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 9 

Using an array of coupled microwave resonators arranged in a deformed honeycomb lattice, 10 

we experimentally observe the formation of pseudo-Landau levels in the whole crossover 11 

from vanishing to large pseudomagnetic field strength. This is achieved by utilizing an 12 

adaptable set-up in a geometry that is compatible with the pseudo-Landau levels at all field 13 

strengths. The adopted approach enables us to observe fully formed flat-band pseudo-14 

Landau levels spectrally as sharp peaks in the photonic density of states, and image the 15 

associated wavefunctions spatially, where we provide clear evidence for a characteristic 16 

nodal structure reflecting the previously elusive supersymmetry in the underlying low-17 

energy theory. In particular, we resolve the full sublattice polarization of the anomalous 0th 18 

pseudo-Landau level, which reveals a deep connection to zigzag edge states in the unstrained 19 

case. 20 

 21 

Introduction 22 

Topological states enjoy intense attention as they equip quantum systems with desirable robust 23 

properties. Much of the early focus rested on their unique spectral positions as isolated or 24 

dispersive states in a band gap, as well as their spatial localization at edges and interfaces1, or more 25 

recently also corners2. More fundamental characterizations, on the other hand, often invoke a third, 26 

somewhat deeper feature of topological states, which is connected to the anomalous expectation 27 

values of the underlying symmetry operators3,4. In momentum space, this feature underpins, e.g., 28 

the unidirectional chiral currents around the edges of topological insulators, whilst in real space it 29 

manifests itself, e.g., in the sublattice polarization of defect states in bipartite lattice systems5, as 30 

has been exploited in recent topological lasers or non-linear limiters based on photonic Su-31 
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Schrieffer-Heeger structures6-9. 32 

 33 

An additional attractive aspect of these anomalous features are that they tie topological effects 34 

together that are often seen as separate, due to the varied nature of the specific encountered spectral 35 

and spatial features that first come into focus. A prime example are flat bands, which have been 36 

observed in recent experiments focussing on Lieb lattices10-13 and one-dimensional counterparts14, 37 

as well as suitably deformed graphene15 and analogous quantum16 and classical systems17,18. In the 38 

latter case they constitute pseudo-Landau levels arising from a synthetic magnetic field19. In 39 

particular, signatures of photonic pseudo-Landau levels have been detected by probing the edges 40 

of a honeycomb array of optical waveguides17. A second example are a class of helical edge states 41 

in reciprocal systems, as observed, e.g., in zigzag terminated graphene20,21. While these bulk and 42 

edge phenomena do not naturally fall into the scope of standard topological band structure theory1, 43 

they are still intimately linked to wavefunctions with a characteristic sublattice polarization. This 44 

provides a promising perspective from which one can seek to develop very general unifying 45 

descriptions (see, e.g., ref. 22 for a recent approach utilizing this perspective). 46 

 47 

In this work, we demonstrate experimentally for the case of photonic graphene-like systems that 48 

the anomalous edge and bulk phenomena tied to sublattice polarization are in fact directly linked. 49 

This is achieved by tracing the formation of pseudo-Landau levels all the way from vanishing to 50 

large pseudomagnetic field strengths. In particular, we report the direct observation of the spatially 51 

resolved sublattice polarization in the 0th pseudo-Landau level of strained photonic graphene, and 52 

trace it back to the unstrained case, where the system only possesses edge states. By observing a 53 

characteristic nodal structure for the higher-order levels, we can then establish a direct link to the 54 

supersymmetric Hamiltonian of the underlying low-energy theory23. Thereby, our observations 55 

connect a broad variety of topological phenomena to a unifying principle. 56 

 57 

Results 58 

 59 

A. Microwave set-up and optimal strain geometry 60 

 61 

Our experimental set-up is illustrated in Fig. 1. The unstrained system forms a honeycomb lattice 62 



with nearest-neighbor spacing 𝑎𝑎0 = 13.9 mm, combining two triangular lattices of A and B sites, 63 

where each vertex denotes the position of a dielectric microwave resonator with bare frequency 64 

