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Abstract 

Extreme teams work in challenging, high pressured contexts, where poor performance can 

have severe consequences. These teams must coordinate their skill sets, align their goals, and 

develop shared awareness; all under stressful conditions. How best to research these teams 

poses unique challenges as researchers seek to provide applied recommendations whilst 

conducting rigorous research to test how teamwork models work in practice. In this paper we 

identify immersive simulations as one solution to this, outlining their advantages over 

existing methodologies and suggesting how researchers can best make use of recent advances 

in technology and analytical techniques when designing simulation studies. We conclude that 

immersive simulations are key to ensuring ecological validity and empirically reliable 

research with extreme teams.  
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Immersive Simulations with Extreme Teams 

‘Extreme teams’ (ETs) operate in challenging environments in which there are 

considerable physical, psychological and interpersonal demands (Manzey & Lorenz, 1999). 

ETs share many similarities with ‘High Reliability Organisations’, in which teams are 

required to operate effectively, in complex task environments, and for sustained periods of 

time (Roberts, 1990; Klein, Bigley & Roberts, 1995). What both contexts have in common, 

and what defines an ET, is that they operate in atypical environments (in terms of 

demands/stress levels), in which ineffective performance can have severe, potentially life or 

death, consequences (Bell, Fisher, Brown & Mann, 2018). Examples of ETs include those 

involved in long-duration space flights (Zhang et al., 2018), submarine command and control 

rooms (Stanton & Roberts, 2018), medical emergencies (Klein et al., 2006), high-risk 

industries (Sneddon, Mearns & Flin, 2006) and emergency response (Power & Alison, 

2017a). Interest in ETs is increasing (see Driskell, Driskell & Salas, 2018; Roma & Bedwell, 

2017), with teamwork viewed as a vital component to organisational success and safe 

working practices (Hughes et al., 2016; Mazzocco et al., 2009). This has led to a 

consideration of how to study these unique, often hard to reach teams, to conduct rigorous 

applied research that contributes to wider theoretical understanding (Bell et al., 2018; 

Kozlowski, 2015). Given the unique context in which ETs operate, this understanding may 

diverge from what we know about conventional teams and challenge our current thinking. 

We identify immersive simulations as one way to achieve this and present a framework for 

designing, conducting and analysing this research, drawing on current research and 

ethnographic experience. 
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Researching extreme teams 

Teamwork is essential for safety and success in extreme environments (Hughes et al., 

2016). For example, research in high-risk industries has shown that accidents occur more 

often due to problems between team members than unsafe working conditions (Dwyer & 

Raftery, 1991); a finding that has been attributed to issues around poor leadership (McCabe, 

Loughlin, Munteanu, Tucker & Lam, 2008) and a lack of team spirit (Kadiri et al., 2014). 

Risser, Rise, Salisbury, Simon and Berns (1999) also showed from fifty-four incidents across 

eight US hospital emergency departments that half of all recorded deaths and permanent 

disabilities could have been prevented through better teamwork. Identifying solutions to 

improve teamwork in ETs can be challenging. This is because they have complex team 

structures, often form (and dismantle) rapidly, draw on multiple agencies and operate in 

dynamic conditions that impose a high level of stress on members due to the severe 

consequences of poor teamwork (Crichton, Flin & Rattray, 2000; Schmutz, Lei, Eppich & 

Manser, 2018). These features are different to what we see in conventional teams and suggest 

that theoretically, their processes may be structured differently. 

Research on teams requires careful consideration of the complex interplay between 

performance and its antecedent factors that reside at four levels: the individual (e.g., 

personality), the team (e.g., team structure: horizontal or vertical), cultural (e.g., 

organisational culture) and contextual (e.g., task demands). Each of these levels, in isolation 

and in combination, influence how well a team adapts and responds to a situation. When 

applied to ETs, an extra layer of complexity is added when we consider the extent to which 

psychological pressures (e.g., stress) interact with each of these levels and alters team 

performance (Driskell et al., 2018). The experience of stress can create a perception that task 

demands exceed available resources, which can lead to undesirable physiological, 

psychological, behavioural and/or social outcomes (Salas, Driskell & Hughes, 1996). These 
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demands may reside in conventional teams to a lesser extent (or not at all), or in a 

qualitatively different way (e.g., relating to performance rather than the loss of life). 

Differences in contextual demands can drive the type of stress experienced in teams, which 

may change or amplify the drivers of effective teamwork (Maynard, Kennedy & Resick, 

2018; Driskell et al., 2018). Considering this, researchers have called for empirical research 

with ETs to test if theoretical models developed with conventional work teams apply to those 

working in these challenging settings (Vessey & Landon, 2017), and to develop solutions that 

can protect workers and enhance performance (Power, 2018).  

