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Abstract

This thesis concerns the actions of countable groups and associated Schreier graphs.

In Chapters 1 and 2 we give the motivation and overview for the research presented

in this thesis and we establish the basics regarding group actions, especially about

Schreier graphs and amenability. Furthermore, we recall the idea of equationally

compact actions of groups defined by Banaschewski. Finally, we show two results

about equationally compact subgroups of infinite groups which answer two questions

of Rajani and Prest.

We start off Chapter 3 with recalling the construction of a space of rooted Schreier

graphs which are associated with the actions of a group. A crucial notion related to

the space of rooted Schreier graphs is that of a Benjamini-Schramm convergence of

sequences of sparse graphs, which has connections with measure-preserving actions of

groups. We are, however, particularly interested in actions which only preserve the

measure class, i.e. the non-singular actions of groups. Let us notice that for such

actions the classical theorem of Radon-Nikodym can be applied, which equips the graph

structure on the space with an additional function on the edges which forms a cocycle.

Thus, drawing inspiration from the space of rooted Schreier graphs, we construct a

space of rooted Schreier cocycles of a group. Similarly as in the measure-preserving case,

we obtain a correspondence between the space of cocycles and non-singular actions of

groups.

In the final chapter of the thesis the central notion is that of hyperfiniteness, which

has strong ties to amenability. The definition of hyperfiniteness varies between the

settings of sequences of graphs, graphings of the actions of groups and for equivalence
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relations. Broadly speaking, an object is hyperfinite if it is in some sense close to being

finite. Thus, a sequence of graphs is hyperfinite if we can remove sets of arbitrarily

small size relative to the size of graphs in such a way that the resulting objects have

components of bounded size. On the other hand, a measure preserving group action

yields an associated structure of a graphing on the space that it acts upon. If we

can remove an arbitrarily small set from the probability space in such a way that the

resulting graphing has bounded components then we call the action hyperfinite. In

fact, these two notions of hyperfiniteness are strongly connected: by the theorem of

Schramm, a measure preserving action is hyperfinite if and only if a sequence of graphs

convergent to it is hyperfinite.

We consider a weighted version of hyperfiniteness, one which is suitable for this setting

and we obtain a similar result to that of Schramm’s in Chapter 4, namely that a

limit action of a hyperfinite sequence of cocycles is hyperfinite. Finally, we find

continuous actions which are isomorphic to a given Borel action and have the same

Radon-Nikodym cocycle and we obtain examples of free continuous actions of exact

groups with continuous Radon-Nikodym derivatives.
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Chapter 1

Introduction

In this thesis we study graphs with weighted vertices and their connections with actions

of finitely generated groups on standard Borel spaces. Our main goal is to define a

notion of convergence of sequences of weighted graphs which is analogous to the local

convergence of graphs (without weights) introduced by Benjamini and Schramm [3].

Furthermore, we aim to show that the proposed notion of convergence has interesting

properties, particularly for hyperfinite sequences of graphs.

Recall that an uncountable standard Borel space (X, B) (where B denotes the Borel

σ-algebra on X) is one which is Borel isomorphic to the Cantor set C or to the interval

[0, 1] with the euclidean topology (Chapter 3 in [35]). We are particularly interested in

actions of finitely generated groups on a standard Borel space (X, B) which preserve

the Borel σ-algebra. Each such action induces an orbit equivalence relation on X which

is Borel, i.e. it is a Borel subset of the product X × X. Conversely, the Feldman-Moore

theorem [15] states that each countable Borel equivalence relation E on X arises as an

orbit equivalence relation of a Borel action of some countable discrete group.

Later we will also consider Borel measures on X. Observe that for a Borel space (X, B)

and a Borel measure µ on X, any Borel actions on X are also µ-measurable.
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1.1 Orbits, stabilizers and the space of subgroups

Given a countably infinite group Γ, we consider the set 2Γ consisting of all 0-1-valued

functions on Γ endowed with the topology of pointwise convergence. Notice that 2Γ is

homeomorphic to the Cantor set C. There exists a bijection h between P(Γ) – the power

set of Γ – and 2Γ, defined as h(A) = χA, where χA denotes the characteristic function

of A. The map h induces a topology on P(Γ) which makes h a homeomorphism. This

topology can be metrized with the Hausdorff metric. We define Sub(Γ) ⊆ P(Γ) to be

the space of all subgroups of Γ endowed with the subspace topology.

Proposition 1.1.1. The space Sub(Γ) is a closed subset of P(Γ) and so it is a compact

space.

Proof. Let {Gn}∞
n=1 be a convergent sequence of subgroups of Γ and suppose its limit

is a subset G of Γ. We will show that G is a subgroup of Γ. By the definition of the

topology on P(Γ), a point x ∈ Γ is an element of G if and only if it lies in all but

finitely many Gn’s. Hence eΓ ∈ G as all Gn are groups. Now, if g, h ∈ G then for all

but finitely many n we have g, h, h−1 ∈ Gn so gh−1 ∈ G as well.

Let us notice that a group Γ has a natural left action on the space of its subgroups by

conjugations, Hg = g−1Hg. Now let the countable group Γ act on an arbitrary set X.

For a point x ∈ X, its orbit O(x) is the union of the images of x under the action of

Γ. Furthermore, we may consider the map Stab:X → Sub(Γ) which maps each point

to its stabilizer, that is Stab(x) = {γ ∈ Γ : γ · x = x}. Notice that the map Stab is

Γ-equivariant, that is for any γ ∈ Γ and an x ∈ X we have Stab(γ · x) = Stab(x)γ.

In Section 2.2 we study the notion of equational compactness of an action of a group

which was introduced by Banaschewski in [2].

Definition 1.1.2. An action α : Γ ↷ X is equationally compact if, for any set

S ⊆ Γ the following condition is satisfied: if for every finite subset T of S there is a
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point fixed by all elements of T then there is a point fixed by every element of S.

A subgroup H ⊆ Γ is called equationally compact if the action of Γ on the set Γ/H of

left cosets of H on Γ is equationally compact.

Rajani and Prest in [31] asked two questions regarding equationally compact subgroups

(which they call the subgroups with pure-injective property), to which we provide

answers. Firstly, we show that in the group of finitary permutations of N, denoted

S0
∞, the only equationally compact subgroups are the finite ones and the alternating

subgroup A0
∞ (Section 2.2.3). Secondly, we give examples of equationally compact

actions of a countable group such that none of the stabilizers of points are equationally

compact subgroups.

1.2 Schreier coset graphs

Let us fix a generating system Σ of Γ and let α be an action of Γ on a set X. Then we

can put the structure of a directed graph Gα on X in the following way. We put the

set of vertices of Gα to be X and the set of edges to be consisting of pairs (x, s · x) for

x ∈ X and s ∈ Σ. The graph Gα is connected if and only if the action α is transitive,

i.e. if for every x, y ∈ X there is a γ ∈ Γ such that α(γ)(x) = y.

For a subset A ⊆ Γ, we define A−1 to be the set of the inverses of elements from A.

Throughout this thesis, we will assume that the generating system Σ of Γ is symmetric,

that is Σ = Σ−1. Note that in the case where Σ is symmetric, for each edge (x, y),

(y, x) is also an edge. Thus, the graph Gα can also be viewed as an undirected graph.

Now we can define the Schreier coset graphs, which are central to this thesis. Let us fix a

symmetric generating system Σ of Γ and a subgroup H < Γ. Then the Schreier coset

graph associated to Γ and H with respect to Σ is defined as S(Γ, H, Σ) := (V, E, l)

with V, E, l defined as follows:
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• V , the set of vertices, is the set Γ/H of left cosets of H in Γ.

• We note that Γ acts on Γ/H by left multiplication. Similarly as before we obtain

a structure of a graph on Γ/H with respect to the generating system Σ. E is the

set of edges of this graph.

• Furthermore, in these graphs we also wish to associate each edge e with a label

l(e) which ’remembers the generator of the edge’. This means that l : E → P(Σ)

is a function assigning to each edge (aH, bH) the set of those generators s ∈ Σ

for which saH = bH (for a set Σ, P(Σ) denotes its power set).

We denote the set of Schreier coset graphs of Γ by ΓG ′. For shortness, we will write

S(H) when it is clear what group and its generating system we consider.

The notion of a Schreier graph was introduced in 1927 and can be viewed as a

generalization of a Cayley graph of a group Γ with respect to a generating system Σ.

Indeed, the Cayley graph Cay(Γ, Σ) arises as the Schreier graph S(Γ, {e}, Σ), where e

is the neutral element of Γ. Although we may consider the Schreier graphs of arbitrary

finitely generated groups Γ, we show in Section 3.1 that it is often enough for to discuss

Schreier graphs of the free groups of finite rank r, denoted Fr.

Now, let α be an action of Γ on a set X. Then, for any element x ∈ X we may

consider its stabilizer Stab(x) = {γ ∈ Γ : α(γ)(x) = x}. Since stabilizers of points

are subgroups of Γ, each point x has an associated Schreier coset graph S(Stab(x)).

Then for any point x ∈ X, the graph S(Stab(x)) is isomorphic to the component of

Gα which contains x.

1.2.1 Convergence of Schreier graphs

In this section we recall the definition of the local convergence of Schreier graphs. This

notion of convergence was introduced in 2001 by Benjamini and Schramm [3] for the
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sparse graph sequences. These are such graph sequences {Gn}∞
n=1, Gn = (Vn, En), for

which there exists a constant C such that

|En|
|Vn|

≤ C.

In the case of Schreier graphs of finitely generated groups with respect to a finite

generating system Σ, the degree of each vertex of a graph from ΓG ′ is bounded by |Σ|.

Thus, for any graph G = (V, E, l) ∈ ΓG ′ we have that |E| ≤ |Σ|
2 |V |, so any sequence of

graphs in ΓG ′ is sparse.

In order to define convergence of sequences of graphs, first we need to consider rooted

graphs.

Definition 1.2.1. A rooted Schreier graph is a pair (G, v) where G is a Schreier

graph and v is a distinguished vertex of G, also called the root.

The set of all rooted Schreier graphs can be endowed with a metric which induces a

totally disconnected compact topology. We denote this metric space by ΓG; we discuss

it in more detail in Section 3.1.

Let us fix a sequence {Gn}∞
n=1, Gn = (Vn, En, ln) of finite Γ-Schreier graphs such that

|Vn| → ∞ and consider any finite rooted Γ-Schreier graph H. We set pH
n to be the

probability that if we uniformly randomly pick a vertex v in Gn, then there is a rooted

isomorphic copy of H in Gn with root v. Hence, for any rooted Schreier graph H of Γ we

have defined a sequence of real numbers {pH
n }∞

n=1. If for every H we have that {pH
n }∞

n=1

is convergent, then we say that {Gn}∞
n=1 is Benjamini-Schramm convergent or

locally convergent [3]. From now on we will only consider sequences {Gn}∞
n=1 for

which |Vn| → ∞, as if |Vn| is bounded and the sequence {Gn}∞
n=1 is convergent, then

from some point on it is constant.

It is not immediately clear how a limit object of a convergent sequence of graphs can
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be represented. In order to establish that, we will think about the Schreier graphs a bit

differently. If G is a finite Schreier graph of Γ, then it induces a probability measure

µG on ΓG by

µG = 1
|G|

∑
v∈V (G)

δ(G,v),

where δ(G,v) denotes the Dirac’s delta measure supported on the rooted graph (G, v) ∈

ΓG. Therefore, any sequence of finite Γ-Schreier graphs Gn induces a sequence of

measures µn in the space of Borel probability measures Prob(ΓG). If the sequence

{Gn}∞
n=1 converges, then also {µn}∞

n=1 weakly converges to some measure µ as n → ∞.

Furthermore, any sequence {Hn}∞
n=1 which converges to a different limit (i.e. such that

the mixed sequence does not converge) induces a sequence of probability measures

{µ′
n}∞

n=1 which do not weakly converge to µ. Hence the weak limit µ of the probability

measures µn represents the limit of the sequence of graphs {Gn}∞
n=1.

In Section 3.1.1 we consider Schreier graphs with vertices colored with elements of some

space Q. Furthermore, we introduce a notion of conergence on the set of such colored

graphs, denoted by ΓGQ. Later, we show that for any locally convergent sequence

of Schreier graphs and any positive integer R we can find such a number Q and a

Q-coloring of the sequence that in the resulting colored graphs, any two vertices which

are at distance at most R from each other have different colors. Furthermore, the

colored sequence is locally convergent (Section 4.1).

1.3 Amenability and hyperfiniteness

In 1929 John von Neumann introduced the concept which would later be known as

amenability. A finitely generated group Γ is amenable if it admits a finitely additive

probability measure which is invariant under left multiplication (see Chapter 5 in [22]).

Furthermore, an arbitrary countable group is amenable if all of its finitely generated
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subgroups are amenable. Examples include all finite, abelian and solvable groups and

groups of subexponential growth. Classic non-examples are the free groups Fr of rank

r > 1 and infinite groups with Kazhdan’s property (T). The von Neumann conjecture

stated that any non-amenable group necessarily contains a copy of F2 as a subgroup.

The conjecture was first disproved by Ol’šanskĭı in 1980 [28]: he constructed a Tarski

monster group which does not contain F2. Multiple other examples were found since

then.

The notion of amenability arose from von Neumann’s studies of the Banach-Tarski

paradox. It states that a three dimensional unit ball can be divided into finitely many

parts which then can be reassembled into two identical unit balls. The proof of this

counterintuitive statement relies on the Axiom of Choice and the fact that the free

group F2 is paradoxical. Following Kechris and Miller [22], we say that a group is

paradoxical provided that there exist two disjoint subsets A, B of F2, a positive

integer n, partitions A1, . . . , An, B1, . . . , Bn and C1, . . . , Cn of A, B, Γ respectively and

elements γ1, . . . , γn, δ1, . . . , δn of F2 such that for every k ∈ {1, . . . , }, γkAk = Ck = δkBk.

In fact, Tarski later proved that a group is paradoxical if and only if it is non-amenable.

There is a number of other properties of groups which were shown to be equivalent

to the definition of amenability given by von Neumann (see e.g. [22], Chapter 5).

The Følner condition, which links amenability of a group to its (left) Cayley graph,

is the most relevant to this thesis. Having fixed a finite generating system Σ for

a group Γ, we will say that for a set F ⊆ Γ its (left) boundary is defined as

∂F = {γ ∈ F : there exists an s ∈ Σ such that sγ ̸∈ F}. The set ∂F may be viewed

as the boundary of the set F in the Cayley graph of Γ with respect to Σ.
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Definition 1.3.1. We say that Γ satisfies the Følner condition if there exists a

sequence {Fn}∞
n=1 of finite subsets of Γ such that

|∂Fn|
|Fn|

n→∞−−−→ 0.

The sequence {Fn}∞
n=1 is called a Følner sequence of Γ.

Note that the Cayley graph of Γ depends on the generating system Σ. Thus, it is a

priori possible that the existence of Følner sequences depend on the generating system

as well. However, since any two Cayley graphs of Γ are quasi-isometric, we have that

any Følner sequence for a group Γ does not depend on the choice of the generating

system.

Furthermore, since the Følner condition depends only on the Cayley graphs of the

groups, it can be extended to any graph. Thus, it is justified to say that an arbitrary

graph is amenable if it posesses a Følner sequence.

1.3.1 Amenable equivalence relations

We are particularly interested in actions of groups on probability measure spaces.

Firstly, we should recall another condition equivalent to amenability of a group. A

finitely generated group Γ satisfies the Reiter’s condition if it is possible to define a

sequence of approximate invariant means on Γ. In relation to that, an equivalence

relation E on an uncountable standard probability space (X, µ) is called amenable if

it is possible to choose a sequence of approximate E-invariant means on each class of

E in "a measurable way" ([22], Chapter 9). We shall say that a Γ action on a Borel

probability space (X, µ) is amenable if the associated orbit equivalence relation is

amenable. It is known that every measure preserving action of an amenable group is

amenable, while non-amenable groups have actions which are amenable as well as ones
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which are not. In particular, a free measure preserving action of a non-amenable group

is non-amenable.