𝜔𝜔0 = 6.653 GHz, while adjacent resonators are coupled at strength  𝑡𝑡0 = 21.5 MHz (for details 65 

see the materials and methods section). This gives rise to a standard graphene-like photonic band 66 

structure24,25, with two Dirac cones at the 𝐾𝐾 and 𝐾𝐾′ points in the Brillouin zone. Around these two 67 

so-called valleys, at relative momentum 𝒒𝒒, the low-energy dispersion 𝜔𝜔(𝒒𝒒)~𝜔𝜔0 ± 𝑣𝑣|𝒒𝒒| resembles 68 

massless relativistic particles moving in two dimensions at velocity 𝑣𝑣 = 3𝑎𝑎0𝑡𝑡0/2. 69 

 70 

In the deformed system, the indicated couplings 𝑡𝑡𝑙𝑙 depend on the distances to the three neighboring 71 

resonators, which we can utilize to create a pseudomagnetic field corresponding to that in strained 72 

graphene. Such a field arises when the resonators are displaced non-uniformly, where the positions 73 

are selected to give a triaxial spatial coupling profile19,26 74 
 75 

𝑡𝑡𝑙𝑙 = 𝑡𝑡0 �1 −
𝛽𝛽
2𝑎𝑎02

𝝆𝝆𝑙𝑙 ⋅ 𝒓𝒓�,     (1) 76 

 77 

where 𝒓𝒓 refers to the positions of the links between the coupled resonators in the unstrained system 78 

and the bond vectors  𝝆𝝆𝑙𝑙 are pointing along these coupling directions. This coupling profile ensures 79 

a constant pseudomagnetic field of strength 𝛽𝛽 throughout the whole system. Theoretically, the 80 

system is well described in a coupled-mode theory with nearest-neighbour couplings 𝑡𝑡𝑙𝑙 as given 81 

above, so that the eigenfrequencies and mode profiles can be obtained from an effective 82 

Hamiltonian 𝐻𝐻. As any such bipartite system, it then displays a chiral symmetry relative to the 83 

central frequency, Σ𝑧𝑧(𝐻𝐻 − 𝜔𝜔0)Σ𝑧𝑧 = −(𝐻𝐻 − 𝜔𝜔0) , where the Pauli-like matrix Σ𝑧𝑧  acts on the 84 

sublattice degree of freedom, hence keeps the amplitudes on A sites fixed but inverts those on the 85 

B sites. The balance of zero modes on the A and B sublattices is given by the signature of this 86 

operator13,27, 87 

 88 

#(A zero modes) –  #(B zero modes) = tr Σ𝑧𝑧 = #(A sites) –  #(B sites) . (2) 89 

 90 

These zero modes have frequency 𝜔𝜔0 , and as indicated are localized on a given sublattice. 91 

Furthermore, the chiral symmetry dictates that all non-zero modes occur in spectral pairs at 92 



symmetric positions 𝜔𝜔0 ± 𝛿𝛿𝛿𝛿, and have equal intensity on both sublattices. 93 

 94 

Importantly, and in contrast to earlier experimental work, we select a triangular geometry and 95 

terminate the system with zigzag edges. This ensure a number of beneficial features28,29. 96 

Particularly relevant for us, the boundary conditions are then compatible with the bulk pseudo-97 

Landau levels at all field strengths; furthermore, a consistent coupling profile can be maintained 98 

even at maximal field strength, whose description requires to go beyond the conventional low-99 

energy analogy to magnetic fields with opposite signs in the two valleys. Setting the 100 

pseudomagnetic field strength to a fixed value, we then see that the values of the couplings dictated 101 

by the profile (1) drop to zero exactly at the terminating edges of a zigzag terminated triangle. The 102 

corresponding maximal field strength is 𝛽𝛽𝑀𝑀 = 4/𝐿𝐿 , where the size parameter 𝐿𝐿  counts the 103 

terminating  A sites along each edge. 104 

 105 

In the experiments we realize these conditions in a system with 196 resonators, corresponding to 106 

a triangle with 𝐿𝐿 = 14  resonators along each terminating edge (see Fig. 1). Of these, 105 107 

resonators are on the A sublattice while 91 are on the B sublattice. This allows us to realize field 108 

strength up to 𝛽𝛽 = 0.2, where the extremal couplings still exceed the homogeneous resonator 109 