 

Simulation research with extreme teams  

Researchers looking at ETs have employed a variety of methods to understand their 

composition, function and processes. When the research question concerns a descriptive 

understanding of ETs, qualitative methods such as observations and interviews (used in 

isolation or together), have been shown to be effective. Gillespie, Gwinner, Chaboyer and 

Fairweather (2013), for example, developed an ethnographic account of surgical teamwork 

culture using observations and interviews. Power and Alison (2017a) identified nine core 

challenges for commanders during emergencies using interviews. When the research question 

concerns the influence of self-perceptions on teamwork, self-report measures such as 

questionnaires have been used. Wauben et al. (2011) found differences between medical team 

members’ in the way they perceived non-technical skills (e.g., communication and situation 

awareness) using a questionnaire survey. However, what these studies do not do, and what is 

distinct in simulation studies, is manipulate specific variables to test theory and generate 

empirical evidence of how these variables influence team performance. Whilst the 

manipulation of variables is possible in traditional laboratory studies, these studies often 

utilise student samples in a setting that is void of the stressors present in an extreme 
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environment (e.g., Zaccaro et al., 1995). Further, research highlights the importance of 

expertise in extreme environments (Boulton & Cole, 2016), thus suggesting that 

understanding how practitioners work in the real-world necessitates that research is 

undertaken with the population of interest.  

One effective method for studying ETs are simulations. Simulations allow for the 

measurement of complex relationships between factors that impact team performance in a 

meaningful organisational context, whilst facilitating a high level of experimental control 

(Alison et al., 2013; Manser, Dieckmann, Wehner & Rall, 2007). Example relationships may 

include the impact on performance of individual differences (e.g., attitudes), trust between 

team members, temporal patterns in teamwork over time, and cultural and contextual 

variables that may moderate these relationships, such as organisational norms and task 

demands. Studies that have used simulations to answer such questions include Bienefeld and 

Grote (2014) who showed the influence of expertise and organisational knowledge on 

leadership behaviours in aviation teams; and Amacher et al. (2017) who demonstrated that 

all-female medical teams showed less “hands-on” time and a greater delay before chest 

compressions in comparison to all-male teams.  

In comparison to alternative methods, simulations have five key benefits; they: (i) re-

create the stressors and challenges of the workplace; (ii) involve data collection with the 

population of interest (i.e., practitioners instead of students); (iii) provide an opportunity for 

researchers to test theory by manipulating and measuring discrete variables; (iv) allow for the 

collection of rich quantitative and qualitative data related to team behaviour in real time, and 

(v) can be used as a training tool to increase participation (Rosen et al., 2008). Simulations 

are an especially useful platform for collecting data with ETs as they provide a 

physiologically and psychologically safe space that will not endanger participants (Alison et 

al., 2013), whilst eliciting similar behavioural patterns as would be found in situ (Manser et 
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al., 2007). They are also suited to research with ETs who may be difficult to study using 

alternative methods (e.g., the security sensitive nature of military command control would 

negate an observation study).   

This paper has two main aims. Firstly, it seeks to show the utility of immersive 

simulations in studying a range of ETs; not just those who operate in healthcare, where many 

of the frameworks and benefits of utilising immersive simulations originate (see Cheng et al., 

2016, Cheng et al., 2014). We will show in this paper that they can also be in contexts where 

ETs are less well-structured (e.g., multi-team systems), more fluid (e.g., non-stable team 

members) and involve both horizontal (i.e., within an operational team) and vertical (i.e., 

between operational, tactical and strategic teams) organisational structures. Secondly, the 

paper will outline recent technological and analytical advances in psychological research and 

consider how simulation research can be improved by utilising more immersive methods that 

can better harness these advances. For example, by considering in what way emerging virtual 

reality technologies or alternative statistical approaches (i.e., Bayesian statistics) might be 

used to allow advanced models of ETs to develop. These developments have implications 

beyond the ET context and hold promise for team research in general. In this paper, we 

address these aims by outlining a framework for using immersive simulations for research 

with ETs, broadly focussing on three aspects of the research lifecycle: (i) simulation design, 

(ii) data collection; and (iii) data analyses.  

 

Simulation design  

A simulation seeks to create a testing environment that closely replicates reality 

(Sleeper & Thomspon, 2008). An important consideration during research design is how to 

embed fidelity and immersion so that participants feel engaged in the simulation and exhibit 

similar behaviours as would be found in situ. Fidelity and immersion are two inter-related 
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constructs that seek to increase the sense of realism during a simulation (Alison et al., 2013; 

Lester, Georgiou, Hein, Littlepage, Moffet III & Craig, 2017), and which determine the 

success of simulations. Fidelity is the extent to which the simulation matches the real-world 

environment (Maran & Glavin 2003). This influences the level of immersion felt by the 

participant, defined as the “subjective impression that one is participating in a 

comprehensive, realistic experience” (Dede, 2009, p. 66). Fidelity can be created at the 

physical and psychological levels. Physical fidelity refers to the extent to which the 

simulation reflects the material aspects (i.e., a physical replica) of the working environment 

(Lester et al., 2017). It is based on the principle that the more similar the simulated task 

environment is to the real environment the greater the transfer of learning (Baldwin & Ford, 

1998). Psychological fidelity refers to the degree to which the skills and behaviours necessary 

to complete organisational tasks are accurately represented in the simulated environment 

(e.g., does the task evoke a similar level of cognitive processing) (Bradley, 2006). 

Psychological fidelity is expected to elicit similar psychological processes necessary for real-

world performance (Kozlowski & DeShon, 2004). The decision on whether to maximise 

physical fidelity, psychological fidelity, or both during research design is dependent upon the 

research questions of interest. 