On any Borel equivalence relation E we may put a structure of a Borel graph. For

example, such a graph structure may come from the action of a group which is given

by the Feldman-Moore theorem. It is known that for an amenable equivalence relation

E and any graph structure G on E the connected components of G are amenable

graphs. Kaimanovich ([21]) gave examples of non-amenable equivalence relations with

measurable graph structures such that on each orbit the associated countable graph

satisfies the Følner condition. In [20], he provided a condition which has to be satisfied

by any Borel and bounded graph structure G generating E which is equivalent to

the amenability of E. Here, G is a bounded graph structure if the vertices of G have

bounded degrees and the Radon-Nikodym derivatives associated with the edges of G

are bounded as well. In Section 4.2.2 we formally state this condition and we provide

an alternative proof of its equivalence with the amenability of E.

1.3.2 Hyperfiniteness

One of the central notions in this thesis is hyperfiniteness. It can be defined in

various settings, e.g. for Borel equivalence relations or for Γ-graphings. We will define

hyperfinitess in the latter setting but first we should recall the notion of a Γ-graphing.

For a measure preserving action α of the group Γ on a standard probability space

(X, µ), we can define a graph structure Gα with respect to a generating system Σ of Γ

as in Section 1.2. Then Gα is the graphing of the action α and Γ-graphing is any such

Gα. The difference between a graphing and a graph on uncountably many vertices

is that a graphing preserves the measure on the space of vertices. Thus, in order to

distinguish graphs from graphings, we shall denote the latter by G, H as opposed to

G, H.
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Definition 1.3.2. For a Γ-graphing G on a Borel probability measure space (X, µ) we

say that G is hyperfinite if and only if for any ϵ > 0 there exist a positive integer K

and a µ-measurable set Z ⊆ X such that

• µ(Z) ≤ ϵ,

• if we denote G ′ to be the subgraphing of G induced on the set X \ Z, then every

component of G ′ has at most K vertices.

Hyperfinite Γ-graphings are strictly related to amenable actions of Γ. The theorem of

Connes-Feldman-Weiss (Theorem 10.1 in [22]) implies that any hyperfinite Γ-graphing

is amenable.

1.3.3 Hyperfinite families of graphs

Elek introduced hyperfiniteness in the case of families of finite graphs in [9]. We shall

recall this definition now.

Definition 1.3.3. Let us consider a group Γ with a finite symmetric generating system

Σ. A set of graphs A ⊆ ΓG ′ is hyperfinite if for every ϵ > 0 there exists a positive

integer K such that for every graph G ∈ A there is a set Z ⊆ V (G) such that |Z|
|G| < ϵ

and every component of G − Z has at most K vertices.

We will say that a sequence {Gn}∞
n=1 is hyperfinite if and only if the set {Gn :

n = 1, 2, . . .} is hyperfinite. Examples of such families are the families of graphs with

excluded minors (e.g. planar graphs) and families with a fixed polynomial growth.

Non-examples include expander families. A family A of sparse graphs is an expander

family if there exists an ϵ > 0 such that for any G ∈ A and any subset A ⊆ V (G) with

|V (G)| ≤ 1
2 |A| we have that |∂A|

|A| ≥ ϵ. Such families were constructed e.g. by Lubotzky,

Phillips and Sarnak [26] and Margulis [27].

It was proved by Schramm in 2008 ([34]) that the definitions of hyperfiniteness of
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graphings and of families of graphs are linked, which is illustrated in the following

theorem.

Theorem 1 (Schramm, 2008). Let G be a Γ-graphing with respect to a fixed generating

system Σ and let {Gn}∞
n=1 be a sequence of finite Γ-Schreier graphs with respect to Σ,

which is locally convergent to G. Then G is a hyperfinite graphing if and only if the

sequence {Gn}∞
n=1 is hyperfinite.

An alternate proof of that theorem was given by Elek in [10]. Let us note that

both of Elek and Schramm actually proved Theorem 1 for sequences of simple graphs,

which is a more general case than the Schreier graphs considered in this thesis.

1.4 Weighted graphs and non-singular actions

1.4.1 Multiplicative cocycles and weighted graphs

A weighted graph is a pair (G, w) consisting of a Schreier graph G = (V, E, l) together

with a weight function w : V → (0, ∞). In Section 3.2 we define the local convergence

of weighted graphs. However, in order to do that we first introduce the Schreier

cocycles.

Definition 1.4.1. For a group Γ with a finite generating system Σ, a Schreier

cocycle C is a pair (G, r), where G = (V, E, l) ∈ ΓG ′ and r : E → (0, ∞) is a function

satisfying the following condition:

if −→e1 , −→e2 , . . . , −→en is a directed cycle in G, then r(−→e1 ) · . . . · r(−→en) = 1. (1.1)

The condition 1.1 is called the cocycle identity.
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The cocycles considered here are multiplicative, as they will turn out to be asso-

ciated to cocycles arising from Radon-Nikodym derivatives, which are known to be

multiplicative. In particular, the cocycle identity implies that

• for any loop (x, x), r(x, x) = 1,

• for any edge (x, y), r(y, x) = r(x, y)−1.

We say that a weighted graph (G, w) is normal if ∑v∈V w(v) = 1. Observe that

there is a correspondence between Schreier cocycles and normal weighted Schreier

graphs. In order to obtain a structure of a cocycle on a weighted graph (G, w), we put

rw(x, y) := w(y)
w(x) . Clearly, r defined in this way satisfies the cocycle identity. On the

other hand, given a function r on the edges of G which satisfies the cocycle identity,

we can retrieve a normal weight function w on the vertices of G in the following

way. We start by picking any vertex v of G and we inductively define a function

w′ : V (G) → (0, ∞) by setting

• w′(v) = 1,

• for any vertex t of G, if t has a neighbor t′, for which w′(t′) is already defined,

then we set w′(t) = w′(t′)r(
−→
t′t).

The cocycle identity implies that the function w′ is well-defined. Then we put w to be

the normalization of w′, i.e. we put w(x) = w′(x)∑
v∈V (G) w′(v) for every vertex x, in order to

obtain ∑v∈V (G) w(v) = 1.

We denote the set of rooted Schreier cocycles of a group Γ by CΓG. In Section 3.1.2

we endow the set CΓG with a locally compact topology, similar to the topology on

ΓG. Now, for a normal weighted graph (G, w), the function w allows us to introduce

a probability measure µ(G,w) on the space CΓG. We formally describe this measure

in Section 3.2 and we define the convergence of a sequence of weighted graphs to
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be the convergence of their associated measures. Woever, unlike in the case of the

local convergence of graphs, the underlying space of rooted cocycles is not totally

disconnected. Because of this, the convergence of weighted graphs cannot be simply

defined in terms of local statistics; an additional condition is required (see Section

3.2.4).

Furthermore, we discuss hyperfiniteness for cocycles. Given a sequence {(Gn, rn)}∞
n=1

of finite Schreier cocycles with associated weight functions wn, we call {(Gn, rn)}∞
n=1

hyperfinite if for any ϵ > 0 there exists a positive integer K and sets Zn of vertices of

Gn such that

• the total weight w(Zn) := ∑
v∈Zn

w(v) is less than ϵ,

• the components of Gn − Zn have at most K vertices.

1.4.2 Non-singular actions of groups

It is known that actions of groups which preserve a given measure are associated

with limits of graphs. However, we will be interested in group actions which do not

necessarily preserve the measure itself but rather the measure class.

Definition 1.4.2. An action α of a group Γ on a Borel probability space (X, µ) is called

non-singular if for any element γ ∈ Γ, the measures µ and α(γ)∗µ (the pushforward

of µ under the map induced by γ) have the same families of null-sets. In such a case,

measure µ is called quasi-invariant under the action α.

The definition 1.4.2 implies that for the pushforward measures indued by non-

singular actions the assumptions of the Radon-Nikodym theorem hold (Theorem 32.2

in [5]). Therefore, for any γ ∈ Γ there exists a positive Radon-Nikodym derivative
dα(γ)∗µ

dµ
. It turns out that the Radon-Nikodym derivatives define multiplicative cocycles

on the orbits of the action (Section 2.1.3). We obtain that any non-singular action α of
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Γ on a Borel probability measure space (X, µ) induces a map Mα from X to the space of

rooted Γ cocycles (see 3.2.1). Any measure ν which is a pushforward of a quasi-invariant

measure µ under the map Mα is called a Quasi-invariant Radon-Nikodym Cocycle

(QRC for short).

Moreover, we define hyperfiniteness for quasi-invariant group and we then prove a

result which is a non-singular analogue of one of the implications in Schramm’s theorem

(Theorem 1). Namely, in Section 4.2 we show that when we are given a tight sequence

of Weighted Generalized Schreier Graphs (see Section 3.2.3) which converges to a

non-singular action α, then the weighted hyperfiniteness of the sequence implies the

hyperfiniteness of the limit.

Then, in Section 4.3, we prove a non-singular version of a recent theorem of Lovász

([25]). The result that we present asserts that for any non-singular Borel action α of a

finitely generated group Γ on a probability space X with a bounded Radon-Nikodym

cocycle, we can find a continuous action of Γ on a totally disconnected compact space

K and an equivariant map of X into K which induces a measure on K with the same

cocycle as α. Furthermore, the cocycle on K is continuous. In the final part of the

thesis we show that any exact group admits a free non-singular action on the Cantor

set such that the Radon-Nikodym derivatives of this action are continuous.



Chapter 2

Preliminaries

2.1 Actions of groups and their graphings

2.1.1 Borel actions and hyperfiniteness

Let Γ be a countable group acting on the uncountable standard Borel space X with

an action α. Since the closed interval [0, 1] is Borel isomorphic to X, we can assume

X = [0, 1]. Moreover, if A, B are separable complete metric spaces and U ⊂ A, V ⊂ B

are uncountable open subsets, then there exists a Borel isomorphism φ : U → V (see

e.g., Chapter 3 in [35]). An action α : Γ ↷ X is Borel if for any γ ∈ Γ and Borel

set U ⊂ X, the subset α(γ)[U ] is Borel as well. It is not hard to see that the map

Stabα : X → Sub(Γ), assigning to each point in X its stabilizer, is always a Borel map.

We define the orbit equivalence relation of α, denoted Eα, by xEαy if there exists

γ ∈ Γ such that α(γ)(x) = y. Note that if Γ is a countable group, then each class of

Eα is countable. We call such an equivalence relation countable. Furthermore, if α

is a Borel action, then Eα is a Borel equivalence relation, that is, the pairs (x, y)

for which xEαy form a Borel subset of the set X × X. Conversely, let E ⊂ X × X be

a countable Borel equivalence relation. Then, by the Feldman-Moore theorem there
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exists a countable group Γ and a Borel action α : Γ ↷ X such that E = Eα ([15]).

We call a Borel equivalence relation E finite if all the classes of E are finite. A

countable Borel equivalence relation E is called Borel hyperfinite if there exist finite

Borel equivalence relations E1 ⊂ E2 ⊂ . . . such that ∪∞
n=1En = E. It is known that if Γ

is a countable nilpotent group and α : Γ ↷ X is a Borel action, then Eα is hyperfinite.

This follows from the Jackson-Kechris-Louveau theorem (Theorem 11.1 in [22]), since

nilpotent groups have polynomial growth. It is conjectured that if Γ is an amenable

group (see Section 1.3) and β : Γ ↷ X is a Borel action, then Eβ is always hyperfinite

([36]).

2.1.2 Measurable actions

Let Γ be a countable group and α : Γ ↷ (X, µ) be a Borel action of Γ on a standard

probability space (X, µ) preserving the measure µ. Then, we call α a measurable

action and µ an invariant measure under the action α. Now, let E be a countable

equivalence relation on the Borel space X. We say that a Borel isomorphism T of X is

full if for any x ∈ X there exists γ ∈ Γ such that T (x) = α(γ)(x). Furthermore, for a

Borel equivalence relation E on X, a Borel probability measure µ on X is E-invariant

if for any full isomorphism T and Borel set U ⊂ X we have µ(T [U ]) = µ(U) . If E = Eα

for some action α, then µ is E-invariant if and only if µ is invariant under the action

α. In this case we call E a measurable countable equivalence relation (or shortly a

measurable equivalence relation, as all groups under consideration are countable).

We say that a measurable equivalence relation E is µ-hyperfinite (also hyperfinite

µ-almost everywhere, see Chapter 6 in [22]) if there exists a Borel subset Y ⊂ X such

that

• Y is a union of some E-equivalence classes of X,

• µ(X\Y ) = 0,
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• E ∩ (Y ×Y ) is a hyperfinite Borel equivalence relation.

It follows from the Ornstein-Weiss theorem ([29], also see [22]) that if α : Γ ↷ (X, µ)

is an action of an amenable group Γ preserving the probability measure µ, then Eα is

always µ-hyperfinite.

2.1.3 Nonsingular actions and the Radon-Nikodym cocycle

Let Γ be a countable group and α : Γ ↷ X be a Borel action on the standard Borel

space X. Let µ be a probability measure and suppose that for any γ ∈ Γ and set

Y ⊂ X of measure zero, the set α(γ)[Y ] has measure zero as well. Then we say that

the action α is nonsingular or that α preserves the measure class of µ. In this

case, the measure µ is called quasi-invariant under α. Note that for any element

γ ∈ Γ we have the push-forward measure γ∗µ on X defined by

γ∗µ(A) = µ(α(γ)−1[A])

for all Borel subsets A ⊆ X.

For a measure space (X, µ) let N (µ) denote the family of all nullsets of the measure

µ. Recall that if µ, ν are measures on a set X and N (µ) ⊆ N (ν), then µ is said to be

absolutely continuous with respect to ν (denoted by ν ≪ µ). The following is a classic

theorem in measure theory which will be crucial to us.

Theorem 2 (Radon-Nikodym, see e.g. [5]). Let (X, B) be a Borel space and let

µ, ν be σ-finite Borel measures on X such that µ ≪ ν. Then there exists a function

f : X → (0, ∞) such that for any set A which is measurable with respect to µ the

following holds:

µ(A) =
∫

A
fdν.
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The function f in the theorem is called the Radon-Nikodym derivative of

µ with respect to ν (denoted by dµ
dν

) and is determined uniquely up to a nullset.

Furthermore, the Radon-Nikodym theorem implies that for any µ-integrable function

g : X → R we have ∫
X

gdµ =
∫

X
g · dµ

dν
dν.

Notice that in the case of a Borel action α of Γ on X, the Radon-Nikodym derivatives

d(γ∗µ)
dµ

exist for all γ ∈ Γ if and only if µ is quasi-invariant. We call them the Radon-Nikodym

derivatives of the action α. Observe that d(γ∗µ)
dµ

= 1 holds for all γ ∈ Γ if and only if α

preserves the probability measure µ.

If α : Γ ↷ (X, µ) is nonsingular, then we have a Γ-invariant Borel set X0 ⊂ X and for

any γ ∈ Γ we have Borel functions (the Radon-Nikodym derivatives of the action of γ

with respect to µ) dγ∗µ
dµ

satisfying the following conditions:

• µ(X\X0) = 0;

• for any Borel set A ⊂ X0

µ(γ[A]) =
∫

A

dγ∗µ

dµ
(z)dµ(z);

• for all pairs γ, δ ∈ Γ and x ∈ X we have the identity

d(γδ)∗(µ)
dµ

(x) = dγ∗µ

dµ
(α(δ)(x))dδ∗µ

dµ
(x).

The final condition above implies that the function R(γ, x) = dγ∗µ
dµ

(x) forms a Borel

cocycle (the Radon-Nikodym cocycle of the action, see e.g. Chapter 8 in [22]).
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2.1.4 Graphings and subgraphings

Assume that Γ is a finitely generated group with a finite symmetric generating set Σ

and let α : Γ ↷ (X, µ) be a nonsingular action. Similarly as in Section 1.3.2, for each

x ∈ X, we can consider the orbit graph OG(x) = (V, E), where

• V , the set of vertices, is the orbit of x;

• (x, y) ∈ E if α(σ)(x) = y for some generator σ.

Note that OG(x) is an undirected graph (later we will consider directed orbit graphs

as well). The union of all the orbit graphs is called the graphing of α and denoted by

Gα. Let Y ⊂ X be a Borel subset. Then, the restriction of Gα to Y , denoted GY
α , is

called a subgraphing.

We can equivalently define the µ-hyperfiniteness of the action using its graphing as

well.

Definition 2.1.1. The action α is hyperfinite (or its graphing Gα is hyperfinite) if

for any ϵ > 0 there exists K > 0 and a Borel set Z ⊂ X such that µ(Z) < ϵ and all

the components of the subgraphing GX\Z
α are of size at most K (see e.g. [10]).