linewidth 𝛾𝛾 = 1.7 MHz, and sufficiently close to 𝛽𝛽𝑀𝑀 to clearly demonstrate the detailed features 110 

of well-formed pseudo-Landau levels. To obtain the analogous orbital effects for an electron in 111 

graphene, a magnetic field of 42000 T would have to be applied. 112 

 113 

B. Formation of pseudo-Landau levels 114 

 115 

Figure 2 shows our main experimental results. The panels on the left show the density of states for 116 

the resonator geometry on the right, where each row corresponds to a different value of the 117 

pseudomagnetic field strength 𝛽𝛽. The color density plot overlayed with the resonator lattice depicts 118 

the local density of states integrated over the central peak, situated at the bare resonator frequency 119 

𝜔𝜔0. 120 

 121 

In the pristine system (𝛽𝛽 = 0), this peak arises from the zigzag edge states, which are localized on 122 

the terminating resonators. Note that these resonators all occupy the same sublattice of A sites. On 123 



this sublattice, the zigzag states decay into the bulk of the system, whilst they maintain a vanishing 124 

density on the B sublattice. The simple rule (2) can be exploited to count the number of these 125 

zigzag states: As a consequence of the chiral symmetry of the system, this number is expected as 126 

the difference 105 − 91 = 14 = 𝐿𝐿 of A and B sites in the system. Away from the central peak, 127 

the density of states displays a broad continuum, with fluctuations arising from the finite-size 128 

quantization of bulk graphene-like states, including the states near the Dirac cones. 129 

 130 

As the pseudomagnetic field strength is increased, we observe that the spectral weight from this 131 

continuum gradually reorganises into a sequence of well-defined peaks, which at large field 132 

strength obtain a similar width and weight as the central peak. Furthermore, whilst the weight and 133 

position of the central peak itself remains essentially unchanged, the spatial profile of the 134 

associated zero-modes changes significantly, in that they move into the bulk, where they form the 135 

desired 0th pseudo-Landau level. 136 

 137 

The observed spectral positions of the emerging higher-order pseudo-Landau levels conform well 138 

with the characteristic square-root dependence on relativistic Landau levels23,30, revisited later in 139 

the text and depicted by the gray dashed lines in Fig. 2. The same applies to the observed spectral 140 

weights. As the transformation from the zigzag edge states to the 0th pseudo-Landau level is 141 

continuous, this bulk level retains the same spectral degeneracy, hence here consists of 𝐿𝐿 = 14 142 

modes. The coupled-mode theory predicts that the 𝑛𝑛th pseudo-Landau level encompasses 14 −143 

|𝑛𝑛| states, which explains the gradual drop of the observed spectral weights of the peaks moving 144 

outwards from the central peak. Note that this implies an important difference to Landau levels 145 

arising from a magnetic field, for which the degeneracy is dictated by the sample area ∝ 𝐿𝐿2, but 146 

not the linear size 𝐿𝐿, as observed here and underpinned by general theory28,29. 147 

 148 

 149 

C. Supersymmetric nodal profiles 150 

 151 

As anticipated, a notable feature in the formation of the 0th pseudo-Landau level verified in the 152 

experiment is the observation that across the whole transition, the associated modes remain 153 

localized on the A sublattice. In contrast, the modes in the emerging higher-order levels, whilst 154 



also localized in the bulk, are anticipated to display an equal weight on both sublattices. We 155 

analyze this distinction in detail in Fig. 3. The top rows display the experimental local density of 156 

states in the spectral range of the pseudo-Landau levels for the indices 𝑛𝑛 = 0,1,2,3,4, all taken at 157 

the large pseudomagnetic field strength 𝛽𝛽 = 0.2. As above, the level with 𝑛𝑛 = 0, shown in the left 158 

panels, is located on the A sublattice. The higher-order levels shown in the other panels indeed 159 

display an approximately equal weight on both sublattices. Furthermore, they have an intensity 160 

profile that increasingly seeps into the corner areas of the triangle, which remains in line with the 161 

predictions of coupled-mode theory where the states form a complete basis. 162 

 163 

The other two rows in Fig. 3 show the local density of states along the edges of the system 164 

separately for the A and B sublattice, where we averaged over the three edges and indicate the 165 

range of observed values by the shaded areas. For the higher-order levels, we furthermore include 166 

the levels with index −𝑛𝑛 into the average. Along each edge, we observe standing-wave patterns 167 

with a characteristic nodal pattern represented by oscillating functions 168 

 169 

𝜓𝜓𝑟𝑟
(A, edge) ∝ sin [(|𝑛𝑛| + 1)𝜋𝜋𝜋𝜋/(𝐿𝐿 + 1)]     (3) 170 

 171 

for resonator 𝑟𝑟 = 1,2,3, … , 𝐿𝐿 on the A sublattice, and a corresponding pattern 172 