Physical fidelity is important when a level of ‘dexterity’ is needed by the target 

population to complete the task (Dieckmann et al., 2007). It allows the transfer of procedural 

skills that might not be possible using psychological fidelity methods alone (Hochmitz & 

Yuviler-Gavish, 2011), and is especially important when the research question concerns an 

interplay between humans and hardware (e.g., does a new piece of kit promote faster 

teamwork?). Understanding the interplay between humans and hardware, referred to as a 

‘sociotechnical system’ (Baxter & Sommerville, 2011), is important for ETs as their context 

becomes increasingly digitised.  ETs where this will be important include control room 
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operators, flight-crews, and emergency medical teams. For example, Stachowski, Kaplan and 

Waller (2009) used an exact replica of a nuclear control room to study adaptability of teams 

as they moved through the testing space, communicating and sharing information with 

colleagues whilst interacting with the electronic displays to rapidly find faults and implement 

changes to systems (Waller & Kaplan, 2018). Although essential for certain ETs (e.g., 

operational teams that need to interact with hardware), creating physical fidelity through 

physical replicas can be difficult as they are often expensive, take up a large amount of 

physical space, and are often not portable (Kozlowski & De Shon, 2004).  

Psychological fidelity is important for researchers interested in studying non-technical 

skills in ETs (e.g., trust, decision-making, sensemaking), or teams operating at strategic 

levels. It allows for the examination of the interplay between individual and contextual 

factors on intra-team processes (Kozlowski & DeShon, 2004). For example, researchers 

interested in the effects of psychological stressors (e.g., task-related anxiety) on team 

communication and coordination might build reactionary consequences into the simulation 

design to increase the gravity of decisions and sense of accountability of decision-makers 

(Eyre, Crego & Alison, 2008). This might be achieved by gathering team members round a 

board room style table and providing them with real-time information that follows a realistic 

narrative to an unfolding situation (e.g., video calls from simulated team members, PDFs 

with ‘data’ related to the simulation exercise). An example of where this has been used 

successfully is Power and Alison (2017b). They ran a simulation study examining how a 

team of emergency service commanders made decisions during a simulated terrorist incident 

in which different injects were presented to team members dependent on their answer during 

the previous inject. This enabled participants to feel immersed by embedding consequences 

for choices, increasing the gravity of decision-making.   
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Recent advancements in virtual reality (VR) software offers an accessible and highly 

immersive way to achieve both physical and psychological fidelity. VR are “computer-

generated simulations of three- dimensional objects or environments with seemingly real, 

direct or physical user interaction” (Dionisio & Gilbert, 2013, p2).  They offer an affordable 

alternative to physical replicas of the organisational environment, whilst still testing 

important teamwork processes in a context that mirrors the decisions and challenges present 

in the workplace (Pan & Hamilton, 2018). VR simulations can therefore be used to test both 

operational (e.g., physical tasks) and strategic teamwork (e.g., decision-making).  

One example of a VR system is the Cave Automated Virtual Environment (CAVE). 

CAVE comprises an enclosed cube, sitting within a large darkened room with projectors on 

each side (Cruz-Nierra, Sandi, DeFanti, Kenyon, & Hart, 1992). CAVE is attractive as the 

goggles that are worn do not stop participants from seeing their own hands (as with most 

head mounted VR devices), whilst they interact with the VR projected on the screens. This 

means that participants can interact with physical objects (e.g., enact driving by using a real 

steering wheel) (Pan & Hamilton, 2018), allowing researchers to examine the ability of teams 

to perform physical tasks. This is especially important when researching ETs that are 

required to complete arduous physical tasks (e.g., search and rescue teams), and may offer 

some insight into how contextual demands can influence team members’ ability to use 

specialist equipment. For example, CAVE has been used to train firefighters using Breathing 

Apparatus Entry search methods - searching a building for casualties in which sight and 

breathing is restricted by smoke (Backlund, Engstrom, Hammar, Johannesson & Lebram, 

2007). In their study, participants wore personal protective equipment and sensors were fixed 

to the walls so that physical movements within the “CAVE” corresponded to their movement 

and orientation within the simulation. This increased the physical effort needed to complete 

the tasks, giving participants a sense of real-world orientation whilst in a virtual world.  
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The use of CAVE is not widespread generally (see Jiang, Rahimian, Yon, Plumert, & 

Kearney, 2016) and this is especially so in relation to ETs. This may be attributed to the fact 

that it is relatively expensive and difficult to transport in comparison to other VR systems 

such as head mounted displays (Mallaro, Rahimian, O'Neal, Plumert, & Kearney, 2017). 

However, evidence from other areas have shown its potential utility for understanding ETs. 

Gamble et al. (2018) utilised the CAVE system to explore friend/foe discriminatory fire in 

military personnel, where they found that participants made more errors when under stress, 

but that ‘expertise’ was a protective factor. There is also evidence from its use in social 

psychology that it may be used to explore the role of social influence on individual 

behaviour. For example, Kinateder et al. (2014) showed that the presence of a virtual agent 

significantly affected route choice in the evacuation of a tunnel fire. Applied to ETs, the 

potential for unpacking social influence suggests that CAVE may help develop our 

understanding in areas such as how intra- and inter- team communication influences 

performance in multi-team systems (MTS). At present there is limited understanding of how 

behaviours at the intra-team level affect inter-team performance and vice versa (Asencio & 

DeChurch, 2017). In the immediate term, and commensurate with the current capability of 

this kit, we would expect ET research utilising this technology to focus on questions that do 

not require data to be collected from multiple team members in parallel. In the longer-term, 

and as this technology advances, we see potential for the CAVE system to study the 

interaction between multiple individuals, in addition to its current capability of studying the 

interaction between participants and virtual agents.  