2.2 Equationally compact subgroups

The results in this section appeared in a joint paper with Gábor Elek in the form of a

preprint [12].

2.2.1 Continuous actions

Let K be a compact metric space and Γ be a countable group. An action α : Γ ↷ K is a

continuous action if for any γ ∈ Γ, α(γ) is a homeomorphism. Hence, any continuous

action is also a Borel action. If Γ is amenable, then all continuous actions α : Γ ↷ K
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admit an invariant measure. If Γ is nonamenable, then there exist continuous actions

of Γ that do not admit invariant measures.

We may ask the following question: if K is a compact metric space equipped with a

metric d and α : Γ ↷ K is a continuous action, then is the map Stabα : K → Sub(Γ)

continuous? It turns out that the answer is not always positive, which is pictured in

the following example.

Example 1. Consider Z acting on 2Z by the shift, i.e. for σ ∈ 2Z, k, n ∈ Z, n · σ(k) =

σ(k − n), where 2Z is equipped with the canonical metric d defined as

d(σ, τ) =
∑
n∈Z

2−n|σ(n) − τ(n)|.

For this action the stabilizer map is not continuous. To see this, consider the sequence

{σn : n ∈ N} defined as

σn(k) = 1 ⇔ n = k.

Then clearly we have that for all n, Stab(σn) = {0} but σn → 0 (the constant sequence

which takes value 0 everywhere) and Stab(0) = Z.

This example can be extended to show that the stabilizer map is not continuous for

the Bernoulli shift of any infinite group. The following proposition classifies when the

stabilizer map is continuous.

Proposition 2.2.1. Suppose a countable group Γ = {γi : i ∈ N} acts on a compact

metric space (K, d). Then the following conditions are equivalent.

1. The map Stab: K → Sub(Γ) is continuous.

2. For any x ∈ K and γ ∈ Γ if γ · x = x then there is a neighborhood U of x such

that for any y ∈ U we have γ · y = y.
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Proof. 1. ⇐ 2.: Let {xn}∞
n=1 be a sequence in K converging to some x ∈ K. For any

i by (2) there exists some Ni ∈ N such that for n > Ni we have that γi ∈ Stab(xn)

if and only if γi ∈ Stab(x). We may also assume that the sequence {Ni : i ∈ N} is

increasing. Hence the sequence {Stab(xn)}∞
n=1 is convergent and its limit is Stab(x).

1. ⇒ 2.: Suppose that there is an x ∈ K, a sequence {xn}∞
n=1 in K tending to x and

γ ∈ Γ such that γ · x = x but for all n ∈ N, γ · xn ≠ xn. Then Stab(xn) does not

converge to Stab(x) and so the map Stab is not continuous.

The actions that satisfy the property 2. in Proposition 2.2.1 are called stable. Fur-

thermore, an action of Γ on K is called free if for all x ∈ K the stabiliser Stab(x) is

trivial.

2.2.2 Equational compactness

Let Γ be a countable group acting on a set X by permutations. We denote the fixed

point set of γ ∈ Γ by Fix(γ). Following Banaschewski [2], we say that a Γ-action

is equationally compact if for any subset S of Γ and for any finite subset T of S,

∩s∈T Fix(s) ̸= ∅, then ∩s∈SFix(s) ̸= ∅. A subgroup H of Γ is equationally compact (or

PIP, [31]) if the left action of Γ on Γ/H by multiplication is equationally compact.

Observe that this is equivalent to Definition 1.1.2.

For a countable group Γ, let {0, 1}Γ be the set of characteristic functions of all

subsets of Γ with the product topology. Then the set of all subgroups of Γ forms

a closed subspace of {0, 1}Γ invariant under conjugation. If α : Γ ↷ X, then the

set Tα := {Stab(x) : x ∈ X} is an invariant subspace of Sub(Γ). Then, we have the

following proposition.

Proposition 2.2.2. Let Γ be a countable group and let X be a compact metric space.

1. An action α : Γ ↷ X is equationally compact if and only if for any subgroup K

in the closure of Tα, there exists a subgroup L ∈ Tα such that K ⊆ L.
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2. Any subgroup H < Γ is equationally compact if for any K in the orbit closure of

H, there exists L < Γ conjugate to H such that K ⊆ L.

Proof. 1. Let us assume that α is an equationally compact action. Let K = {γ1, γ2, . . . }

be a subgroup of Γ in the closure of Tα. For sets Hk = {γ1, . . . , γk}, k = 1, 2, . . . we

have that there is some xk ∈ X such that Hk ⊆ Stab(xk). By equational compactness

of α there exists an x ∈ X fixed by some H ⊇ K, H ∈ Tα.

Now, assume that for any K in the closure of Tα, there exists H ∈ Tα containing K. Let

S = {γ1, γ2, . . .} ⊆ Γ be such that for any k ≥ 1, we have xk ∈ Fix(γi) provided that

i ≤ k. Then, let K be in the set of limit points of {Stab(xk)}∞
k=1. By our assumption,

there exists x ∈ X such that K ⊂ Stab(x). Since S ⊆ K, S, ⊆ Stab(x). Therefore, the

action is equationally compact.

2. Observe that for any subgroup H < Γ and element γ ∈ Γ, Stab(γH) = γHγ−1.

This part of the Proposition follows immediately from this observation and part 1.

The previous result immediately gives rise to multiple examples of equationally

compact subgroups. This is pictured in the following corollary.

Corollary 2.2.3. A subgroup H ⊂ Γ is equationally compact if any of the following

three conditions hold:

• H is a finite extension of a normal subgroup (in particular, if H is finite or

normal);

• the normalizer subgroup of H has finite index in Γ;

• H is malnormal, i.e. for all γ, δ ∈ Γ either γHγ−1 = δHδ−1 or the intersection

of γHγ−1 and δHδ−1 is trivial.

On the other hand, Banaschewski proved that the free group F∞ on countably

infinitely many generators has non-equationally compact subgroups ([2], Proposition

6.).



2.2 Equationally compact subgroups 23

We will answer two queries of Prest and Rajani ([31]) concerning equational

compactness by proving the following two theorems.

Theorem 3. The only equationally compact subgroups of the finitary symmetric group

S0
∞ on N are the finite subgroups and the group of even permutations A0

∞.

Theorem 4. There exists a countable group Γ acting on a set X, such that the action

is equationally compact, but for any x ∈ X Stab(x) is not an equationally compact

subgroup of Γ.

2.2.3 Equationally compact subgroups of the finitary symmet-

ric group

Let S0
∞ = ∪∞

n=1Sn be the finitary symmetric group on the natural numbers. That

is, S0
∞ is the group of permutations on N fixing all but finitely many elements. The

goal of this subsection is to prove Theorem 3 by showing that the list of equationally

compact subgroups of S0
∞ contains only the set of finite groups and the alternating

subgroup A0
∞ consisting of even permutations. Before getting into the proof let us fix

some notations. Let S0
[ l,∞] ⊂ S0

∞ be the subgroup consisting of permutations fixing the

set {1, 2, . . . , l − 1}. Let A0
[ l,∞] = S0

[ l,∞] ∩ A0
∞. For a permutation γ ∈ S0

∞, we define

s(γ) as the maximum of k’s for which γ(k) ̸= k.

Proposition 2.2.4. Let H be an equationally compact subgroup of S0
∞. Then one of

the following two conditions is satisfied.

1. There exists l ≥ 0 such that H ∩ S0
[ l,∞] = {e}.

2. There exists l ≥ 0 such that A0
[ l,∞] ⊂ H.

Proof. Let H ⊂ S0
∞ be a subgroup such that neither of the two conditions above are

satisfied and set κ1Hκ−1
1 , κ2Hκ−1

2 , . . . to be an enumeration of the conjugates of H.

Recursively, we will define sequences {γn}∞
n=1, {δn}∞

n=1 in S0
∞ such that
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• {δ1, δ2, . . . , δn} ⊂ γnHγ−1
n .

• δn /∈ κnHκ−1
n .

The existence of such sequences implies that the subgroup H cannot be equationally

compact. Suppose that {γi}n
i=1, {δi}n

i=1 has already been constructed and for any

1 ≤ i ≤ n

• {δ1, δ2, . . . , δi} ⊂ γiHγ−1
i .

• δi /∈ κiHκ−1
i .

Let

l = max( max
1≤i≤n

s(γi), max
1≤i≤n

s(δi), s(κn+1)) + 1 .

Since a conjugacy class always generates a normal subgroup, there exists a non-

unit conjugacy class C of S0
[ l,∞] such that H ∩ C is a proper subset of C. Let

δn+1 ∈ C\H, ρn+1 ∈ H ∩ C. Then, we have γ ∈ S0
[ l,∞] such that γρn+1γ

−1 = δn+1. Set

γn+1 = γγn. By the definition of l, we have that γ commutes with {γi}n
i=1, {δi}n

i=1 and

κn+1, also, δn+1 commutes with κn+1 hence

• δn+1 /∈ κn+1Hκ−1
n+1,

• δi ∈ γn+1Hγ−1
n+1, whenever 1 ≤ i ≤ n + 1 .

Therefore, H is not equationally compact.

Lemma 2.2.5. If H is equationally compact and contains A0
[ l,∞] for some l > 0, then

either H = S0
∞ or H = A0

∞.

Proof. If A0
[ l,∞] ⊆ H, then for any k ≥ 1 there exists a conjugate of H, γHγ−1 such

that the subgroup Ak is contained in γHγ−1. Hence, if H is equationally compact,

then some conjugate K of H must contain the whole group A0
∞ = ∪∞

k=1Ak. Since A0
∞
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is a normal subgroup of S0
∞, any conjugate of K contains A0

∞. In particular, H ⊇ A0
∞.

Therefore, H = S0
∞ or H = A0

∞.

Before we complete the proof of Theorem 3, let us first make some general observa-

tions about the infinite subgroups of S0
∞. In the following two lemmas we assume that

H < S0
∞ is infinite.

Lemma 2.2.6. There exists an infinite subset {γn : n = 1, 2, . . .} ⊆ H such that for

any n ≥ 1, γn(1) = 1 .

Proof. First, let us suppose that there exists k ≥ 1 and an infinite subset {δn}∞
n=1 ⊆ H

such that δn(1) = k. Let γn = δ−1
n δ1. Then for any n ≥ 1, γn(1) = 1 .

If such k does not exist, then we have a strictly increasing sequence of positive integers

{kn}∞
n=1 and an infinite subset {γn}∞

n=1 ⊆ H such that

• γn(1) = kn,

• kn > s(γi), whenever 1 ≤ i ≤ n − 1.

Then for any n ≥ 1 and 1 ≤ i ≤ n − 1, γ−1
n γiγn(1) = 1, hence our lemma follows.

Now we prove a generalization of the previous lemma.

Lemma 2.2.7. For any s ≥ 1, there exists an infinite subset {γn : n = 1, 2, . . .} ⊆ H

such that γn(j) = j, if 1 ≤ j ≤ s + 1 .

Proof. We prove this statement by induction on s. The basis of the induction is the

previous lemma.

Suppose that the lemma holds for some s ∈ N but it does not hold for s + 1. Again, if

there exists k ≥ 1 and an infinite subset {ρn}∞
n=1 ⊆ H such that

• ρn(j) = j, if 1 ≤ j ≤ s,

• ρn(s + 1) = k,
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then the set {γn = ρ−1
n ρ1}∞

n=1 will satisfy the conditions of our lemma. On the other

hand, if such k does not exist then we have an increasing sequence of positive integers

{kn}∞
n=1 and an infinite subset {δn}∞

n=1 ⊆ H such that

• δn(j) = j, if 1 ≤ j ≤ s,

• δn(s + 1) = kn ,

• kn ≥ s(δi) if 1 ≤ i ≤ n − 1.

Hence δ−1
n δiδn(j) = j, if 1 ≤ i ≤ n, 1 ≤ j ≤ s + 1, in contradiction with our

assumption.

The above lemmas lead to the following corollary.

Corollary 2.2.8. Let H be a subgroup of S0
∞. If there exists l ≥ 1 such that H∩S0

[ l,∞] =

{e}, then H is finite.

Proof. Suppose that H is an infinite subgroup of S0
∞. By Lemma 2.2.7 if H is infinite,

then H ∩ S0
[ l,∞] is infinite for all l ≥ 1.

Proposition 2.2.4, Lemma 2.2.5 and Corollary 2.2.8 complete the proof of Theorem

3.

2.2.4 Minimal actions and the proof of Theorem 4

Recall that a crucial notion in the theory of measure preserving actions of groups is

that of ergodicity. We say that a transformation T : (X, µ) → (X, µ) is ergodic if for

any measurable set such that T (A) = A we have that either µ(A) = 0 or 1. An action

α : Γ ↷ (X, µ) with a generating system Σ is called ergodic if for every σ ∈ Σ the

transformation α(σ) is ergodic. Ergodic actions are, in a sense, indecomposable, as

we cannot split the space (X, µ) into two parts of positive measure which would be
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invariant under the action. The role of indecomposability in the continuous setting is

filled by the minimal actions.

Definition 2.2.9. A continuous action of the group Γ on a compact space X is called

minimal if for every x ∈ X we have that O(x) = X.

An action which is key to us is that of the Bernoulli shift which is defined as follows.

For a set {a, b, c}, let us consider the set {a, b, c}Γ be the set of all {a, b, c}-valued

functions σ on the integers with the natural Z-action

tn(σ)(a) = σ(a − n) .

A subshift of the Bernoulli shift is a subspace Π of {a, b, c}Z which is invariant under

this action.

Definition 2.2.10. A minimal subshift is a closed, invariant subspace Π ⊂ {a, b, c}Z

such that the orbit closure of any σ ∈ Π is Π itself.

The simplest examples of minimal subshifts are those generated by a cyclic sequence

σ, i.e. such that for some n > 0 we have that σ(k) = σ(n + k) for any k ∈ Z. Let

w = (qk, qk−1, . . . , q1) ∈ Γ = Z2 ∗Z2 ∗Z2 and σ ∈ {a, b, c}Z. We say that n ∈ Z sees w

in σ if

σ(n − i) = qi for any 1 ≤ i ≤ k.

The following proposition gives a useful criterion for finding minimal subshifts (it also

appeared in e.g. [13]).

Proposition 2.2.11. The orbit closure of σ ∈ {a, b, c}Z is a minimal subshift if and

only if for any w ∈ Γ that is seen by some integer n, there exists mw > 0 such that the

longest interval in Z without elements that see w in σ is shorter than mw.
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Proof. Clearly, the orbit closure O(σ) of any σ is invariant under the shift action. Take

any ρ, τ ∈ O(σ). We aim to show that there exists a sequence {nk}∞
n=1 such that tnk

(ρ)

converges to τ .

Let wk = (τ(−k), τ(−k + 1), . . . , τ(k)) and let {lk}∞
k=1 be a sequence such that tlk(σ)

converges to ρ. We set jk to be large enough that for any M > jk we have that

tM(σ)(i) = tjk
(σ)(i) for all i = 0, . . . , mwk

. Then by our assumption, some nk sees wk

in tjk
(σ). Since tjk

(σ) converges to ρ, nk sees wk in ρ. Thus, tnk
(ρ) converges to τ .

Conversely, let us suppose that there is a word w seen by some n in σ and a sequence of

numbers {ak}∞
k=1 such that no element of {ak − k, ak − k + 1, . . . , ak + k} sees w. Then

the sequence {tak
(σ)}∞

k=1 has a subsequence convergent to some π ∈ O(σ). However,

no n sees w in π, so no sequence in the orbit of π may converge to σ. Thus, O(σ) is

not minimal.

A σ which satisfies the condition in the above proposition is called a minimal

sequence. A good minimal sequence is a minimal sequence that does not contain the

same letter consecutively. It is well-known that good minimal sequences exist for which

the associated subshift has the cardinality of the continuum.

Proof of Theorem 4. Let us consider the bi-infinite path graph L on Z. That is, a, b ∈ Z

are connected if and only if |a − b| = 1. Let σ be a good minimal sequence which is

not cyclic and let Π be the minimal subshift generated by σ. Color the edge (n, n + 1)

of L by σ(n). Then we obtain the Γ-action Lσ : Γ ↷ Z in the following way. We take

the generating system of Γ to be Σ = {a, b, c}. We put

Lσ(a)(k) =


k + 1 if σ(k) = a;

k − 1 if σ(k − 1) = a;

k otherwise;
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on the generator a and we proceed in the same fashion for b, c. This extends to an

action of the whole Γ on Z in a unique way.