 173 

𝜓𝜓𝑟𝑟
(B, edge) ∝ sin (|𝑛𝑛|𝜋𝜋𝜋𝜋/𝐿𝐿)      (4) 174 

 175 

for resonator index 𝑟𝑟 = 1,2,3, … , 𝐿𝐿 − 1 on the B sublattice.  176 

The key observation is that the mode index (|𝑛𝑛| + 1) vs |𝑛𝑛| in these patterns for the two sublattices 177 

is offset by one, which directly translates into the same offset of the number of nodal points along 178 

each edge. As we show in the supplemental material via numerical modeling of the system in a 179 

coupled-mode tight-binding approximation, these nodal patterns persist for larger systems, with 180 

the only difference being an emerging modulation of the peak heights and spacings across the edge. 181 

An explicit construction of the edge states at maximal strain, also given in the supplemental 182 

material, reveals that these edge states indeed approach the bound-state sequence of a harmonic 183 

oscillator, with the corresponding sequences on the A and B sublattices offset by one pseudo-184 

Landau level. 185 



 186 

We now explain how these offset nodal patterns reveal the underlying supersymmetry of the 187 

pseudo-Landau levels. This is encoded in the low-energy theory of the system, which is formulated 188 

as a continuum approximation for energies close to the central frequency 𝜔𝜔0. Relative to this 189 

central frequency, the pseudo-Landau levels are then described by an effective Hamiltonian23,26,30 190 

 191 

𝐻𝐻0 = �0 𝜋𝜋†
𝜋𝜋 0

�.     (5) 192 

 193 

where the Landau-level annihilation and creation operators 𝜋𝜋 and  𝜋𝜋† fulfill [𝜋𝜋,𝜋𝜋†] = 2𝑣𝑣2𝛽𝛽/𝑎𝑎02 194 

(we assume 𝛽𝛽 > 0; for opposite deformation the operators 𝜋𝜋 and 𝜋𝜋† interchange their roles and 195 

become creation and annihilation operators). This corresponds to the Hamiltonian of a relativistic 196 

electron in a magnetic field, which is formally identical to a supersymmetric harmonic 197 

oscillator23,31. The link to the offset nodal patterns along the edges arises from the fact that 𝐻𝐻02 =198 

diag(𝜋𝜋†𝜋𝜋,𝜋𝜋𝜋𝜋†)  factorizes into two equidistant level sequences 𝐸𝐸𝑛𝑛2 = 2𝑣𝑣2𝑛𝑛𝑛𝑛/𝑎𝑎02  on the two 199 

sublattices, where 𝑛𝑛 = 0,1,2,3, … on the A sublattice, while on the B sublattice 𝑛𝑛 = 1,2,3, …, so 200 

that the sequence is indeed offset by one. At the edge of the system, the creation operator  𝜋𝜋† that 201 

connects these level sequences increases the number of nodes with each application by exactly one, 202 

so that the number of nodes coincides with the position of the level within the given symmetry 203 

sector of the theory. As mentioned above, this picture is further supported beyond the low-energy 204 

theory by the explicit construction of edge states given in the supplemental material. The 205 

experimentally observed offsets in the level sequence and the nodal patterns therefore both arise 206 

from a common origin.  207 

 208 

Discussion 209 

 210 

We achieved the direct observation of the formation of pseudo-Landau levels in deformed 211 

honeycomb systems, both spectrally as well as in terms of their key spatial features. In particular, 212 

adopting a flexible dielectric-resonator array design with a purposefully selected geometry allowed 213 

us to follow the formation of these levels in the transition from vanishing to large pseudomagnetic 214 

field strengths. In this way, we could observe how the 0th pseudo-Landau level originates from 215 



the transformation of zigzag edge states into bulk states, whilst maintaining its characteristic 216 

anomalous polarization on only one of the two sublattices in the system. Extending these 217 

considerations to the higher-order levels allowed us to reveal a characteristic nodal structure of the 218 

pseudo-Landau level sequence that reflects the supersymmetric structure of the underlying low-219 

energy description. These features underline the general usefulness to account for anomalous 220 

expectation values to provide a more general perspective on topological states. 221 