When designing a simulation, the involvement of practitioners and/or experts is 

invaluable. They can ensure that the simulation is relevant to organisational tasks (Klein & 

Woods, 1993), provide expert input about the task environment and narrative, increase the 

likelihood that the simulation will elicit similar cognitive and emotional responses found in 
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the real world (Crandall, Klein & Hoffman, 2006), and help to ensure that simulations offer 

both research and training benefits, which can facilitate participant recruitment and 

engagement (Waller & Kaplan, 2018; Rudolph, Simon & Raemer, 2007). This makes 

simulations attractive to end-users as they provide a space in which team skills can be 

trained, facilitating recruitment that might otherwise be challenged by the high workloads and 

small populations of participants (Beaubien & Baker, 2004).  

However, it is important to ensure a balance is met between research and training 

goals. Simulations can be resource intensive and it is important that researchers are not 

prevented from collecting the data they need to answer their research questions and 

practitioners are not promised a simulation that fails to meet their training objectives. To do 

this, researchers must delineate what the training goals of the organisation are during the 

early phases of design, and work around them to ensure training objectives are compatible 

with research goals (Dieckmann et al., 2007). This should facilitate an interdisciplinary 

partnership and enable collaboration through the entire research project. The involvement of 

practitioners at the early stages of research can also have benefits later on in terms of research 

dissemination and impact. Practitioners are keen to receive feedback on their training, as 

such, a research team might want to organise a feedback workshop or write a practitioner-

friendly report on findings. This can facilitate opportunities for further follow-up studies and 

ensure a collaborative relationship with practitioners moving forward.  

 

Data collection 

A key benefit to simulation research is that it facilitates the collection of rich 

behavioural data, allowing researchers to study the verbal and non-verbal dynamics of 

teamwork. Psychology has seen a decline in the use of behavioural measures in recent years, 

typically showing a tendency to use self-report surveys (Cialdini, 2009; Dolinski, 2018). 
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However, there has been a general call to move beyond self-report measures to gain a better 

understanding of how social coordination emerges in complex environments (Willemsen-

Dunlap et al., 2018) and to develop more objective measures of behaviour (Rosen & Dietz 

2017). This is due, in part, to the limitations of solely using self-report measures which; (i) 

fail to account for the richness of team-based interactions (Shuffler & Carter, 2018); (ii) lead 

to a proliferation of scales each attempting to measure the same thing (see Salas et al., 2015 

on team cohesion); (iii) show weak correspondence with non self-report outcome measures 

(see Valentine, Nembhard & Edmonson, 2015 for a review in a health care setting), and (iv) 

are subject to a number of biases (e.g., Podsakoff, MacKenzie, Lee, & Podsakoff, 2003). We 

suggest that simulations offer a methodological advantage to self-report by recording 

behaviour in situ.  

Wearable technology. The tools used to collect data during simulations need to be 

unobtrusive so as not to break immersion, but robust enough to allow for reliable examination 

of the research question. The advancement of behavioural measures creates promise for the 

use of wearable sensors in research using simulations. Wearable sensors are mobile devices 

that record data on how the wearer interacts with their surroundings (including other people). 

They do this using microphones, accelerometers, infrared sensors and/or Bluetooth 

components (Chaffin et al., 2017). Wearable sensors have advantages over traditional 

methods; namely that they allow for the effortless recording of data from participants that are 

not reliant on self-reports, and that data are real-time and continuously collected thus 

removing the necessity for researchers to piece together static data taken at set times, 

sometimes from multiple devices. This makes wearable sensors especially suited to 

simulations, as the continuous collection of rich data in the real world may lead to consent 

and confidentiality issues (e.g., recording patient-clinician interactions).  
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The fact that behavioural data are collected continuously means that wearable devices 

have the potential to identify important within-person insights and their impact on team 

performance. This has not always been achieved with traditional methods, which tend to 

focus at the between-person level (Matusik et al., 2019). This finer grained understanding of 

how teams operate has the potential for simulation methods to develop complex, non-linear, 

relationships between relational variables. For example, data from wearable sensors may 

allow for the development of a finer-grained understanding of leadership in ETs, such as how 

a leader’s behaviour fluctuates across an emergency and how these fluctuations impact 

behaviours. Similarly, it may examine how leadership changes interact with team factors 

(e.g., the presence of other teams – as within MTS) or external forces (e.g., contextual 

demands – during crises response).  