One can see immediately that if τ ∈ Π and n ∈ Z, then StabLτ (n) is in the orbit

closure of StabLσ(0) in the space of subgroups Sub(Γ). Conversely, any element of the

orbit closure of StabLσ(0) is in the form of StabLτ (n), for some τ and n. That is,

{StabLτ (n)}τ∈Π,n∈Z

is a minimal Γ-system in Sub(Γ). Such a system is called a uniformly recurrent subgroup

(URS in [18]). Since there are continuum many minimal subshifts in {a, b, c}Z, in this

way we obtain continuum many URS’s in Sub(Γ) (see Theorem 5.1 [18]). Note that

if Π and Π′ represents the same URS, then either Π = Π′ or Π′ = Πflip, where Πflip

denotes the subshift consisting of elements σflip(n) := σ(−n), for any σ ∈ Π. We need

the following lemma in order to proceed with the proof.

Lemma 2.2.12. Let σ, τ be good elements of a minimal subshift Π. Suppose that

τ is neither a Z-translate of σ nor a Z-translate of σflip. Then for any n ≥ 1,

StabLσ(0) ̸⊂ StabLτ (n).

Proof. Let n ≥ 1 and let w = (qk, qk−1, . . . , q1) be the longest word such that σ sees w

at 0 and one of the following two conditions hold:

1. σ(−i) = τ(n − i) for any 1 ≤ i ≤ k, or

2. σ(−i) = τ(n + i) for any 1 ≤ i ≤ k.

Without loss of generality we can suppose that the first condition holds, σ(−k) = c,

σ(−k − 1) = a, τ(n − k − 1) = b. Then clearly, w−1bw ∈ StabLσ(0). On the other

hand, w−1bw /∈ StabLτ (n). Indeed, bw(n) = n − k − 1, hence w−1bw(n) < n .
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Note that a URS is an equationally compact set in Sub(Γ). This observation and the

lemma above concludes the proof of Theorem 4.



Chapter 3

Space of cocycles

The objective of this chapter is to define the convergence of weighted graphs. In order

to do that, we shall first recall the constructions of the space of the rooted Schreier

graphs as well as the spaces of colored rooted Schreier graphs (see e.g. [10]). Then,

we will introduce the notion of Schreier cocycles and we will endow the set of rooted

cocycles with a topology analogous to that on the space of rooted Schreier graphs.

Finally, we will establish the local convergence of cocycles.

Throughout this chapter, Γ denotes a finitely generated group equipped with a finite

symmetric generating system Σ.

3.1 Schreier graphs and Schreier cocycles

Assume that Γ acts transitively on a countable set X with α : Γ ↷ X. The Schreier

graph of the action α is formally defined as Sch(α) := (V, E, l). We think of it as a

directed edge-labeled graph where:

• V = X is the set of vertices of Sch(α);
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• E is the set of edges of Sch(α), where
−−−→
(p, q) ∈ V × V is an edge provided that

for some σ ∈ Σ such that α(σ)(x) = y;

• l : E → P(Σ) is the edge labeling with the generators σ ∈ Σ such that σ ∈ l(
−−−→
(p, q))

provided that α(σ)(p) = q.

It is possible that for some distinct σ ∈ Σ and some x ∈ X, σ(x) = x, so Sch(α) may

have loops. We will denote by Sch(α) the corresponding loopless undirected simple

connected graph without labels. Let us observe that the Schreier coset graphs defined

in Section 1.2 are equivalent to the graphs defined above. From now on, given an

action α, an element γ ∈ Γ and x ∈ V (S), for the sake of simplicity we will denote

α(γ)(x) by γ · x.

Definition 3.1.1. The Fd-Schreier graphs are the Schreier graphs of Fd-

actions with respect to the standard symmetric generating system Σd :=

{a1, a2, . . . , ad, a−1
1 , a−1

2 , . . . , a−1
d } of Fd. A rooted Fd-Schreier graph is an Fd-

Schreier graph with a distinguished vertex.

Suppose that the generating system of Γ can be written as Σ = {σ1, . . . , σd}. Then,

by the universal property of the free group Fd there exists a surjective homomorphism

π : Fd → Γ such that π(ai) = σi for 1 ≤ i ≤ d. If α : Γ ↷ Y is a transitive action of

Γ, then we can define an action απ : Fd ↷ Y by setting απ(γ) = α(π(γ)). Hence, the

underlying Schreier graphs Sch(απ) and Sch(α) are isomorphic. Thus, we can view the

Schreier graphs of Γ-actions as special cases of Fd-actions. Therefore, from now on, we

will mainly focus on actions of Fd, the free group of rank d.

Let us write FdG to denote the set of all rooted Fd-Schreier graphs up to isomorphism.

On FdG we put the metric dS, where

dS((Sch(α1), x), (Sch(α2), y)) = 2−n,
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if for all i < n, the balls of radius i, Bi(Sch(α1), x) and Bi(Sch(α2), y), are rooted-

labeled isomorphic graphs, however the balls Bn(Sch(α1), x) and Bn(Sch(α2), y) are

not rooted-labeled isomorphic. Note that since the Schreier graphs arise from transitive

actions of the group, they are connected. Hence, the metric dS is well-defined.

An important action of Fd on FdG is given by moving the roots of Schreier graphs

and is defined as follows. For a γ ∈ Γ and a rooted Schreier graph (S, x) ∈ FdG, we

put γ · (S, x) = (S, γ · x). Observe that this action is continuous. Let α : Fd ↷ X be a

transitive action, p ∈ X and (Sch(α), p) be the associated rooted Fd-Schreier graph.

Then, Stabα(p) ∈ Sub(Fd) defines a bijection Stab : FdG → Sub(Fd). It is not hard to

see that Stab is actually a homeomorphism.

3.1.1 Spaces of colored rooted Schreier graphs

Let Q be a set and FdGQ be the set of all rooted Fd-Schreier graphs (S, p) equipped

with a Q-coloring φ : V (S) → Q. In the case when Q is finite, we put a metric dQ on

FdGQ, where

dQ((S1, x1, φ1), (S2, x2, φ2)) = 2−n

if for any i < n the balls of radius i, Bi(S1, x1, φ1) and Bi(S2, x2, φ2) are rooted-colored-

labeled-isomorphic graphs, however the balls Bn(S1, x1, φ1) and Bn(S2, x2, φ2) are not

rooted-colored-labeled-isomorphic. Note that (FdGQ, dQ) is a compact space. Again,

the group Fd acts on FdGQ by moving the roots and this action is continuous.

Furthermore, we can define FdGC, the set of rooted Fd-graphs (S, p) equipped with

a C-coloring φ : V (S) → C, where C = {0, 1}ω is the standard Cantor set. Let

πk : {0, 1}ω → {0, 1}k be the projection onto the first k coordinates. The space FdGC

is compact with respect to the topology with a base given by sets A((S, p, φ), n, k) for

a C-colored rooted Schreier graph (S, p, φ) and positive integers n, k. A((S, p, φ), n, k)

is the set of those C-colored rooted Schreier graphs (S ′, p′, φ′) which satisfy
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1. Bn(S, p) is rooted-isomorphic to Bn(S ′, p′) with an isomorphism τ ,

2. πk ◦ φ|V (Bn(S, p)) = πk ◦ φ′|τ(V (Bn(S ′, p′))).

In this topology {(Sn, pn, φn)}∞
n=1 ⊂ FdGC is a convergent sequence if and only if for any

k ≥ 1, {(Sn, pn, πk ◦ φn)}∞
n=1 is convergent. Note that if a sequence {(Sn, pn, φn)}∞

n=1 ⊂

FdGC is convergent, then the underlying sequence {(Sn, pn)}∞
n=1 ⊂ FdG is convergent

as well.

3.1.2 The space of cocycles

Let I := [0, ∞] be the two-point compactification of the set of positive real numbers. A

rooted I-cocycle (S, p, F ) is defined in the following way. Let S ∈ FdG be a rooted

Fd-Schreier graph with root p. Let F : E(S) → I be an I-labeling of the directed edges

of S satisfying the following conditions:

1. if F (
−−−→
(a, b)) = r ∈ R+ then F (

−−−→
(b, a)) = 1

r
;

2. if F (
−−−→
(a, b)) = 0 then F (

−−−→
(b, a)) = ∞;

3. if F (
−−−→
(a, b)) = ∞ then F (

−−−→
(b, a)) = 0;

4. for any loop
−−−→
(a, a), F (

−−−→
(a, a)) = 1;

5. for any cycle
−−−−→
(a1, a2),

−−−−→
(a2, a3) . . .

−−−−→
(an, a1) we have that

F (
−−−−→
(a1, a2))F (

−−−−→
(a2, a3)) . . . F (

−−−−→
(an, a1)) = 1, provided that all the terms are positive

real numbers.

The set of all rooted I-cocycles will be denoted by CFdG. One can define the compact

topology of pointwise convergence on CFdG using the following open base. For a rooted

I-cocycle (S, p, F ) ∈ CFdG, an integer n > 0 and a real number ϵ > 0, let Bn,ϵ(S, p, F )

be the set of rooted I-cocycles (T, q, G) such that the following conditions hold:
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• the rooted balls Bn(S, p) and Bn(T, q) are isomorphic as Σd-labeled rooted

directed graphs;

• for any edge −→e ∈ E(Bn(S, p)), |F (−→e ) − G(−→e )| < ϵ provided that F (−→e ) < ∞.

Otherwise G(−→e ) > 1
ϵ
.

Again, we can define an Fd-action on the compact metric space CFdG by moving the

roots. We call an I-cocycle (S, p, F ) regular if F (−→e ) ̸∈ {0, ∞}, for all −→e ∈ E(S). We

shall denote the Borel set of regular I-cocycles by Reg(CFdG).

Let us make a remark on the use of the word “cocycle”. Assume that (S, p, F ) is a

regular I-cocycle. Then, we can define the function CF : Fd × V (S) → R+ by putting

CF (γ, x) :=
n∏

i=0
F (

−−−−−−−→
(xi, σi · xi)),

where x = x0, σ0 · x0 = x1, σ1 · x1 = x2, . . . , σn · xn = γ · x. We obtain that CF satisfies

the identity

CF (γδ, x) = CF (γ, δ · x)CF (δ, x) ,

which we also call the Cocycle Identity. So, C : Fd × Reg(CFdG) → R+ defined by

C(γ, (S, p, F )) := CF (γ, p)

is a real-valued Borel Fd-cocycle on the regular cocycles in CFdG.

Similarly as in Section 3.1, we can construct the compact spaces CFdGQ and CFdGC.

These denote the spaces of cocycles with vertex colorings by the finite set Q and the

Cantor set C, respectively. Furthermore, we define the maps Forg : CFdGC → CFdG,

Forg : FdGC → FdG that are forgetting the colors; they will be relevant in Section 4.3.2.

Let us note that these maps are continuous.
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3.1.3 Cocycles of arbitrary groups

Later, it will be important for us to define the space of Γ-Schreier graphs as a

closed subspace of FdG. Let Γ be a group with a symmetric system of generators

Σ = {σ1, . . . , σd, σ−1
1 , . . . , σ−1

d }. Take ρ : Fd → Γ to be a surjective homomorphism

such that ρ(ai) = σi for any 1 ≤ i ≤ d, where ai ∈ Σd. Let α : Γ ↷ Y be a transitive

action and let Sch(α) be the associated Γ-Schreier graph with respect to Σ. Then

we have the action αρ : Fd ↷ Y , where αρ(γ) = α(ρ(γ)). Also, let Sα
ρ ∈ FdG be the

associated Fd-Schreier graphs. The set of all rooted Schreier graphs of the form (Sα
ρ , p)

is a compact subset of FdG and we will denote it by ΓG. Note that ΓG is homeomorphic

to the space of subgroups Sub(Γ). In the same way as in Sections 3.1 and 3.1.1, we

can define the space of Γ-cocycles CΓG and the colored versions ΓGQ, ΓGC, CΓGQ and

CΓGC.

3.2 Weighted convergence

3.2.1 Quasi-invariant Random Cocycles and the Canonical

Map

We call a probability measure ν on the compact Γ-space CΓG a Quasi-Invariant

Random Radon-Nikodym Cocycle (QRC for short) if ν is supported on the

Reg(CΓG) and for any Borel set Z ⊂ CΓG and γ ∈ Γ we have that

ν(γ · Z) =
∫

Z
C(γ, s) dν(s) .

Recall that C(γ, s) := CF (γ, p), where p is the root of the rooted Schreier cocycle s.

That is, C can be viewed as the Radon-Nikodym cocycle of the Γ-action on CΓG. Note

that if ν is concentrated on cocycles (S, p, F ) such that CF (γ, q) = 1 for all γ ∈ Γ and
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q ∈ V (S), then ν is an Invariant Random Subgroup [1]. Hence, we regard QRC’s as

the nonsingular analogues of the Invariant Random Subgroups.

Recall that if α : Γ ↷ (X, µ) is a probability measure-preserving Borel action, then

the push-forward measure Stab∗
α(µ) defines an Invariant Random Subgroup. Now, let

α : Γ ↷ (X, µ) be a nonsingular action of the group Γ. We know that there exists a

conull set X0 ⊆ X on which the Radon-Nikodym derivatives of the action α are strictly

positive. Then, we have an equivariant Borel map (which we call the canonical map)

Mα : X0 → Reg(CΓG) which assigns to each point x ∈ X0 the Schreier cocycle induced

by α on the orbit O(x) with x itself as the root. Let µα = (Mα)∗(µ).

Proposition 3.2.1. µα is a QRC.

Proof. Let Z ⊂ CΓG be a Borel set. We need to show that for all γ ∈ Γ we have

µα(γ · Z) =
∫

Z
C(γ, s)dµα(s) . (3.1)

By definition of the push-forward measure we have that

µα(γ · Z) = µ(γ · (Mα)−1[Z]) =
∫

(Mα)−1[Z]

dγ∗µ

dµ
(x)dµ(x) .

Observe that for any x ∈ X0
dγ∗µ
dµ

(x) = C(γ, Mα(x)) . Hence,

∫
(Mµ

α )−1[Z]

dγ∗µ

dµ
(x)dµ(x) =

∫
Z

C(γ, s)dµα(s) .

Therefore (3.1) holds.

We will denote the set of all Γ-QRC’s by QRCΓ. Notice that we can view QRCΓ as a

closed subset of QRCFd
.

Abért, Glasner and Virág showed in [1] that all Invariant Random Subgroups are
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push-forwards of invariant probability measures. Using the same method, it can be

proved that all QRC’s are push-forwards of quasi-invariant probability measures.

Proposition 3.2.2. Let ν be an Fd-QRC. Then there is a Borel probability measure µ

on CFdGC such that the action α : Fd ↷ (CFdGC, µ) by moving the root is nonsingular

and ν = µα.

Proof. Let us fix a cocycle s ∈ CFdG. There is a canonical bijection between Forg−1[{s}]

and a product of Cantor sets ∏v∈V (s) C. Thus, we define µs to be the measure on

CFdGC supported on Forg−1[{s}] which is the product of the standard measures on

the Cantor set C. Then for any set A in the standard basis of CFdGC we define

µ̂(A) =
∫

µs(A) dν(s).

Clearly, this is well-defined for any such A. Thus, by Theorem 452B in [16] µ̂ extends

to a complete Borel probability measure µ on CFdGC such that for any Borel subset

B ⊆ CFdGC we have

µ(B) =
∫

µs(B) dν(s).

Let us notice that the measure µ is quasi-invariant under moving the root.

We need to show that µα = ν. Observe that the set of cocycles in CFdGC whose vertex

labels are all different is µ-conull. Therefore, for µ-almost every cocycle s ∈ CFdGC we

have that Forg(s) = Mα(s). Then, for any µα-measurable set B we have that

µα(B) = µ(M−1
α [B]) =

∫
µs(Forg−1[B]) dν(s) =

∫
χB(s) dν(s) = ν(B).

This completes the proof.
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3.2.2 The Tightness Condition

For M > 1, let TM ⊂ CFdG be defined as the set of regular cocycles (S, p, F ) such that

for any σ ∈ Σ, 1
M

≤ F (−−−−→p, σ · p) ≤ M . A subset Q ⊂ QRCFd
is called tight if for any

ϵ > 0 there exists Mϵ > 0 such that for any ν ∈ Q, ν(CFdG\TMϵ) < ϵ.

