in reaction 1, to add attB 
Gateway® recombination sites at each end (step 2 of a two-step reaction). 

E GGGGACAAGTTTGTACAAAAAAGCAGGCT 

F GGGGACCACTTTGTACAAGAAAGCTGGGT 

4 Amplification of the RecA transit peptide, to add BglII restriction sites at 
both ends of the amplicon. 

G AGATCTATGGATTCACAGCTAGTCTTG 

H AGATCTTCTGTCATCGAATTCAGAAC 

5 Amplification of the CoxIV transit peptide, to add BglII restriction sites at 
both ends of the amplicon. 

I AGATCTATGCTTTCACTACGTCAATCT 

J AGATCTGGGTTTTTGCTGAAGCAGA 

6 Amplification of RecA:spGFP, to add attB Gateway® recombination sites at 
each end (step 1 of a two-step reaction). 

K AAAAGCAGGCTACATGGATTCACAGCTAG 

D GAAAGCTGGGTCTTATTTGTATAGTTCATCC 

7 
Amplification of RecA:spGFP from the amplicon obtained in reaction 6, to 
add attB Gateway® recombination sites at each end (step 2 of a two-step 
reaction). 

E GGGGACAAGTTTGTACAAAAAAGCAGGCT 

F GGGGACCACTTTGTACAAGAAAGCTGGGT 

8 Amplification of CoxIV:spGFP, to add attB Gateway® recombination sites at 
each end (step 1 of a two-step reaction). 

L AAAAGCAGGCTACATGGTTTCACTACGTC 

D GAAAGCTGGGTCTTATTTGTATAGTTCATCC 

9 
Amplification of CoxIV:spGFP from the amplicon obtained in reaction 8, to 
add attB Gateway® recombination sites at each end (step 2 of a two-step 
reaction). 

E GGGGACAAGTTTGTACAAAAAAGCAGGCT 

F GGGGACCACTTTGTACAAGAAAGCTGGGT 

10 
 

Amplification of the full-length FC1 coding sequence (FL-FC1) fused to GFP, 
to add attB Gateway® recombination sites at each end (step 1 of a two-
step reaction). 

M AAAAGCAGGCTCAATGCAGGCAACGG 

D GAAAGCTGGGTCTTATTTGTATAGTTCATCC 

11 
 

Amplification of FL-FC1 fused to GFP from the amplicon obtained in 
reaction 10, to add attB Gateway® recombination sites at each end (step 2 
of a two-step reaction). 

E GGGGACAAGTTTGTACAAAAAAGCAGGCT 

F GGGGACCACTTTGTACAAGAAAGCTGGGT 

12 Genotyping RecA:FC1:GFP transgenic lines.  Product size = 560 bp. 
N GGATTCACAGCTAGTCTTGTCTCTG 

O CCTCCTCAGTGAACGGATACC 

13 Genotyping CoxIV:FC1:GFP transgenic lines.  Product size = 416 bp. 
P CAAGCCAGCCACAAGAACTTTG 

O CCTCCTCAGTGAACGGATACC 

14 Genotyping RecA:GFP and CoxIV:GFP transgenic lines.  Product sizes = 447 
bp and 330 bp respectively. 

Q GGATGACGCACAATCCCACTATC 

R CAAGAATTGGGACAACTCCAG 

15 Genotyping FL-FC1:GFP transgenic lines.  Product size = 783 bp. 
Q GGATGACGCACAATCCCACTATC 

O CCTCCTCAGTGAACGGATACC 

 
Restriction enzyme recognition sites within primer sequences are given in blue text.  Gateway® att recombination 
sequences (including any extra bases to maintain reading frames) within primers are underlined. 
 
 
 
 
 
 
 
 
  



Table S2.  Information on the plasmids used and created during molecular cloning of FC1. 
 

Plasmid 
name 

Insert 
name 

Parent plasmid/ 
amplicon 

Arabidopsis 
lines 

Notes Reference 

pGEM®-T Easy    TA cloning plasmid (AmpR). Promega 

pDONR™221    Gateway® cloning plasmid (KanR). Invitrogen™ 

pGWB502Ω    
Gateway® destination plasmid (SpecR).  
The plant selectable marker is 
hygromycin. 