At a theoretical level, wearable sensors are most valuable when the research question 

concerns relational issues at the team level (e.g., cohesion, trust, leadership), as they show 

how the person navigates their environment, including social interactions. In using data from 

single or multiple streams (e.g, audio, Bluetooth), studies have used wearable technology to 

examine affect and team cohesion in simulated space exploration missions (Zhang et al., 

2018), cooperation (Taylor, 2013), communication in productive and creative teams 

(Pentland, 2012), social and task-related exchanges (Matusik et al., 2019), social networks 

(Wu, Waber, Aral, Brynjolfsson & Pentland, 2008), boundary spanning individuals (i.e., 

those that coordinate activity between established groups) (Chaffin et al. (2017), and 

emergent leaders (Chaffin et al., 2017). There is potential for research in ETs to build on this 

to use sensors in the study of MTS, to explore how boundary spanning individuals support 

teamworking across multiple agencies responding in crises. Previous research has tended to 

rely on self-report and coding of verbal behaviours (see Bienefeld & Grote, 2014), whereas 
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wearables can measure other aspects such as variations in proximity over time (i.e., using 

Bluetooth), in addition to providing a continuous measure of communication.  

Research using audio data more generally expands the potential for wearables in 

simulation research. For example, Stanton and Roberts (2018) used audio data to understand 

team level macrocognition (i.e., cognitive functions that are performed in naturalistic settings, 

see Klein, Ross, Moon, Klein, Hoffman & Hollnagel, 2003), Bowers, Jentsch, Salas and 

Braun (1998) have used it to understand shared mental models, and Fischer, Donnel and 

Orasanu (2007) have used it to examine which types of information (task or relational 

focused) best support performance in ETs. From the perspective of understanding ETs, this is 

especially promising as the nature of these environments means that team members have to 

share, analyse and discuss complex information (e.g., Haddow & Bullock, 2003). An 

important question for ETs, due to the time sensitive nature of their work, is how to do this 

efficiently. Evidence from a range of non-ETs suggests that short and equal verbal 

contributions, face-to-face communication, distributed connections within the team and 

information seeking from other teams characterise success (Pentland, 2012). Wearable 

sensors would allow for a reliable test of these hypothesised effects in ETs, whilst 

maintaining the realism of the ET environment through the use of the simulation.  

Wearable technology can be used to record physiological data from team members. 

Psychological pressures (e.g., stress) is an important factor to consider in simulation research 

of ETs as the inherently stressful environments they operate in can disrupt performance 

(Driskell et al., 2018). Stress has been shown to reduce communication in aviation teams 

(Sexton & Helmreich, 2000), impair cognitive functioning in military teams (Wallenius, 

Larrson & Johannsson, 2004) and reduce information sharing in less experienced surgical 

teams (Wetzel et al., 2006). Although previous research has explored the role of stress in 

ETs, studies have often failed to check whether the experimental manipulation has actually 
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affected stress levels or, alternatively, used a self-report survey to do so. For example, 

increasing stress by imposing time pressure has been associated with an increase in risk-

taking behaviour (Young, Goodie, Hall & Wu, 2012), and a shift towards more satisficing 

decision styles (Alison, Doran, Long, Power & Humphrey, 2013). However, neither of these 

studies took physiological measures of stress from their participants and so the effects of 

stress, via time pressure, were assumed.  

Wearable technology allows us to address the limitation of these other studies. It is 

possible to measure stress during a simulation by using wearables that record ‘stress-related’ 

measures, such as heart-rate, galvanic skin responses and change in pitch (Mozos et al., 

2017). For example, stress during a simulated driving task, as measured using skin 

conductivity (i.e., sweating) and heart rate, has been found to predict stress levels with the 

highest level of accuracy when compared against physical indicators of stress (e.g., breaking 

and sharp turning) and self-report measures (Healey & Picard, 2005). Heart rate has also been 

identified as the best indicator of stress in a study comparing physiological indicators of 

stress during a simulated virtual environment that invoked fear by placing participants over a 

chasm at great height (Meehan, Insko, Whitton & Brooks Jr, 2002). When applied to ETs, 

physiological indicators of stress open the possibility of building models that map team 

responses across a stress episode: from its origin through peak to end. What sets these models 

apart from conventional teams (where such devices are equally insightful) is the potential for 

ET models to overlay the stress episodes experienced by inter-related teams (e.g., MTS) to 

examine interplay or contagion.   

In keeping with the need to maintain fidelity during simulations, researchers may also 

consider using physiological measures of stress to provide an objective indication of how 

immersive a simulation has been. Baker et al. (2017) used a heart rate monitor to assess if the 

stress experienced in medical procedures could be replicated within a simulated environment 
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and found that the simulated procedure did not accurately re-create the same level of stress as 

experienced within hospitals. This emphasises the need to incorporate a physiological 

measure of stress to ensure that elements of the simulation that are intended to be difficult 

induce a level of urgency within the participants. There is currently a lack of research that has 

sought to establish what stress levels are needed to ensure that simulations are useful for 

training and research purposes (Cumin, Boyd, Webster & Weller 2013). More research is 

needed to establish standardized levels of immersion which can leave organisations confident 

that simulations are achieving their intended purposes (Cumin, Weller, Hender & Merry, 

2010).  