Lemma 3.2.3. Let {νn}∞
n=1 ⊂ QRCFd

be a tight sequence of QRC’s weakly convergent

to a probability measure ν. Then, ν is a QRC as well.

Proof. Clearly, the probability measure ν is concentrated on the Borel set Reg(CFdG).

Indeed, let P : CFdG → R+ be a continuous function such that |P (s)| ≤ 1 for all

s ∈ CFdG and P |TMϵ
= 0. Then,

∫
CFdG P (s)dνn(s) ≤ ϵ holds for all n ≥ 1. Hence

∫
CFdG

P (s)dν(s) ≤ ϵ. (3.2)

Since (3.2) holds for all continuous functions satisfying the two conditions above, we

have that ν(TMϵ) > 1 − ϵ. Therefore, ν is concentrated on Reg(CFdG).

Now we prove the Radon-Nikodym condition for ν. Let R : CFdG → R be a continuous

function. Then,

∫
CFdG

R(γ−1 · s)dνn(s) =
∫

CFdG
R(s)C(γ, s)dνn(s) .

holds for all n ≥ 1, since νn’s are QRC’s. Therefore,

∫
CFdG

R(γ−1 · s)dν(s) =
∫

CFdG
R(s)C(γ, s)dν(s) .

holds as well. Consequently, ν is a QRC as well.
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3.2.3 Weighted Benjamini-Schramm Convergence

Consider a finite set X with a system of permutations ρ = {ρi : i = 1, . . . , d} and

a positive, real-valued function w : X → R+ such that ∑x∈X w(x) = 1. Then,

ai · x = ρi(x) defines a (not necessarily transitive) action of the free group Fd on the

set X. Then, we can consider the weighted generalized Schreier graph (shortly a

WGS-graph) S = SX,ρ,w and the cocycle function F : E(SX,ρ,w) → R+ defined in the

following way:

F (
−−−−−→
(p, σi · p)) := w(σi · p)

w(p) .

Furthermore, we can define an element νS of QRCFd
by

νS((S, p, F )) = w(p) .

Observe that νS is supported on a finite set, hence there is a bijective correspondence

between the set WGSd of finite WGS-graphs and the set of elements in QRCFd
which

are supported on a finite set, denoted by FQRCFd
. We say that a family Q of finite

WGS graphs is tight if the corresponding family of QRC’s is tight.

Definition 3.2.4. A measure ν ∈ QRCFd,Σd
is a sofic QRC if there exists a tight

sequence of WGS graphs {Sn}∞
n=1 ⊂ WGSd such that {µSn}∞

n=1 is weakly convergent

to ν.

In this case we say that the sequence {Sn}∞
n=1 is convergent in the sense of Ben-

jamini and Schramm (or locally convergent) and the QRC ν is its limit.

Remark 3.2.5. One can consider the space FdGR of the rooted Schreier graphs from

FdG together with an edge coloring with real numbers. We can give the topology on

this space in the same way as in the case of FdGC; the only difference is that we consider

edge-colored graphs instead of vertex-colored ones. Then, similarly as in the case of
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FdGC, we could define the local convergence of Schreier graphs which are edge-colored

by the real numbers.

Let us notice that the local convergence of WGS graphs is not equivalent to this

notion. That is because in case of the WGS graphs, an associated measure on CFdG is

dependent on the cocycle. However, for the convergence of graphs with edges colored

by elements of R the associated measures on FdGR are independent of the coloring -

each vertex could be the root of a graph with the same probability.

We will call an element ν ∈ QRCΓ sofic if it is sofic as an element of QRCFd
. Note

that if ν ∈ QRCΓ is supported on the elements (S, p, F ) for which F takes only the

value 1 (that is, ν is an IRS), then the soficity of ν coincides with the previously defined

soficity of an IRS (see co-sofic IRS in [17]). If α : Γ ↷ (Y, µ) is a nonsingular action

and its canonical QRC µα is the limit of the sequence {µSn}∞
n=1, we will also say that

the action α is the limit of the WGS graphs {Sn}∞
n=1.

3.2.4 Ball Statistics and Weighted Convergence

In Section 1.2.1, we observed that for a sequence of finite Fd-Schreier graphs {Gn}∞
n=1

the local convergence is equivalent to the weak convergence of measures µGn on FdG.

Hence, it is natural to ask whether a similar equivalence could be established for

the Benjamini-Schramm convergence of cocycles. That is, we wish to characterize

the convergence of finite cocycles with the convergence of their local statistics. In

this section we present how to obtain such a characterization. However, this is more

complicated than in the case of unweighted graphs due to the fact that the space of

rooted Schreier cocycles is not totally disconnected.

Let Br,d be the set of all rooted balls of radius r in Fd-Schreier graphs. Let λ > 0 and

Br,d,λ be the set of all rooted Σd labeled balls with extra edge labelings with rational

pairs {a, b} (which we call the Code of the edge), where a < b. Then, B̃ ∈ Br,d,λ
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defines an open subset UB̃ ∈ CFdG in the following way. Let (S, p, F ) ∈ CFdG. Then

(S, p, F ) ∈ UB̃ provided that

• the underlying Σd-labeled ball of radius r around p is isomorphic to the underlying

Σd-labeled ball of B̃,

• if −→e is an edge in B̃ and Code(−→e ) = {a, b}, then aλ < F (−→e ) < bλ .

Note that the elements of Br,d,λ do not depend on the variable λ; only the interpretation

of the function Code does.

Clearly, for every λ > 0 the open subsets UB̃ define a base for the topology of

CFdG. Now, suppose that {Sn, wn}∞
n=1 is a tight, convergent sequence of WGS’s and

µ ∈ QRCFd
. We say that λ is a generic value for µ if the set of cocycles which contain

an edge whose label is a rational multiple of λ is µ-null. Note that there exist only

countably many nongeneric λ’s for µ. The Portmanteau Theorem (Theorem 2.1. in

[4]) implies that if λ is generic for µ, then {Sn, wn}∞
n=1 converges to µ if and only if for

any r > 0 and B̃ ∈ Br,d,λ we have

lim
n→∞

µwn(UB̃) = µ(UB̃).

3.3 Weighted hyperfinite families

Let A ⊂ CFdG be a tight family of finite Schreier cocycles. Similarly as in [14], we

call A weighted hyperfinite if for any ϵ > 0 there exists Kϵ satisfying the following

condition. For each (G, w) ∈ A there exists a subset Y ⊂ V (G), w(Y ) ≤ ϵ such that

if we remove Y and all the edges adjacent to Y , the remaining graph G′ consists

of components with at most Kϵ vertices. Note that if the probability measure is

uniform for each G ∈ A, then weighted hyperfiniteness coincides with the notion of

hyperfiniteness (see e.g. [8]).
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Example 2. Planar graphs or graphs with uniform subexponential growth form

hyperfinite families with respect to the uniform measure ([9], [24]).

The following example will be crucial in this thesis.

Example 3. Let Γ be a finitely generated nonamenable group with a symmetric

generating system Σ where |Σ| = 2d. Assume φ : Fd → Γ is surjective and Σ is the

image of Σd, the standard generating system of Fd. Then let Br = Br(Cay(Γ, Σ), eΓ)

be the ball of radius r around the unit element in the left Cayley graph Cay(Γ, Σ).

Let κ = limr→∞
log |Br|

r
be the growth of the group Γ with respect to Σ. We define the

probability measure wr : Br → R+ by

wr(p) = 1
|Sk|

,

where Sk = Bk\Bk−1 and k = dCay(Γ,Σ)(p, eΓ).

Lemma 3.3.1. The sequence {(Br, wr)}∞
r=1 is tight for any system (Γ, Σ).

Proof. First, observe that the sequence
{

|Br|
|Sr|

}∞

r=1
is bounded. Indeed by nonamenability,

there exists c > 0 such that |Sr+1| ≥ c|Br|, also |Br+1| ≤ 2d|Br|. Therefore, |Sr+1| ≥
c

2d
|Br+1| . If p, q ∈ Br are adjacent vertices, and

k = dCay(Γ,Σ)(p, eΓ) = dCay(Γ,Σ)(q, eΓ) + 1 ,

then
wr(p)
wr(q) ≥ |Sk|

|Sk+1|
≥ |Sk|

|Bk+1|
≥ c

4d2 .

Therefore the lemma follows.

Example 3 is particularly interesting in the case when Γ is an exact group. A countable

group Γ is called exact if it admits an amenable action on a compact metric space.

In particular, all amenable and word-hyperbolic groups are exact. It was shown
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that exactness is closed under taking subgroups, directed unions, extensions and free

products [30]. The first non-exact group was constructed by Gromov in the early 2000’s

[19].

The notion of exactness interests us because it is linked to weighted hyperfinite graphs.

This property was introduced by Elek and Timár in [14] and is defined as follows.

Definition 3.3.2. An infinite Fd-Schreier graph is weighted hyperfinite if the family

of all of its finite induced subgraphs taken with all possible roots and tight cocycles is

weighted hyperfinite.

Sako showed that a finitely generated group Γ is exact if and only if its Cayley

graph is weighted hyperfinite (Theorem 5.2 in [33]). The following proposition follows

from this and Lemma 3.3.1.

Proposition 3.3.3. If Γ is an exact group, then {(Br, wr)}∞
r=1 is a weighted hyperfinite

system.



Chapter 4

Quasi-invariant Random Cocycles

4.1 Coloring graph sequences

Let G be a graph of vertex degree bound 2d. Then, for any x ∈ V (G) we have that

|Br(G, x)| < (2d)r+1 .

Hence, we can color the vertex set V (G) with (2d)r+1 colors {0, . . . , (2d)r+1 −1} in such

a way that if x, y ∈ V (G) satisfy that 0 < dG(x, y) ≤ r then the color of x differs from

the color of y. Indeed, we can use a greedy algorithm. Let us list the vertices of V (G)

with x1, x2, . . . , xt. Firstly, color x1 with the 0. Suppose we have colored xi for all

i ≤ k, for some k. Then, let Ak+1 be the set of those j ≤ k, for which dG(xk+1, xj) ≤ r.

We color xk+1 with the lowest number which doesn’t color any xj, j ∈ Ak+1.

In this section we should be particularly careful about distinguishing colored and

uncolored graphs as well as which coloring of a given graph we consider. Thus, for a

Schreier graph S we write Sc to denote the graph S together with a vertex coloring c.

Fix R > 0 and pick an integer Q ≥ (2d)r+1. Throughout this chapter, we write Q to

denote the set {0, 1, . . . , Q − 1}, as in the definition of the natural numbers.
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Definition 4.1.1. Suppose a coloring φ : V (G) → Q is given.

1. Let x ∈ V (G). If for all y ∈ V (G) such that 0 < dG(x, y) ≤ r we have that

φ(x) ̸= φ(y), then we say that the vertex x is (φ, r)-good. Otherwise we say

that x is (φ, r)-bad.

2. We say that φ is a good (Q, r)-coloring if φ(x) ̸= φ(y) provided that 0 <

dG(x, y) ≤ r.

The aim of this section is to provide an answer to the following problem.

Question. Given a convergent sequence of Fd-Schreier graphs {Sn}∞
n=1 and a number

R > 0, does there exist a Q > 0 and Q-colorings cn : Sn → Q which satisfy the

following properties:

• for any n ≥ 1, cn is a (Q, R)-good coloring,

• {Sn, cn}∞
n=1 is convergent as a sequence of Q-colored Schreier graphs?

Our strategy for this construction can be broken down into the following steps.

1. Firstly, we take an ϵ > 0 and a large enough Qϵ. We will then define the initial

colorings c0
n to be uniformly random colorings of V (Gn) with the colors from Qϵ.

2. Next, we randomly recolor the set of badly colored vertices in each graph Gn

multiple times until we obtain that the relative size of each set of bad points

tends to 0 as n → ∞.

3. Finally, we can recolor each set of bad points using the greedy algorithm.

The main issue that we need to address in this construction is so show that in the

end we obtain a convergent sequence of colored graphs. Proposition 4.1.2 shows that a

randomly colored sequence of graphs is convergent with probability 1. In Propositions
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4.1.6 and 4.1.7 we prove that after randomly recoloring the badly colored parts of each

graph Gn, the resulting colored sequences are still convergent with probability 1. Here

we state our theorem in a formal way.

Theorem 5. Let R be a positive integer and let {Sn}∞
n=1 be a convergent sequence of

Fd-Schreier graphs. If lim infn→∞
|Sn|

n
> 0, then there exists a positive integer Q and

good (Q, R)-colorings cn : Sn → Q such that the sequence {(Sn, cn)}∞
n=1 is convergent

as a sequence of colored Schreier graphs.

We start the proof with a proposition.

Proposition 4.1.2. Take {Sn}∞
n=1 to be as in Theorem 5 and fix a positive Q ∈ N.

Let c0
n : Sn → Q be a uniformly random vertex coloring of Sn. Then, with probability 1,

the sequence {(Sn, c0
n)}∞

n=1 is convergent.

Proof. Let B ∈ Br,d be a ball type. By the definition of Benjamini-Schramm conver-

gence, we know that

lim
n→∞

|Sn(B)|
|Sn|

exists, where Sn(B) is the set of vertices in Sn such that Br(Sn, x) is rooted-isomorphic

to B. Let B̂ be some Q-colored copy of B. We need to prove that limn→∞
|Sc0

n
n (B)|
|Sn|

exists. Without loss of generality, we assume that limn→∞
|Sn(B)|

|Sn| ̸= 0. Observe that if

k is large enough, then for any n ≥ 1 we can partition Sn(B) into sets A1
n, A2

n, . . . , Ak
n

in such a way that for any i = 1, . . . , k and v, w ∈ Ai
n we have that if v ̸= w, then

d(v, w) > 2r. We may also guarantee that there exists a constant C > 0 such that for

every i = 1, . . . , S, we have that |Ai
n| ≥ C|Sn|. Let us consider the event that a given

vertex v ∈ V (Gn) is such that Br(Sn, c0
n, v) ∼= B̂ as a colored graph. We will denote

this event by Ev. Then we have that

Pr(Ev) = Q−|B|,
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as the uniformly random coloring of the r-ball is a Bernoulli random variable. We will

simply denote this probability by P (B). Moreover, for v ̸= w ∈ Ai
n, the events Ev and

Ew are independent. Thus, by Hoeffding’s inequality we have that

Pr
(∣∣∣∣∣ |Sc0

n
n (B̂) ∩ Ai

n|
|Ai

n|
− P (B)

∣∣∣∣∣ > ϵ

)
< 2 exp(−ϵ2|Ai

n|). (4.1)

Therefore,

Pr
(∣∣∣∣∣ |Sc0

n
n (B̂)|
|Sn|

− P (B) |Sn(B)|
|Sn|

∣∣∣∣∣ > ϵ

)

= Pr
(∣∣∣∣∣

k∑
i=1

(
|Sc0

n
n (B̂) ∩ Ai

n|
|Sn|

− P (B) |Sn(B) ∩ Ai
n|

|Sn|

)∣∣∣∣∣ > ϵ

)

≤ Pr
(

k∑
i=1

∣∣∣∣∣ |Sc0
n

n (B̂) ∩ Ai
n|

|Sn|
− P (B) |Ai

n|
|Sn|

∣∣∣∣∣ > ϵ

)

≤ Pr
(

k∨
i=1

(∣∣∣∣∣ |Sc0
n

n (B̂) ∩ Ai
n|

|Sn|
− P (B) |Ai

n|
|Sn|

∣∣∣∣∣ > ϵ
|Ai

n|
|Sn|

))

≤
k∑

i=1
Pr
(∣∣∣∣∣ |Sc0

n
n (B̂) ∩ Ai

n|
|Sn|

− P (B) |Ai
n|

|Sn|

∣∣∣∣∣ > ϵ
|Ai

n|
|Sn|

)

=
k∑

i=1
Pr
(∣∣∣∣∣ |Sc0

n
n (B̂) ∩ Ai

n|
|Ai

n|
− P (B)

∣∣∣∣∣ > ϵ

)
.

(4.2)

In the above, the first inequality follows from the triangle inequality and the second

one from the pigeonhole principle. (The symbol ∨k
i=1 φi denotes the alternative of

events, or the statement that at least one of the events φi occurs.)