Nakagawa et al 
(2007) 

pGEM®-T FC1-GFP FC1:GFP pGEM®-T Easy & reaction 
1  Subcloning of FC1:GFP (no native transit 

peptide).  

pENTR FC1-GFP FC1:GFP pDONR™221 & reaction 3  Cloning FC1:GFP (no native transit 
peptide) into a Gateway® plasmid.  

pGEM®-T RecA RecA pGEM®-T Easy & reaction 
4  Subcloning of RecA transit peptide.  

pGEM®-T CoxIV CoxIV pGEM®-T Easy & reaction 
5  Subcloning of CoxIV transit peptide.  

pENTR RecA-FC1-
GFP RecA:FC1:GFP 

pENTR FC1-GFP & 
pGEM®-T RecA (BglII 
digest) 

 Ligation of RecA transit peptide 
upstream of FC1:GFP.  

pENTR CoxIV-FC1-
GFP CoxIV:FC1:GFP 

pENTR FC1-GFP & 
pGEM®-T CoxIV (BglII 
digest) 

 Ligation of CoxIV transit peptide 
upstream of FC1:GFP.  

pGWB502Ω RecA-
FC1-GFP RecA:FC1:GFP pENTR RecA-FC1-GFP & 

pGWB502Ω pFC1 Recombination of RecA:FC1:GFP into a 
destination plasmid.  

pGWB502Ω 
CoxIV-FC1-GFP CoxIV:FC1:GFP pENTR CoxIV-FC1-GFP & 

pGWB502Ω mFC1 Recombination of CoxIV:FC1:GFP into a 
destination plasmid.  

pENTR RecA-GFP RecA:GFP pDONR™221 & reaction 7  Cloning RecA:GFP into a Gateway® 
plasmid.  

pGWB502Ω RecA-
GFP RecA:GFP pENTR RecA-GFP & 

pGWB502Ω pGFP Recombination of RecA:GFP into a 
destination plasmid.  

pENTR CoxIV-GFP CoxIV:GFP pDONR™221 & reaction 9  Cloning CoxIV:GFP into a Gateway® 
plasmid.  

pGWB502Ω 
CoxIV-GFP CoxIV:GFP pENTR CoxIV-GFP & 

pGWB502Ω mGFP Recombination of CoxIV:GFP into a 
destination plasmid.  

pENTR FL-FC1-
GFP FL-FC1:GFP pDONR221™ & reaction 

11  Cloning FL-FC1:GFP into a Gateway® 
plasmid.  

pGWB502Ω FL-
FC1-GFP FL-FC1:GFP pENTR FL-FC1-GFP & 

pGWB502Ω FLFC1 Recombination of FL-FC1:GFP into a 
destination plasmid.  

 
The reactions referred to in column three relate to the amplicons created in the reactions described in 
Supplementary Table S1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



Table S3.  Information on the primers used for qRT-PCR analysis of gene expression. 
 

Gene name Accession No. 
(source) 

Forward primer sequence 
(5’ > 3’) 

Reverse primer sequence 
(5’ > 3’) 

Amplicon length 
(bp) 

FC1 At5g26030 (TAIR) CCTGAAACTCTTAACGATGTTC CCACCAATAGCAGCATACC 164 

GFP U70496.1 (GenBank) GAGGACCATCTCTTTCAAGGAC GTTGTGGGAGTTGTAGTTGTATTC 163 

FC2 At2g30390 (TAIR) GCAGAGATGGAAGAATGTGTTG CAGTAATGGCTTCTTCAGTGTATG 139 

ADF2 At3g46000 (TAIR) CGATTTCGACTTTGTCACTGC TCATCTTGTCTCTCACTTTGGC 95 

YLS8 At5g08290 (TAIR) GCTGAAATATCCCGTGAACTG AATGGAGAACAACCGAAACAG 93 

GUN4 At3g59400 (TAIR) CAATCTCACTTCGGACCAAC TTGAAACGGCAGATACGG 121 

CA1 At3g01500 (TAIR) GCTTCTTTCTCACTTCACTTTCTC CAATGATAGGAGCAGGAGCG 189 

HEMA1 At1g58290 (TAIR) GCTTCTTCTGATTCTGCGTC GCTGTGTGAATACTAAGTCCAATC 128 

LHCB2*1 At2g05100 (TAIR) CTCCGCAAGGTTGGTGTATC CGGTTAGGTAGGACGGTGTAT 142 

CHLH At5g13630 (TAIR) CATTGCTGACACTACAACTGC CTTCTCTATCTCACGAACTCCTTC 145 

RecA:FC1 Created in this study CTTCACTCCTCTTTCTCCTCTCT CAACAACATGAGAACGTGCTTTA 191 

CoxIV:FC1 Created in this study CAAGCCAGCCACAAGAACTT CATCGTTAAGAGTTTCAGGACCA 146 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