Interactions within the simulation system. Although wearable sensors have the 

potential to provide rich data on relational issues at the team level, they may not be able to 

provide a holistic overview of teamwork, such as when communication occurs via other 

mediums (e.g., email) or when inter-dependent tasks are carried out in different locations. For 

example, some ETs (e.g., MTS) will operate across several sites and researchers may wish to 

explore how cultural factors (e.g., organisational policies) and team structures 

facilitate/hinder inter-team processes. One benefit of simulations is that teams are operating 

in designated room(s), and so forms of data collection can be built into the simulation system 

to provide a comprehensive account of verbal and non-verbal communication between team 

members. Data gathered from participant interactions within the simulation system might 

include video recording, for example, CCTV of the team operating in the simulation room; or 

recording data within the simulation computer system itself, for example, by generating a log 

of clicks or button pushes when participants interact with the simulation; collecting time-

stamped ‘decision logs’; and eye tracking on the computer screen. Monitoring the interaction 

within the simulation system may prove particularly important for researchers interested in 

designing a simulation with high physical fidelity to explore sociotechnical systems (e.g., 



Running head: IMMERSIVE SIMULATIONS WITH EXTREME TEAMS  
  

how team members interact with the computer system). Future research could consider how 

simulations with high physical fidelity might advance theory on sociotechnical systems and 

their use by ETs. For example, in considering the role of the team in increasingly automated 

systems or in what way do contextual demands (e.g., dynamic task requirements) impact 

team members’ ability to effectively utilise technology in crises.  

The type of data recorded in the simulation system will be dependent on the system 

being used and the research questions of interest. For example, research questions that are 

interested in how team-level factors (e.g., composition) influence decision speed might use a 

time-stamped ‘decision log’. Power and Alison (2017b) used this method to identify how 

long it took teams to make decisions and how this interacted with the team’s goal. Teams 

were requested to ‘log’ their decisions on a computer when they wanted to make a decision 

and these data were automatically recorded and timestamped in the simulation system. 

Alternatively, researchers may use the simulation system to monitor how team members 

communicate electronically with one another. Alison et al. (2015) were interested in 

communication patterns between sub-teams in different ‘syndicate’ rooms in a simulation. To 

do this, they built a ‘chatbox’ function into the simulation system so that sub-teams could 

communicate between rooms, with all electronic communications data recorded and time 

stamped. The simulation system therefore offers an alternative mode of data collection that 

can be used in isolation or in conjunction with wearable devices dependent on the research 

question.  

 

Data Analysis  

Simulation research with ETs has the potential to yield vast amounts of data from 

multiple sources, measuring multiple variables. It is important that data analysis maximises 

understanding of this rich data. There exists a number of methods of analysis that can be 
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used. Here, we focus on two types that are especially relevant: (i) network analyses, which 

examine interpersonal dynamics within a team at a single time point; and (ii) temporal 

analyses, which track interpersonal dynamics over time. We focus on these methods as they 

provide rich representations of team interactions, as oppose to assessing the individual 

performance of team-based skills (e.g., Yule et al., 2008). We then turn our attention to the 

possibility of using Bayesian statistics, which allow analyses to be carried out with smaller 

samples, and thus may open up the possibility of testing more complex theoretical models in 

ET research.  

Network analyses. Network analyses allow a researcher to analyse team behaviour 

during simulations by quantifying information and providing a visual representation of how 

team members interact. This type of analysis is especially useful when comparing how 

contextual factors (e.g., task type) influence team behaviours (e.g., inter-team 

communication) (Stanton & Roberts, 2018). Using recorded communication data (e.g., by 

using wearable devices or CCTV recordings), Social Network analysis (SNA) shows how 

team members communicate with each other and the centrality of any one member (Knoke & 

Yang, 2008). SNA are also useful as they provide a visual representation of the social 

dynamics of a team by plotting each person as a node and showing the strength of the 

connections between them.  At a theoretical level, this is especially important for ETs that 

involve multiple agencies operating within a hierarchical structure as it can identify instances 

in which communication patterns do not follow pre-defined organisational processes and 

structures (Dekker, 2000), or plausible reasons for communication breakdowns. For example, 

SNA has been used to identify key tasks that challenged communication in submariners 

(Stanton & Roberts, 2018), how team communications varied dependent on team 

composition in surgical operating staff (Anderson & Talsma, 2011), and how a lack of 
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connectedness between a Search and Rescue Team contributed to faulty communications and 

the ability to develop shared situation awareness (Fodor & Flestea, 2016).  

An alternative type of network analysis that goes beyond communications data is the 

Event Analysis of Systematic Teamwork (EAST) technique. This method models the 

macrocognition (i.e., situation awareness) of a team by generating task and information 

networks in addition to social networks (Walker, Gibson, Stanton, Baber, Salmon & Green, 

2006). In order to perform EAST, raw data from audio and video recordings are transcribed 

and then used to create matrices of each of the three networks (i.e., social, task, information). 

This results in a “network of networks”, that allows researchers to identify how constructs in 

different networks might interrelate. For example, communications might influence the way a 

task is performed, which might influence how information is transferred.  

EAST has been used to examine teamwork in simulation research across several 

extreme contexts; submariner command and control (Stanton & Roberts, 2018); emergency 

response (Houghton, Baber, McMaster, Salmon, Stewart & Walker, 2006) and air traffic 

control (Walker et al., 2006). As EAST involves generating a task network, it is useful for 

researchers who are interested in understanding how team members coordinate to complete 

tasks as well as how they communicate with one another in extreme environments. 