Thus, from inequalities (4.1) and (4.2) we obtain

Pr
(∣∣∣∣∣ |Sc0

n
n (B̂)|
|Sn|

− P (B) |Sn(B)|
|Sn|

∣∣∣∣∣ > ϵ

)
≤ 2

k∑
i=1

exp(−ϵ2|Ai
n|) ≤ 2k exp(−ϵ2C|Sn|),
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since we assumed |Ai
n| ≥ C|Sn|. Now we notice that since lim infn→∞

|Sn|
n

= D > 0, it

follows that

∞∑
n=1

Pr
(∣∣∣∣∣ |Sc0

n
n (B̂)|
|Sn|

− P (B) |Sn(B)|
|Sn|

∣∣∣∣∣ > ϵ

)
≤

∞∑
n=1

2k exp(−ϵ2C|Sn|) < ∞.

Thus, by Borel-Cantelli Lemma,

lim
n→∞

|Sc0
n

n (B̂)|
|Sn|

= P (B) lim
n→∞

|Sn(B)|
|Sn|

with probability 1.

From now on, we call a positive integer T (r, d)-large if T is larger than the size of

any r-ball in a graph of vertex degree bound d. Now we shall give an upper bound on

the probability that in the randomly Q-colored sequence of graphs the relative sizes of

the sets of badly colored vertices are large.

Proposition 4.1.3. Let {Sn}n∈N be a sequence of graphs as above and let us fix an

ϵ > 0 and R > 0. Then there exists a Q = Qϵ,R > 0 such that for the uniformly random

Q-colorings cn of Sn and for large enough n, we have that

Pr
(

|BR
n |

|Sn|
> ϵ

)
≤ exp(−Cϵ2|Sn|),

where the constant C is only dependent on R. Here BR
n denotes the set of (cn, R)-bad

vertices in (Sn, cn).

Proof. Let us pick a Q > 0 to be at least twice as large as the lowest (R, 2d)-large

number. Moreover, let us fix a K which is (3R, 2d)-large. Similarly to the proof of

Proposition 4.1.2, we find partitions of V (Sn) into sets Ai
n, i ∈ {1, . . . , K}, such that

• whenever v, w ∈ Ai
n, v ̸= w, we have that d(v, w) > 2R,
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• there exists α > 0 such that lim infn→∞
|Ai

n|
|V (Gn)| ≥ α for all i ∈ {1, . . . , K}.

From now on, we assume that n is large enough that |Ai
n|

|Sn| ≥ α
2 . Since {A1

n, . . . , AK
n }

is a partition of V (Sn), we obtain that

Pr
(
|BR

n | > ϵ|V (Sn)|
)

= Pr
(

K∑
i=1

|BR
n ∩ Ai

n| >
K∑

i=1
ϵ|Ai

n|
)

≤ Pr
(

K∨
i=1

|BR
n ∩ Ai

n| > ϵ|Ai
n|
)

≤
K∑

i=1
Pr
(
|BR

n ∩ Ai
n| > ϵ|Ai

n|
)

.

For a vertex v ∈ V (Sn), let Fv denote the event that v is a (cn, R)-bad vertex.

Notice that

Pr(Fv) = 1 −
(

(Q − 1)
Q

)|V (BR(Sn,v))|−1

≤ ϵ

2 .

Since for v, w ∈ Ai
n the events Fv, Fw are independent, we have that

E(|BR
n ∩ Ai

n|) =
∑

v∈Ai
n

Pr(Fv) ≤ ϵ

2 |Ai
n|.

Therefore,

K∑
i=1

Pr
(

|BR
n ∩ Ai

n| − ϵ

2 |Ai
n| >

ϵ

2 |Ai
n|
)

≤
K∑

i=1
Pr
(

|BR
n ∩ Ai

n| − E(|BR
n ∩ Ai

n|) >
ϵ

2 |Ai
n|
)

.

Now we apply Hoeffding’s inequality to obtain

K∑
i=1

Pr
(

(|BR
n ∩ Ai

n| − E(|BR
n ∩ Ai

n|) >
ϵ

2 |Ai
n|
)

≤
K∑

i=1
exp

(
−2 ϵ

2
2
|Ai

n|
)

≤ K exp
(

−ϵ2|Sn|α4

)
= exp

(
−ϵ2|Sn|α4 + log(K)

)
.
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We may pick n large enough that log K ≤ ϵ2|V (Sn)|α
8 . Thus, we obtain that there

exists a constant C dependent on R such that

Pr
(

|BR
n |

|Sn|
> ϵ

)
≤ exp(−ϵ2|Sn|C)

holds for large enough n.

4.1.1 Recolorings

Given any R ∈ N we will define a sequence of colorings {cm
n }m∈N for each graph Sn in

the sequence in the following way:

• c0
n is a uniformly random Q-coloring of the vertices of Sn with Q as in Proposition

4.1.3;

• having defined cm
n , we set BR,m

n to be the set of (cm
n , R)-bad points. For a vertex

v ∈ V (Sn), set Qm
v = cm

n [BR(Sn, v)] \ {cm
n (v)} - the set of those colors which

appear in the R-neighborhood of v excluding the color of v. Then we let

cm+1
n (v) =


a random number from Q \ Qm

v if v ∈ BR,m
n ,

cm
n (v) otherwise.

Throughout, we will call the sequence {cm
n }∞

m=1 the recolorings of Sn.

Let Bd,R,Q denote the set of all rooted R-balls in FdGQ. We can view the recolorings

of Sn as being obtained in a local recoloring procedure that does not depend on the

graph itself, but only on the neighborhoods of vertices. That is, the local recoloring

procedure is a random variable X : Bd,R,Q → Bd,R,Q such that if B̂ = (B, c, v) ∈ Bd,R,Q,

where B is the underlying graph of B̂, c is the coloring function and v is the root of B̂,

then
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• if v is a (c, R)-good vertex, then X(B̂) = B̂;

• otherwise, X(B̂) = (B, c′, v), where c′(w) = c(w) for all vertices w ̸= v of B and

c′(v) is a uniformly randomly chosen element of (Q \ c[B]) ∪ {c(v)}.

In this way, we view the coloring cm
n as the local recoloring procedure applied to

the colored graph (Sn, c0
n) m times.

If H is a rooted graph (colored or uncolored) of radius r and 0 < l < r, we will write

H↾l to denote the subgraph of H induced on the vertices whose distance from the root

is at most l. Let us now fix any r ∈ N. For the purpose of showing convergence of the

sequence {Sn, cm
n }∞

n=1 (with a fixed m > 0) we will be interested in the rate of occurence

of each ball B̂ ∈ Bd,r,Q. For a coloring cm
n of V (Sn), we will write pB,m

n := |Scm
n

n (B)|
|Sn| .

Let Bm
r (v) denote the r-ball around a vertex v ∈ V (Gn) with its coloring arising from

the coloring cm
n . Notice that for any m ≥ 1 and vertex v of Sn, its neighborhood Bm

r (v)

depends on the neighborhood Bm−1
r+R (v). Therefore, for every colored ball D ∈ Bd,r+R,Q

there is a probability pD,B̂ that after applying the local recoloring procedure to each

vertex of D↾r, the resulting graph D′ satisfies D′↾r ∼= B̂ as colored graphs. For

example, if D ∈ Bd,r+R,Q is an R-well colored graph and D↾r ∼= B̂ as colored graphs,

then pD,B̂ = 1. If, on the other hand, D↾r ̸∼= B̂ and D is R-well colored, then pD,B̂ = 0.

Let us fix an m ≥ 0 and consider the sequences {(Sn, cm
n )}∞

n=1 and {(Sn, cm+1
n )}∞

n=1.

One may ask, for a fixed B̂ ∈ Bd,r,Q, how does the pB̂,m+1
n depend on pD,m

n for D ∈⋃
r∈N Bd,R,Q? It is clear that pB̂,m+1

n in fact only depends on pD,m
n for D ∈ Bd,r+R,Q. For

a D ∈ Bd,r+R,Q and an B̂ ∈ Bd,r,Q, we define AD,B̂,t+1
n to be the set of those vertices v

of Sn for which

• Bt
r+R(v) ∼= D,

• Bt+1
r (v) ∼= B̂,

as colored graphs. Then we note the following.



4.1 Coloring graph sequences 53

Remark 4.1.4. Let r > 0, m > 0, B̂ ∈ Bd,r,Q, and {(Sn, cm
n )}∞

n=1 be a sequence of

colored graphs. Then

pB̂,m+1
n =

∑
D∈Bd,r+R,Q

|AD,B̂,m
n |
|Sn|

.

When A ⊆ ⋃∞
r=1 Bd,r,Q and {(Sn, cn)}∞

n=1 is a sequence of coloured Schreier graphs,

we will write pA
n = ∑

B̂∈A pB̂
n and pA = ∑

B̂∈A pB̂ provided that pB̂ exist. The following

result shows that if we recolor each graph enough times, then the size of the badly

colored parts of each Sn will tend to 0.

Proposition 4.1.5. Suppose that {Sn}∞
n=1 is as in Theorem 5 and set mn = ⌈log n⌉

for n ≥ 2 and mn = 1 for n = 1. Then, with probability 1,

lim
n→∞

|BR,mn
n |
|Sn|

= 0.

Proof. First, let us recall that 0 < ϵ < 1
2l

, where l is an upper bound for the size of an

R-ball in a graph with degree bound d. Notice that for an arbitrary m > 1

Pr
(

|BR,m
n |

|Sn|
≤ ϵ

2m

)
≥

Pr
(

|BR,m
n |

|Sn|
≤ ϵ

2m

∣∣∣∣∣ |BR,m−1
n |
|Sn|

≤ ϵ

2m−1

)
· Pr

(
|BR,m−1

n |
|Sn|

≤ ϵ

2m−1

)
.

We wish to bound Pr
(

|BR,m
n |

|Sn| ≤ ϵ
2m

∣∣∣∣ |BR,m−1
n |
|Sn| ≤ ϵ

2m−1

)
from below. We are considering

the probability of an event that having recolored Sn m times, the size of the badly

colored part is at most ϵ
2m |Sn|, on the condition that before the m-th round of recoloring

of the graph Sn, the bad part is of size at most ϵ
2m−1 |Sn|. When we recolor a part of a

graph which has some k vertices, we certainly have at least some l available colors with

l (R, 2d)-large because we picked Q to be twice the size of the smallest (R, 2d)-large

number. Then, the event that the bad part after the m-th recoloring is of size at most

ϵ2−m occurs with probability which is at least the same as the probability that a graph
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on ⌊ϵ|Sn|⌋ vertices which is randomly colored with at least l colors has at most 1
2⌊ϵ|Sn|⌋

badly colored vertices.

From this observation and by the bound on ϵ it follows that

Pr
(

|BR,m
n |

|Sn|
≤ ϵ

2m

∣∣∣∣∣ |BR,m−1
n |
|Sn|

≤ ϵ

2m−1

)

≥ Pr
(

|BR,1
n |

⌊ϵ|Sn|⌋
≤ 1

2

)
≥ Pr

(
|BR,1

n |
|Sn| − 1 ≤ ϵ

2

)
.

The above implies that

Pr
(

|BR,m
n |

|Sn|
≤ ϵ

2m

)
≥

m∏
i=1

Pr
(

|BR,1
n |

2−1(|Sn| − 1) ≤ ϵ

)
.

Moreover, notice that Proposition 4.1.3 holds for any (R, 2d)-large number; the Q

was chosen with a large margin of safety for that Proposition. Thus, it follows that

Pr
(

|BR,1
n |

|Sn|
≤ ϵ

)
≥ 1 − exp(−C|Sn|ϵ2). (4.3)

Hence we obtain that

Pr
(

|BR,m
n |

|Sn|
≤ ϵ

2m

)
≥

m∏
i=1

(1−exp(−C(|Sn|−1)2−1ϵ2)) ≥ (1−exp(−C(|Sn|−1)2−1ϵ2))m.

Now we use the inequality (1−a)k ≥ 1−ka which holds for any natural k and a ∈ [0, 1]

to find that

Pr
(

|BR,m
n |

|Sn|
≤ ϵ

2m

)
≥ 1 − m exp(−C(|Sn| − 1)2−1ϵ2).

Notice that we set mn = ⌈log n⌉ and lim infn→∞
|Sn|

n
> 0 and so there exists a constant

p such that for large enough n we have the following:

• |Sn| − 1 ≥ pn,

• log⌈log n⌉ ≤ Cϵ2(|Sn| − 1)2−2.
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Then for these n, k, p we have that

Pr
(

|BR,mn
n |
|Sn|

≥ ϵ

2mn

)
≤ ⌈log n⌉ exp(−C(|Sn| − 1)2−1ϵ2)

≤ exp(−C(|Sn| − 1)2−1ϵ2 + log⌈log n⌉) ≤ exp
(
−C(|Sn| − 1)ϵ2(2)−2

)

Thus we obtain that the series

∞∑
n=1

Pr
(

|BR,mn|
|Sn|

≥ ϵ

2mn

)

is convergent. Hence by the Borel-Cantelli Lemma, with probability 1 only finitely many

times we have that |BR,mn
n | ≥ |Sn|ϵ2−mn . As mn → ∞, the Proposition follows.

From now on we consider a sequence of colored graphs {(Sn, c′
n)}n∈N where c′

n = cmn
n

where mn is as in Proposition 4.1.5. For an B̂ ∈ Bd,r,Q we will write qB̂
n := |AB̂,mn

n |
|Sn| . We

aim to prove that the sequence {(Sn, c′
n)}n∈N is convergent. However, first we need to

show the following statement.

Proposition 4.1.6. For a fixed t ∈ N, the sequence {(Sn, ct
n)}∞

n=1 is convergent as a

sequence of colored graphs.

Proof. We shall proceed by induction. By Proposition 4.1.2, for t = 0 the result is

true. Assume it is true for all 0 ≤ u ≤ t and we will show it holds for t + 1.

Let us fix a B̂ ∈ Bd,r,Q and a D ∈ Bd,r+R,Q.

Claim 4.1.1. There exists a q ≥ 0 for which with probability 1 we have that |AD,B̂,t+1
n |
|Sn| →

q as n → ∞.

We prove the Claim similarly to the Proposition 4.1.2. Consider pD,B̂. If pD,B̂ = 0,

then by definition AD,B̂,t+1
n = ∅ and so q = 0. We define AD,t

n ⊆ Sn to be the set of

those vertices v of (Sn, ct
n), for which Br+R(v) ∼= D. Then, if |AD,t

n |
|Sn| → 0, then similarly
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q = 0. Let us thus assume that pD,B̂ > 0 and |AD,t
n |

|Sn| → s > 0.

We pick an S to be an (3(R + r), d)-large integer and we let Ai
n, i = 1, . . . , S to be a

partition of AD,t
n which satisfies

1. if v, w ∈ Ai
n, v ̸= w, then d(v, w) > 2(R + r),

2. there exists a constant C > 0 such that for all i = 1, . . . , S, lim infn→∞
|Ai

n|
|Sn| > C.

Then, applying Hoeffding inequality, pigeonhole principle, triangle inequality and

Borel-Cantelli lemma, as in Proposition 4.1.2, we obtain that with probability 1,
|AD,B̂,t+1

n |
|Sn| is convergent as n → ∞. We denote the limit by q.

Observe that there exist finitely many D ∈ Bd,r+R,Q and by Remark 4.1.4

pB̂,t+1
n =

∑
D∈Bd,r+R,Q

|AD,B̂,t+1
n |
|Sn|

,

and thus {pB̂,t+1
n }∞

n=1 is convergent.

Proposition 4.1.7. The sequence {(Sn, c′
n)}n∈N is convergent as a sequence of colored

graphs.

Proof. First let us pick any ϵ > 0, an B̂ ∈ Bd,r,Q for a fixed r ∈ N with Q given in

Proposition 4.1.3. We aim to show that the sequence {qB̂
n }∞

n=1 is Cauchy. To this end,

let us fix a positive integer M which satisfies ∑∞
i=M

1
2i ≤ ϵ

4 . By Proposition 4.1.6 the

sequence {pB̂,M
n }∞

n=1 is convergent with probability 1, so we pick an N > 0 such that

for all n, m > N it is true that |pB̂,M
n − pB̂,M

m | < ϵ
2 . Inequality (4.3) in the proof of

Proposition 4.1.5 implies that

Pr
(

|Br,m
n |

|Sn|

)
> Pr

(
|Br,1

n |
|Sn|

> ϵ

)
≤ exp(−C|Sn|ϵ2).
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Let us fix some n, m > N . Then we have that with probability 1

|qB̂
n − qB̂

m| ≤ |qB̂
n − pB̂,M

n | + |qB̂
m − pB̂,M

m | + |pB̂,M
m − qB̂,M

n | ≤ 2
∞∑

i=M

2−i + ϵ

2 ≤ ϵ.