Figure S1. Expression of FC2 and GFP in FC1 overexpressing lines.  (a,b) Expression of FC2 and GFP 
was determined in the same pFC1 (a) and mFC1 (b) seedlings used to generate Figure 1 and is 
shown relative to Col-0. Lines expressing only GFP in plastids (pGFP) or mitochondria (mGFP) were 
included as controls. Data represents the mean + SEM of three independent biological replicates 
and asterisks indicate a significant difference vs. Col-0 (p < 0.05, Student’s t-test). 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

Figure S2. Characterisation of 5 day-old WLc-grown seedlings overexpressing plastid-targeted 
FC1.  (a) Representative seedling phenotype of pFC1 and pGFP lines, bar = 10 mm.  (b) Total 
carotenoid and (c) chlorophyll a/b ratio of the same transgenic lines. For (b, c), data shown is the 
mean + SEM of three independent biological replicates and the asterisk denotes a significant 
difference vs. Col-0 (p < 0.05, Student’s t-test). 
 
 
 
 
 
 



 
 
Figure S3.  Analysis of chlorophyll and carotenoid levels in pFC1 seedlings grown in different 
light conditions.  (a-d) Total chlorophyll, chlorophyll a/b ratio and total carotenoids were 
measured in pFC1, pGFP (control) and gun6 5 d-old seedlings under a range of conditions. (a) LWLc 
(25 μmol m-2 s-1), (b) HWLc (250 μmol m-2 s-1), (c) SD (8 h light, 16 h dark, 100 μmol m-2 s-1), (d) LD 
(16 h light, 8 h dark, 100 μmol m-2 s-1). For graphs of chlorophyll content, black bars represent 
chlorophyll a and white bars represent chlorophyll b. Data shown are the mean + SEM of three 
independent biological replicates and asterisks indicate a significant difference vs. Col-0 (p < 0.05, 
Student’s t-test).   



 
 

Figure S4. Phenotype of FC1 overexpressing lines at the rosette stage.  Representative 
photographs of pGFP, pFC1, mGFP and mFC1 lines. All photographs were taken 23 days after 
sowing (DAS), except pFC1-9 (34 DAS). Plants were grown on soil in LD conditions (16 h light, 8 h 
dark, 100 μmol m-2 s-1), scale bar = 10 mm. 



 
 
 
Figure S5. Characterisation of 5 d-old WLc-grown seedlings overexpressing mitochondria-
targeted FC1. (a) Representative seedling phenotype of mFC1 and mGFP lines, bar = 10 mm. (b) 
Total carotenoid and (c) chlorophyll a/b ratio of the same transgenic lines.  For (b) and (c), data 
shown is the mean + SEM of three independent biological replicates. 
 
 
 
 
 
 
 
 
 
 



 
 
Figure S6. Analysis of chlorophyll and carotenoid levels in mFC1 seedlings grown in different 
light conditions.  (a-d) Total chlorophyll, chlorophyll a/b ratio and total carotenoids were 
measured in mFC1, mGFP (control) and gun6 5 d-old seedlings under a range of conditions. (a) 
LWLc (25 μmol m-2 s-1), (b) HWLc (250 μmol m-2 s-1), (c) SD (8 h light, 16 h dark, 100 μmol m-2 s-1), 
(d) LD (16 h light, 8 h dark, 100 μmol m-2 s-1). For graphs of chlorophyll content, black bars 
represent chlorophyll a and white bars represent chlorophyll b. Data shown are the mean + SEM 
of three independent biological replicates.



 
 

 
 
Figure S7. Insertion site of transgenic pFC1 cassettes. Diagram to show the insertion site of the transgenic cassette for (a) pFC1-9 and (b) 
pFC1-42. Exons (yellow boxes) are marked on the full-length genomic DNA sequence (blue boxes). The green line in (a) represents genomic 
sequence that has been replaced by the insertion. The base pair sizes in (b) give the distance from the insertion site to the start codon of each 
gene. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Figure S8. Expression of photosynthesis-associated genes on NF is rescued in plastid FC1 overexpressors, but not mitochondrial FC1 
overexpressors. (a,b) The expression of GUN4, CA1, HEMA1, LHCB2.1 and CHLH was determined by qRT-PCR in pFC1 (a) and mFC1(b)  
seedlings grown for 7 d in LWLc on plates in the absence (grey bars) or presence (black bars) of NF. The control lines pGFP (a) and mGFP (b), as 
well as gun5 and gun6, were included.  Data shown are the mean fold changes vs. Col-0 on NF + SEM of three independent biological replicates 
and asterisks indicate a significant difference vs. Col-0 (p < 0.05, Student’s t-test). The data in this figure was used to produce the graphs in 
Figure 3. 