Hierarchical Task Analysis is a methodology within EAST that is used to identify key tasks 

(Annett & Stanton, 2000), as well as the individuals who complete tasks, the structure, and 

the order in which the tasks take place (Walker et al., 2006). This provides a detailed 

representation of how team goals interact and are resolved (Walker, Stanton, Baber, Wells, 

Gibson, Salmon, & Jenkins, 2010). For example, a simulation researcher interested in team 

coordination may want to model how a team approaches different tasks dependent on 

difficulty. As coordination is defined as the behavioural mechanism enabling teams to 

sequence, synchronize and integrate their efforts in order to achieve goal-relevant tasks 
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(Marks et al., 2001), modelling how teams move through tasks should contribute to a more 

complex understanding of how ETs coordinate. This is extremely relevant for researchers 

interested in ETs due to the importance of coordination in manging complex team structures 

and preventing error across a range of contexts such as aviation (Grote, Kolbe, Zala-Mezo, 

Bienefeld-Seall & Kunzle, 2010) and medical emergency teams (Schmutz & Manser, 2013).  

Temporal analysis. Temporal analysis seeks to identify how team behaviour might 

change over time in response to changes in individual, team and contextual demands. This 

type of analysis is especially useful for ET researchers interested in exploring how team 

processes emerge and are sustained during simulated tasks. It recognises the important role of 

context in shaping team-based interactions (Ilgen, 1999), emphasising that teamwork does 

not exist in a vacuum and team processes will change over time (Kozlowski & Ilgen, 2006). 

Non-simulation based team research has sought to study how teamwork changes over time by 

collecting longitudinal data (e.g., questionnaires) at set intervals over a given period (see, 

Mathieu et al., 2015). However, this staged approach might not be feasible for some ETs as 

team members rotate and might not work together at set regular intervals (e.g., emergency 

response teams). Moreover, these approaches tend to rely on self-report data, as oppose to 

monitoring actual behaviour in real-time, which has limitations as detailed above (Shuffler & 

Carter, 2018). 

An alternative approach is to study how team behaviour evolves during a simulation. 

Although simulations will not produce ‘longitudinal’ temporal data in the traditional sense 

(e.g., over a course of weeks/months/years), simulations offer a closer replica of how ETs 

operate in the real world, wherein they must adapt and evolve their teamwork during a given 

task (e.g., emergency incident). As such, simulations allow us to study the temporal dynamics 

of teamwork during a simulated ‘event’, which can incorporate multiple goal directed tasks 

and episodes (Marks, Mathieu & Zaccaro, 2001). By analysing simulation data longitudinally 
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(i.e. over the course of the simulation), researchers can explore how teams adapt and change 

as they cycle through different episodes within the simulated event (Marks et al., 2001). The 

advent of wearables and advancements here allows for this to be done in a reliable and highly 

detailed way, enabling researchers to begin examining complex, non-static theories or models 

of behaviour. This could be especially important to advance understanding of MTS. For 

example, wearable devices may be used to measure communication and relational emerging 

variables such as cohesion across multiple component teams. When coupled with repeated 

SNA this would allow researchers to map how intra- and inter- team behaviours and 

relationships change over time. This could answer questions such as how intra-team 

behaviours relate to inter-team performance or how intra-team cohesion affects how inter-

team members relate to one another.  

Beyond comparing networks analyses during different phases of a simulation, a more 

complex way of analysing temporal data is by using lag sequential analyses, which seek to 

identify non-random patterns of behaviour during a task (Becker-Beck, 2001). It is useful for 

research questions that seek to identify how specific team behaviours (e.g., shifts in 

communication patterns across team members) develop and change over time (Leenders, 

Contractor, & DeChurch, 2017) and how specific patterns of behaviour can lead to better 

team performance (Kauffeld & Meyers, 2009). An example of how lag sequential analyses 

have been used to study ETs during simulations is Cohen-Hatton, Butler and Honey (2015). 

Their research sought to identify whether commanders in the Fire Service prescribed to the 

standard decision model used by the Fire Service, or whether they deviated. Participants were 

asked to “think aloud” (i.e., verbalise their thoughts) during a simulation, and transcripts were 

coded to identify if participants progressed through the prescribed model of “situation 

assessment” to “plan formulation” to “plan execution”. They found, using lag-sequential 

analyses, that participants did not follow this pattern. However, a simple goal-oriented 
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training intervention made participants more likely to adopt the prescribed processing pattern, 

without delaying decision speed. Lag sequential analyses are thus useful for helping to 

understand patterns in team processing and behaviour during a simulated event, and also 

provides possibilities for testing interventions to increase adherence to decision models 

and/or improve performance. For example, using this technique, research might develop our 

understanding of how patterns of behaviours change dependent on information flow, level of 

stress in team members (as measured using physiological markers), changes in goal 

hierarchies; and the interaction between these variables. In doing so, we would have an 

enhanced understanding of the temporal and contextual influences on teamwork in ETs.  

Bayesian statistics. Another approach to analysing data from ET simulations is by 

using Bayesian statistics. Unlike network and temporal analyses, Bayesian statistics are not a 

type of data analysis, but are an alternative statistical approach to classic significance testing. 