Hence the sequence {qB̂
n }∞

n=1 is Cauchy and therefore convergent.

Let Bn denote the set of (c′
n, R)-badly colored vertices in Sn. We have constructed

colorings c′
n of Sn for which the sequence {Sn, c′

n}∞
n=1 is convergent and |Bn|

|Sn| → 0 with

probability 1. To finish the proof of Theorem 5, we recolor the sets Bn in {Sn, c′
n}∞

n=1

using the greedy algorithm in order to obtain the good R-colorings of Sn’s. We call

these colorings cn. Since the colorings cn differ from c′
n on vertices whose size relative

to the size of Sn tends to 0 and {Sn, c′
n}∞

n=1 is convergent, we have that {Sn, cn}∞
n=1 is

convergent as well.

4.2 The Nonsingular Schramm Theorem

In [34] Oded Schramm proved (using a bit different language) that if a sequence

{Gn}∞
n=1 of Schreier graphs converges to a measure preserving action α : Γ ↷ (X, µ)

then α is hyperfinite if and only if {Gn}∞
n=1 is a hyperfinite sequence. The goal of this

section is to prove the following theorem.

Theorem 6. Let {(Sn, wn)}∞
n=1 be a tight sequence of WGS-graphs converging to a

nonsingular action α : Fd ↷ (X, µ) in the weighted Benjamini-Schramm sense. Then

α is hyperfinite if {(Sn, wn)}∞
n=1 is weighted hyperfinite.

4.2.1 Construction of a hyperfinite limit action

The first step to prove Theorem 6 is to find a single hyperfinite action which is a limit

of the sequence {(Sn, wn)}∞
n=1.



58 Quasi-invariant Random Cocycles

Proposition 4.2.1. Let {(Sn, wn)}∞
n=1 be a convergent weighted hyperfinite sequence

of WGS-graphs. Then there exists a hyperfinite nonsingular action α : Fd ↷ (X, µ)

which is the limit of the sequence {(Sn, wn)}∞
n=1.

Proof. Let m ≥ 1. Since {(Sn, wn)}∞
n=1 is hyperfinite, there exists Km > 0 and subsets

Y m
n ⊂ V (Sn) for which

• wn(Y m
n ) < 1

m
;

• the size of the components of the graphs induced on V (Sn)\Y m
n is at most Km.

Let Qm > Q′
m > 0 be such that for any n ≥ 1 there exists a coloring φm

n : V (Sn) →

Qm satisfying the following conditions:

• if 0 < dSn(x, y) < Km then φm
n (x) ̸= φm

n (y),

• if x ∈ Y m
n then φm

n (x) ∈ Q′
m,

• if x ∈ V (Sn) \ Y m
n , then φm

n (x) ̸∈ Q1
m.

Since the vertex degrees of Sn are bounded by 2d, such Qm, Q′
m exist. Thus, we obtain

a sequence of colorings

Φn : V (Sn) →
∞∏

m=1
Qm .

Since ∏∞
m=1 Qm is homeomorphic to the Cantor set C, we abuse notation slightly to

say that for any n ≥ 1 {(Sn, wn, Φn)}∞
n=1 ∈ CFdGC. By compactness, there exists a

subsequence {(Sni
, wni

, Φni
)}∞

i=1 convergent to an element κ ∈ QRCC
Fd

.

Let us consider the associated Γ-action α : Γ ↷ (CFdGC, κ). Observe that κ is

concentrated on colored cocycles (S, p, F, Φ) for which Φ is injective. In other words,

for κ-almost every x ∈ CFdGC the orbit graph of x coincides with the image of the

canonical map Mα(x). By definition, on the space CFdGC the canonical map Mα and
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the forgetting map Forg coincide. Therefore, the QRC Mα(κ) is a weighted Benjamini-

Schramm limit of the sequence {Sni
, wni

}∞
i=1. Hence, α is a limit action of the sequence

{Sn, wn}∞
n=1.

Now, we need to prove that the action α : Γ ↷ (CFdGC, κ) is hyperfinite. Let m ≥ 1 and

let Y m ⊆ CFdGC denote the set of those vertices Y m ⊂ CFdGC whose m-th coordinate

is in Q′
m. By convergence, κ(Y m) ≤ 1

m
. This is meaningful since we identified C with

the product space ∏∞
m=1 Qm. Furthermore, for κ-almost every element x ∈ CFdGC the

components of the subgraph induced on the vertices of the orbit graph of x which lie

outside of Y m are of size at most Km. Therefore, the action α is indeed hyperfinite.

4.2.2 Kaimanovich’s Theorem

We found a hyperfinite limit action α for a hyperfinite sequence of WGS-graphs.

However, it is not clear whether any action β with the same QRC as α is hyperfinite.

The first step to proving that this is indeed the case is Kaimanovich’s theorem.

In [20], Kaimanovich formulated a theorem which links the hyperfiniteness of an

action with the isoperimetric properties of its graphing. However, the original proof is

somewhat sketchy, so we provide an alternative one. Elek provided the proof of the

theorem of Kaimanovich for probability measure preserving group actions in [10]. In

this section we present the theorem for non-singular actions of groups with a proof

similar to that in [10].

Let α : Γ ↷ (X, µ) be a non-singular action and let Gα denote its graphing. We say

that H is a subgraphing of positive measure of Gα if µ(V (H)) > 0. Without losing

generality, we can assume that the Radon-Nikodym cocycle exists on X (if not, then

we remove a nullset from the set X where the cocycle is not well-defined). If x, y ∈ X

and γ ∈ Γ are such that α(γ)(x) = y, we denote by R(x, y) the Radon-Nikodym

derivative dα(γ)∗µ
µ

(x). Thus, for any triple x, y, z lying in the same orbit of α, we have
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R(x, y)R(y, z) = R(x, z). For any x ∈ X we can define a (possibly infinite) vertex

measure | · |x on the orbit of x, denoted Oα(x), by defining

|A|x =
∑

y∈V (A)
R(x, y)

for any subset A ⊆ Oα(x). Given any x ∈ X let N(x) denote the set of neighbors of x

in the orbit graph of x and for any A ⊆ Oα(x) let N(A) = ⋃
x∈A N(x) be the set of

neighbors of elements of A.

Given a point x and a finite subset F of Oα(x) we will say that the isoperimetric

constant of F is

ix(F ) = |∂(F )|x
|F |x

where ∂(F ) = {x ∈ V (H) : N(x) ̸⊆ V (H)} denotes the boundary of F . Note that since

F is finite and the graphing of α is taken with respect to a finite generating system,

ix(F ) is well-defined. Furthermore, because R forms a cocycle, the isoperimetric

constant of any given set does not depend on the choice of the point x. Thus, we can

define i(F ) = ix(F ).

Now we define the isoperimetric constant of any connected (Γ, Σ)-Schreier graph G as

i(G) = inf{i(F ) : F ⊆ V (G), |F | < ℵ0}.

In particular, if G is finite, then the isoperimetric constant of G is zero.

Definition 4.2.2. Let Gα be a graphing of a non-singular action of Γ on a Borel

probability measure space (X, µ) with respect to a finite symmetric generating system

Σ. Then

• Gα has property (A) if for every subgraphing H ⊆ Gα of positive measure,

µ-almost every component of H has isoperimetric constant 0;
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• Gα has property (B) if for every ϵ > 0 and any subgraphing H ⊆ Gα of

positive measure, there is a subgraphing S ⊆ H which intersects µ-almost every

component of H such that each component C of S is finite and the isoperimetric

constant of C in H is less than ϵ.

We now formally state the theorem of Kaimanovich.

Theorem 7 (Kaimanovich, [20]). Let α : Γ ↷ (X, ν) be nonsingular action as above.

Then the following conditions are equivalent:

1. the action α is hyperfinite (in this case we say that Gα is hyperfinite);

2. Gα has property (A).

The following proposition is crucial in the proof of the theorem.

Proposition 4.2.3. The properties (A) and (B) are equivalent.

Proof. Clearly a graphing with property (B) has property (A), so we only need to

prove the converse.

Let H ⊆ Gα be any subgraphing of positive measure such that almost all components

of H have isoperimetric constant 0. For x ∈ V (H) let Bn(x) denote the ball of radius

n around x in the component of H containing x. First, we pick an ϵ > 0. We will

construct a subgraphing S of H with the desired properties using induction.

Let dGα denote the pseudometric on X given by

dGα(x, y) =


pxy if x, y lie in the same component of Gα;

∞ otherwise,

where pxy denotes the length of the shortest path between x and y in the graphing Gα.

By the result of Kechris, Solecki and Todorcevic [23] there exists some r1 ∈ N and a

Borel coloring c1 of V (H) with colors from r1 which satisfies that if dGα(x, y) < 6 then
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c1(x) ̸= c1(y). Now, let A1
i = c−1

1 [{i}] be the i-th color class. Then, for any x ∈ V (H)

let K1,1
x be the (possibly empty) family of finite subsets of B2(x) with isoperimetric

constant less than ϵ which contain x. We may assume that X is actually the interval

[0, 1] (as there exists a measurable isomorphism between these spaces, see e.g. Chapter

3 in [35]) and we set the following linear order ≺ on K1,1
x :

• if |A| < |B| then let A ≺ B,

• if |A| = |B| and min(A \ B) < min(B \ A), then A ≺ B.

Then let R1,1
x be the ≺-smallest element of K1,1

x . Clearly, R1,1 := ⋃
x∈A1

1
R1,1

x is a

measurable set.

We construct sets R1,k, 1 ≤ k ≤ r1 inductively. Having defined R1,i for all 1 ≤ i ≤

k − 1 ≤ r1 take any x ∈ A1
k and define K1,k

x in the following way. If the component of

x already contains some element in the form of R1,i
y , where 1 ≤ i ≤ k − 1, then let K1,k

x

be the empty set. Otherwise, let K1,k
x be the family of finite subsets of B2(x) which

contain x and whose isoperimetric constant in H is less than ϵ. In the same way as

before, we can define an order ≺ on K1,k
x and let R1,k

x be the ≺-smallest subset of K1,k
x .

We set R1,k = ⋃
x∈A1

k
R1,k

x . The graphing S1 is defined as the subgraphing of H induced

on ⋃k≤r1 R1,k.

Observe that S1 consists of finite components whose isoperimetric constants in H are

less than ϵ. However, S1 might not intersect almost all the components of H so we

continue by constructing a sequence of graphings {Sn}∞
n=1 inductively in the following

way.

Assume Si has already been defined for all 1 ≤ i ≤ n. Now, let cn+1 be a Borel

coloring of V (H) with colors from the large enough set {1, . . . , rn+1} such that for

any x, y we have that cn+1(x) ̸= cn+1(y) whenever dG(x, y) < 2n + 4. Like before,

set An+1
i = c−1

n+1(i) to be the i-th color class. For x ∈ An+1
i , we define Kn+1,1

x in the

following way. If the H-component of x intersects Si for 1 ≤ i ≤ n, then let Kn+1,1
x be
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the empty set. If the component of x does not intersect Si then we set Kn+1,1
x to be

the family of finite sets F contained in Bn+1(x) such that F has isoperimetric constant

less than ϵ. Again, we define an ordering ≺ on Kn+1,1
x in order to obtain the subset

Rn+1,1
x . Continuing this process, we define the subgraphing Sn+1.

It is clear from the construction that S = ⋃∞
n=1 Sn is an induced subgraphing of H

with finite components whose H-isoperimetric constants are less than ϵ. It suffices to

show that S as defined above intersects µ-almost all of the components of H. Take

an element x ∈ X whose component in H has isoperimetric constant 0. Then, there

exists a finite subset F in the orbit graph of F with isoperimetric constant less than ϵ.

Therefore, for some n ∈ N, F ⊂ Bn(x). By the construction of S, there is some k ≤ n,

such that Sk intersects the component of x.

Given a graphing Gα on a standard probability measure space (X, µ) and a measurable

Z ⊆ X we write G − Z to denote the subgraphing of G induced on X \ Z. Now, we

prove Kaimanovich’s Theorem.

Proof of theorem 7. First, assume that Gα is hyperfinite and take its subgraphing H

of positive measure. Suppose that µ(V (H)) = a > 0 and fix a real number ϵ > 0.

Let Z ⊆ X be a set with µ(Z) < ϵ2

a
and such that all components of Gα − Z are of

size at most K for some K ∈ N. Then for any x ∈ V (H) \ Z we denote by Fx the

set consisting of the vertices in the component Cx of x in H − Z together with the

elements of Z which are adjacent (in H) to elements of Cx. Before we continue the

proof of Theorem 7, we make the following observation.

Lemma 4.2.4. Let Hϵ be the set consisting of those x ∈ V (H), for which the H-

isoperimetric constant of Fx is less than ϵ. Then µ(Hϵ) ≥ a − ϵ
a
.
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Proof. Let A ⊆ V (H) be the complement of the set of vertices of Hϵ. By assumption,

∂(A) is contained in Z. Therefore A satisfies the inequality

µ(A) <
µ(Z)

ϵ
=

ϵ2

a

ϵ
= ϵ

a
.

It follows that if we set ϵn = 1
n

then µ(H 1
n
) ≥ a − 1

an
. Therefore µ-almost every

component of H has isoperimetric constant zero.

Now assume that Gα has property (A). Pick any ϵ > 0 and set H0 = Gα. By Proposition

4.2.3, there is a subgraphing S0 ⊆ H0 of positive measure which intersects µ-almost

every component of H0, has finite components and the H-isoperimetric constant of

each component of S0 is less than ϵ. Then we have that µ(∂V (S0)) < ϵµ(V (S0)) and

we set M0 = ∂V (S0).

We proceed by transfinite induction. Having defined Hβ, Sβ and Mβ for an ordinal

β let Hβ+1 be the subgraphing of Hβ induced on the set V (Hβ) \ V (Sβ). If Hβ+1 is

of positive measure, then by Proposition 4.2.3 there exists a subgraphing Sβ+1 of Hβ

which is of positive measure, has finite components and each of these components has

H-isoperimetric constant smaller than ϵ. Now put Mβ+1 = ∂V (Sβ+1). For a limit

ordinal λ, having defined Hβ, Sβ and Mβ for all β < λ let Hλ be the subgraphing of

Gα induced on the set V (G) \⋃β<λ V (Sβ). If Hλ is of positive measure, then let Sλ be

an induced subgraphing of Hλ of positive measure with finite components and such

that the H-isoperimetric constant of each of its components is less than ϵ. Moreover,

we set Mλ = ∂(Sλ). Now, since µ(V (Hβ)) is a strictly decreasing transfinite sequence

of positive reals, there is a countable ordinal γ such that µ(V (Hγ)) = 0. Then, we

let Z = ⋃
β<γ Mβ ∪ V (Hγ). We have that the graphing Gα − Z has finite components.

This is enough, as for any δ > 0 there exists a K such that the set of vertices of
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Gα − Z which lie in components of size greater than K has measure smaller than δ.

Furthermore, since for any β < γ µ(Mβ) = µ(∂V (Sβ)) < ϵµ(V (Sβ)) we have that

µ(Z) = µ

⋃
β<γ

Mβ

 ≤ ϵ ·
∑
β<γ

µ(V (Sβ)) < ϵ.

It follows that we can pick such a set Z of measure less than ϵ such that all components

of the subgraphing Gα − Z have finite components. Therefore, Gα is hyperfinite.

4.2.3 The proof of Theorem 6

In order to complete the proof of Theorem 6 we need to show that if α and β are

quasi-invariant actions of Γ, α is hyperfinite and β is not, then they cannot have the

same QRC. The theorem of Kaimanovich implies that if α is a hyperfinite action then

the QRC induced by α is concentrated on hyperfinite elements of CFdG. However, it is

possible that a nonamenable group Γ has a measure preserving non-hyperfinite action

β for which all orbit graphs of Gβ have isoperimetric constants 0 (e.g. Example 4 in

[21]).

Definition 4.2.5. Let α : Γ ↷ (X, µ) and β : Γ ↷ (Y, ν) be two actions. We say that

β is a proper factor of α, if there exists π : X → Y such that

1. π is surjective and measure preserving;

2. the restriction of π onto any orbit set of X is bijective;

3. for µ-almost all x ∈ X and for all γ ∈ Γ, Rα(γ, x) = Rβ(γ, π(x)), where Rα(γ, x)

is the Radon-Nikodym cocycle of α.