 
 

Figure S9. FC1 expression in pFC1 and mFC1 lines in the NF screen. (a,b) FC1 expression was 
determined by qRT-PCR in pFC1 (a) and mFC1 (b) seedlings in the absence (grey bars) or presence 
(black bars) of NF. Data represents the mean + SEM of three independent biological replicates and 
asterisks indicate a significant difference vs. Col-0 (p < 0.05, Student’s t-test).



 
 
Figure S10. Gene expression changes on NF in pFC1 seedlings are not dependent on the qRT-PCR reference gene. (a,b) qRT-PCR data shown 
in electronic supplementary material figures S8 and S9 were normalised to a different reference gene, YELLOW LEAF SPECIFIC GENE 8 (YLS8, 
At5g08290). The expression of GUN4, CA1, HEMA1, LHCB2.1, CHLH and FC1 was determined by qRT-PCR in pFC1 (a) and mFC1(b)  seedlings 
grown for 7 d in LWLc on plates in the absence (grey bars) or presence (black bars) of NF. The control lines pGFP (a) and mGFP (b), as well as 
gun5 and gun6, were included.  Data shown are the mean fold changes vs. Col-0 on NF + SEM of three independent biological replicates and 
asterisks indicate a significant difference vs. Col-0 (p < 0.05, Student’s t-test). 



Figure S11.  Mitochondria-targeted FC1 expression does not correlate with enhanced nuclear 
gene expression on NF. Correlation plots of the combined mean percentage change in 
expression of GUN4, CA1, HEMA1, LHCB2.1, and CHLH, vs. FC1 expression for mFC1 seedlings in 
the presence (a) or absence (b) of NF.  Data is relative to Col-0 +NF (a) or -NF (b). For both graphs, 
data points include gun6 and the six transgenic mFC1 overexpressing lines. The triangle indicates 
WT response. SigmaPlot 13.0 was used to fit logarithmic best-fit lines and derive coefficients of 
determination. Data shown is the mean ± SEM of three independent biological replicates. 



 
 

Figure S12. Increased FC1 expression does not confer elevated nuclear gene expression in dark-grown seedlings. (a,b) The expression of GUN4, 
CA1, HEMA1, LHCB2.1, CHLH and FC1 was determined by qRT-PCR in pFC1 (a) and mFC1(b) seedlings grown for 4 d in the dark.  Data shown is the 
mean + SEM of three independent biological replicates and asterisks denote a significant difference vs. Col-0 (p < 0.05, Student’s t-test).



 
 

Figure S13.  FC1 overexpression in crosses of pFC1 and mFC1 transgenic lines.  (a,b) Analysis of 
gene expression by qRT-PCR in F1 seedlings derived from a cross between pFC1-9 and mFC1-27, or 
pFC1-9 and mFC1-47 was assessed in the absence (grey bars) or presence (white bars) of NF by qRT-
PCR. The parent lines pFC1-9, mFC1-27 and mFC1-47, as-well-as gun5 and gun6, were included as 
controls. Expression of GUN4, CA1, HEMA1, LHCB2.1 and CHLH (a) and total, plastid-targeted 
(RecA:FC1) and mitochondria-targeted (CoxIV:FC1) FC1 (b) is shown relative to Col-0. Data shown is 
the mean ± range of two independent biological replicates and asterisks denote a significant 
enhancement of nuclear gene expression vs. Col-0 +NF (determined as no overlap of the 95% 
confidence limits).  
 
 
 



 
 

 

Figure S14. Protochlorophyllide is reduced in pFC1 lines. (a,b) Protochlorophyllide (Pchlide) 
content of pFC1 (a) and mFC1 (b) seedlings grown for 4 d in the dark.  Data shown is the mean + 
SEM of three independent biological replicates and asterisks indicate a significant difference in 
percentage change vs. Col-0 for the same treatment (ANOVA, followed by Tukey’s test). 



 

 
 

 
Figure S15. Enhancement of nuclear gene expression on NF does not correlate with protochlorophyllide levels in dark-grown mFC1 
seedlings. Correlation plots of protochlorophyllide (Pchlide) in 4 d-old dark-grown mFC1 seedlings and against fold change in expression of 
GUN4, CA1, HEMA1, LHCB2.1, and CHLH vs. Col-0 on NF. Data represent the mean ± SEM of three independent biological replicates. 
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