 222 

Resolving the reported features in an experiment poses a significant challenge. In electronic 223 

systems such as graphene, spectral imaging techniques do not provide the required atomistic 224 

resolution, so that the information can only be extracted indirectly, for example from the Fourier 225 

transformation of form factors32,33. A better resolution is offered by photonic systems17, which 226 

however so far could not access the characteristic spatial features of the pseudo-Landau levels in 227 

the bulk of the system, and furthermore considered a geometry that does not enable to observed 228 

fully formed flat-band pseudo-Landau levels28. Drawing on an acoustic analogue34, a recent 229 

experiment18 managed to excite a compacton-like state in the 0th Landau level, demonstrating its 230 

characteristic sublattice polarization in the bulk26. Here, we exploited an adaptable dielectric 231 

microwave-resonator array geometry to provide a complete characterization of the system from 232 

the unstrained to the fully strained case. This allows us to reveal how zigzag edge states transform 233 

into the bulk states of the anomalous 0th pseudo-Landau level, where they retain their 234 

characteristic sublattice polarization. Furthermore, this perspective dictates a natural geometry in 235 

which maximal pseudomagnetic fields can be attained, and for which the pseudo-Landau levels 236 

remain compatible with the boundary conditions at all field strengths, in contrast to the previous 237 

experiments. This is required to obtain pseudo-Landau levels that are flat, which we evidence 238 

spectrally by the observation of sharp peaks in the photonic density of states, and enables to reveal 239 

the supersymmetric signatures in the nodal structure. 240 

 241 

Our results extend to a wide variety of flat-band systems, such as the rich physics arising from 242 

higher-order resonator modes in deformed honeycomb lattices, as reported for exciton polaritons 243 

in ref. 35. Practically, the observed spatial features should help to pave the way to applications 244 

such as flat-band lasers13,26,36, as well as sublattice-dependent sensors where one could exploit that 245 

chiral-symmetry breaking perturbations equip the 0th Landau level with a finite weight on the 246 



opposite sublattice. 247 

 248 

Materials and methods 249 

 250 

A. Experiment 251 

 252 

The experimental setup is designed to realize a microwave system that is well approximated by a 253 

nearest-neighbour tight-binding description25. The sites of the lattice are occupied by dielectric 254 

microwave resonators with a cylindrical shape and made of ZrSnTiO ceramics (Temex-Ceramics, 255 

E2000 series: 5 mm height, 8 mm diameter and a refractive index  𝑛𝑛 ≈ 6) sandwiched between 256 

two metallic plates at a distance  ℎ = 16 mm. Each resonator supports a fundamental TE mode of 257 

bare frequency  𝜔𝜔0 = 6.653 GHz, which corresponds to the on-site energy of atoms in a tight-258 

binding model. Due to ohmic losses in the dielectric material and the metal, the quality factor of 259 

this mode is 𝑄𝑄 ≃ 6000, leading to a resonance width 𝛤𝛤 ≃  5 MHz. As the resonance frequency is 260 

below the cut-off frequency of the first TE mode defined by the two plates the adjacent resonators 261 

are coupled through evanescent wave components leading to an approximately exponential decay 262 

of the coupling strength 𝑡𝑡 with the distance between the resonators25. The system is excited via a 263 

loop antenna fixed in the movable top plate thus allowing to scan spatially the magnetic field 𝐵𝐵𝑧𝑧, 264 

which is the only magnetic field component for this mode37. From the reflection measurements 265 

performed by a vector network analyzer (ZVA 24 from Rohde & Schwarz) the local density of 266 

states can be extracted (for details see ref. 25) and finally, by integrating over space, the density of 267 

states. In all these experiments, we face an intrinsic on-site disorder of ∼ 0.15%  in the values of 268 