In this case we call π a proper factor map.

Clearly, the canonical map Mα for an action α is not necessarily a proper factor

map. For instance, for a free measure preserving action of a group Γ, the QRC induced
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by the action is the delta measure concentrated on the Cayley graph of Γ (with respect

to the fixed generating system). Thus, Mα is not bijective on the orbits. Proper factor

maps are of particular interest to us since they preserve hyperfiniteness of the actions.

Proposition 4.2.6. Let β be a proper factor of α. Then α is hyperfinite if and only

if β is hyperfinite.

Proof. First, suppose that β is hyperfinite. Let ϵ > 0 and Z ⊂ Y such that the

complement of Z has components of size at most K. Then, the complement of π−1[Z]

has components of size at most K. Thus, α is hyperfinite.

Now, suppose that β is not hyperfinite. By Kaimanovich’s Theorem, we have a positive

measure subgraphing S of the graphing Gβ such that it is not true that almost all

components of S has isoperimetric constant 0. Since π is a proper factor map, we have

that π−1[S] is also a positive measure subgraphing of Gα and not all components of

π−1[S] have isoperimetric constants 0. Therefore, α is not hyperfinite as well.

The next step in the proof of Theorem 6 is to construct a non-singular independent

joining of actions. To this end, we use the classical theorem on disintegration of

measure in order .

Theorem 8 (Disintegration of measure, see e.g. Section 452 in [16]). Let X a compact

metric space with a Borel probability measure µ and let us suppose that D is a sub-σ-

algebra of the Borel σ-algebra. Then for µ-almost every element x ∈ X there exists a

measure µx such that for any µ-integrable function f on X the following conditions

are satisfied:

• the function gf :=
∫

X f(y)dµx(y) is D-measurable,

•
∫

X f(x)dµ(x) =
∫

X (
∫

X f(y)dµx(y)) dµ(x).

Proof of Theorem 6. Let α : Γ ↷ (X, µ) be the hyperfinite limit action of the weighted

Schreier graph sequence {(Sn, wn)}∞
n=1 constructed in Proposition 4.2.1 and β : Γ ↷
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(Y, ν) be another limit action. By Proposition 4.2.6, it is enough to prove that there

exists an action δ : Γ ↷ (Z, τ) such that both α and β are proper factors of δ. Then,

β must be hyperfinite as well. Our idea is similar to the one in [10], but uses a slightly

different construction.

Let Mα : X → CΓG and Mβ : Y → CΓG be the canonical maps as in Section 3.2.1.

Clearly, (Mα)∗µ = (Mβ)∗ν, since both α and β are limit actions of the same convergent

sequence. We denote this probability measure on CΓG by ρ. Now, we construct the

nonsingular independent joining of α and β over γ : Γ ↷ (CΓG, ρ), where γ is the

action on the space of cocycles by moving the root. We follow [7] Section 10. By the

theorem of disintegration of measures, we have measurable maps

ρX : (CΓG, ρ) → Prob(X)

and

ρY : (CΓG, ρ) → Prob(Y )

such that for any µ- measurable set A ⊆ X
∫

CΓG ρX(x)(A) dρ(x) = µ and∫
CΓG ρY (y)(A) dρ(y) = ν. Then, the nonsingular independent joining is defined as

the natural action δ : Γ ↷ (X × Y, µ ×ρ ν), where the measure µ ×ρ ν is defined by

∫
CΓG

(µX × µY )dρ .

Then, both α and β are proper factors of δ and our theorem follows.

4.3 The Cantor Model of a Nonsingular Action

Recently, László Lovász proved the following theorem.
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Theorem 9 (Lovász [25]). Let α : Γ ↷ X be a Borel action of a finitely generated

group Γ on the standard Borel space X. Then, there exists a stable (see Section 2.2.1)

continuous action of Γ on a totally disconnected compact set β : Γ ↷ C and a Borel

embedding Φ : X → C such that Φ ◦ α = β ◦ Φ.

The goal of this section is to provide a nonsingular generalization of this result.

4.3.1 The Role of the Normalizer Subgroup

Let Γ be a finitely generated group, H < Γ be a subgroup and (S(Γ/H), H) be the

associated rooted Schreier graph. Then we have two actions of Γ:

1. the action on the left coset space Γ/H by left multiplication;

2. the action on the orbit O(S(Γ/H), H) ⊂ ΓG by moving the root.

Recall that a normalizer of a subgroup H of Γ is the maximal subgroup of Γ containing

H in which H is a normal subgroup. Note that the stabilizer of (S(Γ/H), H) in the

second action is the normalizer subgroup N(H) of H. Indeed, gHg−1 = H if and

only if the rooted Schreier graphs (S(Γ/H), H) and (S(Γ/H), gH) are isomorphic.

Furthermore the stabilizer of H in action 1. is H itself. Therefore the two actions

above coincide if and only if H = N(H).

Now, let φ : Γ/H → C be a coloring function such that φ(aH) = φ(bH) if and only if

aH = bH. Then we have a third action of Γ:

3. the action on the orbit O(S(Γ/H), H, φ) ⊂ ΓGC by moving the root.

It is easy to see that the third action is always Γ-isomorphic to the first action, even if

H is not its own stabilizer in action 2. This simple observation leads to the following

useful lemma (see also [11]).
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Lemma 4.3.1. Let H < Γ and φ : Γ/H → C be a function which satisfies that for

any r ≥ 1 there exists sr > 0 such that if

0 < dS(Γ/H)(x, y) ≤ r

then

dC(φ(x), φ(y)) ≥ sr,

where dC is a metric on C defining the standard topology on the Cantor set.

Then, for any element (S(Γ/H ′), H ′, φ′) in the orbit closure of (S(Γ/H), H, φ) in ΓGC,

the action on the orbit of (S(Γ/H ′), H ′, φ′) is isomorphic to the action on the coset

space Γ/H ′. Hence, the action on the orbit closure of (S(Γ/H), H, φ) is stable.

Proof. Clearly, a coloring φ with the property in the Lemma is injective. Furthermore,

dC(φ′(x), φ′(y)) ≥ sr holds if 0 < dS(Γ/H′)(x, y) ≤ r, since (S(Γ/H ′), H ′, φ′) is in the

closure of the orbit of (S(Γ/H), H, φ). Hence, the map φ′ : Γ/H ′ → C is also injective.

Thus, the lemma follows from our earlier observation.

Immediately, we have the following corollary.

Corollary 4.3.2. Let φ : Γ → C be a function such that for any r ≥ 1 there exists

sr > 0 so that if 0 < dCay(Γ)(x, y) ≤ r, then dC(φ(x), φ(y)) > sr . Then, the action of Γ

on the orbit closure of (Cay(Γ), e, φ) ∈ ΓGC is free.

4.3.2 The Nonsingular Lovász Theorem

Let us now formally state our theorem.

Theorem 10. Let α : Γ ↷ X be a Borel action and c : Γ×X → R+ be a multiplicative

Borel cocycle with respect to the action α such that for all γ ∈ Γ the function x 7→ c(γ, x)
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is bounded and Borel. Then, there exists a stable continuous action β of Γ on a totally

disconnected compact set K, a continuous multiplicative cocycle d : Γ × K → R+ and a

a Borel embedding Φ : X → K such that

• Φ ◦ α = β ◦ Φ;

• for any x ∈ X and γ ∈ Γ we have that c(γ, x) = d(γ, Φ(x))

Proof. First, we define a pseudometric dα : X × X → N ∪ {∞} in the following way:

• if x, y are not on the same orbit of α, then dα(x, y) := ∞;

• if x, y ∈ S, where S is the Schreier graph of an orbit of α, then dα(x, y) := dS(x, y).

Let Ω : X → {0, 1}ω be an arbitrary Borel isomorphism. For i > 1, let Qi be a

large finite set and Ψi : X → Qi be a Borel function such that Ψi(x) ̸= Ψi(y), if

0 < dα(x, y) ≤ i. We write C̃ := {0, 1} × Q1 × {0, 1} × Q2 × . . .. Then, we have a Borel

map τ̃ : X → C̃, defined by

τ̃(x) := ((Ω(x))1, Ψ1(x), (Ω(x))2, Ψ2(x), . . .)

Let us notice that for any x ∈ X, the restriction of τ̃ to the orbit graph of x satisfies the

property in Lemma 4.3.1. Now, for the standard Cantor set C there exists a continuous

isomorphism ι : C̃ → C which preserves this property. Thus, we define a C-coloring

τ : X → C by τ := ι ◦ τ̃ . We obtain a Borel function Φ : X → CΓGC by mapping each

x ∈ X to its orbit Schreier graph colored with τ and with a cocycle structure d given

by

d(γp, σγp) = c(σ, γx)
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for any γ, σ ∈ Γ and any vertex p. By our assumption Φ is a Borel embedding. Let us

note that Forg ◦Φ is just the canonical map Mα, where

Forg : CΓGC → CΓG

is the map that “forgets” the C-colors (see 3.1.2).

Lemma 4.3.1 implies that the action on the closure of Φ[X] is stable. Also, the closure

of Φ[X] is a totally disconnected compact set. Hence, our Theorem follows.

Let us suppose that the cocycle c in Theorem 10 is the Radon-Nikodym cocycle of a

quasi-invariant measure µ. Then, d is the continuous Radon-Nikodym cocycle of the

quasi-invariant measure Φ∗(µ) on the closure of Φ[X]. Therefore, we have the following

corollary of Theorem 10.

Corollary 4.3.3. Let α : Γ ↷ (X, µ) be a Borel action preserving the measure class of

µ and let R : Γ × X → R+ be the Radon-Nikodym cocycle of the action α. If for each

γ ∈ Γ, the function x 7→ R(γ, x) is bounded, then there exists a totally disconnected

compact set K and a Borel embedding Φ : X → K such that

• R̃ : Γ × K → R+ defined by R̃(γ, x) = R(γ, Φ(x)) is continuous,

• R̃ is the Radon-Nikodym cocycle of Φ∗(µ).

4.4 Continuous Radon-Nikodym Derivatives

In this section we consider the situation when the Radon-Nikodym cocycle of an action

of a finitely generated group is continuous.
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4.4.1 The Radon-Nikodym Problem

It is known that for a group action α which is preserves the measure class of a probability

measure µ, the Radon-Nikodym derivatives form a cocycle. On may ask the converse:

for a given multiplicative cocycle S on a set X, when does there exist a measure µ for

which S is the Radon-Nikodym cocycle? This is called the Radon-Nikodym Problem

and it was studied e.g. by Renault [32]. Here we consider a continuous version of the

problem, stated as follows.

Question: Let α : Γ ↷ X be a continuous action of a finitely generated group on a

compact space and S : Γ × X → R+ be a continuous multiplicative cocycle. Under

what circumstances does there exist a quasi-invariant measure µ on X such that the

Radon-Nikodym cocycle of α with respect to µ equals to S?

In [6], Cuesta and Rechtman showed that an invariant measure µ can be found if the

cocycle S admits a Følner sequence, as defined below.

Let us fix a symmetric generating set Σ for Γ. Let A ⊆ X be a finite set. We say that

x ∈ ∂(A) if there exists σ ∈ Σ such that α(σ)(x) /∈ A. Let y ∈ A. Then we can put a

probability measure FA : A → R+ by

FA(x) = Sy(x)∑
x∈A Sy(x) ,

where Sy(x) = S(γ, y), provided α(γ)(y) = x. Since S is a multiplicative cocycle, Sy is

well-defined and furthermore, FA does not depend on the choice of y. We define the

isoperimetric constant of A as

iS(A) :=
∑

x∈∂(A)
FA(x).
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We say that a sequence of finite sets {An}∞
n=1 is a Følner sequence in X if

limn→∞ iS(An) = 0 . In this thesis, we provide an alternative proof to the result

of Cuesta and Rechtman.

Proposition 4.4.1 (Cuesta-Rechtman, [6]). If S admits a weighted Følner sequence

then there exists a measure µ on X such that S is the Radon-Nikodym derivative of α

with respect to a quasi-invariant measure µ.

Proof. First, we construct a continuous (real) functional F on the Banach space C(X)

of continuous functions f : X → R with the supremum metric. Let {An}∞
n=1 be a

Følner sequence on X and f : X → R+ be a continuous function. Define

Tn(f) :=
∑

x∈An

f(x)FAn(x) .

Then:

• Tn is a continuous positive linear functional on C(X),

• ∥Tn∥ = 1,

• Tn(1) = 1, where 1 denotes the constant function taking value 1 everywhere.

Now, we fix a non-principal ultrafilter ω on the natural numbers and set T (f) :=

limω Tn(f), where limω is the ultralimit associated to ω. Then T is a continuous positive

linear functional such that T (1) = 1. Therefore, there exists a probability measure µ

on X such that for any f ∈ C(X),

T (f) =
∫

X
f(x)dµ(x) .

It is enough to prove that for any generator σ ∈ Σ,

T (f ◦ α(σ−1)) = T (fσ) ,
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where fσ(x) = f(x)S(σ, x).

Observe that

Tn(f ◦ α(σ−1)) =
∑

x∈An

f(α(σ)(x))FAn(x)

and

Tn(fσ) =
∑

x∈An

f(x)S(σ, x)FAn(x) .

Furthermore, for any y ∈ An we have that

FAn(α(σ)(x))
FAn(x) = Sy(α(σ)(x))

Sy(x) = S(σ, x) .

So, after cancellations, we obtain that

|Tn(f ◦ α(σ−1)) − Tn(fσ)| ≤
∑

x∈∂(A)
2KFAn(x) ,

where K = supx∈X S(σ, x) . (K exists because the cocycle S is continuous on the

compact space K.) Now, since An is a Følner sequence, we obtain that

lim
ω

Tn(f ◦ α(σ−1)) = lim
ω

Tn(fσ) ,

that is,

T (f ◦ α(σ−1)) = T (fσ).

4.4.2 Actions of exact groups

The goal of this section is to prove the following theorem.
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Theorem 11. Any finitely generated exact group Γ has a free action on the Cantor

set with a quasi-invariant probability measure µ such that all the Radon-Nikodym

derivatives are continuous.

Proof. Let Γ be an exact group and Σ be a symmetric generating system for Γ. We

consider the weight system wk on the balls Bk of the Cayley graph Cay(Γ, Σ) as in

Example 3 in Section 3.3. Note that there exists K ≥ 1 such that for all k ≥ 1

1
K

≤ wk(p)
wk(q) ≤ K ,

holds, provided that p, q are adjacent vertices in the ball Bk. For k ≥ 1 and p ∈ Bk

let vk(p) be the largest integer power of 2, which is less than or equal to wk(p). This

implies that we have the bounds

1
4K

≤ vk(p)
vk(q) ≤ 4K .

By Proposition 3.3.3, we know that {Bn, wn}∞
n=1 is a weighted hyperfinite system.

This, together with the bounds on the ratios vk(p)
vk(q) , implies that {Bn, vn}∞

n=1 is weighted

hyperfinite as well. Clearly, for any k ≥ 1 and adjacent vertices p, q ∈ Bk

vk(p)
vk(q)

can take only finitely many values, since each such ratio is bounded and each is an

integer power of 2. Let a1, a2, . . . , ar be a listing of these values. Now, we use the

same technique as in Section 4.3. We choose finite sets {Qn}∞
n=1 and we pick colorings

φk : Bk → ∏
n=1 Qn which satisfy that for each k, n and any x, y ∈ Bk such that

dBk
(x, y) ≤ n, we have have that φn

k(x) ̸= φn
k(y), where φn

k denotes the projection of
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φk on the n-th coordinate. By compactness, there exists a ρ ∈ QRCΓ which is a limit

point of the sequence {Bk, vk}∞
k=1. Then we have that:

1. as it was shown in Section 4.3, ρ is given by an action of Γ on CΓGC by moving

the root with a quasi-invariant measure µ. The action is essentially free and the

measure µ is concentrated on cocycles with values {a1, a2, . . . , ar} and with a

proper C-coloring. The set of such colored cocycles is homeomorphic to a compact

subset of the Cantor set;

2. the Radon-Nikodym derivatives on the generators take values in {a1, a2, . . . , ar}

and all the derivatives are continuous;

3. by Theorem 6 the action is µ-hyperfinite.

Hence Theorem 11 follows.
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