Traditional research on teams often draws on classic significance testing (e.g., null hypothesis 

testing, p-values, confidence intervals) to test specific variables and theories. However, this 

approach is problematic when working with ETs as, at a practical level, it often calls for 

moderate to large sample sizes with normal distributions (see Wagenmakers et al., 2018 for 

other problems with classic theory). Research with ETs tends to involve small sample sizes as 

the participant pool is much smaller than the general population and participants often have 

limited time to take part in research (Bell et al., 2018). Whilst efforts to address this have 

drawn on using trainees from ETs, such as trainee paramedics (e.g., Amacher et al., 2017), 

these samples have been shown to operate differently to ‘experts’ (Boulton & Cole, 2016). In 

other types of ETs (e.g., emergency response, command and control), trainees may also not 

be as readily available as they are in clinical settings.  

In response to problems with classic testing, researchers are calling for alternative 

methods of analysis (e.g., Vandekerckhove, Rouder, & Kruschke, 2018). One that has seen 
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an increase in popularity—facilitated by advancements in computer algorithms and quicker 

hardware processing—are Bayesian Statistics (for example, see Special Issues in Journal of 

Mathematical Psychology 2016, vol. 72; Psychonomic Bulletin & Review 2018; vol. 25). As a 

set of tools, Bayesian statistics are attractive to ET simulation research as they open the 

potential, inter alia, for theoretical models to be tested even when samples are smaller than 

with conventional team research.  

As a very broad (and somewhat simplified) overview, Bayesian statistics have the 

ultimate goal of showing the probability that the data observed is likely to occur under two 

competing theoretical (i.e., statistical) models (Kruschke & Liddell, 2018). Using Bayes 

factors, a researcher infers the level of support for their theory, relative to the alternative 

theory, based on how much the observed data differs from that predicted. This is done by 

comparing the statistical model against a ‘posterior’ probability distribution, which is made 

up from prior information known before data were collected and what is known from the 

actual – observed – data. Prior knowledge can come from theoretical frameworks, findings 

from previous research, subject experts and pilot work (Zyphur & Oswald, 2015). Research 

may also use non-informative priors where knowledge is limited and parameters are set to 

cover a broad range of possible outcomes, but this is less advisable when samples are small 

(see, McNeish, 2016). Bayesian statistics regard parameters (e.g., probabilities) as variables, 

and as such, parameters are adjusted as data accumulates and output is compared against 

starting values. The researcher can thus see how evidence for their theoretical (statistical) 

model changes with new data; something that is not possible with classic theory where 

parameters are regarded as constant (see, Gelman et al., 2014 for a statistical overview of 

Bayes analysis; Lynch, 2010 for a general introduction; Jeffrey, 1961 for original writings).  

Classical significance tests require researchers to specify in advance what the smallest 

effect size of interest is given their theory in order to recruit a sufficient number of 
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participants capable of detecting such an effect. Yet, it has been shown using Bayesian 

analyses that a high powered non-significant result might not necessarily constitute evidence 

for the null, and that low-powered non-significant results are not necessarily insensitive 

(Dienes, & McLatchie, 2018). Evidence suggests that sample sizes estimated using 

parameters generated through Bayesian analysis rather than power, may be more flexible and 

yield smaller sample size requirements (Sambucini, 2017). Relatedly, Bayesian analysis has 

the benefit of allowing for ‘optimal stopping’. In essence, this allows for a researcher to track 

results as data are collected and stop data collection when a certain level of evidence showing 

one theory as more favourable has been obtained (Kelley, 2013). In addition to allowing for 

potentially smaller samples to be tested to obtain an effect, this also avoids the ethical issue 

of testing ET members beyond what is needed. 

Bayesian analyses have been applied to a number of methods from t-tests through to 

structural equation modelling (Brown, Barrett & Power, 2019; McNeish, 2016). For ETs, it 

could be applied to existing methods (e.g., using a t-test to compare two sets of SNA across 

phases of a simulation) to identify significant effects that may have been masked by small 

sample sizes. Depending on the complexity of the theoretical model, we may start to move 

towards unpacking the different pathways through which factors have an effect on team 

performance, and the conditions that moderate these effects. This could be especially 

important in understanding the complex inter-play between component team and system level 

variables in MTS, which linear approaches may not be able to account for (Cronin, 2015). As 

interest in larger multi-agency teams expands, we may see the use of Bayesian methods grow 

as researchers seek to test theoretical frameworks that span multiple levels (i.e., variables at 

the component team and system level) that traditional statistical approaches would not have 

the power to do when working with small sample sizes (Wang & Hanges, 2011).  
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Conclusion 

Teamwork is a necessity in almost any twenty-first century organisation, with teams 

increasingly viewed as the solution to solving complex problems (Salas, Shuffler, Thayer, 

Bedwell & Lazarra, 2015). This is especially so in organisations operating in extreme 

environments, where team members must coordinate their behaviour effectively in order to 

avoid the severe, often life or death, consequences of poor performance. In this paper we 

have identified the benefits to conducting simulation research with ETs, showing how they 

differ from existing methods. Second, we have presented a framework for conducting 

immersive simulations, focusing on three broad aspects of; (i) study design, (ii) data 

collection and (iii) data analysis. By doing this we have reviewed existing simulation 

research, as well as suggesting how emerging technologies (e.g., wearable devices, CAVE) 

and statistical methods (e.g., Bayesian) might be used in simulation research to advance 

understanding. It is hoped that this paper will inspire researchers to make use of novel 

immersive simulation-based methods to engender the much-needed empirical research on 

ETs. 
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