𝜔𝜔0. 269 

 270 

B. Modelling 271 

 272 

For the design of the system, we modelled finite strained photonic honeycomb lattices with a range 273 

of system sizes and boundary geometries within coupled-mode tight-binding theory, in which we 274 

accounted for the fundamental TE mode and incorporated the experimental distance dependence 275 

of the coupling strengths following25. Exact diagonalization gives us access to the resonant modes 276 

and their spatial intensity distribution. The modelling confirmed that the triaxial coupling profile 277 



(1) can be attained by suitable positioning of the resonators, resulting in an excellent match with 278 

the continuum theory predictions for the lowest Landau levels in systems as used in the 279 

experiments. The modelling further confirmed that only for zigzag boundaries one can attain the 280 

full sublattice polarization of the zeroth Landau level, and only for a triangular shape the Landau 281 

levels become maximally degenerate. 282 
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Figure captions.  379 

FIG 1 380 

 381 

 382 
 383 

 384 

Figure. 1 Experimental set-up. a Sketch of the unstrained (gray) and strained (black) honeycomb 385 

lattice geometry, forming a zigzag terminated triangle of size 𝐿𝐿 = 14. The green arrows indicates 386 

the directions 𝝆𝝆𝑙𝑙 , 𝑙𝑙 = 1,2,3 ,  of the effective triaxial strain. Inset: the underlying lattice is 387 

composed of two sublattices A (red) and B (blue). The local coupling strengths are denoted 𝑡𝑡𝑙𝑙. 388 

They depend on the location of the bonds in the lattice [see Eq. (1) and the text for details). b 389 

Illustration of the experimental set-up. The lattice is composed of 196 identically designed 390 

cylindrical dielectric resonators that are coupled through the evanescent field of the fundamental 391 

TE mode. The structure is placed inside a microwave cavity made of two metallic plates (top plate 392 

only partially shown). A loop antenna, mounted on a scanning system (white arrows) crossing the 393 

top plate and connected to a vectorial network analyzer (VNA), is used to generate and collect the 394 

microwave signal both spectrally and spatially resolved, which allows to obtain the local density 395 

of states in the system. 396 
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FIG 2 398 

 399 
 400 

Figure 2. Landau-level formation. Experimentally determined density of states (left panels) and 401 

spatially resolved mode intensity associated with the central peak centered at 𝜔𝜔0 = 6.653 GHz 402 

(right panels, obtained by integrating the local density of states over the peak). The area of the 403 

circles corresponds to the intensity on the A sites (red) and B sites (blue). From top to bottom, the 404 

pseudomagnetic field strength 𝛽𝛽 varies from 0 to 0.2. The gray dashed lines in the total density of 405 

states for 𝛽𝛽 = 0.2  depict the expected pseudo-Landau levels frequencies from coupled-mode 406 

theory. The formation of the 0th pseudo-Landau level proceeds continuously by transforming 407 

zigzag edge states into bulk states, whilst retaining the degeneracy (spectral weight) and sublattice 408 

polarization (remaining confined on the A sublattice). 409 
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FIG 3 411 

 412 

 413 
 414 

Figure 3. Supersymmetric node structure. Experimentally determined spatially resolved mode 415 

intensities associated with the pseudo-Landau levels of index 𝑛𝑛 = 0 to 4 (from left to right) for a 416 

large pseudomagnetic field strength 𝛽𝛽 = 0.2. Top rows: the area of the  circles correspond to the 417 

intensity on the A  sites (above) and B sites (below). The 0th level is almost entirely localized on 418 

the A sublattice, while all other levels have almost-equal overall weight on both sublattices. 419 

Bottom rows: intensity on  A sites (above) and B sites (below), averaged along the three extreme 420 

edges at resonator position 𝑟𝑟. Note that 𝑟𝑟max = 14 (resp. 13) for A (resp. B) sites. For the higher-421 

order levels, the average is performed combining the indices ±𝑛𝑛. The shaded area corresponds to 422 

the standard deviation. The two 𝑦𝑦-axis ticks indicated intensity values of 0 and 1 in arbitrary, but 423 

uniformly applied units. The pseudo-Landau levels display a clear nodal structure offset by 1 mode 424 

index, as further discussed in the text. 425 
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